

Project Title

Report to Discharge Drainage Related Planning Condition

At

Land at Buckley Street

Lees

Oldham

OL4 5AS

For

Bentley Living

PG Consulting 108 Ack Lane West Cheadle Hulme Cheshire SK8 7ES

Tel:07710 758971Mail:Paul@pgcl.co.ukPaul Graveney Consulting Ltd Trading as PG Consulting
Company Registration 11238546

Document Management

Project No.:	PGC 788
Report No.:	PGC788-RP-C-001
Project Name:	Buckley Street, Oldham.
Report Title:	Report to Discharge Drainage Related Planning Condition
Issue:	1
Status:	Final
Prepared By:	Paul Graveney BEng, CEng, MICE

Document Revision

Issue	Status	Author	Approved	Date
1	Final	Paul Graveney	Paul Graveney	31/10/23

Distribution

Issue	Organisation	Quantity
1	BL/HNA	1

This report is the property of Paul Graveney Consulting Ltd and is confidential to the client designated in the report. Whilst it may be shown to their professional advisers, the contents are not to be disclosed to, or made use of, by any third party, without our express written consent. Without such consent we can accept no responsibility to any third party.

Paul Graveney Consulting Ltd certify that they have carried out the work contained herein with due skill, care and diligence to their best belief and knowledge based on the time and information available.

This report is made on behalf of Paul Graveney Consulting Ltd. By receiving it and acting on it, the client – or any third party relying on it – accepts that no individual is personally liable in contract, tort or breach of statutory duty or otherwise (including negligence).

Paul Graveney Consulting Ltd

CONTENTS

1.0	Introduction	4
2.0	Drainage Strategy	5
2.1	Existing Drainage	5
2.2	Existing Runoff	5
2.3	Existing Geology	6
2.4	Hydrological Assessment	6
2.5	SuDS Hierarchal Approach	6
2.6	Surface Water Drainage Strategy	6
2.7	Foul Flows	7
2.8	Maintenance	7
3.0	Drainage Related Planning Condition and Responses	12
3.1	Planning Conditions	12

Appendix A: PG Consulting Drainage GA

Appendix B: Hydraulic Calculations

1.0 Introduction

- 1.1 In November 2020 a planning application was submitted to Oldham Council for the Erection of four no. residential houses with associated parking and landscaping on land at Buckley Street, Lees, Oldham, OL4 5AS.
- 1.2 Planning approval, ref FUL/345895/20 was granted in June 2021 that included a planning condition relating to the drainage of the development.
- 1.3 This report has been prepared to remove this condition; Number 5.

2.0 Drainage Strategy

2.1 Existing Drainage

- 2.1.1 A review of the United Utilities adopted sewer records has identified no public sewers passing through the site.
- 2.1.2 Within Buckley Street to the west of the site there is a 450mm diameter combined water sewer at2.8m depth flowing north into West Street. Refer to Figure 1 below.
- 2.1.3 No accessible surface water sewers have been identified in close proximity.
- 2.1.4 The site itself is unmade with no positive drainage.

Figure 1: United Utility Sewer Records

2.2 Existing Runoff

2.2.1 The site area is currently unmade and so is considered to be greenfield for drainage purposes. The greenfield rates have been calculated in the table below.

	Area (m²)	1 year	Qbar	30 year	100 year
Greenfield Runoff Rates	920	0.6 l/s	0.7 l/s	1.1 l/s	1.4 l/s

Figure 2: Existing Greenfield Runoff Rates

2.2.3 Based on the findings above, the greenfield flow rate is too low and thus a peak flow rate not exceeding 5l/s will be applied in line with UU guidance.

2.3 Existing Geology

- 2.3.1 A review of the British Geological Survey (BGS) desk-based data would indicate the superficial geology to encompass Till, Devensian silts and clay. This is supported by a local BGS borehole.
- 2.3.1 Due to the depth of identified clay, it has been concluded that infiltration is not a viable method for surface water management.

2.4 Hydrological Assessment

- 2.4.1 The closest identified watercourse is the River Medlock, located some 160m west of the site beyond 3rd party land.
- 2.4.2 Due to this distance, need to cross 3rd party land and to pump, this option has been discounted.

2.5 SuDS Hierarchal Approach

2.5.1 Based on the existing drainage configuration, plus an assessment of the local site conditions, the SuDS hierarchal approach for discharge of surface water at the development site is considered in detail below:

Method	Suitability	Suitability for Development
Infiltration to Ground	No	Investigations have confirmed the underlying ground to encompass clays to depth. In light of these findings infiltration is not considered to be suitable.
Connection to Watercourse	No	No watercourse in close proximity.
Connection to Surface Water Sewer	No	No surface water sewer in close proximity
Connection to Combined Water Sewer	Yes	New connection to combined water sewer immediately to the north west of the site.

Figure 3: SuDS Hierarchal Approach

2.6 Surface Water Drainage Strategy

2.6.1 The general principal of the surface water drainage strategy is to collect the runoff from the roof of the new residential building, and direct it to a number of RWPs. These will then drop down to a new private surface water network that will flow north along the rear elevations and outfall to the existing 450mm combined sewer manhole to the north west of the site. The flows will be restricted to 5l/s by the inclusion of a hydrobrake flow control within the last chamber. Due to this restriction, attenuation will take the form of a small online geocellular tank.

2.6.2 A hydraulic model has been simulated within the Microdrainage design software and confirms that no flooding will occur up the extreme 100 year + 45% CC storm event. The drainage GA can be found in Appendix A with the calculations in Appendix B. The post development peak runoff rates from the model can be identified in Figure 4 below.

	1 year	30 year	100 year + 45% CC
Post Development Peak Runoff Rates	3.0 l/s	5.0 l/s	5.0 l/s

Figure 4: Post Development Peak Runoff Rates

2.7 Foul Flows

2.7.1 Foul flows generated by the new development will discharge via a new below ground foul drainage network and outfall to the same combined sewer.

