

Barns Off Main Road, Upper Pollicott, Buckinghamshire, HP18 0HH – Drainage Design

17/11/2023 Version 2.0 RAB: 3199FRD

Upper Pollicott 17/11/2023 Version 2.0

Disclaimer

This document has been prepared solely as a Drainage Design for DPA (London) Ltd. RAB Consultants accepts no responsibility or liability for any use that is made of this document other than by the client for the purposes for which it was originally commissioned and prepared. No person other than the client may copy (in whole or in part) use or rely on the contents of this document, without the prior written permission of the Managing Director of RAB Consultants Ltd. Any advice, opinions, or recommendations within this document should be read and relied upon only in the context of the whole document.

Published by

RAB Consultants Limited Second Floor Cathedral House Beacon Street Lichfield Staffordshire WS13 7AA

Call: 0330 2236475 Email: enquiries@rabconsultants.co.uk Visit: rabconsultants.co.uk

By viewing and saving this document digitally instead of printing it, you could save 4.6g of carbon emissions from double-sided printing on primary-sourced or 3.7g from 100% recycled A4 paper. Please only print this document if it is necessary.

Quality Control

Action	Name	
Prepared	Hannah Geddes	
Checked	Dr Alexandros Tsavdaris	
Approved	Dr Alexandros Tsavdaris	

Revision History

Version	Date	Amendments	Issued to
1.0	10/11/2023		Chris Hill
2.0	17/11/2023		Chris Hill

Contents

1.0	INTRODUCTION	1
2.0	SITE DETAILS	2
2.1	Site location	2
2.2	Site description	2
2.3	Development proposal	2
3.0	DRAINAGE STRATEGY	2
3.1	Existing site constraints	3
3.2	Existing runoff condition	4
3.3	SuDS feasibility	6
3.4	Proposed discharge	7
3.5	Proposed surface water management	8
3.6	Future resilience	10
3.7	Amenity and biodiversity	10
4.0	MAINTENANCE AND MANAGEMENT PLAN	.10
4.1	SuDS features checklist	11
4.2	Sustainable Drainage Maintenance Specification	11
4.3	Maintenance during construction	15
5.0	CONCLUSION	.15
6.0	RECOMMENDATIONS	.16
APPE	NDIX A – DEVELOPMENT PROPOSALS	.17
APPE	NDIX B – TOPOGRAPHIC SURVEY	.18
APPE	NDIX C – INFILTRATION TESTING	.19
APPE	NDIX D – DRAINAGE	.20

1.0 Introduction

RAB Consultants has prepared this Drainage Strategy in support of the proposed residential development located at Barns Off Main Road, Upper Pollicott, Buckinghamshire, HP18 0HH.

The Secretary of State for Communities and Local Government laid a Written Ministerial Statement in the House of Commons on 18th December 2014 setting out changes to planning that will apply for major development from 6 April 2015. Therefore, from 6 April 2015 local planning policies and decisions on planning applications relating to major development are required to ensure that sustainable drainage systems (SuDS) are used for the management of surface water. As the Lead Local Flood Authority, Buckinghamshire Council is required under Article 18 of the Town and Country Planning (Development Management Procedure) (England) Order 2015 (the Development Management Procedure Order) to provide consultation response on the surface water drainage provisions associated with major development.

Major development is defined within the Development Management Procedure Order as development that involves any one or more of the following:

- 1. the winning and working of minerals or the use of land for mineral working deposits;
- 2. waste development;
- 3. the provision of dwelling houses where:
 - i. the number of dwelling houses to be provided is 10 or more; or
 - ii. the development is to be carried out on a site having an area of 0.5 hectares or more and it is not known whether the development falls within sub-paragraph 3.1;
- 4. the provision of a building or buildings where the floor space to be created by the development is 1,000 square metres or more; or
- 5. development carried out on a site having an area of 1 hectare or more.

Condition 9 of application 21/03165/APP states 'No works (other than demolition) shall begin until a surface water drainage scheme for the site, based on sustainable drainage principles has been submitted to and approved in writing by the Local Planning Authority.'

2.0 Site details

2.1 Site location

Site address:	Barns Off Main Road, Upper Pollicott, Buckinghamshire, HP18 0HH	
Site area:	3423m ²	
Existing land use:	Barns	
OS NGR:	SP 70316 13581	
Local Planning Authority:	Buckinghamshire Council	
		Legend DoenStreetMap

TABLE 1: SITE LOCATION

2.2 Site description

The site is located in the rural area of Buckinghamshire and is accessed from Main Street. The site currently consists of two barns, and it is surrounded by greenfield land.

2.3 Development proposal

Permission is sought to change the use and extend the existing barns to create five dwellings. This will include outdoor amenity space and a parking area.

3.0 Drainage Strategy

3.1 Existing site constraints

3.1.1 Fluvial flood risk

According to the Environment Agency Flood Map for Planning, the site is located in Flood Zone 1 therefore, has less than 0.1% AEP risk of flooding from this source.

3.1.2 Surface water flood risk

When the infiltration capacity of land or the drainage capacity of a local sewer network is exceeded, excess rainwater flows overland. This water will collect in topographic depressions and at obstructions, which can inundate development in low lying areas. The severity of the rainfall event, the degree of saturation of the soil before the event, the permeability of soils and geology, and the gradient of the surrounding land and it's use; all contribute to and affect the severity of overland flow.

The Environment Agency Flood Map for Surface Water (Figure 1), can be used to see the approximate areas that would experience surface water flooding from a range of AEPs, which is used to categorise the risk (Table 2).

The site and access are shown to be at very low risk from surface water flooding.

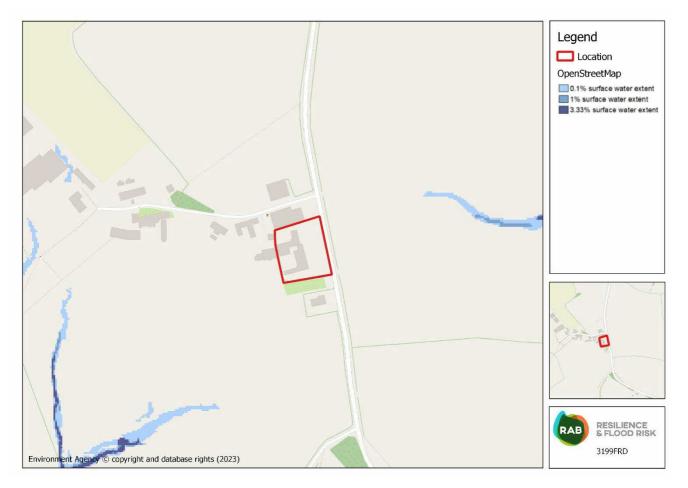


FIGURE 1: ENVIRONMENT AGENCY FLOOD RISK FROM SURFACE WATER

TABLE 2: ENVIRONMENT AGENCY SURFACE WATER RISK CATEGORIES

Surface Water Risk Category	Surface water flooding Annual Exceedance Probability
Very Low	< 0.1%
Low	Between 1% and 0.1% (1 in 100 years and 1 in 1000 years)
Medium	Between 1% and 3.3% (1 in 100 years and 1 in 30 years)
High	> 3.3% (1 in 30 years)

3.1.3 Groundwater flood risk

British Geological Survey (BGS) records indicate that the proposed development site overlies bedrock composed of Portland Group - limestone and calcareous sandstone. There are no recorded superficial deposits.

Soilscapes shows the site is located within an area of freely draining/slightly impeded drainage.

The Magic Maps tool shows the site is within a Secondary A Bedrock aquifer but is not located within a Superficial Drift Aquifer. It also shows the site is within an area of high groundwater vulnerability with soluble rock risk.

As there is a high degree of variability when considering groundwater flooding, using historic flooding is not a robust measure of the risk of flooding in future years.

3.1.4 Sewers flood risk

Thames Water is responsible for the adopted surface and foul sewer networks within the District and maintain a DG5 register of sites affected by sewer flood incidents on a post code basis. The 2017 Aylesbury Vale Strategic Flood Risk Assessment (SFRA) shows that the postcode area of HP18 0 has 1-5 properties on the register. It was unclear whether the site was affected by these events.

It is important to note that previous sewer flood incidents, or the lack thereof, do not indicate the current or future risk to the site. Upgrade work could have been carried out to alleviate any issues or conversely, in areas that have not experienced sewer flooding incidents, the local drainage infrastructure could deteriorate leading to future flooding.

3.2 Existing runoff condition

3.2.1 Existing drainage arrangements

It is assumed that the existing barns drain into the existing drainage network however, this cannot be confirmed from current data.

3.2.2 Natural flow path

The site has a general fall from northeast to southwest with levels ranging from 130.38mAOD - 133.30mAOD.

RESILIENCE & FLOOD RISK

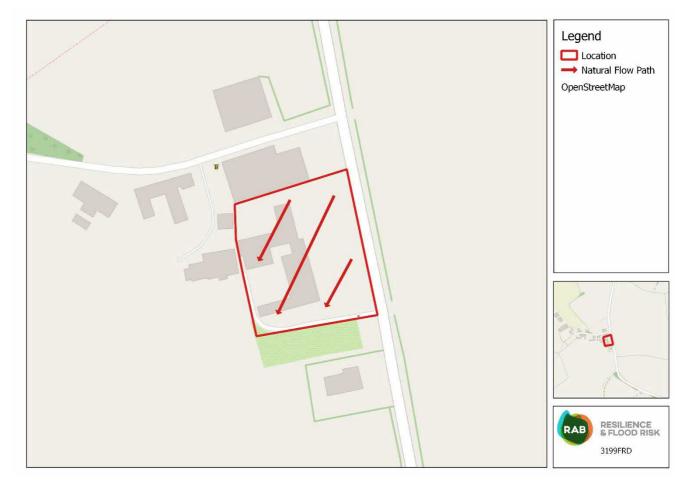


FIGURE 2: NATURAL FLOW PATH

3.2.3 Greenfield runoff

The greenfield runoff rate was calculated using the IH124 method for determining Greenfield runoff rate built into Microdrainage WinDes:

SAAR (mm) = 629 Area (ha) = 0.161 Soil = 0.450 Region = 6

The QBAR was calculated at 0.6 l/s/ha (see Appendix D). The greenfield runoff rate was calculated on the basis of the proposed hardstanding area of 0.161 ha.

AEP (%)	Greenfield peak flow rate (I/s)
100	0.5
QBAR	0.6
3.33	1.4

TABLE 3: GREENFIELD RUNOFF RATES

RESILIENCE

& FLOOD RISK

AEP (%)	Greenfield peak flow rate (I/s)
1	2.0
1 +31% Climate Change*	2.6

* 2080s central Thames and South Chilterns Management Catchment peak river flow allowances

3.2.4 Brownfield runoff

The brownfield runoff rate has been estimated using the existing hardstanding area of 0.164ha and the Modified Rational Method. The Modified Rational Method calculates runoff based on the following formula:

Q=2.78 x C (Cv x Cr) x i x A

Where Cv and Cr are coefficients, which equal 1 when multiplied together, i is rainfall intensity in mm/hr, and A is area in hectares. Rainfall intensity has been identified using Microdrainage Source Control.

Table 4 below shows the estimated peak flow runoff rates for a range of AEPs for the existing condition using an area of 0.164ha.

TABLE 4: ESTIMATED BROWNFIELD PEAK FLOW RUNOFF RATES

AEP (%)	Rainfall intensity (mm/hr)	Brownfield peak flow rate (I/s)
50	38.465	17.54
3.33	88.264	40.24
1	112.276	51.19
1 + 40% Climate Change*	157.187	71.66

* Upper End peak rainfall allowance

3.3 SuDS feasibility

The SuDS Manual (2015) discusses the SuDS approach to managing surface water runoff which is intended to mimic the natural catchment process as closely as is possible. The approach sets out the design objectives in respect of SuDS:

Use of surface water runoff as a resource;

Manage rainwater close to where it falls (at source);

Manage runoff on the surface (above ground);

Allow rainwater to soak into the ground (infiltration);

Promote evapotranspiration;

Slow and store runoff to mimic natural runoff rates and volumes;

Reduce contamination of runoff through pollution prevention and by controlling the runoff at source; and

Treat runoff to reduce the risk of urban contaminants causing environmental pollution.

Depending on the characteristics of the site and local requirements, these may be used in conjunction and varying degrees. Table 6 presents the functions of the SuDS components (from which a management train can be created) and their feasibility in respect of the site.

TABLE 5: FEASIBILITY OF SUDS TECHNIQUES AT THE DEVELOPMENT SITE

Technique	Description	Feasibility Y / N / M (Maybe)
Good building design and rainwater harvesting	Components that capture rainwater and facilitate its use within the building or local environment.	Yes – Water butts could be incorporated into the residential gardens.
Porous and pervious surface materials	Structural surfaces that allow water to penetrate, thus offering attenuation potential, while reducing the rate of runoff (green roofs, pervious paving).	Yes – Car parking spaces could be made permeable.
Infiltration Systems	Components that facilitate the infiltration of water into the ground. These often include temporary storage zones to accommodate runoff volumes before slow release to the soil.	No – Infiltration is not possible due to the BRE infiltration test results which suggest a low infiltration rate.
Conveyance Systems	Components that convey flows to downstream storage systems (e.g. swales, watercourses).	No – Features such as swales or filter drains could not be incorporated into the final design due to the land availability.
Storage Systems	Components that control the flows and, where possible, volumes of runoff being discharged from the site, by storing water and releasing it slowly (attenuation). These systems may also provide further treatment of the runoff (e.g. ponds, wetlands, and detention basins).	Yes – A feature such as a pond could be included in the design.
Treatment Systems	Components that remove or facilitate the degradation of contaminants present in the runoff.	Yes – Treatment systems can be included in the above SuDS features.

The site has the potential to incorporate a number of SuDS options to manage surface water. These are discussed in more detail below.

3.4 Proposed discharge

The 2015 SuDS Manual recommends a specific hierarchy in terms of surface water discharge destinations:

1. Discharge into the ground.

- 2. Discharge into a surface water body.
- 3. Discharge to a surface water sewer.
- 4. Discharge to a combined sewer.

Discharge into the ground is not possible as the infiltration test to BRE Digest 365 identified a low infiltration rate which would not be suitable. As such, infiltration SuDS are not viable in this instance.

There is no surface water body within close proximity to the site therefore it is not possible to discharge into a surface water body.

There is no surface water or combined sewer within close proximity to the site therefore, the only option is to discharge into the foul sewer at manhole 3501 at a rate of 1.4 l/s for all events up to and including the 1% AEP +40% CC (1 in 100 year plus 40% climate change). Although this manhole is on third party land, the client confirmed that they have permission to connect into it. In addition, Thames Water had provided confirmation of capacity (see Appendix D).

3.5 Proposed surface water management

The proposed drainage scheme has been modelled in Microdrainage Source Network to understand the evolving flow regime under flood conditions and the potential for flooding. The discharge rate has been limited as close as reasonably practical to QBAR for all events up to and including the 1% AEP + 40%CC.

The proposed scheme (see Appendix D) will integrate a range of features, in line with the SuDS Manual philosophy, taking into consideration site constraints. In detail, runoff from roofs and roads within the site will be conveyed via a piped network to an attenuation basin downstream. Runoff on drives will be collected and filtered through the permeable paving, then conveyed via a piped network to the basin downstream.

Surface water from the basin will then flow into a flow control chamber which will control the flow rate to 1.4 I/s for all events up to and including the 1% AEP +40% CC. The final receptor will be the Thames Water foul sewer manhole 3501 which has a cover level of 129.15mAOD and an invert level of 127.12mAOD. Thames Water has confirmed that their system has capacity to receive the controlled flow rate from the site (Appendix D).

3.5.1 Attenuation basin

The proposed basin will need to provide a storage volume of 150.3 m³ in order to manage runoff from the site. The side slopes of the basin should be set at a minimum of 1 in 3 and planted with short grass (50 mm-75mm) and native reed species as shown in Appendix D.

A vegetated (emergent) island placed at the central part of the basin should be included in order to promote plug flow and improve the sedimentation potential. The island should be planted with native reed species such as *Phragmites australis* or *Glyceria maxima*. A small patch of dense vegetation will be included within the pond, in close proximity to the incoming pipe towards the north to help slow the flow rate.

A planting schedule should be produced at the detailed design stage to identify native species that should be used along with measures to ensure vegetation establishment at the post-construction phase. Vegetation should not be planted near the outlet as research suggests that this decreases discharge capacity and water treatment efficiency. The basin construction must comply with the CIRIA Guidance on the construction of SuDS C768 (2017) recommendations.

3.5.2 Permeable pavement

A Type C (see Table 20.1 of the SuDS Manual) permeable pavement will be used to manage road runoff at the site. There are two locations where permeable pavement is to be implemented (see Appendix D). The permeable pavement features will act as sinks for the road runoff, filter the water, and offer some storage benefits prior to discharging downstream.

Road runoff from the access road and relevant parking areas will infiltrate to the permeable pavement and receive an appropriate level of treatment. Kerb design should be in line with local standards and at least 100 mm to encourage water to infiltrate to the permeable pavement structure efficiently.

The laying course material must be sufficiently coarse to allow the free vertical flow of water and to prevent its intrusion into the underlying coarse-graded aggregate, yet sufficiently fine to permit the accurate installation of the paving blocks. The material should comply with the requirements of a material of type 2/6.3 Gc 80/20 according to BS EN 13242:2002. The requirement for a capping material should be identified once detailed soil investigations have been undertaken at the site. All capping materials should meet the requirements of either 6F1 or 6F2 of Table 6.1 of Highways Agency's '*Specification for Highway Works – Series 600 – Earthworks*'.

3.5.3 Water quantity benefits

The scheme will offer significant reductions in runoff rates, compared to the corresponding greenfield runoff rate, in the order of 7% - 46%, as shown in Table 6. This is to counterbalance the increased volume of runoff as a result of the development. It should also be noted that the scheme will offer far greater reductions when compared to the brownfield runoff rates. As such, the proposed scheme provides water quantity benefits, in line with the 2015 SuDS Manual.

AEP (%)	Greenfield peak flow rate (I/s)	Brownfield peak flow rate (I/s)	Proposed peak flow rate (I/s)	Change (%)
50 (QBAR)	0.6	17.54	1.2	-
3.33	1.4	40.24	1.3	7
1	2.0	51.19	1.3	35
1 +40% CC*	2.6**	71.66	1.4	46

TABLE 6: EXISTING AND PROPOSED PEAK FLOW RUNOFF RATES

*Upper End peak rainfall allowance ** 2080s central Thames and South Chilterns Management Catchment peak river flow allowances

3.5.4 Water quality benefits

In line with the SuDS Manual, the water must receive a certain degree of treatment. There are no significant risks of pollution as a result of the development as it is classed a low density residential with no major risks.

According to Table 26.2 of the SuDS Manual and based on the land use, the site has a low pollution hazard level. In detail, the pollution hazard indices are:

Total Suspended Solids = 0.5

Heavy Metals = 0.4

Hydrocarbons = 0.4

Consequently, the proposed SuDS feature(s) must have a higher mitigation index. Mitigation indices for various SuDS components can be found in Table 26.3 of the SuDS Manual (2015).

Total SuDS Mitigation Index = mitigation index₁ + (0.5 x mitigation index_n)

Where mitigation index_n = mitigation index for component n.

The proposed drainage scheme utilises a combination of permeable pavement and an attenuation basin.

