

## Connecting Strength

## K2 Base Report

shed 4 DR Collin

Project address Company Author Issue date & version 39 Coldingham Rd, Eyemouth TD14 5AR, UK Maden Eco Conor Maden 27/11/2023 | K2 Base Version 3.1.106.0





### K2 Systems. Innovative mounting system from a strong team.

Since 2004 we have been developing pioneering and highly functional mounting system solutions for photovoltaic installations around the world. Our systems are designed in our own product development department where we continually optimize and adapt mounting systems to the ever-changing market.

#### A knowledgeable and friendly team

Just like a mountain climbing team, K2 Systems is built on mutual trust. This applies to our customer service as well as within the company itself, because we believe a trusting partnership leads to successful photovoltaic projects.

Our employees place total focus on the needs and wishes of our customer. This is true in all company departments.

#### Quality management and certificates

#### 10 locations and worldwide sales network

In our international team, everyone works together to provide customers with competent, comprehensive and entirely personalized service.

This is especially true in the constant training our employees undergo with regards to product optimization, quality assurance, or innovations in construction techniques.

K2 Systems stands for Connecting Strength, the highest quality, and precision-crafted and customized components. Our customers and business partners deeply appreciate all of these factors. Three independent authorities have tested, confirmed, and certified our skills and components. External authorities are not the only ones to have put K2 Systems to the test. Our internal quality control ensures that all our products are subject to a constant review process.

These measures all ensure the outstanding quality standards that exemplify products from K2 Systems, and which we maintain through largely exclusive "Made in Germany" or "Made in Europe" practices.



#### Product guarantee

K2 Systems offers a 12-year product warranty on all products in its integrated range. The use of high quality materials and a three-level quality inspection ensure these standards.

#### In a nutshell

As roof-top specialists, we offer effective and economical solutions for roofs all around the world and provide professional, fast and reliable support for our customers in the solar industry.



## Contents

| Project overview           | 4  |
|----------------------------|----|
| Roof 1                     | 6  |
| Assembly plan              | 8  |
| Results                    | 13 |
| Structural analysis report | 16 |
| Bill of material           | 21 |
| Roof 2                     | 22 |
| Assembly plan              | 24 |
| Results                    | 29 |
| Structural analysis report | 32 |
| Bill of material           | 37 |
| Bill of material           | 38 |

 $\left( \right)$ 



### Project information

| Name             | shed 4 DR Collin                        |
|------------------|-----------------------------------------|
| Address          | 39 Coldingham Rd, Eyemouth TD14 5AR, UK |
| Ground elevation | 35.92 m                                 |
| Author           | Conor Maden                             |
|                  |                                         |

### Load settings

| Design method                  | BS EN                  |
|--------------------------------|------------------------|
| Failure consequence class (CC) | CC1                    |
| Design working life            | 25 years               |
| Terrain category               | Sea                    |
| Environment                    | Normal area            |
| Basic wind speed               | 24.5 m/s               |
| Snow load zone                 | 3                      |
| Snow load on ground level      | 0.50 kN/m <sup>2</sup> |

### Roofs

| Roof   | System              | Module                      | Power  | Quantity | Total power |
|--------|---------------------|-----------------------------|--------|----------|-------------|
| Roof 1 | <u>K2 BasicRail</u> | TSM-440NEG9R.28 (Vertex S+) | 440 Wp | 124      | 54.56 kWp   |
| Roof 2 | <u>K2 BasicRail</u> | TSM-440NEG9R.28 (Vertex S+) | 440 Wp | 124      | 54.56 kWp   |

#### Total

#### 248 109.12 kWp



#### THE PROJECT IS VERIFIED.

The selected mounting system can be installed as planned Thank you for choosing a K2 mounting system.



## Roofs



## Project information

Name Address Ground elevation Author shed 4 DR Collin 39 Coldingham Rd, Eyemouth TD14 5AR, UK 35.92 m Conor Maden 1 ì





| Roof   | System              | Module                      | Power  | Quantity | Total power |
|--------|---------------------|-----------------------------|--------|----------|-------------|
| Roof 1 | <u>K2 BasicRail</u> | TSM-440NEG9R.28 (Vertex S+) | 440 Wp | 124      | 54.56 kWp   |

 $\left( \right)$ 

(A)

# Connecting StrengthRoofs | Roof 1 | Assembly plan

### Base Rails

|      | Whole             | e Rails         |              | Rail cutting |       |  |  |
|------|-------------------|-----------------|--------------|--------------|-------|--|--|
| Туре | Total Rail Length | Quantity 4.40 m | Part of Rail | Length       | Rest  |  |  |
| А    | 8.178             | 1               | 4.400        | 3.778        | 0.612 |  |  |
| В    | 9.332             | 2               | 4.400        | 0.700        | 3.690 |  |  |
| С    | 9.332             | 2               | 3.690        | 0.700        | 2.980 |  |  |
| D    | 9.332             | 2               | 2.980        | 0.700        | 2.270 |  |  |
| E    | 9.332             | 2               | 2.270        | 0.700        | 1.560 |  |  |
| F    | 9.332             | 2               | 1.560        | 0.700        | 0.850 |  |  |
| G    | 9.332             | 2               | 0.850        | 0.700        | 0.140 |  |  |

## Module arrays

| Module array | Width[m] | Length[m] | Width in modules | Length in modules |
|--------------|----------|-----------|------------------|-------------------|
| 1            | 36.29    | 7.08      | 31               | 4                 |

íì

## Connecting StrengthRoofs | Roof 1 | Module array 1



#### Roof (1) Module array (1)

Mounting System Module

Row spacing

#### <u>K2 BasicRail</u>

124(54.56 kWp) x TSM-440NEG9R.28 (Vertex S+) 1.77 m















K2 Base Report 3.1.106.0 | 27/11/2023 | shed 4 DR Collin





íì

## I Connecting StrengthResults | Roof 1

| Roof   | System              | Module                      | Power  | Quantity | Total power |
|--------|---------------------|-----------------------------|--------|----------|-------------|
| Roof 1 | <u>K2 BasicRail</u> | TSM-440NEG9R.28 (Vertex S+) | 440 Wp | 124      | 54.56 kWp   |

