

Sustainable Drainage System Strategy

Site Address

Barton Green New Malden Surrey KT3 3HU

Client RAA Partners Ltd

Report Reference

SWDS - 2023 - 000029

Prepared By

STM Environmental Consultants Ltd

Date 20/11/2023

CONSULTING ENVIRONMENTAL ENGINEERS AND SCIENTISTS

Our mission - to deliver innovative solutions that enable our clients to achieve their objectives in the most cost effective manner possible whilst protecting or enhancing the environment

Document Control

Sustainable Drainage System Strategy				
Site Address:	Barton Green New Malden Surrey KT3 3HU			
National Grid Reference:	520883, 169229			
STM Reference:	SWDS - 2023 - 000029			
Version No:	1.0			
Prepared for:	RAA Partners Ltd			
Date:	20/11/2023			
Report Author:	Matthew Ashdown (BSc)			
	Senior Environmental Consultant			
Checked By:	Georgia Travers (BSc)			
	Environmental Consultant			
Authorised by:	Simon Makoni (MSc)			
	GeoEnvironmental Engineer, Director			

2 Contents

1	- [Doc	um	ent Control	. 2
2	(Cor	nten	ts	. 3
3		Abb	orev	iations	. 9
4	- [Dis	claiı	mer	10
5	E	Exe	cuti	ive Summary	11
6	I	ntr		ction	
	6.1	1	Pro	posed Development	13
	6.2	2	Rep	oort Aims and Objectives	13
	6.3	3	Leg	islative and Policy Context	14
	6	6.3.	1	Legislative Context	14
	6	6.3.	2	Policy Context	14
	6	6.3.	3	The London Plan - Policy SI 13 Sustainable drainage	16
	6	6.3.	4	The LLFA/LPA - Royal Borough of Kingston upon Thames	17
7	S	Site	Ch	aracteristics	19
	7.1	1	Loc	ation and Area	19
	7.2	2	Cur	rent Site and Surrounding Uses	21
	7.3	3	Site	e Topography	21
	7.4	1	Hyc	Irology	21
	7.5	5	Geo	blogy and Hydrogeology	21
	7.6	5	Floo	od Risk	22
	7	7.6.	1	Fluvial Flood Risk	22
	7	7.6.	2	Surface Water Flood Risk	23
	7	7.6.	3	Groundwater Flood Risk	24
	7.7	7	Exis	sting Drainage	24
8	H	Нус	Irolo	ogical Run-off Assessment	24
	8.1	1	Exis	sting and Proposed Ground Cover	25

9	SuD)S Re	quirements	25
9	.1	Peak	Flow Control	25
9	.2	Volun	ne Control Requirements	26
9	.3	Run-c	off and Storage Calculations	26
10	Site	Inve	stigation	27
1	0.1	Gro	und Conditions Encountered	27
1	0.2	Infil	tration Testing	27
11	SuD)S Op	tions	28
1	1.1	Su	DS Hierarchy	28
1	1.2	Ass	essment of SuDS Options	29
	11.2	2.1	Living Roofs	29
	11.2	2.2	Rainwater Harvesting	29
	11.2	2.3	Basins, Ponds, Filter Strips, Rain Gardens and Swales	30
	11.2	2.4	Infiltration Devices	30
	11.2	2.5	Permeable Surfaces and Filter Drains	30
	11.2	2.6	Tanked Systems	31
	11.2	2.7	Summary of results of SuDS Options Assessment	31
12	SuD)S Imj	plementation	31
1	2.1	Su	DS Constraints	31
1	2.2	Pro	posed SuDS	31
	12.2	2.1	Green Roof	32
	12.2	2.2	Rain Garden	33
	12.2	2.3	Permeable Block Paving – Block Paving	34
	12.2	2.4	Geocellular soakaway	34
	12.2	2.5	Discharge Control Device	34
	12.2	2.6	Drainage Modelling	35
	12.2	2.7	Surface Water Discharge Points	35

12.2.8	Treatment of Run-off	35
12.2.9	Exceedance Flows	36
12.3 Ma	aintenance and Adoption of SuDS	36
14 Conclus	le for Implementation sion and Recommendations ces	38
16 Append	ices	40
16.1 Ap	ppendix 1 – Development Plans	40
16.2 Ap	opendix 2– Site Topography and Drainage Characteristics	41
16.2.1	LIDAR Mapping showing Site Topography - (Source: OS 2017)	41
16.2.2	Topographic Survey	42
16.2.3	Bedrock Hydrogeology and Permeability (Source: BGS, 2016).	43
16.2.4	Superficial Hydrogeology & Permeability (Source: BGS, 2016).	43
16.2.5	Infiltration Drainage Potential (Source: BGS, 2016)	44
16.2.6	Groundwater Table Depth (Source: BGS 2016)	44
16.3 Ap	ppendix 3 – Flood Risk Mapping	45
16.3.1	Long Term Fluvial Flood Risk Map (EA)	45
16.3.2	Long Term Pluvial Flood Risk Map (EA)	45
16.3.3 rainfall re	Surface water flood depth during the 1 in 100 and 1 in 100 eturn periods (Source: EA, 2016)	
16.3.4	Groundwater flooding susceptibility (Source: BGS, 2016)	47
16.4 Ap	ppendix 4 – Thames Water / Asset Information	48
16.4.1	Asset Map	48
16.5 Ap	opendix 5 – Run-Off Rate and Storage Calculations	49
16.5.1	UK SuDS	49
16.5.2	IH124 method	50
16.5.3	Rainwater Harvesting Calculator	51

16.5.4	Storage Estimates
16.6 Ap	pendix 6 - Site Investigation53
16.6.1	Site Investigation Photos53
16.6.2	Infiltration Data and Results55
16.6.3	Soakaway Test Location Map57
16.7 Ap	pendix 7 – SuDS Suitability Assessment58
16.7.1	SuDS Suitability Table58
16.8 Ap	pendix 8 – Descriptions Of SuDS Techniques60
16.8.1	Living/Green Roofs60
16.8.2	Living/Green Roofs - Product Example62
16.8.3	Rainwater Harvesting 63
16.8.4	Rain Garden 64
16.8.5	Permeable Paving
16.8.6	SuDs Planter Storage Volume/Rain water Harvesting Systems 66
16.8.7	Geocellular structures, oversized pipes and tanks
16.9 Ap	pendix 9 - Microdrainage Modelling68
16.9.1	Layout of Network / Cross Sections
16.9.2	Layout of Network - Features, Exceedance flows and Sewer
Connecti	on69
16.9.3	Drainage Network Modelling Results70
16.10 Ap	pendix 10 – SuDS Maintenance Manual71
16.10.1	Pervious Pavements
16.10.2	Geo-Cellular Maintenance74
16.10.3	Soakaway Maintenance
10.10.0	
16.10.4	Rain Garden Maintenance

16.10.6	SuDS Rain Water Butt Maintenance	80
16.10.7	Green & Blue Roof Maintenance	81
16.10.8	Flow Control Maintenance	83

List of Tables

Table 1: Asset Information	. 24
Table 2: Breakdown of Ground Cover in the Proposed Development	. 25
Table 3: Summary of Permeable and Impermeable Areas	. 25
Table 4: Calculation of post-development run-off rates for the site	. 26
Table 5: Summary of Results of SuDS Options Assessment	. 31
Table 6: Extensive Green Roofs	. 33
Table 7: SuDS Summary Table	. 35
Table 8: Modelled Discharge Rates (Critical)	. 35
Table 9: SuDS Planter with attenuation storage (Thames Water)	. 66

List of Figures

Figure 1: Site location map and aerial photo	20
Figure 2: SuDS Hierarchy	29
Figure 3: Green roof at the Queen Elizabeth Olympic Park (University	of East
London)	60
Figure 4: Biodiverse green roof diagram (University of East London)	60
Figure 5: Rain Garden Cross Sections Examples	64
Figure 6 Block Permeable Paving with sub-base	65
Figure 7: Block Permeable Paving with Geocellular Module	65

3 Abbreviations

Abbreviation	Description
STM	STM Environmental Consultants Limited
BGS	British Geological Survey
EA	Environment Agency
OS	Ordnance Survey of Great Britain
FRA	Flood Risk Assessment
NPPF	National Planning Policy Framework
FWD	Floodline Warning Direct
FRMS	Flood Risk Management Strategy
LLFA	Lead Local Flood Authority
SWMP	Surface Water Management Plan
SFRA	Strategic Flood Risk Assessment
CDA	Critical Drainage Area
SuDS	Sustainable Drainage Systems
GWSPZ	Groundwater Source Protection Zone
ТРН	Total Petroleum Hydrocarbons
BTEX	Benzene, Toluene, Ethylene, Xylene
РАН	Poly-Aromatic Hydrocarbons

4 Disclaimer

This report and any information or advice which it contains, is provided by STM Environmental Consultants Ltd (STM) and can only be used and relied upon by RAA Partners Ltd (Client).

STM has exercised such professional skill, care and diligence as may reasonably be expected of a properly qualified and competent consultant when undertaking works of this nature. However, STM gives no warranty, representation or assurance as to the accuracy or completeness of any information, assessments or evaluations presented within this report. Furthermore, STM accepts no liability whatsoever for any loss or damage arising from the interpretation or use of the information contained within this report. Any party other than the Client using or placing reliance upon any information contained in this report, do so at their own risk.

5 Executive Summary

BACKGROUND					
Location	Barton Green, New Malden, Surrey, KT3 3HU Grid reference: 520883, 169229				
Site Area		701m ²			
Proposed Development	The construction of a new 3-s soft landscaping.	torey building housing	5no x 3 bed flats and associated		
Current Site and Surrounding Uses	The site is currently undeveloped and covered in soft landscaping (grass).				
Topography			ong the eastern, southern and from 13.24mAOD (centre) to		
Hydrology			southwest of the site while the ast. A direct connection into a		
Geology	BGS information indicates that the superficial deposits at the site consist of Kempton Park Gravel Member (Sand and Gravel) while the bedrock is classified as belonging to the London Clay Formation (Clay and Silt).				
Hydrogeology	BGS information indicates that the site is situated upon a Secondary A superficial and an Unproductive bedrock aquifer.				
Permeability	BGS information indicates that the superficial deposits are poorly draining and the bedrock is classified as free draining.				
Infiltration Potential	BGS information indicates that infiltration SuDS.	at the site has very sig	gnificant constraints indicated for		
Fluvial Flood Risk	Low – the site lies within EA F	lood Zone 1.			
Surface Water Flood Risk	Low - the site and proposal ar flood scenario by depths up to		the 1 in 1000-year surface water		
Groundwater Flood Risk			undwater flooding at the surface. I less than 3mbgl for at least part		
	Ground Cover	Existing (m ²)	Proposed (m²) (Without SuDS)		
Existing and Proposed	Buildings	0	195		
Site Layout	Driveways/Patio	0	42		
	Gardens/ Soft landscaping	701	464		
	Total Impermeable Area	0	237		
Changes in Impermeable	Without SuDS, the proposed of the site by 34% (i.e. 237m ²).	development would inc	crease the impermeable area of		

		PROPOSED SUDS				
Run-Off Rates	Greenfield (GF) (l/s)	IH24 Pre - Development (l/s)	IH24 Post Development Without SuDS (I/s)	Modelled Post Development With SuDS (I/s)		
Qbar	0.17	0.17	0.24	-		
1 in 1	0.14	0.14	0.20	08		
1 in 30 / + CC	0.39	0.39	0.55	0.9		
1 in 100 + CC	0.80	0.80	1.12	1		
SuDS Target Requirement	As the development is taking place on a greenfield site the non-statutory technical standards for sustainable drainage systems S2 (peak flow) and S4 and S6 (volume controls) apply. Therefore, the aim for the SuDS is that the post development run-off rate should never exceed the greenfield runoff rate of 0.8 l/s for the 1 in 100 year plus climate change event.					
Storage Required to meet Planning Requirement			Microdrainage, the tot s calculated to be up to			
Infiltration Testing	 The site investigation works were carried out on the 10th and 11th of October 2023. A total of 4no. trial pits (TP01 – TP04) were excavated for the purpose of undertaking infiltration testing in accordance with BRE DG 365. Additionally, 2no. boreholes (BH01 – BH02) were excavated to a maximum depth of 8mbgl for the purpose of undertaking a geotechnical assessment. Shallow deposits of Made Ground comprising clayey SILT with brick fragments were encountered to a maximum depth of 0.3mbgl. The Made Ground was generally underlain by dark brown CLAY with occasional pockets of Sand and Gravel to 3.2mbgl, in turn underlain by dark grey CLAY to 8mbgl. As groundwater was encountered in 2no. of the trial pits (TP01, TP03), infiltration testing was undertaken in the remaining 2no. trial pits (TP02, TP04). The pits failed to drain more than 50% of their volume during the 1st drainage cycle. Testing was therefore terminated and Infiltration SuDS methods concluded to be unsuitable for the Site. The proposal will introduce a chain of SuDS features including extensive green roofs, rain water butts, rain gardens and permeable paving supplemented with a geocellular attenuation storage tank. These features will work in combination, to intercept and reduce the velocity of the storm water runoff on site. Together these SuDS measures will provide a total of 25.6m³ of storm water attenuation. Any excess surface water runoff will be directed to the Thames Water surface water sewer which is located approximately 10m south of the site. A Hydro-Break Optimum flow control will limit the surface water discharge into the Thames Water sewer to 0.8l/s during all storm events. 					
SuDS Strategy						
Conclusion	With the proposed SuDS mitigation measures in place, we believe that the proposed development will reduce local flood risk and therefore be in compliance with the LLFA's current planning policy and the NPPF.					

6 Introduction

STM Environmental Consultants Limited have been appointed by RAA Partners Ltd to undertake a Sustainable Drainage System (SuDS) Strategy for a proposed development at Barton Green, New Malden, Surrey, KT3 3HU.

6.1 **Proposed Development**

The SuDS strategy is required to support a planning permission (**Ref: 23/01699/FUL**) for the "erection of a three-storey residential building housing 5nos, new dwellings with associated cycle and bin access".

The planning condition states:

Prior to commencement of groundworks (excluding site investigations and demolition), a final detailed drainage design, including drawings, supporting calculations, SuDS Statement and Drainage Assessment Form shall be submitted to and approved in writing by the local planning authority. A detailed management plan confirming routine maintenance tasks for all drainage components must also be submitted to demonstrate how the drainage system is to be maintained for the lifetime of the development. The system shall be implemented and thereafter managed and maintained in accordance with the approved details.

Reason: To prevent the risk of flooding to and from the site in accordance with policy SI13 of the London Plan 2021, the Sustainable Design and Construction SPG 2014, the Non-Statutory Technical Standards for Sustainable Drainage Systems 2015 and policy DM4 of the LDF Core Strategy 2012.

Copies of the development plans are presented in <u>Appendix 1</u>.

6.2 Report Aims and Objectives

This report sets out the proposed drainage strategy that will be employed in the designs to meet the requirements of the planning condition and the National Planning Policy Framework.

