

Photographic Log – RO104

	Client Name:		Site Location: Project No.:								
	Glenny LLP		Chapman Way, Tunbridge Wells	561063							
Photo No. 40	Date September 2023		in the second								
Description: RO104 – Mac 11m bgl.	RO104 – Made Ground arisings at 1m bgl. Photo No. Date										
Photo No.	Date	- 1- TA	A CONTRACT OF THE OWNER								
41	September 2023	- Land	and the second second								
Description: RO104 – Mac from 12.00m	le Ground arisings to 13.50m bgl.										

Photographic Log – RO104

	Client Name:		Site Location:	Project No.:				
	Glenny LLP		Chapman Way, Tunbridge Wells	561063				
Photo No.	Date	12 - 6	とうまた~? 日本法の	13·5m				
42	September 2023	0775		the state of the state of the				
Description:								
RO104 – Mac	le Ground arisings		ACTION AND A DECIMANT					
from 13.50m	to 14.00m bgl.							
		· · · ·		A CARLON				
		13.5m	AND THE REAL	114m				
		6 Past						
			A A A A A A A A A A A A A A A A A A A					
		X X		F BAR AS				
				REL				
		33.8						
Photo No.	Date							
43	September 2023							
Description:								
RO104 – Mac	le Ground arisings			- Englisher				
from 16.50m	to 18.00m bgl.							
		18	A STREET FROM					
		100		And the second second				
				19m				
		IS 5m	A Charge the second sec					
			and the second					
		Call and	2 to 2 12 1 5 17					
			the second second	S. Barrier				
			A CONTRACTOR AND	Stand of				
		1	A State of the sta					

Photographic Log - RO104

Photographic Log – RO104

	Client Name:		Site Location:	Project No.:
	Glenny LLP		Chapman Way, Tunbridge Wells	561063
Photo No. 46	Date September 2023	22.5m	Rolo4	
Description: RO104 – Natu 22.50m to 24	ural arisings from .00m bgl.			24-m2
Photo No. 47	Date September 2023			
Description: RO104 – Natu 24.00m to 25	ural arisings from 5.50m bgl.			

Photographic Log - RO104

Photographic Log – RO104

	onto Eduarioni	Project No.:			
Glenny LLP	Chapman Way, Tunbridge Wells	561063			
Photo No. Date					
50 September 2023	A STATE AND	A MARTINE A			
Description:					
RO104 – Natural arisings from 28.50m to 30.00m bgl.					

Annex C: Exploratory Hole Logs

Key to Exploratory Hole Logs

Composite Materials and Lithology

Legend

000

Code

730

801

802

803

804

805

806

807

808

809

 $\Delta \Delta$

^

Description

Boulders

Mudstone

Siltstone

Sandstone

Limestone or

Dolomite

Chalk

Coal

Breccia

Conglomerate

Fine Grained

Igneous

Legend

In-Situ Testing

Sa	m	pli	ing

Prefix	Туре	Comments	Prefix	Туре	Comments	Le
SPT(S) SPT(C)	Standard Penetration Test	Uncorrected test results at relevant start depth. Hammer	D	Small Disturbed Sample	Nominally 1kg	ſ
	(S) Split Spoon (C) Solid Cone	ID and Energy Ratio reported on log and in relevant AGS fields	В	Bulk Disturbed Sample	Nominally 5kg	
ΗV	Hand Vane Test	Undrained Shear Strength reported in kPa.	LB	Large Bulk Disturbed Sample	25kg to 60kg depending on material type, for compaction related tests	t
PP	Hand Penetrometer Test	Unconfined Compressive Strength reported in kPa	U	Undisturbed sample - thick wall driven tube	For CP, nominally 100mm diameter, 450mm length. For WS, nominally 38mm diameter, 100mm length. Blows to drive tube and recovery found in remarks	V
PID	On-Site Volatile Headspace Testing by Photo Ionization	Screening reported as ppmv. Headspace testing undertaken as per	UT	Undisturbed Sample – Thin wall driven tube	Nominally 100mm diameter, 450mm length. Blows to drive tube and recovery found in remarks	L
PPM	Detector	contract documents Permeability (k) reported in m/s	Ρ	Pushed piston sample	Nominally 100mm diameter, 1000mm length. Recovery found in remarks	- ,
	Test	Please refer to	С	Core sample	-	-
		individual test sheets for data and methodology	AMAL	Amalgamated Sample	Details of samples used noted in remarks as well as relevant AGS field	D th
Rota	ry Boreholes:		W	Water	Not for environmental	
T.C.R.	-Total Core Recove	ery %	50	Sample	testing purposes	All
S.C.R.	-Solid Core Recove	ery %	E2	sample	where appropriate	ger
R.Q.D. F.I	-Rock Quality Desi Fracture Index	ignation %	EW	Environmental water sample	Multiple containers used where appropriate	EN

Code Description Medium Grained 810 Igneous Coarse Grained 811 Igneous Fine Grained 812 Metamorphic Medium Grained 813 Metamorphic Coarse Grained 814 Metamorphic 815 Pyroclastic 816 Gypsum or Rocksalt Shale 817 998 No recovery 999 Void

Backfil	I	
Legend	Code	Description
	901	Sand Filter
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	902 908	Gravel Filter Ballast
	903	Bentonite
	904	Grout
	905	Arisings
B. 0. 1	906 912	Concrete Paving Slab
	907	Asphalt
	999	Void

NB: Composite soil types are represented by combined legends. Each type will have its own code within the AGS data.

Installations

Annex D: Field Data

MONITORING WELL COMMENTS

Extra Notes: Monitoring equipment pump failure at 30s, due to negative pressure within standpipe.

Headworks: Ground Level Valve in rubber bung is clear and clean: Yes Area surrounding borehole is: Dry

Exper	ts in Contin	uous M	onitoring	g	TIME	Gas Flow				Gas Readings			
					(seconds)	Litres/hour	CH4 (% v/v)	CO ₂ (% v/v)	O ₂ (% v/v)	BAL	CO (ppmv)	H ₂ S (ppmv)	TVOC (ppmv)
	PRO	JECT DETAILS			Fresh Air	0.0	0.0	0.0	20.8	79.2	<1	<1	<0.1
Project ID	GGS346	5	Date	11.10.23	Initial	97.8	16.3	2.2	4.8	76.7	<1	<1	<0.1
Site	Chapman Way, Tun	bridge Wells	Time	10:30	30	45.0	16.6	15.9	0.6	66.9	<1	<1	<0.1
Specialist		AT			60	0.9							
					120	0.0							
EQUIPMENT					180	0.0							
	Model	Serial Number			240								
GasD	ata GFM 436		13739		300								
	TDL500		4520413		360								
	MiniRae		595-005336		420								
				_	480								
PRESS	SURE DETAILS	Start:	End:		540								
Atm	ospheric Pressure (mb)	1014	1014		600								
	Borehole Pressure (pa)	2382	-1342		Fresh Air		0.0	0.0	20.9	79.1	<1	<1	<0.1
	BORE	HOLE DETAILS						STEADY STAT	E FINAL RESULTS				
	Borehole ID		R101			Flow (l/hr)	CH4 (% v/v)	CO ₂ (% v/v)	O ₂ (% v/v)	BAL	CO (ppmv)	H ₂ S (ppmv)	TVOC (ppmv)
Groun	dwater Level (mbgl)	l (mbgl) 0.97			Steady state time (s)	180	N/A	N/A	N/A	N/A	30	30	30
D	epth to base (mbgl)		7.65		Steady state value	0.0	N/A	N/A	N/A	N/A	<1	<1	<0.1
					Peak Value (O ₂ Low)	97.8	16.6	15.9	0.6	76.7	0	0	0.0

KEY: <0.1 = Below instrument limit of detection, NM = Not Measured, N/A = Not Applicable, %v/v = Percentage volume by volume, ppmv = parts per million by volume, mb = milibar, ltr/hr = litres per hour, mbgl = metres below ground level, OS = off scale of instrument © GGS Ltd 2023

MONITORING WELL COMMENTS

Extra Notes: Monitoring equipment pump failure at 360s, due to negative pressure within standpipe.

Headworks: Ground Level Valve in rubber bung is clear and clean: Yes Area surrounding borehole is: Dry

Exper	rts in Contin	uous M	onitoring	g	TIME	Gas Flow				Gas Readings			
					(seconds)	Litres/hour	CH4 (% v/v)	CO ₂ (% v/v)	O ₂ (% v/v)	BAL	CO (ppmv)	H ₂ S (ppmv)	TVOC (ppmv)
	PRO	JECT DETAILS			Fresh Air	0.0	0.0	0.0	20.9	79.1	<1	<1	<0.1
Project ID	GGS346	5	Date	11.10.23	Initial	64.6	99.2	2.0	5.2	-6.4	<1	<1	<0.1
Site	Chapman Way, Tun	bridge Wells	Time	11:00	30	65.0	92.3	3.4	2.5	1.8	<1	<1	<0.1
Specialist		AT			60	58.6	96.0	3.9	0.5	-0.4	<1	<1	<0.1
					120	37.2	95.7	3.8	0.8	-0.3	<1	<1	<0.1
	E	QUIPMENT			180	26.1	90.5	3.7	0.4	5.4	<1	<1	<0.1
	Model		Serial Number		240	20.7	84.2	3.7	1.3	10.8	<1	<1	<0.1
Gast	GasData GFM 436 13739				300	17.2	87.2	4.0	0.4	8.4	<1	<1	<0.1
	TDL500	4520413			360	14.4	87.1	4.1	0.1	8.7	<1	<1	<0.1
	MiniRae		595-005336		420	15.6							
					480	11.2							
PRES	SURE DETAILS	Start:	End:		540	9.0							
Atm	ospheric Pressure (mb)	1014	1014		600	5.2							
E	Borehole Pressure (mb)	1272	-76]	Fresh Air	0.0	0.0	0.0	20.8	79.2	<1	<1	<0.1
	BORE	HOLE DETAILS						STEADY STATI	E FINAL RESULTS				
	Borehole ID		R102			Flow (l/hr)	CH ₄ (% v/v)	CO ₂ (% v/v)	O ₂ (% v/v)	BAL	CO (ppmv)	H ₂ S (ppmv)	TVOC (ppmv)
Groun	Groundwater Level (mbgl) 2.87				Steady state time (s)	600	300	300	360	300	30	30	30
E	epth to base (mbgl)		15.80		Steady state value	5.2	87.2	4.0	0.1	8.7	<1	<1	<0.1
					Peak Value (O ₂ Low)	65.0	99.2	4.1	0.1	10.8	0	0	0.0

KEY: <0.1 = Below instrument limit of detection, NM = Not Measured, N/A = Not Applicable, %v/v = Percentage volume by volume, ppmv = parts per million by volume, mb = milibar, ltr/hr = litres per hour, mbgl = metres below ground level, OS = off scale of instrument © GGS Ltd 2023

MONITORING WELL COMMENTS

Headworks: Ground Level Valve in rubber bung is clear and clean: Yes Area surrounding borehole is: Dry Extra Notes: Flow did not stabilise. Monitoring equipment pump failure at 60s, due to negative pressure within standpipe. Well has apparently, collapsed.

