

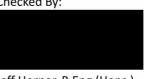
Residential Development on Land to the Rear of Daisyley Lane.

FLOOD RISK ASSESSMENT & DRAINAGE STATEMENT

Date:		Prepared B
	September 2023	
GHB Reference:		Elizabeth Ra
	214/2023/FRADS	Associate, G.
Revision:	Status:	Checked By
P1	Draft	
		Jeff Horner, Partner, G.H.

G.H. Bullard & Associates LLP, 27 Barton Road, Thurston, Suffolk, IP31 3PA Tel: 01359 235071 Fax: 01359 231138 Web-site: http://www.ghbullard.co.uk/

Dan Henning C.Eng., M.C.I.H.T. Partnership No. OC383830


Registered in England and Wales

Jeff Horner B.Eng (Hons) V.A.T. Reg. No. 460 461171

y:

ahim, M.Eng (Hons.) CEng MICE .H. Bullard & Associates LLP

B.Eng (Hons.) **Bullard & Associates LLP**

CONTENTS

Flood	Risk Assessment & Drainage Statement	1
1.	Introduction	2
2.	Policy Context	3
3.	Existing Site Information	4
4.	Proposed development	4
5.	Climate Change	5
6.	Fluvial Flooding	5
7.	Tidal Flooding	5
8.	Pluvial Flooding	5
9.	Groundwater Flooding	6
10.	Infrastructure Failure Flooding	6
11.	Sequential test	7
12.	Exception test	7
Draina	age Strategy	8
13.	Proposed Drainage	8
S	urface Water Disposal	8
C	Quantity	8
C	Quality	9
E	xceedance10	0
14.	Adoption & maintenance10	0
15.	Foul Drainage10	0
16.	Summary1	1
17.	List of Appendices12	2

1. INTRODUCTION

- 1.1. This Flood Risk Assessment and Drainage Statement is being submitted to accompany a planning application for erection of three new residential dwellings within the rear garden of Daisyley House. A location plan is shown in Appendix A.
- 1.2. The report is produced for the sole use by Earlswood Homes Ltd.
- 1.3. The information provided within this report is based on the best available data currently recorded or provided by a third party. The accuracy of this report is therefore not guaranteed and does not obviate the need to make additional appropriate searches, inspections and enquiries.
- 1.4. An illustrative site layout plan (refer to Appendix B) showing how this quantum of development can be accommodated on the site is submitted with the application but is an indicative layout only and does not form part of the application as such. However, this flood risk assessment and drainage strategy has been prepared on the basis of the illustrative site layout to demonstrate that this quantum of development can be undertaken without it being at risk from flooding or from increasing flood risk of other land.
- 1.5. The National Planning Policy Framework (NPPF, February 2019), Section 14 (Meeting the challenge of climate change, flooding and coastal change), Paragraph 155 states that:

"Inappropriate development in areas at risk of flooding should be avoided by directing development away from areas at highest risk, but where development is necessary, making it safe without increasing flood risk elsewhere."

1.6. The NPPF recommends the Environment Agency (EA) Flood Maps as a starting point for Flood Risk Assessment. An extract from the EA Flood maps is reproduced in Figure 1.1 below.



Figure 1.1 – EA Flood Map (Rivers and Seas)

- 1.7. The Environment Agency has produced standing guidance for developments dependent on their size and location. As can be seen from Figure 1.1 above, the site is located within Flood Zone 1, low risk.
- 1.8. Industry best practice requires assessment of all flooding sources to be carried out. Despite this document having now been superseded by the NPPF, Figure 3.2 of the "PPS25: Development and Flood Risk" (PPS25) Practice Guide lists five key sources of flooding:
 - i. Fluvial (refer to Section 6);
 - ii. Tidal (refer to Section 7);
 - iii. Pluvial (refer to Section 8);
 - iv. Groundwater (refer to Section 9); and
 - v. Infrastructure Failure (refer to Section 10).

2. POLICY CONTEXT

- 2.1. The purpose of the planning system is to contribute to the achievement of sustainable development NPPF, Paragraph 7
- 2.2. At the heart of the National Planning Policy Framework is a presumption in favour of sustainable development which does not change the statutory status of the development plan as the starting point for decision making NPPF, Paragraph 12
- 2.3. Inappropriate development in areas at risk of flooding should be avoided by directing development away from areas at highest risk (whether existing or future). Where development is necessary in such areas, the development should be made safe for its lifetime without increasing flood risk elsewhere NPPF, Paragraph 159.
- 2.4. The aim of the Sequential Test is to steer new development to areas with the lowest probability of flooding NPPF, Paragraph 162.
- 2.5. Following the Sequential Test, both elements of the Exception Test will have to be passed for development to be allocated or permitted NPPF, Paragraph 165.
- 2.6. The Local Planning Authority, Uttlesford District Council Local Plan 2005 policy GEN3 Flood Protection.
- 2.7. The Environment Agency provide standing advice guidance.
- 2.8. Essex County Council, as lead local flood authority, document Sustainable Drainage Design Guide for Essex.

3. EXISTING SITE INFORMATION

- 3.1. The site is located to the north of Lindsell. A site layout plan is attached in Appendix B.
- 3.2. The site is currently a garden and is deemed to be a greenfield.
- 3.3. The site can be located from the following information:
 - i. Postcode: CM6 3QL

ii. The site falls to the northeast corner at approximately gradient of 1in40.iii. The area is 0.46ha.

- 3.4. The BGS records describe the geology as Boulder Clay approximately 25m thick, over sand and gravel.
- 3.5. The existing property foul drainage is to a septic tank and periodically emptied by tanker, as there is no public sewer in the area.
- 3.6. The surface water run-off drains to the watercourse to the rear of the property. This watercourse flows south to north, as demonstrated by the LiDAR generated contours on plan in Appendix C. It then connects to a watercourse approximately 110m from the site that flows east. This outfalls to Daisyley Brook, approximately 230m from the site, and flows south.
- 3.7. The watercourse adjacent the site is approximately 0.8m deep.

4. PROPOSED DEVELOPMENT

- 4.1. The proposal is to construction three individual dwellings within the rear garden of Daisyley House, with vehicle access from the lane to the south of the existing dwelling.
- 4.2. The flood risk vulnerability classification is more vulnerable; Residential institutions such as residential care homes, children's homes, social services homes, prisons and hostels.
- 4.3. The Environment Agency table below (Table 4.1) shows that the development of the site does not require the application of the Exception Test and is appropriate at the site location.

Flood Zones	Flood Risk Vulnerability Classification				
	Essential infrastructure	Highly vulnerable	More vulnerable	Less vulnerable	Water compatible
Zone 1	~	✓	~	~	~
Zone 2	~	Exception Test required	~	~	~
Zone 3a <mark>†</mark>	Exception Test required †	x	Exception Test required	~	~
Zone 3b *	Exception Test required *	x	X	X	√ *
Key:	20046-0100024				
 Excel 	eption test is not	required			
X Devel	opment should n	ot be permitt	ed		

Table 4.1: Environment Agency Flood Zone/ Classification Table

4.4. The design life of the dwellings is deemed to be 100 years.

5. CLIMATE CHANGE

- 5.1. The National Planning Policy Framework (NPPF) sets out how the planning system should help to minimise vulnerability and provide resilience to the impacts of climate change.
- 5.2. The climate change allowances are predictions of anticipated change for:
 - i. Peak river flow by river basin district
 - ii. Peak rainfall intensity
 - iii. Sea level rise
 - iv. Offshore wind speed and extreme wave height.
- 5.3. The climate change allowances are predictions of anticipated change for this site is peak rainfall at 45% for peak rainfall. No other climate change allowances affect the site.

6. FLUVIAL FLOODING

- 6.1. Fluvial flooding is the flooding associated with rivers. This can take the form of:
 - i. Inundation of floodplains from rivers and watercourses
 - ii. Inundation of areas outside the floodplain due to influence of bridges, embankments and other features that artificially raise water levels
 - iii. Overtopping of defences
 - iv. Breaching of defences
 - v. Blockages of culverts
 - vi. Blockages of flood channels or corridors
- 6.2. The nearest watercourse is 230m to the east known as Daisyley Brook and the site is considerably elevated above the riverbanks.

7. TIDAL FLOODING

7.1. Tidal flooding is a risk of water levels from the sea or an estuary exceeding the normal tidal range. This site is too far from the coast for any tidal effect.

