

Discharge of Conditions 9, & 10 (Details of Foul & Surface Water Drainage) Planning Approval DOV/20/00482

for

Proposed Holiday Accommodation on land at Hockley Sole Hockley Sole Lane, Capel Le Ferne Kent, CT18 &EU

on behalf of

Mr & Mrs Snape

1

Document Control Sheet

Project Title	Proposed Holiday Accommodation
	Hockley Sole, Capel Le Ferne
Document Title	Detailed Foul & Surface Water Drainage Design
Job No.	T-2022-147
Revision	1.0
Status	Final

Issue	Status	Author	Date	Check	Date	Authorised	Date
1.0	Final	P. Lavender	20.04.23	S. Carr	20.04.23	P. Lavender	20.04.23

Distribution List

Version	Issued to	Purpose	Date
1.0	Project Manager (via email)	Planning	20/04/2023

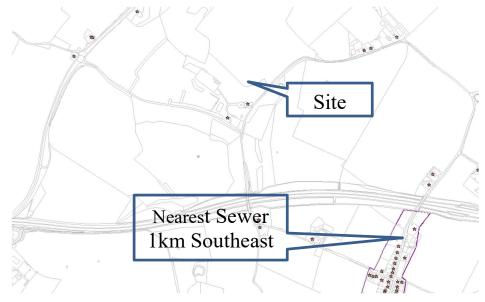
CONTENTS

1.0	Status	4
2.0	Introduction	5
	Background	5
3.0	Foul Water Drainage	6
	Proposed Discharge	6
	Consents	6
4.0	Surface Water Drainage	7
	Proposed Discharge	7
	Consents	7
5.0	Operation & Maintenance Statement	8
Appendix A	Tridax Drawings T-2022-147-01 RevA Drainage Plan	
	T-2022-147-02 RevA Drainage Details	
Appendix B	MicroDrainage Design Calculations	

- Foul Water Network Design Calculations
 Surface Network Details & Simulation Results
- 3. 40% Sensitivity Test Results

1.0 STATUS

- 1.1 This Report is prepared for the sole use of Mr & Mrs Snape Ltd and their agents in connection with the current planning application. No responsibility can be assumed for the Report if used by others.
- 1.2 For the purposes of the Contracts (Rights of Third Parties) Act 1999, nothing in this Report shall confer on any third party any right to enforce or benefit from any terms of this Report


2.0 INTRODUCTION Background

- 2.1 Tridax Ltd have been commissioned by Alastair Cracknell on behalf of Mr & Mrs Snape Ltd and requested to prepare the detailed foul & surface water drainage design for the proposed holiday accommodation on land at Hockley Sole, Hockley Sole Lane, Capel Le Ferne, CT18 7EU for the discharge of conditions 9 & 10 of the planning approval DOV/20/00482 to Dover District Council.
 - 9 No development above ground shall take place until a detailed scheme for the disposal of the site's surface water has been submitted to and approved in writing by the local planning authority. The details shall include the principles of SUDS as set out in the application documentation together with details of an implementation programme and maintenance schedule thereafter. No drainage systems for the infiltration of surface water to the ground are permitted other than with the written consent of the local planning authority. Any proposals for such systems must be supported by an assessment of the risks to controlled waters. Reason: To ensure the development is served by satisfactory arrangements for the disposal of surface water.
 - 10 No development shall take place until a detailed scheme for the disposal of foul sewage, which shall include provision for works on site and works off site as required, together with a programme for implementation and long term maintenance, has been submitted to and approved in writing by the local planning authority. The approved scheme shall be fully implemented and operational before any of the dwellings hereby permitted are first occupied and shall be maintained in accordance with the approved scheme thereafter. Reason: These details are required prior to the commencement of the development to ensure the development is served by satisfactory arrangements for the disposal of foul sewage.

Frame 1 ~ Extract of Planning Conditions

3.0 FOUL WATER DRAINAGE Existing Discharge

3.1 There is no existing drainage on the site. Inspection of the public sewer records that the nearest foul water sewer is approximately 1km southeast of the site as shown in frame 2 below.

Frame 2 ~ Extract of Public Sewer Catchment Area

Proposed Discharge

- 3.2 Due to there being no public foul water sewers local to the site, it is intended to use a septic tank with the treated effluent discharging to a shallow field drainage system complying to Part H3 of the Building Regulations.
- 3.3 The discharge of the effluent to field drainage system calculated in accordance with 'British Water Flow & Loads' is a total daily flow of 0.9m³ (3bed/6person dwelling x 150litres/head/day). As the total daily discharge to ground is less than 2m³/day; a permit for the discharge of the treated effluent will not be required from the Environment Agency and the following general binding rules apply for discharge to ground.
 - 1. Discharge to ground must be 2m³ or less per day in volume
 - 3. Sewage must only be domestic
 - 4. The discharge must not cause pollution of surface water or groundwater
 - 5. The discharge must receive treatment from a septic tank or sewage treatment plant and infiltration system
 - 7. The Discharge must not be within a groundwater an Inner Source Protection Zone or within 50metres from any well, spring, or borehole

- 9. All works and equipment used for the treatment of sewage effluent and its discharge must comply with relevant design and manufacturing standards
- 10. The system must be installed and operated in accordance with the manufacturers specification
- 11. Maintenance must be undertaken by someone who is competent
- 12. Waste sludge from the system must be safely disposed of by an authorised person
- 13. If the property is sold, the operator must give the new operator a written notice stating that a small sewage discharge is being carried out, and giving description of the system and maintenance requirements
- 14. The operator must ensure the system is appropriately decommissioned where it ceases to be in operation
- 15. New discharges must not be within 30metres of a public foul sewer
- 16. For new discharges, the operator must ensure that necessary planning / building control approvals for the treatment system are in place
- 17. New discharges must not be in or within 500metres of SAC, SPA, SSS
- 20. For new discharges, any partial drainage field must not be installed within 10metres of the bank side of the watercourse
- 3.4 Detailed foul water drainage design drawings are included within Appendix Α.

Consents

3.5 No formal consents are required for the foul water disposal other than compliance with the Building Regulations.

4.0 SURFACE WATER DRAINAGE

Proposed Discharge

4.1 The intention is for the surface water to be disposed via on site filtration using a conventional PCC ringed soakaway. To inform the detailed design the Client excavated a trial pit at the location of the proposed soakaway as shown in the photographs as frame3 below. Due to fractured nature and highly permeable nature of the underlying chalk, the Client was unable to raise the water above 150mm to complete a full test. 100 litre barrel of water discharged in 60 seconds (1.70 x 10⁻³ m/s) 6m/hr.

Frame 3 – Soakage Test Photographs

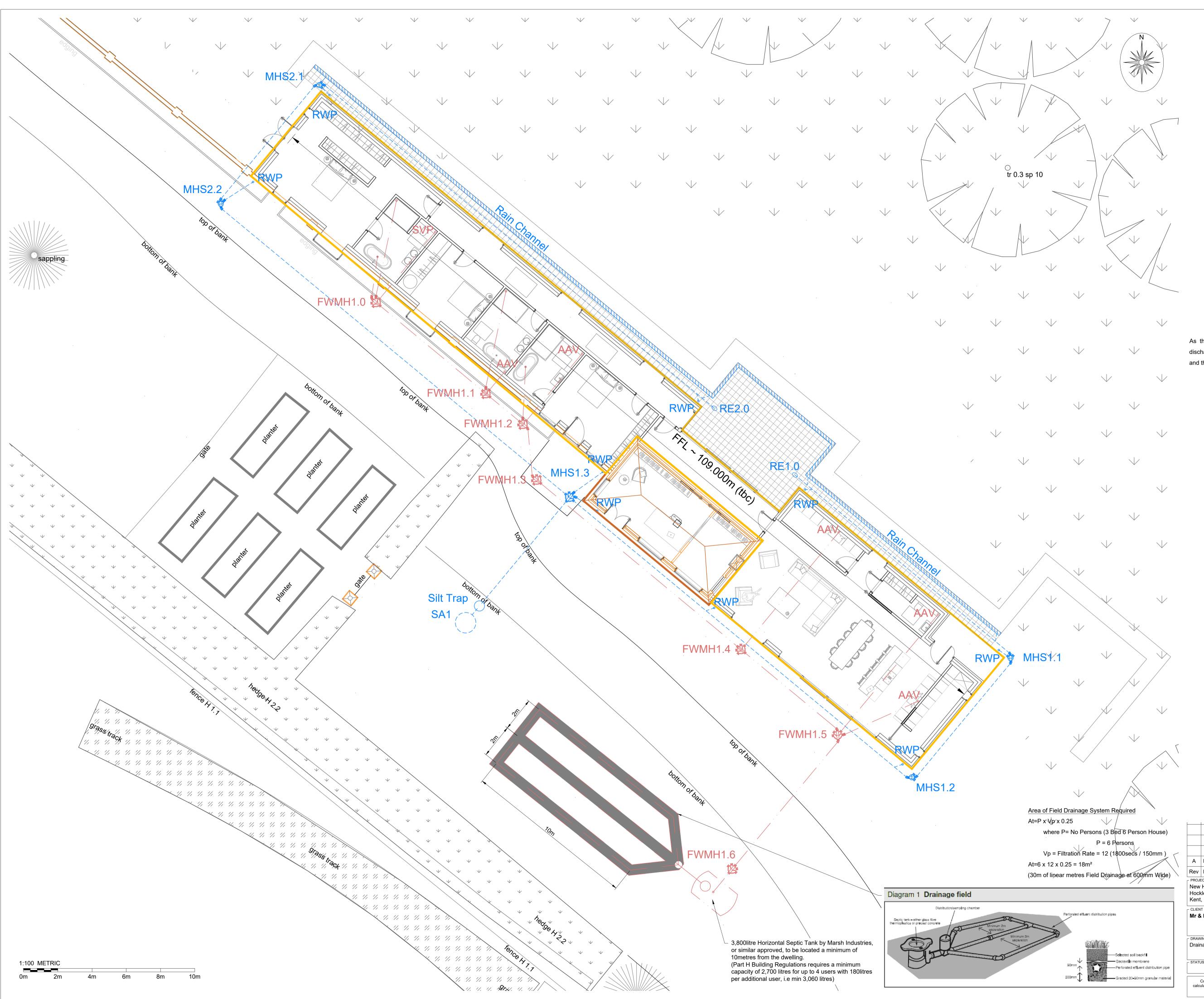
- 4.2 MicroDrainage Detailed Design calculations are enclosed within Appendix B to demonstrate that the proposed soakaways would be adequate to cater for a 1in100 year return period with a 40% allowance for climate change. The drainage calculations provided comply with the Kent County Council SUDS guidance;
 - FSR manually increased to 26.25mm
 - Design to accommodate 40% Climate Change
 - Half-drain times for 30year return < 24 hours

4.3 Detailed surface water disposal design drawings are included within Appendix A.

Consents

- 4.4 No formal consents are required for the SUDS features included for the surface water disposal strategy apart from the discharge of the precommencement planning condition requiring approval of the detailed design.
- 4.5 The responsibility of the management and maintenance will remain with the property owner to meet the requirements of the Flood and Water Management Act.