This report should be read in conjunction with the following reports also prepared for the site by STM:

Seotechnical Site Investigation – Ref: GT/2023/000119 – Nov 2023

6.3 Legislative and Policy Context

6.3.1 Legislative Context

Section H3 of the Building Regulations 2010 requires that adequate provision is made for rainwater to be carried from the building roofs and paved areas. and be preferentially discharged to soakaways or some other adequate infiltration system. Where that is not reasonably practicable, a watercourse; or sewer can be used.

The Flood and Water Management Act was introduced in 2010. The Act defines the role of lead local flood authority (LLFA) for an area. All LLFA are required to develop, maintain, apply and monitor a strategy for local flood risk management in its area, called "local flood risk management strategy".

Alongside the Act, Flood Risk Regulations (2009) outline the roles and responsibilities of the various authorities, which include preparing Flood Risk Management Plans and identifying how significant flood risks are to be mitigated.

6.3.2 Policy Context

The National Planning Policy Framework (NPPF) sets out the Government's economic, environmental and social planning policies for England. The policies set out in this framework apply to the preparation of local and neighbourhood plans and to decisions on planning applications.

Paragraph 167 of the National Planning Policy Framework (NPPF) states that:

When determining any planning applications, local planning authorities should ensure that flood risk is not increased elsewhere. Where appropriate, applications

should be supported by a site-specific flood-risk assessment (See Note 1) Development should only be allowed in areas at risk of flooding where, in the light of this assessment (and the sequential and exception tests, as applicable) it can be demonstrated that:

- within the site, the most vulnerable development is located in areas of lowest flood risk unless there are overriding reasons to prefer a different location
- the development is appropriately flood resistant and resilient such that, in the event of a flood, it could be quickly brought back into use without significant refurbishment;
- it incorporates sustainable drainage systems, unless there is clear evidence that this would be inappropriate;
- any residual risk can be safely managed; and
- safe access and escape routes are included where appropriate, as part of an agreed emergency plan.

Applications for some minor development and changes of use (See Note.2) should not be subject to the sequential or exception tests but should still meet the requirements for site-specific flood risk assessments set out in (See Note 1).

Paragraph 169 states that:

Major developments should incorporate sustainable drainage systems unless there is clear evidence that this would be inappropriate. The systems used should:

- take account of advice from the lead local flood authority;
- have appropriate proposed minimum operational standards;
- have maintenance arrangements in place to ensure an acceptable standard of operation for the lifetime of the development; and
- where possible, provide multifunctional benefits.

A major development is defined as:

a residential development: 10 dwellings or more or residential development with a site area of 0.5 hectares or more where the number of dwellings is not yet known

a non-residential development: provision of a building or buildings where the total floor space to be created is 1000 square metres or more or where the floor area is not yet known, a site area of 1 hectare or more.

Note. 1 - A site-specific flood risk assessment should be provided for all development in Flood Zones 2 and 3. In Flood Zone 1, an assessment should accompany all proposals involving: sites of 1 hectare or more; land which has been identified by the Environment Agency as having critical drainage problems; land identified in a strategic flood risk assessment as being at increased flood risk in future; or land that may be subject to other sources of flooding, where its development would introduce a more vulnerable use.

Note. 2 - This includes householder development, small non-residential extensions (with a footprint of less than 250m²) and changes of use; except for changes of use to a caravan, camping or chalet site, or to a mobile home or park home site, where the sequential and exception tests should be applied as appropriate.

6.3.3 The London Plan - Policy SI 13 Sustainable drainage

Lead Local Flood Authorities should identify – through their Local Flood Risk Management Strategies and Surface Water Management Plans – areas where there are particular surface water management issues and aim to reduce these risks. Increases in surface water run-off outside these areas also need to be identified and addressed.

Development proposals should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible. There should also be a preference for green over grey features, in line with the following drainage hierarchy:

- rainwater use as a resource (for example rainwater harvesting, blue roofs for irrigation);
- rainwater infiltration to ground at or close to source;

- rainwater attenuation in green infrastructure features for gradual release (for example green roofs, rain gardens);
- rainwater discharge direct to a watercourse (unless not appropriate);
- controlled rainwater discharge to a surface water sewer or drain;
- controlled rainwater discharge to a combined sewer;

Development proposals for impermeable surfacing should normally be resisted unless they can be shown to be unavoidable, including on small surfaces such as front gardens and driveways.

Drainage should be designed and implemented in ways that promote multiple benefits including increased water use efficiency, improved water quality, and enhanced biodiversity, urban greening, amenity and recreation (2).

6.3.4 The LLFA/LPA - Royal Borough of Kingston upon Thames

Policy DM 4 - Water Management and Flood Risk The Council will:

- a. require development to be designed to take account of the impacts of climate change including: water conservation, the need for summer cooling and increase flood risk from fluvial and surface water flooding
- b. consider development proposals in accordance with national guidance (currently PPS25), the Borough SFRA and related studies including the surface water management plans. The Kingston Town Centre Area Action Plan (K+20) Policy K24 Flood Risk Management will be taken into consideration in the assessment of development proposals within Kingston Town Centre.
- c. require a Flood Risk Assessment for major development proposals within Flood Zone 1 of one hectare or more and all new development in Flood Zones 2 and 3. It should address all sources of flooding, the future impact of climate change and take into account the findings of the SFRA, national guidance (currently PPS25) and good practice guidance.
- d. require development proposals to include Sustainable Urban Drainage Systems (SUDs) to manage and reduce surface water run-off unless is it can be

demonstrated that such measures are not feasible. SUDs techniques include: rainwater recycling; soak-aways; porous surfacing and features to retain water on site (ponds and green spaces). Development proposals will need to be in line with the Mayor of London's drainage hierarchy. They should also demonstrate that there is adequate public sewerage capacity to serve their development and deal with surface water run-off.

- e. require development proposals to demonstrate that there is no adverse impact on the quantity or quality of water resources and, where possible, they should seek to improve water quality
- f. encourage efficient water use and for water conservation measures to be included in development proposals

The Sustainable Drainage Hierarchy set out in Policy SI.13 of The London Plan GLA) London Plan (2011) [2] stipulates that developments should utilize Sustainable Drainage Systems (SuDS), unless there are particle reasons for not doing so; and should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close as possible in line with the following drainage hierarchy:

- Store rainwater for later use;
- Use infiltration techniques, such as porous surfaces in non-clay areas;
- Attenuate rainwater in ponds or open water features for gradual release;
- Attenuate rainwater by storing in tanks or sealed water features for gradual release;
- Discharge directly to a water course;
- Discharge rainwater directly to a surface water sewer/drain;
- Discharge to a combined sewer.
- Major developments must implement SuDS to enable a reduction in peak run-off to greenfield rates for a 1 in 100 event + CC;
- Major developments will be required to provide a sustainable drainage strategy that demonstrates how SuDS will be integrated to reduce peak flow volumes and rates in line with the requirements of this policy;

- All other developments must maximize attenuation levels, achieving greenfield rates where possible;
- All new car parks and hard standing areas should be rainwater permeable with no run-off directed in to the sewer network;
- All flat roofs should be green or brown roofs to contribute to reducing surface water run-off.

The well-established Sustainable Drainage Hierarchy set out in Policy SI.13 of the Greater London Authority's (GLA) London Plan (2021) [3] stipulates those developments should utilize Sustainable Drainage Systems (SuDS), unless there are particle reasons for not doing so; and should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close as possible in line with the following drainage hierarchy and there is a strong push to move towards green infrastructure away from grey features (impermeable).

7 Site Characteristics

7.1 Location and Area

The site is centred at national grid reference 520883, 169229 and has an area of $701m^2$.

It falls within the jurisdiction of the Royal Borough of Kingston upon Thames in terms of the planning consultation process on flood risk and surface water management. The LLFA is the Royal Borough of Kingston upon Thames.

Figure 1 provides the site location map and aerial imagery.

Figure 1: Site location map and aerial photo

7.2 Current Site and Surrounding Uses

The site is currently an undeveloped site, covered almost entirely by soft landscaping. It previously housed a building which was demolished approximately 8 years ago by the council. The surrounding area consists mainly of semi-detached residential dwellings

7.3 Site Topography

The mapping provided in <u>Appendix 2</u> shows a 1m DTM LiDAR that shows the elevations within the site.

The ground levels range from 13.24mAOD (centre) to 14.25mAOD (southeast). The site predominately forms a shallow depression situated at 13.24 – 13.40mAOD with elevated ground along the boundary lines.

7.4 Hydrology

The nearest hydrological features are an unnamed drainage feature and the Coomb Brook which are located 215m southwest and 315m to the east of the site respectively. A direct connection into a watercourse is not available.

7.5 Geology and Hydrogeology

BGS mapping showing the geological and hydrogeological characteristics of the site are presented in <u>Appendix 2</u>.

The BGS information indicates that the superficial deposits at the site consist of Kempton Park Gravel Member (Sand and Gravel), which are classified as a Secondary A superficial aquifer. Its permeability is considered to be poorly draining.

The bedrock comprises of the London Clay Formation (Clay and Silt), which is classified as an Unproductive bedrock aquifer. Its permeability is considered to be freely draining.

The infiltration potential map suggests that on site there are very significant constraints are indicated for infiltration SuDS. The maps also indicates that the groundwater table is less than 3mbgl.

The site does not lie within a groundwater Source Protection Zone.

7.6 Flood Risk

7.6.1 Fluvial Flood Risk

Fluvial and tidal risk is assessed using flooding maps produced by the Environment Agency (EA). These maps use available historic data and hydraulic modelling to define zones of flood risk. The maps allow a site to be defined in terms of its Flood Zone (e.g. 1, 2, 3a or 3b) and in terms of the overall flood risk (very low, low, medium or high).

The EA Flood Zones are defined as:

- Flood Zone 1: Less than a 1 in 1000 annual probability of fluvial and/or tidal flooding;
- Flood Zone 2: Between 1 in 100 and 1 in 1000 annual probability of fluvial flooding and/or between 1 in 200 and 1 in 1000 annual probability of tidal flooding;
- Flood Zone 3a: Greater than 1 in 100 annual probability of fluvial flooding and/or greater than 1 in 200 annual probability of tidal flooding;
- Flood Zone 3b: functional flood plain (definition specific to the LLFA). Less than a 1 in 20 annual probability of fluvial and/or tidal flooding.

The site is designated as being within Flood Zone 1 and is therefore is considered to have a low risk of flooding. This equates to a potential yearly risk of flooding of less than 0.1% Annual Expected Probability.

7.6.2 Surface Water Flood Risk

Surface water flooding occurs when high intensity rainfall leads to run-off which flows over the ground surface, causing ponding in low-lying areas when the precipitation rate or overland flow rate is greater than the rate of infiltration, or return into watercourses. Surface water flooding can be exacerbated when the underlying soil and geology is saturated (as a result of prolonged precipitation or a high-water table) or when the drainage network has insufficient capacity.

The chief mechanisms for flooding can be divided into the following categories:

- Runoff from higher topography the areas of greatest flood depths tend to be at the base of the steeper land;
- Localised surface water runoff within the central parts of the borough, surface water flooding tends to be a result of localised ponding of surface water;
- Sewer Flooding areas where extensive and deep surface water flooding is likely to be influenced by sewer flooding. Where the sewer network has reached capacity, and surcharged, this will exacerbate the flood risk in these areas.
- Low Lying Areas areas such as underpasses, subways and lowered roads beneath railway lines are more susceptible to surface water flooding;
- Railway Cuttings leading to internal ponding and transport disruption;
- Railway Embankments discrete surface water flooding locations along the up-stream side of the raised network rail embankments where water flows are interrupted and ponding can occur.

A map showing the site and the modelled prediction of surface water flood risk and depth provided by the EA is available in <u>Appendix 3</u>. This indicates that the site is at low risk of flooding.

The site remains dry during the 1 in 100-year pluvial scenario. In the 1 in 1000-year surface water flood event, a very minor section of the site and proposal witness flood depths up to 300mm.

7.6.3 Groundwater Flood Risk

Groundwater flooding occurs when water rises from the underlying aquifer at the location of a spring – where the underlying impermeable geology meets the ground surface. This tends to occur after much longer periods of intense precipitation, in often low-lying areas where the water table is likely to be at a shallow depth. Groundwater flooding is known to occur in areas underlain by principal aquifers, although increasingly it is also being associated with more localised floodplain sands and gravels.

Groundwater susceptibility mapping provided by BGS is presented in <u>Appendix 3</u>. This indicates that there is potential for groundwater flooding to occur at the surface.

7.7 Existing Drainage

There are no known existing drainage features on site.

A utility search was undertaken which identified Thames Water as the local sewage undertaker. The Asset map is available in <u>Appendix 4.</u>

Asset ID Asset Type		Location / Distance (m)	Manhole Cover Level (mAOD)	Manhole Invert Level (mAOD)	Depth (m)
8251	SW	10 m	13.49	12.51	0.99

Table 1: Asset Information

8 Hydrological Run-off Assessment

To minimise the impact of the new development on local flood risk, the NPPF requires that post development surface water run-off volumes and peak flow rates are improved upon those of the existing conditions. The following section provides an assessment of greenfield as well as pre- and post-development run-off rates.

8.1 Existing and Proposed Ground Cover

A summary of the existing and proposed site ground cover is shown below in Table 2 and Table 3.

Cround Cover	Existing Development Area		Proposed Development Area		Difference (m ²)
Ground Cover	m²	%	m²	%	Difference (m ²)
Buildings	0	0	195	28	195
Hard Standing	0	0	42	6	42
Soft landscaping	701	100	464	66	237
Total	701	100	701	100	

Table 2: Breakdown of Ground Cover in the Proposed Development

Table 3: Summary of Permeable and Impermeable Areas

	Impermeable Area		Permeable Area		Total Area
	m²	%	m ²	%	m ²
Existing Site	0	0	701	100	701
Proposed Site	237	34	464	66	701
Difference	237	34	-237	-34	

The introduction of the impermeable surfaces (buildings / hard standing) reduces the permeable area of the site by 237m².

9 SuDS Requirements

9.1 Peak Flow Control

With regard to peak flow control, the non-statutory technical standards for sustainable drainage systems state that:

S2 For greenfield developments, the peak runoff rate from the development to any highway drain, sewer or surface water body for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event should never exceed the peak greenfield runoff rate for the same event.

The London Plan SI.13 states that development proposals should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible. The London Plan Sustainable Design and Construction SPG (section 3.4.10) states that all developments on Greenfield sites must maintain

Greenfield runoff rates. On previously developed sites, runoff rates should not be more than three times the calculated Greenfield rate.

9.2 Volume Control Requirements

With regard to volume control, the non-statutory technical standards for sustainable drainage systems state that:

S4 Where reasonably practicable, for greenfield development, the runoff volume from the development to any highway drain, sewer or surface water body in the 1 in 100 year, 6 hour rainfall event should never exceed the greenfield runoff volume for the same event.