8. PLUVIAL FLOODING

- 8.1. Pluvial flooding is a risk of overland flows and ponding associated with extreme rainfall events. This can take the form of:
 - i. Sheet run-off from adjacent land (urban or rural)
 - ii. Surcharged sewers
- 8.2. As rain falls everywhere within the United Kingdom, there will always be a residual risk of flooding from extreme rainfall events.
- 8.3. The Environment Agency has produced maps with risk classifications that show the risk of flooding from surface water run-off. The maps show that the site is at very low risk of surface water flooding (<0.1% AEP).
- 8.4. The Environment Agency have produced maps with risk classifications that show the risk of flooding from surface water runoff.
- 8.5. An extract for the area showing the extent of flooding in the Medium Risk Scenario is reproduced in Figure 6.1 below.

Figure 9.1 – Surface water flooding extents 0.1% to 1%

8.6. The site is not affect by surface water flooding.

9. GROUNDWATER FLOODING

- 9.1. Groundwater flooding is a risk of the water table rising after prolonged rainfall to emerge above ground level remote from a watercourse. It is most likely to occur in low lying areas underlain by aquifers of high vulnerability.
- 9.2. Due to the thick boulder clay layer and the elevation of the site above the watercourse, it is very unlikely that the site will suffer from groundwater flooding.

10. INFRASTRUCTURE FAILURE FLOODING

- 10.1. Infrastructure failure flooding is a risk of collapse, failure or surcharging of man-made structures and drainage systems. This could take the form of:
 - i. Reservoirs
 - ii. Canals
 - iii. Burst water mains
 - iv. Blocked sewers
 - v. Failed pumping stations
- 10.2. The Environment Agency have mapped failure of reservoirs and this indicates there are no near effects of reservoir failure, therefore the risk to the site is low. Given that the site is 3.5km from an embanked main river, any breach or overtopping of these embankments would have a minimal effect on the site.

10.3. The risk of flooding from blocked sewers is considered to be very low as any flood water would flow to the existing watercourses located at the site.

11. SEQUENTIAL TEST

- 11.1. The local planning authority (LPA) may require this test to see if there are any reasonably available sites in the area at a lower flood risk on which the development could take place.
- 11.2. The scope of the sequential test is set by the LPA, unless this site is allocated within the local development plan.
- 11.3. This report deals with sequential approach within the proposed site boundaries.
- 11.4. This site has a very low risk of flooding therefore it is deemed to have met the Sequential Test.

12. EXCEPTION TEST

- 12.1. The Exception Test is a method to demonstrate and help ensure that flood risk to people and property will be managed satisfactorily, while allowing necessary development to go ahead in situations where suitable sites at lower risk of flooding are not available.
- 12.2. The site is within flood zone 1 and therefore the exception test is not required.

DRAINAGE STRATEGY

13. PROPOSED DRAINAGE

- 13.1. The proposed development comprises the erection of three dwellings on a greenfield site.
- 13.2. The greenfield rate based on the proposed impermeable area is $Q_1 = 0.5I/s$, $Q_{30} = 1.4I/s$, $Q_{100} = 2.1I/s$. However, due to the risk of blockages, the discharge rate is limited by a 50mm orifice. Refer to the Greenfield calculations in Appendix D.

Surface Water Disposal

- 13.3. In accordance with Government and Local Plan Policies and the requirements of the Building Regulations, surface water run-off from the development will be drained at source in a sustainable way by making full use of Sustainable Drainage Systems (SuDS) where possible.
- 13.4. The SuDS hierarchy dictates that infiltration at source is considered first. After infiltrating at source has been considered, the next stage is to deal with run-off in individual catchments, followed finally by site wide drainage solutions. Run-off from the development should not adversely impact upon drainage systems outside of the site boundary.
- 13.5. Detailed surface water drainage design should take into account all three key SuDS principles in equal measure:
 - i. Reducing peak quantity;
 - ii. Improving quality; and
 - iii. Providing amenity and biodiversity value.
- 13.6. Given the ground conditions in the area, infiltration is not considered a viable drainage option. The Q_{bar} rate of 0.5l/s is not considered to be a practical discharge rate for this form of development from a blockage point of view and so it is proposed that the surface water runoff will be discharged to the nearby watercourse at a rate controlled by a 50mm orifice.
- 13.7. The runoff from the roof areas will use conventional gutters and downpipes to downpipe filter chambers. From there, the roof water is piped to below ground storage crates.
- 13.8. The road run-off will drain to filter trench off-lets and then to the storage crates. From here the run-off will be restricted by an orifice flow control, then piped to a bagged headwall into the watercourse. The proposed drainage layout is attached in Appendix E.
- 13.9. The proposed development has the riparian right to connect to the watercourse.

Quantity

- 13.10. Micro-Drainage has been used to design the geo-cellular crates, assessing the volumes associated with the 1% AEP (1 in 100 year) event plus an allowance for 45% climate change and allows for 10% urban creep. At volumetric run-off of 1 has been applied. The rainfall data used is FSR as FEH gave a lower peak volume. The calculations are attached in Appendix F.
- 13.11. The geo-cellular crates will require a storage volume of 61m³ to attenuate for the 1% AEP (1 in 100 year) event plus an allowance of 45% for climate change. Refer to Appendix E for the layout drawing.
- 13.12. The system achieves half drain time within 24 hours and therefore is ready for the subsequent storm.

Quality

13.13. The water discharging to the watercourse must be cleansed and therefore treatment processes are introduced through the drainage network. These have been assessed using the simple qualitative method and index approach in accordance with Chapter 26 of the Ciria SuDS Manual C753, where the hazard of low to medium is mitigated with the various SuDS components to equal or exceed the hazard indices. Refer to Tables 26.2 and 26.3 below which show the hazard and mitigation indices associated with the proposed drainage scheme.

and use	Pollution hazard level	Total suspended solids (TSS)	Metals	Hydro- carbons
Residential roofs	Very low	0.2	0.2	0.05
Other roofs (typically commercial/ industrial roofs)	Low	0.3	0.2 (up to 0.8 where there is potential for metals to leach from the roof)	0.05
Individual property driveways, residential car parks, low traffic roads (eg cul de sacs, homezones and general access roads) and non- residential car parking with infrequent change (eg schools, offices) ie < 300 traffic movements/day	Low	0.5	0.4	0.4
Commercial yard and delivery areas, non-residential car parking with frequent change (eg hospitals, retail), all roads except low traffic roads and trunk roads/motorways ¹	Medium	0.7	0.6	0.7
Sites with heavy pollution (eg haulage yards, lorry parks, highly frequented lorry approaches to industrial estates, waste sites), sites where chemicals and fuels (other than domestic fuel oil) are to be delivered, handled, stored, used or manufactured; industrial sites; trunk roads and motorways ¹	High	0.8 ²	0.82	0.9 ²

TAB 26.

		Mitigation indices ¹		
Type of SuDS component	TSS	Metals	Hydrocarbons	
Filter strip	0.4	0.4	0.5	
Filter drain	0.4 ²	0.4	0.4	
Swale	0.5	0.6	0.6	
Bioretention system	0.8	0.8	0.8	
Permeable pavement	0.7	0.6	0.7	
Detention basin	0.5	0.5	0.6	
Pond ⁴	0.7 ³	0.7	0.5	
Wetland	0.8 ³	0.8	0.8	
Proprietary treatment systems ^{5,6} These must demonstrate that they can address each of the contaminant types to acceptable levels for frequent events up to approximately the 1 in 1 year return period event, for inflow concentrations relevant to the contributing drainage area.				

- 13.14. The roof water hazard level is low and will pass through down pipe filter chambers before reaching the geo-cellular storage. The detention basin prior to discharging to the watercourse, and as can be seen from the above tables, the mitigation indices exceed the hazard indices.
- 13.15. The runoff from the roads and driveways will discharge to a filter drain prior to discharge to the geo-cellular crates and then to the watercourse.
- 13.16. It can be seen from the above tables, the mitigation indices for this drainage process equal or exceed the hazard indices for this runoff.

Exceedance

- 13.17. In an exceedance event in which rainfall surpasses the design capacity, there should be no vulnerable buildings at risk of flooding.
- 13.18. Site ground levels will be locally contoured to deflect water away from building thresholds, with floor levels being set at least 150mm above surrounding ground levels. The exceedance flow path will be directed around the building and towards the existing watercourses, mimicking the current flow path.
- 13.19. The exceedance paths have been shown on the layout plan in Appendix E.

14. ADOPTION & MAINTENANCE

- 14.1. It is important to establish the adopting responsibilities at an early stage to define the requirement and how these meet the standards.
- 14.2. As this is a small development of 3 dwellings there will be shared responsibility for the drainage system, as there is likely to be for the incidental landscape areas and access road.
- 14.3. Maintenance of the system will include for frequent inspections and regular intervals of cleansing.