2.8 Maintenance

- 2.8.1 This section is intended to give an overview of the operation and maintenance for the drainage features included with the drainage strategy and in relation to typical details. Where proprietary products are specified, the manufacturer's instructions and recommendations should be followed in priority to this document unless specifically noted otherwise due to project constraints. The recommended operations and frequencies are typical only and should be more frequent initially to ensure that there are no unforeseen issues with the operation and then adjusted to suit the site requirements.
- 2.8.2 There are three types of maintenance activities associated with surface water drainage systems. The SuDS Manual, CIRIA C753, defines these as:
 - Regular Maintenance 'basic tasks undertaken on a frequent and predictable schedule' including vegetation management, litter and debris removal, and inspections.'
 - Occasional Maintenance 'tasks that are likely to be required periodically, but on a much less frequent and predictable basis than the routine tasks (sediment removal is an example.'
 - Remedial Maintenance 'intermittent tasks that may be required to rectify faults associated with the system, although the likelihood of faults can be minimised by good design. Where remedial work is found to be necessary, it is likely to be due to site-specific characteristics or unforeseen events, and as such timings are difficult to predict.'
- 2.8.3 Specific maintenance needs should be monitored, and maintenance schedules adjusted to suit the location and condition of the drainage feature in question.

Operation and	SuDS Component			
Maintenance Activity	Piped Network / Inspection Chambers	Flow Controls	Attenuation Storage Tanks	
Regular Maintenance				
Inspection			•	
Litter and debris removal	• •			
	Occasional Maintenance			
Sediment management ¹			•	
Remedial Maintenance				
Structure rehabilitation / repair				
■ Wi ¹ Sediment should be collected and	Il be required De May managed in pre-treatn	be required. nent systems, upstrean	n of the main device.	

Figure 5: Extract from The SuDS Manual Table 32.1: Typical key SuDS components operation and maintenance activities.

2.8.4 Piped Networks, Inspection, Manhole and Catchpit Chambers

The appropriate health and safety equipment must be used when accessing manholes. Confined space certificates must be held by any personnel entering a manhole and the appropriate permits should be obtained where required.

Pipes are proprietary products, and the materials can vary across the site and as such where used the manufacture's recommendations should be followed.

Pipes are intended to be the main conveyance across the development and where oversized they form the attenuation volume required by the limitation of the discharge rate. They are intended to be dry except for during rainfall events. These have been designed to be self-cleaning where possible for smaller diameter pipes, and for larger diameters the risk is reduced due to the overall pipe size.

Access for maintenance is provided through access chambers and manholes.

Regular inspection and maintenance are important to identify areas which may have been obstructed / clogged and may not be drainage correctly thus exposing the development to a greater level of flood risk.

Maintenance Schedule	Required Action	Typical Frequency
Regular	Inspect and identify any features that are not operating correctly. If required, take remedial action	Monthly for three months, then six monthly
Maintenance	Debris removal from catchment surface / gratings (where may cause risks to performance)	Monthly (and after large storms)
	Remove sediment from trapped sumps, manholes and catchpits.	Annually or as required
Remedial Maintenance	Repair / rehabilitation of gratings, inlets and outlets	As required
Monitoring	Inspect / check all gratings, trapped sumps, manholes and catchpits to ensure that they are in good condition and operating as designed	Annually and after large storm events
Structure Rehabilitation / Repair	Regular Maintenance and Monitoring to identify if repair and / or replacement of features or pipework is required.	As required

Figure 6: Operation and Maintenance Requirements of Piped Networks and Inspection Chambers

2.8.5 Flow Control Units

The flow control units are intended for flood control and flow restriction.

The flow control is specified as an orifice plate and is a proprietary product; therefore, manufacturer's recommendations should also be taken into consideration.

Access for maintenance has been provided by locating within manhole chambers.

Maintenance Schedule	Required Action	Frequency
Monitoring (to be undertaken more regularly within the first year of operation and adjusted as required).	Inspect inlets for blockages, and clear if required. If faults persist jetting and CCTV survey may be required.	Monthly and after large storms.
	Inspect and identify any areas that are not operating correctly. If required, take remedial action.	Monthly for 3 months, then six monthly.
Regular maintenance	Debris removal from catchment surface (where may cause risks to performance).	Monthly
	Remove sediment from pre- treatment structures and flow control chambers.	Annually (or as required after heavy rainfall events)
Remedial Actions	Repair/rehabilitation of inlets.	As required.

Figure 7: Operation and Maintenance Requirements for Flow Controls

2.8.6 Attenuation storage tanks

Attenuation storage tanks are used to create a below ground void space for the temporary storage of surface water before controlled release. The flexibility in size and shape of the tanks mean that they can be tailored to suit the specific characteristics of any site. The main benefits are their high storage volume and the potential for installation beneath roads and car parks.

Attenuation Storage Tanks should be designed to prevent or minimise the risk of sediment ingress into the tank systems. An off-line storage system will be used on this scheme as they are less prone to sedimentation, a sediment sump will also be included immediately upstream of the tank.

Maintenance Schedule	Required Action	Frequency
	Inspect and identify any areas that are not operating correctly	Monthly for 3 months, then annually
Regular Maintenance	Remove debris from the catchment surface	Monthly
Maintenance	Inspect inlets, outlets and overflow for blockages, and clear if required	Monthly
Occasional Maintenance	Remove sediment from pre-treatment structures and/or internal forebays	Annually, or as required
Remedial Actions	Repair/rehabilitate inlets, outlet, overflows and vents	As required
	Survey inside of tank for sediment build-up and remove if necessary	As required

Figure 8: Operation and Maintenance Requirements for Attenuation Storage Tanks

3.0 Drainage Related Planning Condition and Responses

3.1 Planning Conditions

3.1.1 The detailed planning conditions are listed below in *italics* with the PG Consulting response in Blue below.

Condition 5

Prior to the commencement of any part of the development hereby approved, details of the method of surface water and foul water drainage from the site shall be submitted to and approved in writing by the Local Planning Authority. The approved details shall be implemented in full prior to first occupation of the approved development and shall be maintained thereafter.

Refer to the drainage GA in Appendix A and the hydraulic calculations in Appendix B. No overland flooding has been indicated from the hydraulic modelling.

