TECHNICAL NOTE

Job Name:	Kellogg College
Job No:	330511047
Note No:	330511047-2001-R001
Date:	9 th November 2023
Subject:	Surface Water Drainage Strategy

1. Introduction

- 1.1. Stantec UK Ltd (Stantec) have been commissioned by Oxford University Estate Services to prepare this surface water drainage strategy in support of a planning application to develop land at Kellogg College, Banbury Road, Oxford, Oxfordshire.
- 1.2. This report will outline the methods to intercept and dispose of surface water runoff generated from the proposed development in a sustainable manner and so as not to increase the risk of flooding at the site or elsewhere, in line with best Sustainable Drainage (SuDS) practice.

2. Site Context

- 2.1. The property is situated on Banbury Road and is owned by the University of Oxford, the purpose of the development is to add an extension to Kellogg College comprising storage rooms, an office space, and the kitchen to be reconfigured.
- 2.2. The proposed extension causes a 62m² increase in impermeable area producing a total of 211m² including the car park and rooftop catchment of the existing college.

DOCUMENT ISSUE RECORD

Technical Note No	Rev	Date	Prepared	Checked	Approved (Project Director)
330511047-2001-R001	Α	08/11/23	LP	JS	PS
330511047-2001-R001	В	09/11/23	LP	JS	PS

This report has been prepared by Stantec UK Limited ('Stantec') on behalf of its client to whom this report is addressed ('Client') in connection with the project described in this report and takes into account the Client's particular instructions and requirements. This report was prepared in accordance with the professional services appointment under which Stantec was appointed by its Client. This report is not intended for and should not be relied on by any third party (i.e. parties other than the Client). Stantec accepts no duty or responsibility (including in negligence) to any party other than the Client and disclaims all liability of any nature whatsoever to any such party in respect of this report.

T: 01865 410000 E: Oxford.UK@stantec.com

^{\\}Oxf-vfps-001.corp.ads\oxf\Projects\Kellogg College\07 - Civils\Documents\Surface Water Drainage Strategy.docx

TECHNICAL NOTE

3. Drainage Strategy

- 3.1. The footprint of the new building covers the northern portion of the grassed courtyard, totalling 62m². Within the footprint is presently located a soakaway; this serves a yard gully for a small area of car parking and one of the rainwater pipes from the existing kitchen building. No formal drainage of the soft landscaping is present.
- 3.2. The soakaway present will be abandoned and replaced to the south of the proposed extension, so it is no longer under the footprint of the proposed building. The existing connections to the yard gully and rainwater pipes will be redirected to the replacement soakaway which includes the used of geo-cellular crates.
- 3.3. Following the SuDS hierarchy as outlined in the Planning Policy Guidance, see Figure 4.1, the preferable outfall option is an infiltration system.

Generally, the aim should be to discharge surface run off as high up the following hierarchy of drainage options as reasonably practicable:

- 1. into the ground (infiltration);
- 2. to a surface water body;
- 3. to a surface water sewer, highway drain, or another drainage system;
- 4. to a combined sewer.

Figure 4.1: Extract of Planning Policy Guidance on Flood Risk and Coastal Change.

- 3.4. On-site soakaway testing has been conducted in 2005 and 2015 providing infiltration rate measurements of 7.96x10⁻⁵ and 1.03x10⁻⁵m/s respectively. These rates are suitable for continued use of soakaways on-site so a new soakaway will be installed, picking up the new impermeable area and areas drained by the previous soakaway being relocated.
- 3.5. The soakaway has been modelled in MicroDrainage Source Control (calculations included in appendices) and designed to eliminate flooding up to and including the 1 in 100-year (+40% climate change) rainfall event. To reduce the footprint the geo-cellular crate it has been specified at 1.6m deep, 3m wide and 3.5m long, providing a total volume of 16.8m³.
- 3.6. As part of the scheme the maple tree in the southern portion of the courtyard is being removed, allowing this space to be available for the soakaway. It is not possible to keep it 5m from the nearby structures because of the size of the courtyard; however, all volumes being discharged to this courtyard at present discharge to this soil volume, and the stand-off from the proposed soakaway will be greater than the existing from buildings.

