

Structural Survey **Final Report**

Cenergist Limited

Streatham Ice and Leisure, 390 Streatham High Road,

London, SW16 6HX

Alpine Surveys Unit 5A Ryan Business Park, Sandford Lane, Wareham, Dorset, BH20 4DY TEL: 0330 333 9238 www.alpinesurveys.co.uk

1 Introduction

Alpine Surveys were requested by the client to carry out a structural survey for PV panel installaion on the roofs of the above property.

As this is a non-disruptive survey, the inspection method is based on a visual investigation; therefore, the covered and rendered zones are evaluated using engineering judgement and analysis.

The report will concentrate on the structural elements of the property, and any maintenance issues will be only highlighted if considered relevant.

This inspection is limited to the client's requirements, requests, desires, and the provided information.

The inspection procedure adheres to standard building surveying regulations and operating procedures and comments are based on visual inspection only as no opening works are included.

The below-ground drainage was not part of this investigation as well as the drainage survey.

The Building Survey aims to:

• Help you make a reasoned and informed decision when purchasing the property, or when planning for repairs, maintenance or upgrading of the property.

Provide detailed advice on the condition.

Describe the identifiable risk of potential or hidden defects.

• Where practicable and agreed, provide an estimate of costs for identified repairs.

• Make recommendations as to any further actions or advice which need to be obtained before committing to purchase.

Building setting out and measuring for the procurement of surveys and measurement services are based on the BS 5964-3:1996 code of practice.

Survey Overview Description

We conducted a thorough and detailed investigation to determine the overall structural condition of the property, followed by a thorough examination of the exterior and evaluated the necessary rooms.

The first section of the report will provide specific details about your property, such as its style, construction type, and general condition, followed by an in-depth external assessment.

In each section of the report, the identified flaws, problems, flaws, deteriorations, potential threats, and structural issues are detailed. Wherever the terms "Attention is required" or "Needs to be addressed" appear in the report, the "Recommendation" section of the report contains the corresponding suggestions, tips, and solutions.

As a result, we assessed the causes of the issues in the interior rooms, with relevant photos taken and attached to the report. Finally, based on our findings, you will find detailed recommendations to correct and rectify.

No liability is accepted by any third party. No formal enquiries have been made of the Statutory Authorities or investigations made to verify information as to the tenure and existence of rights or easements.

Where work has been carried out on the property in the past, the surveyor cannot warrant that this has been done in accordance with manufacturers' recommendations, British and European Standards and Codes of Practice, Agreement Certificates, and Statutory Regulations.

This report's findings and conclusions are based on a combination of structure formation analysis, evaluation of layouts and drawings, scanning procedure, as well as engineering judgments and analysis.

We also reserve the right to amend our opinions in the event of additional information being made available at some future date. The Contracts (Rights of Third Parties) Act 1999 shall not apply to this agreement.

This report is a considered professional opinion and is not a warranty or guarantee of the property, and no liability shall attach to us except to the extent that we have failed to exercise reasonable skill, care, and diligence in the provision of our services under the terms of appointment. This report does not increase our liability beyond that agreed upon under the terms and appointment. This report is not a "design and construction certificate" as defined in The Building Act 1984 and The Building (Approved Inspectors, etc.) Regulations.

Where works address repairs that are not covered by the insurance policy we recommend that you seek professional advice on the repair methodology and whether the works will involve the Construction (Design & Management) Regulations 2015. Compliance with these Regulations is compulsory.

Alpine Surveys strives to provide its valued clients with the most optimised technical and feasible recommendations that we believe will safeguard the clients' financial interests as well as the safety and security of the property and its inhabitants.

2 Property Details

Client	Cenergist Limited	Survey Date	31 August 2023		
Address	Streatham Ice and Leisure,	390 Streatham High R	load, London, SW16 6HX		
Consulting Engineer	Abbas Ladonni BSc, MSc, PhD, Civil Eng. GMIce.				
Instruction	Structural Survey for PV Pa	anel Installation			

Property Details

Use of Property	Mixed Use		Property Style	Sport & Leisure Complex	
Occupants	10+		Number of Floors	3+1	
Listed Building	No		Conservation Area	No	
Approximate Year of Construction		2013			
Wall Construction and Covering		Concrete Blocks			
Roof Construction inc Visual Condition		Low-Pitched Cladded Roof			

Historical Information

Originally opened on in 1931 and was used as a food storage during the WWII. Reopend in 1962 and refurbished in 1980. Converted to a new ice rink and swimming pool in 2001. Demolished in 2011, and replaced by the existing mixed-use complex in 2013.

Plans Provided	Yes	Full Access Provided	Yes
Comments	PV panels installation on ro	oofs.	