A peak discharge rate of 5I/s will be applied. This is considered the minimum rate to prevent blockage. The Drainage GA indicates the attenuation location, with the volume defined in the calculations.

Appendix A – PG Consulting Drawing

PGC 788-C-001: Drainage GA

DRAINAGE NOTES

- 1. THE CONTRACTOR IS RESPONSIBLE FOR THE CONFIRMATION OF PGC.
- WITHOUT PERMISSION OF PGC.
- 4. FOR DETAILS OF WORKMANSHIP AND MATERIALS REFER TO THE CURRENT AT THE TIME OF THE WORK.
- ADEQUATE PROTECTION IS TO BE PROVIDED TO MAINTAIN DURING CONSTRUCTION.
- AS CONFIRMED BY THE ARCHITECT.
- PIPE JOINT.
- LEVELS ARE FOR THE OUTGOING PIPE WITH THE SUMP LEVEL SPECIFIED SEPARATELY.
- ALL PIPEWORK WITHIN MANHOLES ARE TO BE LAID SOFFIT TO 9 SOFFIT (U.O.N). ALL CHAMBER INVERT LEVELS ARE FOR THE OUTGOING PIPE LEVELS. BACKDROP PIPEWORK SHALL BE LEVEL SPECIFIED.
- THE LOWEST PIPE WITHIN THE BENCHING ARRANGEMENT.
- BS EN 124 AND THE FOLLOWING: VEHICULAR AREAS: CLASS D400 (E600 IN SERVICE YARD
 - SURFACE WATER DRAINAGE.
- OR SW FOR FOUL OR SURFACE WATER DRAINAGE.
- 13. ALL BRICKWORK IN CONNECTION WITH DRAINAGE IS BE SOLID
- 14. ALL INSITU CONCRETE TO BE GEN3 UNLESS SPECIFIED OTHERWISE.
- 15. DRAINAGE CHANNELS ARE TO BE ACO MD SYSTEM C/W APPROVAL.
- GULLIES SHALL BE TO BS 5911 AND BE KITEMARKED.
- 17. VITRIFIED CLAY PIPES TO CONFORM TO BS EN 295 MANUFACTURER: HEPWORTH SUPERSLEEVE; 100/150mmØ -40 kN/m 225mmØ -45 kN/m
- 300mmØ -72 kN/m
- 19. UPON COMPLETION OF THE WORKS, ALL THE DRAINS SHALL BE CLEANED BY JETTING, REMOVING ALL DEBRIS FROM SITE. NO SYSTEM.
- 20. UPON COMPLETION OF THE WORKS THE CONTRACTOR SHALL SURVEY THE WORKS AND PROVIDE A SUITABLY 'MARKED-UP' DRAWINGS FOR ' RECORD' PURPOSES'.

ALL POSITIONS AND LEVELS OF EXISTING DRAINS, SEWERS AND MANHOLES PRIOR TO THE COMMENCEMENT OF THE PROPOSED WORKS AND ANY DISCREPANCIES REPORTED IMMEDIATELY TO

2. ALL PRIVATE DRAINAGE WITHIN THE SITE IS TO COMPLY WITH THE REQUIREMENTS OF BS EN 752 AND BUILDING REGULATIONS PART

3. NO DEVIATION FROM THE CONTENT OF THIS DRAWING IS ALLOWED

SPECIFICATION, BUILDING REGULATIONS AND BRITISH STANDARDS

INTEGRITY OF THE EXISTING SERVICES AND PROPOSED WORKS

6. COVER LEVELS ARE PROVISIONAL AND THE FINAL LEVEL SHOULD BE ADJUSTED AND SET TO SUIT THE PROPOSED FINISHED LEVELS

CONCRETE SURROUND IS TO BE PROVIDED TO ALL DRAINS WITH A COVER OF LESS THAN 1.2m OF THE FINISHED GROUND LEVEL IN HIGHWAY AREAS OR WITHIN 0.6m IF WITHIN LANDSCAPED AREAS. AN EXPANSION JOINT IS TO BE PROVIDED AT EACH AND EVERY

ANY GRADIENTS OF DRAINS INDICATED ARE INDICATIVE ONLY AND THE CONTRACTOR SHALL INSTALL THE DRAINS TO THE SPECIFIED LEVELS SHOWN FOR EACH MANHOLE (U.O.N). CATCHPIT INVERT

CONNECTED AT SOFFIT TO SOFFIT WITH THE RODDING ACCESS

10. ALL INVERT LEVELS PROVIDED FOR 475mm PPIC CHAMBER ARE TO

11. MANHOLE COVERS AND FRAMES ARE TO BE IN ACCORDANCE WITH

LOCATIONS), DOUBLE TRIANGULAR, 150mm DEEP DUCTILE IRON COVER AND FRAME WITH THREE POINT COVER SEATING, (NON-ROCK DESIGN) BADGED FW OR SW FOR FOUL OR

• PEDESTRIAN AREAS: CLASS B125, 100mm DEEP, BADGED FW IF COVERS ARE REQUIRED TO BE RECESSED A HOWE GREEN 1050 HEAVY DUTY, STAINLESS STEEL EDGE, EXTERNAL USE, 100mm RECESS OR SIMILAR APPROVED SHALL BE USED.

12. REFER TO ARCHITECT'S DRAWING FOR RWP'S/WPC'S POP UP SIZES. ALL REST BENDS ARE ASSUMED TO BE 100Ø.SET 600mm BELOW SSL, UNLESS OTHER SPECIFIED. THE CONTRACTOR SHALL ALLOW FOR SUITABLE VIKING JOHNSON ADAPTORS/COUPLINGS FOR JOINTING THE DIFFERENT PIPE MATERIALS/PIPE SIZES.

ENGINEERING BRICK CLASS B TO BS 3921.

'HEELGUARD' GRATES OR 'BRICKSLOT' TO LANDSCAPE ARCHITECT

16. ALL PRECAST CONCRETE PIPES, CHAMBER PRODUCTS AND ROAD

AND BE SUPPLIED WITH EPDM SEALING RINGS AS STANDARD.