5.0 OPERATION & MAINTENANCE STATEMENT


- 5.1 We recommend that an annual maintenance contract is entered for the desludging of the primary settlement tank.
- 5.2 The surface water system as indicated on the design drawings is a private Sustainable Urban Drainage System (SUDS) and the owner of the property will be responsible for the inspection and maintenance for this system.
- 5.3 It is recommended that the chambers and the soakaway are inspected as part of the general planned inspection and maintenance regime for the development, but certainly at no greater intervals than once a year.
- 5.4 Annual Inspection to include;
 - Lift all manhole covers and check general condition an ensure no floating debris within the manholes.
 - Note that the manhole upstream of the soakaway is a catchpit and should be dipped to check the level of any accumulated silt and emptied by gully sucker and disposed off-site by a licensed carrier.
 - Check the overall integrity of the soakaway location looking for any ground settlement local to the tanks.
 - Carry out works as identified from inspection.
- 5.5 Five year Inspection / Five Year Anniversary
 - Carry out a rapid 'Flush' through of the system (carry out works during a dry period) of all pipe work to ensure no blockages and free flow of water to the outfall and to check the overall integrity. Flushing of attenuation tank can be carried through the vent pipe.
 - Empty all catchpits with a gully sucker and dispose off-site by a licensed carrier

Maintenance Records:

Record the date of each inspection along with a brief description of any works carried out

APPENDIX A

Tridax Drawings T-2022-147-01 RevA Drainage Plan T-2022-147-02 RevA Drainage Details

	Site boundary line
PROPOSED PRIVA	TE DRAINAGE
	Private foul water drainage 100mm Ø at min 1:60 Gradient
МН 🗌 🗌 МН	Private foul water manhole
SVP AAV	Soil vent pipe Stub stack with Air Admittance Valve
	Private surface water drainage 100mm Ø at min 1:80 Gradient
МН 🗌 🗌 МН	Private surface water manhole
RWP RE	Rainwater pipe (indicative, locations to be agreed) Rodding Eye
	46m ² Existing Potting Shed Roof
	326m ² 'Greenroof' to Landscape Architects Details
	82m ² Flag paving falling from dwelling to channel
SA	454m ² Contributing Area to PCC Ring Soakaway

DRAWING LEGEND

As the total daily discharge to ground is less than 2m³/day a permit for the discharge of the treated effluent will not be required from the Environment Agency and the following general binding rules apply for discharge to ground;

- 1. Discharge to ground must be 2m³ or less per day in volume
- 3. Sewage must only be domestic
- 4. The discharge must not cause pollution of surface water or groundwater5. The discharge must receive treatment from a septic tank or sewage treatment plant and infiltration system
- 7. The Discharge must not be within a groundwater Source Protection Zone or within 50metres from any well, spring, or borehole
- All works and equipment used for the treatment of sewage effluent and its discharge must comply with relevant design and manufacturing standards
- 10. The system must be installed and operated in accordance with the manufacturers specification
- Maintenance must be undertaken by someone who is competent
 Waste sludge from the system must be safely disposed of by an authorised person
- 13. If the property is sold, the operator must be give the new operator a written notice stating that a small sewage discharge is being carried out, and giving description of the system and maintenance requirem
- 14. The operator must ensure the system is appropriately decommissioned where it ceases to be in operation
- 15. New discharges must not be within 30metres of a public foul se16. For new discharges, the operator must ensure that necessary
- planning / building control approvals for the treatment system are in place
- 17. New discharges must not be in or within 500metres of SAC, SPA, SSS
- 20.For new discharges, any partial drainage field must not be installed within 10metres of the bank side of the watercourse

A	First issue to client		20/04/	2023
Rev	Description		Date	
Hock Kent - CLIEN Mr &	Holiday Accomodation on land at dey Sole, Hockley Sole Lane, Capel-Le-Ferne, , CT18 7EW T	White Cliffs B CT1	ne Powder House, Menzies usiness Park, Whitfield, Dow 6 2HQ Tel: 01304 820777	Road, ver, Kent,
- DRAW Drair	nage Plan	1:100	DATE	A1
- STATU	APPROVAL	T-20)22-147-01	A
	Copyright and other intellectual property rights in this document an ilations, is invested in Tridax Ltd and cannot be used or reproduce created without the express permission in writing by Tridax	d for any other pu	rpose than that for which	

FOUL WATER MANHOLE SCHEDULE

Manhole Ref.	Cover Level (m)	Invert Level (m)	Backdrop Invert LvI (m)	Manhole Depth (m)	Manhole Type	Manhole Ø (mm)	Cover/Frame Grade	Remarks
MHF1.0	108.850	108.250	-	0.600	PPIC	450	A15	-
MHF1.1	108.850	108.111	-	0.739	PPIC	450	A15	-
MHF1.2	108.850	108.065	-	0.785	PPIC	450	A15	-
MHF1.3	108.850	108.020	-	0.831	PPIC	450	A15	-
MHF1.4	108.850	107.761	-	1.089	PPIC	450	A15	-
MHF1.5	108.850	107.641	-	1.209	PPIC	450	A15	-
MHF1.6	107.900	107.423	-	0.477	PPIC	450	A15	-
Septic Tank	107.900	107.400	-	0.500	-	-	A15	installed to manufacturers details

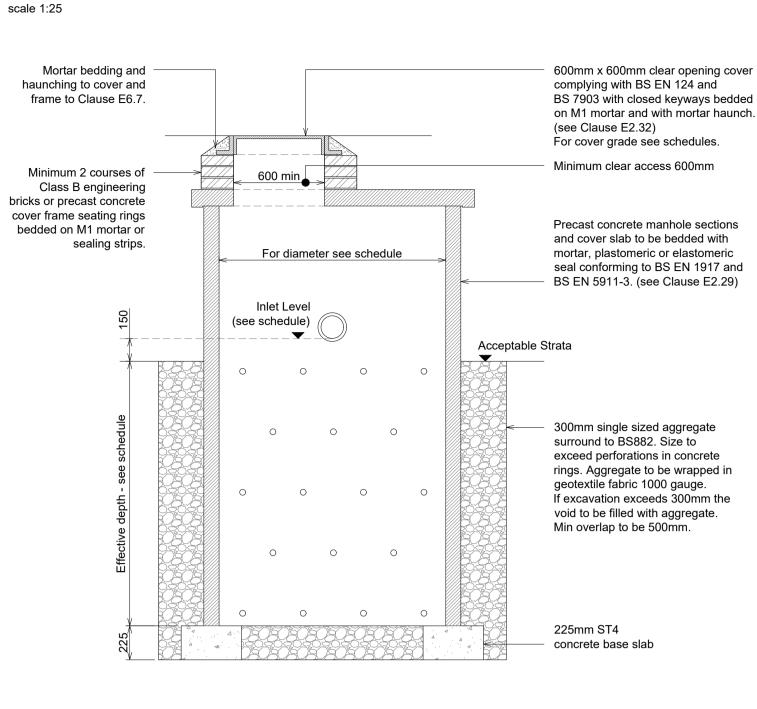
FOUL WATER PIPE SCHEDULE

SA1

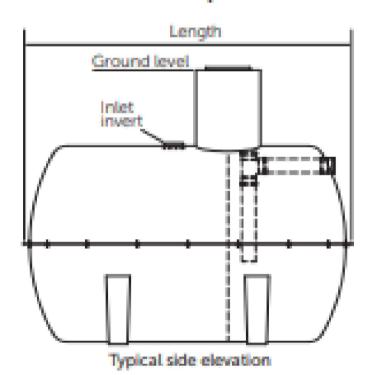
Pipe Ref.	Pipe Length (m)	Pipe Ø (mm)	Pipe Material	Gradient (1 in ?)	Bedding	Remarks
PNF1.0	8.33	100	UPVC	60	Class S	-
PNF1.1	2.80	100	UPVC	60	Class S	-
PNF1.2	2.70	100	UPVC	60	Class S	-
PNF1.3	15.50	100	UPVC	60	Class S	-
PNF1.4	7.20	100	UPVC	60	Class S	-
PNF1.5	9.30	100	UPVC	13.9	Class S	-
PNF1.6	1.40	100	UPVC	60	Class S	-