### Module

| Name         | TSM-440NEG9R.28 (Vertex S+) |
|--------------|-----------------------------|
| Manufacturer | Trina Solar Energy          |
| Output power | 440 Wp                      |
| Dimensions   | 1,762×1,134×30 mm           |
| Weight       | 21.1 kg                     |

### Components

| Fastener    | K2 BasicClip                      |
|-------------|-----------------------------------|
| Base rails  | K2 BasicRail 22                   |
| Metal screw | Thread-forming metal screw 6.0×38 |

## Loads on modules (module dimensioning)

| Array                   | Λ_TrΛ_            | ultimate state [Pa] |                |          |              |    | Serviceability [Pa] |                |          |              |
|-------------------------|-------------------|---------------------|----------------|----------|--------------|----|---------------------|----------------|----------|--------------|
| Анау                    | [m <sup>2</sup> ] | Pressure<br>⊥       | Pressure<br>II | Uplift ⊥ | Uplift<br>II | Pr | ressure<br>⊥        | Pressure<br>II | Uplift ⊥ | Uplift<br>II |
| field area              | 2.00              | 713.1               | 153.3          | -597.2   | 28.7         |    | 564.3               | 121.6          | -445.3   | 28.7         |
| ridge                   | 2.00              | 713.1               | 153.3          | -1,418.9 | 28.7         |    | 564.3               | 121.6          | -1,089.8 | 28.7         |
| gableboard              | 2.00              | 713.1               | 153.3          | -1,653.7 | 28.7         |    | 564.3               | 121.6          | -1,273.9 | 28.7         |
| corner region<br>(eave) | 2.00              | 713.1               | 153.3          | -1,771.1 | 28.7         |    | 564.3               | 121.6          | -1,366.0 | 28.7         |
| eaves                   | 2.00              | 713.1               | 153.3          | -832.0   | 28.7         |    | 564.3               | 121.6          | -629.4   | 28.7         |

#### Utilisation result

|              |                      | ultima | ultimate limit state |      | ultimate limit state Usab. Distances ma |       | Distances |                      | maxim                    | maximum values |  |
|--------------|----------------------|--------|----------------------|------|-----------------------------------------|-------|-----------|----------------------|--------------------------|----------------|--|
| No.          | roof areas           | Pr     | CL                   | Fst  | Pr                                      | Fst   | BR        | CL                   | Fst                      |                |  |
| Module Array |                      | σ[%]   | σ[%]                 | F[%] | f[%]                                    | [m]   | [m]       | L <sub>max</sub> [m] | Fst D <sub>max</sub> [m] |                |  |
| 1            | field area           | 22.4   | 6.7                  | 47.6 | 32.6                                    | 0.800 |           | 0.466                | 0.850                    |                |  |
| 1            | ridge                | 23.1   | 0.0                  | 82.4 | 19.9                                    | 0.600 |           | 0.411                | 0.728                    |                |  |
| 1            | gableboard           | 26.9   | 8.3                  | 95.8 | 23.2                                    | 0.600 |           | 0.394                | 0.627                    |                |  |
| 1            | corner region (eave) | 12.8   | 8.9                  | 68.3 | 4.9                                     | 0.400 |           | 0.400                | 0.586                    |                |  |
| 1            | eaves                | 24.3   | 0.0                  | 65.4 | 36.3                                    | 0.800 |           | 0.452                | 0.850                    |                |  |



## Results | Roof 1

| Pr  | Profile    | $Fst \ D_{max}$ | maximum fastener spacing   |
|-----|------------|-----------------|----------------------------|
| Fst | Fastener   | BR              | Base Rail                  |
| σ   | Stress     | Usab.           | serviceability limit state |
| f   | Deflection | CL              | Cantilever                 |
| F   | Force      |                 |                            |

 $\text{CL/L}_{\text{max}}$  maximum cantilever length

 $\langle \rangle$ 



### Notes

- The quantity for K2 BasicRail BasicClips is calculated in such a way, that according to the Assembly Instructions a BasicClip can be installed on the crest to the left and right of a Rail Connector Set.
- The structural design complies with BS EN 1990 Basis of Structural Design.
- Snow loads are determined in accordance with National Annex BS NA EN 1991-1-3 (2018) UK National Annex to EC1 Action on structures general actions snow loads.
- Wind loads are determined in accordance with National Annex BS NA EN 1991-1-4 UK National Annex to EC1 Action on structures, general actions wind actions.
- Service life is recognised according to 'Eurocode EN 1991 Action on structures, Snow loads' and 'Eurocode EN 1991 Actions on structures, Wind actions'. Subject to the Building Regulations and for security-relevant reasons the installation has to be dismantled at the end of its service life.
- Failure consequence class is considered according to 'Eurocode EN 1990 Basis of structural design'.
- Data and results must be verified with regard to local conditions and checked by a suitably qualified person. Please see our TCU under https://k2-systems.com/en/base-tcu, in particular § 2 ("technical and specialist requirements for the customer"), § 7 ("warranty provisions") and § 8 ("limitation of liability").