9.3 Run-off and Storage Calculations

The IH124 method and Modified Rational was applied to calculate the Greenfield and post-development run-off rates that include the 40% allowances for climate change. The full results are presented in <u>Appendix 5</u>. Table 4 below give a summary of the results.

	IH24 Greenfield (l/s)	IH24 Pre - Development (l/s)	IH24 Post - Development (l/s)
Qbar	0.17	0.17	0.24
1 in 1	0.14	0.14	0.20
1 in 30	0.39	0.39	0.55
1 in 100	0.54	0.54	0.76
1 in 100 + CC	0.80	0.80	1.12

Table 4: Calculation of post-development run-off rates for the site.

As the development is taking place on a previously developed site S2 (peak flow) and S4 apply.

Therefore, the proposal should aim to achieve the greenfield runoff rate of 0.8 l/s should be the aim for the post development during the 1 in 100 years critical storm plus climate change event.

Using the Microdrainage Quick storage calculator, the estimated storage is between 12.0 - 17.0m³ of attenuation.

Screenshots of the quick storage estimate and variables are available in <u>Appendix 5</u>.

10 Site Investigation

The site investigation works were carried out on the 10th and 11th of October 2023. A total of 4no. trial pits were excavated to depths of up to 1.4mbgl, for the purpose of establishing the underlying geological characteristics and undertaking infiltration testing in accordance with BRE DG 365. A map showing the locations of the trial pits is available in <u>Appendix 6</u>.

Additionally, 2no. boreholes (BH01 – BH02) were excavated to a maximum depth of 8mbgl using a dynamic windowless sampler rig for the purposes of undertaking soil contamination and geotechnical testing.

10.1 Ground Conditions Encountered

The investigation encountered ground conditions that were generally consistent with the published geological records of the area.

Made Ground consisting of clayey SILT with brick fragments was encountered to a maximum depth of 0.3mbgl. The Made Ground was generally underlain by dark brown CLAY with occasional pockets of Sand and Gravel to 3.2mbgl, in turn underlain by dark grey CLAY to 8mbgl, the maximum depth of the boreholes. A 1.0m thick band of gravelly SAND was encountered beneath the Made Ground in BH02.

10.2 Infiltration Testing

Two trial pits (TP01 and TP03) were found to have perched groundwater within them so infiltration testing was not undertaken within them.

Infiltration testing in general accordance with the methodology outlined in BRE Digest 365 was conducted in TP02 and TP04. The trial pits were rapidly filled with water from a 1.2m³ water bowser.

The trial pit was left to drain for a 24 – hour period. The water level was continuously monitored using a water level logger. The trial pits failed to drain by more than 50% of their volume within a 24-hour period. The testing was therefore abandoned and infiltration SuDS methods considered to be unsuitable for the site.

Full details including photos, graphs, location map and results of the infiltration testing are available in <u>Appendix 6.</u>

11 SuDS Options

As mentioned above, planning policies require that SuDS strategies consider source control (i.e. disposal of runoff within the plot boundary), followed by site control (site wide disposal) and then regional control (appropriate for larger development with strategic drainage infrastructure). They also require that that those methods that give the most benefits in terms of sustainability are prioritised for employment (generally known as the SuDS Hierarchy) as further described below.

11.1 SuDS Hierarchy

The SuDS Hierarchy sets out the preferred method of selecting which Sustainable Drainage System should be used. Generally, 'soft SuDS' such as ponds and swales are the preferred drainage systems as they mimic natural drainage and provide a number of benefits including attenuation of surface water flows and flow rates as well as pollution.

Smaller developments which may not have the physical room for pond and swales would need to consider other options. In these cases, preference should be given to infiltration systems. However, care should be taken if implementing infiltration systems near aquifer protection zones, close to buildings or structural foundations or in areas where soils may be polluted.

The SuDS hierarchy is summarised in Figure 2 below.

Most Sustainable	SUDS technique	Flood Reduction	Pollution Reduction	Landscape & Wildlife Benefit
	Living roofs	~	~	~
1	Basins and ponds - Constructed wetlands - Balancing ponds - Detention basins - Retention ponds			•
din 1-1	Filter strips and swales	~	~	~
	Infiltration devices - soakaways - infiltration trenches and basins	~	~	~
¥	Permeable surfaces and filter drains - gravelled areas - solid paving blocks - porous paviors	~	•	
Least Sustainable	Tanked systems - over-sized pipes/tanks - storms cells	~		

Figure 2: SuDS Hierarchy

11.2 Assessment of SuDS Options

An assessment was made of the suitability of a range of potential SuDS techniques that could be implemented as part of the development. The results of the assessment are summarised in <u>Appendix 7</u> and are further discussed below.

11.2.1 Living Roofs

As buildings will cover more than 28% (195m²) of the site, living roofs are considered to be a viable SuDS technique.

11.2.2 Rainwater Harvesting

The use of rainwater butts and/or harvesting tanks could be employed within each individual building and patios, although they would have a limited storage capacity and will be required to be an active system.

The rainwater harvesting calculator tool in Microdrainage was run to establish the suitability of installed an active rainwater harvesting system. The proposed rooftop is a suitable catchment area to provide an active rainwater harvesting system which is viable for storm water control. A print screen of the results is available in <u>Appendix 4</u>.

However, this option incurs significant additional and ongoing costs.

11.2.3 Basins, Ponds, Filter Strips, Rain Gardens and Swales Basins, ponds, filters strips and swales are considered suitable due to available space.

11.2.4 Infiltration Devices

Infiltration techniques should be given priority in any SuDS design as they deal with discharge on the site by returning water to the aquifer and subsequently rivers via baseflow.

However, care must be taken to ensure that contamination of groundwater is prevented. The Environment Agency publication 'Groundwater protection: Policy and practice (GP3) Section G, 2012', states that the Environment Agency will support sustainable drainage systems for new discharges to ground subject to an appropriate risk assessment to demonstrate that ground conditions are suitable and infiltration systems do not present an unacceptable risk of promoting mobilisation of contaminants or creating new pathways for contaminant migration.

Mapping provided by the BGS showing the infiltration potential of the site is presented in <u>Appendix 3</u>. The map indicates that there are significant constraints to infiltration SuDS in the area, potentially due to the underlying Clay bedrock and the potential for an elevated groundwater table.

As discussed in <u>Section 10</u>, infiltration SuDS are a not suitable method to use at the site due to the low infiltration rate calculated.

11.2.5 Permeable Surfaces and Filter Drains

Over 6% (42m²) of the development will consist of pathways and amenity space, which could be designed to be permeable, however infiltration has been shown to be poor, so the area will ultimately contribute towards the total positive catchment area.

11.2.6 Tanked Systems

A tanked system incorporating a hydro brake restricting flow to the sewer would be a viable option as infiltration is not suitable. However, this option is ranked as being the least sustainable in the SuDS hierarchy.

11.2.7 Summary of results of SuDS Options Assessment

A summary of the results of the SuDS Options Assessment is presented in Table 5 below. Full details of the options assessment along with descriptions of the SuDS options are presented in <u>Appendix 7</u> and <u>Appendix 8</u>.

Table 5: Summary of Results of SuDS Options Assessment

SuDS Technique	Potential Suitability	
Rainwater Harvesting	Suitable – Small scale	
Infiltration:	Unsuitable – Low Infiltration Rate	
Green/brown /blue roofs	Suitable	
Rain Gardens	Suitable	
Permeable Pavements / Surfaces	Suitable – Low Infiltration Rate	
Swales	Suitable – Limtied space	
Detention basin/ponds	Suitable – Limited space	
Storage tanks/ Geocellular storage	Suitable	
Oversized piping	Suitable	

12 SuDS Implementation

12.1 SuDS Constraints

The main constraint to SuDS on site is the poor infiltration rate observed.

12.2 Proposed SuDS

The uppermost rooftop (3rd floor rooftop) will support a green roof. Excess run-off from this structure and all other rooftops will discharge into two rain gardens, located to the north and south of the site.

All paved areas will be formed from permeable paving with any excess being discharged into the rain gardens or directly into geocellular storage which is described below.

2.2m³ of geocellular storage will be placed centrally. Any excess run-off will be discharged into the Thames Water surface water sewer via a Hydrobreak optimum flow control device which will limit the rate to 0.8 l/s.

The proposed SuDS is further detailed below. A detailed drainage layout is available in <u>Appendix 9</u>.

12.2.1 Green Roof

The proposed buildings cover an area of 195m² which will be fitted with a biodiverse green roofing system.

The green roofs will cover a total area of $65m^2$ across the upper most (3rd) floor rooftop. It will be formed from a Bauder Biointensive Green Roof (or similar) along with 40mm drainage boards, which provide roof level attenuation alongside the substrate and encourage flow.

The green roofs across the site will be constructed from vegetation ranging from sedum grasses and small flora. The vegetation will depend on the accessibility and depths and type of the underlying substrate. The substrates will be formed from a freely draining specifically designed roof growing medium. The depth of the substrate will vary depending on the growing medium it is intended to support (extensive, biodiverse or intensive).

Due to the size of the rooftop areas, location and extent of the development being undertaken on site, biodiverse extensive green roof systems are most suitable.

The substrate provides water retention and is typically lain onto a filter fleece, drainage board and a waterproof membrane. The filter prevents fines from being drained out of the substrate and into the drainage system. The drainage board provides further waterproofing, allowing for continuous drainage and increases the storage capacity of the green roof.

Table 6: Extensive Green Roofs

Building	Roof Type	Roof (m²)	Green Roof Coverage (m2)	Detailed	Roof Level Attenuation Cell(m ³)
1	Green/Brown	195	65	Biodiverse Extensive Green roof 150mm => Substrate & 40mm – Drainage Board	2.6

As well as allowing for storage, the substrate and modular planting trays will slow the runoff rate from the rooftop by up to 30 - 60 minutes, depending on the level of saturation before the rainfall event.

The downpipes from the green roof will discharge onto the rain gardens or permeable paving which are described in more detail below.

12.2.2 Rain Garden

2no. rain gardens, covering a areas of 30 and 25m², which will be formed in the north and south of the site which will accept all excess storm water before discharging into the geocellular attenuation.

Combined, the rain gardens will provide 4.0m³ attenuation within the sub-base (200 - 300mm thick) based on an average porosity of 0.3; the well-draining substrate (variable thickness) will have a porosity of 0.10 providing a further 2.2m³ of attenuation.

The surface will be formed from shallow depression forming a void filled with suitable planting and decorative stone, which will provide a further 8.5m³ of attenuation at ground level.

The rain gardens provide a total of 6.2m³ below the flood risk level and a further 8.5m³ at ground level (void area) which may be used during extreme events.

A rain garden is a shallow area of ground which receives run-off from roofs and other hard surfaces. A rain garden is planted with plants that can stand waterlogging for up to 48 hours at a time, but would typically drain completely within 12 - 24 hours. This would depend on the drainage capacity of the shallow soils, given onsite geology

was shown to have a poor infiltration rate, the excess will discharge into a flow control chamber.

A range of different plants can be included within the garden, as more droughttolerant plants will be suitable towards the edges. During a storm water fills the depression and then drains.

12.2.3 Permeable Block Paving – Block Paving

Permeable Paving (Marshalls Prior or similar) combines hardstanding with SuDS and works in a very different way to traditional pavement. It is designed to allow rainfall to percolate immediately through the surface near to where the raindrop lands so surface ponding is completely eradicated without the need for an additional channel drainage system.

The construction will consist of 80mm interlocking concrete blocks with jointing, with a 50mm underlying bedding layer with a 270mm sub-base consisting of a graded aggregate (Marshalls Priora Aggregates or similar) with a porosity of 0.30. This construction over 42m² will provide approximately 3.4m³ of interception, attenuation, and conveyance only.

This catchment will drain gradually into the geocellular storage attenuation discussed below.

12.2.4 Geocellular soakaway

The geocellular storage structures will be placed below the entrance pathway from Barton Close. The structure will cover a total area of $15m^2$ with a thickness of 0.4m. The geocellular storage crates (<u>AquaCell Drainage Crates</u> or similar) will have a porosity of 90% and will be stacked together to create the desired storage volume of 5.4m³.

12.2.5 Discharge Control Device

A hydro-brake flow control chamber will be used to limit the discharge from the site into the Thames Water surface water sewer to 0.8l/s.

Details and examples of product specification sheets are available in Appendix 8.

12.2.6 Drainage Modelling

Modelling using Causeway Flow was carried out to assess the performance of the proposed drainage system under a variety of modelled storm events. The designed system including the proposed attenuation storage, provides a total storage of 17.6m³ of storm water attenuation below the flood risk level.

Table 7: SuDS Summary Table

SuDS Technique	Details / Coverage	Attenuation (m ³)
Rainwater Harvesting	3 no. x 200litre	-
Green roofs	65m ²	2.6
Rain Gardens	55m ²	14.2
Permeable Pavements / Surfaces	100m ²	3.4
Geocellular storage	15m ²	5.4
Total		25.6

No flooding was indicated during any of the modelled scenarios, including the 1 in 100 year plus 40% climate change.

Table 8: Modelled Discharge Rates (Critical)

	Flow Modelled Post - Development (I/s)
1 in 1	0.6
1 in 30 + 40% CC	0.7
1 in 100 + 40% CC	0.7

Full results, drainage layout including the proposed discharge point and exceedance flows of this are available in <u>Appendix 9</u>.

12.2.7 Surface Water Discharge Points

As infiltration is not suitable and there are no nearby watercourses, run-off from the development will be conveyed via 150mm diameter lateral drains to the surface water sewer on Barton Close (Asset ID 8251).

12.2.8 Treatment of Run-off

Treatment of roof water runoff will be provided through the provision of trapped green roofs, permeable paving and rain gardens to intercept gross solids and

sediment, guidance will be provided to householders on appropriate maintenance requirements.

12.2.9 Exceedance Flows

Upon completion the site will be predominantly flat, with the a 0.3m fall, from the north to the south (i.e. from 13.5mAOD to 13.8mAOD respectively).

The elevation review of the LIDAR 1m DTM Mapping indicates that in the event of exceedance on the site, that overland flows would be contained within the proposed rain gardens which have purposefully designed to contained any exceedance flow on site away from the development.

It can be seen from the design proposals that the proposed system includes approximately 17.1m³ of storm water attenuation storage capacity, below the flood risk level and further 8.5m³ within the rain garden voids at ground level (not including pipes and manholes). In addition, a safety factor of 2 was applied to the drainage modelling, which gives a further degree of confidence that exceedance flows are unlikely to occur. Nonetheless, appropriate level design will be employed to ensure that flood waters are directed away from buildings in the unlikely event that an inundation of the proposed system results in overland flows.

A map displaying the exceedance flow is available in <u>Appendix 9</u>.

12.3 Maintenance and Adoption of SuDS

All SuDS features will be properly installed by competent persons. They will be maintained regularly to ensure that their design capacity and attenuation characteristics provide the required storage volume.