4. Conclusion

4.1. Following the proposed development, the geo-cellular crate will be upsized to pick up the new impermeable area and relocated to avoid buildings. The proposed crate will be 16.8m³ and constructed in the courtyard south of the extension to Kellogg College.

^{\\}Oxf-vfps-001.corp.ads\oxf\Projects\Kellogg College\07 - Civils\Documents\Surface Water Drainage Strategy.docx

Appendix A: Flood Map for Planning

 $[\]label{eq:linear} $$ \colored college 07 - Civils Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Docum$

Flood map for planning

Your reference <Unspecified>

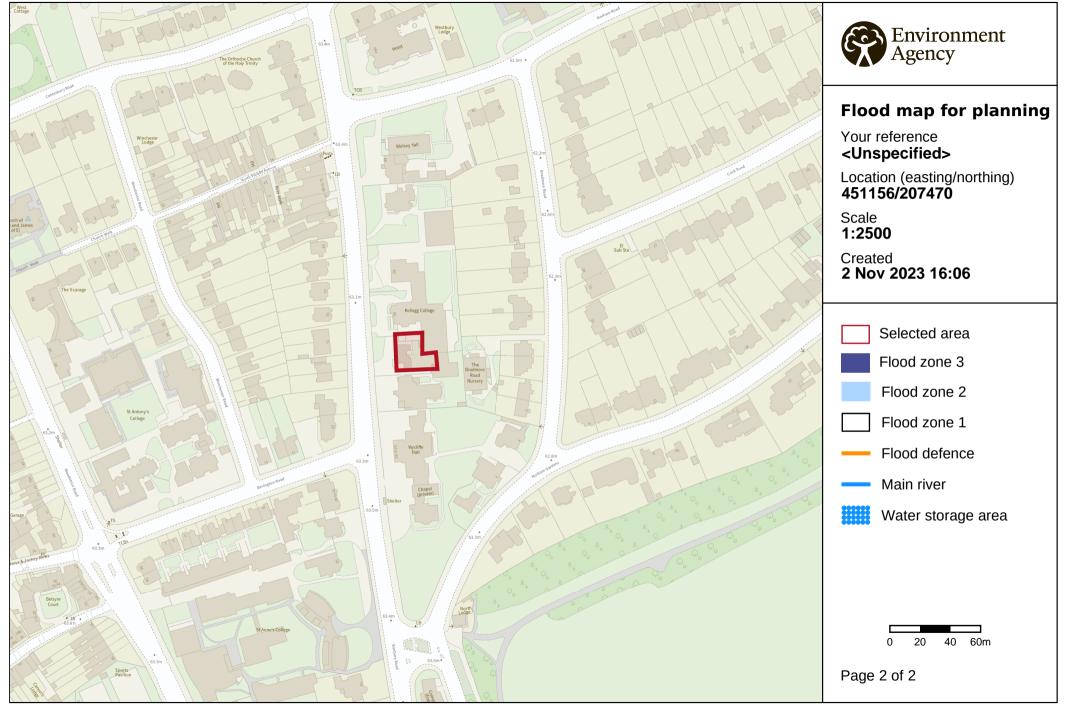
Location (easting/northing) **451156/207470**

Created **2 Nov 2023 16:06**

Your selected location is in flood zone 1, an area with a low probability of flooding.

You will need to do a flood risk assessment if your site is any of the following:

- bigger that 1 hectare (ha)
- In an area with critical drainage problems as notified by the Environment Agency
- identified as being at increased flood risk in future by the local authority's strategic flood risk assessment
- at risk from other sources of flooding (such as surface water or reservoirs) and its development would increase the vulnerability of its use (such as constructing an office on an undeveloped site or converting a shop to a dwelling)


Notes

The flood map for planning shows river and sea flooding data only. It doesn't include other sources of flooding. It is for use in development planning and flood risk assessments.

This information relates to the selected location and is not specific to any property within it. The map is updated regularly and is correct at the time of printing.