15. FOUL DRAINAGE

- 15.1. Part H of The Building Regulations (2010) 2015 Edition states that "Foul drainage should be connected to a public foul or combined sewer wherever this is reasonably practicable".
- 15.2. A search of the Anglian Water public sewer assets has been undertaken and is shown in Appendix G. It confirms that there are no near public sewers to the site.
- 15.3. The current dwelling uses a septic tank, which are not acceptable for new builds and therefore the preferred method is to use a packaged treatment plant for each dwelling. The treated effluent will discharge individually to the watercourse to the east.

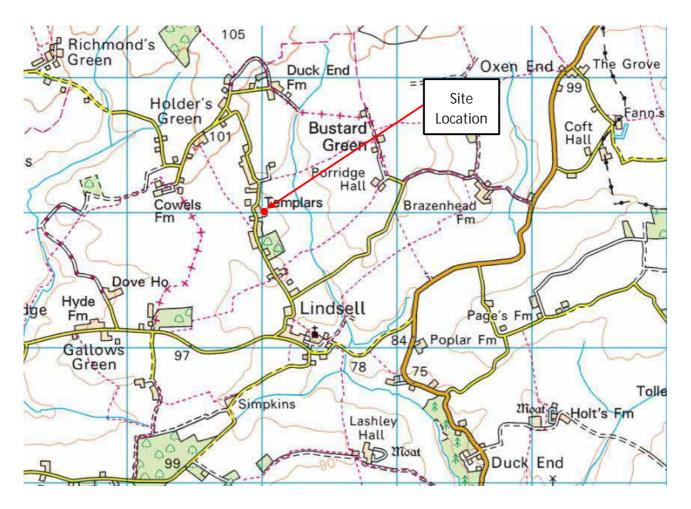
16. SUMMARY

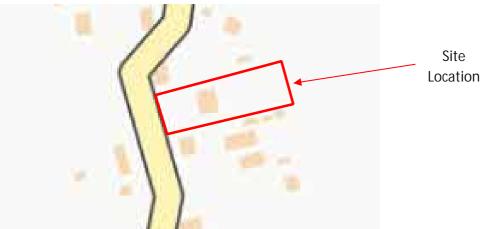
- 16.1. It has been demonstrated that the site is located within Flood Zone 3, in an area that benefits from Flood Protection.
- 16.2. Table 12.1 summarises the probability of the site flooding from the five key sources as listed in PPS25.

Source	Description	Risk	
Fluvial	Rivers	Flood Zone 1 in an area benefitting	(<0.1%)
Tidal	Seas	from Flood Defences	(<0.170)
Pluvial	Surface Water	Very Low	(<0.1%)
Groundwater	Aquifers	Low	-
Infrastructure failure	Reservoirs Blocked Sewers	Outside maximum extent of flooding Very Low	(Very Low)

Table 12.1 – Flood Risk Summary

- 16.3. Following the standing advice from the Environment Agency, the development will be safe for its lifetime without increasing flood risk elsewhere.
- 16.4. Run-off from this development will be discharged to a watercourse at a restricted flow rate, utilising a geo-cellular crate (61m³) for attenuation.
- 16.5. As the local watercourses form part of the Burnt Fen IDB who maintain the level of drainage protection through the use of pumping stations, the risk from groundwater flooding is considered to be low.
- 16.6. The exceedance flow is directed away from vulnerable buildings and infrastructure and outflows along its original path.
- 16.7. In accordance with government policy, SuDS will be used on site, where possible, and surface water drainage of the site will be carried out in a sustainable way.
- 16.8. As long as maintenance of the new drainage systems are correctly carried out, the risk of flooding and the subsequent risks from infrastructure failure or pluvial means, is very low.
- 16.9. The Environment Agency accepts that extreme floods will occur, and it will never be possible to eliminate flood risk altogether.
- 16.10. It is considered that the risk of flooding to the site has been adequately considered and therefore development of the site with the proposed drainage system does not pose an unacceptable flood risk either to occupants of the site or to others off site.
- 16.11. Foul water will be processed by a package treatment plant and the treated effluent will discharge to the watercourse.


17. LIST OF APPENDICES


- Appendix A Location Plan
- Appendix B Proposed Layout Plan
- Appendix C Existing Site Plan
- Appendix D Greenfield Rate Calculations
- Appendix E Proposed Drainage Layout
- Appendix F Micro-Drainage Calculations
- Appendix G Anglian Water Asset Records

APPENDIX A

Location Plan

APPENDIX B

Proposed Layout Plan

NO DIMENSIONS TO BE SCALED FROM THIS DRAWING		
This document references the	following file:-	
Reference Name	Status	Revisio
PC-XX-XX-M3-Designer-0001	5049	P01.1

Revisions		Date D	rawn / Chk'd
P01	First Issue	26/07/2	23 AO/SE
P02	Arboric ulturist Issue	03/08/2	AO/SE
P03	Carport amendment	07/09/2	AO/SE
P04	Tree removed	08/09/2	23 AO/SE
P05	HT1 Orientation Amendment	18/09/2	23 LM/SE
P06	RedLine Amended	21/09/2	23 SE

Client

Earlswood Homes

Project

Proposed Residential Development, Land to Rear of Daisylea House

Title

BS 1192 Ref.