SURFACE WATER MANHOLE SCHEDULE Manhole Cover Invert Backdrop Manhole Manhole Manhole Cover/Frame Remarks Ref. Level (m) Level (m) Invert LvI (m) Depth (m) Туре Ø (mm) Grade RE1.0 A15 108.850 108.500 0.350 Rodding Eye -MHS1.1 108.850 108.297 0.553 SIC 300 A15 MHS1.2 108.850 108.191 0.659 SIC 300 A15 108.850 107.700 1.150 PPIC 450 A15 MHS1.3 RE2.0 108.850 0.350 108.500 -Rodding Eye A15 0.719 300 MHS2.1 108.850 108.131 SIC A15 MHS2.2 108.850 108.025 0.825 SIC 300 A15 -Soakaway 107.700 105.200 107.200 2.500 PCC Ring 1200

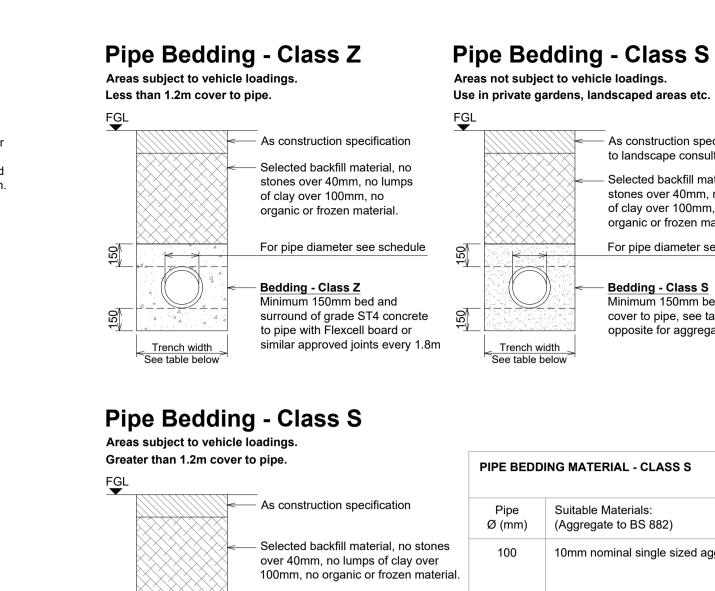
D400

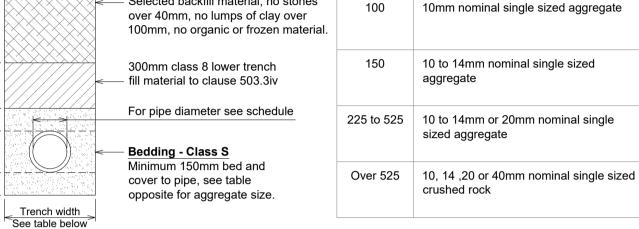

see detail

100


- E.

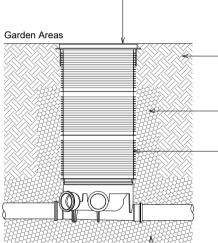
SURFACE	SURFACE WATER PIPE SCHEDULE								
Pipe Ref.	Pipe Length (m)	Pipe Ø (mm)	Pipe Material	Gradient (1 in ?)	Bedding	Remarks			
PNS1.0	16.24	100	UPVC	80	Class S	-			
PNS1.1	8.48	100	UPVC	80	Class S	-			
PNS1.2	25.20	100	UPVC	51.3	Class S	-			
PNS1.3	8.58	100	UPVC	17.2	Class S	-			
PNS2.0	29.52	100	UPVC	80	Class S	-			
PNS2.1	8.46	100	UPVC	80	Class S	-			
PNS2.2	26.00	100	UPVC	80	Class S	-			


Typical PCC Soakaway Detail



Horizontal septic tanks

S	ize	Length	Width	Height Inlet		Inlet		let
		+/-50mm	+/-50mm	+/-50mm	Invert	Ø	Invert	Ø
28	00L	3000	1250	1750	500	110	800	110
38	00L	4000	1250	1750	500	110	800	110
45	00L	2650	1600	2100	500	110	800	110
60	00L	2950	1900	2400	500	110	800	110
80	00L	3640	1900	2400	500	160	800	160
100	000L	4200	1900	2400	500	160	800	160
120	000L	5200	1900	2400	500	160	800	160
140	000L	5840	1900	2400	500	160	800	160
160	000L	6700	1900	2400	500	160	800	160
180	000L	7500	1900	2400	500	160	800	160
200	000L	8100	1900	2400	500	160	800	160


Pipe surround material shall where required, be placed and compacted over the full width of the trench in layers not exceeding 150mm before compaction, to a finished thickness of 300mm above the crown of the pipe.

Where excavations have been supported and the supports are removed they shall be withdrawn progressively as backfilling proceeds in a manner that minimises the danger of collapse, all voids formed behind the supports are to be carefully filled and compacted.

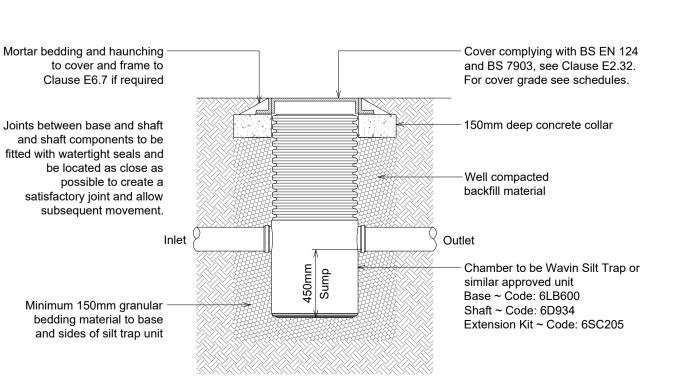
Pipe jointing surfaces and components shall be kept clean and free from extraneous matter until the joints have been made or assembled, care should be taken to ensure that there is no ingress of grout or other material into the joint after the joint has been

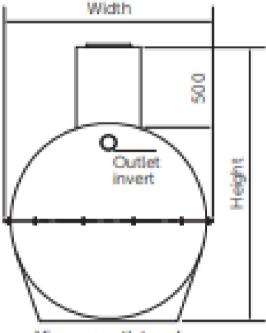
Pipes should be cut in accordance with the manufacturers recommendations to provide a clean square profile without splitting or fracturing the pipe wall and to ensure minimal damage to any protective coatings, where necessary, the cut ends of pipes shall be formed to the tapers and chamfers suitable for the type of joint to be used.

Polypropylene Inspection Chamber (PPIC) Use on private drainage works <u>only</u>

Well compacted granular bedding material.

NOTE: Maximum diameter of main channel 150/160mm Maximum pipe diameter of inlets 100/110mm

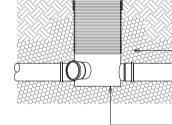

Unused inlets are to be sealed and made watertight.

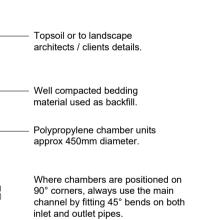

Backfill to be well compacted around shaft of chamber.

No incoming branch is to be less than 90° from the outgoing direction of flow, all pipes entering the bottom of the manhole are to have level soffits.

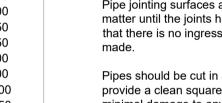
Typical Type 3 Silt Trap Detail

scale 1:25 • Sited in soft landscaped areas




View on outlet end

scale 1:20 Proprietary access cover & frame, for cover grade see schedule.



scale 1:20

As construction specification or to landscape consultants details. Selected backfill material, no stones over 40mm, no lumps

For pipe diameter see schedule

of clay over 100mm, no

Bedding - Class S

organic or frozen material.

Minimum 150mm bed and

cover to pipe, see table

opposite for aggregate size.

	_	_	_	
	_	_	_	
_				
е				
_	-	-	-	

Shallow Inspection Chamber (SIC) Use on private drainage works only

Proprietary access cover and frame, for cover grade see schedule. Topsoil or to landscape architects / clients details.

Well compacted bedding material used as backfill.

Well compacted granular bedding material.

Polypropylene chamber units approx 300mm diameter.

А	First issue to client		20/04/2	2023
Rev	Description		Date	
Hock Kent - CLIEN Mr &	Holiday Accomodation on land at ley Sole, Hockley Sole Lane, Capel-Le-Ferne, , CT18 7EW T Mrs Snape	White Cliffs B CT16	e Powder House, Menzies I usiness Park, Whitfield, Dov 5 2HQ Tel: 01304 820777	Road, er, Kent,
- DRAW Drair	ing age Details	1:100	DATE 17/04/2023	A1
– STATU	APPROVAL	Dwg No. T-20	22-147-02	A
	Copyright and other intellectual property rights in this document an lations, is invested in Tridax Ltd and cannot be used or reproduce created without the express permission in writing by Tridax	d for any other pu	rpose than that for which t	

APPENDIX B

- MicroDrainage Design Calculations 1. Foul Water Network Design Calculations
- 2. Surface Network Details & Simulation Results
- 3. 40% Sensitivity Test Results

Tridax Ltd	Page 1	
Honeywood House	Hockley Sole Holiday Let	
Whitfield	Foul Water Design	
Kent CT16 3EH		Mirro
Date 20/04/2023 09:19	Designed by prl	Dcainago
File T-2022-147 FW DESIGN.MDX	Checked by	Diamade
XP Solutions	Network 2020.1.3	

FOUL SEWERAGE DESIGN

Design Criteria for Foul - Unit

Pipe Sizes STANDARD Manhole Sizes STANDARD

Industrial Flow (l/s/ha)	0.00	Add Flow / Climate Change (%)	0
Industrial Peak Flow Factor	0.00	Minimum Backdrop Height (m)	0.600
Calculation Method	EN 752	Maximum Backdrop Height (m)	1.500
Frequency Factor	0.70	Min Design Depth for Optimisation (m)	0.500
Domestic (l/s/ha)	0.00	Min Vel for Auto Design only (m/s)	0.75
Domestic Peak Flow Factor	6.00	Min Slope for Optimisation (1:X)	100