Exper	ts in Contin	uous M	onitoring	g	TIME	Gas Flow				Gas Readings			
					(seconds)	Litres/hour	CH ₄ (% v/v)	CO ₂ (% v/v)	O ₂ (% v/v)	BAL	CO (ppmv)	H ₂ S (ppmv)	TVOC (ppmv)
	PRO	JECT DETAILS			Fresh Air	0.0	0.0	0.0	20.9	79.1	<1	<1	<0.1
Project ID	GGS346	5	Date	11.10.23	Initial	52.0	38.7	2.3	15.6	43.4	<1	<1	<0.1
Site	Chapman Way, Tun	bridge Wells	Time	10:16	30	8.7	61.0	0.5	10.4	28.1	<1	<1	<0.1
Specialist		AT			60	0.1	60.0	2.1	5.7	32.2	<1	<1	<0.1
	•				120	1.0							
	EC	DUIPMENT			180	0.6							
	Model	Serial Number			240	2.5							
GasD	oata GFM 436	13739			300	1.5							
	TDL500		4520413		360	1.2							
	MiniRae		595-005336		420	0.9							
					480	2.1							
PRESS	SURE DETAILS	Start:	End:		540								
Atm	ospheric Pressure (mb)	1014	1014		600								
E	Borehole Pressure (mb)	52	-213		Fresh Air		0.0	0.0	20.7	79.3	<1	<1	<0.1
	BORE	HOLE DETAILS		_				STEADY STAT	E FINAL RESULTS				
	Borehole ID		R103			Flow (l/hr)	CH ₄ (% v/v)	CO ₂ (% v/v)	O ₂ (% v/v)	BAL	CO (ppmv)	H ₂ S (ppmv)	TVOC (ppmv)
Groun	dwater Level (mbgl)	1.00			Steady state time (s)	N/A	N/A	N/A	N/A	N/A	30	30	30
D	epth to base (mbgl)		11.73		Steady state value	N/A	N/A	N/A	N/A	N/A	<1	<1	<0.1
					Peak Value (O ₂ Low)	52.0	61.0	2.3	5.7	43.4	0	0	0.0

KEY: <0.1= Below instrument limit of detection, NM = Not Measured, N/A = Not Applicable, %v/v = Percentage volume by volume, ppmv = parts per million by volume, mb = milibar, ltr/hr = litres per hour, mbgl = metres below ground level, OS = off scale of instrument © GGS Ltd 2023

MONITORING WELL COMMENTS

Headworks: Ground Level Valve in rubber bung is clear and clean: Yes Area surrounding borehole is: Dry

Exper	ts in Contin	uous M	onitorin	g	TIME	Gas Flow				Gas Readings			
					(seconds)	Litres/hour	CH4 (% v/v)	CO ₂ (% v/v)	O ₂ (% v/v)	BAL	CO (ppmv)	H ₂ S (ppmv)	TVOC (ppmv)
	PRO	JECT DETAILS			Fresh Air	0.0	0.0	0.0	20.9	79.1	<1	<1	<0.1
Project ID	GGS346	5	Date	11.10.23	Initial	0.0	3.1	1.9	7.0		<1	<1	<0.1
Site	Chapman Way, Tun	, Tunbridge Wells Time 09:42			30	0.0	24.9	2.0	5.8		<1	<1	<0.1
Specialist		AT			60		31.6	2.0	5.7		<1	<1	<0.1
					120		31.6	2.0	6.1		<1	<1	<0.1
EQUIPMENT					180		46.4	2.0	6.3		<1	<1	<0.1
	Model Serial Number				240		45.9	2.0	6.5		<1	<1	<0.1
GasD	ata GFM 436	FM 436 13739			300		44.7	2.0	6.8		<1	<1	<0.1
	TDL500	4520413			360		44.2	2.0	6.9		<1	<1	<0.1
	MiniRae		595-005336		420		43.9	1.9	7.1		<1	<1	<0.1
					480		42.9	1.9	7.3		<1	<1	<0.1
PRESS	SURE DETAILS	Start:	End:		540		41.4	1.9	7.8		<1	<1	<0.1
Atm	ospheric Pressure (mb)	1014	1014		600		41.1	1.9	7.7		<1	<1	<0.1
E	Borehole Pressure (mb)	0	0		Fresh Air		0.0	0.0	21.0	79.0	<1	<1	<0.1
	BORE	HOLE DETAILS						STEADY STATI	E FINAL RESULTS				
	Borehole ID R104					Flow (I/hr)	CH ₄ (% v/v)	CO ₂ (% v/v)	O ₂ (% v/v)	BAL	CO (ppmv)	H ₂ S (ppmv)	TVOC (ppmv)
Groun	Groundwater Level (mbgl) 3.14				Steady state time (s)	30	30	30	N/A		30	30	30
D	epth to base (mbgl)		4.52		Steady state value	0.0	N/A	2.0	N/A	N/A	<1	<1	<0.1
					Peak Value (O ₂ Low)	0.0	46.4	2.0	5.7	0.0	0	0	0.0

KEY: <0.1= Below instrument limit of detection, NM = Not Measured, N/A = Not Applicable, %v/v = Percentage volume by volume, ppmv = parts per million by volume, mb = milibar, ltr/hr = litres per hour, mbgl = metres below ground level, OS = off scale of instrument © GGS Ltd 2023

Ground Gas and Groundwater Monitoring Record Sheet

JOB DETAILS: Client: Site: Date:	Chapma TRC Chapma 20.9.202	Chapman Way, Tunbridge Wells RC Chapman Way, Tunbridge Wells 0.9.2023							Quote Visit N Opera	No: No: No:	56106 1 Tim Si	3 of nger 9	6	6 Project Manager: Harry McAllister						
					GAS (CONCE	NTRAT	TIONS					VOL	ATILES		F	LOW DATA		WELL A	ND WAT
Monitoring Point	Methan	e (%v/v)	%	LEL	Carbor (%	n dioxide ov/v)	Ca monoxid	rbon de (ppmv)	Hydi sulphid	rogen e (ppmv)	Oxyge	n (%v/v)	PID Peak (ppm)	Product thickness (mm)	Flow ra	ate (l/hr)	Differential borehole	Time for flow to equalise	Water level (mbgl)	Depth o
20101	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	Min.	Steady			Peak	Steady	Pressure (Pa)	(secs)		
RO101	2.7	2.7			11.7	11.7	10	5	1	1	0.3	0.3			-10.3	0.0	-0.26	300	0.80	9
R0102	99.3 87.4	86.2			2.3	2.3	0	0	1	1	0.1	0.0			-0.0	0.0	-0.28	300	0.80	14
RO104	34.1	34.1			1.8	1.8	2	2	1	1	6.7	6.7			-0.2	0.0	-0.07	300	2.60	4
Max	99.5	99.5	ND	ND	11.7	11.7	10	5	2	1	6.7	6.7	NA	NA	-0.2	0.0	0	300	3.00	15
Min	2.7	2.7	0.0	0.0	1.8	1.8	0	0	1	1	0.1	0.0	NA	NA	-14.1	-8.8	-0.3	300	0.80	4
METEOROLOGI State of ground: Wind: Cloud cover: Precipitation: Time monitoring p Barometric press Pressure trend (D Source: Air Temperature (CAL AND Derformed ure (mbar Daily): (Deg. C):	Not reco Non appl SITE IN	rded licable		: Dry Calm None None		x 11:22 993 x 18	(Select c Moist Light Slight Slight Start Start Falling Before	orrect bo	x with X c	or enter d Wet Moder Cloudy Moder	ata, as ar ate / ate /	x x 13:30 992 18	Snow Strong Overcast Heavy End End Rising	t		Frozen			
INSTRUMENTAT Ground gas mete Gas Range: Gas Flow range: Differential Press Date of last calib Date of next calib Ambient air chec	FION TEC er: ure: bration: bration:	HNICAL G50777 CH₄ +100/-₹ (+/-) 10 CH₄	- SPEC 26 0 - 100 50 l/hou 000 Pa 12/01/ 12/07/	2023 2023	⁻IONS: CO₂]CO₂	0 - 100)%	O ₂]O ₂	0 - 259	%]									

	Comments
h of well (m)	
9.10	Dentonite sear has railed. After 50-40 bails the water lever did hot decreased at all
15.60	
14.10	
4.50	
15.60	
4.50	