PC-Designer-0102

Site Layout Plan as Proposed

Revision

Scale -unless otherwise stated

P06 Issued For

As indicated @ A3

PRELIMINARY

Status

The Old Steelyard Poplar Lane Sproughton Ipswich IP8 3HL t: 01473 689 532

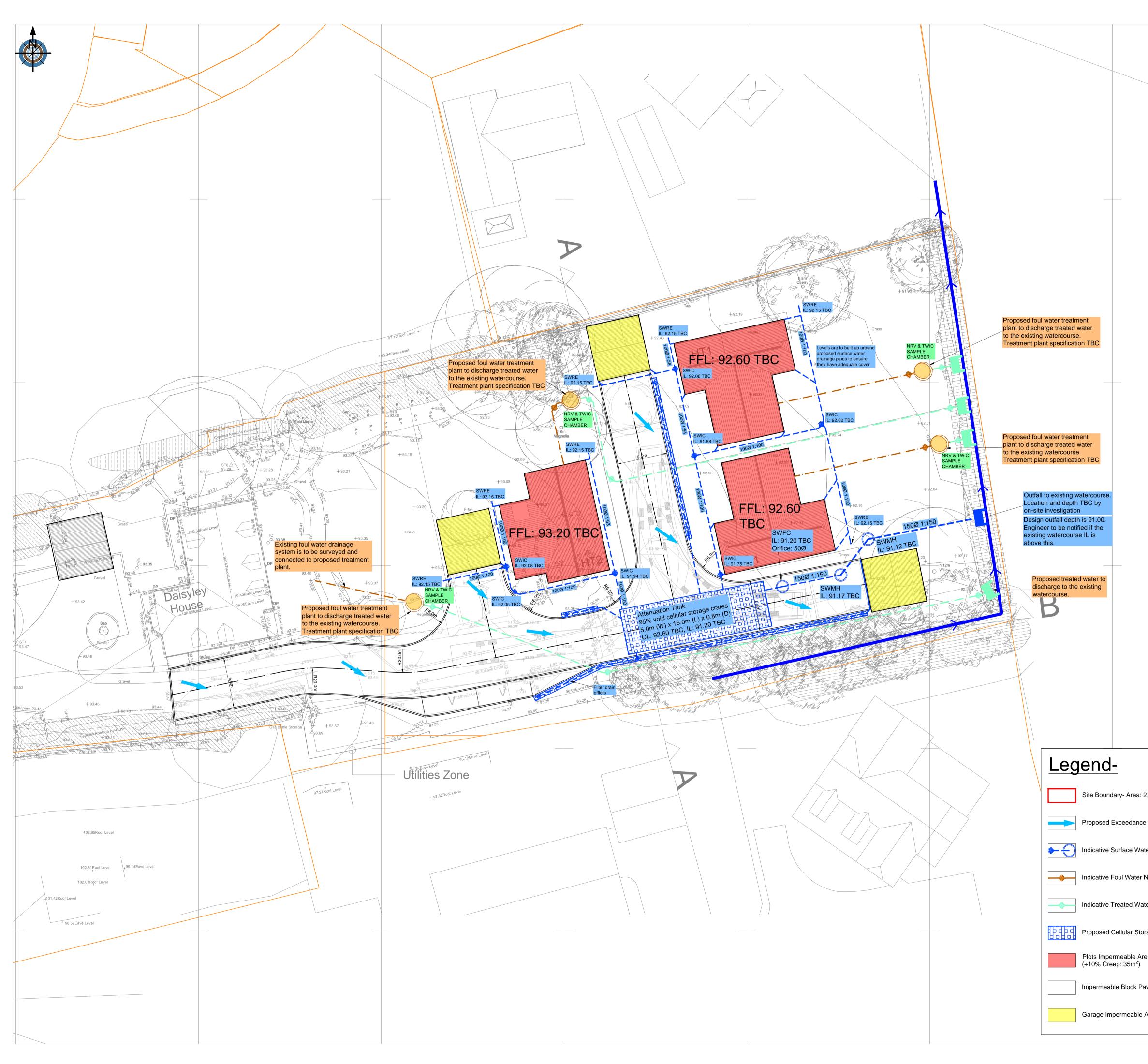
1:500 www.klharchitects.com

APPENDIX C

Existing Site Plan

APPENDIX D

Greenfield Calculations



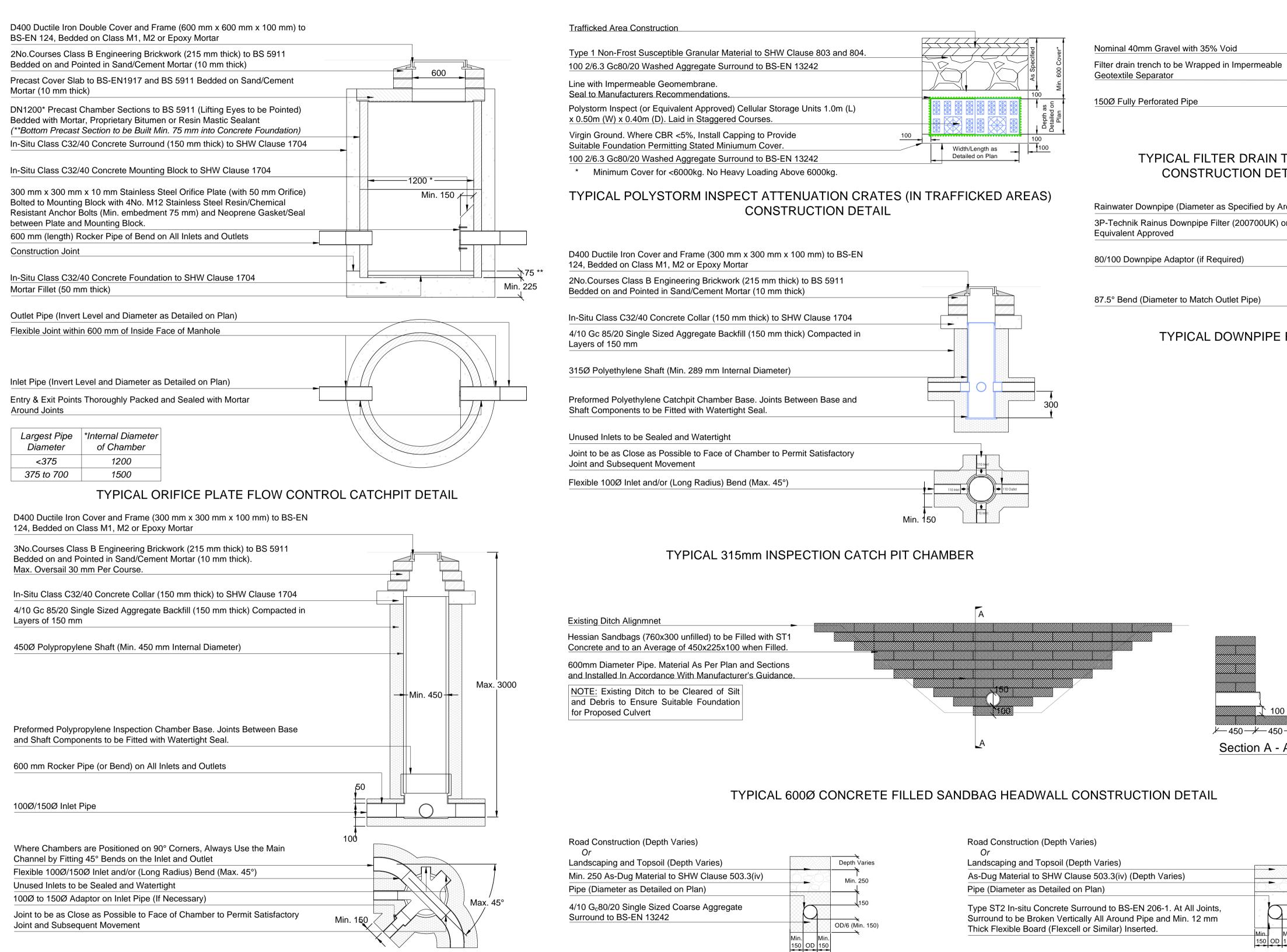
Design Lement Calc sheet no. ref Query from FEH data Calc by Date Meeting Meeting Drawing ref Calc by Date Proving ref Calc by Date Check by Date Proving ref Calc by Date Output Input values into blue boxes only: Example Output Estimation of Median Flood Indication Indication Indication Calchment area= 1 hai Indication Indication Gath Flat 1 Indication Median annual flood for a rural area (m ³ /s) Indication Indication Indication of Median annual flood for a rural area (m ³ /s) Indication Indication Indication Indication of Median annual flood for a rural ar	GHBull	ard & Associates LLP	Project Lindsell Daisyle	a House	Job ref 214-20	23
Provide Description Description Description Description Ref Calculations Output Date Calculations Output Input values into blue bases only reserve Calculations Output Output Output FEH (Institute of Hydrology, 1999) Estimation of Median Flood Input values into blue bases only reserve Same Output Calculations Median annual flood for a rural area (m ³ /s) Input values into blue bases only reserve Input values into blue bases only reserve Input values into blue bases only reserve Calculations Median annual flood for a rural area (m ³ /s) Input values into blue bases only reserve Input values into blue bases only reserve OMED rule Median annual flood for a rural area (m ³ /s) Input values into blue bases on soil lype map Input values into blue bases on soil lype map Revised Kjedson ot al (2008) Method Input values into blue bases on soil lype map Input values into blue bases on soil lype map Input values into blue bases on soil lype map Revised Kjedson ot al (2008) Method Input values into blue bases on soil lype map Input values into blue bases on soil lype map Input values into blue bases on soil lype map Input values into blue bases on soil	Civil	I and Traffic Engineering Consultants				20
Mathematical accordination of the distribution of the distredistretex of the distribution of the distribution of the distri	Vartan Road	Tol. 01250 225071			Calc sheet no. rei	
In PA Instruction JAH ####### JAH ###### Ref Calculations Output Input values into blue boxes only: Example Input values into blue boxes only: Example FEH (Institute of Hydrology, 1999) Estimation of Median Flood Input values area 1 Input values Inpu	ston	Fax: 01359 231138	1		Check by	Date
Ref Calculations Output Input values into Blue boxes only: Example Input values into Blue boxes only: Example FEH (Institute of Hydrology, 1999) Estimation of Median Flood Input values into Blue boxes only: Example Estimation of Median Flood Input values into Blue boxes only: Example Input values into Blue boxes only:						<i>######</i>
Input values into blue boxes only Example FEH (Institute of Hydrology, 1999) Estimation of Median Flood Image: Standard average annual flood for a rural area (m ² /s) Catchment area 1 hal Image: Standard average annual rainfall (1961-1990) (mm) OMED ural Median annual flood for a rural area (m ² /s) Image: Standard average annual rainfall (1961-1990) (mm) SAAR Standard average annual rainfall (1961-1990) (mm) Image: Standard average annual rainfall (1961-1990) (mm) BFIHOST Base flow indice based on soil type map Image: Standard average annual rainfall (1961-1990) (mm) BFIHOST Base flow indice based on soil type map Image: Standard average annual rainfall (1961-1990) (mm) BFIHOST Base flow indice based on soil type map Image: Standard average annual rainfall (1961-1990) (mm) BFIHOST Base flow indice based on soil type map Image: Standard average annual rainfall (1961-1990) (mm) BritHOST Base flow indice based on soil type map Image: Standard average annual rainfall (1961-1990) (mm) BFIHOST Base flow indice based on soil type map Image: Standard average annual rainfall (1961-1990) (mm) Growth Factors I//s/ha Image: Standard average annual rainfall (1961-1990) (mm) On	+ + + +		1	JAN JAN	JAIT	
FEH (Institute of Hydrology, 1999) Estimation of Median Flood Catchment area 1 SAAR SB3 Mark SB4 OMED OMED OMED BFIHOST Base flow index based on soil type map BFIHOST Base flow index based on soil type map QMED Revised Kjeldson et al (2008) Mulhod QMED QMED BFIHOST Base flow index based on soil type map QMED QMED QMED QMED Bill of the conversion factor 1.12 Qmed to Obar conversion factor 1.12 Q100 3.56 18.26 Q100 2.5<	Ref		Calculations		Outpu	t
FEH (Institute of Hydrology, 1999) Estimation of Median Flood Catchment area 1 SAAR SB3 Mark SB4 OMED OMED OMED BFIHOST Base flow index based on soil type map BFIHOST Base flow index based on soil type map QMED Revised Kjeldson et al (2008) Mulhod QMED QMED BFIHOST Base flow index based on soil type map QMED QMED QMED QMED Bill of the conversion factor 1.12 Qmed to Obar conversion factor 1.12 Q100 3.56 18.26 Q100 2.5<						
Estimation of Median Flood		Input values into blue bo	xes only: Example			
Estimation of Median Flood						
Catchment area 1 ha ha<		FEH (Institute of Hydro	ology, 1999)			