Designed with Level Soffits

Network Design Table for Foul - Unit

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Units	ase (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
1.000	8.330	0.139	60.0	0.000	5.0	0.0	1.500	0	100	Pipe/Conduit	e
1.001	2.800	0.047	60.0	0.000	5.0	0.0	1.500	0	100	Pipe/Conduit	ð
1.002	2.700	0.045	60.0	0.000	5.0	0.0	1.500	0	100	Pipe/Conduit	ð
1.003	15.500	0.258	60.0	0.000	0.0	0.0	1.500	0	100	Pipe/Conduit	<u>.</u>
1.004	7.200	0.120	60.0	0.000	1.5	0.0	1.500	0	100	Pipe/Conduit	<u>.</u>
1.005	9.300	0.218	42.7	0.000	4.6	0.0	1.500	0	100	Pipe/Conduit	<u>.</u>
1.006	1.400	0.023	60.0	0.000	0.0	0.0	1.500	0	100	Pipe/Conduit	Ū

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Units	Add Flow (l/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (l/s)	Flow (l/s)
1.000	108.250	0.000	0.0	5.0	0.0	33	0.70	0.86	6.8	1.6
1.001	108.111	0.000	0.0	10.0	0.0	39	0.77	0.86	6.8	2.2
1.002	108.065	0.000	0.0	15.0	0.0	44	0.81	0.86	6.8	2.7
1.003	108.020	0.000	0.0	15.0	0.0	44	0.81	0.86	6.8	2.7
1.004	107.761	0.000	0.0	16.5	0.0	45	0.82	0.86	6.8	2.8
1.005	107.641	0.000	0.0	21.1	0.0	44	0.96	1.02	8.0	3.2
1.006	107.423	0.000	0.0	21.1	0.0	49	0.85	0.86	6.8	3.2

Tridax Ltd	Page 2	
Honeywood House	Hockley Sole Holiday Let	
Whitfield	Foul Water Design	
Kent CT16 3EH		Micro
Date 20/04/2023 09:19	Designed by prl	Drainage
File T-2022-147 FW DESIGN.MDX	Checked by	Diamage
XP Solutions	Network 2020.1.3	

Manhole Schedules for Foul - Unit

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
FWMH1.0	108.850	0.600	Open Manhole	1200	1.000	108.250	100				
FWMH1.1	108.850	0.739	Open Manhole	1200	1.001	108.111	100	1.000	108.111	100	
FWMH1.2	108.850	0.785	Open Manhole	1200	1.002	108.065	100	1.001	108.065	100	
FWMH1.3	108.850	0.831	Open Manhole	1200	1.003	108.020	100	1.002	108.020	100	
FWMH1.4	108.850	1.089	Open Manhole	1200	1.004	107.761	100	1.003	107.761	100	
FWMH1.5	108.850	1.209	Open Manhole	1200	1.005	107.641	100	1.004	107.641	100	
FWMH1.6	107.900	0.477	Open Manhole	1200	1.006	107.423	100	1.005	107.423	100	
Septic Tank	107.900	0.500	Open Manhole	1750		OUTFALL		1.006	107.400	100	

No coordinates have been specified, layout information cannot be produced.

Tridax Ltd	Page 3	
Honeywood House	Hockley Sole Holiday Let	
Whitfield	Foul Water Design	
Kent CT16 3EH		Micro
Date 20/04/2023 09:19	Designed by prl	Drainage
File T-2022-147 FW DESIGN.MDX	Checked by	Diamage
XP Solutions	Network 2020.1.3	

PIPELINE SCHEDULES for Foul - Unit

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000	0	100	FWMH1.0	108.850	108.250	0.500	Open Manhole	1200
1.001	0	100	FWMH1.1	108.850	108.111	0.639	Open Manhole	1200
1.002	0	100	FWMH1.2	108.850	108.065	0.685	Open Manhole	1200
1.003	0	100	FWMH1.3	108.850	108.020	0.731	Open Manhole	1200
1.004	0	100	FWMH1.4	108.850	107.761	0.989	Open Manhole	1200
1.005	0	100	FWMH1.5	108.850	107.641	1.109	Open Manhole	1200
1.006	0	100	FWMH1.6	107.900	107.423	0.377	Open Manhole	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000	8.330	60.0	FWMH1.1	108.850	108.111	0.639	Open Manhole	1200
1.001	2.800	60.0	FWMH1.2	108.850	108.065	0.685	Open Manhole	1200
1.002	2.700	60.0	FWMH1.3	108.850	108.020	0.731	Open Manhole	1200
1.003	15.500	60.0	FWMH1.4	108.850	107.761	0.989	Open Manhole	1200
1.004	7.200	60.0	FWMH1.5	108.850	107.641	1.109	Open Manhole	1200
1.005	9.300	42.7	FWMH1.6	107.900	107.423	0.377	Open Manhole	1200
1.006	1.400	60.0	Septic Tank	107.900	107.400	0.400	Open Manhole	1750

Free Flowing Outfall Details for Foul - Unit

Outfall Pipe Number	Outfall Name	C. Level I (m)	. Level (m)	Min I. Level (m)	D,L (mm)	W (mm)
				(m)		

1.006 Septic Tank 107.900 107.400 107.400 1750 0

Tridax Ltd		Page 1
Honeywood House	Hockley Sole ~ Holiday Let	
Whitfield	SW Network	
Kent CT16 3EH		Mirro
Date 20/04/2023 14:41	Designed by prl	Drainage
File T-2022-147 SW Design.MDX	Checked by	Diamage
XP Solutions	Network 2020.1.3	

Existing Network Details for Storm

* - Indicates pipe has been modified outside of System 1

	PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	k (mm)	HYD SECT	DIA (mm)	Section Type
	1.000	16.240	0.203	80.0	0.008	5.00	0.600	0	100	Pipe/Conduit
	1.001	8.480	0.106	80.0	0.004	0.00	0.600	0	100	Pipe/Conduit
	1.002	25.200	0.491	51.3	0.012	0.00	0.600	0	100	Pipe/Conduit
	2.000	29.520	0.369	80.0	0.008	5.00	0.600	0	100	Pipe/Conduit
	2.001	8.460	0.106	79.8	0.004	0.00	0.600	0	100	Pipe/Conduit
	2.002	26.000	0.325	80.0	0.004	0.00	0.600	0	100	Pipe/Conduit
	1.003	8.580	0.500	17.2	0.008	0.00	0.600	0	100	Pipe/Conduit
*	1.004	1.000	0.000	0.0	0.000	0.00	0.600	0	150	Pipe/Conduit

	PN	US/MH Name	US/CL (m)	US/IL (m)	US C.Depth (m)	DS/CL (m)	DS/IL (m)	DS C.Depth (m)	Ctrl	US/MH (mm)
	1.000	RE1.0	108.850	108.500	0.250	108.850	108.297	0.453		0
	1.001	MHS1.1	108.850	108.297	0.453	108.850	108.191	0.559		300
	1.002	MHS1.2	108.850	108.191	0.559	108.850	107.700	1.050		300
	2.000	RE1.0	108.850	108.500	0.250	108.850	108.131	0.619		0
	2.001	MHS2.1	108.850	108.131	0.619	108.850	108.025	0.725		300
	2.002	MHS2.2	108.850	108.025	0.725	108.850	107.700	1.050		300
	1.003	MHS1.3	108.850	107.700	1.050	107.700	107.200	0.400		450
*	1.004	SA1	107.700	105.200	2.350	107.700	105.200	2.350	Pump	1200

Tridax Ltd					
Honeywood House	Hockley Sole ~ Holiday Let				
Whitfield	SW Network				
Kent CT16 3EH		Micro			
Date 20/04/2023 14:41	Designed by prl	Drainage			
File T-2022-147 SW Design.MDX	Checked by	Diamage			
XP Solutions	Network 2020.1.3				

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m	Diameter	Backdrop (mm)
RE1.0	108.850	0.350	Junction		1.000	108.500	100				
MHS1.1	108.850	0.553	Open Manhole	300	1.001	108.297	100	1.000	108.29	7 100	ĺ
MHS1.2	108.850	0.659	Open Manhole	300	1.002	108.191	100	1.001	108.19	1 100	ĺ
RE1.0	108.850	0.350	Junction		2.000	108.500	100				ĺ
MHS2.1	108.850	0.719	Open Manhole	300	2.001	108.131	100	2.000	108.13	1 100	Í
MHS2.2	108.850	0.825	Open Manhole	300	2.002	108.025	100	2.001	108.02	5 100	Í
MHS1.3	108.850	1.150	Open Manhole	450	1.003	107.700	100	1.002	107.70	0 100	Í
								2.002	107.70	0 100	Í
SA1	107.700	2.500	Open Manhole	1200	1.004	105.200	150	1.003	107.20	0 100	1950
Eiltration	107.700	2.500	Open Manhole	0		OUTFALL		1.004	105.20	0 150	1

Manhole Schedules for Storm

No coordinates have been specified, layout information cannot be produced.