Landscaping and adjacent areas will be designed such that they do not cause soil, mulch and other materials to be washed onto the permeable surfaces and into drains causing clogging.

The maintenance will be carried out (under guarantee) by the drainage contractors responsible for installing it in the first 1 or 2 years of operation (dependent upon the contract specification) after which the responsibility will be transferred to the Property Management Company.

Owners of the properties/persons responsible for maintenance of SuDS components will be provided with operation and maintenance manuals which will include information such as:

- the location of SuDS components;
- an explanation of design intent and objective of the SuDS;
- the requirements for regular and occasional inspection and maintenance;
- visual indicators that may trigger maintenance.

An inspection checklist should be generated based on the maintenance strategy to facilitate consistent inspection of the condition of the system and as a method for recording inspections. Inspections should also be accompanied by photographic records to assist with the monitoring of the system. It is recommended that an annual maintenance report should be prepared and retained within the Operation and Maintenance Manual.

Regular maintenance of SuDS components is relatively straightforward with the main tasks consisting of:

- Regular visual inspections checking inlets are not blocked and verifying that clogging has not occurred;
- Litter and debris removal;
- Grass cutting;
- Preventive sweeping;
- Weeding and invasive plant control;
- Soli and stain removal.

Occasional maintenance activities to ensure the long-term performance of the SuDS features include:

$\overline{\ }$	Sediment removal
$\overline{\ }$	Vegetation and plant replacement

These simple measures will ensure that the storage capacity of the system is maintained and that the need for reconstruction and replacement of components is minimised.

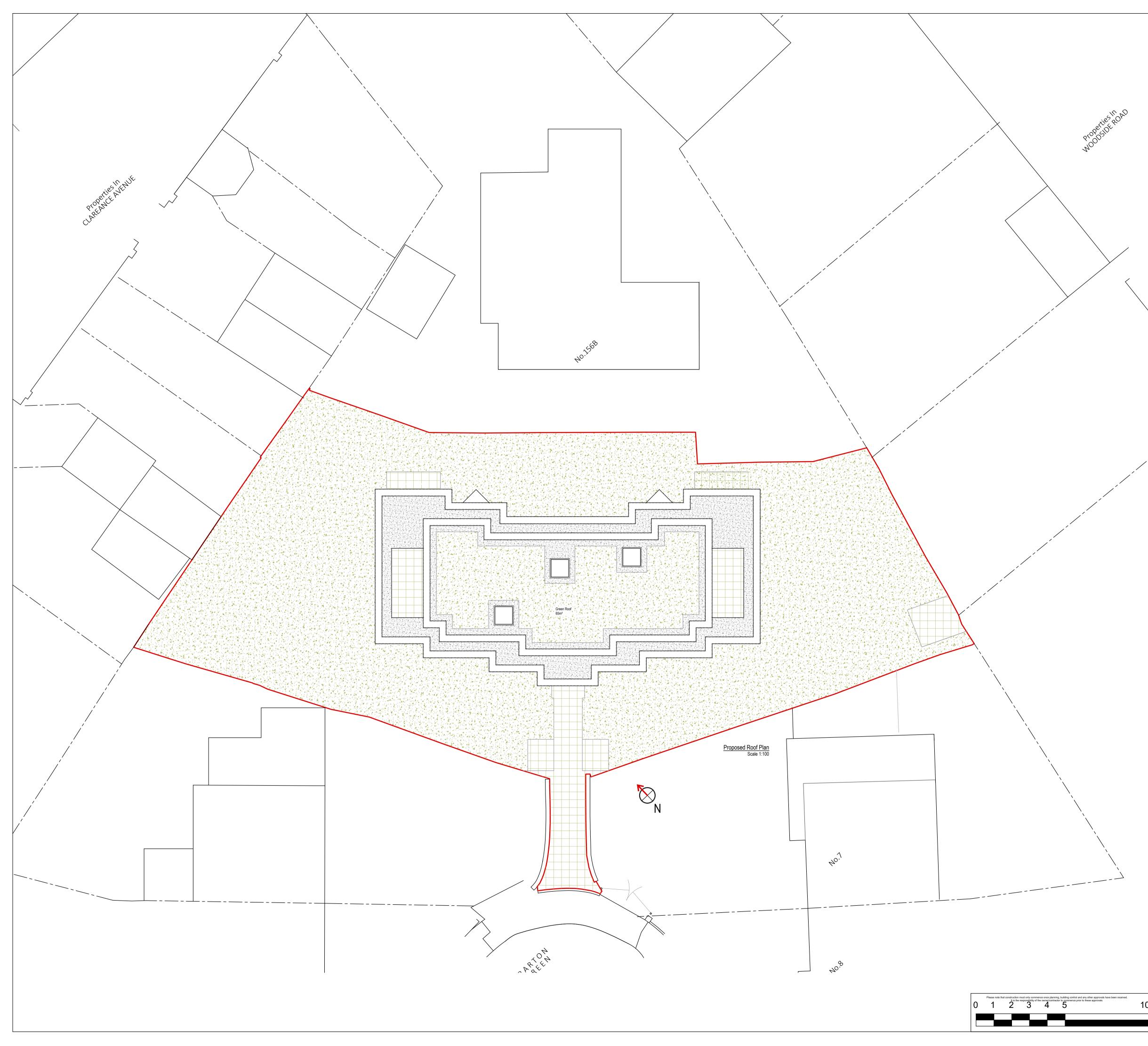
Further details on SuDS maintenance measures that will be employed at the site can be found in <u>Appendix 10</u>.

13 Timetable for Implementation

An indicative timetable for implementation of the SuDS and other elements of the development are outlined in <u>Appendix 11</u>.

14 Conclusion and Recommendations

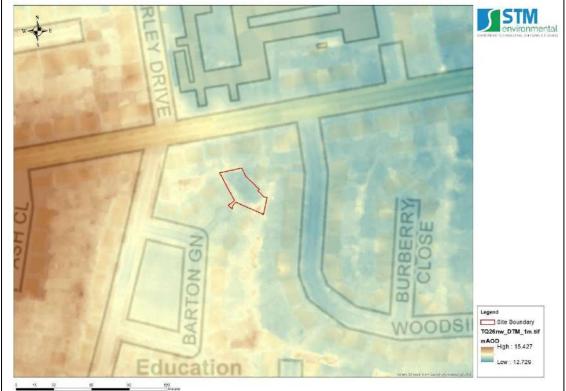
With the proposed SuDS mitigation measures in place, it is considered that the proposed development will reduce local flood risk and enhance the local environment and will therefore be in compliance with the LLFA's current planning policy and the NPPF.


15 References

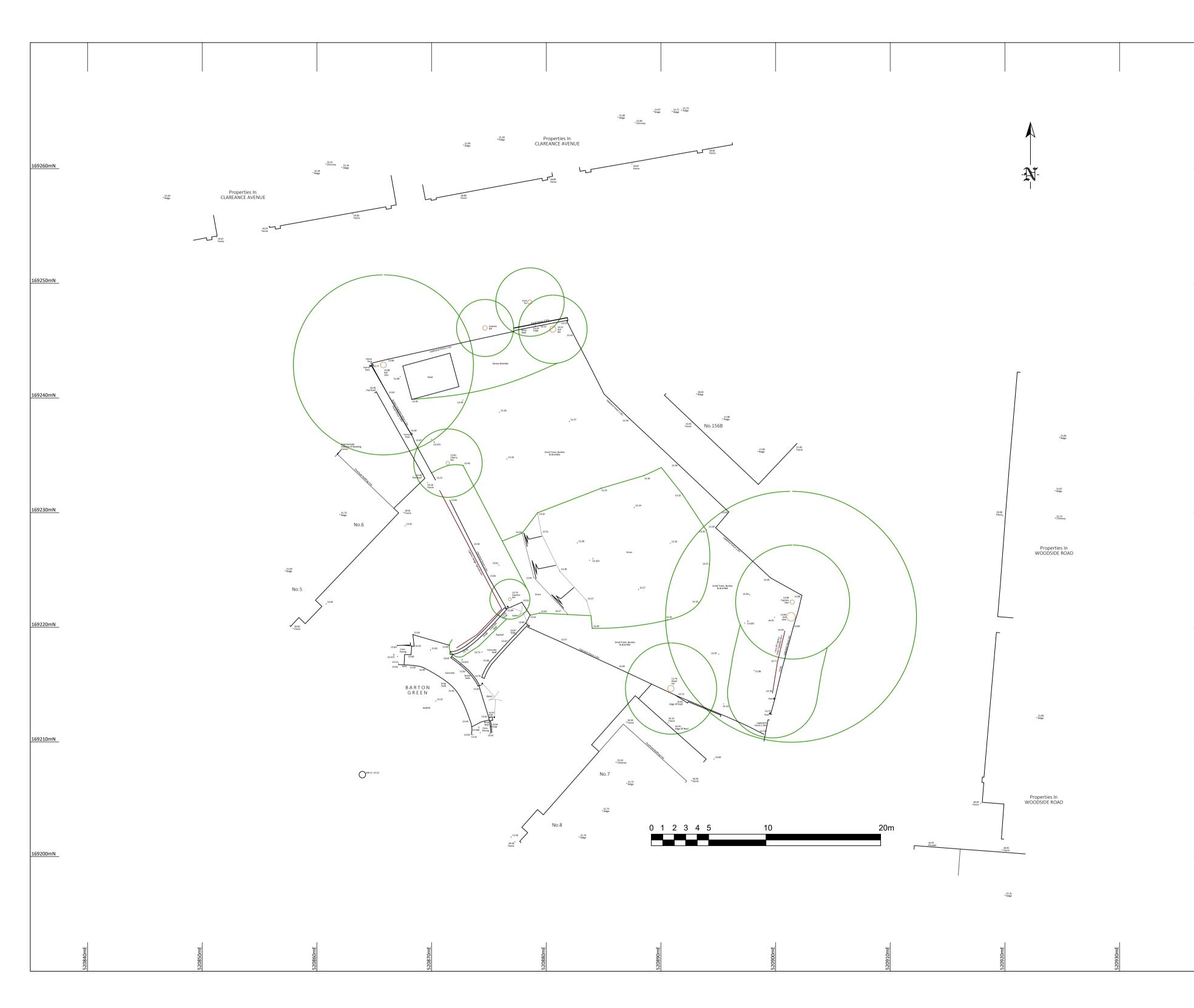
- 1. Communities and Local Government National Planning Policy Framework NPPF, 2019.
- 2. The London Plan The Spatial Development Strategy for Greater London March 2021
- 3. CIRIA, Defra, Environment Agency UK SuDS Manual, 2015.
- 4. Core Strategy Royal Borough of Kingston Upon Thames London Sustainable Drainage Action Plan, 2012.

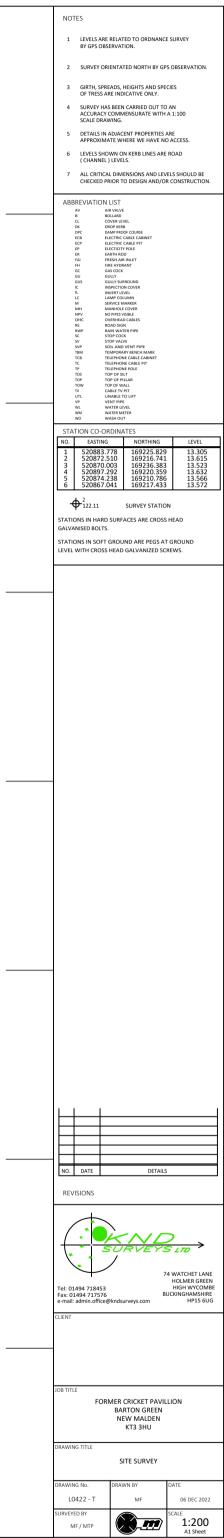
16 Appendices

16.1 Appendix 1 – Development Plans


Γ	IMPORTANT GENERAL NOTE The specification is to be read in conjunction with the plans/section details, and	Revision	Date		Descri	iption	
	Intergetuation is to be taud in Conjunction with the provided. All work is to be carried out to the Local Authority Planning and Building Regulations Approval, and the Codes of Practice and British Standards as necessary. All dimensions, levels, sizes, positions and locations of particulars as indicated an drawings are to be verified by the appointed Contractor on site prior to engaging in works. Any discrepancies must be reported to the Architect/Surveyor/Engulations, and accomposible persons/ismmediately. The Contractor is responsible for ensuring compliance with the CDM Regulations, and appropriate Health & Safety on site precordions. The Client/Building Owner must obtain any necessary PARTY WALL AGREEMENTS, prior to engaging in the works on site.		13.08	.23	Desig	n Changes	
		Paper Size		Scale 1:100		B-12 Develop	ment
)m	PARTY WALL ACT 1996 OWNER/S MUST ENSURE ALL			Revision		Architectural consultancy	ment
	PARTY WALL AGREEMENTS ARE IN PLACE BEFORE ANY BUILDING WORKS ARE TO COMMENCE		\sum	Jun-2 Drawn By Cf	3 ecked By	Barton Green, New Malden, Surrey, KT3 3HU	Proposed Roof Plan
	WORKS ARE TO COMMENCE			-+-		Status	BG-AP4-111

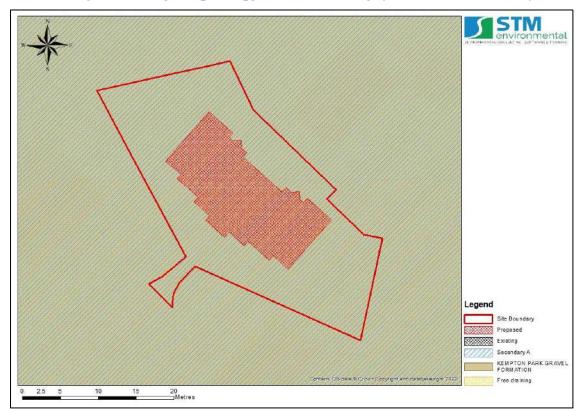
16.2 Appendix 2– Site Topography and Drainage Characteristics

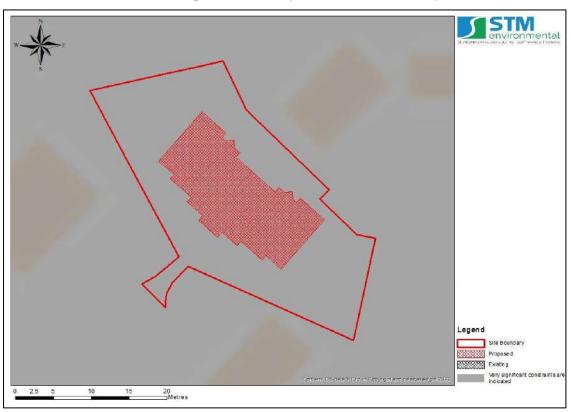

16.2.1 LIDAR Mapping showing Site Topography - (Source: OS 2017)




16.2.2 Topographic Survey

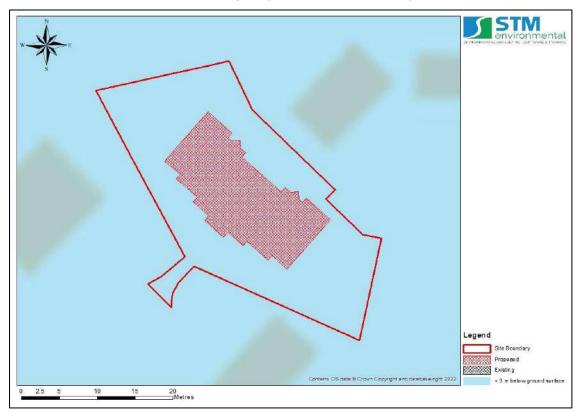
PDF to follow this page.



