

EPS Design Ltd Consulting Civil & Structural Engineers

Unit 26, Park Barn, Evegate Business Park, Smeeth, Ashford, Kent, TN25 6SX Telephone: 01233 224986 Email: contact@epsdesign.co.uk Website : epsdesign.co.uk

59 STRAND STREET SANDWICH

FLOOR STRENGTHENING

STRUCTURAL ENGINEERING CALCULATIONS

Job Reference : J127

Revision -

November 2023

59 STRAND STREET SANDWICH Introduction

		and the second
		and the second
FDC	Docian	
	IJESKIN	- N N
	Design	

Introduction

The existing floor to the loft room is undulating and undersized to be used for anything other than light storage. It is proposed to strengthen the floor by constructing an entirely new floor over the top of the existing. Calculations are required to facilitate the proposals.

The existing building is understood to be of conventional construction i.e. timber roof, timber first floor, loadbearing masonry walls and non-loadbearing stud partitions. It is assumed to have concrete ground-bearing slabs and shallow spread foundations.

<u>General</u>

The following details and calculations are based solely on information provided by the Architect.

These calculations are to be read in conjunction with the design statement and drawing

The scope of the work covered by these documents is only that specifically shown – for all other aspects of the proposed works refer to the Architect's details.

Standards

The following British Standards have been referred to in the design of the works :

- BS 6399 Part 1 : Imposed Loads
- BS 6399 Part 2 : Wind Loads
- BS 6399 Part 3 : Roof Loads
- BS 5268 Part 2 : Timber
- BS 5628 Part 1 : Masonry
- BS 5950 Part 1 : Steelwork
- BS 8110 Part 1 : Concrete

Design Output

The calculations are on sheet 2 onwards.

The design statement is a separate document.

The drawing number is given in the design statement.

59 STRAND STREET SANDWICH Dead & Live Loading

EPS Design 🕥

Lined Pitched Roof		Dead	Imposed	
Tiles, clay		0.70		kN/m ² on slope
Battens		0.05		"
Roofing felt		0.03		"
Rafters		0.10		"
Noggings etc.		0.02		"
Fixings		0.01		"
Sheathing		0.07		"
Insulation		0.04		"
Plaster		0.22		"
Services		0.01		"
Total load on slope :	=	1.25	=	"
Roof pitch :		45		degrees
Total load on plan :	=	1.77	=	kN/m² on plan
Imposed load (BS 6399 Part 3 cl. 4.3.2.)			0.75	"
Adjustment factor for pitch 30° - 60°			0.50	
Adjusted imposed load			0.38	- "
	Total (unfactored) :	1.77	0.38	kN/m² on plan
Roof Void		Dead	<u>Imposed</u>	
Joists		0.10		
Insulation		0.06		
Plaster		0.22		
Fixings		0.01		
Services		0.01		
Water storage tanks, none allowed for				
Imposed load (BS 6399 Part 1 cl. 5.2.)	_		0.25	_
	Total (unfactored) :	0.40	0.25	kN/m ²
Timber Floor		Dead	<u>Imposed</u>	
Flooring		0.22		
Joists		0.14		
Noggings		0.04		
Restraint straps		0.01		
Plaster		0.22		
Insulation		0.01		
Finishes (carpet, tiles etc.)		0.03		
Fixings		0.01		
Services		0.01		
Imposed load (BS 6399 Part 1 Table 1)			1.50	_
	Total (unfactored) :	0.69	1.50	- kN/m ²

59 STRAND STREET SANDWICH Dead & Live Loading	EPS Design	0	
Ashlar Stud Wall		Dead	
Plaster		0.22	
Studs		0.07	
Head & sole plates		0.02	
Sheathing		0.07	
Noggings, allow		0.03	
Insulation		0.02	
Fixings		0.01	
Services		0.01	
	Total (unfactored) :	0.45	kN/m ²
External Solid Masonry Wall		Dead	
Brickwork		4.40	
Wall ties		0.01	
Plaster		0.22	
Services		0.01	
	Total (unfactored) :	4.64	kN/m ²

