

Westleigh House, 83-85 Leigh Road, Eastleigh, Hampshire, SO50 9DQ

Tel: 02380 488 488 www.Structural-Engineers.co.uk

DRAINAGE CALCULATIONS

EYE 400kV SUBSTATION

Engineer:Patterson Reeves & Partners LtdClient:Siemens Energy LtdDate:October 2023Internal Ref:J5656 / DC02Client Ref:D069-SEL-V00-400-CA-C-0005Revision:02 – For Construction

VAT Reg. No. 631 7581 38

Registered Address: Suite 104B, Alum House, Discovery Court Business Centre 551-553 Wallisdown Road, Poole, BH12 5AG Company Registered No. 4450543

'Patterson Reeves and Partners' is a trading name of 'Patterson Reeves and Partners Ltd'

Calculation Issue/Revision Log

Revision / Issue	Date	Comment	Ву	Checked
P01	July 2023	First Issue	MDP	POR
01	September 2023	For Comment	MDP	PUR
02	October 2023	For Construction	MDP	PUR

P	Project		Job Ref.			
		Eye 400k\	J5657			
Battaraan Baayaa & Bartaara	Section		Sheet no./rev.			
85 Leigh Boad		DC02 / iii Rev 02				
Eastleigh	Calc. by	Date	Chk'd by	Date	App'd by	Date
SO50 9DQ	MDP	17/07/2023	PJR	17/07/2023	NP	17/07/2023

Contents	Page Number
1.0 Drainage Design Philosophy	1
2.0 Potential Oily Water	2
3.0 Foul Water	2
4.0 Site Drainage Layout with Pipe number and areas	3
5.0 Microdrainage Results	4-9
6.0 Summary of Results	10

P	Project		Job Ref.			
		Eye 400k\	J5657			
	Section		Sheet no./rev.			
Patterson Reeves & Partners		DC02 / 1 Rev 02				
85 Leigh Road		5				-
Eastleigh	Calc. by	Date	Chk'd by	Date	App'd by	Date
SO50 9DQ	MDP	17/07/2023	PJR	17/07/2023	NP	17/07/2023

1.0 Drainage Design Philosophy

Green field site area lost to new development = $9,006m^2$.

As a minimum the surface water drainage system shall fully manage surface water flows resulting from the developed site up to the 1 in 100 year peak rainfall event plus a minimum of 45% for the impacts of climate change.

Analysis identifies the flows from the green field site i.e. the area inside the substation security fence line is 2.3 l/s during a 1 in 1 year return period storm. This rises up to 9.4 l/s during a 1 in 100 years event.

Following completion of the development, the proposal is to limit the maximum flow to downstream watercourses to 2.3 I/s by means of a hydrobrake. This is significantly less than the existing greenfield runoff rate which as stated above is 9.4 I/s during a 1 in 100 year return period storm. Calculations demonstrates that in order to achieve this we will need to provide an attenuation volume of 292m³ during a 1 in 100 year return period storm with an allowance for climate change.

It should be noted that historically substation platforms for electrical substations were made-up of 300mm of compacted Type 1 MOT stone with a layer of 75mm single sized stone chippings on top. The former layer off stone was largely impervious and thus rainfall would not penetrate below the chipping layer. More recently it has become common practise to replace the Type 1 stone layer with an unbound stone e.g. Type 3. This has far fewer fines and will easily absorb rainfall. This will allow paved areas to drain directly into the platform. The platform will effectively have the capacity to absorb over 1000m³ of rainfall. Although filter drains are provided around the perimeter of the substation it will take some time for rainfall to pass through the stone layer before it reaches the drainage routes. Run off from building roofs will be directed into the filter drains. The calculations have assumed that the flow will pass quickly into the detention basin however in reality this will be considerably slowed as flows will be absorbed to some degree into the stone platform.

In addition to this it is a requirement of the environment agency (EA) to follow the principals set out in the suds manual in providing levels of treatment to surface water flows, whilst at the same time providing a natural and stable habitat for plants and wildlife. Flows from the site are initially given some filtration whereby flows pass through a geotextile membrane prior to passing into a perforated land drainage system. This will remove silts and other suspended contaminates. Flows from bunds, where oils may be present, are firstly protected by intelligent pumping systems which will detect the presence of oil and if so cease operation. In addition flows from these locations will pass through an oil separator, before passing downstream.