SAAR 583 mm FARL 1 1 OMED 0.347 OMED 0.347 AREA Catchment area (m ³ /s) SAAR Catchment area (m ³ /s) AREA Catchment area (m ³ /s) SAAR Standard average annual rainfall (1961-1990) (mm) BFIHOST Base flow index based on soil type map Revised Kjeldson et al (2008) Method 0 QMED = 8.3062 AREA		Estimation of Median	Flood			
SAAR 583 mm 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
FARL 1		Catchment area = 1	ha			
BFIHOST		SAAR 583	3 mm			
OMED_runt Media annual flood for a rural area (m ³ /s) Image: catchment area (km ³) AREA Catchment area (km ³) Image: catchment area (km ³) SAAR Standard average annual rainfall (1961-1990) (mm) Image: catchment area (km ³) BFIHOST Base flow index based on soil type map Image: catchment area (km ³) Revised Kjeldson et al (2008) Method Image: catchment area (km ³) Image: catchment area (km ³) QMED = 8.3062 AREA Image: catchment area (km ³) Image: catchment area (km ³) QMED = 8.3062 AREA Image: catchment area (km ³) Image: catchment area (km ³) QMED = 8.3062 AREA Image: catchment area (km ³) Image: catchment area (km ³) QMED = 8.3062 AREA Image: catchment area (km ³) Image: catchment area (km ³) QMED = 8.3062 AREA Image: catchment area (km ³) Image: catchment area (km ³) QMED = 8.3062 AREA Image: catchment area (km ³) Image: catchment area (km ³) Image: catchment area (km ³) Image: Catchment area (km ³) Image: catchment area (km ³) Image: catchment area (km ³) Image: catchment area (km ³) Image: catchment area (km ³) Image: Catchment area (km ³) Image: catc		FARL 1				
OMED real Media annual flood for a rural area (m ³ /s) Image: catchment area (km ³) AREA Catchment area (km ³) Image: catchment area (km ³) SAAR Standard average annual rainfall (1961-1990) (mm) Image: catchment area (km ³) BFIHOST Base flow index based on soil type map Image: catchment area (km ³) Revised Kjeldson et al (2008) Method Image: catchment area (km ³) Image: catchment area (km ³) QMED = 8.3062 AREA 0.1536 [±] Me ⁴ PARL 0.0460 [±] mest ² QMED = 8.3062 AREA 0.1536 [±] Me ⁴ PARL 0.0460 [±] mest ² QMED = 8.3062 AREA 0.1536 [±] Me ⁴ PARL 0.0460 [±] mest ² QMED = 8.3062 AREA 0.1536 [±] Me ⁴ PARL 0.0460 [±] mest ² QMED = 8.3062 AREA 0.1536 [±] Me ⁴ PARL 0.0460 [±] mest ² QMED = 8.3062 AREA 0.1536 [±] Me ⁴ PARL 0.0460 [±] mest ² QMED = 8.3062 AREA 0.1536 [±] Me ⁴ PARL 1.0460 [±] QMED = 8.3062 AREA 0.1536 [±] Me ⁴ PARL 1.0460 [±] QME = 0.041 1.12 Qmeat 4.6 1.04			7			
AREA Catchment area (km²) Image: catchment area (km²) BAR Standard average annual rainfall (1961-1990) (mm) Image: catchment area (km²) BFIHOST Base flow index based on soil type map Image: catchment area (km²) Revised Kjeldson et al (2008) Method Image: catchment area (km²) Image: catchment area (km²) Revised Kjeldson et al (2008) Method Image: catchment area (km²) Image: catchment area (km²) QMED = 8,3062 AREA Image: catchment area (km²) Image: catchment area (km²) QMED = 8,3062 AREA Image: catchment area (km²) Image: catchment area (km²) QMED = 8,3062 AREA Image: catchment area (km²) Image: catchment area (km²) QMED = 8,3062 AREA Image: catchment area (km²) Image: catchment area (km²) QMED = 8,3062 AREA Image: catchment area (km²) Image: catchment area (km²) QMED = 8,3062 AREA Image: catchment area (km²) Image: catchment area (km²) QMED = 8,3062 AREA Image: catchment area (km²) Image: catchment area (km²) QMED = 8,3062 AREA Image: catchment area (km²) Image: catchment area (km²) Q1 0.87 Image: catchment area (km²)<						
AREA Catchment area (km ²) Image: catchment area (km ²) BFIHOST Base flow index based on soil type map Image: catchment area (km ²) Revised Kjeldson et al (2008) Method Image: catchment area (km ²) Image: catchment area (km ²) QMED = 8.3062 AREA Image: catchment area (km ²) Image: catchment area (km ²) QMED = 8.3062 AREA Image: catchment area (km ²) Image: catchment area (km ²) QMED = 8.3062 AREA Image: catchment area (km ²) Image: catchment area (km ²) QMED = 8.3062 AREA Image: catchment area (km ²) Image: catchment area (km ²) QMED = 8.3062 AREA Image: catchment area (km ²) Image: catchment area (km ²) QMED = 8.3062 AREA Image: catchment area (km ²) Image: catchment area (km ²) QMED = 8.3062 AREA Image: catchment area (km ²) Image: catchment area (km ²) QMED = 8.3062 AREA Image: catchment area (km ²) Image: catchment area (km ²) QMED = 8.3062 AREA Image: catchment area (km ²) Image: catchment area (km ²) QI 0.87 4.46 Q ₁ = 4.5 Image: catchment area (km ²) QI 0.87		QMED _{rural}	Median annual flood for a ru	ıral area (m ³ /s)		
SAAR Standard average annual rainfall (1961-1990) (mm) Image: Standard average annual rainfall (1961-1990) (mm) BFIHOST Base flow index based on soil type map Image: Standard average annual rainfall (1961-1990) (mm) Revised Kjeldson et al (2008) Method Image: Standard average annual rainfall (1961-1990) (mm) Image: Standard average annual rainfall (1961-1990) (mm) Revised Kjeldson et al (2008) Method Image: Standard average annual rainfall (1961-1990) (mm) Image: Standard average annual rainfall (1961-1990) (mm) QMED = 8,3062 - AREA Image: Standard average annual rainfall (1961-1990) (mm) Image: Standard average annual rainfall (1961-1990) (mm) QMED = 8,3062 - AREA Image: Standard average annual rainfall (1961-1990) (mm) Image: Standard average annual rainfall (1961-1990) (mm) QMED = 8,3062 - AREA Image: Standard average annual rainfall (1961-1990) (mm) Image: Standard average annual rainfall (1961) (mm) QMED = 8,3062 - AREA Image: Standard average annual rainfall (1961) (mm) Image: Standard average annual rainfall (1961) (mm) QMED = 8,3062 - AREA Image: Standard average annual rainfall (1961) (mm) Image: Standard average annual rainfall (1961) (mm) QMED = 8,3062 - AREA Image: Standard average annual rainfall (1961) (mm) Image: Standard average annual rainfall (1961) (mm) QMED = 8,3062 - AREA Image: Standard average annual rainfall (1961)			Catchment area (km ²)			