Tridax Ltd		Page 3
Honeywood House	Hockley Sole ~ Holiday Let	
Whitfield	SW Network	
Kent CT16 3EH		Mirro
Date 20/04/2023 14:41	Designed by prl	Drainage
File T-2022-147 SW Design.MDX	Checked by	Digitige
XP Solutions	Network 2020.1.3	

PIPELINE SCHEDULES for Storm

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., (mm)	L*W
1.000	0	100	RE1.0	108.850	108.500	0.250	Junction		
1.001	0	100	MHS1.1	108.850	108.297	0.453	Open Manhole		300
1.002	0	100	MHS1.2	108.850	108.191	0.559	Open Manhole		300
2.000	0	100	RE1.0	108.850	108.500	0.250	Junction		
2.001	0	100	MHS2.1	108.850	108.131	0.619	Open Manhole		300
2.002	0	100	MHS2.2	108.850	108.025	0.725	Open Manhole		300
1.003	0	100	MHS1.3	108.850	107.700	1.050	Open Manhole		450
1.004	0	150	SA1	107.700	105.200	2.350	Open Manhole		1200

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000	16.240	80.0	MHS1.1	108.850	108.297	0.453	Open Manhole	300
1.001	8.480	80.0	MHS1.2	108.850	108.191	0.559	Open Manhole	300
1.002	25.200	51.3	MHS1.3	108.850	107.700	1.050	Open Manhole	450
2.000	29.520	80.0	MHS2.1	108.850	108.131	0.619	Open Manhole	300
2.001	8.460	79.8	MHS2.2	108.850	108.025	0.725	Open Manhole	300
2.002	26.000	80.0	MHS1.3	108.850	107.700	1.050	Open Manhole	450
1.003	8.580	17.2	SA1	107.700	107.200	0.400	Open Manhole	1200
1.004	1.000	0.0	filtration	107.700	105.200	2.350	Open Manhole	0

Free Flowing Outfall Details for Storm

Outfall	Outfall	c.	Level	I.	Level		Min	D,L	W
Pipe Number	Name		(m)		(m)	I.	Level (m)	(mm)	(mm)
							(111)		

1.004 filtration 107.700 105.200 0.000 0 0

Simulation Criteria for Storm

Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow	0.000
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage	2.000
Hot Start (mins)	0	Inlet Coeffiecient	0.800
Hot Start Level (mm)	0	Flow per Person per Day (l/per/day)	0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins)	60
Foul Sewage per hectare (l/s)	0.000	Output Interval (mins)	1

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Tridax Ltd		Page 4
Honeywood House	Hockley Sole ~ Holiday Let	
Whitfield	SW Network	
Kent CT16 3EH		Micro
Date 20/04/2023 14:41	Designed by prl	Drainage
File T-2022-147 SW Design.MDX	Checked by	Diamage
XP Solutions	Network 2020.1.3	

Synthetic Rainfall Details

Rainfall Model Return Period (years)	100	Profile Type Cv (Summer)	0.750
Region M5-60 (mm) Ratio R	England and Wales 26.250 0.400	Cv (Winter) Storm Duration (mins)	0.840 30

Tridax Ltd		Page 5
Honeywood House	Hockley Sole ~ Holiday Let	
Whitfield	SW Network	
Kent CT16 3EH		Mirro
Date 20/04/2023 14:41	Designed by prl	Drainage
File T-2022-147 SW Design.MDX	Checked by	Diamage
XP Solutions	Network 2020.1.3	

Online Controls for Storm

Pump Manhole: SA1, DS/PN: 1.004, Volume (m³): 2.9

Invert Level (m) 105.200

Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s)

0.200	0.0000	1.400	0.0000	2.600	0.0000	3.800	0.0000	5.000	0.0000
0.400	0.0000	1.600	0.0000	2.800	0.0000	4.000	0.0000	5.200	0.0000
0.600	0.0000	1.800	0.0000	3.000	0.0000	4.200	0.0000	5.400	0.0000
0.800	0.0000	2.000	0.0000	3.200	0.0000	4.400	0.0000	5.600	0.0000
1.000	0.0000	2.200	0.0000	3.400	0.0000	4.600	0.0000	5.800	0.0000
1.200	0.0000	2.400	0.0000	3.600	0.0000	4.800	0.0000	6.000	0.0000

Tridax Ltd		Page 6
Honeywood House	Hockley Sole ~ Holiday Let	
Whitfield	SW Network	
Kent CT16 3EH		Micro
Date 20/04/2023 14:41	Designed by prl	Drainage
File T-2022-147 SW Design.MDX	Checked by	Diamage
XP Solutions	Network 2020.1.3	
Storage	Structures for Storm	
Lined Soakaway	Manhole: SA1, DS/PN: 1.004	
Po		