Flood risk data is covered by the Open Government Licence **which** sets out the terms and conditions for using government data. https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

Use of the address and mapping data is subject to Ordnance Survey public viewing terms under Crown copyright and database rights 2022 OS 100024198. https://flood-map-for-planning.service.gov.uk/os-terms

© Environment Agency copyright and / or database rights 2022. All rights reserved. © Crown Copyright and database right 2022. Ordnance Survey licence number 100024198.

TECHNICAL NOTE

Appendix B: MicroDrainage Source Control Calculations

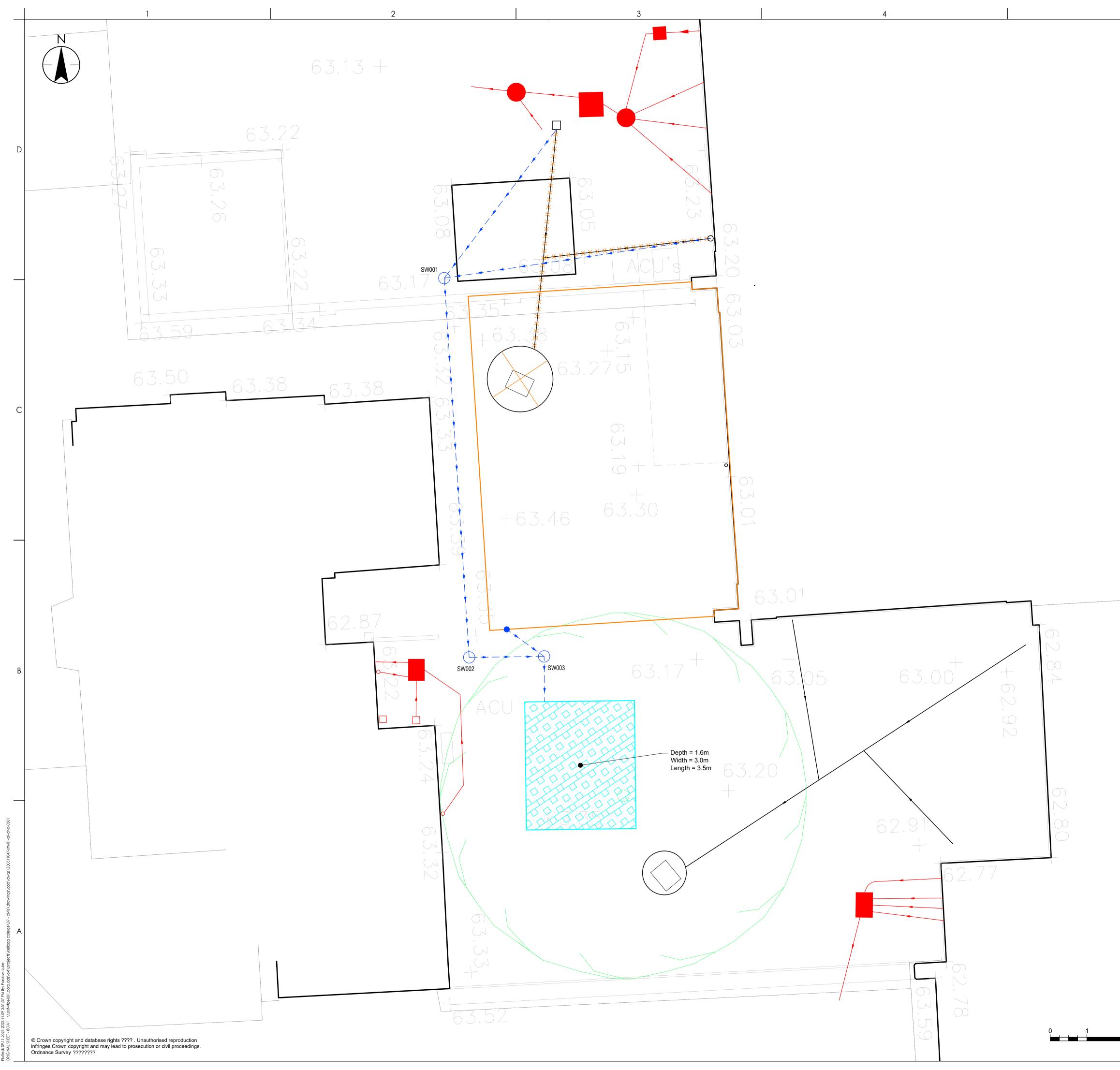
 $[\]label{eq:linear} $$ \colored college 07 - Civils Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Docum$