JOB DET Client: Site: Date:	Chapman TRC Chapman 27.9.23	Way, Tunbr Way, Tunbr	idge Wells idge Wells						Quote No: Visit No: Operator:	:	561063 2 B Welburn 9	of	6	Project Ma	anager:		Harry McA	llister			
					GA	AS CONCE	ENTRATIO	NS					VOLA	TILES		FLOW	DATA		ELL AND W	ATER DA	Comments
Monitoring Point	Methan	e (%v/v)	%L	EL	Carbon dio	xide (%v/v)	Carbon mone	oxide (ppmv)	Hydrogen (ppr	sulphide mv)	Oxyger	(%v/v)	PID Peak (ppm)	Product thickness (mm)	Flow ra	ite (I/hr)	Differential borehole Pressure	Time for flow to equalise	Water level (mbgl)	Depth of well (m)	
	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	Min.	Steady			Peak	Steady	(Pa)	(secs)	0.00	0.07	
R0101	8.9	8.9			11.4	11.4	8	8	1	1	1.2	1.2	0.3			-1.5	37.85	120	0.92	8.37	
R0102	94.3	94.2			3.5	3.5	3	3	1	1	0.3	0.2	0.2			-2.2	/8.41	120	3.08	12.02	hontonight cool gono
R0103	00.3 30.2	03.7 30.2			2.4	2.3		2	1	1	0.3	0.3 5.1	0.1			1.0	0.00	120	2.66	15.27	bentonight sear gone
K0104	J7.2	37.2			1.0	1.0	4	4	'	1	5.1	5.1	0.5			0	0.09	120	2.00	4.30	
Max	94.3	94.2	ND	ND	11.4	11.4	8	8	1	1	5.1	5.1	NA	NA	ND	1.8	78	120	3.68	15.82	
Min	8.9	8.9	0.0	0.0	1.6	1.6	2	2	1	1	0.3	0.2	NA	NA	0.0	-2.2	0.1	120	0.92	4.56	
METEOR(State of gr Wind: Cloud cove	NR - I NA - DLOGICAL ound: er:	Not recorded Non applicabl	INFORM4	XTION: X X	Dry Calm None			(Select corre Moist Light Slight	ect box with X c	or enter data	, as applicable Wet Moderate Cloudy)	 X	Snow Strong Overcast		[Frozen				
Precipitation Time moni Barometrico Pressure tra Source: Air Tempe	on: toring perfo pressure (rend (Daily rature (Dec	ormed: (mbar):): g. C):		X	None		10:00 1008	Slight Start Start Falling Before	[x	Moderate		10:40 1003	Heavy End End Rising After							
INSTRUM Ground ga Gas Rang Gas Flow I Differential Date of Ia Date of ne	ENTATION as meter: e: range: I Pressure: st calibrati ext calibrati	N TECHNIC G507726 CH4 +100/-50 I// (+/-) 1000 I Ion: tion:	AL SPECI 0 - 100% hour Pa 12/01/2023 12/07/2023		S: CO ₂	0 - 100%		0 ₂	0 - 25%		1			-							
	III CHECK.	5114 [L		02	L		1										

JOB DET Client: Site: Date:	Chapman TRC Chapman 05.10.23	Way, Tunbi Way, Tunbi	ridge Wells ridge Wells						Quote No: Visit No: Operator:	:	561063 3 M Dorfling 9	of	6	Project Ma	anager:		Harry McA	llister			
					GA	AS CONCE	ENTRATIO	NS					VOLA	TILES		FLOW	DATA		ELL AND V	ATER DA	Comments
Monitoring Point	Methane	e (%v/v)	%L	EL	Carbon dio	xide (%v/v)	Carbon mon	oxide (ppmv)	Hydrogen (ppr	sulphide mv)	Oxyger	n (%v/v)	PID Peak (ppm)	Product thickness (mm)	Flow ra	te (l/hr)	Differential borehole Pressure	Time for flow to equalise	Water level (mbgl)	Depth of well (m)	
PO101	Peak 7	Steady 7	Peak	Steady	Peak	Steady	Peak 2	Steady 2	Peak	Steady	Min.	Steady 0.5	0	ND	Peak	Steady	(Pa)	(secs)	1.03	7.88	
R0101	92.2	92.2	NR	NR	3.6	3.6	2	2	0	0	0.3	0.3	0	ND	14.1	14.1	67.18	120	3.22	9.75	
RO103	80.3	80.3	NR	NR	3.6	3.6	2	2	0	0	0.2	0.2	0	ND	0.1	0.1	8.19	120	1.05	11.96	bentonight seal gone
RO104	40.7	40.7	NR	NR	2	2	3	3	0	0	5.7	5.7	0	ND	0.1	0.1	0	120	3.13	4.55	
Max	92.2	92.2	ND	ND	14.8	14.8	3	3	0	0	5.7	5.7	NA	NA	14.1	14.1	67	240	3.22	11.96	
METEORO State of gr Wind: Cloud cove Precipitatio Time moni Barometric Pressure to Source: Air Tempe	NA - DLOGICAL bund: er: nn: toring perfor pressure (pred (Daily) rature (Deg	Non applicab AND SITE prmed: (mbar):):):):	INFORMA	XTION: X X	Dry Calm None None		1017	(Select corre Moist Light Slight Start Start Falling Before	ect box with X o	x x x x	as applicable Wet Moderate Cloudy Moderate Steady)	1017	Snow Strong Overcast Heavy End End Rising After			Frozen				
Ground ga Gas Rang Gas Flow n Differential Date of la Date of ne Ambient a	en ration is meter: a: ange: Pressure: st calibrati ext calibrat ir check:	G507726 CH ₄ +100/-50 l/ (+/-) 1000 l on: ilon: CH ₄	AL SPECI 0 - 100% hour Pa 12/01/2023 12/07/2023 0.		⊳: CO₂ CO₂	0 - 100%	.0	O ₂	0 - 25%	.1]										

JOB DET Client: Site: Date:	Chapman TRC Chapman 11.10.23	Way, Tunt Way, Tunt	oridge Well oridge Well	s					Quote No Visit No: Operator:	:	561063 4 GGS	of	6	Project M	anager:		Harry McA	llister			
					G	AS CONCI	ENTRATIO	NS			,		VOL/	ATILES		FLOW D	ATA		ELL AND V	NATER DA	Comments
Monitoring Point	Methan	ne (%v/v)	%	LEL	Carbon dic	oxide (%v/v)	Carbon mor	noxide (ppmv)	Hydrogen su	lphide (ppmv)	Oxyge	n (%v/v)	PID Peak (ppm)	Product thickness (mm)	Flow rate ([l/hr)	Differential borehole Pressure	Time for flow to equalise	Water level (mbgl)	Depth of well (m)	
	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	Min.	Steady			Peak	Steady	(Pa)	(secs)	-		
RO101	16.6	N/A	NR	NR	15.9	N/A	<1	<1	<1	<1	0.6	N/A	NR	ND	0.1	0.1		180	0.97	7.65	Monitoring equipment pump failure at 30s, due to negative pressure within standpipe.
RO102	96	87.2	NR	NR	4.1	4	<1	<1	<1	<1	0.1	0.1	NR	ND	65.0	5.2		600	2.87	15.8	Monitoring equipment pump failure at 30s, due to negative pressure within standpipe.
RO103	61	N/A	NR	NR	2.3	N/A	<1	<1	<1	<1	5.7	N/A	NR	ND	52.0	0.1	52	60	1	11.73	Flow did not stabilise. Monitoring equipment pump failure at 60s, due to negative pressure within standpipe. Well has apparently, collapsed.
RO104	46.4	N/A	NR	NR	2	2	<1	<1	<1	<1	5.7	N/A	NR	ND	<0.1	<0.1			3.14	4.52	
Max	96.0	87.2	ND	ND	15.9	4.0	ND	ND	ND	ND	5.7	0.1	NA	NA	65.0	5.2	52	600	3.14	15.80	
METEOR State of g Wind: Cloud cov Precipitat Time mor Barometr Pressure Source: Air Temp	ND - NR - NA - OLOGICAL round: rer: ion: iitoring perfe ic pressure trend (Daily erature (Deg	Not detected Not recorded Non applicate AND SITE ormed: (mbar): (): g. C):	i J E INFORM		Dry Calm None None		1014	Moist Light Slight Slapht Start Start Falling Before			Wet Moderate Cloudy Moderate Steady		1014	Snow Strong Overcast Heavy End Rising After			Frozen				
INSTRUM Ground g Gas Rang Gas Flow Differentia Date of la	IENTATION las meter: ge: range: al Pressure: ast calibrat	TECHNIC G507726 CH ₄ +100/-50 I : (+/-) 1000	0 - 100% //hour Pa	IFICATION	S: CO2	0 - 100%		O ₂	0 - 25%												

Date of next calibration:

Amblent air check: CH₄ 0.0 CO₂ 0.0 O₂

JOB DET. Client: Site: Date:	Chapman TRC Chapman 17.10.23	Way, Tunb Way, Tunb	ridge Wells ridge Wells	5					Quote No Visit No: Operator:	:	561063 5 M Dorfling 9	of	6	Project M	anager:		Harry McA	Illister			
					G	AS CONCI	ENTRATIO	NS					VOLA	TILES		FLOW	/ DATA		ELL AND V	ATER DA	Comments
Monitoring Point	Methan	e (%v/v)	%	.EL	Carbon dic	xide (%v/v)	Carbon mon	oxide (ppmv)	Hydrogen su	lphide (ppmv)	Oxyge	n (%v/v)	PID Peak (ppm)	Product thickness (mm)	Flow ra	ate (I/hr)	Differential borehole Pressure	Time for flow to equalise	Water level (mbal)	Depth of well (m)	
	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	Min.	Steady	-		Peak	Steady	(Pa)	(secs)	· · · · · · · · · · · · · · · · · · ·		
RO101	20.3	20.3	NR	NR	14.9	14.9	3	3	0	0	1.3	1.3	0	ND	0.3	0.3	32.31	60	0.96		
RO102	93	93	NR	NR	3.7	3.7	2	2	0	0	0.3	0.3	0	ND	15.7	15.7	60.12	60	3.18	Gas bub	bling out of well

0.2

3.4

3.4

0.2

0.2

3.4

3.4

0.2

0

0

NA

NA

ND

ND

NA

NA

9.4

0.2

15.7

0.2

9.4

0.2

15.7

0.2

56.38

0

60

0.0

180

60

180

60

1.27

2.5

3.18

0.96

NR

0.00

Well is repaired from last visit.