P	Project		Job Ref.			
		Eye 400k\	J5657			
	Section		Sheet no./rev.			
85 Leigh Boad		Drainage	DC02 / 2 Rev 02			
Eastleigh	Calc. by	Date	Chk'd by	Date	App'd by	Date
SO50 9DQ	MDP	17/07/2023	PJR	17/07/2023	NP	17/07/2023

The outgoing invert level from the pond will be set such that there will always be a minimum depth of 300mm of water in the pond. This will ensure a suitable environment for wildlife and plants. As flows pass through the wetland pond they will get further treatment with the interaction of carefully selected plants which will assist in removing dissolved contaminates etc. The area of the pond will be 290m² and so during the most intense storm the water level in the pond will rise by 1.0m this level will return back to normal in 35 hours.

The above proposal is a recognised standard way of achieving the principals of the SUDS manual.

2.0 Potential Oily Water

All oil containing plant is located within bunded areas and drainage of these areas is strictly through bund water control units.

3.0 Foul Water

All foul water shall be gravity drained to a 9,000 litre cess pit which will have a high level alarm and will require manual emptying.

DC02/3

Patterson Reeves		Page 1
85 Leigh Road		
Eastleigh		
SO50 9DQ		Micro
Date 10/05/2023 13:57	Designed by MarkP	
File EYE - Drainage.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	·

Existing Network Details for Existing

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type
1.000	26.352	0.132	199.6	0.000	5.00	0.0	0.600	0	375	Pipe/Conduit
2.000	20.006	0.100	200.1	0.045	5.00	0.0	0.600	0	150	Pipe/Conduit
1 001	48 057	0 240	200.2	0 000	0 00	0 0	0 600	0	375	Pipe/Conduit
1.002	26.046	0.130	200.4	0.000	0.00	0.0	0.600	0	150	Pipe/Conduit
3.000	21.308	0.107	199.1	0.021	5.00	0.0	0.600	0	375	Pipe/Conduit
3.001	13.343	0.067	199.1	0.000	0.00	0.0	0.600	0	150	Pipe/Conduit
1.003	53.574	0.268	199.9	0.000	0.00	0.0	0.600	0	375	Pipe/Conduit
1.004	12.233	0.061	200.5	0.000	0.00	0.0	0.600	0	375	Pipe/Conduit
4.000	27.632	0.138	200.2	0.000	5.00	0.0	0.600	0	375	Pipe/Conduit
4.001	21.932	0.110	199.4	0.000	0.00	0.0	0.600	0	375	Pipe/Conduit
4.002	38.522	0.193	199.6	0.021	5.00	0.0	0.600	0	150	Pipe/Conduit
4.003	21.612	0.108	200.1	0.021	5.00	0.0	0.600	0	375	Pipe/Conduit
5.000	12.706	0.064	198.5	0.015	5.00	0.0	0.600	0	150	Pipe/Conduit
4.004	47.537	0.238	199.7	0.000	0.00	0.0	0.600	0	375	Pipe/Conduit
4.005	37.385	0.187	199.9	0.000	0.00	0.0	0.600	0	375	Pipe/Conduit

Network Results Table

PN	US/IL	Σ I.Area	Σ Base	Vel	Cap
	(m)	(ha)	Flow (l/s)	(m/s)	(1/s)
1.000	46.000	0.000	0.0	1.28	141.2
2.000	46.000	0.045	0.0	0.71	12.5
1.001	45.868	0.045	0.0	1.28	141.0
1.002	45.628	0.045		0.71	12.5
3.000	46.000	0.021	0.0	1.28	141.4
3.001	45.893	0.021		0.71	12.5
1.003	45.498	0.066	0.0	1.28	141.1
1.004	45.230	0.066		1.28	140.9
4.000	46.000	0.000	0.0	1.28	141.0
4.001	45.862	0.000	0.0	1.28	141.3
4.002	45.752	0.021	0.0	0.71	12.5
4.003	45.559	0.042	0.0	0.71	141.1
4.004	45.451	0.057	0.0	1.28	141.2
4.005	45.213	0.057		1.28	141.1
	©	1982-2020) Innovvze		