Using Table 26.3 of the SuDS Manual (2015), the mitigation indices for each pollutant and for each feature were identified:

TSS – SuDS mitigation index = 0.7+0.25 = 0.95>0.5.

Heavy Metals – SuDS mitigation index = 0.6+0.25 = 0.85>0.4.

Hydrocarbons – SuDS mitigation index = 0.7+0.3 = 1>0.4.

Consequently, the proposed scheme is in line with the water quality requirements of the SuDS Manual (2015).

3.6 Future resilience

3.6.1 Designing for exceedance

It is inevitable that as a result of heavy or extreme rainfall, the capacities of sewers and other drainage systems will be exceeded on occasion. Drainage exceedance will occur when the rate of surface water runoff exceeds the inlet capacity of the drainage system, when the receiving water or pipe system becomes overloaded, when the outfall becomes restricted due to flood levels in the receiving water, or due to poor maintenance of the SuDS features.

The system has been modelled to manage the 1% AEP +40% CC without significant flooding. Should a blockage occur, runoff would follow the natural topography of the site flowing towards the southwest; exceedance flows have been mapped in Appendix D. A gully has been included at the lowest point of the site in order to collect any overland exceedance flows and drain it back to the permeable pavement.

3.7 Amenity and biodiversity

Primary consideration should be given to locally native species, and plants that benefit wildlife through their nectar, fruit, or berries. Generally, the choice of plant species should reflect the usual design decisions relating to their location in terms of aspect, sun or shade, height, from, colour, whether evergreen or deciduous, native or ornamental, and soil factors such as pH, depth, nutrient status and organic content. However, the consideration has to be their ability to withstand the fluctuations in soil moisture that will occur; this is very important for attenuation basin. A planting schedule for the entire site will need to be developed by a qualified ecologist to maximise biodiversity benefits. The attenuation basin will offer amenity benefits by providing green open space.

4.0 Maintenance and Management Plan

The following maintenance and management plan has been formed to assist with ensuring the longevity of the surface water scheme to provide multiple benefits throughout its lifetime. The plan will also aim to

prevent any blockages or damage occurring to each component of the scheme to minimise the risk of flooding as much as possible.

The level of inspection and maintenance will vary depending on the type of SuDS component and scheme, the land use, and the type of vegetation. It is vital that SuDS construction is supervised and inspected on completion if owners are to avoid taking on liabilities and to ensure the specified materials are being used and placed correctly. Incorrect materials or installation should be rejected as they will adversely affect the performance, maintenance costs and ultimately the design life of the SuDS components.

The site manager must maintain maintenance logs for all elements.

The SuDS features incorporated to this particular design have to be maintained in order to ensure efficient water treatment and water management.

4.1 SuDS features checklist

Basins, ponds and wetlands are depressions in the ground where water is stored and treated. Water levels rise after rain and then drops to the normal level as the excess is released slowly to a watercourse or drain. Some water maybe held back as a pond for final treatment, amenity or wildlife interest.

Permeable surfaces as permeable block paving, porous Asphalt, gravel or free draining soils that allow rain to percolate through the surface into underlying drainage layers. They must be protected from silt, sand, compost, mulch, etc.

Inlet and outlet structures are often conveyance pipes protected with mesh guards. They must be free from obstruction at all times to allow free flow through the SuDS.

SuDS flow control structures are usually small orifices in control chamber, slots or V notches in weirs. They are usually near the surface so are accessible and easy to maintain. They may be in baskets, in small chambers or in the open.

Inspection Chambers and rodding eyes are used on bends or where pipes come together. They allow cleaning of the system if necessary.

4.2 Sustainable Drainage Maintenance Specification

4.2.1 General requirements

Maintenance	Frequency	Owner
Maintenance activities comprise:		
Regular maintenance	Will vary depending on	(Private or
Occasional tasks	activity	adopted)
Remedial Work		

Regular maintenance (including inspections and monitoring). Consists of basic tasks done on a frequent and predictable schedule, including vegetation management, litter and debris removal, and inspections.

Occasional maintenance Comprises tasks that are likely to be required periodically, but on a much less frequent and predictable basis than the routine tasks (sediment removal is an example).

Upper Pollicott 17/11/2023 Version 2.0

Remedial maintenance Comprises intermittent tasks that may be required to rectify faults associated with the system, although the likelihood of faults can be minimised by good design.

Where remedial work is found to be necessary, it is likely to be due to site-specific characteristics or unforeseen events, and as such timings are difficult to predict.

Avoid use of weedkillers and pesticides to prevent chemical pollution.

4.2.2 Landscape maintenance

TABLE 7: MAINTENANCE SCHEDULE FOR SURROUNDING LANDSCAPE

Maintenance	Frequency	Owner	
Regular maintenance Litter management: Pick up all litter in SuDS and Landscape areas and remove from site.	Monthly	Flaxfields Limited	
Grass Maintenance: Mow all grass verges, paths and amenity at 35-50mm with 75mm max. Leaving grass <i>in situ</i> . Wildflower areas trimmed to 50mm on 3 year rotation	As required or monthly	1 Harraton Cottages, Ducks Lane, Exning, Suffolk, CB8 7HQ, England Email:enquiries@flaxfields.co.uk Tel:01223941380	
Occasional tasks Prune (trim) tree branches to allow for sunlight to reach ground level flora.	Annually or as required	- 101.01223341300	

4.2.3 Basin

TABLE 8: MAINTENANCE SCHEDULE FOR THE BASIN, ADAPTED FROM CIRIA RP992/23 & C753

Maintenance	Frequency	Owner
Regular maintenance Mow grass access paths and verges surrounding ponds at 35mm-50mm minimum and 75mm maximum or as	Monthly or as required	Flaxfields Limited
specified to provide a cared for appearance and allow pedestrian access.		1 Harraton Cottages, Ducks Lane, Exning,
Mow rough grass areas for occasional access or habitat reasons at 100mm and maximum 150mm with cuttings removed to wildlife piles.	As required 4-6 times annually	Suffolk, CB8 7HQ, England Email:enquiries@flaxfields.co.uk
Grass areas not required for access may be managed for wildlife interest and to reduce costs.	Annually or as required	Tel:01223941380
Occasional tasks		

RESILIENCE & FLOOD RISK

Maintenance	Frequency	Owner
 Where silt accumulates on apron or area in front of inlet or outlet then remove and land apply within design profile of SuDS. Remove silt as instructed but not more than 30% of pond area at any one time and to an agreed depth but not subsoil layer. Retain as much representative existing vegetation as possible to ensure rapid recolonisation of open areas. Undertake silt removal during September-October to minimise damage to protected wildlife and ensure re-growth of aquatic vegetation before winter. Monitor presence of wildlife and log any changes in terms of species variety, population numbers, and any signs of concern (dead amphibians, etc.). 	Annually or every 3 years as required	

4.2.4 Permeable pavement

TABLE 9: MAINTENANCE SCHEDULE FOR PERMEABLE PAVEMENTS, ADAPTED FROM CIRIA RP992/23 AND C753

Maintenance	Frequency	Owner
Regular MonitoringBrush regularly and remove sweepings from all hard surfaces.Inspect all inflows/outflows along with manholes for blockages.Check monitoring wells for any signs of siltation.	Quarterly and after flood events	Flaxfields Limited
Occasional Tasks Brush and vacuum surface once a year to prevent silt blockage and enhance design life. Check operation of perforated pipes by inspection of flows after rain	Every six months	1 Harraton Cottages, Ducks Lane, Exning, Suffolk, CB8 7HQ, England Email:enquiries@flaxfields.co.uk
Remedial Work Monitor effectiveness of permeable paving and if water does not infiltrate immediately a reinstatement of the top layers or specialist cleaning. The manufacturer should be contacted to provide further guidance.	As required and after flood events	Tel:01223941380

Maintenance	Frequency	Owner
Remedial work to any depressions, rutting		
and cracked or broken blocks considered		
detrimental to the structural performance		
or a hazard to users, and replace lost		
jointing material.		
Rehabilitation of surface and upper		
substructure by remedial sweeping.		
Check monitoring wells and replace		
permeable layer and sand-bed layer if		
heavily silted.		

4.2.5 Inlets, outlets, controls and inspection chambers

RESILIENCE

& FLOOD RISK

Please note that the flow control chambers will require regular maintenance. The maintenance schedule for the chamber must be specified by the manufacturer as different features have different requirements.

TABLE 10: MAINTENANCE SCHEDULE FOR THE INLETS, OUTLETS, CONTROL STRUCTURES, PUMPS AND INSPECTION CHAMBERS/MANHOLES

Maintenance	Frequency	Owner
Regular maintenance Inlets, outlets: Inspect surface structures removing obstructions and silt as necessary. Check there is no physical damage Strim vegetation 1m min. surround to structures and keep hard aprons free from silt and debris	Monthly	Flaxfields Limited
Inspection chambers/manholes and below ground flow control chambers: Remove cover and inspect ensuring water is flowing freely and that the exit route for water is unobstructed. Remove debris and silt. Undertake inspection after leaf fall in autumn.	Monthly for 12 months, then annually.	1 Harraton Cottages, Ducks Lane, Exning, Suffolk, CB8 7HQ, England Email:enquiries@flaxfields.co.uk Tel:01223941380
Occasional tasks Check topsoil levels are 20mm above edges of baskets and chambers to avoid mower damage.	As necessary	
Remedial Work Repair physical damage if necessary.	As required	

4.2.6 Drainage network

TABLE 11: MAINTENANCE SCHEDULE FOR PIPED DRAINAGE NETWORK

Drainage Element	Maintenance	Frequency	Owner
Downpipes and gullies	Regular maintenance Open any covers, inspect integrity of gullies and repair as necessary.	Monthly	
	Remove silt / debris by suction.	Annually or as required	Flaxfields Limited 1 Harraton Cottages, Ducks Lane,
	Regular maintenance Remove any sediment within the network and inspection chambers.	Every 3 years or as required	Exning, Suffolk, CB8 7HQ, England Email:enquiries@flaxfields.co.uk
Pipe network	Open covers inspect integrity of chambers and repair as necessary. Remove silt / debris by suction.	Annually	Tel:01223941380

4.3 Maintenance during construction

RESILIENCE

& FLOOD RISK

Normally traditional drainage is one of the first elements of infrastructure constructed on site. For SuDS, although the form of the drainage will be constructed during the earthworks phase, final construction of the proposed SuDS features should not take place until the end of the development programme. It is highly recommended that the proposed SuDS features do not receive runoff from the site during construction and other means of disposing surface water runoff, in a controlled manner, should be investigated by the contractor. A suitable construction phase plan should be developed prior to construction commencing on site.

5.0 Conclusion

The proposed development at Barns Off Main Road, Upper Pollicott, is located in Flood Zone 1 as defined in the NPPF. The proposal includes the construction of an extension and a change of use (Appendix A).

On the basis of the available information from the Environment Agency and Buckinghamshire Council, the site is at low risk from fluvial and surface water flooding. There have been historic sewer flooding incidences within the postcode area and Magic Maps shows the site to be within a high groundwater vulnerability area.

The proposed development must incorporate SuDS as described in Section 3.3 of this report and in the relevant drawings in Appendix D.

The proposed development can be deemed appropriate, provided that the recommendations in this report are adhered to, it will not increase the flood risk to other people, and it will provide multiple benefits with respect to the sustainable management of surface water runoff.

6.0 Recommendations

The site should manage surface water through the use of SuDS as described in Section 3.5 and Appendix D of this report.

Contractor to submit a S106 to the Water Company prior to connecting to the public sewer.

All SuDS features must be constructed in line with recommendations made in the CIRIA Guidance on the Construction of SuDS (2017).

All SuDS features should be maintained in line with Table 7, Table 8, Table 9, Table 10, and Table 11.

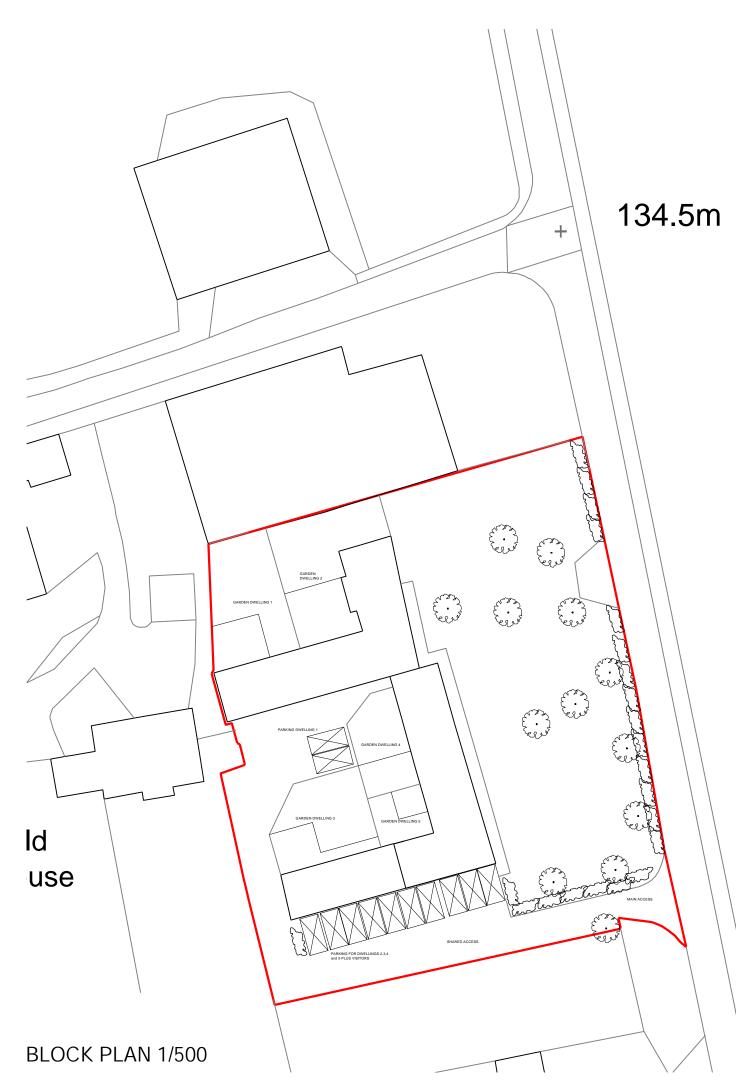
A planting schedule must be confirmed for the attenuation basin along with suitable erosion control measures to ensure vegetation establishment and manage erosion, especially close to the headwalls.

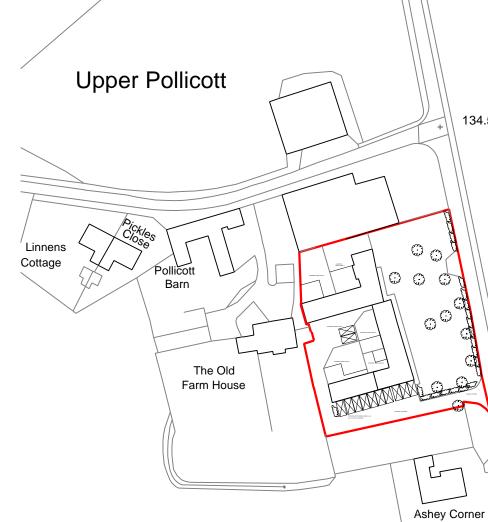
Permeable pavement must be installed strictly to manufacturer's specification.

Should the CBR value be <5%, a capping layer must be installed; the permeable pavement construction detail will require updating.

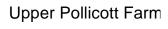
The permeable pavement sub-base may require the installation of geogrids to further strengthen the feature. Contractor must liaise with permeable pavement provider(s), accordingly, prior to installation.

Others to confirm structural configuration of internal (building) drainage pipe runs (if applicable).


Construction (Design and Management) Regulations 2015:


The revised CDM Regulations came into force in April 2015, which defines the duties for all parties involved in a construction project, including those promoting the development. One of the designer's responsibilities is to ensure that the client organisation, in this instance DPA (London) Ltd, is made aware of their duties (please see link for Commercial Client) under the CDM Regulations.

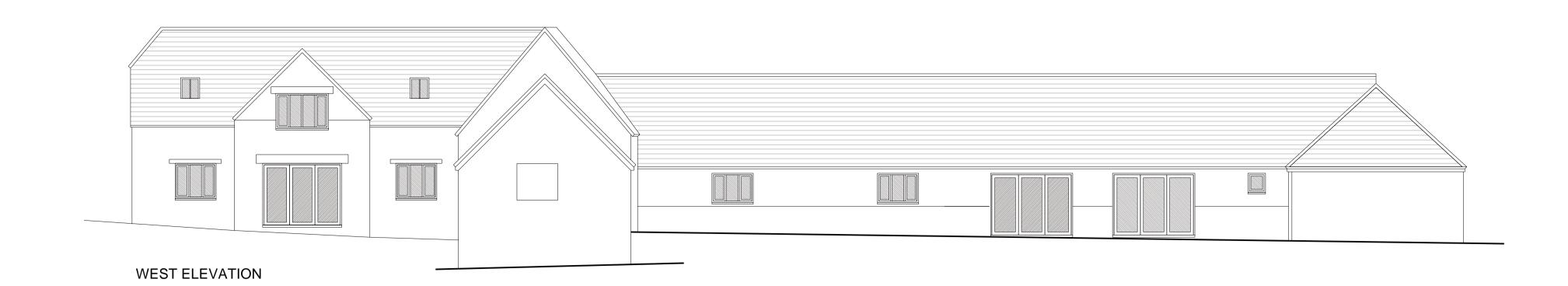
Upper Pollicott 17/11/2023 Version 2.0


Appendix A – Development proposals

SITE LOCATION PLAN 1/1250

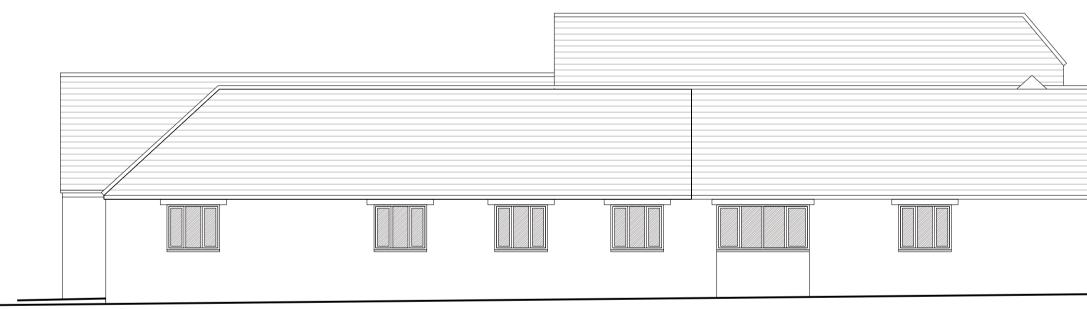
Г

Г

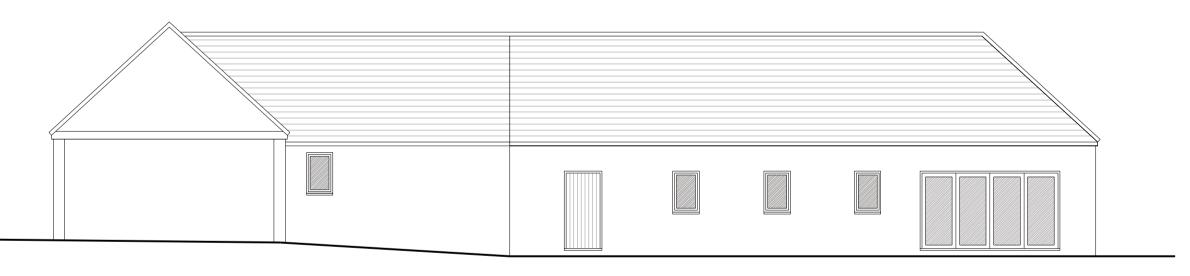

ANTONY THOMPSON

ARCHITECTURAL SERVICES 48, ST, JAMES CLOSE, HANSLOPE, MILTON KEYNES, MK19 7LF. EMAIL:ATARCHSERV@GMAIL.COM MOB: 07740099717