0

0

0

0

81.8 36.3 36.3 NR 93.0 93.0 ND 20.3 0.0

NR

NR

NR

ND

0.0

2.6

2.1

14.9

2.1

2.6

2.1

14.9

2.1

3

2

3

2

20.3 ND - Not detected

81.8

RO103

RO104

Max

Min

NR - Not recorded

NA - Non applicable

METEOROLOGICAL AND SITE INFORMATION:

3

2

3

2

0

0

0

0

Ground gus motor.	0007720					
Gas Range:	CH₄	0 - 100%	CO₂	0 - 100%	O2	0 - 25%

	GAS CONCENTRATIONS				VOLAT	ILES		FLOW DATA	ELL AND WATER DAI Comments
			9						
Date:	23.10.23	Operator:	M Dorfling		F	Project Ma	anager:	Harry McAllister	
Site:	Chapman Way, Tunbridge Wells	Visit No:	6	of	6				
Client:	TRC	Quote No:	561063						
JOB DET	Chapman Way, Tunbridge Wells								

					9	AS CONCE		NO					VOLA	TILES		FLOW	DATA			ATER DA	Comments
Monitoring Point	Methane	e (%v/v)	%	LEL	Carbon die	oxide (%v/v)	Carbon mor	noxide (ppmv)	Hydroger (pp	n sulphide omv)	Oxyger	ו (%v/v)	PID Peak (ppm)	Product thickness (mm)	Flow ra	ite (l/hr)	Differential borehole Pressure	Time for flow to equalise	Water level (mbgl)	Depth of well (m)	
	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	Min.	Steady			Peak	Steady	(Pa)	(secs)	,	. ,	
RO101	32.1	32.1	NR	NR	8.3	8.3	2	2	0	0	2.1	2.1	0	ND	0.1	0.1	52.92	60	1.01		
RO102	93.3	93.3	NR	NR	3.7	3.7	1	1	0	0	0.2	0.2	0	ND	20.4	20.4	94.33	60	3.53		
RO103	82.7	82.7	NR	NR	2.9	2.9	2	2	1	1	0.2	0.2	0	ND	8.7	8.7	45.55	120	1.39		
RO104	43.4	43.4	NR	NR	2	2	2	2	0	0	3.9	3.9	0	ND	0.1	0.1	-2.49	60	1.68		
Max	93.3	93.3	ND	ND	8.3	8.3	2	2	1	1	3.9	3.9	NA	NA	20.4	20.4	94	120	3.53	NR	
Min	32.1	32.1	0.0	0.0	2.0	2.0	1	1	0	0	0.2	0.2	NA	NA	0.1	0.1	-2.5	60	1.01	0.00	
MR - Non applicable METEOROLOGICAL AND SITE INFORMATION: Select correct box with X or enter data, as applicable) State of ground: Dry Moist X Wet Snow Frozen Vind: Calm X Light Moderate Strong Cloud cover: None X Slight Cloudy Overcast Precipitation: X None Slight Heavy Time monitoring performed: Start End Barometric pressure (mbar): 998 Start 998 Pressure trend (Daily): Falling X Steady Source: 12 Before After																					
Gas Range	s meter:	G507726	0 - 100%	FICATION	S: CO₂	0 - 100%		O ₂	0 - 25%												

TRC -	In situ	CBR by D	OCP Pro	obe		
Number of Blows	Penetration Per Blow (mm)	Depth from GL (mm)	Log P	2.48-1.057 Log P	CBR Value (%)	Remarks: Tests commenced from ground level Zero reading = start depth below ground surface Zero reading at start of test: 150 (mm)
IRC - Number of Blows 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	In Situ Penetration Per Blow (mm) 150 10 10 10 10 10 5 6	CBR Dy L Depth from GL (mm) 150 160 170 180 188 192 200 205 210 220 225 230 235 240 245 248 251 254 257 260 263 266 269 272 277 282 287 292 297 303 309 315 321 327 333 346 359 372 385 398 411 424 430	Log P 1.0 1.0 1.0 1.0 0.9 0.6 0.9 0.7 0.7 0.7 0.7 0.7 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	2.48-1.057 Log P 1.423 1.423 1.423 1.423 1.525 1.844 1.525 1.741 1	CBR Value (%) 26.5 26.5 26.5 33.5 69.8 33.5 55.1 55.1 55.1 55.1 55.1 55.1 55.1	Remarks: Tests commenced from ground level Zero reading at start of test: 150 (mm)
						500
Remarks: I Project Nu Project: Ch	Retusal at 43 Imber: 5610 Napman Way	30mm 63 / Tunbridge Well	S			Date: 07-Nov Reference: DCP 7

TRC -	In situ	CBR by D	OCP Pro	obe		
Number of Blows	Penetration Per Blow (mm)	Depth from GL (mm)	Log P	2.48-1.057 Log P	CBR Value (%)	Remarks: Tests commenced from ground level Zero reading = start depth below ground surface Zero reading at start of test: 160 (mm)
$\begin{array}{c} 0\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 12\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 34\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 53\\ 53\\ 53\\ 53\\ 53\\ 53\\ 53\\ 53\\ 53$	(1111) 160 174 10 4 6 2 7 2 3 8 4 2 6 2 5 5 5 5 5 5 5 5 5 5	160 334 344 344 354 356 363 365 368 376 380 382 388 390 395 400 405 410 415 421 427 433 439 445 448 451 454 457 460 463 466 469 472 475 478 481 484 487 491 495 499 503 507 511 515 519 523 527 531 535 539 543 547 551 555 559 563 567 571 575	$\begin{array}{c} 2.2\\ 1.0\\ 0.6\\ 0.8\\ 0.3\\ 0.8\\ 0.3\\ 0.5\\ 0.9\\ 0.6\\ 0.3\\ 0.8\\ 0.3\\ 0.7\\ 0.7\\ 0.7\\ 0.7\\ 0.7\\ 0.7\\ 0.7\\ 0.7$	0.112 1.423 1.844 1.657 2.162 1.587 2.162 1.976 1.525 1.844 2.162 1.657 2.162 1.741 1.976 1.844 1.	$\begin{array}{c} 1.3\\ 26.5\\ 69.8\\ 45.4\\ 145.1\\ 38.6\\ 145.1\\ 94.6\\ 33.5\\ 69.8\\ 145.1\\ 45.4\\ 145.1\\ 55.1\\ 55.1\\ 55.1\\ 55.1\\ 55.1\\ 55.1\\ 55.1\\ 55.1\\ 55.1\\ 55.1\\ 55.1\\ 45.4\\ 45.4\\ 45.4\\ 45.4\\ 45.4\\ 45.4\\ 45.4\\ 45.4\\ 94.6\\ 94$	Zero reading at start of test: 160 (mm) Estimated CBR Value (%) GL = 0 0 0 0 0 0 0 0
Remarks: F Project Nu Project: Ch	Refusal at 57 mber: 5610 apman Way	'5mm 63 / Tunbridge Well	s			Date: 07-Nov Reference: DCP 1

TRC -	In situ	CBR by D	CP Pro	obe						
Number of Blows	Penetration Per Blow (mm)	Depth from GL (mm)	Log P	2.48-1.057 Log P	CBR Value (%)	Rema Zero Zero	arks: Tests co reading = sta reading at s	ommenced fro art depth belov tart of test:	m ground le w ground si 216	evel urface (mm)
0 1	216 220	216 436	2.3	0.004	1.0		Ŭ	Estimated CBR	alue (%)	
1	2	438 442	0.3	2.162	145.1 69.8	. 0	100	200	300	400
1	1	443	0.0	2.480	302.0	GL ₀ –				
1	2	445	0.3	2.162	145.1					
1	1	446	0.0	2.480	302.0					
1	3	449	0.5	1.976	94.6					
1	2	451	0.3	2.162	145.1					
1	5	450	0.7	1.741	55.1 145.1	100 +				
1	2	458	0.5	1 976	94.6					
1	3	464	0.5	1.976	94.6					
1	6	470	0.8	1.657	45.4					
1	3	473	0.5	1.976	94.6					
1	3	476	0.5	1.976	94.6	200 +				
1	1	477	0.0	2.480	302.0					
1	4	481	0.6	1.844	69.8 FF 1					
1	C C	480	0.7	1.741	50.1 60.8					
1	6	496	0.8	1.644	45.4	000				
1	4	500	0.6	1.844	69.8	300 +				
1	3	503	0.5	1.976	94.6					
1	2	505	0.3	2.162	145.1	<u> </u>				
1	5	510	0.7	1.741	55.1	E E				
1	8	518	0.9	1.525	33.5	5 400				
1	10	528	1.0	1.423	26.5					
1	18	540	1.3	1.153	14.Z			-	•	
1	2	553	0.7	2 162	55.1 145.1					
1	3	556	0.5	1.976	94.6			-		
1	2	558	0.3	2.162	145.1	500 -		-		
1	1	559	0.0	2.480	302.0	000	***			
1	3	562	0.5	1.976	94.6	2	•			
1	4	566	0.6	1.844	69.8			+		
1	3	569	0.5	1.976	94.6			-+		
1	2	571	0.3	2.102	145.1	600 -	•			
1	6	580	0.5	1.570	45.0 45.4					
1	4	584	0.6	1.844	69.8					
-										
						700				
Domortic		1							Data	07 No.
Remarks: I	verusal at 58	54MM							Date:	U/-INOV
Project Nu	mber: 5610	63							Referenc	e: DCP 4
Project: Ch	hapman Way	/ Tunbridge Well	S							