Stantec UK Ltd							Page 1
Caversham Bridge D	House						
Naterman Place							
Reading, RG1 8DN							– Micro
Date 08/11/2023 1	6:24	I	Designe	d by lpars	Low		
File GEOCELLULAR A			Checked				Draina
Innovyze				Control 202	20 1		
11110 V y 20			Jource	201			
Summ	ary of Resu	lts fo	r 100 v	vear Return	Perio	d (+40%)	
<u></u>	<u>ar, er nosa</u>	100 10		041 100421	10110	<u>a (* 1007</u>	
	Ha	lf Drai	n Time :	989 minutes			
	Storm	Max	Max	Max	Max	Status	
	Event	Level	Depth 1	Infiltration	Volume		
		(m)	(m)	(l/s)	(m³)		
	15 min Summer	61.373	0.683	0.1	6.8	ОК	
	30 min Summer			0.1	8.9		
	60 min Summer			0.1			
1	.20 min Summer	61.989	1.299	0.1	13.0	O K	
	.80 min Summer			0.1	14.0	O K	
	240 min Summer			0.2		O K	
	360 min Summer			0.2		0 K	
	180 min Summer			0.2			
	500 min Summer			0.2			
	/20 min Summer 960 min Summer			0.2	15.5 15.4		
	40 min Summer			0.2	15.0		
	.60 min Summer			0.1			
	380 min Summer			0.1	13.5		
43	320 min Summer	61.902	1.212	0.1	12.1	ОК	
57	'60 min Summer	61.785	1.095	0.1	10.9	O K	
	200 min Summer			0.1		0 K	
86	540 min Summer	61.595	0.905	0.1	9.0	ΟK	
	Sto	orm	Rain	Flooded Tim	ne-Peak		
	Eve	ent	(mm/hr)) Volume (: (m³)	mins)		
	15 mir	Summer	138.153	3 0.0	19		
		Summer			34		
	60 mir	n Summer	56.713	3 0.0	64		
		n Summer			124		
		n Summer			182		
		1 Summer			242		
		1 Summer 1 Summer			362 480		
		1 Summer 1 Summer			480 600		
		ı Summer			698		
		Summer			800		
	1440 mir				1052		
	2160 mir	Summer			1468		
	2880 mir	n Summer	2.766	6 0.0	1876		
	4320 mir				2720		
	5760 mir				3512		
	7200 mir	1 Summer	1.311	L 0.0	4320		
	8640 mir				5096		