TITLE: SITE/BLOCK PLANS CLIENT THOMAS BETTS & CO PROJECT PROPOSED BARN CONVERSIONS AT UPPER POLLICOTT FARM ASHENDON, AYLESBURY HP18 OHH JOB No. 487 SCALE 1:500 DWG No. A3 REV. DRAWN AT DATE 11.04.19



134.5m



NORTH ELEVATION

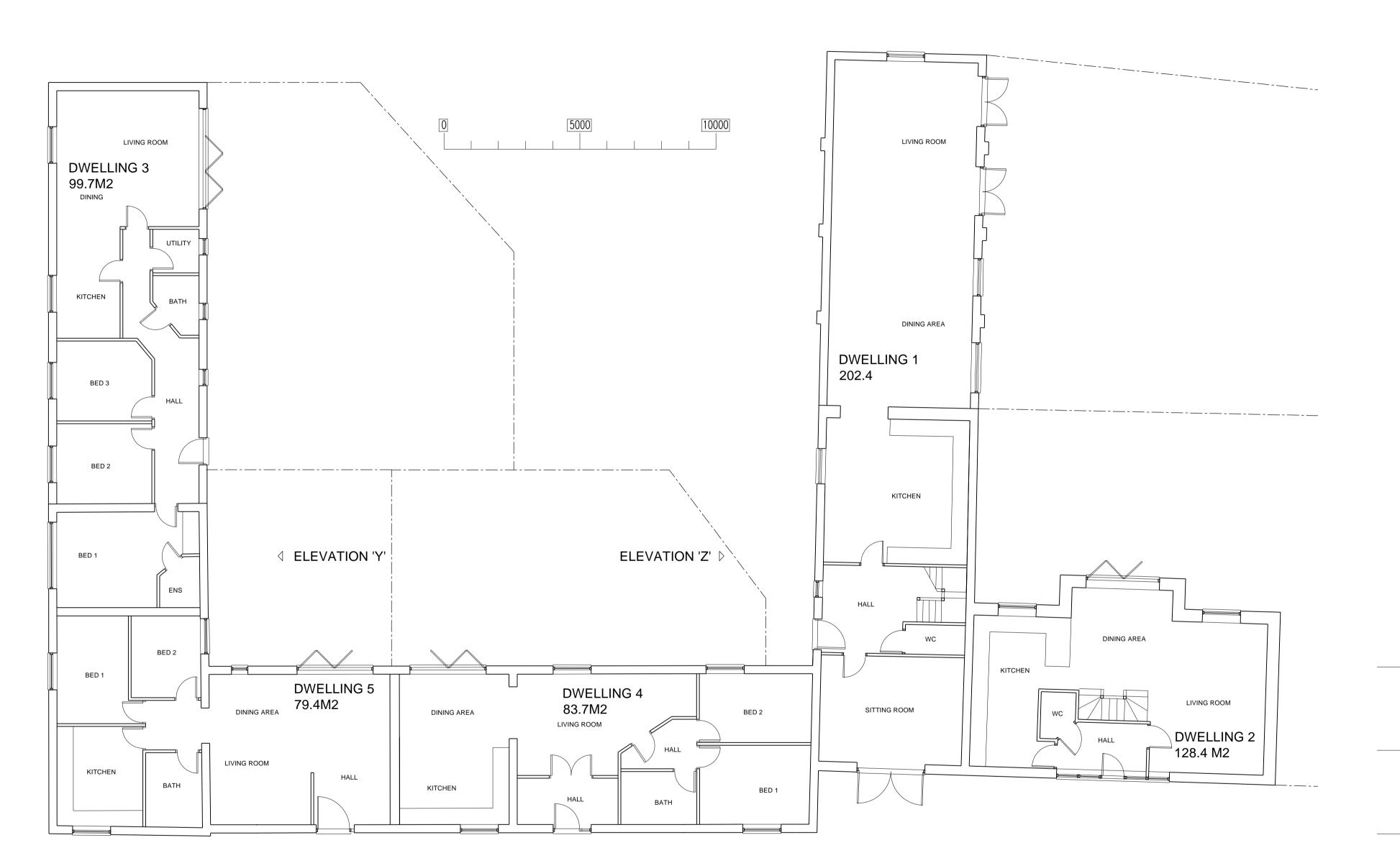
SOUTH ELEVATION

ELEVATION 'Y'

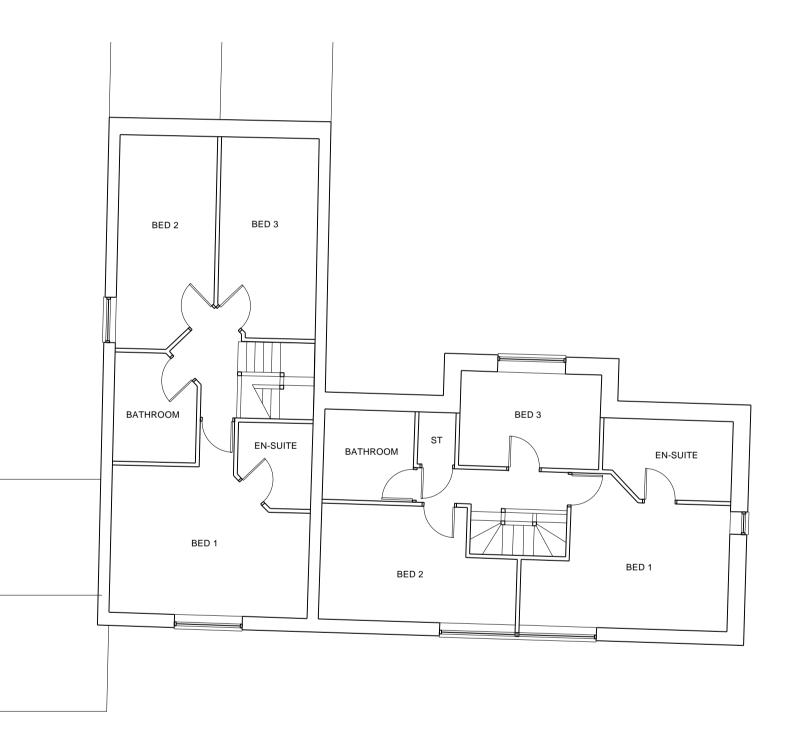
Figured dimensions to be used in preference to scaled sizes. All dimensions must be checked by contractor before commencing work on site. No deviation from this drawing will be permitted without the written consent of the architect.

REV.	DATE	DRAW	N
_	-	_	-

ANTONY THOMPSON


ARCHITECTURAL SERVICES

48, ST, JAMES CLOSE, HANSLOPE, MILTON KEYNES, MK19 7LF. EMAIL :AT ARC HSERV@G MAIL .COM MOB: 07740099717


NOTES:
1) All new electrical work is to be designed, installed, inspected
and tested in accordance with BS7671:2008
(I.E.E Wiring Regulations 17th Edition)
2) Electrical layout to clients specification
3) Lighting layout to clients details and 3 out of 4 to take low
energy light bulbs.
5, 5

TITLE: PROPOSED ELEVATION	A1	
CLIENT THOMAS BETTS & CO LTD	DATE 29.11.20	
PROJECT PROPOSED CONVERSION OF BARNS TO 5NO DWELLINGS AT:	JOB No. 487	<u>SCALE</u> 1:100
UPPER POLLICOTT	DWG_No.	REV.

architect. The copyright of this drawing remains with the architect and may not be reproduced in any form without prior written consent.

GROUND FLOOR PLAN

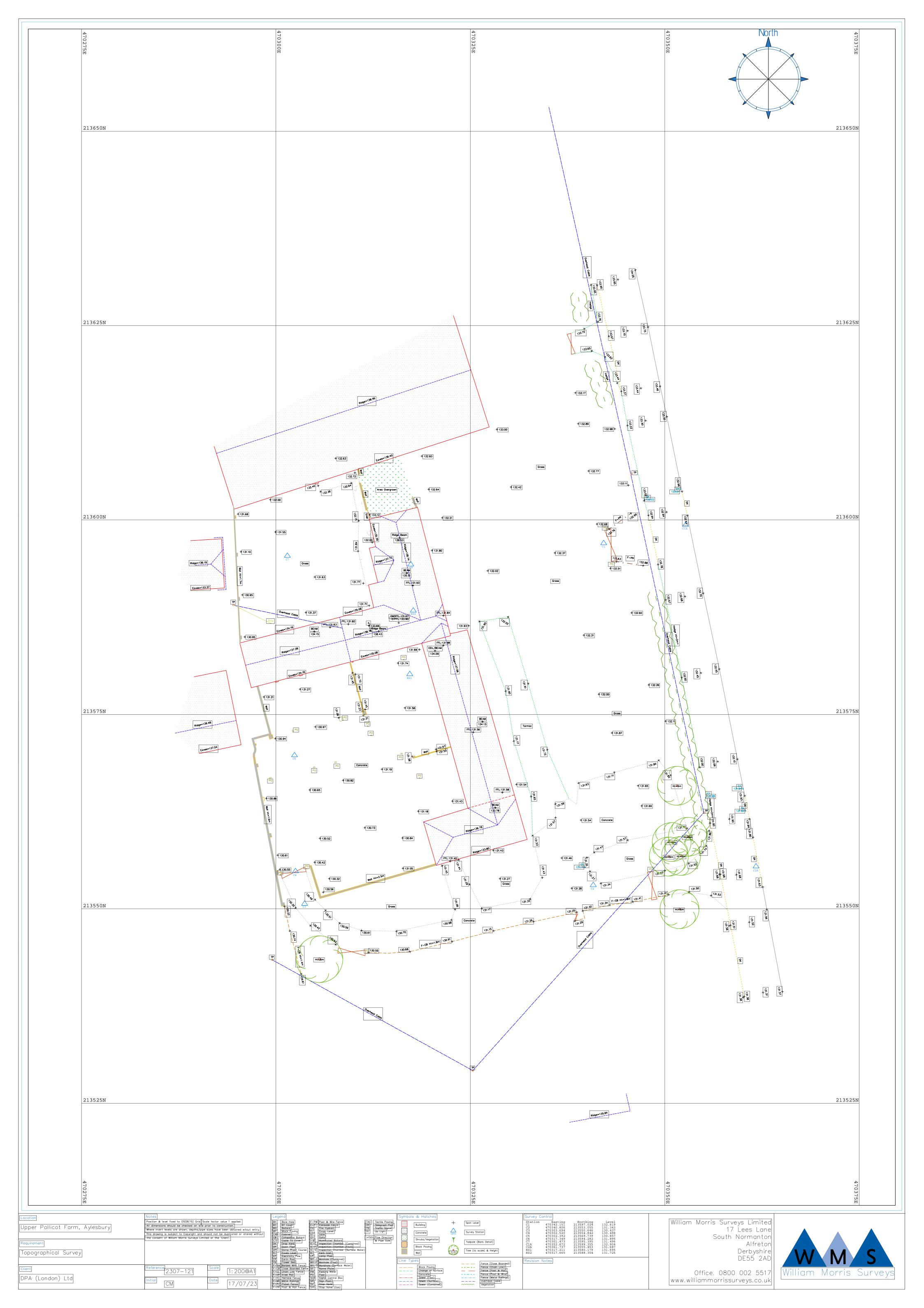
FIRST FLOOR PLAN

REV.	DATE	DRAW	N
_	_	_	-

ANTONY THOMPSON

ARCHITECTURAL SERVICES

48, ST, JAMES CLOSE, HANSLOPE, MILTON KEYNES, MK19 7LF. EMAIL :AT ARC HSERV@G MAIL .COM MOB: 07740099717


NC	DTES:
1)	All new electrical work is to be designed, installed, inspected
and	tested in accordance with BS7671:2008
(I.E.E	E Wiring Regulations 17th Edition)
2)	Electrical layout to clients specification
3)	Lighting layout to clients details and 3 out of 4 to take low
ener	gy light bulbs.
witton	The expect of the prohitest

DATE 29.11.20	DRAWN
JOB No. 487	SCALE 1:100
DWG_No. 032	REV.
	JOB No. 487

Upper Pollicott 17/11/2023 Version 2.0

Appendix B – Topographic Survey

Upper Pollicott 17/11/2023 Version 2.0

Appendix C – Infiltration Testing

26th October 2023 For the attention of **Dr Alexandros Tsavdaris**

Dear Alexandros,

Re: soakaway testing at Upper Pollicott

The following investigation was carried out at the above location in accordance with our quotation dated 31st of July 2023 and emailed instruction from Alexandros Tsavdaris from RAB Consultants Ltd to proceed. Initial background information for the site indicated the site to be directly underlain by the solid geology of the (Kimmeridge Clay Formation).

Site Works

The purpose of the investigation was to supply soakaway test data in general accordance with BRE document 365 (Soakaway Design) at two positions of potential development at barns at Upper Pollicott, Buckinghamshire.

The appended drawing (R23106-DWG2) illustrates the position of the two test pits, which were excavated on 17/10/2023 to a depth of 1.8 to 1.85mbgl (metres below ground level). All the trial pits were found to have a layer of Topsoil or Made Ground, underlain by sandy CLAYs of the weathered Kimmeridge Clay Formation. A groundwater seepage was recorded within trial pit TP2 at a depth of 1.8m.

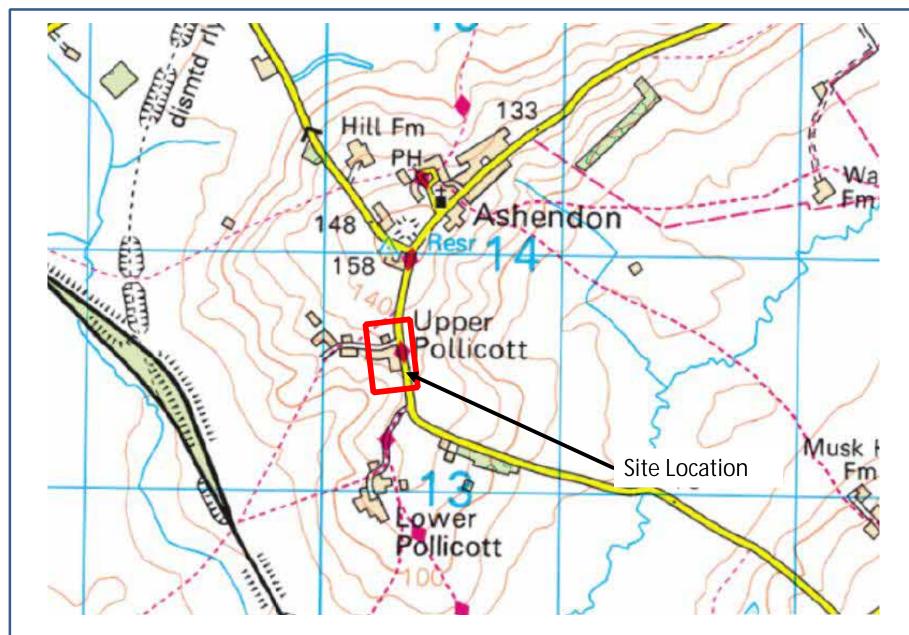
Water was added to the trial pits via a towable water tanker. Falling water level readings were undertaken using a dip meter. Three tests were achieved within trial pit SP1 and SP2.

<u>Results</u>

A single test was conducted within both trial pits. After filling the water failed to drain from 75% to 25% within a 24 hour period. As such the infiltration rate was too low to calculate. As such it is considered that soakaways are unlikely to be suitable for the site.

Yours sincerely,

for Grange GeoConsulting Ltd


Andrew Hare Director MSc DIC FGS

APPENDICES

- Appendix A SITE LOCATION PLAN
- Appendix B TRIAL PIT PHOTOGRAPHS
- Appendix C GROUND INVESTIGATION PLAN, EXPLORATORY HOLE LOGS
- Appendix D SOAKAWAY TESTING RESULTS

Appendix A

SITE LOCATION PLAN

Grange Sit

Site Location, Upper Pollicot, Client- RAB Consultants Date- October 2023

Drawing-R23106-1

Appendix B

TRIAL PIT PHOTOGRAPHS

TP1

Client- RAB Consultants Ltd Date- October 2023

TP1

Client- RAB Consultants Ltd Date- October 2023

TP2

Client- RAB Consultants Ltd Date- October 2023

TP2

Client- RAB Consultants Ltd Date- October 2023

Appendix C

GROUND INVESTIGATION PLAN, EXPLORATORY HOLE LOGS

GI Location Plan Upper Pollicot

Date: Oct 2023

Drawing: R23106-002

Trial Pit Log

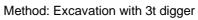
Client: RAB Consultants

Project: Upper Pollicott

TP No: TP1

Sheet: 1 of 1 Method: Excavation with 3t digger

Sample	S. Van		Depth	
Depth (m)	Type kN/m ²		mBGL	Legend
		Made Ground, dark brown, sandy, CLAY with occasional brick cobbles.		\times
F 1		Made Ground, pale grey, sandy Gravel. Gravels of limestone and brick.	_	$\dot{\sim}\dot{\sim}\dot{\sim}\dot{\sim}\dot{\sim}\dot{\sim}\dot{\sim}\dot{\sim}\dot{\sim}\dot{\sim}$
\vdash		Nade Ground, pale grey, sandy Gravel. Gravels of limestone and brick.	_	∞
0.50		Stiff, orange brown and grey mottled, slightly sandy, slightly silty CLAY.	0.50	
		(Weathered Kimmeridge Clay Formation)		
1.00			1.00	
⊢ I				
<u> </u>		Stiff, pale grey with orange brown mottling, silty, sandy CLAY. (Weathered Kimmeridge Clay Formation)		
⊢		(weathered Kinnhendge Clay Formation)	_	
1.50			1.50	
		End of trial pit.		
2.00			2.00	
F 1				
<u> </u>			_	
2.50			2.50	
2.30			2.30	
<u> </u>				
_				
3.00			3.00	
F 1				
<u> </u>				
F 1			_	
<u> </u>				
<u> </u>				
\vdash				
⊢ I				
General Comm	nents:			
	Pit walls stable.		Date: 17/10/2	2023
	lo groundwater		Logged by: J	
		actory evidence of contamination	Checked: AF	
0. 1			Job No: R23	
One mark One of C	Semesultine - L (4 49 Minshilaga Avanua Newark NC24 44D	110. 1120	
		I, 43 Winchilsea Avenue, Newark, NG24 4AD		
Tel: 07773529	9385			