18. PLASTIC PIPEWORK IS ACCEPTABLE AND SHALL BE CONSTRUCTED IN ACCORDANCE WITH THE MANUFACTURERS RECOMMENDATIONS

DEBRIS SHALL BE PERMITTED TO ENTER THE EXISTING DRAINAGE

GENERAL NOTES

- DRAWINGS ARE TO BE READ IN CONJUNCTION WITH ALL RELEVANT SPECIFICATIONS, ENGINEERS, ARCHITECTS & SERVICES DRAWINGS, INCLUDING APPROVED BUILDERS WORK DRAWINGS. CONTRACTOR TO NOTIFY ENGINEER OF DISCREPANCIES BETWEEN STRUCTURAL DRAWINGS AND SPECIFICATIONS OR OTHER DRAWINGS.
- ALL DIMENSIONS ARE IN MILLIMETRES UNLESS NOTED 2 OTHERWISE.
- DETAILS OF EXISTING SEWERS SHALL BE CONFIRMED BY 3. THE CONTRACTOR ON SITE PRIOR TO THE COMMENCEMENT OF WORKS. ANY DISCREPANCIES ARE TO BE REPORTED TO THE ENGINEER IMMEDIATELY. THE CONTRACTOR SHOULD CHECK THE LEVELS OF ALL NEW OUT FALLS IN RELATION TO EXISTING SEWERS PRIOR TO ANY CONSTRUCTION TO ENSURE THE PROPOSED DESIGN CAN BE ACHIEVED.
- DO NOT SCALE FROM THIS DRAWN, WORK TO DIMENSIONS OR COORDINATES PROVIDED. ALL LEVELS ARE IN MILLIMETRES, UNLESS OTHERWISE NOTED. ANY AMBIGUITIES, OMISSIONS AND ERRORS ON DRAWINGS SHALL BE BROUGHT TO THE ATTENTION OF THE ENGINEER IMMEDIATELY.

KEY

		EXISTING COMBINED WATER PUBLIC SEWER
- L.		PROPOSED FOUL WATER DRAINAGE
		PROPOSED SURFACE WATER DRAINAGE
		PROPOSED COMBINED WATER DRAINAGE
		SITE BOUNDARY
l	RWP	RAINWATER PIPE
	WPC	WASTE POINT CONNECTION (FOUL)
l	DC	DRAINAGE CHANNEL
	BIG	BACK INLET GULLY

NOTE ALL RWP AND SVP LOCATIONS TO BE CONFIRMED BY OTHERS

ALL PIPEWORK TO BE 100Ø UNLESS NOTED OTHERWISE

								I	
P2 P1	30.10.23 08.06.23	PG PG	PG PG	SITE PLAN PRELIMINA	UPDAT ARY ISS	ED UE			
CLIE			ENG.	VING					
PRO	BU LE	CKLI ES, C	EY S ⁻ DLDH	TREET, AM					
DRA		RAINA	AGE	GA PLA	N				
DRAV	VING STATUS		INF	ORMAT	ION				
SCAL	^ב 1:125	5	DRAWN E	PG	ENGINEEF	PG		SHEET A1	
PGC788-C-001 P2									
	DC Consulting108 Ack Lane West, Cheadle Hulme, Cheshire, SK8 7ESCivil & Infrastructure EngineersTel: Email: paul@pgcl.co.uk								

Appendix B – Hydraulic Calculations

											Pag	e 1
				В	uckle	y Str	eet					
				S	urfac	e Wat	er Net	twork	_		4	A
				V	2 30.	10.23					MA	- Um
Date 30/	/10/202	23		D	esign	ed by	paulo	7				
File Buc	ckley S	Street	– SW Ne	et C	hecke	d by		-				ainage
Innovyze) 			N	etwor	k 201	7.1.2					
	2	STORM S	SEWER DE	SIGN by	v the	Modif	ied R	atior	nal N	Methoo	<u>l</u>	
			De	esign C	riter	ia foi	r Stor	rm				
			Pipe Siz	es STAND	ARD Ma	anhole	Sizes	STAND	ARD			
			FSR Ra	ainfall M	iodel -	- Engla	nd and	Wales	5			
		Return	Period (years)	2				<u>.</u>		PIMP (%	;) 100
			M5-60 R;	0 (mm) ⊥≀ atio R (8.900 0.301		Add F Min	'LOW / imum	Backd	hate Ch drop He	ange (% ight (m	(1) 0.200
	Max	kimum Ra	infall (r	mm/hr)	50		Max	imum	Backc	drop He	ight (m	n) 1.500
Maximum	Time of	f Concen	ntration	(mins)	30	Min Des	sign De	epth f	or Op	otimisa	tion (m	n) 1.200
	No.	Foul S	Sewage (1,	/s/ha) (Caaff	0.000	Min	Vel fo	or Aut	o Des	sign on	ly (m/s	a) 1.00
	V O _	L UIIIE L L L C	, RUHOLL (COGIT. (0.750	141	п этор	e ior	υριι	.misdtl	011 (1:3	, 500
				Designed	with	Level S	Soffits	:				
			Ti	mo Area	Diad	ram fo	or Sto	rm				
			<u></u>		Diag	I GIII I C	JI DCC	<u> </u>				
				Time	Area	Time	Area					
				(mins)	(ha)	(mins)	(ha)					
				0-4 (0.033	4-8	0.007					
					I							
			Total	l Area Co	ntribu	iting (ha) = (0.040				
			Τc	otal Pipe	volun	ne (m³)	= 0.83	34				
			Notu	torit Doc	ign 7	Table	for C	torm				
			Netw	IOIK Des	sign i	ladie	101 5	LOIM				
PN L	ength 1	Fall Sl (m) (1	ope I.Are	ea T.E.	B) Flow	ase (1/s)	k (mm)	HYD	DIA (mm)	Section	on Type	Auto
	(111)	() (1) (11113)	, 110w	(1/3)	(DECI	(Design
1.000	9.000 0	.110 8	1.8 0.00	03 4.00	0	0.0	0.600	0	100	Pipe/	Conduit	đ
1.001	7.000 0).080 8	1 0 0 0		0	0.0	0.600	0	100	Pipe/	Conduit	ď
1 003	7 000 0	0.110 8	7 5 0 01) 1	0.0	0.800	0	100	Pipe/	Conduit	u A
1.004	9.000 0).110 8	1.8 0.00	03 0.00	0	0.0	0.600	0	100	Pipe/	Conduit	e e
1.005	7.000 0	.080 8	7.5 0.0	07 0.00	0	0.0	0.600	0	150	Pipe/	Conduit	e e e e e e e e e e e e e e e e e e e
1.006 1	0.000 0	.100 10	0.0 0.0	03 0.00	0	0.0	0.600	0	150	Pipe/	Conduit	ð
				NT - 1		1						
				Networ	k Kes	UITS .	erabie					
PN	Rain (mm/hr	T.C. (mins	US/IL (m)	Σ I.Are (ha)	ea Σ Flo	Base w (1/s)	Foul (1/s)	Add (1	Flow /s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
1 000								, ,	0.0	,		
1 001	50.0 50 0	10 4.1 10 4.2	0 1/3.53		10 10	0.0)	0.0	0.80	0./ 65	0.4 1 4
1,002	50.0	0 4 4	9 173 34	0 0.0 <u>.</u> 0 0.01	13	0.0) 0.0	,)	0.0	0.85	6.7	1.8
1.003	50.0	0 4.6	4 173.230	0 0.01	20	0.0) 0.0	,)	0.0	0.82	6.5	2.7
1.004	50.0	0 4.8	1 173.150	0.02	23	0.0	0.0)	0.0	0.85	6.7	3.1
1.005	50.0	0 4.9	2 172.990	0 0.03	30	0.0	0.0)	0.0	1.08	19.0	4.1
1.006	50.0	5.0	9 172.910	0.03	33	0.0	0.0)	0.0	1.00	17.8	4.5
			(©1982-2	017 X	P Solı	utions	5				