ridax Ltd							Page 7
oneywood House		Нос	kley Sole	~ Holi	day Let		
hitfield		SW	Network				
ent CT16 3EH							Micro
ate 20/04/2023	14:41	Des	igned by p	orl			
le T-2022-147	SW Design.MDX		cked by				Draina
? Solutions	2		work 2020.	1.3			
year Return P	eriod Summary c	of Criti	ical Resul	ts by N	laximum	Leve	l (Rank 1) :
			Storm				
		Simula	tion Criteria				
	Areal Reduction Fa	actor 1.00	0 Additional				
	Hot Start (m Hot Start Level		0 MADD E 0		.0m³/ha Stor t Coeffieci		
	le Headloss Coeff (Glo			son per D	ay (l/per/c	lay) O	.000
Ľou.	l Sewage per hectare	(1/S) U.UU	U				
	nput Hydrographs 0 1 Online Controls 1 Num		Offline Contro				
Number of	Unline Controls I Nu	mber of St	orage Structur	es i Numi	ber of keal	Time (LONTFOIS U
	Rainfall Model		Rainfall Deta: R M5-60 (mm)		(Summore)	0 750	
	Region Englan				(Winter)		
	Margin for Flood Ris	k Warning	(mm)		30	0.0	
	-	-	estep 2.5 Seco	nd Increme			
		DTS St DVD St				ON ON	
		Inertia St				ON	
	Profile(s) Duration(s) (mins)	30, 60, 12		360, 480,	Summer ar 600, 720, 9	nd Wint	
Retu		30, 60, 12		360, 480,	600, 720, 9	nd Wint	40 00
Retu	Duration(s) (mins) mrn Period(s) (years)	30, 60, 12	20, 180, 240, 3 Water Floodd	ed	600, 720, 9 1,	nd Wint 960, 14 30, 1 0, 0, Pipe	40 00
	Duration(s) (mins) Mrn Period(s) (years) Climate Change (%)	US/CL	20, 180, 240, 3 Water Floode Level Volum	ed Me Flow /	600, 720, 9 1, Discharge	nd Wint 960, 14 30, 1 0, 0, Pipe Flow	40 00 20
Retu PN	Duration(s) (mins) mrn Period(s) (years)		20, 180, 240, 3 Water Floodd	ed Me Flow /	600, 720, 9 1,	nd Wint 960, 14 30, 1 0, 0, Pipe Flow	40 00
PN 1.000 30 minu	Duration(s) (mins) urn Period(s) (years) Climate Change (%) Event ute 1 year Summer I+08	US/CL (m)	20, 180, 240, 3 Water Floodd Level Volum (m) (m ³) 108.530 0.00	ed He Flow / Cap. D0 0.19	600, 720, 9 1, Discharge Vol (m ³) 0.822	nd Wintt 260, 14 30, 1 0, 0, Pipe Flow (1/s) 1.3	40 00 20 Status OK*
PN 1.000 30 minu 1.001 30 minu	Duration(s) (mins) urn Period(s) (years) Climate Change (%) Event	US/CL (m) 5 108.850 5 108.850	20, 180, 240, 3 Water Floods Level Volum (m) (m ³) 108.530 0.00 108.334 0.00	ed e Flow / Cap. 00 0.19 00 0.30	600, 720, 9 1, Discharge Vol (m ³) 0.822 1.230	nd Wint 30, 14 30, 1 0, 0, Pipe Flow (1/s)	40 00 20 Status
PN 1.000 30 minu 1.001 30 minu 1.002 30 minu 2.000 30 minu	Duration(s) (mins) Irn Period(s) (years) Climate Change (%) Event ute 1 year Summer I+0% ute 1 year Summer I+0% ute 1 year Summer I+0% ute 1 year Summer I+0%	US/CL (m) 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850	Water Flood Level Volum (m) (m ³) 108.530 0.00 108.334 0.00 108.237 0.00 108.530 0.00	ed Flow / Cap. 00 0.19 00 0.30 00 0.43 00 0.19	600, 720, 9 1, Discharge Vol (m ³) 0.822 1.230 2.461 0.821	nd Wint 960, 14 30, 1 0, 0, Pipe Flow (l/s) 1.3 1.9 3.5 1.3	40 00 20 Status OK* OK OK OK
PN 1.000 30 min 1.001 30 min 1.002 30 min 2.000 30 min 2.001 30 min	Duration(s) (mins) urn Period(s) (years) Climate Change (%) Event ute 1 year Summer I+0% ute 1 year Summer I+0% ute 1 year Summer I+0% ute 1 year Summer I+0% ute 1 year Summer I+0%	US/CL (m) 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850	Water Flood Level Volum (m) (m ³) 108.530 0.00 108.334 0.00 108.237 0.00 108.530 0.00 108.530 0.00	ad le Flow / Cap. 00 0.19 00 0.30 00 0.43 00 0.19 00 0.29	600, 720, 9 1, Discharge Vol (m ³) 0.822 1.230 2.461 0.821 1.230	nd Wint 660, 14 30, 1 0, 0, Pipe Flow (1/s) 1.3 1.9 3.5 1.3 1.8	40 00 20 Status OK* OK OK OK
PN 1.000 30 minu 1.001 30 minu 1.002 30 minu 2.000 30 minu 2.001 30 minu 2.002 30 minu	Duration(s) (mins) Irn Period(s) (years) Climate Change (%) Event ute 1 year Summer I+0% ute 1 year Summer I+0% ute 1 year Summer I+0% ute 1 year Summer I+0%	US/CL (m) 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850	Water Flood Level Volum (m) (m ³) 108.530 0.00 108.334 0.00 108.237 0.00 108.530 0.00 108.530 0.00 108.168 0.00 108.067 0.00	ed le Flow / Cap. 00 0.19 00 0.30 00 0.43 00 0.29 00 0.29 00 0.36	600, 720, 9 1, Discharge Vol (m³) 0.822 1.230 2.461 0.821 1.230 1.639	<pre>d Wint 260, 14 30, 1 0, 0, Fipe Flow (l/s) 1.3 1.9 3.5 1.3 1.8 2.4</pre>	40 00 20 Status OK* OK OK OK
PN 1.000 30 minu 1.001 30 minu 1.002 30 minu 2.000 30 minu 2.001 30 minu 2.002 30 minu 1.003 30 minu	Duration(s) (mins) urn Period(s) (years) Climate Change (%) Event ute 1 year Summer I+0% ute 1 year Summer I+0%	US/CL (m) 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850	Water Flood Level Volum (m) (m ³) 108.530 0.00 108.334 0.00 108.237 0.00 108.530 0.00 108.68 0.00 108.667 0.00 107.751 0.00	ed le Flow / Cap. 00 0.19 00 0.30 00 0.43 00 0.19 00 0.29 00 0.36 00 0.52	600, 720, 9 1, Discharge Vol (m ³) 0.822 1.230 2.461 0.821 1.230 1.639 4.914	<pre>d Wint 060, 14 30, 1 0, 0, Pipe Flow (1/s) 1.3 1.9 3.5 1.3 1.8 2.4 4 7.0</pre>	40 00 20 Status OK* OK OK OK OK OK
PN 1.000 30 minu 1.001 30 minu 1.002 30 minu 2.000 30 minu 2.001 30 minu 2.002 30 minu 1.003 30 minu	Duration(s) (mins) urn Period(s) (years) Climate Change (%) Event ute 1 year Summer I+0% ute 1 year Summer I+0%	US/CL (m) 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850	Water Flood Level Volum (m) (m ³) 108.530 0.00 108.334 0.00 108.237 0.00 108.530 0.00 108.68 0.00 108.667 0.00 107.751 0.00	ed le Flow / Cap. 00 0.19 00 0.30 00 0.43 00 0.19 00 0.29 00 0.36 00 0.52	600, 720, 9 1, Discharge Vol (m ³) 0.822 1.230 2.461 0.821 1.230 1.639 4.914	<pre>d Wint 060, 14 30, 1 0, 0, Pipe Flow (1/s) 1.3 1.9 3.5 1.3 1.8 2.4 4 7.0</pre>	40 00 20 Status OK* OK OK OK* OK OK OK OK
PN 1.000 30 minu 1.001 30 minu 1.002 30 minu 2.000 30 minu 2.001 30 minu 2.002 30 minu 1.003 30 minu	Duration(s) (mins) urn Period(s) (years) Climate Change (%) Event ute 1 year Summer I+0% ute 1 year Summer I+0%	US/CL (m) 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850	Water Flood Level Volum (m) (m ³) 108.530 0.00 108.334 0.00 108.237 0.00 108.530 0.00 108.68 0.00 108.667 0.00 107.751 0.00	ed le Flow / Cap. 00 0.19 00 0.30 00 0.43 00 0.19 00 0.29 00 0.36 00 0.52	600, 720, 9 1, Discharge Vol (m ³) 0.822 1.230 2.461 0.821 1.230 1.639 4.914	<pre>d Wint 060, 14 30, 1 0, 0, Pipe Flow (1/s) 1.3 1.9 3.5 1.3 1.8 2.4 4 7.0</pre>	40 00 20 Status OK* OK OK OK* OK OK OK OK
PN 1.000 30 minu 1.001 30 minu 1.002 30 minu 2.000 30 minu 2.001 30 minu 2.002 30 minu 1.003 30 minu	Duration(s) (mins) urn Period(s) (years) Climate Change (%) Event ute 1 year Summer I+0% ute 1 year Summer I+0%	US/CL (m) 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850	Water Flood Level Volum (m) (m ³) 108.530 0.00 108.334 0.00 108.237 0.00 108.530 0.00 108.68 0.00 108.667 0.00 107.751 0.00	ed le Flow / Cap. 00 0.19 00 0.30 00 0.43 00 0.19 00 0.29 00 0.36 00 0.52	600, 720, 9 1, Discharge Vol (m ³) 0.822 1.230 2.461 0.821 1.230 1.639 4.914	<pre>d Wint 060, 14 30, 1 0, 0, Pipe Flow (1/s) 1.3 1.9 3.5 1.3 1.8 2.4 4 7.0</pre>	40 00 20 Status OK* OK OK OK* OK OK OK OK
PN 1.000 30 minu 1.001 30 minu 1.002 30 minu 2.000 30 minu 2.001 30 minu 2.002 30 minu 1.003 30 minu	Duration(s) (mins) urn Period(s) (years) Climate Change (%) Event ute 1 year Summer I+0% ute 1 year Summer I+0%	US/CL (m) 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850	Water Flood Level Volum (m) (m ³) 108.530 0.00 108.334 0.00 108.237 0.00 108.530 0.00 108.68 0.00 108.667 0.00 107.751 0.00	ed le Flow / Cap. 00 0.19 00 0.30 00 0.43 00 0.19 00 0.29 00 0.36 00 0.52	600, 720, 9 1, Discharge Vol (m ³) 0.822 1.230 2.461 0.821 1.230 1.639 4.914	<pre>d Wint 060, 14 30, 1 0, 0, Pipe Flow (1/s) 1.3 1.9 3.5 1.3 1.8 2.4 4 7.0</pre>	40 00 20 Status OK* OK OK OK* OK OK OK OK
PN 1.000 30 minu 1.001 30 minu 1.002 30 minu 2.000 30 minu 2.001 30 minu 2.002 30 minu 1.003 30 minu	Duration(s) (mins) urn Period(s) (years) Climate Change (%) Event ute 1 year Summer I+0% ute 1 year Summer I+0%	US/CL (m) 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850	Water Flood Level Volum (m) (m ³) 108.530 0.00 108.334 0.00 108.237 0.00 108.530 0.00 108.68 0.00 108.667 0.00 107.751 0.00	ed le Flow / Cap. 00 0.19 00 0.30 00 0.43 00 0.19 00 0.29 00 0.36 00 0.52	600, 720, 9 1, Discharge Vol (m ³) 0.822 1.230 2.461 0.821 1.230 1.639 4.914	<pre>d Wint 060, 14 30, 1 0, 0, Pipe Flow (1/s) 1.3 1.9 3.5 1.3 1.8 2.4 4 7.0</pre>	40 00 20 Status OK* OK OK OK* OK OK OK OK
PN 1.000 30 minu 1.001 30 minu 1.002 30 minu 2.000 30 minu 2.001 30 minu 2.002 30 minu 1.003 30 minu	Duration(s) (mins) urn Period(s) (years) Climate Change (%) Event ute 1 year Summer I+0% ute 1 year Summer I+0%	US/CL (m) 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850	Water Flood Level Volum (m) (m ³) 108.530 0.00 108.334 0.00 108.237 0.00 108.530 0.00 108.68 0.00 108.667 0.00 107.751 0.00	ed le Flow / Cap. 00 0.19 00 0.30 00 0.43 00 0.19 00 0.29 00 0.36 00 0.52	600, 720, 9 1, Discharge Vol (m ³) 0.822 1.230 2.461 0.821 1.230 1.639 4.914	<pre>d Wint 060, 14 30, 1 0, 0, Pipe Flow (1/s) 1.3 1.9 3.5 1.3 1.8 2.4 4 7.0</pre>	40 00 20 Status OK* OK OK OK* OK OK OK OK
PN 1.000 30 minu 1.001 30 minu 1.002 30 minu 2.000 30 minu 2.001 30 minu 2.002 30 minu 1.003 30 minu	Duration(s) (mins) urn Period(s) (years) Climate Change (%) Event ute 1 year Summer I+0% ute 1 year Summer I+0%	US/CL (m) 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850	Water Flood Level Volum (m) (m ³) 108.530 0.00 108.334 0.00 108.237 0.00 108.530 0.00 108.68 0.00 108.667 0.00 107.751 0.00	ed le Flow / Cap. 00 0.19 00 0.30 00 0.43 00 0.19 00 0.29 00 0.36 00 0.52	600, 720, 9 1, Discharge Vol (m ³) 0.822 1.230 2.461 0.821 1.230 1.639 4.914	<pre>d Wint 060, 14 30, 1 0, 0, Pipe Flow (1/s) 1.3 1.9 3.5 1.3 1.8 2.4 4 7.0</pre>	40 00 20 Status OK* OK OK OK* OK OK OK OK
PN 1.000 30 minu 1.001 30 minu 1.002 30 minu 2.000 30 minu 2.001 30 minu 2.002 30 minu 1.003 30 minu	Duration(s) (mins) urn Period(s) (years) Climate Change (%) Event ute 1 year Summer I+0% ute 1 year Summer I+0%	US/CL (m) 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850	Water Flood Level Volum (m) (m ³) 108.530 0.00 108.334 0.00 108.237 0.00 108.530 0.00 108.68 0.00 108.667 0.00 107.751 0.00	ed le Flow / Cap. 00 0.19 00 0.30 00 0.43 00 0.19 00 0.29 00 0.36 00 0.52	600, 720, 9 1, Discharge Vol (m ³) 0.822 1.230 2.461 0.821 1.230 1.639 4.914	<pre>d Wint 060, 14 30, 1 0, 0, Pipe Flow (1/s) 1.3 1.9 3.5 1.3 1.8 2.4 4 7.0</pre>	40 00 20 Status OK* OK OK OK* OK OK OK OK
PN 1.000 30 minu 1.001 30 minu 1.002 30 minu 2.000 30 minu 2.001 30 minu 2.002 30 minu 1.003 30 minu	Duration(s) (mins) urn Period(s) (years) Climate Change (%) Event ute 1 year Summer I+0% ute 1 year Summer I+0%	US/CL (m) 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850	Water Flood Level Volum (m) (m ³) 108.530 0.00 108.334 0.00 108.237 0.00 108.530 0.00 108.68 0.00 108.667 0.00 107.751 0.00	ed le Flow / Cap. 00 0.19 00 0.30 00 0.43 00 0.19 00 0.29 00 0.36 00 0.52	600, 720, 9 1, Discharge Vol (m ³) 0.822 1.230 2.461 0.821 1.230 1.639 4.914	<pre>d Wint 060, 14 30, 1 0, 0, Pipe Flow (1/s) 1.3 1.9 3.5 1.3 1.8 2.4 4 7.0</pre>	40 00 20 Status OK* OK OK OK* OK OK OK OK
PN 1.000 30 minu 1.001 30 minu 1.002 30 minu 2.000 30 minu 2.001 30 minu 2.002 30 minu 1.003 30 minu	Duration(s) (mins) urn Period(s) (years) Climate Change (%) Event ute 1 year Summer I+0% ute 1 year Summer I+0%	US/CL (m) 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850	Water Flood Level Volum (m) (m ³) 108.530 0.00 108.334 0.00 108.237 0.00 108.530 0.00 108.68 0.00 108.667 0.00 107.751 0.00	ed le Flow / Cap. 00 0.19 00 0.30 00 0.43 00 0.19 00 0.29 00 0.36 00 0.52	600, 720, 9 1, Discharge Vol (m ³) 0.822 1.230 2.461 0.821 1.230 1.639 4.914	<pre>d Wint 060, 14 30, 1 0, 0, Pipe Flow (1/s) 1.3 1.9 3.5 1.3 1.8 2.4 4 7.0</pre>	40 00 20 Status OK* OK OK OK* OK OK OK OK
PN 1.000 30 minu 1.001 30 minu 1.002 30 minu 2.000 30 minu 2.001 30 minu 2.002 30 minu 1.003 30 minu	Duration(s) (mins) urn Period(s) (years) Climate Change (%) Event ute 1 year Summer I+0% ute 1 year Summer I+0%	US/CL (m) 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850	Water Flood Level Volum (m) (m ³) 108.530 0.00 108.334 0.00 108.237 0.00 108.530 0.00 108.68 0.00 108.667 0.00 107.751 0.00	ed le Flow / Cap. 00 0.19 00 0.30 00 0.43 00 0.19 00 0.29 00 0.36 00 0.52	600, 720, 9 1, Discharge Vol (m ³) 0.822 1.230 2.461 0.821 1.230 1.639 4.914	<pre>d Wint 060, 14 30, 1 0, 0, Pipe Flow (1/s) 1.3 1.9 3.5 1.3 1.8 2.4 4 7.0</pre>	40 00 20 Status OK* OK OK OK* OK OK OK OK
PN 1.000 30 minu 1.001 30 minu 1.002 30 minu 2.000 30 minu 2.001 30 minu 2.002 30 minu 1.003 30 minu	Duration(s) (mins) urn Period(s) (years) Climate Change (%) Event ute 1 year Summer I+0% ute 1 year Summer I+0%	US/CL (m) 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850	Water Flood Level Volum (m) (m ³) 108.530 0.00 108.334 0.00 108.237 0.00 108.530 0.00 108.68 0.00 108.667 0.00 107.751 0.00	ed le Flow / Cap. 00 0.19 00 0.30 00 0.43 00 0.19 00 0.29 00 0.36 00 0.52	600, 720, 9 1, Discharge Vol (m ³) 0.822 1.230 2.461 0.821 1.230 1.639 4.914	<pre>d Wint 060, 14 30, 1 0, 0, Pipe Flow (1/s) 1.3 1.9 3.5 1.3 1.8 2.4 4 7.0</pre>	40 00 20 Status OK* OK OK OK* OK OK OK OK
PN 1.000 30 minu 1.001 30 minu 1.002 30 minu 2.000 30 minu 2.001 30 minu 2.002 30 minu 1.003 30 minu	Duration(s) (mins) urn Period(s) (years) Climate Change (%) Event ute 1 year Summer I+0% ute 1 year Summer I+0%	US/CL (m) 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850 5 108.850	Water Flood Level Volum (m) (m ³) 108.530 0.00 108.334 0.00 108.237 0.00 108.530 0.00 108.68 0.00 108.667 0.00 107.751 0.00	ed le Flow / Cap. 00 0.19 00 0.30 00 0.43 00 0.19 00 0.29 00 0.36 00 0.52	600, 720, 9 1, Discharge Vol (m ³) 0.822 1.230 2.461 0.821 1.230 1.639 4.914	<pre>d Wint 060, 14 30, 1 0, 0, Pipe Flow (1/s) 1.3 1.9 3.5 1.3 1.8 2.4 4 7.0</pre>	40 00 20 Status OK* OK OK OK* OK OK OK OK