Trial Pit Log

Client: RAB Consultants

Project: Upper Pollicott

TP No: TP2

Sheet: 1 of 1

Depth (m)	Sample S. Vane Depth (m) Type kN/m²					Legend		
	туре	KI WIII	Description Made Ground, dark brown, sandy, CLAY with occasional brick cobbles.		GL			
			Made Ground, pale grey, sandy Gravel. Gravels of limestone and brick.	+				
0.50			Stiff, brown and pale grey mottled, silty, sandy CLAY with pockets of grey brown and orange	$-\Gamma$	0.50			
			brown mottled, clayey SAND.		0.00			
			(Weathered Kimmeridge Clay Formation)					
1.00					1.00			
—								
				E				
1.50					1.50			
				\vdash				
				_				
0.00			1.85m base of trial pit.	\vdash	0.00			
2.00					2.00			
				- H-				
2.50				- H	2.50			
					2.00			
3.00				<u> </u>	3.00			
-								
				Г				
				E				
_				<u> </u>				
				- H-				
				⊢				
				H				
-								
				H				
eneral Corr	ments:							
	Pit walls			Date:	17/10/:	2023		
			r seepage at 1.80m	Logge				
			vith a hydrocarbon odour present.	Check				
0.		Si Sulla M		Job No				
			43 Winchilsea Avenue, Newark, NG24 4AD	000 10	5. 1123	100		

Appendix D

Soakaway Testing Results

BRE BR365 - Trial Pit Soakaway Data Sheet Site: Upper Pollicot

Client: RAB

Client:		RAD	_						
Test Location		TP1	Date of start		17/10/2023	Date at end o		18/10/2023	
	Test Run 1			Test Run 2		Test Run 3			
	it Dimensions (r	,		it Dimensions (m)		it Dimensions	(m)	
Length		<u>2.000m</u>	Length			Length			
Width		<u>0.500m</u>	Width			Width			
Depth		<u>1.850m</u>	Depth			Depth			
Fill Depth		<u>1.290m</u>	Fill Depth		<u>0.000m</u>	Fill Depth	0.000m		
Max Volume		1.290m ³	Max Volume		0.000m ³	Max Volume		0.000m ³	
Gravel used to ba	ackfill Test Pit	No	Gravel used to b	ackfill Test Pit	No	Gravel used to b	ackfill Test Pit	No	
Т	ime to soakawa	У	1	Time to soakawa	ау	Т	ime to soakaw	/ay	
Tin	ne	Depth to water	Ti	me	Depth to water	Tir	ne	Depth to water	
(secs)	(min)	(m bgl)	(secs)	(min)	(m bgl)	(secs)	(min)	(m bgl)	
	0	0.560		0		0	0		
60	1	0.560							
120	2	0.570							
180 240	3 4	0.570							
300	5	0.570 0.570							
360	<u> </u>	0.570							
420	7	0.570							
420	8	0.570							
540	9	0.580							
600	10	0.580							
900	15	0.580							
1200	20	0.580							
1500	25	0.580							
1800	30	0.590							
2400	40	0.590							
3600	60	0.630							
4800	80	0.640							
7200	120	0.650							
10800 86400	180 1440	0.660							
00400	1440	0.750							
25% water dept	h	0.883m	25% water dept	h	0.000m	25% water dept	h	0.000m	
50% water deptl		1.205m	50% water dept		0.000m	50% water dept		0.000m	
75% water dept		1.528m	75% water dept		0.000m	75% water dept		0.000m	
					0.000m		0.000m		
25% time (secor	•	101664 sec	25% time (seco			25% time (seco			
75% time (secor	nds)		75% time (seco	nds)		75% time (seco	nds)		
V _{p 75-25}		0.6450m ³	V _{p 75-25}		0.0000m ³	V _{p 75-25}		0.0000m ³	
a _{p 50} (Actual are	a from test)	6.9750m ²	a _{p 50} (Actual are	ea from test)	0.0000m ²	a _{p 50} (Actual are	ea from test)	0.0000m ²	
t _{p 75 - 25}		74304.0	t _{p 75 - 25}			t _{p 75 - 25}			
Soil Infiltration	Rate	NA	Soil Infiltration	Rate		Soil Infiltration	Rate		
				Time (secs)			Time (secs)		
0.000 0.200 0.400 0.600 0.800 1.000 1.200 1.400 1.600 1.800 2.000	Time (sexs) 000000000000000000000000000000000000	25% 50% 75% Base of pit	0.00 0.20 0.40 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00	age of P T T T		0.00 0.20 0.40 0.60 0.80 0.80 1.00 1.20 1.40 1.60 1.80 2.00			

BRE	BR365 -	Trial Pit	Soakaway	Data	Sheet

Site: Upper Pollicot

Client: RAB

Test Location	on	TP2	Date of start	of testing	17/10/2023	Date at end	of testing	18/10/2023
	Test Run 1	··-		Test Run 2	, 10,2020		Test Run 3	,,
F	Pit Dimensions (n	n)	Р	Pit Dimensions (m)	F	Pit Dimensions ((m)
Length		<u>2.000m</u>	Length			Length		
Width		0.500m	Width			Width		
Depth		1.800m	Depth			Depth		
Fill Depth		1.000m	Fill Depth		0.000m	Fill Depth		0.000m
Max Volume		1.000m ³	Max Volume		0.000m ³	Max Volume		0.000m ³
Gravel used to b	packfill Test Pit	No	Gravel used to b	ackfill Test Pit	No	Gravel used to I	No	
	Time to soakawa			Fime to soakawa			ay	
		Depth to water		me	Depth to water		me	Depth to water
(secs)	(min)	(m bgl)	(secs)	(min)	(m bgl)	(secs)	(min)	(m bgl)
()	0	0.800	()	0	(0	0	(29.)
60	1	0.800						
120	2	0.800						
180	3	0.800						
240	4	0.800						
300	5	0.800						
360	6	0.800						
420	7	0.800						
480	8	0.800						
540 600	9 10	0.800						+
900	10	0.800		-			-	1
1200	20	0.800						
1500	20	0.800						
1800	30	0.800						
2400	40	0.800						
3600	60	0.810						
4800	80	0.810						
7200	120	0.810						
10800	180	0.810						
14400	240	0.820						
	1440	0.840						
OF0/ water der	41-	4.050	OF0/ weter dent		0.000.0	OF0/ water dem	41-	0.000
25% water dep		1.050m	25% water dept		0.000m	25% water dep	0.000m	
50% water dep		1.300m	50% water dept		0.000m	50% water dep		0.000m
75% water dep		1.550m	75% water dept		0.000m	75% water dep	0.000m	
25% time (seco	onds)	18000 sec	25% time (seco	nds)		25% time (seconds)		
75% time (seco	onds)	26571 sec	75% time (seco	nds)		75% time (seco	onds)	
V _{p 75-25}		0.5000m ³	V _{p 75-25}	- -	0.0000m ³	V _{p 75-25}		0.0000m ³
a _{p 50} (Actual ar	ea from test)	5.9000m ²	a _{p 50} (Actual ar	ea from test)	0.0000m ²	a _{p 50} (Actual ar	ea from test)	0.0000m ²
t _{p 75 - 25}		8571.4	t _{p 75 - 25}			t _{p 75 - 25}		
Soil Infiltration	Rate	NA	Soil Infiltration	Rate		Soil Infiltration	Rate	
	Time (secs)			Time (secs)			Time (secs)	
	10000 20000	30000						
0 000 0	200	300	୦ ହ					
0.000			0.00	6%	· · ·	0.00	pit	
0.200 -			0.20 -			0.20 -		
<u></u> 0.400 − ° °						ିଳ ^{0.40}		
ອັ 0.600 E	· · · · · · · · · · · · · · · · · · ·		ຊັ້ 0.60 -			ີ 0.60 E		
<u>ن</u> 0.800 م	<mark>∙ • · :•</mark> · · <mark>·</mark> ini · ·					0.80 ter		
1.000 - <u>*</u>	<u></u>	25%	4 - 00.1 Mate			(m)		
(b 0.600 ■ 0.600 ■ 0.800 1.200 1.200 1.400 0.6000 0.6000 0.6000 0.600 0.600 0.600			0.60 -			우 1.20 - 도		
1.400 - · ·			1.40			현 1.40 -		
□ 1.600 - · ·		75%	<u>م</u> 1.60 - ۲			1.60 -		
1.800 -		Base of	1.80 -			1.80 -		
		pit				2.00		
2.000			2.00					

Upper Pollicott 17/11/2023 Version 2.0

Appendix D – Drainage

Microdrainage Calculations:

- o 1% AEP + 40% CC
- o **1% AEP**
- o 3.33% AEP
- o 50% AEP
- o QBAR
- o Urban Creep
- o Surcharged outfall

RAB Drawings

Asset location search

Confirmation of capacity

RAB Consultants Ltd		Page 1
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 09/11/2023 10:43	Designed by Micro Drainage	
File 3199.MDX	Checked by	Diamada
Micro Drainage	Network 2020.1.3	1

Time Area Diagram for Storm

Time (mins)	Area (ha)	Time (mins)	Area (ha)	Time (mins)	Area (ha)
		4-8			
Total	Area (Contribu	uting (ha) = 0	.161

Total Pipe Volume (m³) = 219.316

RAB Consultants Ltd		Page 2
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 09/11/2023 10:43	Designed by Micro Drainage	Drainage
File 3199.MDX	Checked by	Drainacje
Micro Drainage	Network 2020.1.3	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (l/s)	k (mm)	n	HYD SECT	DIA (mm)	Section Type	Auto Design
	19.363 25.378 24.061	0.411	67.7 61.7 33.1	0.033 0.011 0.000	5.00 0.00 0.00		0.600 0.600	0.045	0 0 →_/	150 150	Pipe/Conduit Pipe/Conduit Pond/Tank	5 6
	5.207	0.254 0.530 0.034 0.252	58.1 34.5 153.1 149.4	0.013 0.000 0.030 0.010 0.054 0.008	5.00 0.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0	0.600 0.600 0.600 0.600 0.600	0.045	0 0 0 → ↓ → 0	150 150 150 300	Pipe/Conduit Pipe/Conduit Pipe/Conduit Porous Car Park Pipe/Conduit	5 5 6 6 5
S1.003 S1.004			30.8 95.6	0.000 0.000	0.00 0.00		0.600 0.600		0	<mark>150</mark> 225	Pipe/Conduit Pipe/Conduit	.

<u>Network Results Table</u>

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)		Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)	
S1.000	67.24	5.26	131.422	0.033	0.0	0.0	0.0	1.22	21.6	6.1	
S1.001	65.67	5.59	131.136	0.045	0.0	0.0	0.0	1.28	22.7	7.9	
S1.002	65.06	5.72	130.725	0.045	0.0	0.0	0.0	3.15	19658.8	7.9	
a2 000	67 40	F 00	120 604	0 012	0.0	0 0	0 0	0 0 0	14 F	2.4	
S2.000			130.684	0.013	0.0	0.0	0.0	0.82	14.5	2.4	
S2.001	66.52	5.42	130.609	0.013	0.0	0.0	0.0	1.32	23.4	2.4	
S2.002	65.67	5.59	130.355	0.044	0.0	0.0	0.0	1.72	30.4	7.8	
S2.003	65.35	5.66	129.825	0.054	0.0	0.0	0.0	1.27	89.6	9.5	
S2.004	57.24	7.52	129.791	0.108	0.0	0.0	0.0	0.34	290.9	16.7	
S2.005	57.01	7.58	129.539	0.116	0.0	0.0	0.0	1.70	120.2	17.9	
~1			100 460	0 1 5 1			0.0	1 0 0			
S1.003	56.60	7.69	129.469	0.161	0.0	0.0	0.0	1.82	32.2	24.6	
S1.004	54.92	8.14	129.012	0.161	0.0	0.0	0.0	1.34	53.2	24.6	

RAB Consultants Ltd		Page 3
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 09/11/2023 10:43	Designed by Micro Drainage	Drainage
File 3199.MDX	Checked by	Diamaye
Micro Drainage	Network 2020.1.3	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S1	132.427	1.005	Open Manhole	600	S1.000	131.422	150				
S2	132.925	1.789	Open Manhole	e 1200	S1.001	131.136	150	S1.000	131.136	150	
S3	132.225	1.500	Open Manhole	10000	S1.002	130.725		S1.001	130.725	150	
S4	131.684	1.000	Open Manhole	e 600	S2.000	130.684	150				
S5	131.314	0.705	Open Manhole	e 600	S2.001	130.609	150	S2.000	130.609	150	
S6	130.855	0.500	Open Manhole	e 600	S2.002	130.355	150	S2.001	130.355	150	
S7	130.325	0.500	Sealed Manhole	e 600	S2.003	129.825	300	S2.002	129.825	150	
S8	130.470	0.679	Open Manhole	3000	S2.004	129.791		S2.003	129.791	300	
S9	131.593	2.054	Open Manhole	3000	S2.005	129.539	300	S2.004	129.539		
S10	131.669	2.200	Open Manhole	e 10000	S1.003	129.469	150	S1.002	129.998		1879
								S2.005	129.469	300	
S11	131.476	2.464	Open Manhole	e 1200	S1.004	129.012	225	S1.003	129.087	150	
S	129.150	0.520	Open Manhole	e 1200		OUTFALL		S1.004	128.630	225	

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
Sl	470306.168	213604.441	470306.168	213604.441	Required	-
S2	470324.714	213610.006	470324.714	213610.006	Required	9
S3	470335.836	213587.195	470335.836	213587.195	Required	
S4	470317.559	213582.824	470317.559	213582.824	Required	?
S5	470314.269	213572.065	470314.269	213572.065	Required	
S6	470300.404	213567.024	470300.404	213567.024	Required	1

RAB Consu	ltant	s Ltd					Page 4
Cathedral	Hous	se					
Beacon St	reet						
Lichfield	WS1	.3 7AA					— Micro
Date 09/1	1/202	23 10:43		Designed b	y Micro Dra	inage	Drainage
File 3199	.MDX			Checked by			Diamage
Micro Dra	inage	2		Network 20	20.1.3		
			Manhole	Schedules	<u>for Storm</u>		
	MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
	S7	470303.146	213548.940			No Entry	-
	S8	470308.157	213550.356	470308.157	213550.356	Required	
	S9	470344.641	213559.637	470344.641	213559.637	Required	_
	S10	470346.123	213565.443	470346.123	213565.443	Required	N.
	S11	470351.118	213554.778	470351.118	213554.778	Required	
	S	470318.131	213539.109			No Entry	•••
			©19	82-2020 Inn	ovyze		

RAB Consultants Ltd		Page 5
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 09/11/2023 10:43	Designed by Micro Drainage	Drainage
File 3199.MDX	Checked by	Dialitage
Micro Drainage	Network 2020.1.3	·

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connect	ion	MH DIAM., L* (mm)	W
S1.000	0	150	S1	132.427	131.422	0.855	Open Ma	nhole	60	00
S1.001	0	150	S2	132.925	131.136	1.639	Open Ma	nhole	120	00
S1.002	$\rightarrow \ /$		S3	132.225	130.725	0.000	Open Ma	nhole	1000	00
S2.000	0	150	S4	131.684	130.684	0.850	Open Ma	nhole	60	00
S2.001	0	150	S5	131.314	130.609	0.555	Open Ma	nhole	60	00
S2.002	0	150	S6	130.855	130.355	0.350	Open Ma	nhole	60	00
S2.003	0	300	S7	130.325	129.825	0.200	Sealed Ma	nhole	60	00
S2.004	$\rightarrow \downarrow \rightarrow$		S8	130.470	129.791	0.080	Open Ma	nhole	300	00
S2.005	0	300	S9	131.593	129.539	1.754	Open Ma	nhole	300	00
S1.003	0	150	S10	131.669	129.469	2.050	Open Ma	nhole	1000	00
S1.004	0	225	S11	131.476	129.012	2.239	Open Ma	nhole	120	00

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)		MH ection	MH DIAM., L*W (mm)	V
	19.363 25.378 24.061	67.7 61.7 33.1	S2 S3 S10	132.925 132.225 131.669	130.725	1.639 1.350 0.171	Open	Manhole Manhole Manhole	1200 10000 10000)
S2.000 S2.001 S2.002 S2.003 S2.004		150.0 58.1 34.5 153.1 149.4		131.314 130.855 130.325 130.470 131.593	130.355 129.825 129.791	0.555 0.350 0.350 0.379 1.455	Open Sealed Open	Manhole Manhole Manhole Manhole Manhole	600 600 3000 3000))
S2.005	5.992	85.6	S10	131.669		1.900	-	Manhole	10000	
S1.003 S1.004	11.777 36.519	30.8 95.6	S11 S	131.476 129.150	129.087 128.630	2.239 0.295	-	Manhole Manhole	1200 1200	

RAB Consultants Ltd		Page 6
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 09/11/2023 10:43	Designed by Micro Drainage	
File 3199.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	1

<u>Area Summary for Storm</u>

Pipe Number	РІМР Туре	PIMP Name			Imp. Area (ha)	Pipe Total (ha)
1.000	User	_	100	0.015	0.015	0.015
	User	-	100	0.018	0.018	0.033
1.001	User	-	100	0.008	0.008	0.008
	User	-	100	0.003	0.003	0.011
1.002	-	-	100	0.000	0.000	0.000
2.000	User	-	100	0.013	0.013	0.013
2.001	-	-	100	0.000	0.000	0.000
2.002	User	-	100	0.009	0.009	0.009
	User	-	100	0.022	0.022	0.030
2.003	User	-	100	0.010	0.010	0.010
2.004	User	-	100	0.004	0.004	0.004
	User	-	100	0.050	0.050	0.054
2.005	User	-	100	0.004	0.004	0.004
	User	-	100	0.005	0.005	0.008
1.003	-	-	100	0.000	0.000	0.000
1.004	-	-	100	0.000	0.000	0.000
				Total	Total	Total
				0.161	0.161	0.161