		Page 2
	Buckley Street	
	Surface Water Network	4
	V2 30.10.23	Micco
Date 30/10/2023	Designed by paulg	
File Buckley Street - SW Net	Checked by	Diamaye
Innovyze	Network 2017.1.2	

Network Design Table for Storm

PN	Length	Fall	Slope	I.Area	T.E.	Ba	ase	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(l/s)	(mm)	SECT	(mm)		Design
1.007	3.000	0.030	100.0	0.004	0.00		0.0	0.600	0	150	Pipe/Conduit	đ
1.008	2.000	0.020	100.0	0.000	0.00		0.0	0.600	0	150	Pipe/Conduit	ē
1.009	2.000	0.020	100.0	0.003	0.00		0.0	0.600	0	150	Pipe/Conduit	Ē
1.010	5.000	0.080	62.5	0.000	0.00		0.0	0.600	0	150	Pipe/Conduit	ď

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(1/s)	(l/s)	(m/s)	(l/s)	(1/s)
1.007	50.00	5.14	172.810	0.037	0.0	0.0	0.0	1.00	17.8	5.0
1.008	50.00	5.17	172.780	0.037	0.0	0.0	0.0	1.00	17.8	5.0
1.009	50.00	5.20	172.760	0.040	0.0	0.0	0.0	1.00	17.8	5.4
1.010	50.00	5.27	172.740	0.040	0.0	0.0	0.0	1.27	22.5	5.4

		Page 3
	Buckley Street	
	Surface Water Network	L'
	V2 30.10.23	Micro
Date 30/10/2023	Designed by paulg	
File Buckley Street - SW Net	Checked by	Diamaye
Innovyze	Network 2017.1.2	

PIPELINE SCHEDULES for Storm

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., (mm)	L*W
1.000	0	100	SW01	174.030	173.530	0.400	Open Manhole		450
1.001	0	100	SW02	174.030	173.420	0.510	Open Manhole		450
1.002	0	100	SW03	174.130	173.340	0.690	Open Manhole		450
1.003	0	100	SW04	174.130	173.230	0.800	Open Manhole		450
1.004	0	100	SW05	174.410	173.150	1.160	Open Manhole		450
1.005	0	150	SW06	174.410	172.990	1.270	Open Manhole		450
1.006	0	150	SW07	174.590	172.910	1.530	Open Manhole		450
1.007	0	150	SW08	174.540	172.810	1.580	Open Manhole		450
1.008	0	150	TANK	174.590	172.780	1.660	Open Manhole		100
1.009	0	150	SW09	174.590	172.760	1.680	Open Manhole		1200
1.010	0	150	CW01	174.540	172.740	1.650	Open Manhole		450

Downstream Manhole

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*	N
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)	
1.000	9.000	81.8	SW02	174.030	173.420	0.510	Open Manhole	450	С
1.001	7.000	87.5	SW03	174.130	173.340	0.690	Open Manhole	450	С
1.002	9.000	81.8	SW04	174.130	173.230	0.800	Open Manhole	450	С
1.003	7.000	87.5	SW05	174.410	173.150	1.160	Open Manhole	450	С
1.004	9.000	81.8	SW06	174.410	173.040	1.270	Open Manhole	450	С
1.005	7.000	87.5	SW07	174.590	172.910	1.530	Open Manhole	450	С
1.006	10.000	100.0	SW08	174.540	172.810	1.580	Open Manhole	450	С
1.007	3.000	100.0	TANK	174.590	172.780	1.660	Open Manhole	100	С
1.008	2.000	100.0	SW09	174.590	172.760	1.680	Open Manhole	1200	С
1.009	2.000	100.0	CW01	174.540	172.740	1.650	Open Manhole	450	С
1.010	5.000	62.5	sewer	174.440	172.660	1.630	Open Manhole	(С

Free Flowing Outfall Details for Storm

Outfall	Outfall	c.	Level	I.	Level		Min	D,L	W
Pipe Number	Name		(m)		(m)	Ι.	Level (m)	(mm)	(mm)

1.010 sewer 174.440 172.660 171.640 0 0

		Page 4
	Buckley Street	
	Surface Water Network	4
	V2 30.10.23	Micco
Date 30/10/2023	Designed by paulg	
File Buckley Street - SW Net	Checked by	Dialitacje
Innovyze	Network 2017.1.2	