Stantec UK Ltd							Page 2
Caversham Bridge	House						
Waterman Place							
Reading, RG1 8DN							_ Micro
Date 08/11/2023 1				by lparsl	.OW		Drainac
File GEOCELLULAR	ATTENUATIO	N (Checked	by			Diamag
Innovyze			Source C	ontrol 202	0.1		
Sum	mary of Res	<u>ults fo</u>	or 100 ye	ear Return	Perio	d (+40%)	
	Storm	Max	Max Denth T	Max	Max	Status	
	Event	(m)	1 Deptn 1 (m)	infiltration (1/s)	(m ³)		
		(111)	(111)	(1/5)	(111-)		
1	0080 min Summ	er 61.51	5 0.825	0.1	8.2	O K	
	15 min Wint			0.1	6.8	O K	
	30 min Wint			0.1	8.9	0 K	
	60 min Wint			0.1	11.0		
	120 min Wint			0.1	13.0	0 K	
	180 min Wint			0.1	14.0	ОК	
	240 min Wint			0.2	14.6		
	360 min Wint			0.2			
	480 min Wint 600 min Wint			0.2	15.6 15.7	O K	
	720 min Wint			0.2	15.7	OK	
	960 min Wint			0.2	15.7		
	960 min Wint 1440 min Wint			0.2	15.5	ОК	
	1440 MIN WINC 2160 min Wint			0.2	15.0	0 K	
	2880 min Wint			0.1	13.1	0 K	
	4320 min Wint			0.1	11.2	ОК	
	5760 min Wint			0.1	9.7		
	7200 min Wint			0.1			
1	8640 min Wint	er 61.42	8 0.738	0.1	7.4	O K	
	S	torm	Rain	Flooded Tir	ne-Peak		
	-	torm vent			ne-Peak mins)		
	-						
	E	vent	(mm/hr)	Volume ((m ³)	mins)		
	E 10080 m	vent nin Summe	(mm/hr) er 0.994	Volume ((m ³) 0.0	mins) 5848		
	Ev 10080 m 15 m	vent nin Summe nin Winte	(mm/hr) r 0.994 r 138.153	Volume ((m ³) 0.0 0.0	mins) 5848 19		
	E• 10080 m 15 m 30 m	vent nin Summe	(mm/hr) r 0.994 r 138.153 r 90.705	Volume ((m ³) 0.0 0.0 0.0	mins) 5848		
	E• 10080 m 15 m 30 m 60 m	vent Min Summe Min Winte	(mm/hr) r 0.994 r 138.153 r 90.705 r 56.713	Volume ((m ³) 0.0 0.0 0.0 0.0	mins) 5848 19 33		
	10080 m 15 m 30 m 60 m 120 m	vent nin Summe nin Winte nin Winte	(mm/hr) r 0.994 r 138.153 r 90.705 r 56.713 r 34.246	Volume ((m ³) 0.0 0.0 0.0 0.0 0.0 0.0	mins) 5848 19 33 62		
	10080 m 15 m 30 m 60 m 120 m 180 m	vent nin Summe nin Winte nin Winte nin Winte	(mm/hr) r 0.994 r 138.153 r 90.705 r 56.713 r 34.246 r 25.149	Volume ((m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	mins) 5848 19 33 62 122		
	10080 m 15 m 30 m 60 m 120 m 180 m 240 m	vent Ain Summe Ain Winte Ain Winte Ain Winte Ain Winte	(mm/hr) r 0.994 r 138.153 r 90.705 r 56.713 r 34.246 r 25.149 r 20.078	Volume ((m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	mins) 5848 19 33 62 122 180		
	10080 m 15 m 30 m 60 m 120 m 180 m 240 m 360 m	vent Ain Summe Ain Winte Ain Winte Ain Winte Ain Winte Ain Winte	(mm/hr) r 0.994 r 138.153 r 90.705 r 56.713 r 34.246 r 25.149 r 20.078 r 14.585	Volume ((m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	mins) 5848 19 33 62 122 180 238		
	10080 m 15 m 30 m 120 m 120 m 180 m 240 m 360 m 480 m	vent Ain Summe Ain Winte Ain Winte Ain Winte Ain Winte Ain Winte Ain Winte	(mm/hr) r 0.994 r 138.153 r 90.705 r 56.713 r 34.246 r 25.149 r 20.078 r 14.585 r 11.622 r 9.738	Volume ((m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	mins) 5848 19 33 62 122 180 238 354		