TRC -	In situ	CBR by D)CP Pro	be		
Number of Blows	Penetration Per Blow (mm)	Depth from GL (mm)	Log P	2.48-1.057 Log P	CBR Value (%)	Remarks: Tests commenced from ground level Zero reading = start depth below ground surface Zero reading at start of test: 95 (mm)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 30 31 32 33 34 35 36 37 38 39 40 41 42 42 52 26 27 28 29 30 31 32 33 34 45 56 27 28 29 30 31 32 33 34 45 56 26 27 28 29 30 31 32 33 34 45 56 26 27 28 29 30 31 32 33 34 45 56 26 27 28 29 30 31 32 33 34 45 56 26 27 28 29 30 31 32 33 34 45 56 26 27 28 29 30 31 32 33 34 45 56 36 37 38 39 40 41 42 43 44 45 46 47 48 40 40 41 42 43 44 45 46 47 48 40 40 41 42 43 44 45 46 47 48 40 40 40 40 40 40 40 40 40 40	95 5 8 2 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	95 100 108 110 115 120 125 132 139 146 153 160 170 180 190 200 210 216 222 228 234 240 243 246 249 252 254.5 257 259.5 262 264.5 267 269 271 273 275 277 279 281 283 285 287 289 291 293 295 297 299 301	0.7 0.9 0.3 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.8 1.0 0.3	$1.741 \\ 1.525 \\ 2.162 \\ 1.741 \\ 1.741 \\ 1.741 \\ 1.587 \\ 1.587 \\ 1.587 \\ 1.587 \\ 1.587 \\ 1.423 \\ 1.423 \\ 1.423 \\ 1.423 \\ 1.423 \\ 1.423 \\ 1.423 \\ 1.423 \\ 1.423 \\ 1.423 \\ 1.423 \\ 1.423 \\ 1.423 \\ 1.657 \\ 1.657 \\ 1.657 \\ 1.657 \\ 1.657 \\ 1.657 \\ 1.657 \\ 1.976 \\ 1.976 \\ 1.976 \\ 1.976 \\ 1.976 \\ 2.059 \\ 2.050 \\ 2.05$	55.1 33.5 145.1 55.1 55.1 55.1 38.6 38.6 38.6 38.6 38.6 26.5 26.5 26.5 26.5 26.5 26.5 26.5 45.4 45.4 45.4 45.4 45.4 45.4 94.6 94.6 94.6 94.6 94.6 94.6 94.6 94.6 94.5 145.1	Estimated CBR Value (%)
Project Nu Project: Cl	imber: 5610 napman Way	63 y Tunbridge Wel	ls			Reference: DCP 5

TRC -	In situ	CBR by D	OCP Pro	obe		
Number of Blows	Penetration Per Blow (mm)	Depth from GL (mm)	Log P	2.48-1.057 Log P	CBR Value (%)	Remarks: Tests commenced from ground level Zero reading = start depth below ground surface Zero reading at start of test: 50 (mm)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 48 48 48 48 48 48 48 48 48	50 2 3 1 2 2 1 1 1 3 2 2 2 4 2 1 1 1 3 2 2 4 2 10 5 5 18 2 10 5 5 18 2 10 5 5 18 2 10 5 5 18 2 10 5 5 18 2 10 5 5 18 2 10 5 5 18 2 10 5 5 18 2 10 5 5 18 2 10 5 5 18 2 10 5 5 18 2 10 5 5 18 2 10 5 5 18 2 10 5 5 5 5 5 5 5 5 5 5 5 5 5	50 52 55 56 58 60 62 63 64 65 68 70 72 74 78 80 90 95 100 118 120 130 148 165 200 209.4 218.8 228.2 237.6 247 256.6 266.2 275.8 285.4 295 300 305 310 315 320 324 328 333 337 341 345 349 354 358 365 372 379 386 393	0.3 0.5 0.0 0.3 0.3 0.3 0.3 0.0 0.0 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1.0 8. 0.8	2.162 1.976 2.480 2.162 2.162 2.480 2.480 2.480 2.480 2.480 2.162 2.162 2.162 1.844 2.162 1.423 1.741 1.741 1.741 1.453 1.179 0.848 1.451 1.587 1.587 1.587	$145.1 \\ 94.6 \\ 302.0 \\ 145.1 \\ 145.1 \\ 145.1 \\ 302.0 \\ 302.0 \\ 94.6 \\ 145.1 \\ 145.1 \\ 145.1 \\ 145.1 \\ 26.5 \\ 15.1 \\ 14.2 \\ 145.1 \\ 26.5 \\ 14.2 \\ 15.1 \\ 7.0 \\ 28.3 \\ 28.4 \\ 38.6 \\ 38.$	
Project Nu Project: Cl	mber: 5610 napman Way	63 y Tunbridge Wel	s			Reference: DCP 6

TRC -	In situ	CBR by D	OCP Pro	obe		
Number of Blows	Penetration Per Blow (mm)	Depth from GL (mm)	Log P	2.48-1.057 Log P	CBR Value (%)	Remarks: Tests commenced from ground level Zero reading = start depth below ground surface Zero reading at start of test: 127 (mm)
Number of Blows 0 1 2 3 4 5 6 7 8 9 10 11 12 13	Per Blow (mm) 127 4 4 5 7 4 3 3 3 1 1 1 1 1 1	Depth from GL (mm) 127 131 135 140 147 151 154 157 160 161 162 163 164 165	Log P	2.48-1.057 Log P 1.844 1.844 1.741 1.587 1.844 1.976 1.976 1.976 2.480 2.480 2.480 2.480 2.480	CBR Value (%) 69.8 55.1 38.6 69.8 94.6 94.6 94.6 302.0 302.0 302.0 302.0 302.0 302.0	Zero reading = start depth below ground surface Zero reading at start of test: 127 (mm) Estimated CBR Value (%) GL 0 100 200 300 400 20 40 40 40 40 40 40 40 40 40 40 40
Remarks: F	Refusal at 16	-5mm				The second secon
Project Nu Project: Ch	mber: 5610 mapman Way	63 / Tunbridge Well	S			Reference: DCP 8

STATIC CONE PENETRATION TEST

CLIENT: TRC Companies PROJECT: Chapman Way,

Tunbri dge Well

Project	Chapman Way, Tunbridge Wells
Project No.	1230378
Client	TRC Companies
Address	20 Red Lion Streen, WCP 4PS

Attention: Mr Harry McAllister

Dear Mr McAllister,

We have pleasure in providing a digital copy of our report and data in AGS format for the above project.

We hope that you are satisfied with the performance of our staff, equipment and reporting on this project. If you should have any queries about any aspect of the works carried out, please do not hesitate to contact us. We look forward to being of service to you in the future.

Yours faithfully,

In Situ Site Investigation Limited

Darren Ward Director

Report Issue

Issue	Date	Prepared	Sign	Checked	Sign	Approved	Sign
01	11/09/2023	Chloe Donovan		Darren Ward		Darren Ward	

Table of Contents

1.0	INTRODI	JCTION				
2.0	FIELDWO	DRK5				
2.1	CONE PI	ENETRATION TESTS				
	2.1.1	1.1 Rig Information				
	2.1.2	CPTU Cone5				
	2.1.3	CPTU Cone Calibration				
	2.1.4	CPTU Cone Saturation				
	2.1.5	Test Procedure				
	2.1.6	In Situ Pore Pressure (u ₀)6				
2.2	POSIT	TIONING				
3.0	CONE	PENETRATION MEASURED PARAMETERS				
3.1	DATA	PROCESSING8				
	3.1.1 Ze	ro Measurements				
3.2	MEAS	URED PARAMETERS8				
	3.2.1	Cone Resistance (q _c)8				
	3.2.2	Sleeve Friction (f _s)				
	3.2.3	Porewater pressure (u ₂)9				
	3.2.4	Inclination (I _x , I _y)9				
3.3	ESTIN	IATED SOIL BEHAVIOUR TYPE9				
	3.3.1	Friction Ratio (R _f)9				
	3.3.2	Estimated Soil Behaviour Type (SBT)9				
	3.3.3	Pore Pressure Ratio (B _q)10				
3.4	APPLIED CORRECTIONS					
	3.4.1	Corrected Cone Resistance (q _t) 11				
	3.4.2	Depth Correction 11				
4.0	GEOT	ECHNICAL DERIVED PARAMETERS 12				
4.1	SOIL I	3EHAVIOUR TYPE INDEX (Ic)12				
4.2	N VAL	UE OF STANDARD PENETRATION TEST (SPT) (N ₆₀)14				
4.3	.3 RELATIVE DENSITY (<i>D_t</i>)14					

4.4	FRICTION ANGLE (φ')	16
4.5	FINES CONTENT (<i>FC</i>)	17
4.6	UNDRAINED SHEAR STRENGTH (su)	17
4.7	SENSITIVITY (St)	17
4.8	SOIL UNIT WEIGHT (γ)	18
5.0	REFERENCES	19
APPE	ENDIX A	22
APPE	ENDIX A1 – Project Summary Sheet	23
F	Piezocone Tests Summary Sheet	23
APPE	ENDIX A2 – CPT Rig Datasheet	24
APPE	ENDIX A3 – Cone Datasheet	25
APPE	ENDIX A4 – Cone Calibration Certificate	26
APPE	ENDIX A5 – Symbol List	27
Ε	English 27	
Ċ	Greek 28	
APPE	ENDIX A6 – Abbreviations	29
APPE	ENDIX A7 – Glossary	30
APPE	ENDIX A8 – Soils Description Tables	32
APPE	ENDIX B	33

1.0 INTRODUCTION

In Situ Site Investigation Limited (In Situ) was engaged in a geotechnical site investigation at Chapman Way, at the request of TRC Companies. The site investigation consisted of completing 16 Static Piezocone Penetration Tests (CPTU), to provide information on the soil conditions and derived geotechnical parameters at:

Chapman Way, Tunbridge Wells, TN2 3EF

All test locations were provided by the client. A site map is included in the end of Appendix A of this report (if provided by the client). The tests were stopped when they reached the target depth as per the client's technical specifications or for other technical reasons, as detailed in the *Project Summary Table* in *Appendix A.1* and on each CPTU log included in Appendix B of this report.

The fieldwork was carried out from 5th September 2023 to 6th September 2023 as per the client's request.

The work on site and the final factual reporting have been undertaken in accordance with the international technical standard *ISO* 22476-1:2022(*E*).

2.0 FIELDWORK

2.1 CONE PENETRATION TESTS

The fieldwork activity is summarised in Table 2.1.

Table 2.1 Fieldwork Summary		
CPT Operator/s	Andy Chatfield	
Date Started	5 th September 2023	
Date Finished	6 th September 2023	
In Situ S.I. Project Manager	Darren Ward	
Main Contractor's Site Manager	Lauren Sadowski	

2.1.1 Rig Information

Details of CPTU rig used in this project are shown in Table 2.2. Full data sheet for the rig is presented in *Appendix A.2*.