## Connecting Strength Structural analysis report | Roof 1

### General information

| Name            | shed 4 DR Collin |
|-----------------|------------------|
| Mounting System | K2 BasicRail     |
| Author          | Conor Maden      |

## Location information

| Address          | 39 Coldingham Rd, Eyemouth TD14 5AR, UK |
|------------------|-----------------------------------------|
| Ground elevation | 35.92 m                                 |

## Roof information

| Building height         | 6.00 m      |
|-------------------------|-------------|
| Roof type               | Gable roof  |
| Roof pitch              | 15°         |
| Fastening method        | Roof cover  |
| Roof covering           | Trapezoidal |
| Min. roof edge distance | 0.00 m      |
| Crest distance          | 200.0 mm    |
| Crest width             | 22.0 mm     |
| Crest height            | 40.0 mm     |
| Roof material           | Steel       |
| Sheet quality           | S235        |
| Sheet thickness         | 0.500 mm    |

## Loads

| Design method                  | BS EN    |
|--------------------------------|----------|
| Failure consequence class (CC) | CC1      |
| Design working life            | 25 years |
| Terrain category               | Sea      |

#### Wind load

| Velocity pressure                  | <b>q</b> <sub>p,50</sub> | = 1.000 kN/m <sup>2</sup> |
|------------------------------------|--------------------------|---------------------------|
| Adjustment factor for service life | $f_w$                    | = 1.000                   |
| Velocity pressure                  | <b>q</b> <sub>p,25</sub> | = 0.921 kN/m <sup>2</sup> |

# I Connecting StrengthStructural analysis report | Roof 1

#### Roof areas

| Array                | load impact area<br>[m²] | maxCpe <sub>10</sub> | minCpe <sub>10</sub> | wind pressure<br>[kN/m²] | wind suction<br>[kN/m²] |
|----------------------|--------------------------|----------------------|----------------------|--------------------------|-------------------------|
| field area           | 10.00                    | 0.200                | -0.600               | 0.184                    | -0.552                  |
| ridge                | 10.00                    | 0.200                | -1.300               | 0.184                    | -1.197                  |
| gableboard           | 10.00                    | 0.200                | -1.500               | 0.184                    | -1.381                  |
| corner region (eave) | 10.00                    | 0.200                | -1.600               | 0.184                    | -1.473                  |
| eaves                | 10.00                    | 0.200                | -0.800               | 0.184                    | -0.737                  |

#### Snow load

| Snow load zone                     | 3                        |                           |
|------------------------------------|--------------------------|---------------------------|
| Environment                        | Norn                     | nal terrain               |
| Snow guard                         | No                       |                           |
| Snow load on ground level          | S <sub>k</sub>           | = 0.500 kN/m <sup>2</sup> |
| Shape Coefficient for Snow         | $\mu_{i}$                | = 0.800                   |
| Factor for roof pitch              | $\mathbf{d}_{i}$         | = 0.966                   |
| Snow load on roof                  | <b>S</b> <sub>i,50</sub> | = 0.386 kN/m <sup>2</sup> |
| Adjustment factor for service life | $\mathbf{f}_{s}$         | = 1.000                   |
| Snow load on roof                  | <b>S</b> <sub>i,25</sub> | = 0.359 kN/m <sup>2</sup> |
|                                    |                          |                           |

#### Dead Load

| Weight of module                                  | $\mathbf{G}_{M}$ | = 21.1 kg                 |
|---------------------------------------------------|------------------|---------------------------|
| Weight of mounting system per<br>module           |                  | = 1.5 kg                  |
| Module area                                       | $A_{M}$          | = 2.00 m <sup>2</sup>     |
| Dead weight of module per m <sup>2</sup>          |                  | = 10.56 kg/m <sup>2</sup> |
| Dead weight of mounting system per m <sup>2</sup> |                  | = 0.75 kg/m²              |
| Total Dead Load (excl. ballast) per<br>m²         |                  | = 0.11 kN/m <sup>2</sup>  |

# I Connecting StrengthStructural analysis report | Roof 1

## Load Combinations

#### Ultimate limit state

| Partial safety factor unfavourable permanent load                                                        | $\gamma_{G, sup}$          | = 1.35 |
|----------------------------------------------------------------------------------------------------------|----------------------------|--------|
| Partial safety factor favourable permanent load                                                          | $\gamma_{G,inf}$           | = 1.00 |
| Partial safety factor destabilising permanent load                                                       | $\gamma_{\rm G,dst}$       | = 1.10 |
| Partial safety factor stabilising permanent load                                                         | $\gamma_{\text{G,stb}}$    | = 0.90 |
| Partial safety factor first variable load                                                                | γ <sub>Q</sub>             | = 1.50 |
| Partial safety factor variable loads                                                                     | $\gamma_{\text{Q}}$        | = 1.50 |
| Combination coefficient with regards to wind                                                             | $\psi_{o,w}$               | = 0.60 |
| Combination coefficient with regards to wind (additional varying influences)                             | Ψ <sub>1,w</sub>           | = 0.20 |
| Combination coefficient with regards to Snow                                                             | $\psi_{\text{o},\text{s}}$ | = 0.50 |
| Importance factor permanent                                                                              | $\mathbf{K}_{Fl,G}$        | = 0.90 |
| Importance factor variable                                                                               | $\mathbf{K}_{Fl,Q}$        | = 0.85 |
| Characteristic dead weight                                                                               | G <sub>k</sub>             |        |
| Characteristic snow load on the roof                                                                     | S <sub>i,n</sub>           |        |
| Characteristic wind load                                                                                 | $\mathbf{W}_{k}$           |        |
| Load case combination 01 $E_d = \gamma_{G,sup} * \kappa_{FLG} * G_k + \gamma_0 * \kappa_{FLO} * S_{i,n}$ |                            |        |

| Load case combination of | $\mathbf{E}_{d} = \mathbf{\gamma}_{G, sup} \cdot \mathbf{K}_{Fl,G} \cdot \mathbf{G}_{k} + \mathbf{\gamma}_{Q} \cdot \mathbf{K}_{Fl,Q} \cdot \mathbf{S}_{i,n}$ |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Load case combination 02 | $E_{d} = \gamma_{G,sup} * \kappa_{Fl,G} * G_{k} + \gamma_{Q} * \kappa_{Fl,Q} * W_{k,Pressure}$                                                                |
| Load case combination 03 | $E_{d} = \gamma_{G,sup} \ast \kappa_{Fl,G} \ast G_{k} + \gamma_{Q} \ast \kappa_{Fl,Q} \ast (W_{k,Pressure} + \psi_{Q,S} \ast S_{i,Pressure})$                 |
| Load case combination 04 | $E_{d} = \gamma_{G,sup} \ast \kappa_{Fl,G} \ast G_{k} + \gamma_{Q} \ast \kappa_{Fl,Q} \ast (S_{i,n} + \psi_{0,W} \ast W_{k,Pressure})$                        |
| Load case combination 06 | $E_{d} = \gamma_{G,inf} * G_{k} + \gamma_{Q} * \kappa_{Fl,Q} * W_{k,Uplift}$                                                                                  |

