PROPOSED BUILDING AT CHERRYGATE FARM, NORWICH ROAD, MENDLESHAM, SUFFOLK

FLOOD RISK ASSESSMENT

SEPTEMBER 2023

REF: 2609/RE/01-21/01 REVISION A

CONTRACT

Evans Rivers and Coastal Ltd has been commissioned by Supersips Ltd to carry out a Flood Risk Assessment for a proposed building at Cherrygate Farm, Norwich Road, Mendlesham, Suffolk.

QUALITY ASSURANCE, ENVIRONMENT AND HEALTH AND SAFETY

Evans Rivers and Coastal Ltd operates a Quality Assurance, Environmental, and Health and Safety Policy.

This project comprises various stages including data collection; hydrological and hydrogeological assessments; surface water drainage designs; and reporting. Quality will be maintained throughout the project by producing specific methodologies for each work stage. Quality will also be maintained by initiating internal quality procedures including the validation of third party deliverables; creation of an audit trail to record any changes made; and document control using a database and correspondence log file system.

To adhere to the Environmental Policy, data will be obtained and issued in electronic format and alternatively by post. Paper use will also be minimised by communicating via email or telephone where possible. Documents and drawings will be transferred in electronic format where possible and all waste paper will be recycled. Meetings away from the office of Evans Rivers and Coastal Ltd will be minimised to prevent unnecessary travel, however for those meetings deemed essential, public transport will be used in preference to car journeys.

The project will follow the commitment and objectives outlined in the Health and Safety Policy operated by Evans Rivers and Coastal Ltd. All employees will be equipped with suitable personal protective equipment prior to any site visits and a risk assessment will be completed and checked before any site visit. Other factors which have been taken into consideration are the wider safety of the public whilst operating on site, and the importance of safety when working close to a water source and highway. Any designs resulting from this project and directly created by Evans Rivers and Coastal Ltd will also take into account safety measures within a "designers risk assessment".

Report carried out by:
Rupert Evans, BSc (Hons), MSc, CEnv, C.WEM, MCIWEM, PIEMA

DISCLAIMER

This report has been written and produced for Supersips Ltd. No responsibility is accepted to other parties for all or any part of this report. Any other parties relying upon this report without the written authorisation of Evans Rivers and Coastal Ltd do so at their own risk.

COPYRIGHT

The contents of this document must not be copied or reproduced in whole or part without the written consent of Evans Rivers and Coastal Ltd or Supersips Ltd. The copyright and intellectual property in all designs, drawings, reports and other documents (including material in electronic form) provided to the Client by Evans Rivers and Coastal Ltd shall remain vested in Evans Rivers and Coastal Ltd. The Client shall have licence to copy and use drawings, reports and other documents for the purposes for which they were provided.

© Evans Rivers and Coastal Ltd

CONTENTS

CONTRACT i
QUALITY ASSURANCE, ENVIRONMENT AND HEALTH AND SAFETY i
DISCLAIMER i
COPYRIGHT i
CONTENTS ii

1. INTRODUCTION 1
1.1 Project scope 1
2. DATA COLLECTION 2
3. SITE CHARACTERISTICS 3
3.1 Existing Site Characteristics and Location 3
3.2 Site Proposals 4
4. SOURCES OF FLOODING 5
4.1 Fluvial 5
4.2 Groundwater Flooding 5
4.3 Surface Water Flooding and Sewer Flooding 6
4.4 Reservoirs, Canals And Other Artificial Sources 9
5. CONCLUSIONS 10
6. BIBLIOGRAPHY 11
DRAWINGS
TL-4504-21-1
TL-4504-21-1
TL-4504-21-2
TL-4504-23-2

TL-4504-23-3

1. INTRODUCTION

1.1 Project Scope

1.1.1 Evans Rivers and Coastal Ltd has been commissioned by Supersips Ltd to carry out a Flood Risk Assessment for a proposed building at Cherrygate Farm, Norwich Road, Mendlesham, Suffolk.
1.1.2 It is understood that this assessment will be submitted to the Local Planning Authority as part of a planning application. Specifically, this assessment intends to:

1) Review any literature and guidance specific to this area such as the SFRA;
2) Assess the flood risk from all sources to people and property and propose mitigation measures accordingly;
3) Review existing evacuation and warning procedures for the area;
4) Report findings and recommendations.
1.1.3 This assessment is carried out in accordance with the requirements of the National Planning Policy Framework (NPPF) dated 2019. Other documents which have been consulted include:

- DEFRA/EA document entitled Framework and guidance for assessing and managing flood risk for new development Phase 2 (FD2320/TR2), 2005;
- Communities and Local Government 2007. Improving the Flood Performance of New Buildings. HMSO.
- DEFRA/EA document entitled The flood risks to people methodology (FD2321/TR1), 2006;
- EA Supplementary Note on Flood Hazard Ratings and Thresholds for Development Planning and Control Purpose, 2008;
- National Planning Practice Guidance - Flood Risk and Coastal Change.
- UK Government's climate change allowances guidance dated February 2016.
- Suffolk Local Flood Risk Management Plan dated 2012.
- Suffolk County Council Preliminary Flood Risk Assessment dated 2011.
- Babergh and Mid Suffolk Level 1 Strategic Flood Risk Assessment (SFRA) dated 2020.

2. DATA COLLECTION

2.1 To assist with this report, the data collected included:

- Ordnance Survey $1: 10,000$ street view map obtained via Promap (Evans Rivers and Coastal Ltd OS licence number 100049458).
- British Geological Survey, Online Geology of Britain Viewer.
- Filtered LIDAR data at 1 m resolution covering the site and surrounding area.
- Topographical survey shown on Drawing Number TL-4504-21-1.
- British Geological Society, Groundwater Flooding Susceptibility Map obtained via Promap
- 1:625,000 Hydrogeological Map of England and Wales, published in 1977 by the Institute of Geological Sciences (now the British Geological Survey).

3. SITE CHARACTERISTICS

3.1 Existing Site Characteristics and Location

3.1.1 The site is located at Cherrygate Farm, Norwich Road, Mendlesham, Suffolk. The approximate Ordnance Survey (OS) grid reference for the site is 611700264139 and the location of the site is shown on Figure 1.

Figure 1: Site Iocation plan (Source: Ordnance Survey)
3.1.2 The site currently comprises Cherrygate Farm which consists of a series of storage buildings. There are areas of hardstanding and internal access roads which lead onto Norwich Road to the east. The existing site layout can be seen on Drawing Number TL-4504-21-2.
3.1.3 A topographical survey has been carried out and is shown on Drawing Number TL-4504-21-1. Filtered LIDAR at 1 m resolution has also been obtained in order to determine and illustrate the topography across the site and wider area (Figure 2).
3.1.4 By reviewing the survey data, it can be seen that ground levels fall gently in a northerly direction. The area intended for the proposed building is set between 61.40m AOD and 61.80m AOD.

Figure 2: Filtered LIDAR survey data at 1 m resolution where higher ground is denoted by red and orange colours and lower ground is denoted by blue colours

3.2 Site Proposals

3.2.1 It is the Client's intention to erect a new building towards the western frontage of the site as shown on Drawing Number TL-4504-23-2 and TL-4504-23-3.

4. SOURCES OF FLOODING

4.1 Fluvial

4.1.1 The Environment Agency Flood Map (Figure 3) and Appendix B of the SFRA (Mendlesham Ward Map) shows that the site is located within the NPPF Flood Zone 1, 'Low Probability' which comprises land as having less than a 1 in 1000 year annual probability of fluvial or tidal flooding (i.e. an event more severe than the extreme 1 in 1000 year event). NPPF states that all uses of land are appropriate in this zone.

Figure 3: Environment Agency Flood Zone Map (Source: Environment Agency)

4.2 Groundwater Flooding

4.2.1 In order to assess the potential for groundwater flooding during higher return period rainfall events, the Jacobs/DEFRA report entitled Strategy for Flood and Coastal Erosion Risk Management: Groundwater Flooding Scoping Study, published in May 2004, was consulted, together with the guidance offered within the document entitled Groundwater flooding records collation, monitoring and risk assessment (ref HA5), commissioned by DEFRA and carried out by Jacobs in 2006.

Soil and Geology at the Site

4.2.2 The British Geological Survey's Online Geology of Britain Viewer and Local Borehole Data at BGS ID: 562930: BGS Reference: TM16SW18, indicates that the soils beneath the site comprise clayey/sandy deposits overlying sand and gravel.

Groundwater Flooding Potential at the Site

4.2.3 There have been no recorded groundwater flood events across the area between 2000 and 2003, as indicated by the Jacobs study. Appendix G of the SFRA indicates that this area is deemed as having a negligible risk from groundwater flooding due to the nature of the local geological deposits.
4.2.4 The BGS Groundwater Flooding Susceptibility Map shows that there is "Limited Potential for Groundwater Flooding to Occur".