Table 2.2 Rig Summary		
Rig Name	Rig Description	
CPT007	20 Tonne Track Mounted CPT Rig	

2.1.2 CPTU Cone

Details of electric CPTU cone (Type TE2) used in this project conforming to the requirements of Application Class 2 of *ISO 22476-1:2022*, are shown in Table 2.3.

Table 2.3 Cone Summary				
Number	Cross-section area	Filter position		
S15-CFIP.1867	15cm ²	U ₂		

A full datasheet of the cone used is shown in Appendix A.3.

The cone's measured parameters are shown in Table 2.4.

Table 2.4 Completed Fieldwork Summary

16 CPTU to a maximum depth of 24.94m. Each test measured Cone Resistance, q_c , Sleeve Friction, f_s , Porewater Pressure in the shoulder position, u_2 , Inclination in X and Y axes.

Provision of factual report with estimated soil type, derived geotechnical parameters & AGS data file.

2.1.3 CPTU Cone Calibration

The cone resistance and sleeve friction are recorded by calibrated load cells in the cone. The CPTU load cells and pressure transducers are regularly calibrated in line with *ISO 22476-1:2022(E)* standard by the cone manufacturer. The cone calibration certificate for the cone used at this site are presented in *Appendix A.4*.

2.1.4 CPTU Cone Saturation

The pore water pressure is recorded using a calibrated pressure transducer located in the piezocone. To ensure pore water pressure measurements are not affected by the presence of air in the measuring transducer, a de-airing procedure is carried out prior to each test. The cone and filter are saturated using a glycerine fluid with a viscosity of 10,000 CST.

2.1.5 Test Procedure

The tests are carried out in accordance with the International Standard for Electrical Cone and Piezocone Penetration Test ISO 22476-1:2022(E).

The final depths of the tests were determined by either completion to the specified test depth or when the maximal safe capacity of the equipment was reached. A schedule of the tests performed is shown in *Appendix A.1*, which has been compiled from the operators' daily progress reports.

The data is transmitted from the digital CPTU through an umbilical cable that runs through the push rods to the data acquisition system. Results are displayed instantaneously on the computer logging screen. The results are recorded on the computer hard disc.

The rate of penetration is kept constant at 20 mm/s \pm 5 mm/s except when penetrating very dense or hard strata. Before each test is carried out zero values are taken of the cone to check if it is within calibration. At the end of each test, zero values are taken again to see if there has been any drift during the test. These values are inspected during the post processing stage. This is a quality check on the data and the testing procedure. Individual test zero values are shown on their corresponding test results in *Appendix B*.

2.1.6 In Situ Pore Pressure (u₀)

The in situ or hydrostatic pore pressure is required for the calculation of several derived parameters included in this report. For this report, the groundwater level is assumed at 0.5m below ground surface, for calculation purposes. The in situ pore pressure, u_0 values are presented on the pore pressure plot, on *CPT Log 01*, which is included in *Appendix B*.

2.2 **POSITIONING**

Positioning and surveying of all investigated locations was the responsibility of the client.

3.0 CONE PENETRATION MEASURED PARAMETERS

All measured parameters of tests carried with the CPTU cone are shown in *Appendix B* and all the information about data processing and results are given in sections *3.1*, *3.2* and *3.3*.

3.1 DATA PROCESSING

The measured parameters, cone end resistance, q_c , sleeve friction, f_s , porewater pressure measurements with filter in shoulder position, u_2 and inclination for x and y axis, l_x , l_y , were recorded for every 10 mm of penetration keeping a constant speed of 20 mm/s \pm 5 mm/s, which may slightly change when the cone is penetrating hard strata.

The measured data from the site works is processed and presented using specialised CPT software. The interpretations on the CPTU results were carried out following the recommendations of *ISO 22476-1:2022(E)*, *Lunne et al. (1997)* and *Robertson (2015)*. Measured parameters, mentioned in *Sections 3.2* and *3.3*, were used to derive all the geotechnical parameters, which are presented in *Chapter 4.0*. The soil behaviour type method used on this report is *Robertson et al. (1986)*, shown in *Figure 3.2*.

3.1.1 Zero Measurements

Before and after each CPTU test, zero measurements are recorded for each channel of the cone. The zero measurements are presented on the logs in *Appendix B*. This is a routine quality check carried out on site.

3.2 MEASURED PARAMETERS

3.2.1 Cone Resistance (q_c)

Cone resistance, q_c , is measured as the total force acting on the cone, divided by the projected area of the cone. The results are presented in *MPa*, on *CPT Log 01*, in *Appendix B*, scale *0-20 MPa* with a minor scale printing on the same graph at *0-4 MPa*.

3.2.2 Sleeve Friction (f_s)

Sleeve friction, f_s , is measured as the total frictional force acting on the friction sleeve divided by its surface area. The results are presented in *kPa*, on *CPT Log 01*, in *Appendix B*, using a scale of *0-500 kPa*.

3.2.3 Porewater pressure (u₂)

The pore pressure, u_2 , is measured during the test. If the material is free draining and saturation is maintained it will normally measure hydrostatic pore pressure. In materials that are not free draining, it will record the total pore pressure (hydrostatic plus any excess pore pressures generated) created by the cone penetration through this material.

The filter element can be mounted in one of three positions. For all tests carried out in this project the filter was mounted in the u_2 position (see *Figure 3.1*).

3.2.4 Inclination (I_x, I_y)

The CPT rig was set up to obtain a thrust direction as near as possible to vertical. The CPTU cones have inclinometers incorporated to measure the non-verticality of the test. For test depths less than *15 m*, significant non-verticality is unusual, provided the initial thrust direction is vertical.

3.3 ESTIMATED SOIL BEHAVIOUR TYPE

3.3.1 Friction Ratio (R_f)

The friction ratio, R_f is the ratio between the sleeve friction and the cone resistance (Lunne *et al.*, 1997).

3.3.2 Estimated Soil Behaviour Type (SBT)

The estimation of soil behaviour type, *SBT*, using measurements of cone resistance and sleeve friction is based upon the variations of the friction ratio and cone resistance. The friction

ratio varies depending upon whether the soil is cohesive or granular. The cone resistance varies depending on the strength and densities of the soil.

The interpretation used in this report is *Robertson et al. (1986)*, which is shown in Figure 3.2. The results are presented on *CPT Log 01*, in *Appendix B*.

Figure 3.2: Robertson et al., 1986 soil behaviour type chart.

3.3.3 Pore Pressure Ratio (B_q)

Pore pressure ratio, B_q is the ratio between the measured pore pressure generated during penetration and the corrected cone resistance minus the total overburden stress.

Pore pressure ratio as defined by *Senneset and Janbu (1985)* is defined as:

where

 u_2 is pore pressure measured between the cone and the friction sleeve

*u*₀ is equilibrium pore pressure

 σ_{vo} is total overburden stress

 q_t is cone resistance corrected for unequal end area effects

3.4 APPLIED CORRECTIONS

3.4.1 Corrected Cone Resistance (q_t)

For each penetration test, the measured cone resistance, q_c , can be corrected for the "unequal area effect" due to the influence of the ambient pore water pressure acting on the cone.

The correction has been applied using the following equation by Lunne et al., 1997:

$$= + [2.(1 -)]$$

where

is the cone area ratio

The cone area ratio used for this project is stated on both the cone calibration certificate and the data footer. This value is geometrically measured.

3.4.2 Depth Correction

All tests in the report have been corrected for depth difference caused by inclination. This has been calculated using the method described in *ISO* 22476-1:2022.

To calculate the corrected depth the following formula is used:

•

where

- z is penetration depth, in m
- *I* is penetration length, in *m*
- *C_{inc}* is correction factor for the effect of the inclination of the CPTU relative to the vertical axis.

The equation for calculating the correction factor for the influence of the inclination for a biaxial inclinometer is:

$$=\frac{1}{(1+\frac{2}{1}+\frac{2}{2})}$$

where

- β_1 is the angle between the vertical axis and the projection of the axis of the CPTU on a vertical plane, in degrees
- β_2 is the angle between the vertical axis and the projection of the axis of the CPTU on a vertical plane that is perpendicular to the plane of angle 1, in degrees

4.0 GEOTECHNICAL DERIVED PARAMETERS

A number of empirical correlations can be used to derive geotechnical parameters from CPTU data. This report includes only the parameters which are described in this chapter. The results of all correlations used to obtain the geotechnical derived parameters are presented on *CPT Log 02* and *CPT Log 03* in *Appendix B*.

Please, note that each empirical correlation is derived for a certain type of soil, and may not be appropriate for all the soil types encountered on this project.

4.1 SOIL BEHAVIOUR TYPE INDEX (Ic)

The soil behaviour type index, I_c , was derived by *Jefferies and Davies (1991)*, and was created to simplify the application of CPTU SBT chart shown in *Chapter 3*, *Figure 3.2*. This approach has been modified for use with the *Robertson (1990)* normalised CPT soil classification chart, *Figure 4.1*. The normalised cone parameters Q_t and F_r (for definitions see *Appendix A5* Symbol List) can be combined into one Soil Behaviour Type Index, I_c , (Lunne et al., 1997).

Figure 4.1: Robertson 1990 soil behaviour type chart.

The soil behaviour type index, I_c , can then be defined using *Robertson (2010)* formula, given below:

$$= ((3.47 -)^2 + (+ 1.22)^2)^{0.5}$$

where

- Q_t is the normalized cone resistance which represents the simple normalization with a stress exponent (n) of *1.0*, which applies well to clay-like soils
- $F_{R} \qquad$ is the normalized friction ratio, in $\,\%$

The boundaries of soil behaviour type are then given in terms of the index, I_c , presented in *Table 4.1* below.