Simulation Criteria for Storm

Volumetric Runoff Coeff 0.750Additional Flow - % of Total Flow 0.000Areal Reduction Factor 1.000MADD Factor * 10m³/ha Storage 2.000Hot Start (mins)0Hot Start Level (mm)0 Flow per Person per Day (1/per/day)Manhole Headloss Coeff (Global)0.500Run Time (mins)0Foul Sewage per hectare (1/s)0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

	Rainfall Model		FSR		Profile	Туре	Summer
Return	Period (years)		2		Cv (Su	nmer)	0.750
	Region	England	and Wales		Cv (Wi	nter)	0.840
	M5-60 (mm)		18.900	Storm	Duration (mins)	30
	Ratio R		0.301				

	P	age 5
	Buckley Street	
	Surface Water Network	4
	V_2 30 10 23	~~~
Date 30/10/2023	Designed by paulg	MICLO
File Buckley Street - SW Net	Checked by	Drainage
Innounzo	Notwork 2017 1 2	<u> </u>
111100 y 20	Network 2017.1.2	
Online	Controls for Storm	
Hydro-Brake® Optimum Manho	.e: SW09, DS/PN: 1.009, Volume (m ³)	: 2.1
Uni	Reference MD-SHE-0103-5000-1200-5000	
Desi	gn Head (m) 1.200	
Design	Flow (I/s) 5.0 Elush-Elo™ Calculated	
	Objective Minimise upstream storage	
	Application Surface	
Sun	Available Yes	
Di	ameter (mm) 103 - Level (m) 172 760	
Minimum Outlet Pipe Di	ameter (mm) 150	
Suggested Manhole Di	ameter (mm) 1200	
Control P	pints Head (m) Flow (l/s)	
Design Point (a_{1} (1) a_{2} (1) a_{2	
	Flush-Flo™ 0.354 5.0	
	Kick-Flo® 0.745 4.0	
Mean Flow over	Head Range - 4.4	
The hydrological calculations have Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised th invalidated	peen based on the Head/Discharge relations Should another type of control device oth en these storage routing calculations will	ship for the her than a L be
Depth (m) Flow (1/s) Depth (m) Flo	w (1/s) Depth (m) Flow (1/s) Depth (m) Fl	low (l/s)
0.100 3.4 1.200	5.0 3.000 7.7 7.000	11.5
0.200 4.7 1.400	5.4 3.500 8.3 7.500	11.8
0.300 5.0 1.600	5.7 4.000 8.8 8.000	12.2
	6.0 4.500 9.3 8.500 6.3 5.000 9.8 9.000	12.6
0.600 4.7 2.200	6.6 5.500 10.2 9.500	13.3
0.800 4.1 2.400	6.9 6.000 10.7	
1.000 4.6 2.600	7.2 6.500 11.1	
©1982	-2017 XP Solutions	

		Page 6
	Buckley Street	
	Surface Water Network	L'
	V2 30.10.23	Micco
Date 30/10/2023	Designed by paulg	
File Buckley Street - SW Net	Checked by	Diamaye
Innovyze	Network 2017.1.2	

Storage Structures for Storm

Cellular Storage Manhole: TANK, DS/PN: 1.008

Invert Level (m) 172.780 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m)	Area (m²)	Inf. Area (m ²)	Depth (m)	Area (m²)	Inf. Area (m ²)
0.000	6.0	6.0	5.200	0.0	13.8
0.400	6.0	9.9	5.600	0.0	13.8
0.800	6.0	13.8	6.000	0.0	13.8
0.801	0.0	13.8	6.400	0.0	13.8
1.600	0.0	13.8	6.800	0.0	13.8
2.000	0.0	13.8	7.200	0.0	13.8
2.400	0.0	13.8	7.600	0.0	13.8
2.800	0.0	13.8	8.000	0.0	13.8
3.200	0.0	13.8	8.400	0.0	13.8
3.600	0.0	13.8	8.800	0.0	13.8
4.000	0.0	13.8	9.200	0.0	13.8
4.400	0.0	13.8	9.600	0.0	13.8
4.800	0.0	13.8	10.000	0.0	13.8