#### Serviceability limit state

| Combination coefficient with regards to wind | ψ <sub>ο,</sub><br>w       | = 0.60 |
|----------------------------------------------|----------------------------|--------|
| Combination coefficient with regards to Snow | $\psi_{\text{o},\text{s}}$ | = 0.50 |

| Load case combination 01 | $E_d = G_k + S_{i,n}$                                                                                |
|--------------------------|------------------------------------------------------------------------------------------------------|
| Load case combination 02 | $E_d = G_k + W_{k,Pressure}$                                                                         |
| Load case combination 03 | $E_d = G_k + W_{k,Pressure} + \psi_{0,S} * S_{i,n}$                                                  |
| Load case combination 04 | $\mathbf{E}_{d} = \mathbf{G}_{k} + \mathbf{S}_{i,n} + \mathbf{\psi}_{0,W} * \mathbf{W}_{k,Pressure}$ |
| Load case combination 06 | $E_d = G_k + W_{k,Uplift}$                                                                           |

## Structural analysis report | Roof 1

## Maximum load on modules (Mounting system dimensioning)

| Array                   | ۸_Tr۸             | ultimate state [kN/m²] |                |          | Se           | Serviceability [kN/m²] |                |          |              |
|-------------------------|-------------------|------------------------|----------------|----------|--------------|------------------------|----------------|----------|--------------|
|                         | [m <sup>2</sup> ] | Pressure<br>⊥          | Pressure<br>II | Uplift ⊥ | Uplift<br>II | Pressure<br>⊥          | Pressure<br>II | Uplift ⊥ | Uplift<br>II |
| field area              | 10.00             | 0.713                  | 0.153          | -0.597   | 0.029        | 0.564                  | 0.122          | -0.445   | 0.029        |
| ridge                   | 10.00             | 0.713                  | 0.153          | -1.419   | 0.029        | 0.564                  | 0.122          | -1.090   | 0.029        |
| gableboard              | 10.00             | 0.713                  | 0.153          | -1.654   | 0.029        | 0.564                  | 0.122          | -1.274   | 0.029        |
| corner region<br>(eave) | 10.00             | 0.713                  | 0.153          | -1.771   | 0.029        | 0.564                  | 0.122          | -1.366   | 0.029        |
| eaves                   | 10.00             | 0.713                  | 0.153          | -0.832   | 0.029        | 0.564                  | 0.122          | -0.629   | 0.029        |

### Max. load on fastener

| Arrow                   | ∧_Tr∧ _                      | ultimate state [kN] |                |          |              | Serviceability [kN] |                |          |              |
|-------------------------|------------------------------|---------------------|----------------|----------|--------------|---------------------|----------------|----------|--------------|
| Анау                    | A-11A -<br>[m <sup>2</sup> ] | Pressure<br>⊥       | Pressure<br>II | Uplift ⊥ | Uplift<br>II | Pressure<br>⊥       | Pressure<br>II | Uplift ⊥ | Uplift<br>II |
| field area              | 10.00                        | 0.553               | 0.119          | -0.463   | 0.022        | 0.438               | 0.094          | -0.345   | 0.022        |
| ridge                   | 10.00                        | 0.415               | 0.089          | -0.825   | 0.017        | 0.328               | 0.071          | -0.634   | 0.017        |
| gableboard              | 10.00                        | 0.415               | 0.089          | -0.962   | 0.017        | 0.328               | 0.071          | -0.741   | 0.017        |
| corner region<br>(eave) | 10.00                        | 0.276               | 0.059          | -0.687   | 0.011        | 0.219               | 0.047          | -0.530   | 0.011        |
| eaves                   | 10.00                        | 0.553               | 0.119          | -0.645   | 0.022        | 0.438               | 0.094          | -0.488   | 0.022        |

## Resistance Values of Components

#### Base Rails

| Base Rails      | А                  | $I_y$  | I <sub>z</sub> | $W_y$ | $W_z$              |
|-----------------|--------------------|--------|----------------|-------|--------------------|
|                 | [cm <sup>2</sup> ] | [cm^4] | [cm^4]         | [cm³] | [cm <sup>3</sup> ] |
| K2 BasicRail 22 | 2.380              | 1.52   | 7.74           | 1.08  | 2.46               |

#### Fastener

| Fastener                          | $R_{D,Uplift,Perpendicular}$ [kN] | $R_{D,Pressure,Perpendicular}$ [kN] | $R_{D,Pressure,Parallel}$ [kN] |
|-----------------------------------|-----------------------------------|-------------------------------------|--------------------------------|
| K2 BasicClip                      | 1.02                              | -                                   | 0.96                           |
| Thread-forming metal screw 6.0×38 | 0.65                              | -                                   | 0.62                           |

## I Connecting Strength Structural analysis report | Roof 1

#### Utilisation result

|              |                      | ultima | te limit | state | Usab. | Distan | ces | maxim                | um values                |
|--------------|----------------------|--------|----------|-------|-------|--------|-----|----------------------|--------------------------|
| No.          | roof areas           | Pr     | CL       | Fst   | Pr    | Fst    | BR  | CL                   | Fst                      |
| Module Array |                      | σ[%]   | σ[%]     | F[%]  | f[%]  | [m]    | [m] | L <sub>max</sub> [m] | Fst D <sub>max</sub> [m] |
| 1            | field area           | 22.4   | 6.7      | 47.6  | 32.6  | 0.800  |     | 0.466                | 0.850                    |
| 1            | ridge                | 23.1   | 0.0      | 82.4  | 19.9  | 0.600  |     | 0.411                | 0.728                    |
| 1            | gableboard           | 26.9   | 8.3      | 95.8  | 23.2  | 0.600  |     | 0.394                | 0.627                    |
| 1            | corner region (eave) | 12.8   | 8.9      | 68.3  | 4.9   | 0.400  |     | 0.400                | 0.586                    |
| 1            | eaves                | 24.3   | 0.0      | 65.4  | 36.3  | 0.800  |     | 0.452                | 0.850                    |
|              |                      |        |          |       |       |        |     |                      |                          |

| Pr  | Profile  |  |  |  |
|-----|----------|--|--|--|
| Fst | Fastener |  |  |  |