oneywood House hitfield							Page 8
hitfield	Нос	kley S	ole ~	Holid	ay Let		
	SW	Networ	k				
ent CT16 3EH							_ Micro
ate 20/04/2023 14:41	Des	igned	by prl	L			
ile T-2022-147 SW Design.MDX	Che	cked b	У				Drainag
P Solutions	Net	work 2	020.1.	. 3			
30 year Return Period Summary		itical r Stor		ts by	Maximu	m Le [.]	vel (Rank 1)
Number of Online Controls 1 Numb	tor 1.00 nm) al) 0.50 (s) 0.00 mber of er of St	0 0 0 Flow p 0 0ffline (tional F1 MADD Fact er Persor Controls ructures	tor * 10 Inlet n per Da 0 Numbe 1 Numbe	m³/ha Stora Coeffiecio y (l/per/da er of Time/	age 2. ent 0. ay) 0. Area D	000 800 000 Diagrams 0
Rainfall Model	FS	R M5-60	(mm) 26.	250 Cv	(Summer) 0		
Region England	and Wale	s Rat	io R 0.	400 Cv	(Winter) 0	.840	
_	ysis Time DTS St DVD St nertia St	estep 2.5 catus catus catus			Summer an 00, 720, 9 1,	d) ON ON ON	40 00
		Water	Flooded			Pipe	
PN Event	US/CL (m)				Discharge Vol (m³)	Flow	Status
1.000 30 minute 30 year Summer I+0% 1.001 30 minute 30 year Summer I+0% 1.002 30 minute 30 year Summer I+0% 2.000 30 minute 30 year Summer I+0% 2.001 30 minute 30 year Summer I+0% 1.003 30 minute 30 year Summer I+0% 1.004 30 minute 30 year Winter I+0%	108.850 108.850 108.850 108.850 108.850 108.850	108.498 108.453 108.548 108.258 108.211 107.987				4.4 8.0 3.1 4.4 5.4 15.9	OK* SURCHARGED SURCHARGED SURCHARGED SURCHARGED SURCHARGED