	10080 m 15 m 30 m 120 m 120 m 180 m 240 m 360 m 480 m 720 m	in Summe in Winte in Winte in Winte in Winte in Winte in Winte in Winte in Winte in Winte in Winte	(mm/hr) r 0.994 r 138.153 r 90.705 r 56.713 r 34.246 r 25.149 r 20.078 r 14.585 r 11.622 r 9.738 r 8.424	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	mins) 5848 19 33 62 122 180 238 354 468 578 686		
	E 10080 m 15 m 30 m 60 m 120 m 180 m 240 m 360 m 480 m 720 m 960 m	vent in Summe in Winte in Winte	(mm/hr) r 0.994 r 138.153 r 90.705 r 56.713 r 34.246 r 25.149 r 20.078 r 14.585 r 11.622 r 9.738 r 8.424 r 6.697	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	mins) 5848 19 33 62 122 180 238 354 468 578 686 884		
	E 10080 m 15 m 30 m 60 m 120 m 180 m 240 m 360 m 480 m 720 m 960 m 1440 m	vent in Summe in Winte in Winte	(mm/hr) r 0.994 r 138.153 r 90.705 r 56.713 r 34.246 r 25.149 r 20.078 r 14.585 r 11.622 r 9.738 r 8.424 r 6.697 r 4.839	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	mins) 5848 19 33 62 122 180 238 354 468 578 686 884 1098		
	10080 m 15 m 30 m 120 m 120 m 180 m 240 m 360 m 480 m 720 m 960 m 1440 m 2160 m	in Summe in Winte in Winte	(mm/hr) r 0.994 r 138.153 r 90.705 r 56.713 r 34.246 r 25.149 r 20.078 r 14.585 r 11.622 r 9.738 r 8.424 r 6.697 r 4.839 r 3.490	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	mins) 5848 19 33 62 122 180 238 354 468 578 686 884 1098 1560		
	10080 m 15 m 30 m 10 m 120 m 120 m 240 m 240 m 360 m 480 m 720 m 960 m 1440 m 2160 m	in Summe in Winte in Winte	(mm/hr) r 0.994 r 138.153 r 90.705 r 56.713 r 34.246 r 25.149 r 20.078 r 14.585 r 11.622 r 9.738 r 8.424 r 6.697 r 4.839 r 3.490 r 2.766	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	mins) 5848 19 33 62 122 180 238 354 468 578 686 884 1098 1560 2016		
	10080 m 15 m 30 m 10 m 120 m 120 m 240 m 360 m 480 m 720 m 960 m 1440 m 2160 m 2880 m 4320 m	in Summe in Winte in Winte	(mm/hr) r 0.994 r 138.153 r 90.705 r 56.713 r 34.246 r 25.149 r 20.078 r 14.585 r 11.622 r 9.738 r 8.424 r 6.697 r 4.839 r 3.490 r 2.766 r 1.989	Volume (m³) (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	mins) 5848 19 33 62 122 180 238 354 468 578 686 884 1098 1560 2016 2896		
	E 10080 m 15 m 30 m 60 m 120 m 180 m 240 m 360 m 480 m 720 m 960 m 1440 m 2480 m 24320 m 5760 m	in Summe in Winte in Winte	(mm/hr) r 0.994 r 138.153 r 90.705 r 56.713 r 34.246 r 25.149 r 20.078 r 14.585 r 11.622 r 9.738 r 8.424 r 6.697 r 4.839 r 3.490 r 2.766 r 1.989 r 1.573	Volume (m³) (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	mins) 5848 19 33 62 122 180 238 354 468 578 686 884 1098 1560 2016 2896 3744		
	E* 10080 m 15 m 30 m 60 m 120 m 180 m 240 m 360 m 480 m 720 m 960 m 1440 m 2160 m 2880 m 4320 m 5760 m 7200 m	in Summe in Winte in Winte	(mm/hr) r 0.994 r 138.153 r 90.705 r 56.713 r 34.246 r 25.149 r 20.078 r 14.585 r 11.622 r 9.738 r 8.424 r 6.697 r 4.839 r 3.490 r 2.766 r 1.989 r 1.573 r 1.311	Volume (m³) (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	mins) 5848 19 33 62 122 180 238 354 468 578 686 884 1098 1560 2016 2896		