- σ Stress
- f Deflection
- F Force
- $\text{CL}/\text{L}_{\text{max}}$  maximum cantilever length

 $\mathsf{Fst} \; \mathsf{D}_{\mathsf{max}} \quad \textbf{maximum fastener spacing}$ 

BR Base Rail

- Usab. serviceability limit state
- CL Cantilever

## Connecting StrengthRoofs | Roof 1 | Bill of material

| Position | ltem no. | Item description                  | Quantity | Weight   |
|----------|----------|-----------------------------------|----------|----------|
| 1        | 1001164  | K2 BasicClip                      | 467      | 14.0 kg  |
| 2        | 1005193  | Thread-forming metal screw 6.0×38 | 934      | 6.5 kg   |
| 3        | 2003072  | OneMid Black Set 30-42            | 216      | 17.1 kg  |
| 4        | 2002589  | OneEnd Black Set 30-42            | 64       | 5.6 kg   |
| 5        | 2003240  | K2 BasicRail 22; 4.40m            | 68       | 192.4 kg |
| 6        | 1003571  | K2 BasicRail BasicConnector Set   | 56       | 2.7 kg   |
| 7        | 1003558  | K2 BasicRail BasicLock 22 Set     | 32       | 1.6 kg   |
| Total    |          |                                   |          | 239.9 kg |

K2 Base Report 3.1.106.0 | 27/11/2023 | shed 4 DR Collin

 $\langle \rangle$ 





| 37.85 | m |
|-------|---|
|       |   |

| Roof   | System              | Module                      | Power  | Quantity | Total power |
|--------|---------------------|-----------------------------|--------|----------|-------------|
| Roof 2 | <u>K2 BasicRail</u> | TSM-440NEG9R.28 (Vertex S+) | 440 Wp | 124      | 54.56 kWp   |

 $\left( \right)$ 

Ŕ

## Module arrays

| Module array | Width[m] | Length[m] | Width in modules | Length in modules |
|--------------|----------|-----------|------------------|-------------------|
| 1            | 37.45    | 7.08      | 31               | 4                 |

ίì





#### Roof (2) Module array (1)

Mounting System Module

Row spacing

#### K2 BasicRail

124(54.56 kWp) x TSM-440NEG9R.28 (Vertex S+) 1.77 m



















íì

## Connecting StrengthResults | Roof 2

| Roof   | System              | Module                      | Power  | Quantity | Total power |
|--------|---------------------|-----------------------------|--------|----------|-------------|
| Roof 2 | <u>K2 BasicRail</u> | TSM-440NEG9R.28 (Vertex S+) | 440 Wp | 124      | 54.56 kWp   |

### Module

| Name         | TSM-440NEG9R.28 (Vertex S+) |
|--------------|-----------------------------|
| Manufacturer | Trina Solar Energy          |
| Output power | 440 Wp                      |
| Dimensions   | 1,762×1,134×30 mm           |
| Weight       | 21.1 kg                     |

### Components

| Fastener    | K2 BasicClip                      |
|-------------|-----------------------------------|
| Base rails  | K2 BasicRail 22                   |
| Metal screw | Thread-forming metal screw 6.0×38 |

## Loads on modules (module dimensioning)

| Arrow                   | Λ_TrΛ             | ultimate state [Pa] |                |          |              |             | Serviceability [Pa] |          |              |  |
|-------------------------|-------------------|---------------------|----------------|----------|--------------|-------------|---------------------|----------|--------------|--|
| Array                   | [m <sup>2</sup> ] | Pressure<br>⊥       | Pressure<br>II | Uplift ⊥ | Uplift<br>II | Pressu<br>⊥ | re Pressure<br>II   | Uplift ⊥ | Uplift<br>II |  |
| field area              | 2.00              | 713.1               | 153.3          | -597.2   | 28.7         | 564         | .3 121.6            | -445.3   | 28.7         |  |
| ridge                   | 2.00              | 713.1               | 153.3          | -1,418.9 | 28.7         | 564         | .3 121.6            | -1,089.8 | 28.7         |  |
| gableboard              | 2.00              | 713.1               | 153.3          | -1,653.7 | 28.7         | 564         | .3 121.6            | -1,273.9 | 28.7         |  |
| corner region<br>(eave) | 2.00              | 713.1               | 153.3          | -1,771.1 | 28.7         | 564         | .3 121.6            | -1,366.0 | 28.7         |  |
| eaves                   | 2.00              | 713.1               | 153.3          | -832.0   | 28.7         | 564         | .3 121.6            | -629.4   | 28.7         |  |

#### Utilisation result

|              |                      | ultima | te limit | state | Usab. | Distan | ces | maxim                | um values                |
|--------------|----------------------|--------|----------|-------|-------|--------|-----|----------------------|--------------------------|
| No.          | roof areas           | Pr     | CL       | Fst   | Pr    | Fst    | BR  | CL                   | Fst                      |
| Module Array |                      | σ[%]   | σ[%]     | F[%]  | f[%]  | [m]    | [m] | L <sub>max</sub> [m] | Fst D <sub>max</sub> [m] |
| 1            | field area           | 22.4   | 1.9      | 47.6  | 32.6  | 0.800  |     | 0.466                | 0.850                    |
| 1            | ridge                | 23.1   | 3.4      | 82.4  | 19.9  | 0.600  |     | 0.411                | 0.728                    |
| 1            | gableboard           | 26.9   | 4.6      | 95.8  | 23.2  | 0.600  |     | 0.394                | 0.627                    |
| 1            | corner region (eave) | 12.8   | 4.9      | 68.3  | 4.9   | 0.400  |     | 0.400                | 0.586                    |
| 1            | eaves                | 24.3   | 1.8      | 65.4  | 36.3  | 0.800  |     | 0.452                | 0.850                    |