J127 Nov 23 Rev -

59 STRAND STREET SANDWICH Floor Joists

	EPS	Design	0
--	-----	--------	---

Design Assumptions

- 1. No water tanks, baths or other unusually heavy loads
- 2. Normal domestic usage only, floor not used for storage

Design Loading

		Dead u.d.l.	Live	u.d.l.	Live point load	
		W _G	w	Q	Р	
		kN/m ²	kN/	m ²	kN	
C	ase 1 -	0.69	1.	5	-	
C	ase 2 -	0.69	-		1.4	
Trial Joists						
Width			b	=	47	mm
Depth			d	=	175	mm
Maximum spacing			S	=	400	mm
Timber grade				=	C24	
Load duration				=	Long	
Service class				=	1 or 2	
Material Properties	s and M	odification Factors				
Grade stress, bend	ing para	llel to grain	$\sigma_{m.g.\parallel}$	=	7.5	N/mm ²
Grade stress, compression perpendicular to grain		σ _{c.g.⊥}	=	2.4	N/mm ²	
Grade stress, shea	r parallel	l to grain	$\sigma_{v.g.\parallel}$	=	0.71	N/mm ²
Modulus of elasticit	y (mean))	E _{mean}	=	10,800	N/mm ²
Modulus of elasticit	y (minim	ium)	E _{min}	=	7,200	N/mm ²
Load duration facto	r		K ₃	=	1.0	
Depth factor			K ₇	(300/d) ^{0.1}	¹ 1.06	
Load sharing factor			K ₈	=	1.1	
Service factor			K ₂	=	1.0	
Common Floor Jo	<u>ists</u>					
<u>Dimensions</u>						
Maximum Clear Sp	an	S _C	3.5	m		
Effective Span		S	3.6	m		
Maximum spacing		S	400	mm		
<u>Analysis</u>						
Design forces (wors	st case),	per joist -				
Maximum bending	moment	(unfactored)) M _{max}	Μ	1.7	kNm
Equivalent uniform	total load	d (unfactored)) W _{E,max}	W _E	3.8	kN
Maximum shear		(unfactored)) V _{max}	V	1.9	kN
<u>Bending</u>						
Maximum bending	moment		M _{max}	from abov	e 1.7	kNm
Elastic modulus			Z	b.d ² /6	240	cm ³
Maximum bending :	stress		$\sigma_{m.a, }$	M _{max} /Z	7.1	N/mm ²