The soils behaviour type index does not apply to zones *1*, *8* and *9*. The profiles of *l_c* provide a simple guide to the continuous variation of soil behaviour type in a given soil profile based on CPTU results, with a reliability greater than *80%* compared with soil samples *(Robertson, 2015).*

Zone	Soil Behaviour Type	lc
1	Sensitive fine grained	N/A
2	Organic Soils – clay	>3.6
3	Clays – silty clay to clay	2.95 – 3.6
4	Silt mixtures – clayey silt to silty clay	2.60 – 2.95
5	Sand mixtures – silty sand to sandy silt	2.05 – 2.6
6	Sands – clean sand to silty sand	1.31 – 2.05
7	Gravelly sand to dense sand	<1.31
8	Very stiff sand to clayey sand*	N/A
9	Very stiff fine grained *	N/A

* Heavily over consolidated or cemented

 Table 4.1:
 Normalized CPTU Soil Behaviour Type (SBTn)
 Index values, Ic. (Robertson, 2010)

4.2 N VALUE OF STANDARD PENETRATION TEST (SPT) (N₆₀)

The derived N value of SPT, N_{60} , is strongly and directly related to the cone resistance, q_c .

In this report the N_{60} value is derived using the following correlations, developed by *Robertson* and Wride (1998), Jefferies and Davies (1998) and Robertson (2012):

1) Robertson & Wride (1998)

$$_{60} = \frac{1}{8.5 \cdot 1 - 4.6}$$

2) Jefferies and Davies (1993)

$$_{50} = \frac{1}{0.85 \cdot 1 - \frac{1}{4.75}}$$

3) Robertson (2012)

$$_{60} = \frac{10^{1.1268 - 0.2817}}{10^{1.1268 - 0.2817}}$$

where

 $\begin{array}{ll} q_c & \mbox{ is the cone resistance} \\ p_a & \mbox{ is the atmospheric pressure equal to } 100 \ kPa \\ I_c & \mbox{ is the soil behaviour type index calculated as given in section 4.1} \end{array}$

It is suggested that these methods provide a better estimation of the N_{60} value than the actual measured *N*, due to the poor repeatability of SPT test. However, in fine grained soil with high sensitivity these methods may overestimate N_{60} (*Jefferies and Davies, 1991*). The third method suggested by *Robertson (2012)* provides improved estimates of N_{60} for insensitive clays.

4.3 **RELATIVE DENSITY** (*D*_r)

Relative density, *D_r*, is an intermediate parameter for coarse grained soils, widely used to describe sand deposits. All the research on deriving the relative density from CPTU tests results are carried out for *clean predominantly quartz sands*. The studies have shown that CPTU resistance in granular soils is controlled by sand relative density, in situ effective stresses and compressibility. The more compressible sands tend to give lower penetration resistance for a given relative density then less compressible sands.

In this report relative density is calculated using the methods suggested by *Baldi et al., (1986), Jamiolkowski et al., (2001)* and *Kulhawy and Mayne (1990)* as shown in the equations below:

1) Baldi et al., (1986)

$$=\frac{1}{2}\cdot \frac{h}{1\cdot (100)^{0.55}}\cdot 100$$

where

- C_1 is a consolidation coefficient which is 157 for normally consolidated soils and 181 for over consolidated soils
- is a consolidation coefficient which is 2.41 for normally consolidated soils and C_2 2.46 for over consolidated soils

Wehr is a correction coefficient for calcareous soils

2) Jamiolkowski et al., (2001)

$$= 100 \cdot 0.268 \cdot \frac{/}{0} + 1$$

where

 C_1 is a compressibility coefficient which is -0.675 for average compressible soils, \leq 1.0 for high compressible soils and carbonate or calcareous sands and \geq -2.0 for low compressible soils

is corrected cone resistance qt

- is the atmospheric pressure σ_{atm}
- 3) Kulhawy and Mayne, (1990)

$$= \frac{1}{305 \cdot 1} \cdot \frac{0.18 \cdot 1.2 + 0.05 \cdot (/100)}{0.5} \cdot 100$$

where

is the cone resistance corrected for initial vertical effective stress and q_{c1} atmospheric pressure, calculated by the following formula

$$1 = \frac{1}{0}$$

where

is the cone resistance in kPa qc

is the initial vertical effective stress in kPa σ'_{v0}

is a compressibility coefficient which is -0.91 for low compressible sands, 1.0 C₁ for medium compressible sands and 1.09 for high compressible sands t

is time in years

4.4 FRICTION ANGLE (ϕ ')

Friction angle, φ' , is used to express the shear strength of uncemented, coarse grained soils. In this report friction angle is derived by the correlations of *Mayne and Campanella (2005)*, *Robertson and Campanella (1983)* and *Kulhawy and Mayne (1990)*.

1) Mayne and Campanella, (2005)

 $' = 29.5^{\circ} \cdot 0.121 \cdot 0.256 + 0.336 \cdot +$

where

B_q is the pore pressure ratio, calculated as in Session 3.3

- Qt is the normalized cone resistance
- 2) Robertson and Campanella, (1983)

$$r' = \tan^{-1} 0.1 + 0.38 \cdot ...,$$

where

q_c is the cone resistance in *kPa*

- σ'_{v0} is the initial vertical effective stress in *kPa*
- 3) Kulhawy and Mayne, (1990)

$$1 = 17.6^{\circ} + 11.0^{\circ} \cdot (1)$$

where

q_{t1} is the corrected cone resistance corrected for initial vertical effective stress and atmospheric pressure, calculated by the following formula

$$1 = \frac{1}{0}$$

The method suggested by *Mayne and Campanella (2005)* will not provide reliable results for heavily over consolidated soils, fissured geomaterials and highly cemented or structures clays. This approach gives reliable results when pore pressure is positive and varies $0.1 < B_q < 1.0$. The correlation suggested by *Robertson and Campanella (1983)* estimates the peak friction angle for uncemented, unaged, moderately compressible, predominately quartz sands. For sands of higher compressibility, the method will tend to predict low friction angles. The method suggested by *Kulhawy and Mayne (1990)* is an alternate relationship for clean, rounded, uncemented, quartz sands.

4.5 FINES CONTENT (FC)

The fines content, *FC*, in this report is estimated using two different methods, one from *Robertson and Wride (1998)* and the other, *Suzuki et al. (1998)* as presented below:

1) Robertson and Wride (1998)

$$< 1.26: = 0$$

1.26 $\leq 3.5:$ (%) $= 1.75^{3.25} - 3.7$
 $3.5 < : = 100\%$

IRC

2) Suzuki et al. (1998)

 $(\%) = 2.8^{-2.6}$

where

lc

is the soil behaviour type index, calculated as in section 4.1

4.6 UNDRAINED SHEAR STRENGTH (su)

Estimation of undrained shear strength, s_u , from CPTU tests using corrected cone resistance is carried out using the following correlation from *Lunne et al. (1981)*:

where

 N_{kt} is the empirical cone factor, which varies from 10 (6 for very soft sensitive fine grained soils) to 20. In this report 3 values are considered: 15, 17.5 and 20. N_{kt} tends to increase with increasing plasticity and decrease with increasing soil sensitivity. It decreases as B_q increases. (*Lunne et al., 1997*) _{vo} = total overburden stress.

This report only presents the undrained shear strength data on soils with soil behaviour type index, l_c values greater than 2.60.

The value of undrained shear strength, s_u to be used in analysis depends on the design problem. In general, the simple shear in the direction of loading often represents the average undrained strength. For larger, moderate to high risk projects, where high quality field and laboratory data may be available, site specific correlations should be developed based on appropriate and reliable values of s_u .

4.7 SENSITIVITY (St)

The sensitivity, S_t of clays is defined as the ratio of undisturbed peak undrained shear strength to totally remoulded undrained shear strength.

In this report S_t is calculated using two correlations developed by *Schmertmann (1978)* and *Mayne (2007)*.

1) Schmertmann (1978)

$$=$$
 $($ $($ $\frac{1}{})$

IRC

where

 $s_{u(rem)}$ is the remoulded undrained shear strength. It can be assumed equal to the sleeve resistance, f_s .

2) Mayne (2007)

For relatively sensitive clays, $S_t > 10$, the value of f_s can be very low and not very accurate, hence the estimate of sensitivity should be used as a guide only.

4.8 SOIL UNIT WEIGHT (γ)

Soil unit weight, γ in this report is calculated by using one method for sands, considered under dry conditions and two methods for clays, considered under saturated conditions. These relationships are developed by *Mayne (2007)* and the equations are presented below:

Dry unit weight for sands:

$$= 1.89 \cdot (_{1}) + 11.82$$

Saturated unit weight for clays method 1

 $= 8.32 \cdot () - 1.61 \cdot ()$

Saturated unit for clays method 2

$$= 2.60 \cdot () + 15 \cdot - 26.5$$

where

q_{t1} is the corrected cone resistance corrected for initial vertical effective stress and atmospheric pressure, calculated by the following formula:

- z is the depth
- V_s is the shear wave velocity, calculated as = 118.8 + 18.5

1

G_s is the specific gravity of solids, typically between 2.40 and 2.90

5.0 REFERENCES

ASTM D7400-14 (2015), "Standard and ISSMGE TC10 guideline", by Butcher, A. P. et al.

- Baldi et al. (1986) / Al-Hamoud and Wehr (2006), "Interpretation of CPTs and CPTUs; 2nd part: drained penetration of sands / Experience of vibrocompaction in calcareous sand of UAE"
- Been at al. (1987), "Cone Penetration Test Calibration for Erksak (Beaufort Sea) Sand", Canadian Geotechnical Journal, 24, 4, pp. 601-610
- Been and Jefferies (1992), "Towards Systematic CPT Interpretation", Proceedings Wroth Memorial Symposium, Thomas Telford, London, pp. 121–134
- Boulanger and Idriss (2014), "CPT and SPT Based Liquefaction Triggering Procedures", Report No. UCD/CGM-14/01, Centre of Geotechnical Modelling, Department of Civil and Environmental Engineering, College of Engineering, University of California at Davis
- British Standard BS5930:1999, "Code of practice for site investigations". BSI, 1999
- *Burns and Mayne (2002)*, "Analytical Cavity Expansion Critical State Model for Piezocone Dissipation in Fine Grained Soils, Soils and Foundations", Vol. 42, No. 2, 2002
- Houlsby and Teh (1998), "Analysis of the piezocone in clay". Proceedings of the International Symposium on Penetration Testing, ISOPT-1, Orlando, 2, 777-83, Balkema Pub., Rotterdam
- Idriss and Boulanger (2008), "Soil liquefaction during earthquakes", Earthquake Engineering Research Institute, MNO-12
- International Standard, "Geotechnical Investigation and testing- field testing part 1: electrical cone and piezocone penetration test", BSI ISO 22476-1:2022(E), April 2022.
- Jamiolkowski et al. (2001), Evaluation of relative density in shear strength of sands from cone penetration tests (CPT) and flat dilatometer (DMT), Soil Behaviour and Soft Ground Construction (GSP 119), American Society of Civil Engineers, Reston, Va., 2001, pp. 201-238
- *Jefferies and Davies (1991)*, "Soil classification by the cone penetration test": Discussion. Canadian Geotechnical Journal, 28(1), 173-6

Jefferies and Been (2006), "Soil liquefaction: a critical state approach", Taylor and Francis.