## Results | Roof 2

| Pr  | Profile    | $Fst \; D_{max}$ | maximum fastener spacing   |
|-----|------------|------------------|----------------------------|
| Fst | Fastener   | BR               | Base Rail                  |
| σ   | Stress     | Usab.            | serviceability limit state |
| f   | Deflection | CL               | Cantilever                 |
| F   | Force      |                  |                            |

 $\text{CL}/\text{L}_{\text{max}}$  maximum cantilever length

íì



### Notes

- The quantity for K2 BasicRail BasicClips is calculated in such a way, that according to the Assembly Instructions a BasicClip can be installed on the crest to the left and right of a Rail Connector Set.
- The structural design complies with BS EN 1990 Basis of Structural Design.
- Snow loads are determined in accordance with National Annex BS NA EN 1991-1-3 (2018) UK National Annex to EC1 Action on structures general actions snow loads.
- Wind loads are determined in accordance with National Annex BS NA EN 1991-1-4 UK National Annex to EC1 Action on structures, general actions wind actions.
- Service life is recognised according to 'Eurocode EN 1991 Action on structures, Snow loads' and 'Eurocode EN 1991 Actions on structures, Wind actions'. Subject to the Building Regulations and for security-relevant reasons the installation has to be dismantled at the end of its service life.
- Failure consequence class is considered according to 'Eurocode EN 1990 Basis of structural design'.
- Data and results must be verified with regard to local conditions and checked by a suitably qualified person. Please see our TCU under https://k2-systems.com/en/base-tcu, in particular § 2 ("technical and specialist requirements for the customer"), § 7 ("warranty provisions") and § 8 ("limitation of liability").

## I Connecting Strength Structural analysis report | Roof 2

## General information

| Name            | shed 4 DR Collin |
|-----------------|------------------|
| Mounting System | K2 BasicRail     |
| Author          | Conor Maden      |

## Location information

| Address          | 39 Coldingham Rd, Eyemouth TD14 5AR, UK |
|------------------|-----------------------------------------|
| Ground elevation | 35.92 m                                 |

## Roof information

| Building height         | 6.00 m      |
|-------------------------|-------------|
| Roof type               | Gable roof  |
| Roof pitch              | 15°         |
| Fastening method        | Roof cover  |
| Roof covering           | Trapezoidal |
| Min. roof edge distance | 0.00 m      |
| Crest distance          | 200.0 mm    |
| Crest width             | 22.0 mm     |
| Crest height            | 40.0 mm     |
| Roof material           | Steel       |
| Sheet quality           | S235        |
| Sheet thickness         | 0.500 mm    |

## Loads

| Design method                  | BS EN    |
|--------------------------------|----------|
| Failure consequence class (CC) | CC1      |
| Design working life            | 25 years |
| Terrain category               | Sea      |

#### Wind load

| Velocity pressure                  | <b>q</b> <sub>p,50</sub> | = 1.000 kN/m <sup>2</sup> |
|------------------------------------|--------------------------|---------------------------|
| Adjustment factor for service life | $f_w$                    | = 0.921                   |
| Velocity pressure                  | <b>q</b> <sub>p,25</sub> | = 0.921 kN/m <sup>2</sup> |

# Connecting StrengthStructural analysis report | Roof 2

#### Roof areas

| Array                | load impact area<br>[m²] | maxCpe <sub>10</sub> | minCpe <sub>10</sub> | wind pressure<br>[kN/m²] | wind suction<br>[kN/m²] |
|----------------------|--------------------------|----------------------|----------------------|--------------------------|-------------------------|
| field area           | 10.00                    | 0.200                | -0.600               | 0.184                    | -0.552                  |
| ridge                | 10.00                    | 0.200                | -1.300               | 0.184                    | -1.197                  |
| gableboard           | 10.00                    | 0.200                | -1.500               | 0.184                    | -1.381                  |
| corner region (eave) | 10.00                    | 0.200                | -1.600               | 0.184                    | -1.473                  |
| eaves                | 10.00                    | 0.200                | -0.800               | 0.184                    | -0.737                  |

#### Snow load

| Snow load zone                     | 3                        |                           |
|------------------------------------|--------------------------|---------------------------|
| Environment                        | Norn                     | nal terrain               |
| Snow guard                         | No                       |                           |
| Snow load on ground level          | S <sub>k</sub>           | = 0.500 kN/m <sup>2</sup> |
| Shape Coefficient for Snow         | $\mu_{i}$                | = 0.800                   |
| Factor for roof pitch              | $\mathbf{d}_{i}$         | = 0.966                   |
| Snow load on roof                  | <b>S</b> <sub>i,50</sub> | = 0.386 kN/m <sup>2</sup> |
| Adjustment factor for service life | $f_s$                    | = 0.929                   |
| Snow load on roof                  | <b>S</b> <sub>i,25</sub> | = 0.359 kN/m <sup>2</sup> |
|                                    |                          |                           |

#### Dead Load

| Weight of module                          | $\mathbf{G}_{M}$ | = 21.1 kg                 |
|-------------------------------------------|------------------|---------------------------|
| Weight of mounting system per<br>module   |                  | = 1.5 kg                  |
| Module area                               | $\mathbf{A}_{M}$ | = 2.00 m <sup>2</sup>     |
| Dead weight of module per m <sup>2</sup>  |                  | = 10.56 kg/m <sup>2</sup> |
| Dead weight of mounting system per $m^2$  |                  | = 0.75 kg/m²              |
| Total Dead Load (excl. ballast) per<br>m² |                  | = 0.11 kN/m <sup>2</sup>  |