4.3 Surface Water Flooding and Sewer Flooding

4.3.1 Surface water and sewer flooding across urban areas is often a result of high intensity storm events which exceed the capacity of the sewers thus causing them to surcharge and flood. Poorly maintained sewer networks and blockages can also exacerbate the potential for sewer flooding. Surface water flooding can also occur as a result of overland flow across poorly drained rural areas.
4.3.2 Appendix E of the SFRA shows that there have been 1 recorded sewer flood incidents in this postcode area and there are no recorded flood incidents at the site. Appendix D of the SFRA indicates that there have been no recorded flood incidents at the site, and there are no flood incidents that have been investigated at this location by Suffolk County Council.
4.3.3 The Environment Agency's Surface Water Flooding Map (Figure 4 and 5) together with Appendix A of the SFRA indicates that there is a very low surface water flood risk across the area intended for the proposed building (i.e. less than a 1 in 1000 year chance).
4.3.4 Further more detailed data has been obtained via the Data.gov.uk site (https://environment.data.gov.uk/DefraDataDownload/?Mode=rofsw). The flood extent, depth and hazard GIS shape file was downloaded from Data.gov.uk (for tile TM_16).
4.3.5 It is generally accepted that the low risk flood event (i.e. between 1 in 1000 years and 1 in 100 years) on the Agency's map is used as a substitute for the climate change 1 in 100 year event to provide a worst-case scenario. There is no policy requirement to apply climate change onto the 1 in 1000 year event, as climate change is applied up to the 1 in 100 year event as confirmed at https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances\#when-to-use-climate-change-allowance.

Figure 4: Environment Agency Surface Water Flooding Map (Source: Environment Agency, 2023)

Figure 5: Environment Agency Surface Water Flooding Map (Source: Environment Agency, 2023)

Safe Access/Egress

4.3.6 The Agency's map shows that there is a very low to high risk along the internal access roads and along Norwich Road adjacent to the site entrance.
4.3.7 The flood hazard to people accessing or leaving the site can be calculated based on the numerical hazard rating extracted from the model which is then categorised into four degrees of flood hazard (Table 1) in accordance with Table 3.2 of FD2321/TR1 and Table 4.2 of FD2321/TR2.

Table 1: Hazard to people categories (taken from Table 3.2 of FD2321/TR1 and Table 4.2 of FD2321/TR2)

Hazard Rating	Degree of Flood Hazard	Description
< 0.75	Very low hazard	Caution "Flood zone with shallow flowing water or deep standing water"
0.75-1.25	Danger for Some	Dangerous for some (i.e. children) "Danger: Flood zone with deep or fast flowing water"
1.25-2.0	Danger for Most	Dangerous for most people (i.e. general public) "Danger: Flood zone with deep fast flowing water"
> 2.0	Danger for All	Dangerous for all "Extreme danger: flood zone with deep fast flowing water"

4.3.8 By reviewing the flood hazard GIS shape file downloaded from Data.gov.uk (https://environment.data.gov.uk/DefraDataDownload/?Mode=rofsw) it can be seen that the hazard to people leaving the site during low risk events would largely be Very low as shown on Figure 6.

Figure 6: Preferred evacuation route and hazard (see Table 1 for hazard classification)

4.4 Reservoirs, Canals And Other Artificial Sources

4.4.1 The failure of man-made infrastructure such as flood defences and other structures can result in unexpected flooding. Flooding from artificial sources such as reservoirs, canals and lakes can occur suddenly and without warning, leading to high depths and velocities of flood water which pose a safety risk to people and property.
4.4.2 The Environment Agency's "Risk of flooding from reservoirs" map suggests that the site is not at risk from reservoirs.

5. CONCLUSIONS

- The site is located within Flood Zone 1 therefore all uses of land are appropriate in this zone.
- This assessment has investigated the possibility of groundwater flooding and flooding from other sources at the site. It is considered that there is a low risk of groundwater flooding.
- There is a very low surface water flood risk across the area intended for the proposed building (i.e. chance less than 1 in 1000 years) thus providing safe dry refuge and no increase in flood risk elsewhere.
- It is generally accepted that the low risk flood event (i.e. between 1 in 1000 years and 1 in 100 years) on the Agency's map is used as a substitute for the climate change 1 in 100 year event to provide a worst-case scenario. There is no policy requirement to apply climate change onto the 1 in 1000 year event, as climate change is applied up to the 1 in 100 year event as confirmed at https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances\#when-to-use-climate-change-allowance.
- The proposed building will therefore be located outside of the low risk ($1000 \mathrm{yr} / 100 \mathrm{yr}$ plus climate change) flood extent.
- Safe access/egress is available at all times.