59 STRAND STREET SANDWICH Floor Joists	EPS Design	0		J127 Nov 23 Rev -
Permissible bending stress	$\sigma_{ m m}$ adm II	K₂.K₃.K _{7.} K ₈ .σ _{ma.ll}	8.8	N/mm ²
Unity Factor :	$\sigma_{m.a. } / \sigma_{m.adm. }$	0.81	< 1.0	1
		there	fore adequa	te in bending
Deflection				
Equivalent uniform total load	We	from above	3.8	kN
Second moment of area	v €,max	h $d^3/12$	2 000	om ⁴
Maximum defloction due to total load	۱ ک	D.U / 12	2,099	cm
	် max	$500_{\text{E,max}}$ 504_{mean} 1.7_2	10.2	
Acceptable deflection	^O adm	0.003.5 01 12	10.8	mm
Unity Factor :	^O max ⁷ ^O adm	0.94 thore	< 1.U	v floation O K
		there		
Timber at Bearings				
Maximum reaction	V _{max}	from above	1.9	kN
Minimum bearing width	L _{bearing}	=	40	mm
Bearing stress	σ _{c.a,⊥}	V _{max} /b.L _{bearing}	1.0	N/mm ²
Permissible compressive stress	⁽⁷ с,adm,⊥	K₂.K₃.K _{7.} K ₈ .σ _{c.g.⊥}	2.8	N/mm ²
Unity Factor :	$\sigma_{\rm c.a,\perp}/\sigma_{\rm c.adm,\perp}$	0.36	< 1.0	✓
		therefore a	adequate in	compression
Maximum shear parallel to grain	V _{.max}	V _{max} .3/2	2.8	kN
Shear stress parallel to grain	$\sigma_{v.a.\parallel}$	V _{.max} /b.d	0.35	N/mm ²
Permissible shear stress	$\sigma_{ m v,adm, }$	$K_{2}.K_{3}.K_{7.}K_{8}.\sigma_{v.g.\parallel}$	0.83	N/mm ²
Unity Factor :	$\sigma_{\rm v.a. } / \sigma_{\rm v.adm. }$	0.42	< 1.0	✓
		the	erefore adeq	uate in shear
Allow for notching of top edge at supports -				
Beam depth	d	from above	175	mm
Maximum percentage of beam notched	β	=	20	%
Maximum depth of notch	Z	β.d	35	mm
Remaining beam depth	h	d - z	140	mm
Cross-sectional area after deducting bolt holes	А	b.h	6.580	mm ²
Length of notch from face of support	а	=	25	mm
Notching factor	K ₅	$(d(h-a)+a,h)/h^{2}$	1.21	(1.0 min)
Shear stress parallel to grain	σ _{vall}	V _{II max} /A	0.43	N/mm ²
Permissible shear stress	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	K2.K2.K5.K7 K8. J. a	1.0	N/mm ²
Unity Factor :	$\sigma_{\rm v,aII}/\sigma_{\rm v,admII}$	0.43	< 1.0	✓
ť	herefore timber is a	dequate in shear where r	notched at to	op at support
Allow for notobing of bottom adds at supports				
Allow for holding of bollom edge at supports -	0		00	0/
Maximum percentage of beam notched	þ	=	20	%
Maximum depth of notch	Z	p.a	35	mm
	n -	a - z	140	۳m
cross-sectional area after deducting bolt holes	A	p.n	6,580	mm ²
	К ₅	n/a	08.0	
Shear stress parallel to grain	∕ [−] v.a.∥	V _{.max} /A	0.43	N/mm ²
Permissible shear stress	$\sigma_{v,adm, }$	K₂.K₃.K₅.K _{7.} K ₈ .♂ _{v.g.∥}	0.66	N/mm ²

59 STRAND STREE SANDWICH Floor Joists	г	EPS Design	0		J127 Nov 23 Rev -
	Unity Factor :	$\sigma_{\mathrm{v.a.}\parallel}/\sigma_{\mathrm{v.adm.}\parallel}$	0.65	< 1.0	✓

therefore timber is adequate in shear where notched at bottom at support

Summary

Common - 47 wide x 175 deep Grade C24 joists @ 400 max c/c, max clear span 3500

Maximum reactions at supports -

Common joists -	1.9	kN (unfactored)
Under partitions \perp span -	1.9	kN (unfactored)
Under partitions span -	1.9	kN (unfactored)

59 STRAND STREET SANDWICH Trimmer - analysis

EPS Design 🔘

Arrangement and Loading

See below for derivation of loading

Design Forces

From analysis -	Dead	Live	То	tal	
		unfactored		factored	
Maximum bending moment -	-	-	-	4.8	kNm
Equivalent uniform load -	-	5.6	9.0	-	kN
Maximum shear -	-	-	-	6.9	kN
Reaction at Existing External Wall -	1.7	2.8	4.5	6.9	kN
Reaction at Trimming Beam -	1.7	2.8	4.5	6.9	kN