BFIHOST Base flow index based on soil type map Image: Constraint of the second se		SAAR		nfall (1961-1990) (mm)		
Revised Kjeldson et al (2008) Method		BFIHOST	-			
QMED = 8.3062 AREA 0.1536 ⁵ kW FARL 0.0460 BERGST 0.1536 ⁵ kW FARL 0.0460 Constrained 0.1536 ⁵ kW FARL 0.0460 Constrained 0.1536 ⁵ kW FARL 0.0460 Constrained 0.1536 ⁵ kW FARL 0.0160 Constrained						
QMED = 8.3062 AREA 0.1536 MR FAR 0.0460 BRR/ST 0.1536 0.1536 ON 8 0 1 0.1536 0.1565 0.156 0.1565 0.1565 0.1565		Revised Kieldson et al	(2008) Method			
QMED = 8.3062 AREA 0.1536 ^{SUR} FAREA 0.0460 0.0460 0.0460 0.04 0.04 0.01 1 0.0460 0.0460 0.0460 0.04 0.04 0.01 1 0.0460 0.0460 0.0460 0.04 0.04 0.01 1 0.0460 0.0460 0.0460 0.04 0.04 0.01 1 0.0460 0.0460 0.0460 0.04 0.04 0.01 1 0.0460 0.0460 0.0460 0.04 0.04 0.0460 0.0460 0.0460 0.0460 0.0460 0.04 0.04 0.0460 0.0460 0.0460 0.0460 0.0460 0.04 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.100 0.356 12.57 0.060 0.060 0.060 0.060 0.060						
QMED = 8.3062 AREA 0.1536 ^{SUR} FAREA 0.0460 0.0460 0.0460 0.04 0.04 0.01 1 0.0460 0.0460 0.0460 0.04 0.04 0.01 1 0.0460 0.0460 0.0460 0.04 0.04 0.01 1 0.0460 0.0460 0.0460 0.04 0.04 0.01 1 0.0460 0.0460 0.0460 0.04 0.04 0.0460 0.0460 0.0460 0.0460 0.0460 0.04 0.04 0.0460 0.0460 0.0460 0.0460 0.0460 0.04 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.04 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.0460 0.100 0.356 12.57 0.060 0.067 13.4343 0.000 0.067 14.4			1000			
QN 8 0 0 1 1 QN 4.57964 U/S Qmed = 4.6 1 Qmed to Qbar conversion factor 1.12 Qbar = 5.1 1 Q1 0 0.87 4.46 Q1 = 4.5 1 Q30 2.45 12.57 Qao = 12.6 1 Q100 3.56 18.26 Qtoo = 18.3 1 Q100 3.56 19.434343 Qtoo = 10.6 1 Q100 3.65				451 BFIHOST ²		
QN 4.57964 I/s Qmed = 4.6 I Qmed to Obar conversion factor 1.12 Qbar = 5.1 I Q1 0.87 4.46 Q1 = 4.5 I Q100 3.56 12.57 Q30 = 12.6 I Q100 3.56 18.26 Q100 = 18.3 I 900 = 18.3 I 900 = 18.3 I 900 = 18.3 I 900 = 18.3 I 13.43.43 00.0" version = "5.0.1"> 900.0" Soooooooooooooooooooooooooooooooooooo	+	$QMED = 8.3062 \cdot AP$	KEA 0.1536 FARL	0.0460		
QN 4.57964 I/s Qmed = 4.6 I Qmed to Obar conversion factor 1.12 Qmed = 5.1 I Q1 0.87 4.46 Q1 = 4.5 I Q1 0.87 4.46 Q1 = 4.5 I Q1 0.87 4.46 Q1 = 4.5 I Q30 2.45 12.57 Q30 = 12.6 I Q100 3.56 18.26 Q100 = 18.3 I Q100 3.56 18.26 Q100 = 18.3 I Period P	+ + + +					
Qmed to Qbar conversion factor 1.12 Qbar = 5.1 1 Qmed to Qbar conversion factor 1.12 Qbar = 5.1 1 Q1 0.87 4.46 Q1 = 4.5 1 Q30 2.45 12.57 Q30 = 12.6 1 Q100 3.56 18.26 Q100 = 18.3 1 Q100 3.56 Service at 13:43:43 on Wed 16-Aug-2023> < 					$Q_{\text{med}} = 4.6$	5 I/s/
Growth Factors I/s/ha I Q1 0.87 4.46 Q1 = 4.5 Q30 2.45 12.57 Q30 = 12.6 Q100 3.56 18.26 Q100 = 18.3 18.26 Q100 = 18.3 18.26 Q100 = 18.3 18.26 Q100 = 18.3 18.26 Q100 = 18.3 1 18.26 Q100 = 18.3 1 18.3 1 18.26 Q100 = 18.3 1 18.3 1 13.43:43 on Wed 16-Aug-2023> 16.4 16.4 16.4 16.5						
Growth Factors I/s/ha I/s/ha Q1 0.87 4.46 $Q_1 = 4.5$ Q30 2.45 12.57 $Q_{30} = 12.6$ Q100 3.56 18.26 $Q_{100} = 18.3$ 9.00 9.00 0.00 12.57 $Q_{30} = 12.6$ Q100 3.56 18.26 $Q_{100} = 18.3$ 1 9.00 18.3 1 9.00 18.3 1 9.00 9.00 18.3 1 9.00 18.3 1 9.00 18.3 1 9.00 18.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Omed to Obar convers	sion factor 1.12		$Q_{\text{bar}} = 5.7$	1 I/s/
Q1 0.87 4.46 Q1 = 4.5 1. Q30 2.45 12.57 Q30 = 12.6 1. Q100 3.56 18.26 Q100 = 18.3 1. Q100 3.56 18.26 Q100 = 18.3 1. Q100 = 10.87 18.26 Q100 = 18.3 1. 18.26 Q100 = 18.3 1. 18.26 Q100 = 18.3 1. 18.26 Q100 = 18.3 1. 18.26 Q100 = 18.3 1. 18.3 1. 18.3 1. 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.	+					
Q1 0.87 4.46 Q1 = 4.5 1. Q30 2.45 12.57 Q30 = 12.6 1. Q100 3.56 18.26 Q100 = 18.3 1. Q100 3.56 18.26 Q100 = 18.3 1. Q100 = 10.87 18.26 Q100 = 18.3 1. 18.26 Q100 = 18.3 1. 18.26 Q100 = 18.3 1. 18.26 Q100 = 18.3 1. 18.26 Q100 = 18.3 1. 18.3 1. 18.3 1. 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.		Growth Factors	I/s/h	a		
Q30 2.45 12.57 Q ₃₀ = 12.6 1 Q100 3.56 18.26 Q ₁₀₀ = 18.3 1 Q100 18.3 1 Q100 18.3 1 Q100 18.3 1 Q100 18.3 1 Q100 18.3 1 18.3 1 18.3 1 <td< td=""><td></td><td></td><td></td><td></td><td>$Q_1 = 4.5$</td><td>5 I/s/</td></td<>					$Q_1 = 4.5$	5 I/s/
Q100 3.56 18.26 Q100 18.3 1 xml version="1.0" encoding="UTF-8" standalone="true"? 18.3 1 Created by FEH Web Service at 13:43:43 on Wed 16-Aug-2023 ? Created by FEH Web Service at 13:43:43 on Wed 16-Aug-2023 ? ? ?<						
<td< td=""><td></td><td></td><td></td><td></td><td>-30</td><td></td></td<>					-30	
Created by FEH Web Service at 13:43:43 on Wed 16-Aug-2023 <fehcdromexporteddescriptors appversion="2.0.0.0" version="5.0.1"> - <pointdescriptors 2.0.0.0"="" grid="G</td> <bfihost>0.365 <bfihost19> <bfihost19>0.347 <bfihost19>
<propwet>0.31
<propwet>
<propwet>0.31
<propwet>
<propwet>