External Details

External Condition	Summary			
No critical structur	al defects were observed.			
DPC in Place	Yes	DPC Type a	nd Cond.	DPC assumed but not visible
Vent Brick Details	Not Visible	Guttering Condition		Acceptable Condition
External Fixtures F	ittings			
N/A				
Windows & Doors	uPVC	Pathways &	Gardens	Slabs
Chimney Stacks	No	Condition	No Chim	nney Stacks
Water Supply Cheo	cked N/A	Drainage	N/A	

Ultra V STPXXXS - C54/Umhm 395-415W

Mechanical Characteristics

Solar Cell	Monocrystalline silicon 182 mm		1134 [44 65]+2[0 08]	
No. of Cells	108 (6 × 18)		1093 [43.03]±1[0.04]	-
Dimensions	1722 × 1134 × 30 mm (67.8 × 44.6 × 1.2 inches)	Drainage holes		Į,
Weight	21.0 kgs (46.3 lbs.)	4-\$5.1(\$0.2)	Product label	
Front Glass	3.2 mm (0.126 inches) fully tempered glass	Grounding holes	-	+
Output Cables	4.0 mm², (-) 350 mm (+) 160 mm in length or customized length	Mounting slots	Barcode	
Junction Box	IP68 rated (3 bypass diodes)		(Rear View)	[8]
Operating Module Temperature	-40 °C to +85 °C	A	A Junction box	±1[0.0 ±1[0.0
Maximum System Voltage	1500 V DC (IEC)		6	38.98] [51.18] 67.80]
Connectors	MC4-EVO2		r 7	990 [1300 1722[
Maximum Series Fuse Rating	25 A	Section A-A		
Power Tolerance	0/+5 W			
Frame	Anodized aluminum alloy frame	301	1	
Packing Configuration	36 Pieces per pallet 936 Pieces per container /40'HC 1755×1120×1255 794kg	30[1.18] Note:mm[inch]]	

Electrical Characteristics

Module Type	STP415S-0	54/Umhm	STP4105-0	C54/Umhm	STP405S-0	54/Umhm	STP4005-0	54/Umhm	STP3955-0	54/Umhm
Testing Condition	STC	NMOT	STC	NMOT	STC	NMOT	STC	NMOT	STC	NMOT
Maximum Power (Pmax/W)	415	314.9	410	311.2	405	307.6	400	303.7	395	300.0
Optimum Operating Voltage (Vmp/V)	31.81	29.4	31.59	29.2	31.38	29.0	31.18	28.8	30.98	28.7
Optimum Operating Current (Imp/A)	13.05	10.70	12.98	10.65	12.91	10.60	12.83	10.53	12.76	10.47
Open Circuit Voltage (Voc/V)	37.67	35.5	37.45	35.3	37.24	35.1	37.04	34.9	36.84	34.7
Short Circuit Current (Isc/A)	13.95	11.25	13.88	11.20	13.81	11.14	13.73	11.08	13.66	11.02
Module Efficiency (%)	21	1.3%	2	1.0%	20	0.7%	20	0.5%	2	0.2%

STC: Irradiance 1000 W/m², module temperature 25 °C, AM=1.5; NMOT: Irradiance 800 W/m², ambient temperature 20 °C, AM=1.5, wind speed 1 m/s; Tolerance of Pmax is within +/- 3%;

Temperature Characteristics

Nominal Module Operating Temperature (NMOT)	42 ± 2 °C
Temperature Coefficient of Pmax	-0.34%/°C
Temperature Coefficient of Voc	-0.26%/°C
Temperature Coefficient of Isc	0.050%/°C

Information on how to install and operate this product is available in the installation instruction. All values indicated in this data sheet are subject to change without prior announcement. The specifications may vary slightly. All specifications are in accordance with standard EN 50380. Color differences of the modules relative to the figures as well as discolorations of/in the modules which do not impair their proper functioning are possible and do not constitute a deviation from the specification.

Information bar

Technical Specifications

25 years of linear warranty **15** years of product warranty

* Please refer to Suntech Standard Module Installation Manual for details.

395-415W 21.3% MAX EFFICIENCY

POWER OUTPUT

Flexible Module Design Small panel design, light in weight, flexible in transportation and loading

Lower operating temperature Lower operating temperature and temperature coefficient increase the power output

Withstanding harsh environment reliable quality leads to a better sustainability even in harsh environment like desert, farm and coastline

Extended wind and snow load tests Module certified to withstand extreme wind (3800 Pascal) and snow loads (6000 Pascal)*

IEC 61701 Salt-mist certification IEC 62716 ammonia certification IEC 60068-2-68 Dust and Sand

IEC 61730-2 (UL790) fire class C

0

۲ 0 0

0 0

** Please refer to Suntech Limited Warranty for details

*** WEEE only for EU market.

**** Suntech reserves the right to the final.

Maps & Layouts

Bird's Eye View

Conclusions:

We accessed the roof and inspected all accessible areas as well as the internal places, structural elements and etc. Based on the information, evidence, and specifications we obtained during the survey and the relevant structural analysis, the following table contains our findings and conclusions:

ID.	ITEM		SEVERITY	
		Acceptable	Pro-Active Modifications (Risk)	Immediate Repairs (High)
1.	Erosion	~		
2.	Corrosion / rust	~		
3.	Decay / rot	~		
4.	Deflection / Sagging	×		
5.	Twisting / Bowing	~		
6.	Damp & Moisture	×		
7.	Roof Structural Condition	×		
8.	Cracks & Defects & Deterioration	~		
9.	Deformations & Structural Issues	~		
10.	Capacity to bear the additional load of the PV Panels	~		

Final Conclusion:

The proposed panels can be installed on the roof adhering to standards, and building regulations, and H&S. No modification, repairs, or amendments are required prior to panel installation.

Signed: Abbas Ladonni BSc, MSc, PhD, Civil Eng. Date: 31 August 2023

Panel Installation Details

Unit Dimensions:

1722mm x 1134mm x 30mm (Area: 1.923cm²) 67.8" x 44.6" x 1.2" (21 ft²)

Unit Weight:

1 unit = 21.0 Kg (46.3 lbs)

Unified Load = 21.0 kg / 1.923cm² = 10.92 kg/cm²

Installation Pattern:

Pitched Roof No.1: Block 1-A:

 $3 + (7 \times 11) - 4 = 76$ Panels

76 Panels x 21 kg = 1596 kg

Block 1-B:

(10 x 9) + (8 x3) = 114 Panels

114 Panels x 21 kg = 2394 kg

Block 1-C:

(10 x 12) - 13 = 107 Panels

107 Panels x 21 = 2247 kg

Block 1-D:

 $(10 \times 12) - 3 = 117$ Panels

117 Panels x 21kg = 2457 kg

Panel Installation Details

Block 1-E: 4 + (4 x 6) = 28 Panels 28 Panels x 21 kg = 588 kg Block 1-F: 3 x 7 = 21 Panels 21 Panels x 21 kg = 441 kg Block 1-G: 2 + (8 x 4) = 34 Panels 34 Panels x 21 kg = 714 kg

Block 1-H:

12 + 4 = 14 Panels 14 Panels x 21 kg = 294 kg

Total Number of Panels on Pitched Roof No.1: 513 Panels Total Weight of Panels on Pitched Roof No.1: 10773 kg

Pitched Roof No.2:

Block 2-A:

 $(7 \times 12) - 4 = 80$ Panels

Block 2-B:

(10 x 12) -6 = 114 Panels

Block 2-C:

 $(10 \times 12) - 6 = 114$ Panels

114 Panels x 21 kg = 2394 kg

Block 2-D:

(10 x 12) - 13 = 107 Panels

107 Panels x 21 kg = 2247 kg

Block 2-E:

(10 x 12) - 3 = 117 Panels

Panel Installation Details

117 Panels x 21 kg = 2457 kg

Block 2-F:

 $(10 \times 12) - 10 = 110$ Panels

110 Panels x 21 kg = 2310 kg

Block 2-G:

 $(10 \times 12) - 18 = 102$ Panels

102 Panels x 21 kg = 2142 kg

Total Number of Panels on Pitched Roof No.2: 630 Panels Total Weight of Panels on Pitched Roof No.2: 13230 kg

Total Number Panels on the roof: 1143 Panels Total Weight of Panels on the roof: 24003 kg Average Weight of Panels on Roofs: 7.53 kg/m²

Beams: 1320 mm x 450 mm x 8 @ 7800 mm 24003 kg / 8 = 3000.375 kg per beam

	Project		Job no.			
ALPHE SURVEYS		Streatham Ice &	1739			
Unit 5A, Ryan Business Park, Sandford Lane,	Client	_	Page No./ / Revision			
Wareham, Dorset, BH	Cenergist				1 / Rev 1.0	
0330 333 9238	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
alpinesurveys.co.uk	A. Ladonni	31/08/2023	J. Dobson	10/09/2023	M. Dobson	10/09/2023
	•			•		

SNOW LOADING TO BS6399:PA	RT 3:1988
	TEDDS calculation version 1.0.03
Site location	
Location of site	London
Site altitude	A = 20 m
Calculate site snow load	
From BS6399:Part 3: 1988 - Figu	re 1. Basic snow load on the ground
Basic snow load	s _b = 0.40 kN/m ²
	$S_{alt} = 0.1 \times S_b + (0.09 \text{ kN/m}^2) = 0.13 \text{ kN/m}^2$
Site snow load	so = max(s _b , s _b + s _{alt} × (A - (100 m)) / 100 m) = 0.40 kN/m ²
	BS6399:Part3:1988 Cl.6.2
	$\frac{\mu_{1}}{\mu_{1}}$