ridax Ltd						Page 9
loneywood House	Hockley S	ole ~ H	Holid	ay Let		
Thitfield	SW Networ	k				
Kent CT16 3EH						_ Micro
Date 20/04/2023 14:41	Designed	by prl				Drainad
Tile T-2022-147 SW Design.MDX	Checked b	У				Digitig
XP Solutions	Network 2	020.1.3	3			I
100 year Return Period Summary	of Critical for Stor		ts by	/ Maximu	ım Le [.]	vel (Rank 1
Hot Start Level (m Manhole Headloss Coeff (Globa Foul Sewage per hectare (l/	s) 0 2 m) 0 1) 0.500 Flow p s) 0.000 mber of Offline 0	tional Flo MADD Facto er Person Controls (or * 10 Inlet per Day) Numbe	n³/ha Stora Coeffiecie y (l/per/da r of Time/2	nge 2.0 ent 0.8 ny) 0.0 Area Di	000 300 000 Lagrams 0
Sy	nthetic Rainfall	Details				
Rainfall Model Region England a	FSR M5-60 and Wales Rat			(Summer) 0. (Winter) 0.		
	DTS Status DVD Status				ON ON	
In Profile(s) Duration(s) (mins) 30 Return Period(s) (years) Climate Change (%)	ertia Status , 60, 120, 180,	240, 360,	480, 6	Summer and 00, 720, 96 1,		0
Profile(s) Duration(s) (mins) 30 Return Period(s) (years)	, 60, 120, 180,	240, 360, Flooded	480, 6	Summer and 00, 720, 96 1,	Winte 50, 144 30, 10	0
Profile(s) Duration(s) (mins) 30 Return Period(s) (years) Climate Change (%)	, 60, 120, 180, Water US/CL Level	Flooded Volume	Flow /	Summer and DO, 720, 96 1, C Discharge	Winte (0, 144 30, 10 (), 0, 2 Pipe Flow	0 0 0
Profile(s) Duration(s) (mins) 30 Return Period(s) (years) Climate Change (%) PN Event	, 60, 120, 180, Water US/CL Level (m) (m)	Flooded Volume (m³)	Flow / Cap.	Summer and 10, 720, 96 1, C Discharge Vol (m ³)	<pre>H Winte 00, 144 30, 10 0, 0, 2 Pipe Flow (1/s)</pre>	0 0 Status
Profile(s) Duration(s) (mins) 30 Return Period(s) (years) Climate Change (%)	, 60, 120, 180, Water US/CL Level (m) (m) 108.850 108.600	Flooded Volume (m³) 0.000	Flow /	Summer and 10, 720, 96 1, 0 Discharge Vol (m ³) 3.099	Winte 50, 144 30, 10 0, 0, 2 Pipe Flow (1/s) 4.6	0 0 0
Profile(s) Duration(s) (mins) 30 Return Period(s) (years) Climate Change (%) PN Event 1.000 30 minute 100 year Summer I+20% 1.001 30 minute 100 year Summer I+20% 1.002 30 minute 100 year Summer I+20%	, 60, 120, 180, Water US/CL Level (m) (m) 108.850 108.600 108.850 108.848 108.850 108.841	Flooded Volume (m ³) 0.000 0.000 0.000	Flow / Cap. 0.68 1.13 1.10	Summer and 10, 720, 96 1, 0 Discharge Vol (m ³) 3.099 4.649 9.299	<pre>A Winte 00, 144 30, 10 0, 0, 2 Pipe Flow (1/s) 4.6 7.1 9.0</pre>	0 0 Status FLOOD RISK* FLOOD RISK FLOOD RISK
Profile(s) Duration(s) (mins) 30 Return Period(s) (years) Climate Change (%) PN Event 1.000 30 minute 100 year Summer I+20% 1.001 30 minute 100 year Summer I+20%	, 60, 120, 180, Water US/CL Level (m) (m) 108.850 108.600 108.850 108.848 108.850 108.841 108.850 108.600	Flooded Volume (m ³) 0.000 0.000	Flow / Cap. 0.68 1.13	Summer and 10, 720, 96 1, C Discharge Vol (m ³) 3.099 4.649	<pre>A Winte i0, 144 30, 10 0, 0, 2 Pipe Flow (1/s) 4.6 7.1 9.0 4.2</pre>	0 0 Status FLOOD RISK* FLOOD RISK
Profile(s) Duration(s) (mins) 30 Return Period(s) (years) Climate Change (%) PN Event 1.000 30 minute 100 year Summer I+20% 1.002 30 minute 100 year Summer I+20% 2.000 30 minute 100 year Summer I+20% 2.001 30 minute 100 year Summer I+20% 2.002 30 minute 100 year Summer I+20%	<pre>water Water US/CL Level (m) 108.850 108.600 108.850 108.848 108.850 108.841 108.850 108.841 108.850 108.600 08.850 108.709 108.850 108.659</pre>	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.68 1.13 1.10 0.62 0.89 1.03	Summer and 00, 720, 96 1, 0 Discharge Vol (m ³) 3.099 4.649 9.299 3.101 4.651 6.200	<pre>Winte io, 144 30, 10 , 0, 2 Pipe Flow (l/s) 4.6 7.1 9.0 4.5 5.5 6.8</pre>	0 0 0 FLOOD RISK* FLOOD RISK FLOOD RISK* FLOOD RISK FLOOD RISK
Profile(s) Duration(s) (mins) 30 Return Period(s) (years) Climate Change (%) PN Event 1.000 30 minute 100 year Summer I+20% 1.001 30 minute 100 year Summer I+20% 2.000 30 minute 100 year Summer I+20% 2.001 30 minute 100 year Summer I+20%	, 60, 120, 180, Water US/CL Level (m) 108.850 108.600 108.850 108.848 108.850 108.841 108.850 108.841 108.850 108.659 108.850 108.659 108.850 108.352	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.68 1.13 1.10 0.62 0.89	Summer and 00, 720, 96 1, 0 Discharge Vol (m ³) 3.099 4.649 9.299 3.101 4.651	<pre>Winte io, 144 30, 10 , 0, 2 Pipe Flow (l/s) 4.6 7.1 9.0 4.5 5.5 6.8</pre>	0 0 0 FLOOD RISK* FLOOD RISK FLOOD RISK FLOOD RISK FLOOD RISK SURCHARGED
Profile(s) Duration(s) (mins) 30 Return Period(s) (years) Climate Change (%) PN Event 1.000 30 minute 100 year Summer I+20% 1.001 30 minute 100 year Summer I+20% 2.000 30 minute 100 year Summer I+20% 2.001 30 minute 100 year Summer I+20% 2.002 30 minute 100 year Summer I+20% 2.002 30 minute 100 year Summer I+20% 1.003 30 minute 100 year Summer I+20%	, 60, 120, 180, Water US/CL Level (m) 108.850 108.600 108.850 108.848 108.850 108.841 108.850 108.841 108.850 108.659 108.850 108.659 108.850 108.352	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.68 1.13 1.10 0.62 0.89 1.03 1.43	Summer and 00, 720, 96 1, C Discharge Vol (m ³) 3.099 4.649 9.299 3.101 4.651 6.200 18.599	<pre>Winte i0, 144 30, 10), 0, 2 Pipe Flow (l/s) 4.6 7.1 9.0 4.2 5.5 6.8 19.4</pre>	0 0 0 FLOOD RISK* FLOOD RISK FLOOD RISK FLOOD RISK FLOOD RISK SURCHARGED
Profile(s) Duration(s) (mins) 30 Return Period(s) (years) Climate Change (%) PN Event 1.000 30 minute 100 year Summer I+20% 1.001 30 minute 100 year Summer I+20% 2.000 30 minute 100 year Summer I+20% 2.001 30 minute 100 year Summer I+20% 2.002 30 minute 100 year Summer I+20% 2.002 30 minute 100 year Summer I+20% 1.003 30 minute 100 year Summer I+20%	, 60, 120, 180, Water US/CL Level (m) 108.850 108.600 108.850 108.848 108.850 108.841 108.850 108.841 108.850 108.659 108.850 108.659 108.850 108.352	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.68 1.13 1.10 0.62 0.89 1.03 1.43	Summer and 00, 720, 96 1, C Discharge Vol (m ³) 3.099 4.649 9.299 3.101 4.651 6.200 18.599	<pre>Winte i0, 144 30, 10), 0, 2 Pipe Flow (l/s) 4.6 7.1 9.0 4.2 5.5 6.8 19.4</pre>	0 0 0 FLOOD RISK* FLOOD RISK FLOOD RISK FLOOD RISK FLOOD RISK SURCHARGED
Profile(s) Duration(s) (mins) 30 Return Period(s) (years) Climate Change (%) PN Event 1.000 30 minute 100 year Summer I+20% 1.001 30 minute 100 year Summer I+20% 2.000 30 minute 100 year Summer I+20% 2.001 30 minute 100 year Summer I+20% 2.002 30 minute 100 year Summer I+20% 2.002 30 minute 100 year Summer I+20% 1.003 30 minute 100 year Summer I+20%	, 60, 120, 180, Water US/CL Level (m) 108.850 108.600 108.850 108.848 108.850 108.841 108.850 108.841 108.850 108.659 108.850 108.659 108.850 108.352	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.68 1.13 1.10 0.62 0.89 1.03 1.43	Summer and 00, 720, 96 1, C Discharge Vol (m ³) 3.099 4.649 9.299 3.101 4.651 6.200 18.599	<pre>Winte i0, 144 30, 10), 0, 2 Pipe Flow (l/s) 4.6 7.1 9.0 4.2 5.5 6.8 19.4</pre>	0 0 0 FLOOD RISK* FLOOD RISK FLOOD RISK FLOOD RISK FLOOD RISK SURCHARGED
Profile(s) Duration(s) (mins) 30 Return Period(s) (years) Climate Change (%) PN Event 1.000 30 minute 100 year Summer I+20% 1.001 30 minute 100 year Summer I+20% 2.000 30 minute 100 year Summer I+20% 2.001 30 minute 100 year Summer I+20% 2.002 30 minute 100 year Summer I+20% 2.002 30 minute 100 year Summer I+20% 1.003 30 minute 100 year Summer I+20%	, 60, 120, 180, Water US/CL Level (m) 108.850 108.600 108.850 108.848 108.850 108.841 108.850 108.841 108.850 108.659 108.850 108.659 108.850 108.352	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.68 1.13 1.10 0.62 0.89 1.03 1.43	Summer and 00, 720, 96 1, C Discharge Vol (m ³) 3.099 4.649 9.299 3.101 4.651 6.200 18.599	<pre>Winte i0, 144 30, 10), 0, 2 Pipe Flow (l/s) 4.6 7.1 9.0 4.2 5.5 6.8 19.4</pre>	0 0 0 FLOOD RISK* FLOOD RISK FLOOD RISK FLOOD RISK FLOOD RISK SURCHARGED

Tridax Ltd							Page 1
Honeywood House	Hock	ley Sc	ole ~	Holid	ay Let		
Whitfield	40%	Sensit	ivity	7 Test			
Kent CT16 3EH							_ Micro
Date 20/04/2023 14:39	Desi	gned k	y prl				
File T-2022-147 SW Design.MDX	Chec	ked by	7				Drainage
XP Solutions	Netw	ork 20	20.1.	3			
Rainfall M. Return Period (yea	Simulat: tor 1.000 ns) 0 mm) 0 al) 0.500 /s) 0.000 mber of Of er of Stor ynthetic R odel ars) gion Engla	<u>ion Crite</u> Addit: Mi Flow pe: ffline Cc rage Stru Rainfall and and W	eria ional Fl ADD Fact r Person ntrols ctures <u>Details</u> FSR 100 Cv	.ow - % . .or * 10: Inlet a per Da 0 Numbe 1 Numbe Ratio 7 (Summe	of Total Fl m³/ha Stora Coeffiecie y (l/per/da r of Time// r of Real ? R 0.400 r) 0.750	.ow 0.0 ge 2.0 ent 0.8 ey) 0.0 Area Di	000 000 000 000 .agrams 0
		tep 2.5 tus tus	Second 3	Incremen	(
Profile(s) Duration(s) (mins) 30 Sensitivity flows(s) (%)), 60, 120	, 180, 2·	40, 360,	480, 6	Summer and 00, 720, 96		0
Duration(s) (mins) 30), 60, 120 US/CL (m)	Water	Flooded		00, 720, 96 Discharge	0, 144 0, +4 Pipe Flow	0
Duration(s) (mins) 3(Sensitivity flows(s) (%)	US/CL (m) 108.850 108.850 108.850 108.850 108.850 108.850 108.850	Water Level (m) 108.600 108.849 108.843 108.600 108.841 108.797 108.434	Flooded Volume (m ³) 0.000 0.000 0.000 0.000	Flow / Cap. 0.60 1.20 1.13 0.57	Discharge Vol (m ³) 2.583 6.095 10.882 2.583	<pre>Description: Description: Description:</pre>	0 0 Status FLOOD RISK* FLOOD RISK FLOOD RISK* FLOOD RISK FLOOD RISK