# Connecting StrengthStructural analysis report | Roof 2

### Load Combinations

#### Ultimate limit state

| Partial safety factor unfavourable permanent load                                                                                                                           | $\gamma_{G, sup}$          | = 1.35 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------|
| Partial safety factor favourable permanent load                                                                                                                             | $\gamma_{\text{G,inf}}$    | = 1.00 |
| Partial safety factor destabilising permanent load                                                                                                                          | $\gamma_{\text{G,dst}}$    | = 1.10 |
| Partial safety factor stabilising permanent load                                                                                                                            | $\gamma_{\text{G,stb}}$    | = 0.90 |
| Partial safety factor first variable load                                                                                                                                   | γ <sub>Q</sub>             | = 1.50 |
| Partial safety factor variable loads                                                                                                                                        | $\gamma_{\text{Q}}$        | = 1.50 |
| Combination coefficient with regards to wind                                                                                                                                | $\psi_{o,w}$               | = 0.60 |
| Combination coefficient with regards to wind (additional varying influences)                                                                                                | Ψ1,w                       | = 0.20 |
| Combination coefficient with regards to Snow                                                                                                                                | $\psi_{\text{o},\text{s}}$ | = 0.50 |
| Importance factor permanent                                                                                                                                                 | $\mathbf{K}_{Fl,G}$        | = 0.90 |
| Importance factor variable                                                                                                                                                  | κ <sub>fl,Q</sub>          | = 0.85 |
| Characteristic dead weight                                                                                                                                                  | G <sub>k</sub>             |        |
| Characteristic snow load on the roof                                                                                                                                        | S <sub>i,n</sub>           |        |
| Characteristic wind load                                                                                                                                                    | $\mathbf{W}_{\mathbf{k}}$  |        |
| Load case combination 01 $\mathbf{E}_{d} = \mathbf{\gamma}_{gsun} * \mathbf{\kappa}_{Flg} * \mathbf{G}_{k} + \mathbf{\gamma}_{0} * \mathbf{\kappa}_{Flg} * \mathbf{S}_{in}$ |                            |        |

| Load case combination of | $\mathbf{E}_{d} = \mathbf{\gamma}_{G, sup} \cdot \mathbf{\kappa}_{Fl, G} \cdot \mathbf{G}_{k} + \mathbf{\gamma}_{Q} \cdot \mathbf{\kappa}_{Fl, Q} \cdot \mathbf{S}_{i, n}$ |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Load case combination 02 | $E_{d} = \gamma_{G,sup} \ast \kappa_{Fl,G} \ast G_{k} + \gamma_{Q} \ast \kappa_{Fl,Q} \ast W_{k,Pressure}$                                                                 |
| Load case combination 03 | $E_{d} = \gamma_{G,sup} \ast \kappa_{Fl,G} \ast G_{k} + \gamma_{Q} \ast \kappa_{Fl,Q} \ast (W_{k,Pressure} + \psi_{O,S} \ast S_{i,n})$                                     |
| Load case combination 04 | $E_{d} = \gamma_{G,sup} * \kappa_{Fl,G} * G_{k} + \gamma_{Q} * \kappa_{Fl,Q} * (S_{i,n} + \psi_{0,W} * W_{k,Pressure})$                                                    |
| Load case combination 06 | $E_{d} = \gamma_{G,inf} * G_{k} + \gamma_{Q} * \kappa_{FI,Q} * W_{k,Uplift}$                                                                                               |

#### Serviceability limit state

| Combination coefficient with regards to wind | ψ <sub>ο,</sub><br>w | = 0.60 |
|----------------------------------------------|----------------------|--------|
| Combination coefficient with regards to Snow | Ψ <sub>o,s</sub>     | = 0.50 |
|                                              |                      |        |

| Load case combination 01 | $E_d = G_k + S_{i,n}$                                   |
|--------------------------|---------------------------------------------------------|
| Load case combination 02 | $E_d = G_k + W_{k,Pressure}$                            |
| Load case combination 03 | $E_d = G_k + W_{k,Pressure} + \psi_{0,S} * S_{i,n}$     |
| Load case combination 04 | $E_{d} = G_{k} + S_{i,n} + \psi_{0,W} * W_{k,Pressure}$ |
| Load case combination 06 | $E_d = G_k + W_{k,Uplift}$                              |

## Structural analysis report | Roof 2

## Maximum load on modules (Mounting system dimensioning)

| Arrow                   | ۸_Tr۸             | ultimate state [kN/m²] |                |          |              | Se            | Serviceability [kN/m²] |          |              |  |
|-------------------------|-------------------|------------------------|----------------|----------|--------------|---------------|------------------------|----------|--------------|--|
| Анау                    | [m <sup>2</sup> ] | Pressure<br>⊥          | Pressure<br>II | Uplift ⊥ | Uplift<br>II | Pressure<br>⊥ | Pressure<br>II         | Uplift ⊥ | Uplift<br>II |  |
| field area              | 10.00             | 0.713                  | 0.153          | -0.597   | 0.029        | 0.564         | 0.122                  | -0.445   | 0.029        |  |
| ridge                   | 10.00             | 0.713                  | 0.153          | -1.419   | 0.029        | 0.564         | 0.122                  | -1.090   | 0.029        |  |
| gableboard              | 10.00             | 0.713                  | 0.153          | -1.654   | 0.029        | 0.564         | 0.122                  | -1.274   | 0.029        |  |
| corner region<br>(eave) | 10.00             | 0.713                  | 0.153          | -1.771   | 0.029        | 0.564         | 0.122                  | -1.366   | 0.029        |  |
| eaves                   | 10.00             | 0.713                  | 0.153          | -0.832   | 0.029        | 0.564         | 0.122                  | -0.629   | 0.029        |  |