Uniform loading

Roof geometry		
Roof type	Pitched	
Distance on plan from gutter to ridge	b = 25.000 m	
Angle of pitch of roof	$\alpha = 5.0 \text{ deg}$	
Calculate uniform snow load		
From BS6399:Part 3: 1988 - Figure 3. Snow load	shape coefficients for pitched roofs	
Snow load shape coefficient	μ1 = 0.80	
Uniform roof snow load	$S_{d1} = \mu_1 \times S_0 = 0.32 \text{ kN/m}^2$	
		BS6399:Part3:1988 CI.5
Roof pitch α is not greater than 15 degrees so the	nere is no asymmetric loadcase	
Snow sliding down roof		
Maximum uniform snow load on roof	Sd_max = 0.32 kN/m ²	
Force from sliding snow load	$F_s = s_{d_max} \times b \times sin(\alpha) = 0.70 \text{ kN/m}$	

BS6399:Part3:1988 Cl.8

ALPINE SURVEYS	Project				Job no.	
		Streatham Ice &	1739			
	Client		Page No. / / Revision			
		Cenergis	1 / Rev.1.0			
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
Unit 5A, Ryan Business Park, Sandford Lane, Wareham, Dorset, BH	A. Ladonni	31/08/2023	J. Dobson	11/09/2023	M. Dobson	11/09/2023

WIND LOADING (BS6399) In accordance with BS6399 Tedds calculation version 3.0.17 19336 4-15158-▶ 4 64638 49336 • Elevation Plan **Building data** Type of roof Duopitch Length of building L = 64638 mm W = **49336** mm Width of building Height to eaves H = **13000** mm $\alpha 0 = 5.0 \text{ deg}$ Pitch of roof Hr = **15158** mm Reference height **Dynamic classification** Kb = 8.0 Building type factor (Table 1) Dynamic augmentation factor (1.6.1) $C_r = [K_b \times (H_r / (0.1 \text{ m}))^{0.75}] / (800 \times \log(H_r / (0.1 \text{ m}))) = 0.20$ Site wind speed London Location Basic wind speed (Figure 6 BS6399:Pt 2) V_b = **20.7** m/s ∆s = **20** m Site altitude Upwind distance from sea to site dsea = 66 km Sd =1.00 **Direction factor** Ss = 1.00 Seasonal factor Sp = 1.00 Probability factor Critical gap between buildings g = **5000** mm Topography Type of feature Hills and ridges Actual length of upwind slope in wind direction Lu = **50000** mm L_d = **50000** mm Actual length downwind slope in wind direction Effective height of feature Z = 20000 mm $\psi \cup = Z / L_u = 0.40$ Upwind slope in upwind direction Effective slope of topographic feature $\psi_{e} = 0.30$ Effective length of upwind slope (cl 2.2.2.2.4) $L_e = Z / 0.3 = 66667 \text{ mm}$ x = **-5000** mm Horiz distance of the site from the top of the crest ∆⊤ = **2.000** m Altitude of upwind base of topographic feature Site altitude ∆s = **20.000** m