59 STRAND STREET SANDWICH Trimmer - design	EPS Design	0		J127 Nov 23 Rev -
Analysis Results at SLS (unfactored)				
Maximum bending moment	M _{sls}	M / $\gamma_{\rm f.av}$	3.1	kNm
Maximum shear	V _{sls}	V / $\gamma_{\rm f.av}$	4.5	kN
Reaction at End 1	R _{1.sls}	$ m R_{1}$ / $\gamma_{ m f.av}$	4.5	kN
Reaction at End 2	R _{2.sls}	${\sf R}_{\sf 2}$ / $\gamma_{\sf f.av}$	4.5	kN
Load duration			Long	
Trial Section				
Try a timber beam as detailed below				
Number of timbers	Ν	=	3	
Width of each timber	b	=	47	mm
Timber depth	d	=	175	mm
Timber grade		=	C24	
Bolt diameter	Φ	=	12	
Lateral Support				
Ends held in position				
Maximum depth to breadth ratio	λ_{\max}	from Table 19	3	
Actual depth to breadth ratio	λ_{act}	d / N.b	1.2	$<\lambda_{\max}$ 🖌
Material Properties and Modification Factors				
Grade stress, bending parallel to grain	$\sigma_{m.g.\parallel}$	=	7.5	N/mm ²
Grade stress, compression perpendicular to gra	in σ _{c.g.⊥}	=	2.4	N/mm ²
Grade stress, shear parallel to grain	$\sigma_{v.g.\parallel}$	=	0.71	N/mm ²
Modulus of elasticity (minimum)	Е	=	7,200	N/mm ²
Service class		=	1 or 2	
Load duration factor	K ₃	=	1.0	
Depth factor	K ₇	(300/d) ^{0.11}	1.06	
Load sharing factor	K ₈	=	1.1	
Modulus of elasticity factor	K ₉	=	1.21	
Service factor	K ₂	=	1.0	
Bending				
Maximum bending moment	M _{sls}	from above	3.1	kNm
Elastic modulus	Z	N.b.d ² /6	720	cm ³
Maximum bending stress	σ_{mall}	M _{sls} /Z	4.4	N/mm ²
Permissible bending stress	$\sigma_{m.adm.ll}$	K₂.K₃.K _{7.} Kଃ.σ _{m.ɑ.Ⅱ}	8.8	N/mm ²
Unity Factor :	$\sigma_{m,a,\parallel}/\sigma_{m,adm,\parallel}$	0.50	< 1.0	✓
,				

therefore timber is adequate in bending

59 STRAND STREET SANDWICH Trimmer - design	EPS Design	0		J127 Nov 23 Rev -
Deflection				
Equivalent uniform live load (unfactored)	W _{E.Q}	from above	5.6	kN
Second moment of area	l	N.b.d ³ /12	6,297	cm ⁴
Maximum deflection due to live load	O max.Q	5.W _{E.Q.} S [°] /384.E.I.K _{2.} K ₉	2.9	mm
Acceptable deflection	$\delta_{adm.Q}$	0.003.S	8.4	mm
Unity Factor :	Ò _{max.Q} ∕Ò _{adm.Q}	0.35	< 1.0	\checkmark
		therefore	live load de	flection O.K.
Equivalent uniform total load (unfactored)	W _{E.T}	from above	9.0	kN
Maximum deflection due to total load	Ó _{max.T}	5.W _{E.T.} S³/384.E.I.K _{2.} K ₉	4.7	mm
Acceptable deflection	[∂] adm.T	0.003.S	8.4	mm
Unity Factor :	δ _{max.T} /δ _{adm.T}	0.56	< 1.0	✓
		there	fore total de	flection O.K.
Bearings	_			
Maximum reaction (unfactored)	R _{sls}	max of R _{1.sls} & R _{2.sls}	4.5	kN
Minimum width available for bearing	L _{bearing}	=	100	mm
Bearing stress	∕7 _{c.a,} ⊥	R _{sls} /N.b.L _{bearing}	0.3	N/mm ²
Permissible compressive stress	⁽ , o ⁽ , c, adm, ⊥	K ₂ .K ₃ .K ₇ .K ₈ . <i>σ</i> _{c.g.⊥}	2.8	N/mm²
Unity Factor :	$\sigma_{c.a,\perp} / \sigma_{c.adm,\perp}$	0.11	< 1.0	✓
	N/	therefore timber is a	adequate in o	compression
Maximum shear parallel to grain	V _{.sls}	R _{sls} .3/2	6.7	kN
Cross-sectional area after deduction for bolt ho	les A	N.b.d - N.b.Φ.1.1	22,814	mm ²
Shear stress parallel to grain	∕∕īv.a.∥	V _{.sls} /A	0.29	N/mm ²
Permissible shear stress	⁽ ∕,adm,∥	K₂.K₃.K _{7.} K ₈ .σ _{v.g.∥}	0.83	N/mm ²
Unity Factor :	$\sigma_{\rm v.a.\parallel}/\sigma_{\rm v.adm.\parallel}$	0.36	< 1.0	\checkmark
		therefore tin	nber is adequ	uate in shear
Allow for notching of top edge at supports -		<i>.</i> .		
Beam depth	d	from above	175	mm
Maximum percentage of beam notched	β	=	20	%
Maximum depth of notch	Z	β.d	35	mm
Remaining beam depth	h	d - z	140	mm
Cross-sectional area after deducting bolt holes	A	N.b.h - Ν.b.Φ.1.1	17,879	mm²
Length of notch from face of support	a	=	25	mm
Notching factor	К ₅	(d(h-a)+a.h) / h ²	1.21	(1.0 min)
Shear stress parallel to grain	<i></i> σ _{v.a.∥}	V _{.sls} /A	0.38	N/mm ²
Permissible shear stress	<i>⊡</i> v,adm,∥	K₂.K₃.K₅.K _{7.} K ₈ .♂ _{v.g.∥}	1.0	N/mm ²
Unity Factor :	$\sigma_{v.a.\parallel} / \sigma_{v.adm.\parallel}$	0.38	< 1.0	\checkmark
ti	herefore timber is a	dequate in shear where r	notched at to	op at support
Allow for notching of bottom edge at supports -				
Maximum percentage of beam notched	β	=	20	%
Maximum depth of notch	Z	β.d	35	mm
Remaining beam depth	h	d - z	140	mm
Cross-sectional area after deducting bolt holes	А	N.b.h - N.b.Φ.1.1	17,879	mm ²
Notching factor	K ₅	h / d	0.80	