								Pa	ge 7
					Buckley	Street			
					Surface	Water Net	work	4	
					V2 30.10	.23		N A	
Date 3	30/10/2	023			Designed	by paulq			ILIU
File H	Bucklev	Street	- SW N	let	Checked 1	ov.		U	rainage
Innovy					Network	2017 1 2			
1111001	120				Neework				
1 yea	ar Retu	rn Peri	od Summ	ary of	Critical	Results	by Maximun	n Level ((Rank 1)
					for Stor	rm			
		Aroal Po	duction	Sim Factor 1	ulation Cr	<u>iteria</u> itiopol Ele	w - % of To	tal Elow (000
		HC	t Start	(mins)	.000 Add	MADD Facto	or * 10m³/ha	Storage 2	2.000
		Hot St	art Leve	1 (mm)	0		Inlet Coef	fiecient (.800
M	lanhole H	leadloss	Coeff (G	lobal) O	.500 Flow	per Person	per Day (1/	per/day) (.000
	Foul Se	wage per	hectare	(l/s) 0	.000				
		Number (of Input	Hvdrogra	uphs 0 Numb	per of Stor	age Structur	res 1	
		Numbe	r of Onli	ne Contr	ols 1 Numb	per of Time	/Area Diagra	ams O	
		Number	of Offli	ne Contr	cols 0 Numb	per of Real	Time Contro	ols O	
				Creatives	ia Doinfol	1 Deteile			
		Ra	infall Mc	<u>Syntne</u> del	CIC RAINIA	<u>FSR</u> Ra	tio B 0.301		
		1(4.	Rec	ion Engl	Land and Wa	les Cv (Su	mmer) 0.750		
			M5-60 (mm)	18.	900 Cv (Wi	nter) 0.840		
	Ma	rgin for	Flood Ri	sk Warn:	ing (mm) Timester 2	5 Second T	ncrement (Fx	300.0	
			AI	DTS	S Status	5 Second 1	nerement (by	OFF	
				DVI) Status			ON	
				Inertia	a Status			ON	
			Profile	e(s)			Summer a	and Winter	
		Durati	on(s) (m:	lns)	15, 30, 60	, 120, 180	, 240, 360,	480, 600,	
	Retu	rn Perio	d(s) (vea	ars)			,20,	, 30, 100	
		Climat	e Change	(응)				0, 0, 45	
									Water
	US/MH		Return	Climate	First (X) First	(Y) First (Z) Overflow	/ Level
PN	Name	Storm	Period	Change	Surcharg	e Flood	d Overflow	w Act.	(m)
1.000	SW01 1	5 Winter	1	+0%	100/15 Sum	mer			173.546
1.001	SW02 1	5 Winter	1	+0%	100/15 Sum	mer			173.449
1.002	SW03 1	5 Winter	1	+0%	100/15 Sum	mer			173.372
1.003	SW04 1	5 Winter	1	+0%	30/15 Sum	mer			173.272
1 005	SW05 1	5 Winter	1	+0% +0%	30/15 Sum	mer			173.193
1.006	SW00 1 SW07 1	5 Winter	1	+0%	30/15 Sum	mer			172.957
1.007	SW08 1	5 Winter	1	+0%	30/15 Sum	mer			172.876
1.008	TANK 1	5 Winter	1	+0%	30/15 Sum	mer			172.872
1.009	SW09 1	5 Winter	1	+0%	30/15 Sum	mer			172.869
1.010	CWUI I	5 winter	Ţ	+Uさ					1/2./81
			Surcharg	ed Flood	led	1	Pipe	_	
	זית	US/MH	Depth	Volu	me Flow /	Overflow I	LOW	Level	
	PN	name	(m)	(m ³	, cap.	(1/5) (1/S/ STATUS	Freeded	
	1.00	00 SW01	-0.C	84 0.0	0.06		0.4 OK		
				©1982-	2017 XP S	Solutions			

		Page 8
	Buckley Street	
	Surface Water Network	<u> </u>
	V2 30.10.23	Micco
Date 30/10/2023	Designed by paulg	
File Buckley Street - SW Net	Checked by	Diamaye
Innovyze	Network 2017.1.2	

<u>1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)</u> <u>for Storm</u>

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(l/s)	Status	Exceeded
1 001	0170.0	0 071	0 000	0 1 0			0.77	
1.001	SW02	-0.0/1	0.000	0.19		1.1	OK	
1.002	SW03	-0.068	0.000	0.22		1.4	OK	
1.003	SW04	-0.058	0.000	0.36		2.1	OK	
1.004	SW05	-0.057	0.000	0.39		2.4	OK	
1.005	SW06	-0.105	0.000	0.19		3.1	OK	
1.006	SW07	-0.103	0.000	0.22		3.4	OK	
1.007	SW08	-0.084	0.000	0.35		3.8	OK	
1.008	TANK	-0.058	0.000	0.26		2.8	OK	
1.009	SW09	-0.041	0.000	0.28		3.0	OK	
1.010	CW01	-0.109	0.000	0.17		3.0	OK	

									Pag	e 9
					Buckle	y Stre	et			
					Surfac	e Wate	er Networ	rk	4	
					V2 30.	10.23				~~~
Date 3	30/10/	2023			Design	ed bv	paulg			
File F	Buckle	v Street	- SW 1	Vet	Checke	d bv	1)		Dfa	ainage
Innovy	7.e	1			Networ	k 2017	.1.2			
	20				11001101					
<u>30 yea</u>	ar Ret	urn Peri	od Sum	mary of	Criti for S	<u>cal Re</u> torm Criter	sults by	Maximum	Level (Rank 1)
Ma	anhole Foul S	Hot St. Headloss ewage per	t Start art Leve Coeff (G hectare	(mins) el (mm) Global) O e (l/s) O	0 0 0.500 F10	MADILIO MADi	D Factor I Person pe:	* 10m³/ha S hlet Coeffi r Day (l/pe	Storage 2. ecient 0. er/day) 0.	000 800 000
		Number c Number Number	of Input of Onl of Offl	Hydrogra ine Conti ine Conti	aphs 0 N rols 1 N rols 0 N	iumber o iumber o iumber o	of Storage of Time/Ar of Real Ti	Structure ea Diagram me Control	s 1 s 0 s 0	
		Rai	nfall M Re M5-60	<u>Synthe</u> odel gion Engi (mm)	<u>tic Rain</u> land and	fall De FSR Wales 18.900	etails Ratio Cv (Summe Cv (Winte	r) 0.301 r) 0.750 r) 0.840		
	M	argin for	Flood R A	isk Warn nalysis DT DVI Inertia	ing (mm) Timestep S Status D Status a Status	2.5 Se	econd Incr	ement (Ext	300.0 ended) OFF ON ON	
	Ret	Duratio urn Perioo Climate	Profil on(s) (m d(s) (ye e Change	e(s) ins) ars) (%)	15, 30,	60, 12	20, 180, 2	Summer and 40, 360, 44 720, 9 1,	d Winter 80, 600, 60, 1440 30, 100 0, 0, 45	
										Water
PN	US/MH Name	Storm	Return Period	Climate Change	First Surcha	(X) arge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Level (m)
1.000 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010	SW01 SW02 SW03 SW04 SW05 SW06 SW07 SW08 TANK SW09 CW01	15 Winter 15 Summer 15 Winter 15 Winter 10 Winter 30 Winter 30 Winter 30 Winter 30 Winter 30 Winter	30 30 30 30 30 30 30 30 30 30 30 30	+0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	100/15 : 100/15 : 30/15 : 30/15 : 30/15 : 30/15 : 30/15 : 30/15 :	Summer Summer Summer Summer Summer Summer Summer Summer				173.556 173.472 173.406 173.362 173.137 173.127 173.112 173.106 173.101 172.794
		Su	rcharge	d Flooded	đ		Pipe			
	PN	US/MH Name	Depth (m)	Volume (m³)	Flow / Cap.	Overfl (1/s	low Flow) (l/s)	Status	Level Exceeded	L
	1.000	SW01	-0.07	4 0.000	0 0.15		0.9	OK	t	
				©1982-	2017 X	P Solu	tions			