And	Project	Streatham Ice & Leisure Centre 1739				
		Streathannice d		;	17	
ALPINE SURVEYS	Client	Cenerais	st Limited		Page No. // Revi	sion ev.1.0
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
Unit 5A, Ryan Business Park, Sandford Lane,	A. Ladonni	31/08/2023	J. Dobson	11/09/2023	M. Dobson	11/09/2023
Wareham, Dorset, BH	<u> </u>					
Topographic location factor (Fig	ure 9a)	s = 0.52				
Topographic increment (Table 2	5)	$S_h = 0.6 \times s$	s = 0.31			
Altitude factor		$S_a = max(1$	+ 0.001 \times Δ s/1n	n, 1 + 0.001 × Δτ	/1m + 1.2 × ψe	∍ × s) = 1.19
Site wind speed		$V_s = V_b \times S_a$	$a \times S_d \times S_s \times S_p :$	= 24.6 m/s		
Terrain category		Town				
Average height of surrounding b	uildings	H _o = 15000	mm			
Distance to nearest building		X _o = 30000	mm			
Displacement height (cl.1.7.3.3)		$H_d = 0.8 \times H_d$	H₀ = 12000 mm			
The velocity pressure for the v	windward face	of the building	with a 0 degree	e wind is to be c	onsidered as	1 part as
the height h is less than b (cl.2	2.2.3.2)					
The velocity pressure for the v	windward face	of the building	with a 90 degre	e wind is to be	considered a	s 1 part as
the height h is less than b (cl.2	2.2.3.2)					
Dynamic pressure - windward	wall - Wind 0	deg and roof				
Reference height (at which q is s	sought)	H _{ref} = 13000	0 mm			
Effective height		He = max(H	lref – Hd, $0.4 imes Hr$	_{ref}) = 5200 mm		
Fetch factor (Table 22)		Sc = 0.909				
Turbulence factor (Table 22)		St = 0.191				
Fetch adjustment factor (Table 2	23)	Tc = 0.757				
Turbulence adjustment factor (T	able 23)	Tt = 1.625				
Gust peak factor		gt = 3.44				
Terrain and building factor		$S_b = S_c \times T_c$	$x \times (1 + (g_t \times S_t \times$	$(T_t) + S_h) = 1.64$		
Effective wind speed		$V_e = V_s \times S_b$	• = 40.3 m/s			
Dynamic pressure		qs = 0.613 k	$kg/m^3 \times Ve^2 = 0.9$	998 kN/m²		
Dynamic pressure - windward	I wall - Wind 90	deg and roof	_			
Reference height (at which q is s	sought)	Href = 15158	B mm)		
Effective height		$H_e = max(H$	lref – Hd, $0.4 imes Hr$	ref) = 6063 mm		
Fetch factor (Table 22)		$S_c = 0.931$				
Fotch adjustment factor (Table 22)	23)	$S_t = 0.189$				
Turbulence adjustment factor (Table 2	-5) able 23)	Tt = 1.602				
Gust peak factor	4510 20)	$q_t = 3.44$				
Terrain and building factor		$S_b = S_c \times T_c$	$x \times (1 + (a_t \times S_t \times$	$(T_t) + S_h) = 1.69$		
Effective wind speed		$V_e = V_s \times S_l$	₀ = 41.5 m/s	, -,		
Dynamic pressure		q₅ = 0.613 k	kg/m³ × Ve² = 1. 0	056 kN/m²		
Size offect factors		·	0			
Diagonal dimension for gablewa	ш	a - 51 0 n	'n			
External size effect factor gableva	wall	$C_{aeg} = 0.82!$	5			
Diagonal dimension for side wal		aes = 65.9 n	0			
External size effect factor side w	vall	Caes = 0.80	5			
Diagonal dimension for roof		a _{er} = 69.2 m	ı			
External size effect factor roof		Caer = 0.802	2			
Room/storey volume for internal	size effect facto	or Vi = 0.125 r	n ³			
Diagonal dimension for internal	size effect factor	s $a_i = 10 \times (1)$	/i) ^{1/3} = 5.000 m			
Internal size effect factor		Cai = 1.000				
Pressures and forces						
Net pressure		$p = q_s \times c_{\text{pe}}$	\times Cae - qs \times Cpi \times	Cai		

			Cenergist I	imited		3 / Rev.1.0		
5A, Ryan Busines Wareham,	s Park, Sandford Lane, Dorset, BH	Calcs by A. Ladonni	Calcs date C 31/08/2023	necked by J. Dobson	Checked date 11/09/2023	Approved M. Dol	l by bson	Approved 11/09/2
Net force			$F_w = p \times A_{ref}$					
Roof load ca	ise 1 - Wind 90, cp	i 0.20, - C pe						
Zone	Ext pressure coefficient, cpe	Dynamic pressure, q₅ (kN/m²)	External size factor, Cae	Net Pressu p (kN/i	ire, Ai m²) Aref	ea, (m²)	1	let force, F _w (kN)
A (-ve)	-2.00	1.06	0.802	-1.9) 75	5.07		-142.95
B (-ve)	-1.10	1.06	0.802	-1.14	4 75	5.07		-85.76
C (-ve)	-0.60	1.06	0.802	-0.72	2 60	0.56		-431.88
D (-ve)	-0.50	1.06	0.802	-0.6	3 245	0.46		·1554.76
Total vertical	net force		F _{w,v} = -2206.9	3 kN			•	
Total horizon	tal net force		F _{w,h} = 0.00 kN					
Walls load c	ase 1 - Wind 90, c	pi 0.20, - C pe			i			
Zone	Ext pressure coefficient, cpe	Dynamic pressure, q₅ (kN/m²)	External size factor, Cae	Net Pressu p (kN/i	nre, Ar M ²)	ea, (m²)	1	√et force, F _w (kN)
А	-1.30	1.00	0.805	-1.24	4 67	.60		-84.12
В	-0.80	1.00	0.805	-0.84	4 27	0.40		-227.81
С	-0.50	1.00	0.805	-0.6	0 502	2.29		-302.09
W	0.60	1.06	0.825	0.31	69	4.61		216.23
I	-0.50	1.06	0.825	-0.6	5 694	4.61		-449.16
Overall loadi	ing			-				
Equiv leeward	d net force for overa	all section	FI = Fw,wi = -44).2 kN				
Net windward	I force for overall se	ection	$F_w = F_{w,ww} = 2$	1 6.2 kN				
Overall loading	ng overall section		$F_{w,w} = 0.85 \times 0$	$1 + C_r) \times (F_w$	- FI + Fw,h) = 677	7.6 kN		
Roof load ca	ise 2 - Wind 0, cpi).20, - C pe						
Zone	Ext pressure coefficient, cpe	Dynamic pressure, q₅ (kN/m²)	External size factor, Cae	Net Pressu p (kN/i	ire, Ai m²) Aref	rea, (m²)	1	Vet force, F _w (kN)
A (-ve)	-1.80	1.06	0.802	-1.73	3 92	.26		-160.07
B (-ve)	-1.20	1.06	0.802	-1.2	3 10	4.45		-128.16
C (-ve)	-0.60	1.06	0.802	-0.72	2 140	3.87		·1009.57
E (-ve)	-0.90	1.06	0.802	-0.9	7 92	.26		-89.78
F (-ve)	-0.30	1.06	0.802	-0.4	7 10	4.45		-48.59
G (-ve)	-0.40	1.06	0.802	-0.5	5 140	3.87		-771.88
Total vertical	net force		F _{w,v} = -2199.6	4 kN	I		1	
Total horizon	tal net force		F _{w,h} = -33.78	N				
Walls load c	ase 2 - Wind 0, cpi	0.20, - Cpe						