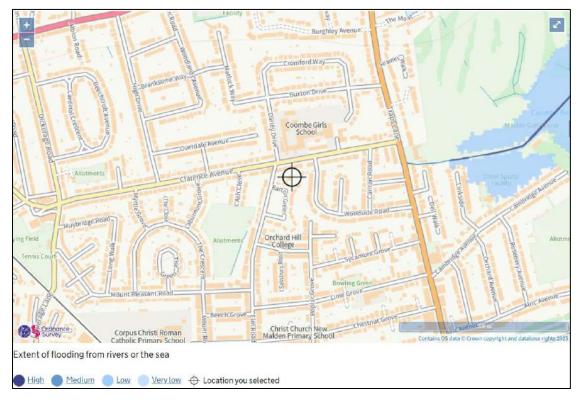


16.2.3 Bedrock Hydrogeology and Permeability (Source: BGS, 2016)

16.2.4 Superficial Hydrogeology & Permeability (Source: BGS, 2016)

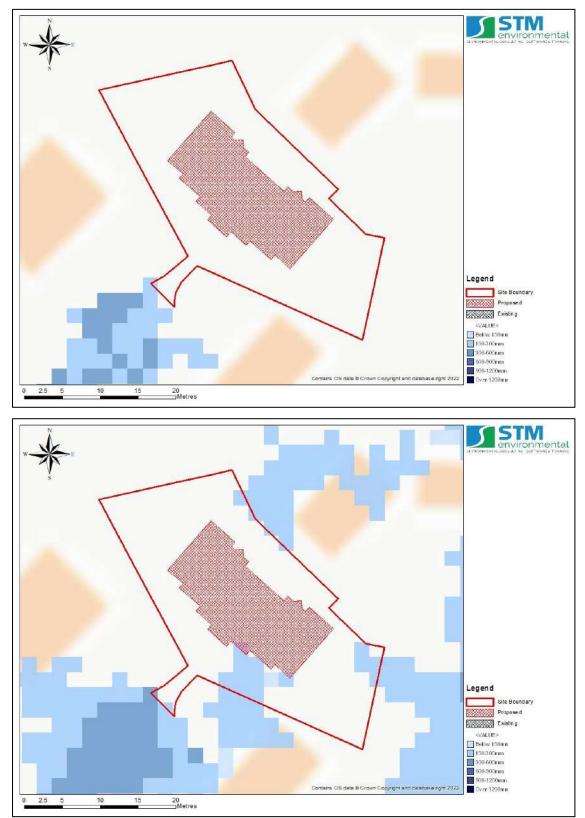


16.2.5 Infiltration Drainage Potential (Source: BGS, 2016)

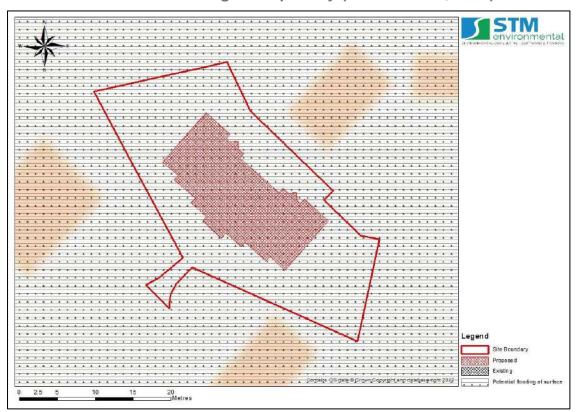

16.2.6 Groundwater Table Depth (Source: BGS 2016)

16.3 Appendix 3 – Flood Risk Mapping

16.3.1 Long Term Fluvial Flood Risk Map (EA)



16.3.2 Long Term Pluvial Flood Risk Map (EA)



16.3.3 Surface water flood depth during the 1 in 100 and 1 in 1000 year rainfall return periods (Source: EA, 2016).

16.3.4 Groundwater flooding susceptibility (Source: BGS, 2016).

16.4 Appendix 4 – Thames Water / Asset Information

16.4.1 Asset Map

Asset location search

STM Environmental 32Gould Road TWICKENHAM TW2 6RS

Search address supplied

1 Barton Green New Malden KT3 3HU

Your reference

Barton Green

Our reference

ALS/ALS Standard/2023_4907093

Search date

3 November 2023

Notification of Price Changes

From 1st April 2023 Thames water Property Searches will be increasing the prices of its CON29DW, CommercialDW Drainage & Water Enquiries and Asset Location Searches. Historically costs would rise in line with RPI but as this currently sits at 14.2%, we are capping it at 10%.

Customers will be emailed with the new prices by January 1st 2023.

Any orders received with a higher payment prior to the 1st April 2023 will be non-refundable. For further details on the price increase please visit our website at <u>www.thameswater-propertysearches.co.uk</u>

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

0800 009 4540

Search address supplied: 1, Barton Green, New Malden, KT3 3HU

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0800 009 4540, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: <u>searches@thameswater.co.uk</u> Web: <u>www.thameswater-propertysearches.co.uk</u>

Asset location search

Waste Water Services

Please provide a copy extract from the public sewer map.

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

Enclosed is a map showing the approximate positions of our water mains and associated apparatus. Please note that records are not kept of the positions of individual domestic supplies.

For your information, there will be a pressure of at least 10m head at the outside stop valve. If you would like to know the static pressure, please contact our Customer Centre on 0800 316 9800. The Customer Centre can also arrange for a full flow and pressure test to be carried out for a fee.

<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4WW T 0800 009 4540 E <u>searches@thameswater.co.uk</u> I <u>www.thameswater-propertysearches.co.uk</u>

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

Payment for this Search

A charge will be added to your suppliers account.

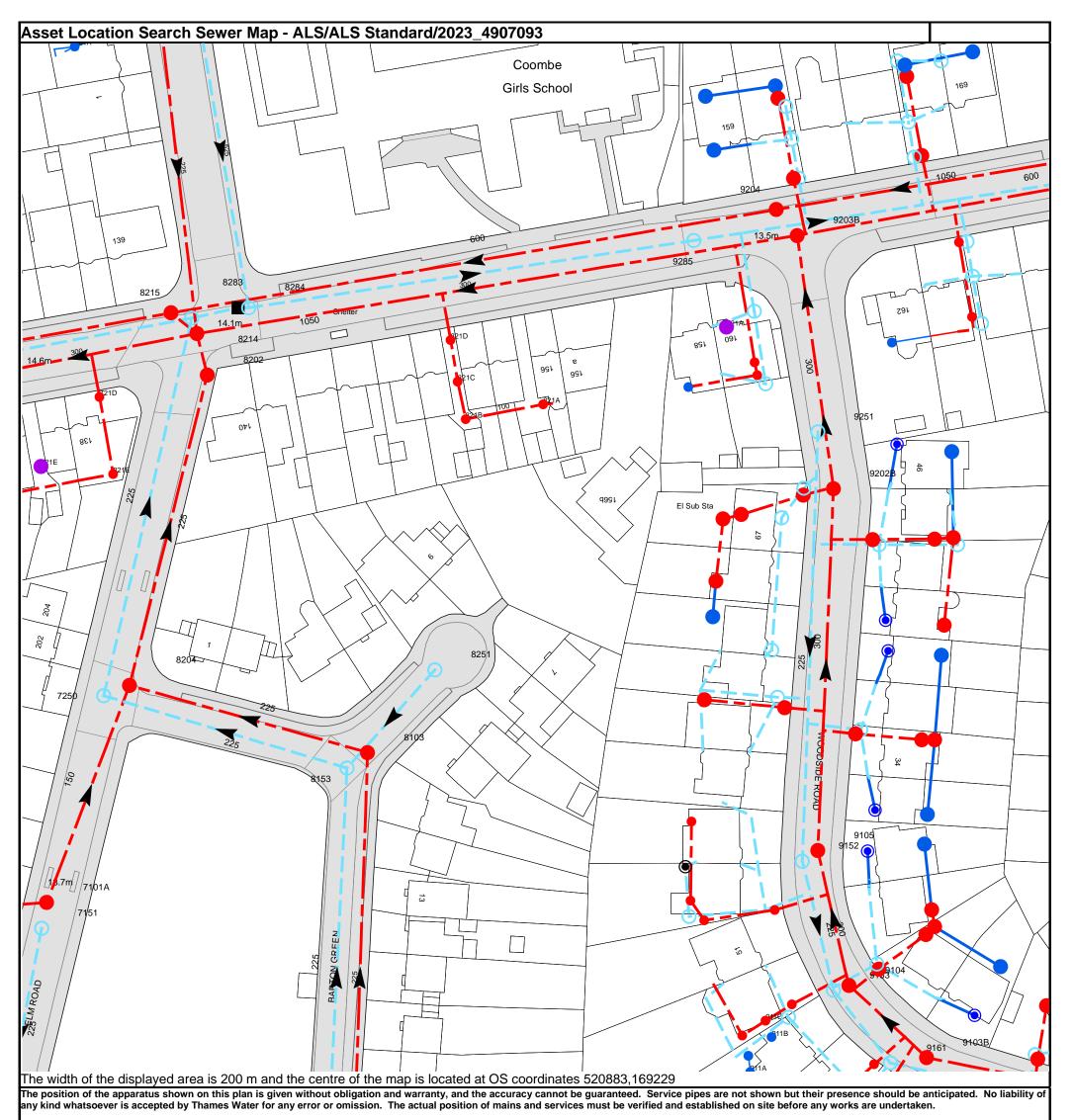
Further contacts:

Waste Water queries

Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB


Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

Clean Water queries

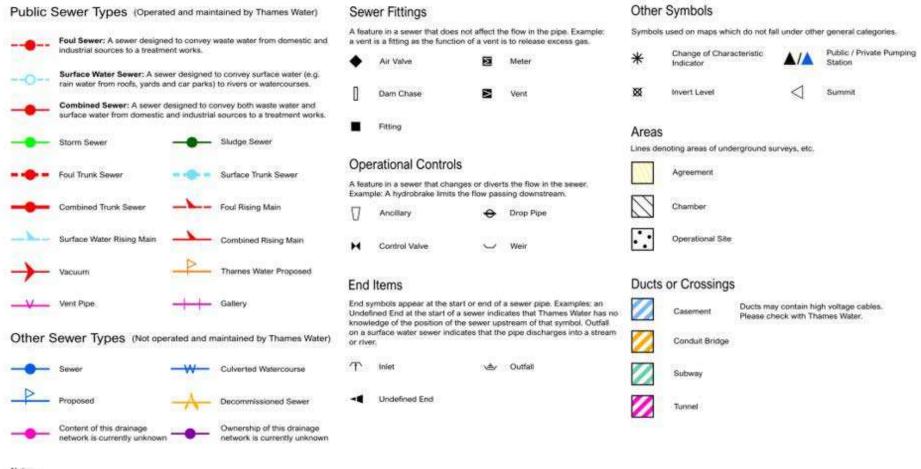
Should you require any advice concerning clean water operational issues or clean water connections, please contact:

Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

Based on the Ordnance Survey Map (2020) with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved

<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4W, T 0800 009 4540 E <u>searches@thameswater.co.uk</u> I <u>www.thameswater-propertysearches.co.uk</u>