Free Flowing Outfall Details for Storm

Outfall Pipe Number					-	
S1.004	S	129.150	128.630	0.000	1200	0

In Street Field WS13 7AA 09/11/2023 10:43 Designed by Micro Drainage 3199.MDX Checked by Drainage Network 2020.1.3 Online Controls for Storm Hydro-Brake@ Optimum Manhole: S10, DS/PN: S1.003, Volume (m ³): 279.6 Unit Reference MD-SHE-0057-1900-1800-1900 Design Flow (1/s) Init Reference MD-SHE-0057-1900-1800-1900 Design Flow (1/s) Design Flow (1/s) Design Flow (1/s) Point Storm Muticated (m) Diseter (mm) Supplication Supplication Supplication Supplication Supplication Supplication Supplication Suplication <th>RAB Consultants Ltd</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Page 7</th> <th></th>	RAB Consultants Ltd						Page 7	
Tield WS13 TAA Designed by Micro Drainage Difference 3199.MDX Checked by Difference Checked by Difference Checked by D Drainage Network 2020.1.3 Online Controls for Storm Checked by Difference Checked by Hydro-Brake@ Optimum Manhole: S10, DS/PN: S1.003, Volume (m³): 279.6 Unit Reference MD-SHE-0057-1900-1800-1900 Design Flow (1/s) 1.9 Flugh-Flom Calculated Objective Minimise upstream storage Application Surface Surface Sump Available Yes Diameter (mm) 75 Suggested Manhole Diameter (mm) 129.469 Minimum Outlet Pipe Diameter (mm) 1200 1200 Control Points Head (m) Flow (1/s) Moinimum Outlet Diameter (mm) 1200 1.3 Mean Flow over Head Range 1 hydrological calculations have been based on the Head/Discharge relationship for the ro-Brake@ Optimum@ specified. Should another type of control device other than a ro-Brake Optimum@ be utilised then these storage routing calculations will be alidated epth (m) Flow (1/s) Pepth (m) Flow (1/s) Pepth (m) Flow (1/s)	Cathedral House							
09/11/2023 10:43 3199.MDX Checked by Checke	Beacon Street							
09/11/2023 10:43 3199.MDX Checked by Checke	Lichfield WS13 7AA						Micco	r
3199.MDX Checked by o Drainage Network 2020.1.3 Online Controls for Storm Hydro-Brake@ Optimum Manhole: S10, DS/PN: S1.003, Volume (m³): 279.6 Unit Reference MD-SHE-0057-1900-1800-1900 Design Head (m) 1.800 Design Flow (1/s) 1.9 Flush-Flom Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 57 Invert Level (m) 129.469 Minimum Outlet Pipe Diameter (mm) 75 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Mean Flow vorer Head Range 1 no Point (Calculated) 1.800 1.9 Flush-Flo ^m 0.250 1.3 Mean Flow vorer Head Range 1 ro-Brake@ Optimum as specified. Should another type of control device other than a ro-Brake Optimum as specified. Should another type of control device other than a ro-Brake Optimum as specified. Should another type of 2.4 7.000 3.6 o.100 1.1 1.200 1.6 3.000	Date 09/11/2023 10:43		Designed b	v Micro Dr	ainage			
Drainage Network 2020.1.3 Online Controls for Storm Hydro-Brake@ Optimum Manhole: S10, DS/PN: S1.003, Volume (m ³): 279.6 Unit Reference MD-SHE-0057-1900-1800-1900 Design Head (m) Design Flow (1/s) Plush-Flo ^m Calculated Objective Minimise upstream storage Application Sump Available Yes Diameter (mm) Suggested Manhole Diameter (mm) Trivert Level (m) 1200 Control Points Head (m) Flow (1/s) Control Points Head (m) Flow (1/s) Kick-Flo@ 0.506 Thush-Flo ^m 0.250 1.3 Mean Flow over Head Range 1 hydrological calculations have been based on the Head/Discharge relationship for the ro-Brake@ Optimum as specified. Should another type of control device other than a ro-Brake Optimum@ be utilised then these storage routing calculations will be alidated epth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 1.1 1.200 1.6 0.200 1.3 1.600 3.000 2.4 0.100 </td <td>File 3199.MDX</td> <td></td> <td></td> <td></td> <td>ainage</td> <td></td> <td>Draina</td> <td>Ŋ</td>	File 3199.MDX				ainage		Draina	Ŋ
Online Controls for Storm Hydro-Brake® Optimum Manhole: S10, DS/PN: S1.003, Volume (m³): 279.6 Unit Reference MD-SHE-0057-1900-1800-1900 Design Head (m) 1.800 Design Head (m) 1.800 Design Head (m) 1.9 Flush-Flo™ Calculated Objective Minimise upstream storage Application Sump Available Yes Diameter (mm) 75 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Plush-Flo™ Control Points Head (m) Flow (1/s) Plush-Flo™ 0.250 1.3 Mean Flow over Head Range - hydrological calculations have been based on the Head/Discharge relationship for the ro-Brake® Optimum as specified. Should another type of control device other than a ro-Brake Optimum@ be utilised then these storage routing calculations will be alidated epth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 1.1 1.200 1.6 0.200 1.3 1.600 1.8 0.100 1.1 1.200 1.6 0.200 1.3 1.	Micro Drainage		-					2
Hydro-Brake@ Optimum Manhole: S10, DS/PN: S1.003, Volume (m³): 279.6 Unit Reference MD-SHE-0057-1900-1800-1900 Design Head (m) 1.800 Design Head (m) 1.800 Design Flow (1/s) 1.9 Flush-Flo ^m Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 57 Invert Level (m) 129.469 Minimum Outlet Pipe Diameter (mm) 75 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (1/s) M Point (Calculated) 1.800 1.9 Flush-Flo ^m 0.250 1.3 Mean Flow over Head Range - 1 hydrological calculations have been based on the Head/Discharge relationship for the ro-Brake@ Optimum as specified. Should another type of control device other than a ro-Brake@ Optimum@ be utilised then these storage routing calculations will be alidated epth (m) Flow (1/s) Pepth (m) Flow (1/s) Pepth (m) Flow (1/s) 0.100 1.1 1.200 6 3.000 2.4 7.000 3.6 0.100				20.1.5				
Unit Reference MD-SHE-0057-1900-1800-1900 Design Head (m) 1.800 Design Head (m) 1.9 Flush-Flo ^{man} Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 57 Invert Level (m) 129.469 Minimum Outlet Pipe Diameter (mm) 75 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (1/s) M Point (Calculated) 1.800 1.9 Flush-Flo ^{man} 0.250 1.3 Mean Flow over Head Range - 1 hydrological calculations have been based on the Head/Discharge relationship for the ro-Brake@ Optimum@ be utilised then these storage routing calculations will be alidated 1.200 1.6 3.000 2.4 7.000 3.6 0.100 1.1 1.200 1.6 3.000 2.4 7.500 3.7 0.100 1.1 1.200 1.6 3.000 2.4 7.500 3.7 0.300 1.3 1.600 1.8 4.000 2.7 8.000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Design Head (m) 1.800 Design Flow (1/s) 1.9 Flush-Flo ^m Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 57 Invert Level (m) 129.469 Minimum Outlet Pipe Diameter (mm) 75 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Control Points Head (m) Flow (1/ m Point (Calculated) 1.800 1.9 Kick-Flo® 0.506 1 hydrological calculations have been based on the Head/Discharge relationship for the ro-Brake@ Optimum@ be utilised then these storage routing calculations will be alidated alidated 9 epth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Pepth (m) Flow (1/s) 0.100 1.1 1.200 1.6 3.000 2.4 7.000 3.6 0.200 1.3 1.400 1.7 3.500 2.6 7.500 3.7 0.300 1.3 1.600 1.8 4.000 </td <td><u>Hydro-Brake® Opt</u></td> <td><u>imum Manhole</u></td> <td><u>: S10, DS/</u></td> <td><u>PN: S1.003</u></td> <td>, Volume</td> <td>(m³)</td> <td><u>: 279.6</u></td> <td></td>	<u>Hydro-Brake® Opt</u>	<u>imum Manhole</u>	<u>: S10, DS/</u>	<u>PN: S1.003</u>	, Volume	(m³)	<u>: 279.6</u>	
Design Flow (1/s) 1.9 Flush-Flo [™] Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 57 Invert Level (m) 129.469 Minimum Outlet Pipe Diameter (mm) 75 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Control Points Head (m) Flow (1/s) m Point (Calculated) 1.800 1.9 Kick-Flo® 0.506 1 nydrological calculations have been based on the Head/Discharge relationship for the ro-Brake Optimum @ be utilised then these storage routing calculations will be alidated alidated epth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 1.1 1.200 1.6 3.000 2.4 7.000 3.6 0.200 1.3 1.400 1.7 3.500 2.6 7.500 3.7 0.300 1.3 1.600 1.8 4.000 2.7 8.000 3.8		Unit	Reference M	D-SHE-0057-1	L900-1800-	1900		
Flush-Flo ^{me} Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 57 Invert Level (m) 129.469 Minimum Outlet Pipe Diameter (mm) 75 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Control Points Head (m) Flow (1/ m Point (Calculated) 1.800 1.9 Kick-Flo® 0.506 1 hydrological calculations have been based on the Head/Discharge relationship for the ro-Brake@ Optimum@ be utilised then these storage routing calculations will be alidated epth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 1.1 1.200 1.6 3.000 2.4 7.000 3.6 0.200 1.3 1.400 1.7 3.500 2.6 7.500 3.7 0.300 1.3 1.600 1.8 4.000 2.7 8.000 3.8 0.400 1.2 1.800 1.9 4.500 2.9 8.500 3.9 0.500		-			1			
Objective Minimise upstream storage Application Surface Surface Sump Available Yes Diameter (mm) 57 Invert Level (m) 129.469 Minimum Outlet Pipe Diameter (mm) 75 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Control Points Head (m) Flow (1/ m Point (Calculated) 1.800 1.9 Flush-Flo™ 0.250 1.3 Mean Flow over Head Range - 1 hydrological calculations have been based on the Head/Discharge relationship for the ro-Brake@ Optimum as specified. Should another type of control device other than a ro-Brake Optimum@ be utilised then these storage routing calculations will be alidated Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 1.1 1.200 1.6 3.000 2.4 7.000 3.6 0.200 1.3 1.400 1.7 3.500 2.6 7.500 3.7 0.300 1.3 1.600 1.8 4.000 2.7 8.000 3.8 0.400 1.2 1.800 1.9 4.500		-			Calcul			
Application Surface Sump Available Yes Diameter (mm) 57 Invert Level (m) 129.469 Minimum Outlet Pipe Diameter (mm) 75 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (l/s) Control Points Head (m) Flow (l/s) m Point (Calculated) 1.800 1.9 Kick-Flo® 0.506 1 hydrological calculations have been based on the Head/Discharge relationship for the ro-Brake@ Optimum as specified. Should another type of control device other than a ro-Brake Optimum@ be utilised then these storage routing calculations will be alidated epth (m) Flow (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s) 0.100 1.1 1.200 1.6 3.000 2.4 7.000 3.6 0.200 1.3 1.400 1.7 3.500 2.6 7.500 3.7 0.300 1.3 1.600 1.8 4.000 2.7 8.000 3.8 0.400 1.2 1.800 1.9 4.500 2.9 8.500 3.9				Minimise ups				
Diameter (mm) 57 Invert Level (m) 129.469 Minimum Outlet Pipe Diameter (mm) 75 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (l/s) Control Points Head (m) Flow (l/s) m Point (Calculated) 1.800 1.9 Kick-Flo® 0.506 1 hydrological calculations have been based on the Head/Discharge relationship for the ro-Brake@ Optimum as specified. Should another type of control device other than a ro-Brake Optimum® be utilised then these storage routing calculations will be alidated epth (m) Flow (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s) 0.100 1.1 1.200 1.6 3.000 2.4 7.000 3.6 0.200 1.3 1.400 1.7 3.500 2.4 7.000 3.6 0.100 1.1 1.200 1.6 3.000 2.4 7.000 3.6 0.200 1.3 1.400 1.7 3.500 2.6 7.500 3.7 0.300 1.3 1.600 1.8		A	pplication		Sur	face		
Invert Level (m) 129.469 Minimum Outlet Pipe Diameter (mm) 75 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Control Points Head (m) Flow (1/ m Point (Calculated) 1.800 1.9 Kick-Flo® 0.506 1 hydrological calculations have been based on the Head/Discharge relationship for the ro-Brake® Optimum as specified. Should another type of control device other than a ro-Brake Optimum® be utilised then these storage routing calculations will be alidated epth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.217 3.000 2.4 7.000 3.6 0.100 1.1 1.200 1.6 3.000 2.4 7.000 3.6 0.200 1.3 1.400 1.7 3.500 2.6 7.500 3.7 0.300 1.3 1.600 1.8 4.000 2.7 8.000 3.8 0.400 1.2 1.800 1.9 4.500 2.9 8.500 3.9 0.500 1.1 2.000 2.0 5.000 3.0 9.000 4.0		-						
Minimum Outlet Pipe Diameter (mm) 75 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Control Points Head (m) Flow (1/ m Point (Calculated) 1.800 1.9 Kick-Flo® 0.506 1 Flush-Flo™ 0.250 1.3 Mean Flow over Head Range - 1 hydrological calculations have been based on the Head/Discharge relationship for the ro-Brake® Optimum as specified. Should another type of control device other than a ro-Brake Optimum® be utilised then these storage routing calculations will be alidated Pepth (m) Flow (1/s) Pepth (m) Flow (1/s) Pepth (m) Flow (1/s) 0.100 1.1 1.200 1.6 3.000 2.4 7.000 3.6 0.200 1.3 1.400 1.7 3.500 2.6 7.500 3.7 0.300 1.3 1.600 1.8 4.000 2.7 8.000 3.8 0.400 1.2 1.800 1.9 4.500 2.9 8.500 3.9 0.500 1.1 2.000 2.0 5.000 3.0 9.000 4.0					129			
Control Points Head (m) Flow (1/s) Control Points Head (m) Flow (1/s) Im Point (Calculated) 1.800 1.9 Kick-Flo® 0.506 1 Flush-Flo™ 0.250 1.3 Mean Flow over Head Range - 1 hydrological calculations have been based on the Head/Discharge relationship for the ro-Brake® Optimum as specified. Should another type of control device other than a ro-Brake Optimum® be utilised then these storage routing calculations will be alidated Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 1.1 1.200 1.6 3.000 2.4 7.000 3.6 0.100 1.1 1.200 1.6 3.000 2.4 7.000 3.6 0.200 1.3 1.400 1.7 3.500 2.6 7.500 3.7 0.300 1.3 1.600 1.8 4.000 2.7 8.000 3.8 0.400 1.2 1.800 1.9 4.500 2.9 8.500 3.9 0.500 1.1 2.000 2.0 5.000 3.2	Minimum (. ,		127			
m Point (Calculated) 1.800 1.9 Kick-Flo® 0.506 1 Flush-Flo™ 0.250 1.3 Mean Flow over Head Range - 1 hydrological calculations have been based on the Head/Discharge relationship for the ro-Brake® Optimum as specified. Should another type of control device other than a ro-Brake Optimum® be utilised then these storage routing calculations will be alidated epth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 1.1 1.200 1.6 3.000 2.4 7.000 3.6 0.200 1.3 1.400 1.7 3.500 2.6 7.500 3.7 0.300 1.3 1.600 1.8 4.000 2.7 8.000 3.8 0.400 1.2 1.800 1.9 4.500 2.9 8.500 3.9 0.500 1.1 2.000 2.0 5.000 3.0 9.000 4.0	Suggest	ed Manhole Dia	meter (mm)			1200		
Flush-Flo** 0.250 1.3 Mean Flow over Head Range - 1 hydrological calculations have been based on the Head/Discharge relationship for the ro-Brake® Optimum as specified. Should another type of control device other than a ro-Brake Optimum® be utilised then these storage routing calculations will be alidated epth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 1.1 1.200 1.6 3.000 2.4 7.000 3.6 0.200 1.3 1.400 1.7 3.500 2.6 7.500 3.7 0.300 1.3 1.600 1.8 4.000 2.7 8.000 3.8 0.400 1.2 1.800 1.9 4.500 2.9 8.500 3.9 0.500 1.1 2.000 2.0 5.000 3.0 9.000 4.0	Control Points	Head (m) Flow	w (l/s)	Control Poi	ints	Head	(m) Flow (l/s
hydrological calculations have been based on the Head/Discharge relationship for the ro-Brake® Optimum as specified. Should another type of control device other than a ro-Brake Optimum® be utilised then these storage routing calculations will be alidated epth (m) Flow (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s) 0.100 1.1 1.200 1.6 3.000 2.4 7.000 3.6 0.200 1.3 1.400 1.7 3.500 2.6 7.500 3.7 0.300 1.3 1.600 1.8 4.000 2.7 8.000 3.8 0.400 1.2 1.800 1.9 4.500 2.9 8.500 3.9 0.500 1.1 2.000 2.0 5.000 3.0 9.000 4.0							506	1.
0.100 1.1 1.200 1.6 3.000 2.4 7.000 3.6 0.200 1.3 1.400 1.7 3.500 2.6 7.500 3.7 0.300 1.3 1.600 1.8 4.000 2.7 8.000 3.8 0.400 1.2 1.800 1.9 4.500 2.9 8.500 3.9 0.500 1.1 2.000 2.0 5.000 3.0 9.000 4.0 0.600 1.2 2.200 2.1 5.500 3.2 9.500 4.1	Hydro-Brake® Optimum as	s specified. S	hould anothe	r type of co	ntrol dev	ice ot	her than a	
0.2001.31.4001.73.5002.67.5003.70.3001.31.6001.84.0002.78.0003.80.4001.21.8001.94.5002.98.5003.90.5001.12.0002.05.0003.09.0004.00.6001.22.2002.15.5003.29.5004.1	Depth (m) Flow (l/s)	Depth (m) Flor	w (l/s) Dept	n (m) Flow (l/s) Dept	h (m)	Flow (l/s)	
0.3001.31.6001.84.0002.78.0003.80.4001.21.8001.94.5002.98.5003.90.5001.12.0002.05.0003.09.0004.00.6001.22.2002.15.5003.29.5004.1								
0.4001.21.8001.94.5002.98.5003.90.5001.12.0002.05.0003.09.0004.00.6001.22.2002.15.5003.29.5004.1								
0.5001.12.0002.05.0003.09.0004.00.6001.22.2002.15.5003.29.5004.1								
0.600 1.2 2.200 2.1 5.500 3.2 9.500 4.1								
		2.200	2.1	5.500		9.500		
1.000 1.5 2.600 2.2 6.500 3.4	1.000 1.5	2.600	2.2	5.500	3.4			
0.800 1.3 2.400 2.2 6.000 3.3 1.000 1.5 2.600 2.2 6.500 3.4	0.400 1.2 0.500 1.1 0.600 1.2 0.800 1.3	1.800 2.000 2.200 2.400	1.9 2.0 2.1 2.2	4.500 5.000 5.500 5.000	2.9 3.0 3.2 3.3	8.500 9.000		3.9 4.0

RAB Consultants Ltd					Page 8
Cathedral House					
Beacon Street					
Lichfield WS13 7AA					Micco
Date 09/11/2023 10:43	Degio	ned by	Mi	cro Drainage	Micro
File 3199.MDX		ed by	14110	ero brainage	Drainage
		ed by rk 202	0 1	2	<u> </u>
Micro Drainage	Netwo	ork 202	0.1	. 3	
<u>Storage</u>	Struct	tures f	or	<u>Storm</u>	
Tank o:	r Pond	Pipe:	<u>S1</u>	.002	
Manning's N 0.	.045 In	vert Lev	rel	(m) 130.725	
Depth (m) Ar	ea (m²)	Depth	(m)	Area (m²)	
0.000	10.0	1.	500	190.4	
<u>Porous Car Park</u>	Manho	ole: S6	;, D	S/PN: S2.002	
Infiltration Coefficient Base	(m/hr)	0.00000)	Width (m)	5.1
Membrane Percolation (Length (m)	
Max Percolation	n (l/s)	6.8	J	Slope (1:X)	
Safety	Factor	2.0	Dep	pression Storage (mm)	5
		0.30		Evaporation (mm/day)	3
Invert Lev	vel (m)	130.355	ř.	Membrane Depth (mm)	80
Porous C	Car Par	rk Pipe	: S	2.004	
Manni	.ng's N	0.045		Width (m)	4.8
Infiltration Coefficient Base	(m/hr)	0.00000)	Length (m)	37.6
Membrane Percolation (Slope (1:X)	
				pression Storage (mm)	5
Safety				Evaporation (mm/day)	3
Po Invert Lev	-	0.30 129.791		Membrane Depth (mm)	80
Manhole	uood.	logg fo		torm	
P		'MH US/ me Head			
S1.			.500		
S1.			.500		
S1. S2.			.500		
S2. S2.			.500		
S2.			.500		
S2.			.500		
S2.			.500		
S2.		S9 0	.500		
S1.	003 S		.500		
S1.	004 S	0 0	.500		
©19	82-202	0 Inno	vyze	2	