A	Project				Job no.	
ALPINE SURVEYS		Streatham Ice 8	Leisure Centre		1739	
	Client	Page No. / / Revision				
	Cenergist Limited				4 / Rev.1.0	
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
Unit 5A, Ryan Business Park, Sandford Lane, Wareham, Dorset, BH	A. Ladonni	31/08/2023	J. Dobson	11/09/2023	M. Dobson	11/09/2023

Zone	Ext pressure coefficient, cpe	Dynamic pressure, q₅ (kN/m²)	External size factor, Cae	Net Pressure, p (kN/m²)	Area, A _{ref} (m²)	Net force, F _w (kN)
A	-1.30	1.06	0.825	-1.34	80.43	-108.04
В	-0.80	1.06	0.825	-0.91	351.10	-318.76
С	-0.50	1.06	0.825	-0.65	263.08	-170.12
w	0.62	1.00	0.805	0.30	840.29	248.99
I	-0.50	1.00	0.805	-0.60	840.29	-505.36

Overall loading

Equiv leeward net force for overall section Net windward force for overall section Overall loading overall section F₁ =F_{w,wl} = **-505.4** kN F_w = F_{w,ww} = **249.0** kN

 $F_{w,w} = 0.85 \times (1 + C_r) \times (F_w - F_l + F_{w,h}) = 733.8 \text{ kN}$

Roof load case 3 - Wind 0, $c_{\rm pi}$ -0.30, - $c_{\rm pe}$

Zone	Ext pressure coefficient, cpe	Dynamic pressure, q₅ (kN/m²)	External size factor, Cae	Net Pressure, p (kN/m²)	Area, A _{ref} (m²)	Net force, F _w (kN)
A (-ve)	-1.80	1.06	0.802	-1.21	92.26	-111.35
B (-ve)	-1.20	1.06	0.802	-0.70	104.45	-73.01
C (-ve)	-0.60	1.06	0.802	-0.19	1403.87	-268.29
E (-ve)	-0.90	1.06	0.802	-0.45	92.26	-41.06
F (-ve)	-0.30	1.06	0.802	0.06	104.45	6.56
G (-ve)	-0.40	1.06	0.802	-0.02	1403.87	-30.61
Total vertical r	net force		Fw,v = -515.79 ki	N		

Total horizontal net force

```
F<sub>w,h</sub> = -33.78 kN
```

Walls load case 3 - Wind 0, $c_{\rm pi}$ -0.30, - $c_{\rm pe}$

Zone	Ext pressure coefficient, cpe	Dynamic pressure, q₅ (kN/m²)	External size factor, Cae	Net Pressure, p (kN/m²)	Area, A _{ref} (m²)	Net force, F _w (kN)
A	-1.30	1.06	0.825	-0.82	80.43	-65.58
В	-0.80	1.06	0.825	-0.38	351.10	-133.37
С	-0.50	1.06	0.825	-0.12	263.08	-31.21
w	0.62	1.00	0.805	0.80	840.29	668.28
I	-0.50	1.00	0.805	-0.10	840.29	-86.07

Overall loading

Equiv leeward net force for overall section Net windward force for overall section Overall loading overall section
$$\begin{split} F_{I} = & F_{w,wl} = \textbf{-86.1 kN} \\ F_{w} = & F_{w,ww} = \textbf{668.3 kN} \\ F_{w,w} = & 0.85 \times (1 + C_{r}) \times (F_{w} - F_{I} + F_{w,h}) = \textbf{733.8 kN} \end{split}$$

Roof load case 4 - Wind 0, cpi 0.00, - cpe

A	Project				Job no.	
		Streatham Ice 8	Leisure Centre		1739	
AL DRAFT CHERVENCE	Client		Page No. / / Revision			
ALPINE SURVEYS	Cenergist Limited				5 / Rev.1.0	
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
Unit 5A, Ryan Business Park, Sandford Lane, Wareham Dorset BH	A. Ladonni	31/08/2023	J. Dobson	11/09/2023	M. Dobson	11/09/2023