</td><td>+ + +</td><td></td><td></td><td></td><td></td><td></td></tr><tr><td><!Created by FEH Web Service at 13:43:43 on Wed 16-Aug-2023> <FEHCDROMExportedDescriptors appVersion=" ngr="TL 63981 28018" version="5.0.1" x="563981" y="228018"> - <pointdescriptors 0"<="" 1="" grid="G</td> <bfihost>0.365 <bfihost19> <bfihost19>0.347 <bfihost19>
<propwet>0.31
<propwet>
<propwet>0.31
<propwet>
<propwet>

</td><td>+</td><td><2 vml version - " ngr="TL 63981 28018" td="" x="563981" y="228018"><td>encoding="LITE-8" stand</td><td>alone="true"2></td><td></td><td></td></pointdescriptors></pointdescriptors></fehcdromexporteddescriptors>	encoding="LITE-8" stand	alone="true"2>				
<fehcdromexporteddescriptors appversion="2.0.0.0" version="5.0.1"> - <pointdescriptors 28018"="" 63981="" cb"<="" grid="G</td> -

</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td></td><td></td><td></td><td></td><td>I=" ngr="TL 63981 28018" td="" tl="" x="563981" y="228018"></pointdescriptors></fehcdromexporteddescriptors>						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				y - 220010 X-	JUDJUT ym	- GD
<td< td=""><td>+</td><td></td><td></td><td></td><td></td><td></td></td<>	+					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	+					
<td< td=""><td>+</td><td></td><td></td><td></td><td></td><td></td></td<>	+					
- <pointddf2013values> - - <pointddf2013values> - - -</pointddf2013values></pointddf2013values>	+ $+$ $+$ $+$					
Qbar Qbar 0.6 Qbar 0.6 0.6 Qbar 0.7 0.6 Qbar 0.7 0.7	+ + + + + + + + + + + + + + + + + + + +					
Impermeable area 0.1135 ha Impermeable area 0.1135 ha <td< td=""><td>+ + + + +</td><td></td><td></td><td></td><td></td><td>5 I/s</td></td<>	+ + + + +					5 I/s
$Q_{30} = 1.4$	+++				$Q_{\text{bar}} = 0.0$	
$Q_{30} = 1.4$	+ $+$ $+$ $+$		0.1125 bc			
	+ $+$ $+$ $+$	impermeable area			_	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	+ $+$ $+$ $+$					
	+ $+$ $+$ $+$				$Q_{100} = 2.7$	1 I/s
	+ + + +					

APPENDIX E


Proposed Drainage Plan

	 This drawings is to be read in conjunction with GHB series 214 drawings and documents and any other relevant project team docume 2. Preliminary Issue - This drawing is not to be used for construct in detailed pricing purposes. Any work undertaken before approval received (in writing) are at risk of abortive works. This drawing has been produced based upon the following information Topographical Survey by geopoint (Ref. Geo23-054_T dated 19.0 subject to transformation of : 0,0 and Scale 1.0. Architectural Layout by KLH (Ref. 6049-0102 P02 dated 03.08.23) st to transformation of : 564028.8940, 228028.8738 and Scale 0.001. This drawing has been prepared solely for the purpose of obta Planning Consent based on information available and planning requir at the date of issue only. 	ents. on or s are n: 05.23) ubject ining a
	F: (01359) 231138	<u>JAH</u> Chck'd
2,862m ²	DAISYLEY HOUSE, LINDSELL	
e Flowpath	Drawing Title:	
ter Network Network	INDICATIVE SURFACE & FOUL WATER DRAINA SITE LAYOUT	٨GE
ter Network	Status	
rage Attenuation Tank	Status: FOR INFORMATION Scale: 1:200 @ A1	
ea- Total: 350m ²	Created: AUG 2023 Drawn: JW	
aving Area- Total: 675m ²	214-2023.DVVG JAI Drawing Number: Revi	ision:
Area- Total: 110m ²	214/2023/02 F	2

P# = Preliminary, C# = Construction, AB# = As Built

TYPICAL CLASS S PIPE BEDDING CONSTRUCTION DETAIL

Construction	
at Susceptible Granular Material to SHW Clause 803 and 804.	
neable Geomembrane.	
ct (or Equivalent Approved) Cellular Storage Units 1.0m (L)	
tion Permitting Stated Miniumum Cover.	
20 Washeu Aggregate Surround to BS-EN 15242	
Cover for <6000kg. No Heavy Loading Above 6000kg.	
OLYSTORM INSPECT ATTENUATION CRATES (IN TRAFFICKED AREAS) CONSTRUCTION DETAIL n Cover and Frame (300 mm x 300 mm x 100 mm) to BS-EN Class M1, M2 or Epoxy Mortar	
ass B Engineering Brickwork (215 mm thick) to BS 5911 Pointed in Sand/Cement Mortar (10 mm thick)	
2/40 Concrete Collar (150 mm thick) to SHW Clause 1704	
ingle Sized Aggregate Backfill (150 mm thick) Compacted in	
ne Shaft (Min. 289 mm Internal Diameter)	
thylene Catchpit Chamber Base. Joints Between Base and	
ts to be Fitted with Watertight Seal.	
be Sealed and Watertight	

n (Depth \	/aries)
------------	---------

l Topsoil (Depth Varies)	Depth Varies
Material to SHW Clause 503.3(iv)	Min. 250
s Detailed on Plan)	
ngle Sized Coarse Aggregate EN 13242	
	OD/6 (Min. 150)
	Min. Min.

idth/Length as batiled on Plan	Nominal 40mm Gravel with 35% Void Filter drain trench to be Wrapped in Impermeable Geotextile Separator 150Ø Fully Perforated Pipe TYPICAL FILTER DRAIN TRE		 <u>NOTES:</u> This drawing is to be read in conjunction w drawings and documents and any other relevant Preliminary Issue - This drawing is not to be detailed pricing purposes. Any work undertak received (in writing) are at risk of abortive works. This drawing has been produced based upon the Topographical Survey by geopoint (Ref. Geo2 subject to transformation of : 0,0 and Scale 1.0. Architectural Layout by KLH (Ref. 6049-0102 PC to transformation of : 564028.8940, 228028.8738 and Scale 0.001. This drawing has been prepared solely for t Planning Consent based on information available at the date of issue only. 	project team documents. used for construction or ken before approvals are following information: 23-054_T dated 19.05.23) D2 dated 03.08.23) subject he purpose of obtaining a
FICKED AREAS)	CONSTRUCTION DETAIL	-		
	Rainwater Downpipe (Diameter as Specified by Archited 3P-Technik Rainus Downpipe Filter (200700UK) or Equivalent Approved 80/100 Downpipe Adaptor (if Required) 87.5° Bend (Diameter to Match Outlet Pipe) TYPICAL DOWNPIPE FILT	Min. 450		
ER				
A	100 $450 - 450$		P1 21/08/23 Initial Issue Rev Rev Date Description © Copyright GHBullard & Ass Civil and Traffic Engl	JWT JAH Drawn Chck'd
			T: (01359) 235071 F: (01359) 231138	27 Barton Road, Thurston, Suffolk,
IDBAG HEADWALL CC	INSTRUCTION DETAIL		W: http://www.ghbullard.co.uk Partnership No. OC383830, Registered in England and Wales Client:	IP31 3PA
	h Varies) e 503.3(iv) (Depth Varies) Plan) ound to BS-EN 206-1. At All Joints, y All Around Pipe and Min. 12 mm	Depth Varies	EARLSWOOD HC	
TYPICAL CLASS Z		TAIL	INDICATIVE SURFACE & FOUL WATE CONSTRUCTION D	R DRAINAGE
			Status: FOR INFORMAT	ION
			Scale: N.T.S @ A1 Created: AUG 2023 DWG Reference: 214-2023.DWG	3 Drawn: JWT
			Drawing Number: 214/2023/03	Revision: P1
			P# = Prelimina	rry, C# = Construction, AB# = As Built

Nominal 40mm Gravel with 35% Void Filter drain trench to be Wrapped in Impermeable Geotextile Separator 150Ø Fully Perforated Pipe	 NOTES: 1. This drawing is to be read in conjunction with GHB series 214/2023 drawings and documents and any other relevant project team documents. 2. Preliminary Issue - This drawing is not to be used for construction or detailed pricing purposes. Any work undertaken before approvals are received (in writing) are at risk of abortive works. 3. This drawing has been produced based upon the following information: Topographical Survey by geopoint (Ref. Geo23-054_T dated 19.05.23) subject to transformation of : 0,0 and Scale 1.0. Architectural Layout by KLH (Ref. 6049-0102 P02 dated 03.08.23) subject to transformation of : 564028.8940, 228028.8738 and Scale 0.001. 4. This drawing has been prepared solely for the purpose of obtaining a Planning Consent based on information available and planning requirements at the date of issue only.
TYPICAL FILTER DRAIN TRENCH CONSTRUCTION DETAIL	
Rainwater Downpipe (Diameter as Specified by Architect) 3P-Technik Rainus Downpipe Filter (200700UK) or Equivalent Approved 30/100 Downpipe Adaptor (if Required) 37.5° Bend (Diameter to Match Outlet Pipe) TYPICAL DOWNPIPE FILTER DETAIL	
$ \begin{array}{c} \hline \\ \hline \\$	Image: P1 21/08/23 Initial Issue JWT JAH Rev Rev Date Description Drawn Chck'd © Copyright GHBullard & Associates LLP Givil and Traffic Engineering Consultants
ISTRUCTION DETAIL	T: (01359) 235071 F: (01359) 231138 W: http://www.ghbullard.co.uk Partnership No. OC383830, Registered in England and Wales Client: EARLSWOOD HOMES
/aries) 503.3(iv) (Depth Varies) n) nd to BS-EN 206-1. At All Joints, All Around Pipe and Min. 12 mm Similar) Inserted.	Project: DAISYLEY HOUSE, LINDSELL
	INDICATIVE SURFACE & FOUL WATER DRAINAGE CONSTRUCTION DETAILS
	Status: FOR INFORMATION Scale: N.T.S @ A1 Created: Drawn: NA/T
	Created: AUG 2023 Drawn: JWT DWG Reference: 214-2023.DWG Checked: JAH
	ZI4-ZUZ3.DVVG JAT Drawing Number: Revision:
	214/2023/03 P1

Rainwater Downpipe (Diameter as Specified by Architect)	
3P-Technik Rainus Downpipe Filter (200700UK) or Equivalent Approved	

APPENDIX F

Micro Drainage Calculations

G H Bullard & Associates		Page 1
27 Barton Road Thurston	Attenuation Tank	
Bury St Edmunds	Daist Lea House, Lindsell	
Suffolk IP31 3PA	Pl	Micro
Date 12/09/2023	Designed by JWT	Desinado
File 214-2023-ATTENUATIONTANK50MM	Checked by JAH	Diamarje
Micro Drainage	Source Control 2020.1.3	

Summary of Results for 100 year Return Period (+45%)

Half Drain Time : 144 minutes.