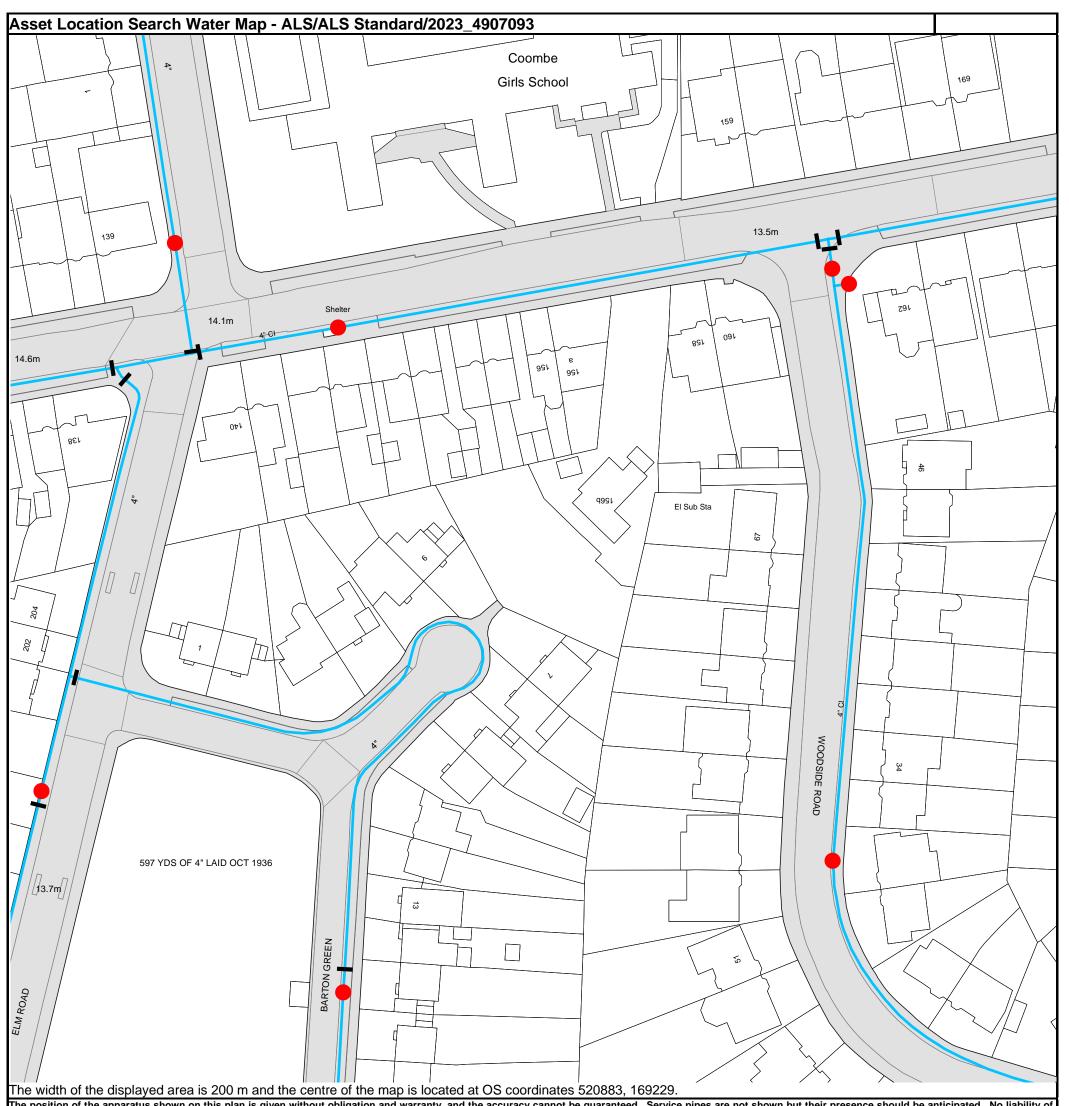

P2CC Na Na Na 22DB na 0.82 0.82 22DB na 0.82 0.82 22DB na 0.82 0.82 22DB na 0.82 0.82 22DB na na na 22DB na na na 22DB na na na 22DB na na na 23DC na na na	Manhole Reference	Manhole Cover Level	Manhole Invert Level
228.n/an/an/a620.n/an/a620.n/an/a620.13.460.82920.413.440.62920.413.440.62920.4n/an/a920.4n/an/a920.4n/an/a920.4n/an/a920.4n/an/a920.4n/an/a920.4n/an/a930.5n/an/a930.6n/an/a930.7n/an/a930.8n/an/a930.8n/an/a930.9n/an/a			
22An/an/an/a24CHn/a0.322503n/a0.32250413.340.32251413.340.532524n/a0.632524n/a0.632525n/a0.632526n/a0.642526n/a0.642527n/a0.642528n/a0.642528n/a0.642529n/a0.642526n/a0.642530n/a0.642530n/a0.642530n/a0.642530n/a0.642530n/a0.642530n/a0.642531n/a0.642532n/a0.6425331n/a0.6425332n/a0.64253333n/a0.6425344n/a0.6425355n/a0.6425365n/a0.6425376n/a0.6425476n/a0.6425477n/a0.6425478n/a0.6425479n/a0.6425479n/a0.6425479n/a0.6425479n/a0.6425479n/a0.6425479n/a0.6425479n/a0.6425491n/a0.6425491n/a0.6425491n/a			
S2DBN/BN/BN/BS2DB1340.8.8S2DB1340.8.8S2DBN/B0.4S2DBN/B0.4S2DBN/B0.4S2DBN/B0.4S2DBN/B0.4S2DBN/B0.4S2DDN/B0.4S2DDN/B0.4S3DDN/B0.4 <th></th> <td></td> <td></td>			
2028n/nn/n2020813.436.532020913.436.532020913.340.402020913.440.402020910.00.402021910.00.402022910.00.402021910.00.402022910.00.402021910.00.402021910.00.402021910.00.402021910.00.402021910.00.402021910.00.402021910.00.402021910.00.402021910.00.402021910.00.402021910.00.402021910.0 </th <th></th> <th></th> <th></th>			
202813.468.82202413.345.59203413.470.48203413.480.48203410.4010.4203610.400.4203010.5110.40203010.5110.4 <trr>2030<</trr>			
33AAn/an/an/a6281n/an/a8346n/an/a8346n/an/a8366n/an/a8360n/an/a8360n/an/a8360n/an/a8360n/an/a8361n/an/a8362n/an/a8363n/an/a8364n/an/a8365n/an/a8366n/an/a8367n/an/a8368n/an/a8369n/an/a8369n/an/a8361n/an/a8362n/an/a8363n/an/a8364n/an/a8365n/an/a8366n/an/a8367n/an/a8368n/an/a8369n/an/a8369n/an/a8369n/an/a8369n/an/a8369n/an/a8369n/an/a8369n/an/a8369n/an/a8369n/an/a8369n/an/a8369n/an/a8369n/an/a8369n/an/a8369n/an/a8369n/an/a8369n/an/a8369n/an/a <t< th=""><th></th><th></th><th></th></t<>			
221n/an/a2334En/an/a234Cn/an/a344Cn/an/a345Cn/an/a346Cn/an/a347Cn/an/a348Cn/an/a344Cn/an/a344Cn/an/a345Cn/an/a345Cn/an/a345Cn/an/a345Cn/an/a345Cn/an/a345Cn/an/a345C </th <th>9204</th> <th>13.34</th> <th></th>	9204	13.34	
SHEn/an/a032CAn/an/a032CAn/an/a033CBn/an/a033CCn/an/a033CGn/an/a032CGn/an/a032CG<	93HA	n/a	n/a
S2CAn/an/aS3GEn/an/aS3GEn/an/aS3GCn/an/aS2GC </th <th></th> <th></th> <th></th>			
936En/an/an/a93RDn/an/an/a92RDn/an/an/a92RDn/an/an/a92RDn/an/an/a92RDn/an/an/a92RDn/an/an/a92RDn/an/an/a92RDn/an/an/a92RDn/an/an/a92RDn/an/an/a92RDn/an/an/a92RDn/an/an/a92RDn/an/an/a92RDn/an/an/a92RDn/an/an/a			
SSDDn/an/aSSDDn/an/aSSDDn/an/aSSDCn/an/aSSGCn/an/aSSGCn/an/aSSGCn/an/aSSGCn/an/aSSGCn/an/aSSGCn/an/aSSGCn/an/aSSGCn/an/aSSGCn/an/aSSGCn/an/aSSGCn/an/aSSGCn/an/aSGCC </th <th></th> <th></th> <th></th>			
SHDNnNnSJGC <th></th> <th></th> <th></th>			
B3CCNnNnB3CS </th <th></th> <th></th> <th></th>			
B3BBnánáná33GCnáná33GAnáná33GAnáná33GAnáná33GAnáná33GAnáná33GAnáná33GAnáná33GAnáná33GAnáná33GAnáná33GAnáná33GAnáná33GAnáná33GAnáná33GAnáná33GAnáná33GAnáná33GAnáná32GEnáná <tr< th=""><th></th><th></th><th></th></tr<>			
930Gnánáná333Lnánáná333Lnánáná333Lnánáná333Lnánáná333Lnánáná333Lnánáná333Lnánáná333Lnánáná333Lnánáná923Lnánáná923Lnánáná924Lnánáná925Lnánáná <tr< th=""><th></th><th></th><th></th></tr<>			
B36ANaNaNa33G1NaNaNa33G1NaNaNa33HCNaNaNa33HCNaNaNa33HCNaNaNa33HCNaNaNa34HNaNaNa32G2NaNaNa32G4NaNaNa32G5NaNaNa32G6NaNaNa32G7NaNaNa			
SSGJnánáSSGInáanáaSSGEnáanáaSSGEnáanáaSSGEnáanáaSSGEnáanáaS			
33Glnéanéanéa33HCnéanéanéa33GHnéanéanéa31GJnéanéanéa31GJnéanéanéa31GJnéanéanéa31GJnéanéanéa32GEnéanéanéa			
B3HCn/an/a93HBn/an/a93GHn/an/a93GJn/an/a93GJn/an/a93GJn/an/a93GJn/an/a93GJn/an/a93GJn/an/a93GJn/an/a93GJn/an/a93GJn/an/a93Gn/an/a <trr>93Gn/an/a</trr>			
B3BHnéanéanéa93GH*néanéa94GJnéanéa94GJnéanéa92GJnéanéa92GJnéanéa92GJnéanéa92GJnéanéa92GJnéanéa92GJnéanéa92GJnéanéa92JFnéanéa92JFnéanéa92FFnéanéa92EJnéanéa<			
B30Hn'an'a91GJn'an'a92GEn'an'a92GEn'an'a92GEn'an'a92GEn'an'a92GEn'an'a92GEn'an'a92GEn'an'a92GEn'an'a92GEn'an'a92GEn'an'a92FEn'an'a92FEn'an'a92FEn'an'a92GEn'an'a92GEn'an'a92GEn'an'a92GEn'an'a92GEn'an'a92GEn'an'a92GEn'an'a92GEn'an'a92GEn'an'a92GEn'an'a92GEn'an'a92GEn'an'a92GEn'an'a92GEn'an'a92GEn'an'a92GEn'an'a92GEn'an'a92GEn'an'a92GEn'an'a91GEn'an'a91GEn'an'a91GEn'an'a91GEn'an'a91GEn'an'a91GEn'an'a91GEn'an'a91GEn'an'a91GEn'an'a91GEn'an'a91GE </th <th></th> <th></th> <th></th>			
PIGJNaNa122GINaNa122GENaNa122GENaNa122ANaNa122CNaNa122LNaNa122			
P2CJn'an'aP2CGn'an'aP2CCn'an'aS2CC </th <th></th> <th></th> <th></th>			
SPECENaNaNaS2ECNaNaNaS2AANaNaNaS2LNaNaNaS2LENaNaNaS2LENaNaNaS2LENaNaNaS2ETNaNaNaS2ETNaNaNaS2ELNaNaNa <tr< th=""><th></th><th></th><th></th></tr<>			
SPECn'an'aS2An'an'aS2An'an'aS2Cn'an'aS2LEn'an'aS2LEn'an'aS2Fn'an'aS2EJn'an'aS2EJn'an'aS2EJn'an'aS2EJn'an'aS2EJn'an'aS2EJn'an'aS2EJn'an'aS2EJn'an'aS2EJn'an'aS2EJn'an'aS2EJn'an'aS2EJn'an'aS2EJn'an'aS2EJn'an'aS2EJn'an'aS2EJn'an'aS2ES<			
92.Ananana92.FCNaNa92.FENaNa92.FFNaNa92.FFNaNa92.FENaNa92.FENaNa92.FLNaNa93.FFNaNa93.FFNaNa94.FFNaNa94.FFNaNa94.FFNaNa94.FFNaNa94.FFNaNa94.FFNaNa <tr< th=""><th>92EC</th><th>n/a</th><th>n/a</th></tr<>	92EC	n/a	n/a
92.JEn/an/an/a92.JFn/an/a92.FFn/an/a92.FFn/an/a92.FEn/an/a92.L1n/an/a92.L2n/an/a92.L3n/an/a92.L4n/an/a92.L5n/an/a92.L6n/an/a92.L7n/an/a92.L8n/an/a92.L9n/an/a92.L9n/an/a92.L8n/an/a92.L8n/an/a92.19n/an/a92.10n/an/a92.11n/an/a92.12n/an/a92.13n/an/a92.14n/an/a92.15n/an/a92.16n/an/a92.17n/an/a92.18n/an/a92.19n/an/a92.20n/an/a92.21n/an/a92.22n/an/a92.23n/an/a92.24n/an/a92.25n/an/a92.26n/an/a92.27n/an/a92.28n/an/a92.29n/an/a92.29n/an/a92.20n/an/a92.21n/an/a92.22n/an/a92.23n/an/a<			n/a
S2FFn'an'an'aS2FFn'an'an'aS2EJn'an'an'aS2EJn'an'an'aS2EIn'an'an'aS2EIn'an'an'aS2EIn'an'an'aS2EIn'an'an'aS2EIn'an'an'aS2LBn'an'an'aS2LBn'an'an'aS2LB13.1310.07S2CCn'an'aS2CCn'an'aS2EG <th></th> <th></th> <th></th>			
92FFn/an/an/a92FEn/an/an/a92EIn/an/an/a92EIn/an/an/a92EIn/an/an/a92LACn/an/an/a92LBn/an/an/a92LBn/an/an/a92LBn/an/an/a92LBn/an/an/a92LBn/an/an/a92LCn/an/an/a92LCn/an/an/a92LCn/an/an/a92LCn/an/an/a92LCn/an/an/a92LCn/an/an/a92LCn/an/an/a92LCn/an/an/a92LCn/an/an/a92LCn/an/an/a92LCn/an/an/a91CLn/an/an/a91CLn/an/an/a91CLn/an/an/a91CLn/an/an/a91CLn/an/an/a91CLn/an/an/a91CLn/an/an/a91CLn/an/an/a91CLn/an/an/a91CLn/an/an/a91CLn/an/an/a91CLn/an/an/a91CLn/an/a91CL <t< th=""><th></th><th></th><th></th></t<>			
SPEFEn/an/an/aS2EJn/an/aS2EHn/an/aS2EHn/an/aS2EHn/an/aS2EHn/an/aS2EHn/an/aS2LBn/an/aS2LBn/an/aS2LBn/an/aS2LBn/an/aS2LB13.1310.07S2CCn/an/aS2EGn/an/a </th <th></th> <th></th> <th></th>			
S2EJNaNaS2EINaNaS2LGNaNaS2LGNaNaS2LBNaNaS2LBNaNaS2LHNaNaS2LBNaNaS2LBNaNaS2LBNaNaS2LBNaNaS2D2B13.1310.07S2D2B13.1512.16S2EGNaNa			
S2EIN/aN/aS2EIN/aN/aS2LBN/aN/aS2LBN/aN/aS2LBN/aN/aS2LBN/aN/aS2LIIN/aN/aS2LIIN/aN/aS2LIIN/aN/aS2L			
92/HNaNa92/GNaNa92/BNaNa92/BNaNa92/HNaNa92/ANaNa92/ANaNa92/ANaNa92/ANaNa92/ANaNa92/ANaNa92/ANaNa92/ANaNa92/ANaNa92/BNaNa92/BNaNa92/BNaNa92/CNaNa92/CNaNa92/CNaNa92/CNaNa92/CNaNa92/CNaNa91/C </th <th></th> <th></th> <th></th>			
32.0Gr/ar/ar/a32.JLr/ar/a31.GLr/ar/a31.GLr/ar/a31.GLr/ar/a31.GLr/ar/a31.GLr/ar/a31.GLr/ar/a31.GLr/ar/a31.GLr/ar/a31.GLr/ar/a31.GLr/ar/a31.GLr/ar/a<			
92.Bn/an/a92.Hn/an/a92.Hn/an/a92.0231.3310.0792.02n/an/a92.02n/an/a92.02n/an/a92.02n/an/a92.0313.1512.1692.04n/an/a92.05n/an/a92.06n/an/a92.07n/an/a92.08n/an/a92.09n/an/a92.01n/an/a92.02n/an/a92.03n/an/a92.04n/an/a92.05n/an/a92.06n/an/a91.07n/an/a91.01n/an/a91.02n/an/a91.0313.1811.7991.0513.1910.3891.0513.1910.3891.06n/an/a91.07n/an/a91.08n/an/a91.09n/an/a91.01n/an/a91.02n/an/a91.03n/an/a91.04n/an/a91.05n/an/a91.05n/an/a91.06n/an/a91.07n/an/a91.08n/an/a91.09n/an/a91.01n/an/a91.02n/an/a			
92JHn/an/a92JLn/a10.079202B13.1310.0792JCn/an/a92EGn/an/a925113.1512.1692BAn/an/a92BGn/an/a92BGn/an/a92CEn/an/a92BGn/an/a92CEn/an/a92CEn/an/a92CEn/an/a92CEn/an/a92CEn/an/a92CEn/an/a92CEn/an/a92CEn/an/a92CEn/an/a92CEn/an/a92CEn/an/a92CEn/an/a92CEn/an/a92CEn/an/a91CFn/an/a91CFn/an/a91CFn/an/a91CFn/an/a91EEn/an/a91ECn/an/a91BCn/an/a91BCn/an/a91BCn/an/a91BCn/an/a91CBn/an/a91CBn/an/a91CBn/an/a91CBn/an/a91CFn/an/a91CFn/an/a91BCn/an/a91CFn/an/a91BCn/an/a <tr< th=""><th></th><th></th><th></th></tr<>			
92.01n/an/a92.0213.1310.0792.02n/an/a92.63n/an/a92.64n/an/a92.65n/an/a92.66n/an/a92.67n/an/a92.68n/an/a92.69n/an/a92.60n/an/a92.61n/an/a92.62n/an/a92.74n/an/a92.74n/an/a91.74n/an/a91.74n/an/a91.75n/an/a91.76n/an/a91.77n/an/a91.7813.1811.7991.79n/an/a91.76n/an/a91.77n/an/a91.78n/an/a91.79n/an/a91.79n/an/a91.79n/an/a91.79n/an/a91.79n/an/a91.79n/an/a91.79n/an/a91.79n/an/a91.79n/an/a91.79n/an/a91.79n/an/a91.79n/an/a91.79n/an/a91.79n/an/a91.79n/an/a91.79n/an/a91.79n/an/a91.79n/an/a9			
9202B13.1310.0792JCn/an/a92EGn/an/a925113.1512.1692BAn/an/a92BFn/an/a92BGn/an/a92BGn/an/a92C1n/an/a92C2n/an/a92C3n/an/a92C4n/an/a92C5n/an/a92C6n/an/a92C7n/an/a92C7n/an/a91C1n/an/a91C2n/an/a91C4n/an/a91C5n/an/a915213.1811.79910513.1910.389157n/an/a9158n/an/a9159n/an/a9156n/an/a9157n/an/a9158n/an/a9159n/an/a9169n/an/a9176n/an/a9180n/an/a9181n/an/a9182n/an/a918313.2411.74919410.5313.41910513.4110.729108n/an/a9141n/an/a915313.2411.749164n/an/a9175n/an/a9182n/an/a918313.41<			
92LCn/an/a92EGn/an/a925113.1512.1692BAn/an/a92BFn/an/a92BCn/an/a92BCn/an/a92BCn/an/a92BCn/an/a92CEn/an/a92CEn/an/a92CJn/an/a92CJn/an/a91CHn/an/a91CHn/an/a91CFn/an/a91CFn/an/a91ECn/an/a91EEn/an/a91ECn/an/a91ECn/an/a91ECn/an/a91ECn/an/a91ECn/an/a91ECn/an/a91BDn/an/a91BDn/an/a91BDn/an/a91BDn/an/a91BDn/an/a91BDn/an/a91BDn/an/a91BDn/an/a91BDn/an/a91BCn/an/a91BDn/an/a91BDn/an/a91BDn/an/a91BCn/an/a91BDn/an/a91BDn/an/a91BDn/an/a91BDn/an/a91BDn/an/a91			
92EGnanana925113.1512.1692BAnana92BFnana92BGnana92CEnana92CInana92CInana92CInana91CInana91CInana91CFnana91CFnana91CFnana91CGnana91S213.1811.79915213.1910.3891EEnana91EEnana91EBnana91EBnana91BDnana91BDnana91BCnana91BDnana91BCnana91BDnana91BDnana91BDnana91BDnana91BDnana91BDnana91BDnana91BDnana91BDnana91BDnana91BDnana91BDnana91BAnana91BAnana91BDnana91Bnana91Bnana91Bnana91Bnana91Bnana			