RAB Cons							Pa	age 9
Cathedra	al Hou	se						
Beacon S	Street							
lichfie	ld WS	13 7AA					N	<i>licro</i>
Date 09,	/11/20	23 10:43		D	esigned by Mic	ro Drainage		
File 319	99.MDX				hecked by)rainago
Micro Di	rainac	e			etwork 2020.1.	3		
	<u>Summa</u>	ry of Cri	tical H	Results	by Maximum Le	vel (Rank 1) for Stor	<u>cm</u>
				<u>Simu</u>	lation Criteria			
		Areal Redu	ction Fa		000 Additional	Flow - % of T	otal Flow (0.000
			Start (m			actor * 10m³/h	-	
Ма	nholo I	Hot Star			0 500 Flow per Pers		ffiecient (
		ewage per h				son per Day (1	/per/day) (
	_				Offline Control Storage Structure			-
				<u>Syntheti</u>	<u>c Rainfall Detai</u>	ls		
				l Model		FI		
		FEH Ra	ainfall			202		
					GB 470318 213580	SP 70318 1358 Poir		
				ta Type Summer)		0.90		
				Winter)		0.90		
	Ма	rgin for Fi	lood Ris	k Warnin	a (mm)		300.0	
					mestep 2.5 Second	d Increment (H		
				DTS	Status		ON	
					Status		ON	
				Inertia	Status		ON	
		P	rofile(s	3)		Summer	and Winter	
		Duration(15, 30, 60, 120,			
				720,	960, 1440, 2160,	2880, 4320,	5760, 7200,	
							8640, 10080	
	Retu	rn Period(s					100	
		Climate C	mange (a	6)			40	
W	ARNING:	Half Drain	n Time h	as not b	een calculated as	s the structur	re is too fi	ull.
	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.
S1.000	S1	15 Summer	100	+40%	100/15 Summer			
S1.001	S2	15 Summer	100	+40%	100/15 Summer			
S1.002	S3	15 Summer		+40%				
S2.000	S4	15 Summer		+40%				
S2.001	S5	15 Summer		+40%	100/15 0			
S2.002 S2.003	<mark>S6</mark> S7	15 Summer 480 Winter		+40% +40%	100/15 Summer 100/60 Summer			
52.003								
S2.004	S8	360 Winter	100	+40%	100/360 Winter 1	100/180 Summer		

RAB Consultants Ltd		Page 10
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 09/11/2023 10:43	Designed by Micro Drainage	
File 3199.MDX	Checked by	Dialitage
Micro Drainage	Network 2020.1.3	

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status
S1.000	S1	132.174	0.602	0.000	1.19			24.1	FLOOD RISK
S1.001	S2	131.753	0.467	0.000	1.45			31.2	SURCHARGED
S1.002	S3	130.765	-1.459	0.000	0.00			28.5	OK
S2.000	S4	130.788	-0.046	0.000	0.81			10.6	OK
S2.001	S5	130.684	-0.075	0.000	0.49			10.5	OK
S2.002	S6	130.617	0.112	0.000	1.07		3	30.4	FLOOD RISK
S2.003	S7	130.325	0.200	0.000	0.07			4.2	FLOOD
S2.004	S8	130.394	0.004	0.000	0.02			6.2	FLOOD RISK

PN	US/MH Name	Level Exceeded
S1.000	S1	
S1.001	S2	
S1.002	S3	
S2.000	S4	
S2.001	S5	
S2.002	S6	
S2.003	S7	10
S2.004	S8	

RAB Consultants Ltd		Page 11
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 09/11/2023 10:43	Designed by Micro Drainage	Drainage
File 3199.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	1

PN	US/MH Name	Storm		Climate Change	First Surch	. ,	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
S2.005 S1.003 S1.004	S10	360 Winter 360 Winter 360 Winter	100 100 100		100/15 100/15					130.395 130.394 129.037

US/M PN Name	-	Flooded Volume (m³)	Flow / Cap.	Overflow (l/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
S2.005 S S1.003 S1 S1.004 S1	0 0.775	0.000 0.000 0.000	0.08 0.05 0.03			5.5 1.4 1.4	SURCHARGED SURCHARGED OK	

RAB Cons	sultar	nts Ltd						Page	1
Cathedra	al Hou	ise							
Beacon S	Street	5							
Lichfiel	ld WS	513 7AA						Mic	
Date 09/	/11/20	23 10:45		1	Designed by	Micro Dr	ainage	— Mic	
File 319	-				Checked by	MICIO DI	ainage	Dra	inage
					-	0 1 0			
Micro Dr	rainag	je		1	Network 202	0.1.3			
	<u>Summa</u>	ry of Cr	itical	Results	s by Maximu	m Level (<u>Rank 1) fo</u>	or Storm	
					ulation Crite				
					.000 Additi				
			Start (1	,	0 MA: 0		* 10m³/ha St nlet Coeffie	-	
Mai	nhole 1		rt Level		.500 Flow per				
		ewage per			-	rerson pe.	L Day (1/pei	.,uuy, 0.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	-		-		of Offline Con Storage Strue				-
				Synthet	<u>ic Rainfall D</u>	etails			
				l Model			FEH		
		FEH 1	Rainfall				2013		
					GB 470318 21	.3580 SP 70			
				ita Type Summer)			Point 0.900		
				Winter)			0.900		
			0, (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			0.000		
	Ma	argin for 1		lysis T	imestep 2.5 S	econd Incr			
					Status Status			ON ON	
				Inertia				ON	
				11101 010	Sources			011	
			Profile((s) (min	s)	15, 30, 60, 1 , 960, 1440, 1		, 4320, 5760	30, 600,	
	Retu	rn Period(s) (year	s)			0010	100	
			Change (0	
WZ	ARNING	Half Dra	in Time ł	as not	been calculat	ed as the	structure i	s too full	
									Water
τ	US/MH		Return	Climate	First (X)	First (Y) First (Z)	Overflow	Level
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)
S1.000	S1	15 Summer	100	+∩⊱	100/15 Summe:	r			131.620
S1.000	S1 S2	15 Summer			100/15 Summe:				131.320 131.384
S1.002	S3	15 Summer	100	+0%					130.756
S2.000	S4	15 Summer	100	+0%					130.767
S2.001	S5	15 Summer	100	+0%					130.671
S2.002	S6	15 Summer		+0%					130.472
S2.003		240 Winter		+0%					130.108
S2.004	S8 2	240 Winter	100	+0%					130.108
				©1983	2-2020 Inno [.]	WW70			

RAB Consultants Ltd		Page 2
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 09/11/2023 10:45	Designed by Micro Drainage	
File 3199.MDX	Checked by	Diamaye
Micro Drainage	Network 2020.1.3	

PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
S1.000	S1	0.048	0.000	0.91			18.4	SURCHARGED	
S1.001	S2	0.098	0.000	1.11			23.9	SURCHARGED	
S1.002	S3	-1.469	0.000	0.00			22.3	OK	
S2.000	S4	-0.067	0.000	0.58			7.6	OK	
S2.001	S5	-0.088	0.000	0.35			7.5	OK	
S2.002	S6	-0.033	0.000	0.93		5	26.5	OK	
S2.003	S7	-0.017	0.000	0.09			5.5	FLOOD RISK*	
S2.004	S8	-0.282	0.000	0.02			7.1	OK	

RAB Consultants Ltd		Page 3
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 09/11/2023 10:45	Designed by Micro Drainage	Drainage
File 3199.MDX	Checked by	Diamada
Micro Drainage	Network 2020.1.3	

PN	US/MH Name	Storm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
S2.005	S9	240 Winter	100	+0%	100/30 Summer				130.108
S1.003	S10	240 Winter	100	+0%	100/15 Summer				130.108
S1.004	S11	2160 Winter	100	+0%					129.036

PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
S2.005	S9	0.269	0.000	0.09			6.3	SURCHARGED	
S1.003	S10	0.489	0.000	0.04			1.3	SURCHARGED	
S1.004	S11	-0.201	0.000	0.03			1.3	OK	

	sulta	nts Ltd						Pag	e 1
Cathedra	al Ho	use							
Beacon S	Stree	t							
Lichfiel	ld W	S13 7AA						N/i	cro
Date 09,	/11/2	023 10:47		E	esigned by	Micro Dra	ainage		
File 319	99.MD	x			hecked by		5		ainago
Micro Di					letwork 202	0 1 3			
			tical		by Maximu		Rank 1) f	or Storm	
				a i ma	lation Guita				
		Areal Redu	uction F		<u>lation Crite</u> 000 Additi		% of Tota	l Flow 0.(000
		Hot	Start (mins)	0 MA	DD Factor *	10m³/ha S	torage 2.0	000
		Hot Star			0		let Coeffi		
					500 Flow per	Person per	Day (1/pe:	r/day) 0.0	000
	FOULS	Sewage per ł	lectare	(1/S) 0.	000				
	-				f Offline Co Storage Stru				-
				Syntheti	ic Rainfall I	Details			
				1 Model			FEH		
		FEH R		Version	OD 470210 07	2500 00 707	2013		
				ita Type	GB 470318 23	13580 SP 703	Point		
				Summer)			0.900		
			Cv	Winter)			0.900		
	М	argin for F		lysis Ti	ng (mm) Imestep 2.5 S Status	Second Incre	ement (Exte	300.0 ended) ON	
					Status			ON	
				Inertia	Status			ON	
		I	Profile(s)			Summer and	d Winter	
		Duration	(s) (min		15, 30, 60, 960, 1440,		4320, 576		
	Reti	urn Period(s	s) (year	s)			001	30	
		Climate (0	
									Water
	US/MH	Ctor-		Climate	First (X)		First (Z)		Level
	Name	Storm	reriod	Change	Surcharge	Flood	Overflow	Act.	(m)
PN	C 1	15 Summer	30	+0%					131.520
S1.000	S1	1 5 0	30	+0%					131.254
S1.000 S1.001	S2	15 Summer		+0%					130.750
S1.000 S1.001 S1.002	S2 S3	15 Summer	30						120 755
S1.000 S1.001 S1.002 S2.000	S2 S3 S4	15 Summer 15 Summer	30	+0% +0%					130.755
S1.000 S1.001 S1.002 S2.000 S2.001	S2 S3	15 Summer		+0% +0% +0%					130.663
S1.000 S1.001 S1.002 S2.000	S2 S3 S4 S5 S6	15 Summer 15 Summer 15 Summer	30 30	+0%					
S1.000 S1.001 S1.002 S2.000 S2.001 S2.002	S2 S3 S4 S5 S6 S7	<pre>15 Summer 15 Summer 15 Summer 15 Summer</pre>	30 30 30	+0% +0%					130.663 130.453
S1.000 S1.001 S1.002 S2.000 S2.001 S2.002 S2.003 S2.004 S2.005	S2 S3 S4 S5 S6 S7 S8 S9	<pre>15 Summer 15 Summer 15 Summer 240 Winter 240 Winter 240 Winter</pre>	30 30 30 30 30 30	+0% +0% +0% +0%	30/60 Summer				130.663 130.453 129.982 129.982 129.982
S1.000 S1.001 S1.002 S2.000 S2.001 S2.002 S2.003 S2.004	S2 S3 S4 S5 S6 S7 S8 S9	<pre>15 Summer 15 Summer 15 Summer 240 Winter 240 Winter</pre>	30 30 30 30 30	+0% +0% +0% +0%	30/60 Summer 30/15 Summer				130.663 130.453 129.982 129.982

RAB Consultants Ltd		Page 2
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Mirro
Date 09/11/2023 10:47	Designed by Micro Drainage	
File 3199.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	·

PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
S1.000	S1	-0.052	0.000	0.74			15.0	OK	
S1.001	S2	-0.032	0.000	0.94			20.3	OK	
S1.002	S3	-1.475	0.000	0.00			17.9	OK	
S2.000	S4	-0.079	0.000	0.46			6.0	OK	
S2.001	S5	-0.096	0.000	0.27			5.9	OK	
S2.002	S6	-0.052	0.000	0.74		5	20.9	OK	
S2.003	S7	-0.143	0.000	0.07			4.3	OK	
S2.004	S8	-0.408	0.000	0.02		196	6.1	OK	
S2.005	S9	0.143	0.000	0.08			5.3	SURCHARGED	
S1.003	S10	0.362	0.000	0.04			1.3	SURCHARGED	

RAB Consultants L	+ 4		Daga 2
Cathedral House			Page 3
Beacon Street			
	7 7 7		
Lichfield WS13 7 Date 09/11/2023 1		Designed by Missee De	Micro
	10:4/	Designed by Micro Dr	Micro Micro Drainage
File 3199.MDX		Checked by Network 2020.1.3	
Micro Drainage		Network 2020.1.3	
<u>Summary o</u>	f Critical Result	ts by Maximum Level (<u>Rank 1) for Storm</u>
US/MH PN Name S		ate First (X) First (Y) ge Surcharge Flood	Water First (Z) Overflow Level Overflow Act. (m)
S1.004 S11 960	Winter 30 -	F0%	129.036
S US/MH PN Name	-	Half Drai low / Overflow Time Cap. (l/s) (mins)	-
S1.004 S11	-0.201 0.000	0 03	1.3 OK
		32-2020 Innovyze	

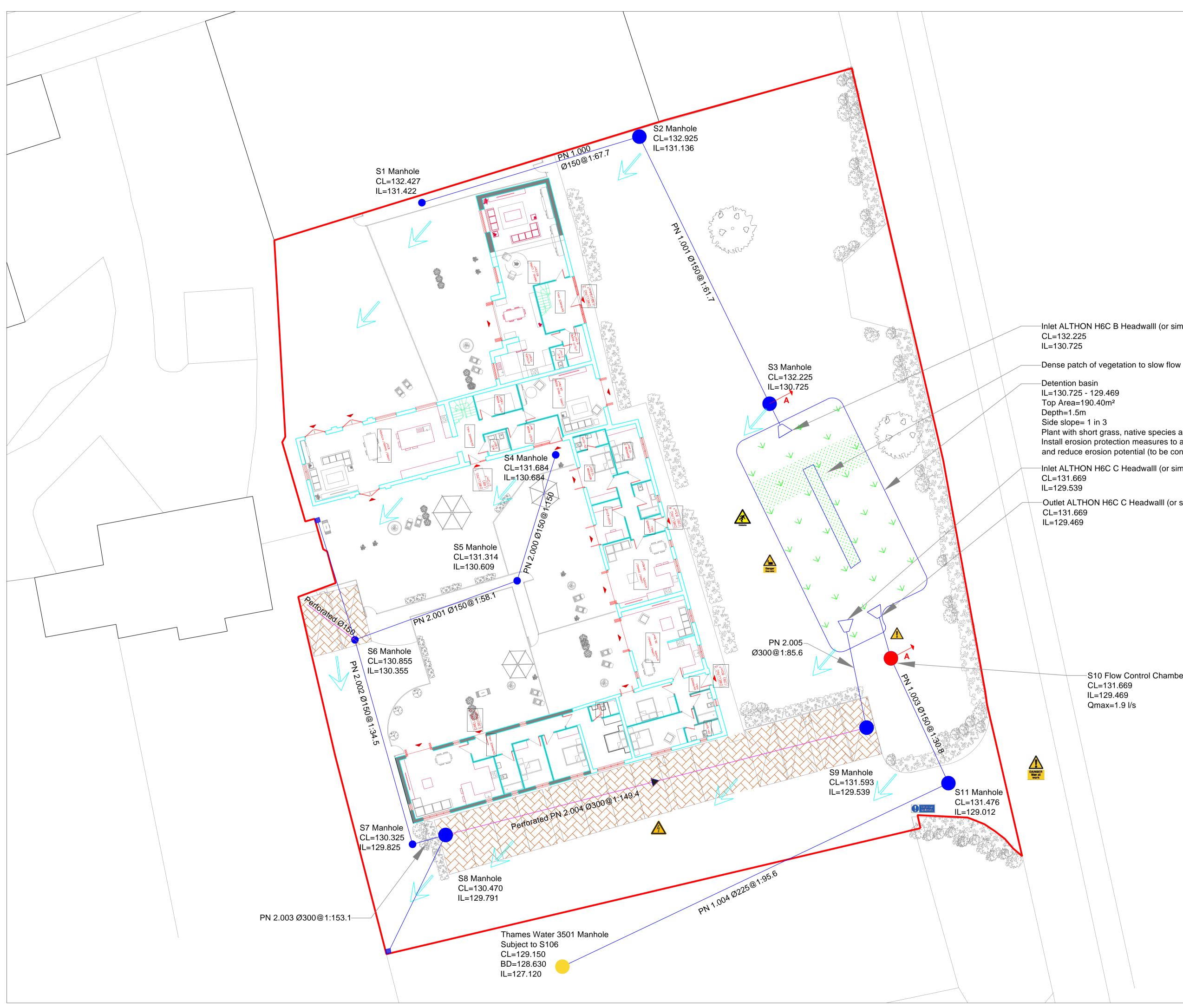
RAB Cons	ultar	nts	Ltd						Pag	ge 1
Cathedra	l Hou	ıse								
Beacon S	treet	:								
Lichfiel	d WS	313	7AA						N.A.	
Date 09/	11/20	123	10:50		De	esigned by	Micro Dr	ainage		icro
File 319		-	10.20			hecked by	IIIOIO DI	ainage	Dr	ainage
Micro Dr						etwork 202	0 1 2			2
MICIO DI	ainag	Je			110	ECWOIR 202	.0.1.3			
<u>1</u>	Summa	ry (of Crit	tical H	Results	by Maximu	m Level (<u>Rank 1) f</u>	<u>for Storr</u>	<u>n</u>
						ation Crite				
		Area			actor 1.0 mins)	000 Additi				
		H		: Level		0 MA	DD Factor '	let Coeffi	-	
Man	hole H					500 Flow per				
					1/s) 0.0	-	-		-	
						Offline Co Storage Stru				
						c Rainfall 1	Details			
					l Model			FEH		
			FEH Ra		Version	GB 470318 2	13580 סד הי	2013		
					ta Type	GB 470318 2	13580 SP /0	Point		
					Summer)			0.900		
					Winter)			0.900		
				Ana	DTS	mestep 2.5 ; Status Status	Second Incr	ement (Ext	300.0 ended) ON ON ON	
		Du		rofile(s s) (mins	s) 1	.5, 30, 60, 960, 1440,		4320, 576	80, 600,	
	Retu	rn P	eriod(s) (years	з)			001	2	
				hange (§					0	
										Water
	US/MH	~	+ or			First (X)	. ,	First (Z)		Level
PN	Name	s	torm	reriod	Change	Surcharge	Flood	Overflow	Act.	(m)
S1.000	S1	15	Summer	2	+0%					131.481
S1.001	S2	15	Summer	2	+0%					131.201
S1.002	S3		Summer	2	+0%					130.735
S2.000	S4		Summer	2	+0%					130.729
S2.001	S5		Summer	2	+0%					130.644
S2.002	S6 97		Summer	2 2	+0% +0%					130.408
S2.003 S2.004	S7 S8		Summer Summer	2	+0% +0%					129.903 129.873
S2.004 S2.005	50 S9		Summer	2	+0%					129.873
S1.003			Summer	2		2/30 Summer				129.736
						-				