Patterson Reeves	Page 2								
85 Leigh Road									
Eastleigh									
SO50 9DQ	Micro								
Date 10/05/2023 13:57	Designed by MarkP								
File EYE - Drainage.MDX	Checked by								
Innovyze	Network 2020.1.3								
Existing Netw	work Details for Existing								
PN Length Fall Slope I.Area (m) (m) (1:X) (ha)	T.E. Base k HYD DIA Section Type (mins) Flow (l/s) (mm) SECT (mm)								
1.005 14.666 0.073 200.9 0.000	0.00 0.0 0.600 o 375 Pipe/Conduit								
1.006 29.284 0.146 200.6 0.000	0.00 0.0 0.600 o 375 Pipe/Conduit								
1.008 17.890 0.090 198.8 0.000	0.00 0.0 0.600 o 375 Pipe/Conduit 0.00 0.0 0.600 o 150 Pipe/Conduit								
Netwo	ork Results Table								
	T Area Vel Can								
(m)	(ha) Flow (l/s) (m/s) (l/s)								
1 005 45 026	0 123 0 0 1 27 140 8								
1.006 44.953	0.123 0.0 1.28 140.9								
1.007 44.807	0.123 0.0 1.28 141.1								
1.008 44.669	0.123 0.0 0.71 12.5								
Free Flowing Ou Outfall Outfall C Pipe Number Name	utfall Details for Existing C. Level I. Level Min D,L W (m) [] Level (mm)								
	(m) (m)								
1.008	45.300 44.579 0.000 150 0								
Simulation	n Criteria for Existing								
Volumetric Runoff Coeff (Areal Reduction Factor 1 Hot Start (mins) Hot Start Level (mm)	0.750 Additional Flow - % of Total Flow 0.000 1.000 MADD Factor * 10m ³ /ha Storage 2.000 0 Inlet Coefficient 0.800 0 Flow per Person per Day (1/per/day) 0.000 0 500 Euro Time (mine) 60								
Foul Sewage per hectare (1/s) (0.000 Output Interval (mins) 1								
Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0									
Synthet	ic Rainfall Details								
	ESD Drofile Turo Summor								
Painfall Model	rsk Fiorite type summer								
Rainfall Model Return Period (years)	100 Cv (Summer) 0.750								
Rainfall Model Return Period (years) Region Engla	and and Wales Cv (Winter) 0.750 Cv (Winter) 0.840								
Rainfall Model Return Period (years) Region Engla M5-60 (mm) Ratio R	100 Cv (Summer) 0.750 and and Wales Cv (Winter) 0.840 20.000 Storm Duration (mins) 30 0.449								
Rainfall Model Return Period (years) Region Engla M5-60 (mm) Ratio R	100 Cv (Summer) 0.750 and and Wales Cv (Winter) 0.840 20.000 Storm Duration (mins) 30 0.449								
Rainfall Model Return Period (years) Region Engla M5-60 (mm) Ratio R	100 Cv (Summer) 0.750 and and Wales Cv (Winter) 0.840 20.000 Storm Duration (mins) 30 0.449 82-2020 Innovvze								

Patterson Reeves				Pa	ge 3
85 Leigh Road					
Eastleigh					
SO50 9DQ				M	irm
Date 10/05/2023 13:57	Designe	d by Mar	kP		
File EYE - Drainage.MDX	Checked	by			anaye
Innovyze	Network	2020.1.	3		
Online	Controls	for Exis	ting		
Hydro-Brake® Optimum Manhole	e: SWMH 1	8, DS/PN	: 1.008, Vol	ume (m³)	: 3.4
Uni	t Referenc	e MD-SHE-(054-1100-0631-	-1100	
Desi	gn Head (m)	(0.631	
Design	Flow (l/s)		1.1	
	Flush-Flo	Minimir	Calcul	Lated	
	opjectiv Applicatio	≓ Minimis n	se upstream sto Suu	rface	
Sum	p Availabl	e	541	Yes	
Di	ameter (mm)		54	
Inver	t Level (m)	44	1.669	
Minimum Outlet Pipe Di Suggested Manhole Di	ameter (mm ameter (mm)		1200	
Control P	oints	Head (m)	Flow (l/s)		
Design Point ((Calculated)	0.631	1.1		
	Flush-Flo™	0.194	1.1		
	Kick-Flo®	0.407	0.9		
Mean Flow over	Head Range	-	1.0		
The hydrological calculations have Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised th invalidated	been based Should an en these s	on the He other type torage rou	ead/Discharge 1 e of control de nting calculati	relationsh evice othe: ions will 1	ip for the r than a be
Depth (m) Flow (l/s) Depth (m) Flo	ow (1/s) De	epth (m) F	low (l/s) Dept	h (m) Flo	w (l/s)
0.100 1.0 1.200	1.5	3.000	2.2	7.000	3.3
0.200 1.1 1.400	1.6	3.500	2.4	7.500	3.4
0.300 1.1 1.600	1.7	4.000	2.5	8.000	3.5
0.400 0.9 $1.8000.500$ 1.0 2.000	1.8	5.000	2.8	9.000	3.7
0.600 1.1 2.200	1.9	5.500	2.9	9.500	3.9
0.800 1.2 2.400	2.0	6.000	3.1		
1.000 1.4 2.600	2.1	6.500	3.2		
		_			
A1 (100 0 00000	Innerre			