9251 13.15 12.16 928A n/a n/a 928F n/a n/a 928G n/a n/a 9270 n/a n/a 9271 n/a n/a 9161 n/a n/a 9176 n/a n/a 9176 n/a n/a 9175 13.18 11.79 9182 13.19 10.38 9184 n/a n/a 9185 n/a n/a 9186 n/a n/a 9187 n/a n/a 9188 n/a n/a 9180 n/a n/a 9181 n/a n/a 9182 <			
928F n/a n/a n/a 928G n/a n/a n/a 921A n/a n/a n/a 921CI n/a n/a n/a 91CI n/a n/a n/a 91FF n/a n/a n/a 9152 13.18 11.79 9 9165 n/a n/a n/a 917F n/a n/a n/a 9162 n/a n/a n/a 9176 n/a n/a n/a 9182 n/a n/a n/a 9184 n/a n/a n/a 9185 n/a n/a n/a 9186 n/a n/a n/a 9171 n/a n			
928G n/a n/a 927E n/a n/a 927A n/a n/a 927C n/a n/a 917F n/a n/a 917F n/a n/a 917F n/a n/a 91752 13.18 11.79 9105 13.19 10.38 917F n/a n/a 918C n/a n/a 918C n/a n/a 918C n/a n/a 918C n/a n/a 918D n/a n/a 911A n/a n/a 911B n/a n/a 911C n/a n/a 911A n/a n/a 911B	92BA	n/a	n/a
92CE n/a n/a 921A n/a n/a 92CJ n/a n/a 92CJ n/a n/a 91CI n/a n/a 91CH n/a n/a 91CG n/a n/a 91CF n/a n/a 91CG n/a n/a 91CG n/a n/a 91CF n/a n/a 91EC n/a n/a 91EC n/a n/a 91EF n/a n/a 91BD n/a n/a 911A n/a n/a 911B n/a n/a 911C n/a n/a 911B n/a n/a 911C n/a			
921A n/a n/a 92CJ n/a n/a 91C1 n/a n/a 91C6 n/a n/a 9152 13.18 11.79 9105 13.19 10.38 91E2 n/a n/a 91E4 n/a n/a 91E5 n/a n/a 91E6 n/a n/a 91E7 n/a n/a 91E8 n/a n/a 91E9 n/a n/a 91E0 n/a n/a 91E1 n/a n/a 91E2 n/a n/a 91B0 n/a n/a 911A n/a n/a 911A n/a n/a 911A n			
92CJ n/a n/a 91C1 n/a n/a 91C4 n/a n/a 91C4 n/a n/a 91C4 n/a n/a 91C5 13.18 11.79 9105 13.19 10.38 9105 13.19 10.38 9107 n/a n/a 9112 n/a n/a 9113 n/a n/a 9114 n/a n/a 9115 n/a n/a 9116 n/a n/a 9117 n/a n/a 9118 n/a n/a 9119 n/a n/a 91118 n/a n/a 91119			
91Cl n/a n/a 91CH n/a n/a 91FF n/a n/a 91FF n/a n/a 91CG n/a n/a 9152 13.18 11.79 9105 13.19 10.38 91CF n/a n/a 91EE n/a n/a 91EC n/a n/a 91EC n/a n/a 91EC n/a n/a 91EC n/a n/a 91BC n/a n/a 91BC n/a n/a 91BC n/a n/a 91BC n/a n/a 91CB n			
91CH n/a n/a 91FF n/a n/a 91CG n/a n/a 91CG 13.18 11.79 9105 13.19 10.38 9105 13.19 10.38 9105 13.19 n/a 9106 n/a n/a 917 n/a n/a 9161 n/a n/a 917 n/a n/a 9180 n/a n/a 9181 n/a n/a 9182 n/a n/a 9184 n/a n/a 9185 n/a n/a 9186 n/a n/a 9117 n/a n/a 9118 n/a n/a 9119 n/a n/a 9110 n/a n/a 91118 n/a n/a 9119 n/a n/a 91104 13.24 11.74 91118			
91FF n/a n/a 91CG n/a n/a 9152 13.18 11.79 9105 13.19 10.38 91CF n/a n/a 91CF n/a n/a 91EE n/a n/a 91EE n/a n/a 91EB n/a n/a 91EC n/a n/a 91EC n/a n/a 91EC n/a n/a 91EC n/a n/a 91BC n/a n/a 91BC n/a n/a 911A n/a n/a 911C n/a n/a 911B n/a n/a 911C n/a n/a 911B n			
91CG n/a n/a 9152 13.18 11.79 9105 13.19 10.38 91CF n/a n/a 91EE n/a n/a 91E n/a n/a 91E n/a n/a 91EA n/a n/a 91EB n/a n/a 91EF n/a n/a 91EF n/a n/a 91BD n/a n/a 91BC n/a n/a 911A n/a n/a 911C n/a n/a 911B n/a n/a 911B n/a n/a 911C n/a n/a 9114 13.24 10.53 9115 n/a n/a 9161 <td< th=""><th></th><th></th><th></th></td<>			
9152 13.18 11.79 9105 13.19 10.38 910F n/a n/a 910F n/a n/a 91EE n/a n/a 91EA n/a n/a 91EA n/a n/a 91EF n/a n/a 91EC n/a n/a 91EC n/a n/a 91EF n/a n/a 91EC n/a n/a 91EC n/a n/a 91EF n/a n/a 91EC n/a n/a 91EF n/a n/a 91EF n/a n/a 91BC n/a n/a 91BC n/a n/a 9111 n/a n/a 9112 n/a n/a 9114 n/a n/a 9115 n/a n/a 9116 n/a n/a 9116 n			
9105 13,19 10.38 910F n/a n/a 91EE n/a n/a 91EE n/a n/a 91EA n/a n/a 91EB n/a n/a 91EC n/a n/a 91EC n/a n/a 91EF n/a n/a 91BD n/a n/a 91BD n/a n/a 91BD n/a n/a 91BD n/a n/a 911C n/a n/a 911B n/a n/a 911C n/a n/a 911B n/a n/a 911C n/a n/a 911B n/a n/a 911B n/a n/a 911C n/a n/a 911B n/a n/a 911B n/a n/a 911B n/a n/a 911C.J n/a			
91CF n/a n/a 91EA n/a n/a 91EA n/a n/a 91EB n/a n/a 91EC n/a n/a 91EF n/a n/a 91EF n/a n/a 91EC n/a n/a 91EC n/a n/a 91BC n/a n/a 91BD n/a n/a 911A n/a n/a 911B n/a n/a 911C n/a n/a 911B n/a n/a 911B n/a n/a 9153 13.24 11.74 9104 13.23 10.53 9105 n/a n/a 9106 n/a n/a 9107 n			
91EE n/a n/a 91EB n/a n/a 91EB n/a n/a 91EC n/a n/a 91BD n/a n/a 91BD n/a n/a 911C n/a n/a 9111 n/a n/a 9112 n/a n/a 9118 n/a n/a 9118 n/a n/a 9118 n/a n/a 9153 13.24 11.74 9104 13.23 10.53 9155 n/a n/a 9161 13.44 11.53 9103B 13.41 10.72 9175			
91EA n/a n/a 91EC n/a n/a 91EC n/a n/a 91EF n/a n/a 91BD n/a n/a 91BC n/a n/a 91BD n/a n/a 91BD n/a n/a 911A n/a n/a 911B n/a n/a 911A n/a n/a 911A n/a n/a 911B n/a n/a 911B n/a n/a 911B n/a n/a 911B n/a n/a 9153 13.24 11.74 9104 13.23 10.53 9105 n/a n/a 9106 n/a n/a 9107 n/a n/a 9108 13.41 10.72 9108 n/a n/a 917 n/a n/a 918A <t< th=""><th></th><th></th><th></th></t<>			
91EB n/a n/a 91EF n/a n/a 91EF n/a n/a 91BC n/a n/a 91BC n/a n/a 91BC n/a n/a 91BC n/a n/a 911A n/a n/a 911C n/a n/a 911B n/a n/a 911C n/a n/a 911C n/a n/a 911B n/a n/a 911C n/a n/a 911B n/a n/a 911C n/a n/a 911B n/a n/a 911D n/a n/a 911DE n/a n/a 911B n/a n/a 911B n/a			
91EC n/a n/a 91EF n/a n/a 91BC n/a n/a 91BD n/a n/a 91BD n/a n/a 91BD n/a n/a 911A n/a n/a 911A n/a n/a 911B n/a n/a 911G n/a n/a 911D n/a n/a 911D n/a n/a 911B n/a n/a 911B n/a			
91EF n/a n/a 91BC n/a n/a 91BD n/a n/a 91BD n/a n/a 911A n/a n/a 911A n/a n/a 911A n/a n/a 911B n/a n/a 911C n/a n/a 911B n/a 11.74 9104 13.23 10.53 911BG n/a n/a 911C n/a n/a 911D n/a n/a 911DE n/a n/a 911B 13.41 10.72 911B n/a n/a 911B n/a n/a 911B n/a n/a 911B n/a n/a 911B <	91EC	n/a	n/a
91BD n/a n/a 911A n/a n/a 911A n/a n/a 911C n/a n/a 911B n/a n/a 911B n/a n/a 911B n/a n/a 911B n/a n/a 911H n/a n/a 9153 13.23 10.53 918G n/a n/a 9104 13.23 10.53 918G n/a n/a 9101 13.23 10.53 918G n/a n/a 9102 n/a n/a 9103 n/a n/a 9161 13.44 10.72 9103 n/a n/a 9140 n/a n/a 9141 13.41 10.72 91910 n/a n/a 9141 n/a n/a 9142 n/a n/a 9143			
911A n/a n/a 911C n/a n/a 911B n/a n/a 911H n/a n/a 911B n/a n/a 911H n/a n/a 911B n/a n/a 911B 13.24 11.74 9104 13.23 10.53 911B n/a n/a 911C n/a n/a 911C n/a n/a 911DE n/a n/a 911DE n/a 10.72 911DB n/a n/a 911AC n/a n/a 914AB n/a n/a 914B n/a n/a 914B n/a n/a 914B			
911C n/a n/a 911B n/a n/a 91CB n/a n/a 91HI n/a n/a 91HI n/a n/a 91HI n/a n/a 91HI n/a n/a 911H n/a n/a 914 13.24 11.74 9104 13.23 10.53 91BG n/a n/a 91DE n/a n/a 91DE n/a n/a 9161 13.44 11.53 9103B 13.41 10.72 91DB n/a n/a 91AC n/a n/a 91AC n/a n/a 91AC n/a n/a 91FE n/a n/a 91FB n/a n/a 91FA n/a n/a 91FA n/a n/a 9153 13.57 12.33 8103			
911B n/a n/a 91CB n/a n/a 91H n/a n/a 91HI n/a n/a 91HI n/a n/a 91HI n/a n/a 9153 13.24 11.74 9104 13.23 10.53 91BG n/a n/a 91DE n/a n/a 91DE n/a n/a 91CJ n/a n/a 91CJ n/a n/a 91BG n/a n/a 91CJ n/a n/a 91B n/a n/a 91BB n/a n/a 91A n/a n/a 91FB n/a<			
91CB n/a n/a 91Hi n/a n/a 9153 13.24 11.74 9104 13.23 10.53 91BG n/a n/a 91DE n/a n/a 91DE n/a n/a 91DE n/a n/a 9161 13.44 11.53 910B 13.41 10.72 91DB n/a n/a 91AC n/a n/a 91BA n/a 10.72 91DB n/a n/a 91AC n/a n/a 91BA n/a n/a 91BA n/a n/a 91FB n/a n/a 91FE n/a n/a 91FA n/a n/a 91FA n/a n/a 91FA 13.57 12.33 8103 13.51 11.29 7250 13.92 12.12 8			
91Hi n/a n/a 9153 13.24 11.74 9104 13.23 10.53 91BG n/a n/a 91DE n/a n/a 91CJ n/a n/a 9161 13.44 11.53 9103B 13.41 10.72 910B n/a n/a 910B n/a n/a 91BA 13.41 10.72 91DB n/a n/a 91BA n/a n/a 91BA n/a n/a 91BB n/a n/a 91BB n/a n/a 91BB n/a n/a 91BB n/a n/a 91BA n/a n/a 91BA n/a n/a 91AC n/a n/a 91FE n/a n/a 91FB n/a n/a 91FA n/a n/a 8153			
9153 13.24 11.74 9104 13.23 10.53 91BG n/a n/a 91DE n/a n/a 91CJ n/a n/a 9161 13.44 11.53 9103B 13.41 10.72 91DB n/a n/a 91BA n/a n/a 91BB 13.41 10.72 91DB n/a n/a 91BA n/a n/a 91BA n/a n/a 91BB n/a n/a 91FB n/a n/a 91FF n/a n/a 91FB n/a n/a 91FA n/a 12.33 8103 13.57 12.33 8103			
9104 13.23 10.53 91BG n/a n/a 91DE n/a n/a 9161 13.44 11.53 9103B 13.41 10.72 91DB n/a n/a 91AB 13.41 10.72 91DB n/a n/a 91AB n/a n/a 91AC n/a n/a 91AB n/a n/a 91AC n/a n/a 91AB n/a n/a 91FE n/a n/a 91FB n/a n/a 91FB n/a n/a 91FA n/a n/a 8153 13.57 12.33 8103 13.51 11.29 7250 </th <th></th> <th></th> <th></th>			
91BG n/a n/a 91DE n/a n/a 91CJ 13.41 11.53 9103B 13.41 10.72 91DB n/a n/a 91AC n/a n/a 91AC n/a n/a 91AC n/a n/a 91AB n/a n/a 91FE n/a n/a 91FJ n/a n/a 91FA n/a n/a 8153			
91DE n/a n/a 91CJ n/a n/a 9161 13.44 11.53 9103B 13.41 10.72 91DB n/a n/a 91BA n/a n/a 91AC n/a n/a 91AB n/a n/a 91AC n/a n/a 91AB n/a n/a 91AB n/a n/a 91AC n/a n/a 91AB n/a n/a 91AC n/a n/a 91AB n/a n/a 91AC n/a n/a 91AB n/a n/a 91FB n/a n/a 91FB n/a n/a 91FA n/a n/a 8153 13.57 12.33 8103 13.51 11.29 7250 13.92 12.12 8204 13.78 11.04 8251 </th <th></th> <th></th> <th></th>			
91CJ n/a n/a 9161 13.44 11.53 9103B 13.41 10.72 91DB n/a n/a 91BA n/a n/a 91AC n/a n/a 91AB n/a n/a 91AC n/a n/a 91AB n/a n/a 91FE n/a n/a 91FB n/a n/a 91FA n/a n/a 8153 13.57 12.33 8103 13.51 11.29 7250 13.92 12.12 8204 13.78 11.04 8251 </th <th></th> <th></th> <th></th>			
916113.4411.539103B13.4110.7291DBn/an/a91BAn/an/a91ACn/an/a91ABn/an/a91FEn/an/a91FJn/an/a91FJn/an/a91FJ10.7291FA10.7291FA10.7291FA10.7291FA10.7291FA10.7291FA13.57810313.51725013.92820413.78825113.49821En/a		n/a	n/a
9103B13.4110.7291DBn/an/a91BAn/an/a91BAn/an/a91ACn/an/a91ABn/an/a91FEn/an/a91FJn/an/a91FBn/an/a91FAn/an/a815313.5712.33810313.5111.29725013.9212.12820413.7811.04825113.4912.51821En/an/a	9161	13.44	11.53
91BA n/a n/a 91AC n/a n/a 91AB n/a n/a 91FB n/a n/a 91FB n/a n/a 91FA n/a n/a 91FA n/a n/a 8153 13.57 12.33 8103 13.51 11.29 7250 13.92 12.12 8204 13.78 11.04 8251 13.49 12.51 821E n/a n/a	9103B	13.41	10.72
91AC n/a n/a 91AB n/a n/a 91FE n/a n/a 91FJ n/a n/a 91FB n/a n/a 91FA n/a n/a 8153 13.57 12.33 8103 13.51 11.29 7250 13.92 12.12 8204 13.78 11.04 8251 13.49 12.51 821E n/a n/a			
91ABn/an/a91FEn/an/a91FJn/an/a91FBn/an/a91FAn/an/a815313.5712.33810313.5111.29725013.9212.12820413.7811.04825113.4912.51821En/an/a			
91FE n/a n/a 91FJ n/a n/a 91FB n/a n/a 91FA n/a n/a 8153 13.57 12.33 8103 13.51 11.29 7250 13.92 12.12 8204 13.78 11.04 8251 13.49 12.51 821E n/a n/a			
91FJ n/a n/a 91FB n/a n/a 91FA n/a n/a 8153 13.57 12.33 8103 13.51 11.29 7250 13.92 12.12 8204 13.78 11.04 8251 13.49 12.51 821E n/a n/a			
91FBn/an/a91FAn/an/a815313.5712.33810313.5111.29725013.9212.12820413.7811.04825113.4912.51821En/an/a			
91FAn/an/a815313.5712.33810313.5111.29725013.9212.12820413.7811.04825113.4912.51821En/an/a			
815313.5712.33810313.5111.29725013.9212.12820413.7811.04825113.4912.51821En/an/a			
810313.5111.29725013.9212.12820413.7811.04825113.4912.51821En/an/a			
725013.9212.12820413.7811.04825113.4912.51821En/an/a			
820413.7811.04825113.4912.51821En/an/a			
8251 13.49 12.51 821E n/a n/a			
821E n/a n/a			
	821B	n/a	n/a