59 STRAND STREET SANDWICH Trimmer - design	EPS Design	J12 Nov 2 Rev		
Shear stress parallel to grain	$\sigma_{ m v.a.\parallel}$	$V_{\parallel.sls}/A$	0.38	N/mm ²
Permissible shear stress	$\sigma_{v,adm, }$	$K_2.K_3.K_5.K_{7.}K_8.\sigma_{v.g.\parallel}$	0.66	N/mm ²
Unity Factor :	$\sigma_{\rm v.a. } / \sigma_{\rm v.adm. }$	0.57	< 1.0	✓

therefore timber is adequate in shear where notched at bottom at support

Support at End 1 - Existing External Wall

N.T.S.

Factored reaction	R ₁	=	6.9	kN
Padstone width & length of bearing	B _{pad}	=	100	mm
Width of beam	В	total width of timbers	141	mm
Thickness of wall	t	=	100	mm
Compressive strength of masonry		=	7.0	N/mm ²
Mortar type		from Table 1	M2/(iv)	
Characteristic compressive strength	f _k	from Table 2	2.4	N/mm ²
Partial safety factor for material strength	γ_{m}	from Table 4	3.5	
Increased local stress factor	$\gamma_{ m local}$	from Figure 4	1.0	
Local design bearing strength	σ_{local}	$f_k.\gamma_{local}/\gamma_m$	0.7	N/mm ²
Minimum padstone length required	L _{min}	$R_1/t.\sigma_{local}$	100	mm
		< width of beam s	o padstone	not required

Summary

Timber -	3 No. 47 wide x 175 deep Grade C24		
Bolts -	M12 @ 350) c/c maximum throughout length	
Maximum clear span -	2,650	mm	
Maximum deflection under live load -	2.9	mm	
Maximum deflection under total load -	4.7	mm	

Support at End 1 on Existing External Wall

Provide 100 direct bearing (no padstone necessary)

59 STRAND STREET SANDWICH Trimmer - design

EPS Design 🌀

Support at End 2 on Trimming Beam

Reaction - dead	(unfactored)	R _G	from analysis	1.7	kΝ
Reaction - live	(unfactored)	R _Q	from analysis	2.8	kΝ
Reaction - total	(unfactored)	R ₂	from analysis	4.5	kΝ
Reaction - total	(factored)	R ₂	from analysis	6.9	kN