Patterson Reeves		Page 4
85 Leigh Road		
Eastleigh		
SO50 9DQ		Mirro
Date 10/05/2023 13:57	Designed by MarkP	Drainage
File EYE - Drainage.MDX	Checked by	brainage
Innovyze	Network 2020.1.3	
Storage St	ructures for Evicting	
<u>storage st</u>	ciuctules for existing	
Tank or Pond Mar	hole: SWMH 18, DS/PN: 1.008	
Inve	rt Level (m) 44.669	
Depth (m) Are	ea (m ²) Depth (m) Area (m ²)	
0.000	92.3 1.300 92.3	
©198	32-2020 Innovyze	

Patter	son Ree	eves						Page 5		
85 Lei	.gh Road	b								
Eastle	igh									
SO50 9	DQ							Mirm		
Date 1	0/05/20	023	13 : 57		De	signed by Ma	rkP	Drainago		
File E	YE – Di	rain	age.MD	Х	Che	ecked by		Diamage		
Innovy	ze				Net	twork 2020.1	.3			
c c	11000 2 2 2 2	of	Critia	al Pogi	ilta bu	Maximum Iou	(Papk 1)	for Existing		
<u> </u>	unnary	01	CILLIC	al Resi	uits by	Maximum Lev	el (Ralik I)	IOF EXISTING		
Ma	anhole He Foul Sev	Areal Hot eadlc wage	Reduct Hot St Start Start per hec	ion Fac art (mi Level (n f (Glob tare (1	<u>Simula</u> tor 1.00 ns) mm) al) 0.50 /s) 0.00	tion Criteria 0 Additional 0 MADD F 0 0 Flow per Per 0	Flow - % of ' actor * 10m³/ Inlet Co son per Day (Total Flow 0.000 ha Storage 2.000 effiecient 0.800 l/per/day) 0.000		
		Numb Nu: Num	er of I mber of ber of (nput Hyd Online Offline	lrographs Controls Controls	s 0 Number of 3 s 1 Number of 7 s 0 Number of 1	Storage Struct Iime/Area Diag Real Time Cont	ures 1 grams 0 crols 0		
				S	<u>nthetic</u>	Rainfall Deta	ils			
			Rainfa	ll Model		FSR	Ratio R 0.44	19		
			M5-	Region -60 (mm)	i England	d and Wales Cv 20.000 Cv	(Summer) 0.75 (Winter) 0.84	50 40		
			110	00 (1111)		20.000 00	(
		Marc	gin for	Flood R. A:	isk Warn nalysis	ing (mm) 300.0 Timestep Fine	DVD Stat Inertia Stat	us OFF us OFF		
					DT	S Status ON				
		Dur	Pr ation(s	ofile(s)) (mins)	15,	30, 60, 120, 2	240, 360, 480,	Winter 960, 1440,		
	Retui	rn Pe	riod(s)	(years)	1			2880		
		Cli	mate Ch	ange (%)	1			45		
	115/ М Н			Return	Climate	First (X)	First (Y)	First (Z) Overflow		
PN	Name	s	storm	Period	Change	Surcharge	Flood	Overflow Act.		
1 000	CHIMIL 01	1 5		100						
2.000	SWMH 01 SWMH 02	15	Winter	100	+45%	100/15 Winter	100/15 Winter	c		
1.001	SWMH 03	15	Winter	100	+45%					
1.002	SWMH 04	15	Winter	100	+45%	100/15 Winter				
3.000	SWMH 05	15	Winter	100	+45%					
3.001	SWMH 06	15	Winter	100	+45%	100/15 Winter				
1.003	SWMH 07	15	Winter	100	+45%					
1.004	SWMH 08	15	Winter	100	+45%					
4.000	SWMH 01	15	Winter	100	+45%					
4.001	SWMH 09	15	Winter	100	+45%					
4.002	SWMH 10	15	Winter	100	+45%					
4.003	SWMH 11	15	Winter	100	+45%					
5.000	SWMH 12	15	Winter	100	+45%					
4.004	SWMH 13	15	Winter	100	+45%					
4.005	SWMH 14	15	Winter	100	+45%					
1.005	SWMH 15	240	Winter	100	+45%					
1.006	SWMH 16	360	Winter	100	+45%	100/00				
1.007	SWMH 17	360	Winter	100	+45%	100/60 Winter				
1.008	SWMH 18	360	Winter	100	+45%	100/15 Winter				
					©1982-2	2020 Innovyz	e			
·										