6. BIBLIOGRAPHY

i. ADAS 1980. MAFF Report 5, Pipe size design for field drainage.
ii. Balmforth, D., et al. 2006. Designing for exceedance in urban drainage - good practice, Report C635. London: CIRIA.
iii. Bettess, R. 1996. Infiltration drainage - Manual of good practice, Report C156. London: CIRIA.
iv. BRE 1991. Digest 365. Soakaway Design.
v. British Standards Institute 2013. BS8582:2013 Code of practice for surface water management for development sites.
vi. Communities and Local Government 2012. National Planning Policy Framework.
vii. DEFRA 2015. Sustainable Drainage Systems - Non statutory technical standards for sustainable drainage systems.
viii. DEFRA/EA 2013. Rainfall runoff management for developments.
ix. DEFRA/EA 2005. Framework and guidance for assessing and managing flood risk for new development, Phase 2, Flood and Coastal Defence R\&D Programme, R\&D Technical Report FD2320/TR2. Water Research Council.
x. DEFRA/Jacobs 2004. Strategy for Flood and Coastal Erosion Risk Management: Groundwater Flooding Scoping Study (LDS), Final Report, Volumes 1 and 2.
xi. Dickie et al. 2010. Planning for SUDS - Making it happen. Report C687. London: CIRIA
xii. DOE 1981. The Wallingford Procedure: Design and Analysis of Urban Storm Drainage. HR Wallingford.
xiii. DOE 1981a. Modified Rational Method: The Wallingford Procedure. HR Wallingford.
xiv. Geological Society of London 2006. Groundwater and Climate Change. Geoscientist magazine, Volume 16, No 3.
xv. HR Wallingford 2005. Use of SUDS in high density developments, Report SR 666.
xvi. HR Wallingford 2002. Guide for the Drainage of Development Sites, Report SR 574.
xvii. Interpave 2010. Understanding permeable paving: Guidance for designers, planners and local authorities
xviii. Interpave 2010a. Permeable pavements - guide to the design construction and maintenance of concrete block permeable pavements
xix. Institute of Geological Sciences 1977. Hydrogeological Map of England and Wales, 1:625,000. NERC.
xx. Martin, P. et al. 2001. Sustainable urban drainage systems - best practice guide, Report C523. London: CIRIA.
xxi. Martin, P. et al. 2000. Sustainable urban drainage systems - Design manual for England and Wales, Report C522. London: CIRIA.
xxii. National SUDS Working Group. 2004. Interim Code of Practice for Sustainable Drainage Systems.
xxiii. NERC 2009. Flood Estimation Handbook [CD-ROM], Version 3. Institute of Hydrology.
xxiv. NERC 1975. Flood Studies Report (FSR). Institute of Hydrology.
xxv. Newman, A.P. 2004. Protecting groundwater with oil-retaining pervious pavements: historical perspectives, limitations and recent developments. Quarterly Journal of Engineering Geology and Hydrogeology.
xxvi. Pratt, C., Wilson, S., and Cooper, P. 2002. Source control using constructed pervious surfaces; hydraulic, structural and water quality performance issues, Report C582. London: CIRIA.
xxvii. Reed, R., Faulkner, D. and Bayliss, A. 1999. Flood Estimation Handbook (FEH), 5 Volumes. Institute of Hydrology.
xxviii. Soil Survey of England and Wales 1983. Soil Map of East England (Sheet 4), $1: 250,000$. Cranfield University.
xxix. Water UK 2012. Sewers for Adoption $7^{\text {th }}$ Edition, A design and construction guide for developers. Water Research Council.
xxx. Wilson, S., Bray, R. and Cooper, P. 2004. Sustainable Drainage Systems; hydraulic, structural and water quality advice, Report C609. London: CIRIA.
xxxi. Woods-Ballard., et al. 2015. The SUDS Manual, Report C753. London: CIRIA.
xxxii. Woods-Ballard., et al. 2007. The SUDS Manual, Report C697. London: CIRIA.

\qquad

Proposed Front Elevation 1:100 @ A1

Proposed Rear Elevation 1:100 @ A1

Proposed North Elevation 1:100 @ A1

Proposed South Elevation 1:100 @ A1