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15	min S	Summer	91.701	0.501	0.0	3.6	3.6	38.1	ОК
30	min S	Summer	91.835	0.635	0.0	4.1	4.1	48.3	ОК
60	min S	Summer	91.942	0.742	0.0	4.4	4.4	56.4	ΟK
120	min S	Summer	91.991	0.791	0.0	4.6	4.6	60.1	ΟK
180	min §	Summer	91.995	0.795	0.0	4.6	4.6	60.4	ОК
240	min S	Summer	91.986	0.786	0.0	4.6	4.6	59.7	ΟK
360	min S	Summer	91.951	0.751	0.0	4.4	4.4	57.1	ΟK
480	min S	Summer	91.912	0.712	0.0	4.3	4.3	54.1	ΟK
600	min S	Summer	91.874	0.674	0.0	4.2	4.2	51.2	ΟK
720	min S	Summer	91.837	0.637	0.0	4.1	4.1	48.4	ΟK
960	min S	Summer	91.770	0.570	0.0	3.9	3.9	43.4	ΟK
1440	min S	Summer	91.666	0.466	0.0	3.5	3.5	35.4	ΟK
2160	min S	Summer	91.558	0.358	0.0	3.0	3.0	27.2	ΟK
2880	min S	Summer	91.486	0.286	0.0	2.7	2.7	21.7	ΟK
4320	min S	Summer	91.397	0.197	0.0	2.2	2.2	15.0	ОК
5760	min S	Summer	91.347	0.147	0.0	1.8	1.8	11.2	ΟK
7200	min S	Summer	91.317	0.117	0.0	1.6	1.6	8.9	ΟK
8640	min S	Summer	91.297	0.097	0.0	1.4	1.4	7.3	ΟK
10080	min S	Summer	91.283	0.083	0.0	1.3	1.3	6.3	ΟK
15	min V	Winter	91.702	0.502	0.0	3.6	3.6	38.1	ΟK
30	min V	Winter	91.837	0.637	0.0	4.1	4.1	48.4	ΟK
60	min V	Winter	91.945	0.745	0.0	4.4	4.4	56.6	ОК
120	min V	Winter	91.994	0.794	0.0	4.6	4.6	60.3	ОК
180	min V	Winter	91.992	0.792	0.0	4.6	4.6	60.2	ΟK

	Storm Event		Rain (mm/hr)		Discharge Volume (m³)	Time-Peak (mins)	
15	min	Summer	139.171	0.0	40.1	18	
30	min	Summer	91.419	0.0	52.8	32	
60	min	Summer	57.224	0.0	66.3	62	
120	min	Summer	34.620	0.0	80.2	104	
180	min	Summer	25.465	0.0	88.5	134	
240	min	Summer	20.359	0.0	94.4	168	
360	min	Summer	14.780	0.0	102.8	236	
480	min	Summer	11.781	0.0	109.2	306	
600	min	Summer	9.873	0.0	114.4	374	
720	min	Summer	8.542	0.0	118.8	440	
960	min	Summer	6.792	0.0	125.9	570	
1440	min	Summer	4.909	0.0	136.5	822	
2160	min	Summer	3.543	0.0	147.9	1188	
2880	min	Summer	2.808	0.0	156.2	1556	
4320	min	Summer	2.020	0.0	168.6	2252	
5760	min	Summer	1.598	0.0	177.9	2992	
7200	min	Summer	1.332	0.0	185.3	3680	
8640	min	Summer	1.147	0.0	191.5	4408	
10080	min	Summer	1.011	0.0	196.8	5144	
15	min	Winter	139.171	0.0	40.1	18	
30	min	Winter	91.419	0.0	52.8	32	
60	min	Winter	57.224	0.0	66.3	60	
120	min	Winter	34.620	0.0	80.2	112	
180	min	Winter	25.465	0.0	88.5	140	
		©1	982-20	20 Innc	ovyze		

G H Bullard & Associates		Page 2
27 Barton Road Thurston	Attenuation Tank	
Bury St Edmunds	Daist Lea House, Lindsell	
Suffolk IP31 3PA	P1	Micro
Date 12/09/2023	Designed by JWT	Drainage
File 214-2023-ATTENUATIONTANK50MM	Checked by JAH	Diamarje
Micro Drainage	Source Control 2020.1.3	1

Summary of Results for 100 year Return Period (+45%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
240	min W	inter	91.975	0.775	0.0	4.5	4.5	58.9	ОК
360	min W	inter	91.924	0.724	0.0	4.4	4.4	55.0	ОК
480	min W	inter	91.870	0.670	0.0	4.2	4.2	50.9	ОК
600	min W	inter	91.818	0.618	0.0	4.0	4.0	46.9	ОК
720	min W	inter	91.770	0.570	0.0	3.9	3.9	43.3	ОК
960	min W	inter	91.687	0.487	0.0	3.5	3.5	37.0	ОК
1440	min W	inter	91.565	0.365	0.0	3.0	3.0	27.7	ΟK
2160	min W	inter	91.453	0.253	0.0	2.5	2.5	19.2	ОК
2880	min W	inter	91.386	0.186	0.0	2.1	2.1	14.2	ОК
4320	min W	inter	91.318	0.118	0.0	1.6	1.6	8.9	ΟK
5760	min W	inter	91.285	0.085	0.0	1.3	1.3	6.5	ОК
7200	min W	inter	91.270	0.070	0.0	1.1	1.1	5.3	ΟK
8640	min W	inter	91.263	0.063	0.0	0.9	0.9	4.8	ΟK
10080	min W	inter	91.258	0.058	0.0	0.8	0.8	4.4	ОК

Storm Event	Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m³)	Time-Peak (mins)
240 min Winter	20.359	0.0	94.4	178
360 min Winter	14.780	0.0	102.8	254
480 min Winter	11.781	0.0	109.2	326
600 min Winter	9.873	0.0	114.4	398
720 min Winter	8.542	0.0	118.8	464
960 min Winter	6.792	0.0	125.9	598
1440 min Winter	4.909	0.0	136.5	852
2160 min Winter	3.543	0.0	147.9	1212
2880 min Winter	2.808	0.0	156.3	1584
4320 min Winter	2.020	0.0	168.6	2288
5760 min Winter	1.598	0.0	177.9	2992
7200 min Winter	1.332	0.0	185.3	3664
8640 min Winter	1.147	0.0	191.5	4368
10080 min Winter	1.011	0.0	196.8	5112

G H Bullard & Associates		Page 3
27 Barton Road Thurston	Attenuation Tank	
Bury St Edmunds	Daist Lea House, Lindsell	
Suffolk IP31 3PA	Pl	Micro
Date 12/09/2023	Designed by JWT	Drainage
File 214-2023-ATTENUATIONTANK50MM	Checked by JAH	Diamaye
Micro Drainage	Source Control 2020.1.3	

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	100	Cv (Summer) 1.000
Region En	ngland and Wales	Cv (Winter) 1.000
M5-60 (mm)	19.500	Shortest Storm (mins) 15
Ratio R	0.400	Longest Storm (mins) 10080
Summer Storms	Yes	Climate Change % +45

<u>Time Area Diagram</u>

Total Area (ha) 0.116

Time (mins) Area From: To: (ha)

0 4 0.116

H Bullard & Associates					
Attenuation Tank					
Daist Lea House, Lindsell					
P1	Micro				
Designed by JWT	Desinado				
Checked by JAH	Diamage				
Source Control 2020.1.3					
	Daist Lea House, Lindsell Pl Designed by JWT Checked by JAH				

Model Details

Storage is Online Cover Level (m) 92.600

Cellular Storage Structure

Invert Level (m) 91.200 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m)	Area (m²)	Inf. Area (m²)	Depth (m)	Area (m²)	Inf. Area (m²)	Depth (m)	Area (m²) Inf.	Area (m²)
0.000	80.0	80.0	0.800	80.0	115.6	0.801	0.0	115.6

Orifice Outflow Control

Diameter (m) 0.050 Discharge Coefficient 0.600 Invert Level (m) 91.200

APPENDIX G

Anglian Water Asset Records