Patterson Reeves	Page 6	
85 Leigh Road		
Eastleigh		
SO50 9DQ		Micro
Date 10/05/2023 13:57	Designed by MarkP	
File EYE - Drainage.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	

Summary of Critical Results by Maximum Level (Rank 1) for Existing

		Water	Surcharged	Flooded	1 1	o	Half Drain	Pipe	
	US/MH	rever	Depth	volume	FIOW /	Overiiow	Time	F.TOM	
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(mins)	(l/s)	Status
1 000	CMMU 01	46 000	_0 375	0 000	0 00			0 0	OK
2,000	CHIMIL 0.2	40.000	0.373	0.000	0.00			27 4	
2.000	SWMH UZ	46.600	0.450	0.030	2.33			27.4	F LOOD
1.001	SWMH 03	45.992	-0.251	0.000	0.20			26.6	OK
1.002	SWMH 04	45.963	0.185	0.000	1.57			18.7	SURCHARGED
3.000	SWMH 05	46.093	-0.282	0.000	0.12			13.8	OK
3.001	SWMH 06	46.049	0.006	0.000	1.10			12.6	SURCHARGED
1.003	SWMH 07	45.617	-0.256	0.000	0.22			28.8	OK
1.004	SWMH 08	45.362	-0.243	0.000	0.27			28.8	OK
4.000	SWMH 01	46.000	-0.375	0.000	0.00			0.0	OK
4.001	SWMH 09	45.881	-0.356	0.000	0.00			0.3	OK
4.002	SWMH 10	45.899	-0.003	0.000	1.00			12.1	OK
4.003	SWMH 11	45.677	-0.257	0.000	0.21			25.5	OK
5.000	SWMH 12	46.110	-0.040	0.000	0.87			9.9	OK
4.004	SWMH 13	45.583	-0.243	0.000	0.27			34.6	OK
4.005	SWMH 14	45.345	-0.243	0.000	0.27			33.9	OK
1.005	SWMH 15	45.301	-0.100	0.000	0.13			14.4	OK
1.006	SWMH 16	45.300	-0.028	0.000	0.08			10.3	OK
1.007	SWMH 17	45.299	0.117	0.000	0.08			9.5	FLOOD RISK
1.008	SWMH 18	45.298	0.479	0.000	0.09			1.1	FLOOD RISK

	US/MH		Level			
PN	Name		Exceeded			
1 000	SMMH	01				
2 000	CMMH	02	1			
1 001	CEMIL	02	T			
1.001	SWM	03				
1.002	SWMH	04				
3.000	SWMH	05				
3.001	SWMH	06				
1.003	SWMH	07				
1.004	SWMH	08				
4.000	SWMH	01				
4.001	SWMH	09				
4.002	SWMH	10				
4.003	SWMH	11				
5.000	SWMH	12				
4.004	SWMH	13				
4.005	SWMH	14				
1.005	SWMH	15				
1.006	SWMH	16				
1.007	SWMH	17				
1.008	SWMH	18				

©1982-2020 Innovyze

G	Project				Job Ref.	
		Eye 400k	J5657			
Patterson Reeves & Partners	Section				Sheet no./rev.	
	Drainage Calculations				DC02 / 10 Rev 02	
Eastleigh	Calc. by	Date	Chk'd by	Date	App'd by	Date
SO50 9DQ	MDP	17/07/2023	PJR	17/07/2023	NP	17/07/2023

6.0 Summary of Results

Several storm durations were modelled from 15 minutes to 2 days duration. The total required volume for the SUDS attenuation Basin for a 1 in 100 Year Return Period Storm + 45% Climate Change so that flooding does not occur in any part of the site is 292m³.

It is proposed that flows leaving the developed site would be best attenuated in a wetland pond. This will be constructed to the north west of the substation. Flows from the wetland pond will be limited to 2.3 l/s by means of a hydrobrake and will discharge to a nearby watercourse.

The outgoing invert level from the pond will be set such that there will always be a minimum depth of 300mm of water in the pond. This will ensure a suitable environment for wildlife and plants. As flows pass through the wetland pond, they will get further treatment with the interaction of carefully selected plants which will assist in removing dissolved contaminates etc. The area of the pond will be 292m² and so during the most intense storm the water level in the pond will rise by 1000mm. This level will return back to normal in 35 hours.

All oil containing plant is located within bunded areas. Flows from bunds, where oils may be present, are firstly protected by intelligent pumping systems which will detect the presence of oil and if so, cease operation. In addition, flows from these locations will pass through an oil separator, before passing downstream.

All foul water shall be gravity drained to a 9,000 Litre cess pit which will have a high-level alarm and will require manual emptying.