59 STRAND STREET SANDWICH Trimming Joist - analysis

EPS Design 🕥

Arrangement and Loading

Schematic arrangement. Not to scale. See below for derivation and distribution of loading

w1	P S		w2		Not to scale P = point load w = u.d.l.	
End 1, Existing External Wall		End 2,	I Existing Exter	nal Wall		
Distance to P and end of w1 (from End 1) Clear Span Effective Span		x S _c S	2.50 3.60 3.75	m m m		
Loading Load factor for dead loads Load factor for live loads		$\gamma_{\mathrm{f.G}}$	1.4 1.6			
<u>Uniformly Distributed Load w1</u> First Floor Self-weight	(kN/m ²) <u>Dead Load</u> 0.69	(kN/m ²) <u>Live Load</u> 1.5	(m) <u>Load width</u> 0.4	Proportion inc el shear 100%	(kN/m) <u>Dead UDL</u> 0.3 0.4	(kN/m) <u>Live UDL</u> 0.6
Total unfactored dead & live loads			w _{1G} 8	& w _{1Q}	0.7	0.6
Uniformly Distributed Load w2 First Floor Self-weight	<u>Dead Load</u> 0.69	Live Load 1.5	Load width 0.2	Proportion 100%	<u>Dead UDL</u> 0.1 0.4	Live UDL 0.3
Total unfactored dead & live loads			W _{2G} &	& w _{2Q}	0.6 (kN)	0.3 (kN)
Point Load P Reaction from Trimmer	from sheet	11	R _G &	& R _Q	<u>Dead PL</u> 1.7	<u>Live PL</u> 2.8
Total unfactored dead & live loads			P _G &	& P _Q	1.7	2.8

59 STRAND STREET SANDWICH Trimming Joist - analysis

EPS Design 🕥

Load Distribution

Unfactored distributed loads (kN/m) and point loads (kN)

Design Forces

(factored)

Point of contraflexure is at P

From analysis -	Dead	Live	То	otal	
		unfactored		factored	
Maximum bending moment -	-	-	-	8.6	kNm
Equivalent uniform load -	-	6.4	12.1	-	kN
Maximum shear -	-	-	-	7.7	kN
Reaction at Existing External Wall -	1.9	2.0	3.9	5.9	kN
Reaction at Existing External Wall -	2.3	2.7	5.0	7.7	kN

59 STRAND STREET SANDWICH Trimming Joist - design	EPS Design	0		J127 Nov 23 Rev -
Analysis Results at SLS (unfactored)				
Maximum bending moment	M _{sls}	M / $\gamma_{\rm f.av}$	5.7	kNm
Maximum shear	V _{sls}	V / $\gamma_{\rm f.av}$	5.1	kN
Reaction at End 1	R _{1.sls}	$ m R_{1}$ / $\gamma_{ m f.av}$	3.9	kN
Reaction at End 2	R _{2.sls}	$ m R_2$ / $\gamma_{ m f.av}$	5.1	kN
Load duration			Long	
Trial Section				
Try a timber beam as detailed below				
Number of timbers	Ν	=	4	
Width of each timber	b	=	47	mm
Timber depth	d	=	175	mm
Timber grade		=	C24	
Bolt diameter	Φ	=	12	
<u>Lateral Support</u> Ends held in position				
Maximum depth to breadth ratio	λ_{max}	from Table 19	3	
Actual depth to breadth ratio	λ_{act}	d / N.b	0.9	< λ_{\max} 🖌
Material Properties and Modification Factors				
Grade stress, bending parallel to grain	$\sigma_{m.g.\parallel}$	=	7.5	N/mm ²
Grade stress, compression perpendicular to gra	in	=	2.4	N/mm ²
Grade stress, shear parallel to grain	$\sigma_{v.g.\parallel}$	=	0.71	N/mm ²
Modulus of elasticity (minimum)	E	=	7,200	N/mm ²
Service class		=	1 or 2	
Load duration factor	K ₃	=	1.0	
Depth factor	K ₇	(300/d) ^{0.11}	1.06	
Load sharing factor	K ₈	=	1.1	
Modulus of elasticity factor	K ₉	=	1.24	
Service factor	K ₂	=	1.0	
Bending				
Maximum bending moment	Mele	from above	5.7	kNm
Elastic modulus	Z	N.b.d ² /6	960	cm ³
Maximum bending stress	σ_{mall}	M _{sls} /Z	5.9	N/mm ²
Permissible bending stress	o m adm ∥	K ₂ .K ₃ .K ₇ K ₈ .σ _{mall}	8.8	N/mm ²
Unity Factor :	$\sigma_{m,a,\parallel}/\sigma_{m,adm}$	0.68	< 1.0	✓
	a, m.aom,			