Zone	Ext pressure coefficient, cpe	Dynamic pressure, q₅ (kN/m²)	External size factor, Cae	Net Pressure, p (kN/m²)	Area, A _{ref} (m²)	Net force, F _w (kN)
A (-ve)	-1.80	1.06	0.802	-1.52	92.26	-140.58
B (-ve)	-1.20	1.06	0.802	-1.02	104.45	-106.10
C (-ve)	-0.60	1.06	0.802	-0.51	1403.87	-713.06
E (-ve)	-0.90	1.06	0.802	-0.76	92.26	-70.29
F (-ve)	-0.30	1.06	0.802	-0.25	104.45	-26.53
G (-ve)	-0.40	1.06	0.802	-0.34	1403.87	-475.37

Total vertical net force Total horizontal net force F_{w,v} = -1526.10 kN F_{w,h} = -33.78 kN

Walls load case 4 - Wind 0, cpi 0.00, - cpe

Zone	Ext pressure coefficient, cpe	Dynamic pressure, q₅ (kN/m²)	External size factor, Cae	Net Pressure, p (kN/m²)	Area, A _{ref} (m²)	Net force, F _w (kN)
А	-1.30	1.06	0.825	-1.13	80.43	-91.06
В	-0.80	1.06	0.825	-0.70	351.10	-244.60
С	-0.50	1.06	0.825	-0.44	263.08	-114.55
w	0.62	1.00	0.805	0.50	840.29	416.71
I	-0.50	1.00	0.805	-0.40	840.29	-337.65

Overall loading

Equiv leeward net force for overall section Net windward force for overall section Overall loading overall section Fi =Fw,wi = **-337.6** kN

 $F_{w} = F_{w,ww} = 416.7 \text{ kN}$

 $F_{w,w} = 0.85 \times (1 + C_r) \times (F_w - F_l + F_{w,h}) = 733.8 \text{ kN}$

Roof load case 5 - Wind 90, cpi -0.30, - cpe

Zone	Ext pressure coefficient, cpe	Dynamic pressure, q₅ (kN/m²)	External size factor, Cae	Net Pressure, p (kN/m²)	Area, A _{ref} (m²)	Net force, F _w (kN)
A (-ve)	-2.00	1.06	0.802	-1.38	75.07	-103.32
B (-ve)	-1.10	1.06	0.802	-0.61	75.07	-46.12
C (-ve)	-0.60	1.06	0.802	-0.19	600.56	-114.77
D (-ve)	-0.50	1.06	0.802	-0.11	2450.46	-260.86

Total vertical net force Total horizontal net force

```
F<sub>w,v</sub> = -523.07 kN
F<sub>w,h</sub> = 0.00 kN
```

	Project				Job no.	
		Streatham Ice &	Leisure Centre		1739	
AL DEVE CONTRACTOR	Client				Page No. / / Revision	
Marine Convert	Cenergist Limited				6 / Rev.1.0	
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
Unit 5A, Ryan Business Park, Sandford Lane, Wareham, Dorset, BH	A. Ladonni	31/08/2023	J. Dobson	11/09/2023	M. Dobson	11/09/2023

Walls load case 5 - Wind 90, cpi -0.30, - Cpe

Zone	Ext pressure coefficient, cpe	Dynamic pressure, q₅ (kN/m²)	External size factor, Cae	Net Pressure, p (kN/m²)	Area, A _{ref} (m²)	Net force, F _w (kN)
A	-1.30	1.00	0.805	-0.75	67.60	-50.39
В	-0.80	1.00	0.805	-0.34	270.40	-92.89
С	-0.50	1.00	0.805	-0.10	502.29	-51.45
w	0.60	1.06	0.825	0.84	694.61	583.00
I	-0.50	1.06	0.825	-0.12	694.61	-82.39

Overall loading

Equiv leeward net force for overall section Net windward force for overall section Overall loading overall section

F_I =F_{w,wl} = **-82.4** kN F_w = F_{w,ww} = **583.0** kN

 $F_{w,w} = 0.85 \times (1 + C_r) \times (F_w - F_l + F_{w,h}) = 677.6 \text{ kN}$

Roof load case 6 - Wind 90, cpi -0.30, - cpe

Zone	Ext pressure coefficient, cpe	Dynamic pressure, q₅ (kN/m²)	External size factor, Cae	Net Pressure, p (kN/m²)	Area, A _{ref} (m²)	Net force, F _w (kN)
A (-ve)	-2.00	1.06	0.802	-1.38	75.07	-103.32
B (-ve)	-1.10	1.06	0.802	-0.61	75.07	-46.12
C (-ve)	-0.60	1.06	0.802	-0.19	600.56	-114.77
D (-ve)	-0.50	1.06	0.802	-0.11	2450.46	-260.86
Total vertical net force		Fw,v = -523.07 kM	Ň			