- Jones and Rust (1995), "Piezocone settlement prediction parameters for embankments on alluvium". Proceedings of the International Symposium on Cone Penetration Testing, CPT '95, Linköping, Sweden, 2, 501-8, Swedish Geotechnical Society
- Kulhawy and Mayne (1990) "Manual on estimating soil properties for foundation design". Electric Power Research Institute, EPRI, August, 1990.
- Keaveny and Mitchell (1986), "Strength of Fine-Grained Soils Using the Piezocone," Use of In Situ Tests in Geotechnical Engineering (GSP 6), American Society of Civil Engineers, Reston, Va., 1986, pp. 668–699
- Lord, Clayton and Mortimore (2002), "Engineering in chalk". Ciria Guide C574.
- *Lunne and Kleven (1981)*, "Role of CPT in North Sea foundation engineering". Session at the ASCE National Convention: Cone Penetration Testing and Materials, St. Louis, 76-107, American Society of Engineers (ASCE).
- Lunne and Christophersen (1983), "Interpretation of cone penetrometer data for offshore sands". Proceedings of the Offshore Technology conference, Richardson, Texas, Paper No. 4464.
- Mayne and Rix (1995) / Lune et al. (1997), "Gmax-qc relationships for clays", Geotechnical Testing Journal, ASTM, 16 (1), pp. 54-60/ CPT in Geotechnical Practice (1997)
- Mayne (2001), "Stress-Strain-Strength-Flow Parameters from Enhanced In-Situ Tests", International Conference on In-Situ Measurement of Soil Properties and Case Histories, Indonesia, 2001, pp. 27–48
- Mayne and Campanella (2005), "National Cooperative Highway Research Program", Synthesis 368 (2007)
- Mayne (2007), "National Cooperative Highway Research Program", Synthesis 368 (2007)
- Mitchell and Gardner (1975), "In situ measurement of volume change characteristics". Proceedings of the ASCE Specialty Conference on In Situ Measurements of Soil Properties, Raleigh, North Carolina, 2, 279-345, American Society of Engineers (ASCE)
- *Rix and Stoke (1992),* "Correlation of Initial Tangent Modulus and Cone Resistance", Proceedings of the International Symposium on Calibration Chamber Testing, Potsdam, New York, 1991, pp. 351-362, Elsevier
- Robertson and Campanella (1983) "Interpretation of cone penetrometer test: Part 1: Sand". Canadian Geotechnical Journal, 20(4), 718-33

Robertson, Campanella, Gillespie and Greig (1986), "Use of piezometer cone data". Proceedings of the ASCE Specialty Conference In Situ '86: Use of In Situ Tests in Geotechnical Engineering, Blacksburg, 1263-80, American Society of Engineers (ACE)

FRC

- Robertson (1990), "Soil classification using the cone penetration test". Canadian Geotechnical Journal, 27(1), 151
- Robertson and Fear (1995), "Liquefaction of sands and its evaluation. IS TOKYO '95". First International Conference on Earthquake Geotechnical Engineering, Keynote Lecture, November, 1995
- Robertson and Wride (1998), "Evaluating cyclic liquefaction potential using the cone penetration test". Can. Geotech. J. Vol. 35
- Robertson (2010), "Soil behaviour type from the CPT: an update", Gregg Drilling and Testing Inc. Signal Hill, California, USA, CPT 10, paper 2-56
- Robertson (2015), "Guide to Cone Penetration Testing", 6th Edition (2015)
- Senneset and Janbu (1985), "Shear strength parameters obtained from static cone penetration tests. Strength Testing of Marine Sediments; Laboratory and In Situ Measurements". Symposium, San Diego, 1984, ASTM Special technical publication, STP 883, 41-54
- Senneset, Sandven and Janbu (1989), "The evaluation of soil parameters from piezocone tests". Transportation Research Record, No. 1235, 24-37
- Schmertmann (1978), "Guidelines for cone penetration test, performance and design", US Federal Highway Administration, Washington, DC, Report, FHWA-TS-78-209, 145
- Shuttle and Jefferies (1998), "Dimensionless and unbiased CPT interpretation in sand", International Journal for Numerical and Analytical Methods in Geomechanics, 22, pp. 351-391.
- Suzuki, Tokimatsu, Taya, and Kubota (1995), "Correlation between CPT data and dynamic properties of in situ frozen samples". Proceedings of the Third International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, 1, 249-52, University of Missouri Rolla.

APPENDIX A

insitusi.com

APPENDIX A1 – Project Summary Sheet

Piezocone Tests Summary Sheet

HOLE ID	Final Depth (m)	Date of Test	Cone Used	Test Remarks
CPT101	8.77	06/09/2023	S15-CFIP.1867	Test refused on total pressure.
CPT102	12.72	05/09/2023	S15-CFIP.1867	Test refused on total pressure.
CPT103	17.22	06/09/2023	S15-CFIP.1867	Test refused on total pressure.
CPT104	6.72	06/09/2023	S15-CFIP.1867	Test refused on total pressure.
CPT105	0.05	05/09/2023	S15-CFIP.1867	Test refused on total pressure.
CPT105A	16.56	06/09/2023	S15-CFIP.1867	Test refused on total pressure.
CPT106	0.30	06/09/2023	S15-CFIP.1867	Test refused on total pressure.
CPT107	0.05	05/09/2023	S15-CFIP.1867	Test refused on total pressure.
CPT107A	16.24	05/09/2023	S15-CFIP.1867	Test refused on total pressure.
CPT108	0.07	05/09/2023	S15-CFIP.1867	Test refused on total pressure.
CPT108A	0.18	05/09/2023	S15-CFIP.1867	Test refused on total pressure.
CPT108B	0.07	05/09/2023	S15-CFIP.1867	Test refused on total pressure.
CPT109	0.31	05/09/2023	S15-CFIP.1867	Test refused on total pressure.
CPT109A	0.27	05/09/2023	S15-CFIP.1867	Test refused on total pressure.
CPT109B	0.11	05/09/2023	S15-CFIP.1867	Test refused on total pressure.
CPT110	24.94	05/09/2023	S15-CFIP.1867	Test completed at target depth.

insitusi.com

APPENDIX A2 – CPT Rig Datasheet

RIGS

20 TONNE CPT TRACK MOUNTED RIG (CPT007)

We have a variety of rigs giving us the capacity to meet our clients' needs and specifications for each individual project. This rubber tracked rig weighs 20 tonnes and is able to push up to a depth of 40 metres, depending on the ground conditions. It has low ground bearing pressure and is ideal for soft, boggy sites which are inaccessible for our wheeled rigs.

CPT RIG DETAILS			
DRIVE SYSTEM	RUBBER TRACKED		
TOTAL WEIGHT	20 TONNES		
GROUND BEARING PRESSURE	35KPA		
CPT RAM THRUST CAPACITY	20 TONNES		
MAXIMUM PENETRATION	30-40M DEPENDING ON THE GROUND CONDITIONS.		
PERFORMANCE RATES	100-150M OF TESTING A DAY, DEPENDING ON ACCESS TO POSITIONS.		
TYPICAL SITES FOR This Rig	SOFT BOGGY SITES, THE RIG HAS LOW GROUND BEARING PRESSURE.		
CPT RIG DIMENSIONS			

INSITUSI.COM

APPENDIX A3 – Cone Datasheet

Rijksstraatweg 22 2171 AL Sassenheim Tel. :+31 71 301 92 51 Fax : +31 71 301 92 52 E-mail : info@geopoint.nl ING bank: 68.23.01.396 Postbank : 5226758 BTW nr. : NL806331677801

SPECIFICATIONS S15 SERIES **ELECTRICAL CONES**

TRC

The electronic subtraction cones have been developed to address the durability problems inherent in other cone designs. The unit consists of a single element temperature compensated strain gauge transducer for measuring both cone resistance and local sleeve friction. This design is therefore more robust than a compression type cone. The cone support electronics package is located directly behind the transducer. The precision strain gauge amplifiers and power supply eliminate the effects of cable resistance on the measurements. A standard subtraction cone is capable of measuring simultaneously the following channels: Tip, Local friction, Pore pressure, Temperature and Inclination.

GENERAL SPECIFICATIONS

Cone Tip Section Area Friction Sleeve Surface **Total Length** Weight Power Supply Output Working Temperature Storage Temperature Connector

1,500 mm2 22,500 mm2 325 mm 4200 g ± 15 VDC, 100 mA. 0-10 VDC* 0 - 60°C - 40 to + 85°C Lemo 10 pins (others on request)

LOCAL SLEEVE FRICTION

TIP RESISTANCE

Range 100/150* kN Accuracy 0.25 % FS Maximum Load 150 % of range Cone Area Ratio 0.75

Range Accuracy Maximum Load 150 % Sleeve Area Ratio 1.0 (EA)

PORE PRESSURE

1/2/5/10* MPa Range 0.5 % FS Accuracy Maximum Load 150 % of range INCLINATION

Range Accuracy 25 ° (biaxial) < 2 °

100/150* kN

0.50 % FS

All our equipment complies with the ISSMGE, ASTM, DIN and NEN Standards.

*Other output and voltage ranges available on request. Loadcells may be calibrated for lower ranges.