therefore timber is adequate in bending

59 STRAND STREET SANDWICH Trimming Joist - design	EPS Design	0		J127 Nov 23 Rev -
Deflection				
Equivalent uniform live load (unfactored)	$W_{E,Q}$	from above	6.4	kN
Second moment of area	I	N.b.d ³ /12	8,396	cm ⁴
Maximum deflection due to live load	$\delta_{max,Q}$	5.W _{E.Q.} S³/384.E.I.K _{2.} K ₉	5.9	mm
Acceptable deflection	$\delta_{adm.Q}$	0.003.S	11.3	mm
Unity Factor :	$\delta_{\max,\mathbf{Q}} / \delta_{\operatorname{adm},\mathbf{Q}}$	0.52	< 1.0	1
		therefore	e live load de	flection O.K.
Equivalent uniform total load (unfactored)	$W_{E,T}$	from above	12.1	kN
Maximum deflection due to total load	$\delta_{max.T}$	5.W _{E.T.} S ³ /384.E.I.K _{2.} K ₉	11.1	mm
Acceptable deflection	$\delta_{adm.T}$	0.003.S	11.3	mm
Unity Factor :	$\delta_{\rm max.T}/\delta_{\rm adm.T}$	0.99	< 1.0	✓
		there	fore total de	flection O.K.
<u>Bearings</u>				
Maximum reaction (unfactored)	R _{sls}	max of R _{1.sls} & R _{2.sls}	5.1	kN
Minimum width available for bearing	L _{bearing}	=	100	mm
Bearing stress	∽ _{c.a,⊥}	R _{sls} /N.b.L _{bearing}	0.3	N/mm ²
Permissible compressive stress	$\sigma_{ m c,adm,\perp}$	K₂.K₃.K _{7.} K ₈ .σ _{c.g.⊥}	2.8	N/mm ²
Unity Factor :	$\sigma_{\rm c.a,\perp} / \sigma_{\rm c.adm,\perp}$	0.10	< 1.0	✓
		therefore timber is a	adequate in c	compression
Maximum shear parallel to grain	V _{.sls}	R _{sls} .3/2	7.7	kN
Cross-sectional area after deduction for bolt ho	les A	N.b.d - Ν.b.Φ.1.1	30,418	mm ²
Shear stress parallel to grain	$\sigma_{v.a.\parallel}$	V _{∥.sls} /A	0.25	N/mm ²
Permissible shear stress	⁽ ∕,adm,∥	$K_{2}.K_{3}.K_{7.}K_{8}.\sigma_{v.g.\parallel}$	0.83	N/mm ²
Unity Factor :	$\sigma_{\rm v.a.\parallel} / \sigma_{\rm v.adm.\parallel}$	0.31	< 1.0	1
		therefore tin	nber is adequ	uate in shear
Allow for notching of top edge at supports -				
Beam depth	d	from above	175	mm
Maximum percentage of beam notched	β	=	20	%
Maximum depth of notch	Z	β.d	35	mm
Remaining beam depth	h	d - z	140	mm
Cross-sectional area after deducting bolt holes	А	N.b.h - Ν.b.Φ.1.1	23,838	mm ²
Length of notch from face of support	а	=	25	mm
Notching factor	K ₅	(d(h-a)+a.h) / h ²	1.21	(1.0 min)
Shear stress parallel to grain	$\sigma_{v.a.\parallel}$	V _{.sls} /A	0.32	N/mm ²
Permissible shear stress	$\sigma_{ m v,adm, }$	$K_{2}.K_{3}.K_{5}.K_{7.}K_{8}.\sigma_{v.g.\parallel}$	1.0	N/mm ²
Unity Factor :	$\sigma_{\rm v.a.\parallel} / \sigma_{\rm v.adm.\parallel}$	0.32	< 1.0	✓
ti	nerefore timber is a	dequate in shear where r	notched at to	p at support
Allow for notching of bottom edge at supports -				
Maximum percentage of beam notched	β	=	20	%
Maximum depth of notch	z	β.d	35	mm
Remaining beam depth	h	d - z	140	mm
Cross-sectional area after deducting bolt holes	А	N.b.h - Ν.b.Φ.1.1	23,838	mm ²
Notching factor	K ₅	h / d	0.80	