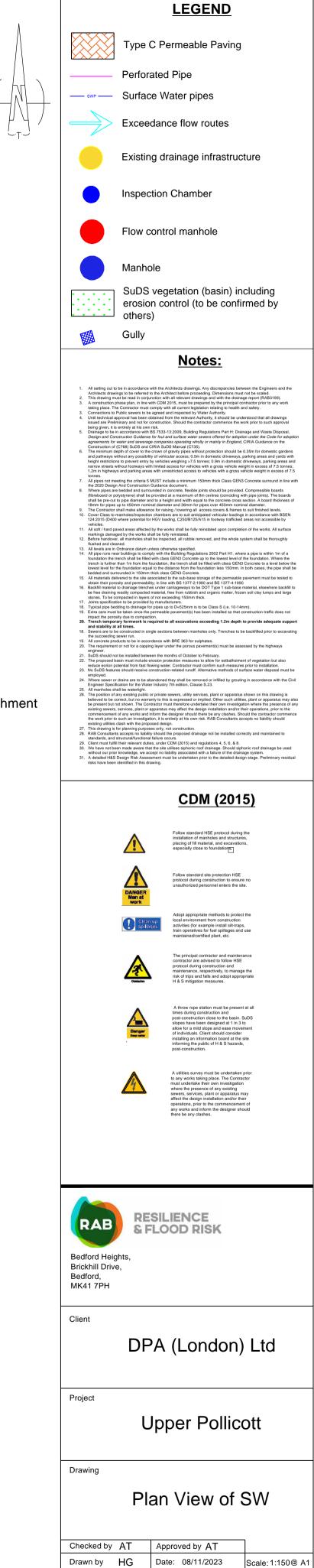
RAB Consultants Ltd		Page 2
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Mirro
Date 09/11/2023 10:50	Designed by Micro Drainage	
File 3199.MDX	Checked by	Diamada
Micro Drainage	Network 2020.1.3	1

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
S1.000	S1	-0.091	0.000	0.32			6.6	OK	
S1.001	S2	-0.085	0.000	0.39			8.4	OK	
S1.002	S3	-1.489	0.000	0.00			7.5	OK	
S2.000	S4	-0.105	0.000	0.20			2.6	OK	
S2.001	S5	-0.115	0.000	0.12			2.6	OK	
S2.002	S6	-0.097	0.000	0.27		8	7.6	OK	
S2.003	S7	-0.222	0.000	0.15			9.2	OK	
S2.004	S8	-0.517	0.000	0.06		7	16.7	OK	
S2.005	S9	-0.102	0.000	0.08			5.5	OK	
S1.003	S10	0.117	0.000	0.04			1.2	SURCHARGED	

RAB Consultants Lt	1			D
Cathedral House	a			Page 3
Beacon Street				
Lichfield WS13 7A	7			
Date 09/11/2023 10		Designed by Mi	aro Drainago	MICro
File 3199.MDX	• 50	Checked by	CIO DIAINAYE	- Micro Drainage
Micro Drainage		Network 2020.1	3	<u> </u>
		NCCWOIK 2020.1		
<u>Summary of</u>	Critical Result	s by Maximum L	evel (Rank 1) for S	Storm
US/MH PN Name Stu			st (Y) First (Z) Overf lood Overflow Act	
S1.004 S11 240 S	Gummer 2 -	-0%		129.036
	-	Ha low / Overflow Cap. (l/s)	llf Drain Pipe Time Flow (mins) (l/s) Status	Level Exceeded
S1.004 S11	-0.201 0.000	0 02	1.2 OK	
	©198	32-2020 Innovyz	e	
	0190			

RAB Consultants Ltd		Page 1
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Mirrn
Date 09/11/2023 10:19	Designed by Micro Drainage	Drainage
File	Checked by	Diamaye
Micro Drainage	Source Control 2020.1.3	


ICP SUDS Mean Annual Flood


Input

Return Period (years)2 SAAR (mm)629Urban0.000Area (ha)0.161Soil0.450RegionNumberRegion6

Results 1/s

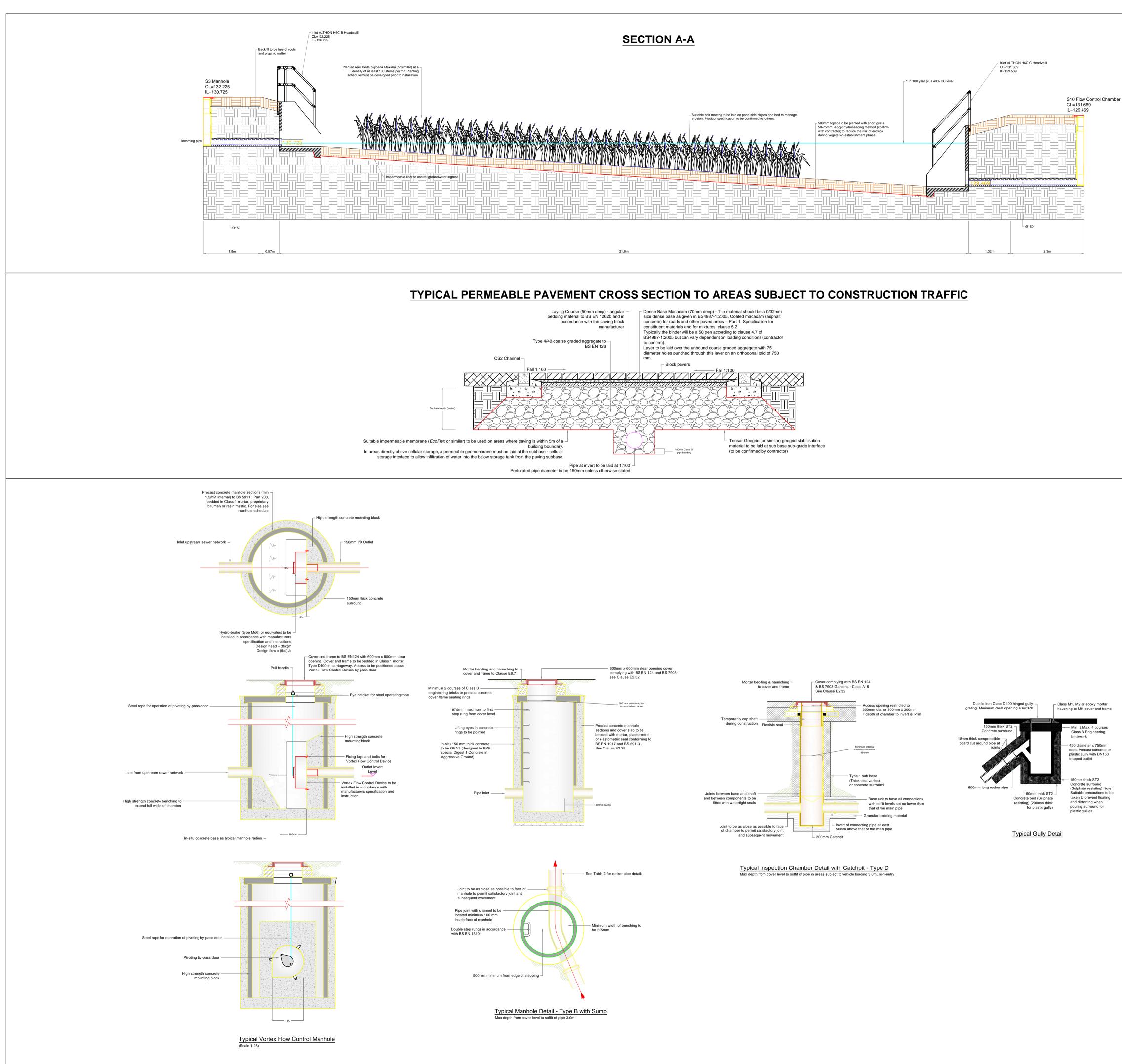
QBAR Rural 0.6 QBAR Urban 0.6 Q2 years 0.5 Q1 year 0.5 Q30 years 1.4 Q100 years 2.0

Drawing No.

RAB3199_001

Revision

-


-Inlet ALTHON H6C B Headwalll (or similar)

Plant with short grass, native species and oil resistant reeds Install erosion protection measures to allow vegetation establishment and reduce erosion potential (to be confirmed by others)

-Inlet ALTHON H6C C Headwalll (or similar)

-Outlet ALTHON H6C C Headwalll (or similar)

-S10 Flow Control Chamber Qmax=1.9 l/s

Asset location search

RAB Consultants Kingsbrook House 7Kingsway KINGSWAY MK42 9BA

Search address supplied

Pollicott Barn Upper Pollicott Ashendon Aylesbury HP18 0HH

Your reference

2816FRD

Our reference

ALS/ALS Standard/2021_4523359

Search date

15 October 2021

Knowledge of features below the surface is essential for every development

The benefits of this knowledge not only include ensuring due diligence and avoiding risk, but also being able to ascertain the feasibility of any development.

Did you know that Thames Water Property Searches can also provide a variety of utility searches including a more comprehensive view of utility providers' assets (across up to 35-45 different providers), as well as more focused searches relating to specific major utility companies such as National Grid (gas and electric).

Contact us to find out more.

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

0800 009 4540

Search address supplied: Pollicott Barn, Upper Pollicott, Ashendon, Aylesbury, HP18 0HH

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0800 009 4540, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: <u>searches@thameswater.co.uk</u> Web: <u>www.thameswater-propertysearches.co.uk</u>

Waste Water Services

Please provide a copy extract from the public sewer map.

The following quartiles have been printed as they fall within Thames' sewerage area:

SP7013NW

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

The following quartiles have not been printed as they contain no assets:

SP7013SW SP7013SE SP7013NE

For your guidance:

The Company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only.

Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

The following quartiles have been printed as they fall within Thames' water area:

SP7013SW SP7013NW SP7013SE

Enclosed is a map showing the approximate positions of our water mains and associated apparatus. Please note that records are not kept of the positions of individual domestic supplies.

For your information, there will be a pressure of at least 10m head at the outside stop valve. If you would like to know the static pressure, please contact our Customer Centre on 0800 316 9800. The Customer Centre can also arrange for a full flow and pressure test to be carried out for a fee.

The following quartiles have not been printed as they contain no assets:

SP7013NE

For your guidance:

Assets other than vested water mains may be shown on the plan, for information only.

If an extract of the public water main record is enclosed, this will show known public water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

Payment for this Search

A charge will be added to your suppliers account.

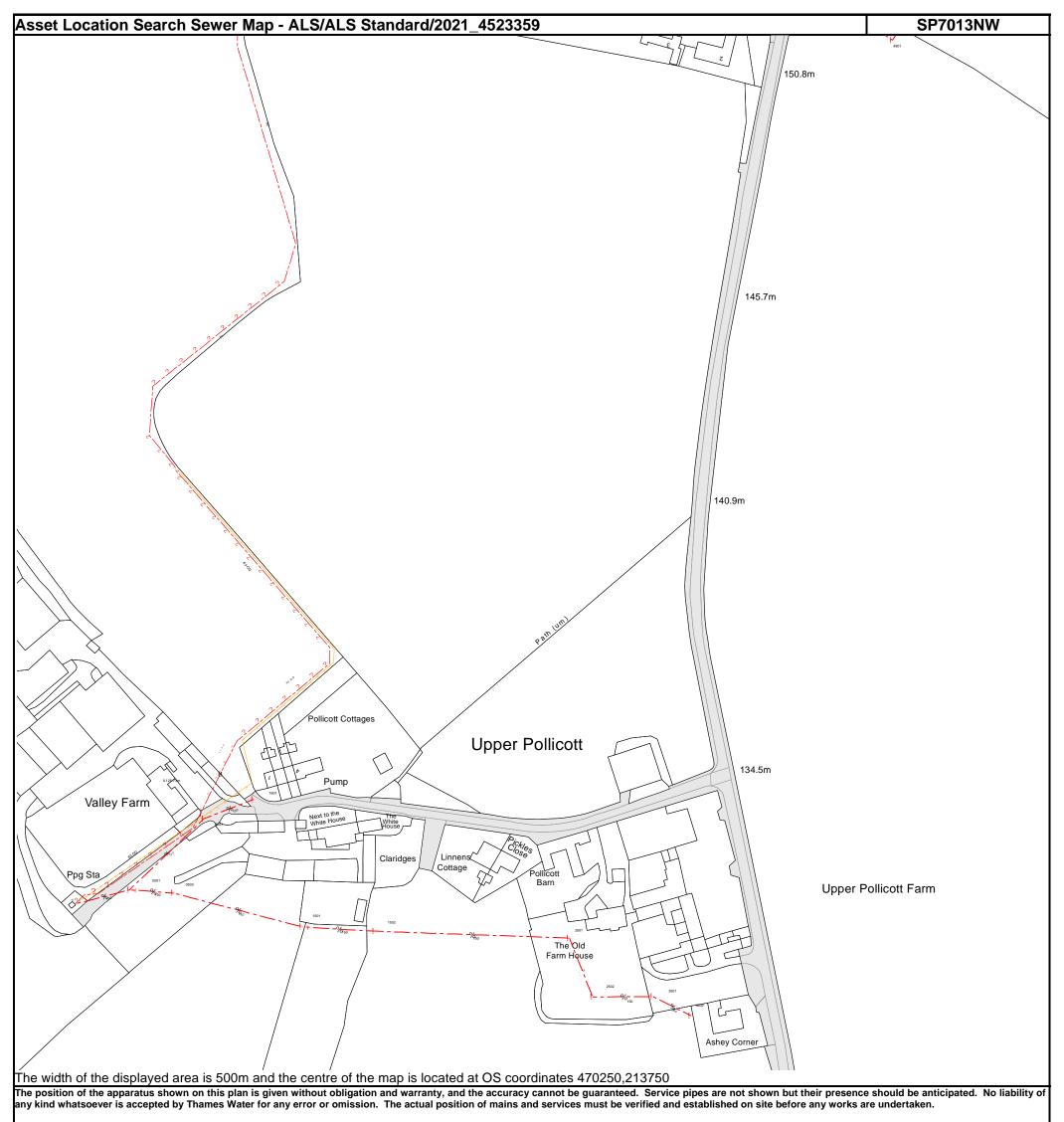
Further contacts:

Waste Water queries

Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

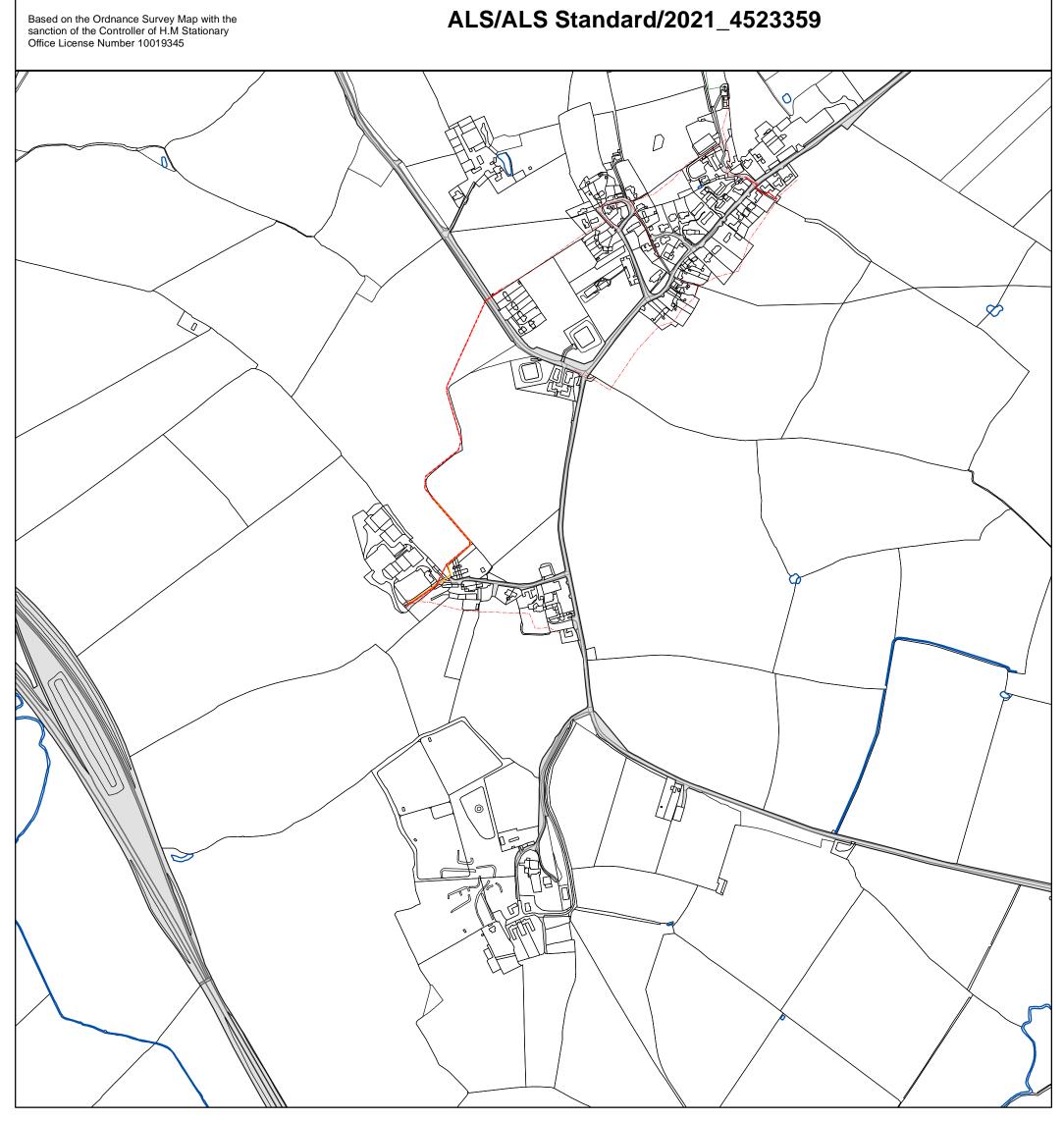

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

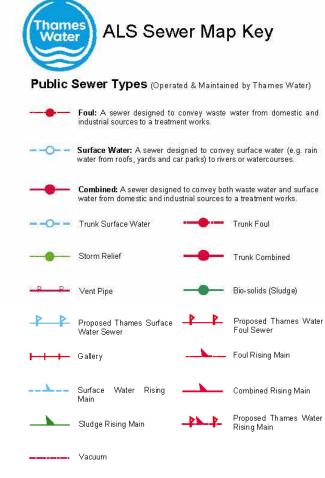
Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk



Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved

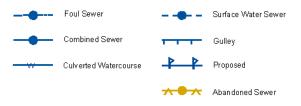
<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0800 009 4540 E <u>searches@thameswater.co.uk</u> I <u>www.thameswater-propertysearches.co.uk</u> NB. Levels quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates that no survey information is available

Manhole Reference	Manhole Cover Level	Manhole Invert Level
0501	119.82	116.86
0503	120.03	117.02
0601	125.09	123.39
1601	126.03	124.28
1501	120.29	117.86
1502	124.12	122.13
2501	127.75	125.57
2502	127.09	125.81
3501	129.15	127.12
3502	129.59	127.83
4901	146.24	144.48


shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified before any works are undertaken. Crown copyright Reserved

Scale:	1:7161	Comment
Width:	2000m	
Printed By:	Rveldhur	
Print Date:	15/10/2021	
Map Centre:	470274,213611	
Grid Reference:	SP7013NW	



Sewer Fittings

Other Symbols

Symbols used on maps which do not fall under other general categories Public/Private Pumping Station Change of characteristic indicator (C.O.C.I.) ø Invert Level 4 Summit Areas Lines denoting areas of underground surveys, etc. Agreement Operational Site /// Chamber Tunnel Conduit Bridge

Notes:

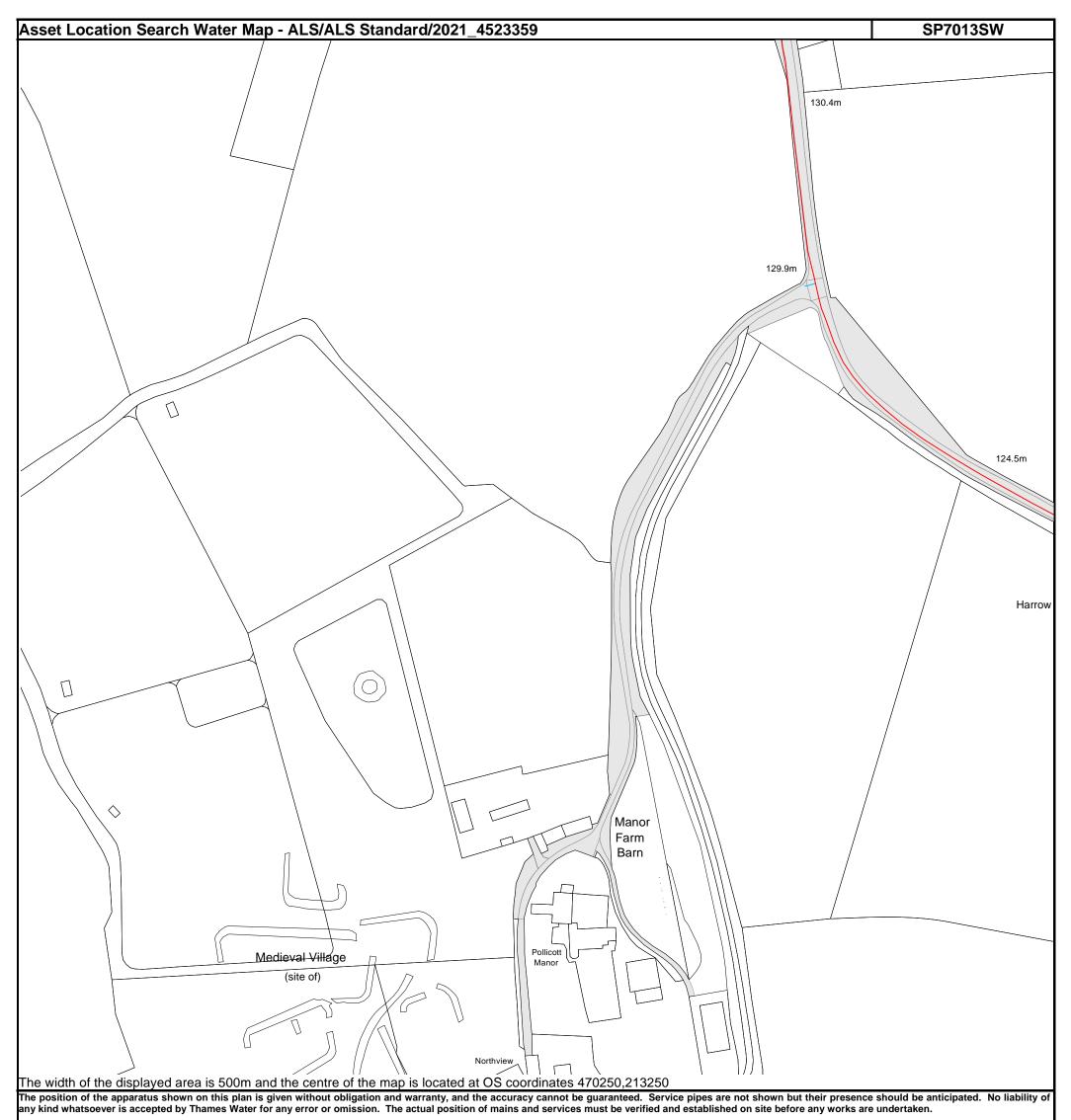
1) All levels associated with the plans are to Ordnance Datum Newlyn.

2) All measurements on the plans are metric.

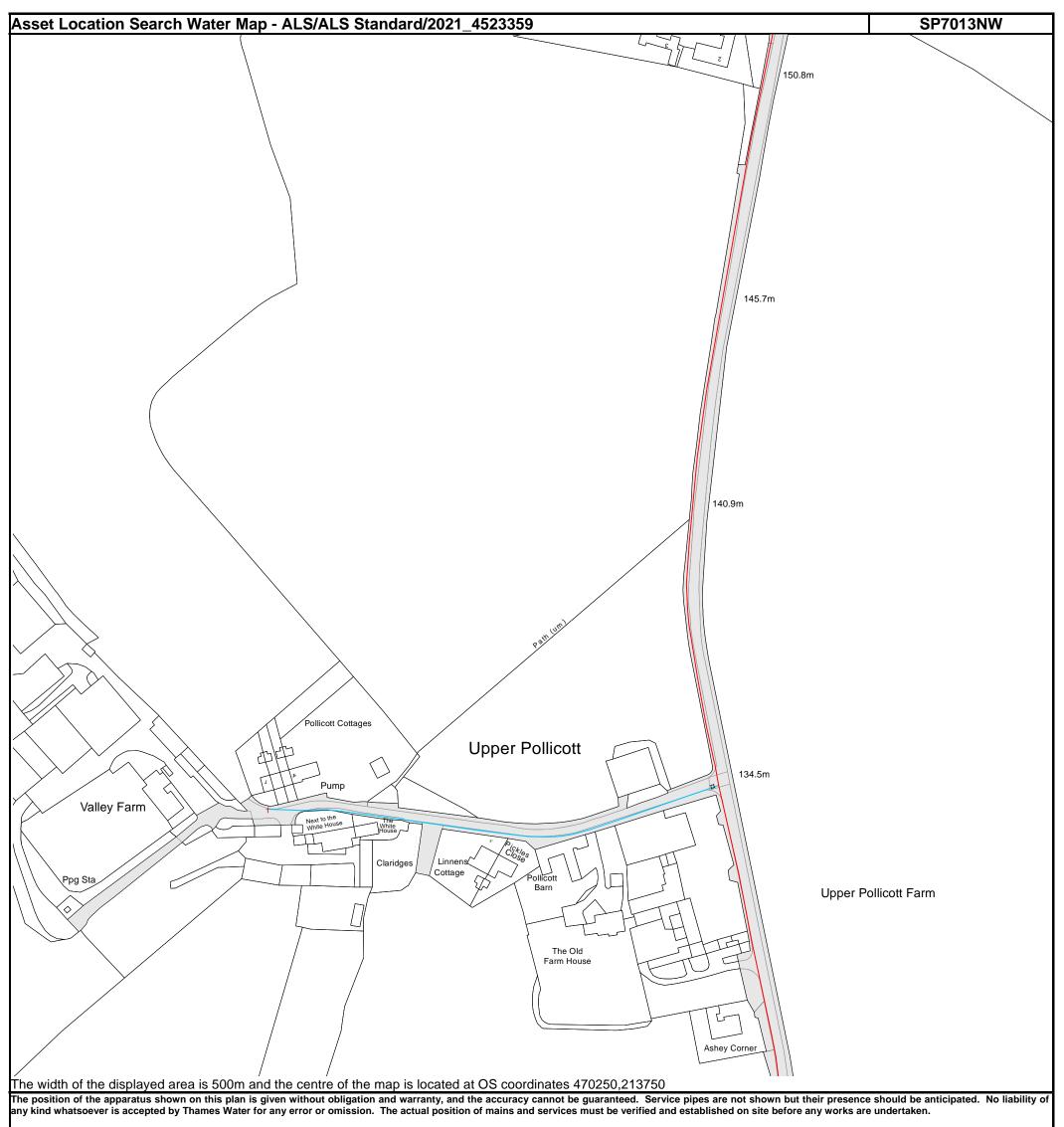
3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.

4) Most private pipes are not shown on our plans, as in the past, this information has not been recorded.

5) 'na' or '0' on a manhole level indicates that data is unavailable.

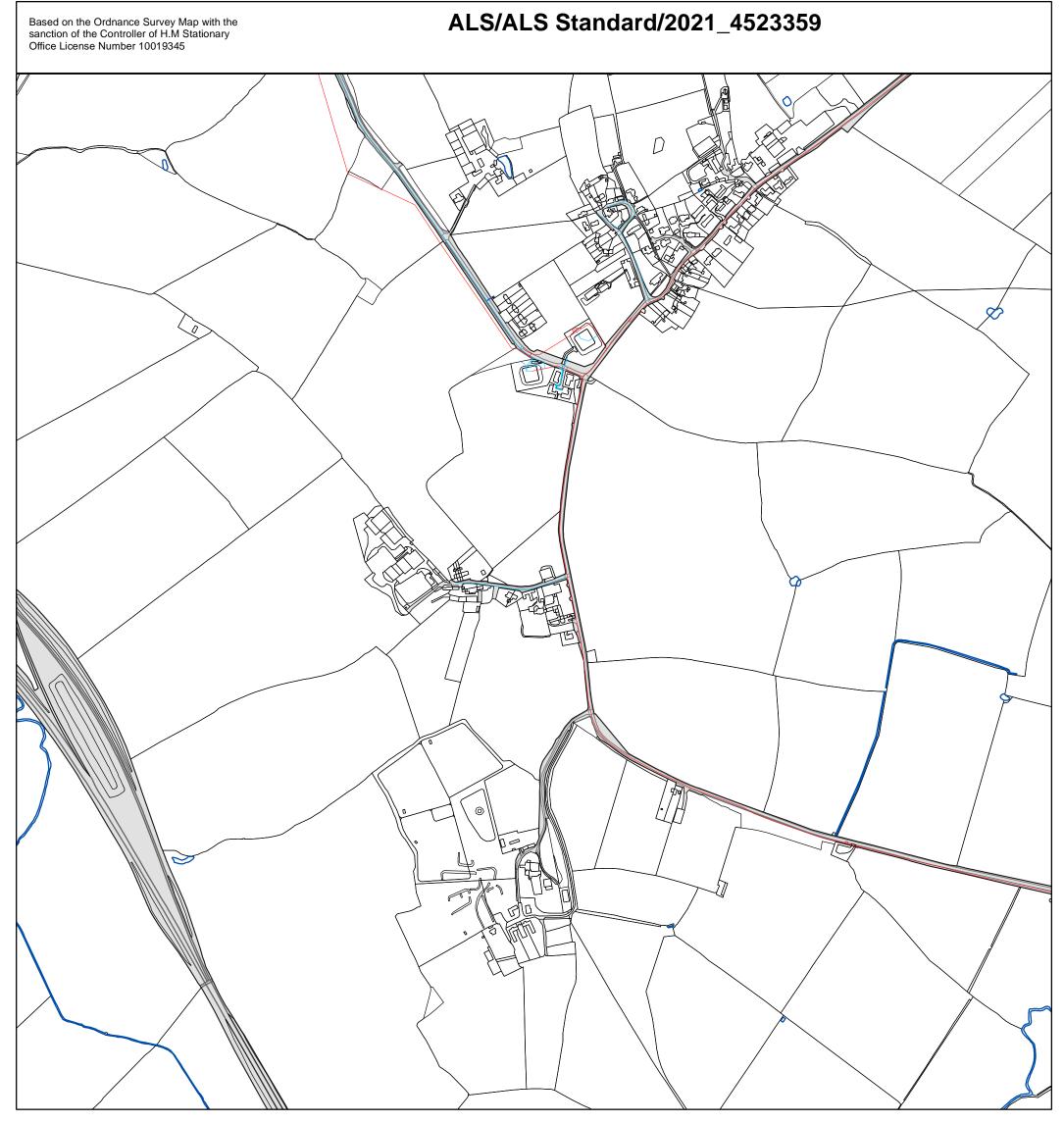

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Searches on 0800 009 4540.

Undefined End


Inlet

 \mathbf{A}

Other Sewer Types (Not Operated or Maintained by Thames Water)

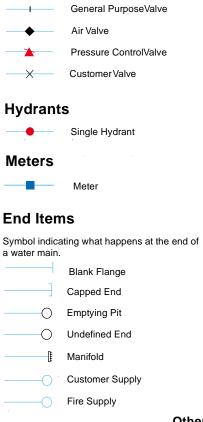

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

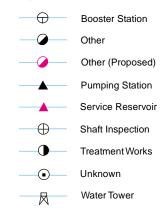
The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified before any works are undertaken. Crown copyright Reserved

Scale:	1:7161	Comment
Width:	2000m	
Printed By:	Rveldhur	
Print Date:	15/10/2021	
Map Centre:	470274,213611	
Grid Reference:	SP7013NW	


ALS Water Map Key

Water Pipes (Operated & Maintained by Thames Water)

- Distribution Main: The most common pipe shown on water maps.
 With few exceptions, domestic connections are only made to
 distribution mains.
- Trunk Main: A main carrying water from a source of supply to a treatment plant or reservoir, or from one treatment plant or reservoir to another. Also a main transferring water in bulk to smaller water mains used for supplying individual customers.
- **Supply Main:** A supply main indicates that the water main is used as a supply for a single property or group of properties.
- STREE
 Fire Main: Where a pipe is used as a fire supply, the word FIRE will be displayed along the pipe.
- **Metered Pipe:** A metered main indicates that the pipe in question supplies water for a single property or group of properties and that quantity of water passing through the pipe is metered even though there may be no meter symbol shown.
- Transmission Tunnel: A very large diameter water pipe. Most tunnels are buried very deep underground. These pipes are not expected to affect the structural integrity of buildings shown on the map provided.
- **Proposed Main:** A main that is still in the planning stages or in the process of being laid. More details of the proposed main and its reference number are generally included near the main.


PIPE DIAMETER	DEPTH BELOW GROUND		
Up to 300mm (12")	900mm (3')		
300mm - 600mm (12" - 24")	1100mm (3' 8")		
600mm and bigger (24" plus)	1200mm (4')		

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0800 009 4540 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Valves

Operational Sites

Other Symbols

Data Logger

Other Water Pipes (Not Operated or Maintained by Thames Water)

Other Water Company Main: Occasionally other water company water pipes may overlap the border of our clean water coverage area. These mains are denoted in purple and in most cases have the owner of the pipe displayed along them.

Private Main: Indiates that the water main in question is not owned by Thames Water. These mains normally have text associated with them indicating the diameter and owner of the pipe.

Terms and Conditions

All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

- 1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
- 2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
- 3. All invoices are strictly due for payment 14 days from due date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service, or will be held to be invalid.
- 4. Thames Water does not accept post-dated cheques-any cheques received will be processed for payment on date of receipt.
- 5. In case of dispute TWUL's terms and conditions shall apply.
- 6. Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
- 7. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
- 8. A charge may be made at the discretion of the company for increased administration costs.

A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 0800 316 9800

If you are unhappy with our service you can speak to your original goods or customer service provider. If you are not satisfied with the response, your complaint will be reviewed by the Customer Services Director. You can write to her at: Thames Water Utilities Ltd. PO Box 492, Swindon, SN38 8TU.

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 0121 345 1000 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4AJ.

Credit Card	BACS Payment	Telephone Banking	Cheque
Call 0800 009 4540 quoting your invoice number starting CBA or ADS / OSS	Account number 90478703 Sort code 60-00-01 A remittance advice must be sent to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW. or email ps.billing@thameswater. co.uk	By calling your bank and quoting: Account number 90478703 Sort code 60-00-01 and your invoice number	Made payable to 'Thames Water Utilities Ltd' Write your Thames Water account number on the back. Send to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW or by DX to 151280 Slough 13

Ways to pay your bill

Thames Water Utilities Ltd Registered in England & Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.

Dr Alexandros Tsavdaris

Kingsbrook House 7 Kingsway Bedford Bedfordshire MK42 9BA

11 November 2021

Pre-planning enquiry: Confirmation of sufficient capacity

Site: BARNS OFF MAIN ROAD, UPPER POLLICOTT, HP18 0HH.

Dear Dr Tsavdaris,

Thank you for providing information on your development.

Proposed site: Housing (5 units) Proposed foul water: Proposed foul water discharge by gravity for 5 units of General Housing to 150mm foul water sewer into manhole MH 3501. Proposed surface water: Proposed surface water discharge at 2.5 l/s for all storm events up to and including 1:100yr+40%CC into 150 foul water manhole 3501.

We have completed the assessment of the foul water flows and surface water run-off based on the information submitted in your application with the purpose of assessing sewerage capacity within the existing Thames Water sewer network.

Foul Water

If your proposals progress in line with the details you've provided, we're pleased to confirm that there will be sufficient sewerage capacity in the adjacent foul water sewer network to serve your development.

This confirmation is valid for 12 months or for the life of any planning approval that this information is used to support, to a maximum of three years.

You'll need to keep us informed of any changes to your design – for example, an increase in the number or density of homes. Such changes could mean there is no longer sufficient capacity.

Surface Water

In accordance with the Building Act 2000 Clause H3.3, positive connection of surface water to a public sewer will only be consented when it can be demonstrated that the hierarchy of disposal methods have been examined and proven to be impracticable. Before we can consider your surface water needs, you'll need written approval from the lead local flood authority that you have followed the sequential approach to the disposal of surface water and considered all practical means.

When developing a site, policy SI 13 of the London Plan states "Development proposals should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible. There should also be a preference for green over grey features, in line with the following drainage hierarchy:"

The disposal hierarchy being:

- 1. rainwater use as a resource (for example rainwater harvesting, blue roofs for irrigation)
- 2. rainwater infiltration to ground at or close to source
- 3. rainwater attenuation in green infrastructure features for gradual release (for example green roofs, rain gardens)
- 4. rainwater discharge direct to a watercourse (unless not appropriate)
- 5. controlled rainwater discharge to a surface water sewer or drain
- 6. controlled rainwater discharge to a combined sewer

Where connection to the public sewerage network is still required to manage surface water flows, we will accept these flows at a discharge rate in line with CIRIA's best practice guide on SuDS or that stated within the sites planning approval.

If the above surface water hierarchy has been followed and if the flows are restricted to a total of 2.0 l/s, then Thames Water would not have any objections to the proposal.

Please see the attached 'Planning your wastewater' leaflet for additional information.

Trade Effluent

Please be advised a Trade Effluent consent will be required to discharge trade effluent into the public sewer. Trade effluent can be best described as anything other than domestic sewage (toilet, bath or sink waste and groundwater) or uncontaminated surface water and roof drainage (rainwater). Applications should be made at https://www.thameswater.co.uk/wholesale/trade-effluent and for enquiries, please contact our trade effluent team by phone on 0203 577 9200 or via email at trade.effluent@thameswater.co.uk.

Diversion

There are existing public sewers crossing the site. New buildings will need to be kept between 3 and 6.5m away from existing sewer depending on the size and depth of the sewer. Alternatively, it may be possible for sewers to be diverted around the new development. If you wish us to review a diversion proposal, please submit this via a Section 185 Diversion application. On some occasions it may be possible to abandon existing public sewers. Please contact us for further information on this process.

Source Protection Zone

The development site boundary falls within a Source Protection Zone for groundwater abstraction. These zones may be at particular risk from polluting activities on or below the land surface. To prevent pollution, the Environment Agency and Thames Water (or other local water undertaker) will use a tiered, risk-based approach to regulate activities that may impact groundwater resources, this may potentially affect your drainage or surface water strategies where deep or infiltration systems are proposed. The applicant is encouraged to read the Environment Agency's approach to groundwater protection (available at *https://www.gov.uk/government/publications/groundwater-protection-position-statements*

and may wish to discuss the full implications for their development with a suitably qualified environmental consultant.

What happens next?

Please make sure you submit your connection application, giving us at least 21 days' notice of the date you wish to make your new connection/s.

If you have any further questions, please contact me on 0800 009 3921.

Yours Sincerely

Christopher Allen Project Engineer Developer Services – Sewer Connections Team Tel: 0800 009 3921 M: 07747644658

Developer.services@thameswater.co.uk

Get advice on making your connection correctly at connectright.org.uk

Clearwater Court, Vastern Road, Reading, RG1 8DB Find us online at <u>developers.thameswater.co.uk</u>