Stantec UK Ltd							Page 3
Caversham Bridg	e House						
Waterman Place							
Reading, RG1 8D							Micro
Date 08/11/2023	16:24	De	esigned	by lpars	OW		Draina
File GEOCELLULA	R ATTENUATION	Cl	hecked b	ру			Drainal
Innovyze		So	ource Co	ontrol 202	20.1		
<u>Su</u>	mmary of Resul	ts for	100 ye	<u>ar Return</u>	Perio	d (+40%)	
	Storm Event	Max Level (m)	Max Depth In (m)	Max nfiltration (1/s)	Max Volume (m³)	Status	
	10080 min Winter	61.332	0.642	0.1	6.4	ОК	
	Stor Ever		Rain (mm/hr)	Flooded Tin Volume ((m³)	me-Peak mins)		
	10080 min	Winter	0.994	0.0	6144		
		01000	-2020 II				

Stantec UK Ltd		Page 4
Caversham Bridge House		
Waterman Place		
Reading, RG1 8DN		Micro
Date 08/11/2023 16:24	Designed by lparslow	Micro Drainage
File GEOCELLULAR ATTENUATION	Checked by	Diamage
Innovyze	Source Control 2020.1	
	<u>Rainfall Details</u>	
Rainfall Model Return Period (years) Region M5-60 (mm) Ratio R Summer Storms	0.400 Longest Storm (mins) 1008	0 0 5 0
	<u>Time Area Diagram</u>	
	Total Area (ha) 0.021	
	Time (mins) Area From: To: (ha)	
	0 4 0.021	
	©1982-2020 Innovyze	


Stantec UK Ltd		Page 5
Caversham Bridge House		
Waterman Place		
Reading, RG1 8DN		Micco
Date 08/11/2023 16:24	Designed by lparslow	—— Micro
File GEOCELLULAR ATTENUATION .		Drainage
Innovyze	Source Control 2020.1	
	Model Details	
Storage is	Online Cover Level (m) 63.300	
Cell	<u>ular Storage Structure</u>	
Infiltration Coeffici	nvert Level (m) 60.690 Safety Fac ent Base (m/hr) 0.03708 Poros ent Side (m/hr) 0.03708	
Depth (m) Area (m²) Inf.	Area (m ²) Depth (m) Area (m ²) In	f. Area (m²)
0.000 10.5 1.600 10.5	10.5 1.601 0.0 31.3	31.3
1.000 10.5		
	1982-2020 Innovyze	

Appendix C: Surface Water Layout Drawing

 $[\]label{eq:linear} $$ \colored college 07 - Civils Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Documents Surface Water Drainage Strategy.docx $$ \colored college 07 - Civils Documents Docum$

Stantec UK Limited First Floor, Southern House, 1 Cambridge Terrace Oxford OX1 1RR

Tel. +44 1865 410 000 www.stantec.com/uk

Copyright Reserved

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing. Any errors or omissions shall be reported to Stantec without delay. The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorised by Stantec is forbidden.

Notes

- UTILITIES NOTE: The position of any existing public or private sewers, utility services, plant or apparatus shown on this drawing is believed to be correct, but no warranty to this is expressed or implied. Other such plant or apparatus may also be present but not shown. The Contractor is therefore advised to undertake their own investigation where the presence of any existing sewers, services, plant or apparatus may affect their operations.
- Do not scale from this drawing.
 This drawing has been produced in colour and should be reproduced in colour.
- 3. All dimensions are in metres unless otherwise stated.
- 4. All levels are in metres AOD unless otherwise stated.

Existing Key:

0	Surface Water Manhole
>	Surface Water Manhole
\otimes	Surface Water Manhole to be Abandoned
· ›‹›(›(›(›(›()))	Surface Water Pipe to be Abandoned
o	Surface Water RWP
	Surface Water Gully
•	Foul Water Manhole
>	Foul Water Pipe
	Tree to be Removed
Proposed Key:	
SW000 🔿	Surface Water Manhole
	Surface Water Pipe
•	Surface Water RWP
	Geocellular Attenuation Tank

New Building Footprint

P02 RWP POSITION AMENDED		LP	PS	2023.11.09
PO1 FIRST ISSUE		LP	PS	2023.11.08
Issued/Revision		Ву	Appd	YYYY.MM.DD
	LP	JS	PS	2023.11.08
	Dwn.	Dsgn.	Chkd.	YYYY.MM.DD
Issue Status				

S2 - FOR INFORMATION

This document is suitable only for the purpose noted above. Use of this document for any other purpose is not permitted.

Client/Project Logo

Oxford University Estate Services

Kellogg College

Title

Surface Water Layout

2	3	4	5m
SCALE	E 1:50		

Project No.	
330511047	

Revision **P02**