59 STRAND STREET SANDWICH Trimming Joist - design	EPS Design		J127 Nov 23 Rev -	
Shear stress parallel to grain	$\sigma_{v.a.\parallel}$	V _{.sls} /A	0.32	N/mm ²
Permissible shear stress	$\sigma_{\rm v,adm, }$	$K_{2}.K_{3}.K_{5}.K_{7}_{.}K_{8}.\sigma_{v.g.\parallel}$	0.66	N/mm ²
Unity Factor :	$\sigma_{\rm v.a. } / \sigma_{\rm v.adm. }$	0.49	< 1.0	✓

therefore timber is adequate in shear where notched at bottom at support

Support at End 1 - Existing External Wall

Padstone H _{pad}
L _{pad}

N.T.S.

Factored reaction	R ₁	=	5.9	kN
Padstone width & length of bearing	B_pad	=	100	mm
Width of beam	В	total width of timbers	188	mm
Thickness of wall	t	=	100	mm
Compressive strength of masonry		=	7.0	N/mm ²
Mortar type		from Table 1	M2/(iv)	
Characteristic compressive strength	f _k	from Table 2	3.5	N/mm ²
Partial safety factor for material strength	γ_{m}	from Table 4	3.5	
Increased local stress factor	γ_{local}	from Figure 4	1.0	
Local design bearing strength	σ_{local}	$f_k.\gamma_{local}/\gamma_m$	1.0	N/mm ²
Minimum padstone length required	L _{min}	$R_1/t.\sigma_{local}$	59	mm
		< width of beam s	o padstone	not required

Support at End 2 - Existing External Wall

www.epsdesign.co.uk

Factored reaction

59 STRAND STREET SANDWICH Trimming Joist - design	EPS Design	0		J127 Nov 23 Rev -
Width of beam	В	total width of timbers	188	mm
Thickness of wall	t	=	100	mm
Compressive strength of masonry		=	7.0	N/mm ²
Mortar type		from Table 1	M2/(iv)	
Characteristic compressive strength	f _k	from Table 2	3.5	N/mm ²
Partial safety factor for material strength	γ_{m}	from Table 4	3.5	
Increased local stress factor	γ_{local}	from Figure 4	1.0	
Local design bearing strength	σ_{local}	$\mathbf{f_k.} \gamma_{\mathbf{local}} / \gamma_{\mathbf{m}}$	1.0	N/mm ²
Minimum padstone length required	L _{min}	$R_2/t.\sigma_{local}$	77	mm
		< width of beam s	o padstone	not required

Summary

Timber -	4 No. 47 w	ide x 175 deep Grade C24
Bolts -	M12 @ 350	c/c maximum throughout length
Maximum clear span -	3,600	mm
Maximum deflection under live load -	5.9	mm
Maximum deflection under total load -	11.1	mm

Support at End 1 on Existing External Wall

Provide 100 direct bearing (no padstone necessary)

Support at End 2 on Existing External Wall

Provide 100 direct bearing (no padstone necessary)