### Max. load on fastener

| Arrow                   | ∧_Tr∧ .           | ultimate state [kN] |                |          |              |               | Serviceability [kN] |          |              |  |
|-------------------------|-------------------|---------------------|----------------|----------|--------------|---------------|---------------------|----------|--------------|--|
| Анау                    | [m <sup>2</sup> ] | Pressure<br>⊥       | Pressure<br>II | Uplift ⊥ | Uplift<br>II | Pressure<br>⊥ | Pressure<br>II      | Uplift ⊥ | Uplift<br>II |  |
| field area              | 10.00             | 0.553               | 0.119          | -0.463   | 0.022        | 0.438         | 0.094               | -0.345   | 0.022        |  |
| ridge                   | 10.00             | 0.415               | 0.089          | -0.825   | 0.017        | 0.328         | 0.071               | -0.634   | 0.017        |  |
| gableboard              | 10.00             | 0.415               | 0.089          | -0.962   | 0.017        | 0.328         | 0.071               | -0.741   | 0.017        |  |
| corner region<br>(eave) | 10.00             | 0.276               | 0.059          | -0.687   | 0.011        | 0.219         | 0.047               | -0.530   | 0.011        |  |
| eaves                   | 10.00             | 0.553               | 0.119          | -0.645   | 0.022        | 0.438         | 0.094               | -0.488   | 0.022        |  |

### Resistance Values of Components

#### Base Rails

| Base Rails      | А                  | Ι <sub>y</sub> | I <sub>z</sub> | $W_y$              | $W_z$              |
|-----------------|--------------------|----------------|----------------|--------------------|--------------------|
|                 | [cm <sup>2</sup> ] | [cm^4]         | [cm^4]         | [cm <sup>3</sup> ] | [cm <sup>3</sup> ] |
| K2 BasicRail 22 | 2.380              | 1.52           | 7.74           | 1.08               | 2.46               |

#### Fastener

| Fastener                          | $R_{D,Uplift,Perpendicular}$ [kN] | $R_{D,Pressure,Perpendicular}$ [kN] | $R_{D,Pressure,Parallel}$ [kN] |
|-----------------------------------|-----------------------------------|-------------------------------------|--------------------------------|
| K2 BasicClip                      | 1.02                              | -                                   | 0.96                           |
| Thread-forming metal screw 6.0×38 | 0.65                              | -                                   | 0.62                           |

## Connecting StrengthStructural analysis report | Roof 2

#### Utilisation result

|              |                      | ultimate limit state U |      | ultimate limit state |      | Distan | ces | maxim                | um values                |
|--------------|----------------------|------------------------|------|----------------------|------|--------|-----|----------------------|--------------------------|
| No.          | roof areas           | Pr                     | CL   | Fst                  | Pr   | Fst    | BR  | CL                   | Fst                      |
| Module Array |                      | σ[%]                   | σ[%] | F[%]                 | f[%] | [m]    | [m] | L <sub>max</sub> [m] | Fst D <sub>max</sub> [m] |
| 1            | field area           | 22.4                   | 1.9  | 47.6                 | 32.6 | 0.800  |     | 0.466                | 0.850                    |
| 1            | ridge                | 23.1                   | 3.4  | 82.4                 | 19.9 | 0.600  |     | 0.411                | 0.728                    |
| 1            | gableboard           | 26.9                   | 4.6  | 95.8                 | 23.2 | 0.600  |     | 0.394                | 0.627                    |
| 1            | corner region (eave) | 12.8                   | 4.9  | 68.3                 | 4.9  | 0.400  |     | 0.400                | 0.586                    |
| 1            | eaves                | 24.3                   | 1.8  | 65.4                 | 36.3 | 0.800  |     | 0.452                | 0.850                    |
|              |                      |                        |      |                      |      |        |     |                      |                          |

| Pr  | Profile  |
|-----|----------|
| Fst | Fastener |

σ Stress

f Deflection

F Force

 $\text{CL}/\text{L}_{\text{max}}$  maximum cantilever length

 $\mathsf{Fst} \; \mathsf{D}_{\mathsf{max}} \quad \textbf{maximum fastener spacing}$ 

BR Base Rail

Usab. serviceability limit state

CL Cantilever

## Connecting StrengthRoofs | Roof 2 | Bill of material

| Position | ltem no. | Item description                  | Quantity | Weight   |
|----------|----------|-----------------------------------|----------|----------|
| 1        | 1001164  | K2 BasicClip                      | 493      | 14.8 kg  |
| 2        | 1005193  | Thread-forming metal screw 6.0×38 | 986      | 6.9 kg   |
| 3        | 2003072  | OneMid Black Set 30-42            | 216      | 17.1 kg  |
| 4        | 2002589  | OneEnd Black Set 30-42            | 64       | 5.6 kg   |
| 5        | 2003240  | K2 BasicRail 22; 4.40m            | 68       | 192.4 kg |
| 6        | 1003571  | K2 BasicRail BasicConnector Set   | 64       | 3.1 kg   |
| 7        | 1003558  | K2 BasicRail BasicLock 22 Set     | 32       | 1.6 kg   |
| Total    |          |                                   |          | 241.4 kg |

 $\langle \rangle$ 

## I Connecting StrengthBill of material

| Position | ltem no. | Item description                  | Quantity | Weight   |
|----------|----------|-----------------------------------|----------|----------|
| 1        | 1001164  | K2 BasicClip                      | 960      | 28.8 kg  |
| 2        | 1005193  | Thread-forming metal screw 6.0×38 | 1,920    | 13.4 kg  |
| 3        | 2003072  | OneMid Black Set 30-42            | 432      | 34.1 kg  |
| 4        | 2002589  | OneEnd Black Set 30-42            | 128      | 11.1 kg  |
| 5        | 2003240  | K2 BasicRail 22; 4.40m            | 136      | 384.7 kg |
| 6        | 1003571  | K2 BasicRail BasicConnector Set   | 120      | 5.9 kg   |
| 7        | 1003558  | K2 BasicRail BasicLock 22 Set     | 64       | 3.2 kg   |
| Total    |          |                                   |          | 481.3 kg |

 $\langle \rangle$ 



## Thank you for choosing a K2 mounting system.

Systems from K2 Systems are quick and easy to install. We hope these instructions have helped. Please contact us with any questions or suggestions for improvement.

Our contact data:

k2-systems.com/en/contact

Service Hotline: +44 1189 701280

Our General Terms of Business apply. Please refer to <u>k2-systems.com</u>

K2 Solar Mounting Solutions Ltd

Unit 46 Easter Park Benyon Road Aldermaston, RG7 2PQ Great Britain +44 1189 701280 info@k2-systems.uk.com k2-systems.com/en