		Page 10
	Surface Water Network	4
	V2 30.10.23	Micco
Date 30/10/2023	Designed by paulg	
File Buckley Street - SW Net	Checked by	Dialitacje
Innovyze	Network 2017.1.2	

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(l/s)	Status	Exceeded
1 0 0 1	0510.0	0 040	0 000	0 54		2 1	01/	
1.001	SWUZ	-0.048	0.000	0.54		3.1	OK	
1.002	SW03	-0.034	0.000	0.65		4.0	OK	
1.003	SW04	0.032	0.000	1.02		6.0	SURCHARGED	
1.004	SW05	0.026	0.000	1.11		6.9	SURCHARGED	
1.005	SW06	-0.003	0.000	0.44		7.2	OK	
1.006	SW07	0.067	0.000	0.47		7.5	SURCHARGED	
1.007	SW08	0.152	0.000	0.74		8.0	SURCHARGED	
1.008	TANK	0.176	0.000	0.44		4.8	SURCHARGED	
1.009	SW09	0.191	0.000	0.46		5.0	SURCHARGED	
1.010	CW01	-0.096	0.000	0.28		5.0	OK	

		Su	rcharged	l Flooded	L		Pipe			
1.010	CW01	180 Summer	100	+45%						172.794
1.009	SW09	30 Winter	100	+45%	30/15	Summer				173.809
1.008	SWU8 TANK	30 Winter 30 Winter	100	+45% +45%	30/15	summer Summer				173.812
1.006	SW07	30 Winter	100	+45%	30/15	Summer				173.831
1.005	SW06	30 Winter	100	+45%	100/15	Summer				173.840
1.004	SW05	30 Winter	100	+45%	30/15	Summer				173.858
1.002	SWU3 SW04	30 Winter	100	+45% +45%	30/15	Summer Summer				173.874
1.001	SW02	15 Winter	100	+45%	100/15	Summer				173.978
1.000	SW01	15 Winter	100	+45%	100/15	Summer				173.986
PN	Name	Storm	Period	Change	Surch	arge	Flood	Overflow	Act.	(m)
,	US/MH		Return	Climate	First	(X) F	irst (Y)	First (Z)	Overflow	Water Level
		UT THUAL 6	, change	(0 /				C	, , , ₁ ,	
	Ret	climate	l(s) (yea	ars)				1,	30, 100	
		Duratio	on(s) (m	ins)	15, 30,	60, 120,	, 180, 2	40, 360, 48 720, 96	30, 600, 50, 1440	
			Profile	e(s)				Summer and	l Winter	
				Inertia	a Status				ON	
				DIS) Status) Status				ON	
		-	Ar	nalysis I	imestep	2.5 Sec	ond Incr	ement (Exte	ended)	
	Μ	Margin for	Flood Ri	isk Warni	.ng (mm)				300.0	
			M5-60	(mm)	.anu anu .	18.900 C	v (Summe v (Winte	r) 0.840		
		Rai	nfall Mo	del		FSR	Ratio	R 0.301		
				Synthet	ic Rain	fall Det:	ails			
		Number Number	of Onli of Offli	.ne Contr .ne Contr	ols 1 National Nation	umber of umber of	Time/Ar Real Ti	ea Diagrams me Controls	s 0 s 0	
		Number o	f Input	Hydrogra	phs 0 N	umber of	Storage	Structures	5 1	
	Foul	Sewage per	hectare	(l/s) 0	.000	1	1	1 () [-	<u>,</u> , ,,	
Ma	anhole	Hot Sta Headloss (art Leve Coeff (G	l (mm) lobal) O	0 .500 Flc	ow per Pe	Ir erson pei	nlet Coeffi 2 Day (l/pe	ecient 0. r/day) 0.	800 000
		Hot	: Start	(mins)	0	MADD	Factor '	* 10m³/ha S	torage 2.	000
		Areal Red	duction	<u>Sim</u> Factor 1	ulation	Criteria Additiona	<u>a</u> al Flow -	- % of Tota	l Flow 0.	000
				1) for	Storm				
<u>100 y</u>	year H	Return Pe	riod S	ummary	of Crit	cical Re	esults	by Maximu	um Level	(Rank
Innovy	ze				Networl	k 2017.	1.2			
File B	Buckle	ey Street	- SW N	let	Checke	d by				mage
Date 3	80/10/	2023			Designe	ed by p	aulg			
					V2 30.3	10.23			Mig	
					Surface	e Water	Networ	r k	4	~
					Buckley	y Stree	t			
									Page	e 11

		Page 12
	Surface Water Network	L.
	V2 30.10.23	Micco
Date 30/10/2023	Designed by paulg	
File Buckley Street - SW Net	Checked by	Diamaye
Innovyze	Network 2017.1.2	

100 year Return Period Summary of Critical Results by Maximum Level (Rank <u>1) for Storm</u>

	119 /MH	Surcharged	Flooded	Flow /	Overflow	Pipe Flow		Level
PN	Name	(m)	(m ³)	Cap.	(1/s)	(1/s)	Status	Exceeded
1.001	SW02	0.458	0.000	0.68		4.0	FLOOD RISK	
1.002	SW03	0.501	0.000	0.84		5.2	FLOOD RISK	
1.003	SW04	0.544	0.000	1.17		6.9	FLOOD RISK	
1.004	SW05	0.608	0.000	1.27		7.9	SURCHARGED	
1.005	SW06	0.700	0.000	0.65		10.5	SURCHARGED	
1.006	SW07	0.771	0.000	0.73		11.6	SURCHARGED	
1.007	SW08	0.858	0.000	1.21		13.1	SURCHARGED	
1.008	TANK	0.882	0.000	0.67		7.3	SURCHARGED	
1.009	SW09	0.899	0.000	0.46		5.0	SURCHARGED	
1.010	CW01	-0.096	0.000	0.28		5.0	OK	