Total vertical net force Total horizontal net force

 $F_{w,h} = 0.00 \text{ kN}$

Walls load case 6 - Wind 90, cpi -0.30, - cpe

Zone	Ext pressure coefficient, cpe	Dynamic pressure, q₅ (kN/m²)	External size factor, Cae	Net Pressure, p (kN/m²)	Area, A _{ref} (m²)	Net force, F _w (kN)
A	-1.30	1.00	0.805	-0.75	67.60	-50.39
В	-0.80	1.00	0.805	-0.34	270.40	-92.89
С	-0.50	1.00	0.805	-0.10	502.29	-51.45
w	0.60	1.06	0.825	0.84	694.61	583.00
I	-0.50	1.06	0.825	-0.12	694.61	-82.39

Overall loading

Equiv leeward net force for overall section Net windward force for overall section Overall loading overall section
$$\begin{split} F_{I} = &F_{w,wl} = \textbf{-82.4 kN} \\ F_{w} = &F_{w,ww} = \textbf{583.0 kN} \\ F_{w,w} = &0.85 \times (1 + C_{r}) \times (F_{w} - F_{I} + F_{w,h}) = \textbf{677.6 kN} \end{split}$$

Ant	Project	0, ,, ,	Job no.					
		Streatnam Ice	1739					
ALPINE SURVEYS	Client Cenergist Limited				Start page no./Revision 3 / Rev 1.0			
it 5A, Ryan Business Park, Sandford Lane, Wareham, Dorset, BH	Calcs by A. Ladonni	Calcs date 31/08/2023	Checked by J. Dobson	Checked date 11/09/2023	Approved by M. Dobson	Approved date 11/09/2023		
Modulus of elasticity		E = 20500) N/mm ²					
	6 0							
	- 1012 		23.6					
			1					
		◀───402─	•					
Lateral restraint								
		Span 1 has	s full lateral restr	aint				
Effective length factors								
Effective length factor in major a	ixis	K _x = 1.00						
Effective length factor in minor a	Ky = 1.00							
Effective length factor for lateral-torsional buckling		g KLT.A = 1.20	KLT.A = 1.20					
		KLT.B = 1.00)					
Classification of cross section	is - Section 3.5	c – √[275 N	1/mm ² / p.1 – 0 0	1				
		ε = v[275 N	///////-//pyj= 0.3	, I				
Internal compression parts - I	able 11	d _ 060 0 n	~~~					
Depth of Section		d = 000.2	 × s <− 80 × s	Class 1	nlastic			
Outstand flanges Table 11		u / t = 40.0	~ ~ ~ ~ 00 ~ ~	01033	plastic			
Width of section		h – B / 2 –	201 mm					
		b = b/2 = b/T = 53	x = 9 x =	Class 1	plastic			
		071 - 0.0	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	01033	Section is c	lass 1 plastic		
Shear canacity - Section 4 2 3						· · · ·]· · · · ·		
Design shear force		F _v = max(a d / t < 70 ×	bs(V _{max}), abs(Vr ε	min)) = 157.4 kN				
			Web does n	ot need to be cl	hecked for sh	ear buckling		
Shear area	$A_v = t \times D =$	A _v = t × D = 23883 mm ²						
Design shear resistance	$P_v = 0.6 \times \mu$	$P_v = 0.6 \times p_y \times A_v = 4800.5 \text{ kN}$						
		PAS	S - Design she	ar resistance ex	ceeds desigi	n shear force		
Moment capacity - Section 4.2	2.5							
Design bending moment	IVI = max(al	$VI = max(abs(Ms_1_max), abs(Ms_1_min)) = 97.1 kNm$						
woment capacity low shear - cl.4	IVIc = MIN(p	$\text{WC} = \text{min}(\text{py} \times \text{ox}, 1.2 \times \text{py} \times \text{Zx}) = 1290.2 \text{ KNIII}$ PASS - Moment capacity exceeds design bending moment						
		r P		apacity caucedu	s acsign bell			
Consider deflection due to dead	and imposed loa	ads						

Act	Project				Job no.	
ALPINE SURVEYS	Client	Start page no./Revision				
Unit 5A, Ryan Business Park, Sandford Lane, Wareham, Dorset, BH	Calcs by A. Ladonni	Calcs date 31/08/2023	Checked by J. Dobson	Checked date 11/09/2023	Approved by M. Dobson	Approved date 11/09/2023
Limiting deflection		δlim = Ls1 / 3	60 = 6.853 mm			

Maximum deflection span 1

 $\delta = \max(abs(\delta_{max}), abs(\delta_{min})) = 0.021 \text{ mm}$

PASS - Maximum deflection does not exceed deflection limit