Manhole Reference	Manhole Cover Level	Manhole Invert Level		
821A	n/a	n/a		
721D	n/a	n/a		
92BE	n/a	n/a		
821C	n/a	n/a		
8202	14.19	10.58		
821D	n/a	n/a		
8214	14.15	9.62		
8283	14.16	11.12		
8215	14.14	9.16		
8284	14.08	11.11		
9285	13.5	11.08		
731A	n/a	n/a		
7151	13.76	12.89		
7101A	13.73	11.97		
721E	n/a	n/a		
The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.				

<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4W, T 0800 009 4540 E <u>searches@thameswater.co.uk</u> I <u>www.thameswater-propertysearches.co.uk</u>

Asset Location Search - Sewer Key

Notes:


1) All levels associated with the plans are to Ordnance Datum Newlyn.

2) All measurements on the plan are metric.

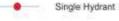
Arrows (on gravity fed servers) or flecks (on rising mains) indicate the direction of flow.
 Most private pipes are not shown on our plans, as in the past, this information has not been recorded.

5) 'na' or '0' on a manhole indicates that data is unavailable.

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in millimeters. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology, please contact Property Searches on 0800 009 4540.

Based on the Ordnance Survey Map (2020) with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, T 0800 009 4540 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk



Asset Location Search - Water Key

Valves General PurposeValve Air Valve Pressure Control/Valve X CustomerValve

Hydrants

Meters

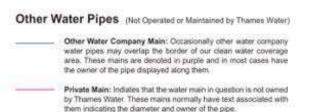
Meter

End Items

Symbol indicating what happens at the end of $\hat{\circ}$ a water main.

Blank Flange Capped End Emptying Pit Undefined End Manifold Customer Supply

Operational Sites



Other Symbols

Data Logger

Casement: Ducts may contain high voltage cables. Please check with Thames Water.

Payment Terms and Conditions

All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

- 1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
- 2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
- 3. All invoices are strictly due for payment within 14 days of the date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service or will be held to be invalid.
- 4. Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
- 5. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
- 6. A charge may be made at the discretion of the company for increased administration costs.

A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 0800 316 9800.

If you are unhappy with our service, you can speak to your original goods or customer service provider. If you are still not satisfied with the outcome provided, we will refer the matter to a Senior Manager for resolution who will provide you with a response.

If you are still dissatisfied with our final response, and in certain circumstances such as you are buying a residential property or commercial property within certain parameters, The Property Ombudsman will investigate your case and give an independent view. The Ombudsman can award compensation of up to $\pounds 25,000$ to you if he finds that you have suffered actual financial loss and/or aggravation, distress, or inconvenience because of your search not keeping to the Code. Further information can be obtained by visiting www.tpos.co.uk or by sending an email to admin@tpos.co.uk.

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 0300 034 2222 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4AJ.

Ways to pay your bill

Credit Card	BACS Payment	Telephone Banking
Please Call 0800 009 4540 quoting your invoice number starting CBA or ADS	Account number 90478703 Sort code 60-00-01 A remittance advice must be sent to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW. or email ps.billing@thameswater.co.uk	By calling your bank and quoting: Account number 90478703 Sort code 60-00-01 and your invoice number

Thames Water Utilities Ltd Registered in England & Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.

16.5 Appendix 5 – Run-Off Rate and Storage Calculations

16.5.1 UK SuDS

www.uksuas.com	Storage estimation	τοο
----------------	--------------------	-----

51.40919° N

0.26328° W

Calculated by:	Matthew Ashdown	Site Detai	ls		
Site name:	Barton Green	Latitude:			
Site location:	KT3 3HU	Longitude:			
This is an estimation of the storage volume requirements that are needed to meet normal					

normal best practice criteria in line with Environment Agency guidance "Rainfall runoff

management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and

the non-statutory standards for SuDS (Defra, 2015). It is not to be used for detailed design

of drainage systems. It is recommended that hydraulic modelling software is used to calculate

volume requirements and design details before finalising the design of the drainage scheme.

3

Reference:	1010185972
Date:	Nov 06 2023 10:56

Methodology

Total site area (ha):	0.0701	esti	IH124	
Significant public open space (ha):	0.0464	Q _{BAR} estimation method:	Calculate from SPR and SAA	
Area positively drained (ha):	0.0237	SPR estimation method:	Calculate from S	SOIL type
Impermeable area (ha):	0.0237	Soil		
Percentage of drained area that is impermeable (%):	100	characteristics	Default	Edited
Impervious area drained via infiltration (ha):	0	SOIL type:	2	2
Return period for infiltration system design (year):	10	SPR:	0.5	0.0
Impervious area drained to rainwater harvesting (ha):	0	Hydrological characteristics	Default	Edited
Return period for rainwater harvesting system (year):	10	Rainfall 100 yrs 6 hrs:		63
Compliance factor for rainwater harvesting system (%):	66	Rainfall 100 yrs 12 hrs:		101.64
Net site area for storage volume design (ha):	0.02	FEH / FSR conversion facto	r. ^{1.32}	1.32
Net impermable area for storage volume design	0.02	SAAR (mm):	604	604
(ha):	30	M5-60 Rainfall Depth (mm):	20	20
Pervious area contribution to runoff (%):		'r' Ratio M5-60/M5-2 day:	0.4	0.4
* where rainwater harvesting or infiltration has be managing surface water runoff such that the effe		Hydological region:	6	6
impermeable area is less than 50% of the 'area po draineW, the second set of the second set of the second second second second second second second second second	_	Growth curve factor 1 year	0.85	0.85
flow rates file and the estimates of the flow rates file and the estimates of the flow rates file and the estimates of the flow rates for the flow	CBAR GING OTH	OK, I AGRE Growth curve factor 10 yea	1.62 MORE	INF.@2
By clicking the Accept button, you a	agree to u	s doing Growth curve factor 30 yea	ar: 2.3	2.3
so. Design criteria				

Climate change allowance factor:	1.4	Growth curve factor 100 years:	3.19	3.19
Urban creep allowance factor:	1.1	Q _{BAR} for total site area (I/s):	0.11	0.11
Volume control approach	Use long term storage	Q _{BAR} for net site area (I/s):	0.04	0.04
Interception rainfall depth (mm):	5			
Minimum flow rate (l/s):	2			

Site discharge			Estimated storage volumes		
rates	Default	Edited	Volumee	Default	Edited
1 in 1 year (l/s):	2	2	Attenuation storage 1/100 years (m³):	5	5
1 in 30 years (l/s):	2	2	Long term storage 1/100 years (m³):	0	0
1 in 100 year (l/s):	2	2	Total storage 1/100 years (m³):	5	5

This report was produced using the storage estimation tool developed by HRWallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at http://uksuds.com/terms-and-conditions.htm. The outputs from this tool have been used to estimate storage volume requirements. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of these data in the design or operational characteristics of any drainage scheme.

We use cookies on this site to enhance your user experience

By clicking the Accept button, you agree to us doing so.

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by: Matthew Ashdown			Site Details			
Site name:	Barton Gree	n		Latitude:	51.40920° N	
Site location:	КТЗ ЗНО			Longitude:	0.2633° W	
This is an estimatior practice criteria in I for developments", statutory standards may be the basis for sites.	ine with Environn SC030219 (2013) , s for SuDS (Defra,	nent Agency guid the SuDS Manual 2015). This inform	ance "Rainfall ru C753 (Ciria, 2015 nation on greenf	noff management Reference:) and the non- ield runoff rates	1491892127 Nov 06 2023 10:54	
Runoff esti	mation ap	oproach	IH124			
Site charac	teristics			Notes		
Total site area (h	n a): ^{0.1}			(1) Is Q _{BAR} < 2.0 I/s/	/ha?	
Methodolo	gv			(1) 13 QBAR < 2.01/3/		
Q _{BAR} estimation r	Ca	culate from SF	PR and SAAR	When Q _{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.		
SPR estimation method: Calculate from SOIL t			OIL type			
Soil charac	teristics	Default	Edited	(2) Are flow rates	< 5.0 l/s?	
SOIL type:		2	2			
HOST class:		N/A	N/A		ess than 5.0 l/s consent / set at 5.0 l/s if blockage	
SPR/SPRHOST:		0.3	0.3		ther materials is possible. tes may be set where the	
Hydrologica characteris		Default	Edited		ssed by using appropriate	
SAAR (mm):		604	604			
Hydrological regi	on:	6	6	(3) Is SPR/SPRHOS ⁻	「 ≤ 0.3?	
Growth curve fac	ctor 1 year.	0.85	0.85	Where groundwater le	vels are low enough the	
Growth curve fac years:	otor 30	2.3	2.3	use of soakaways to a would normally be pret	5	
		omthis sit	e₃tø enha	ance your surface water runoff. OK, I A		
Growth curve fac years:By clickin	perience otor 200 ng the Acce	^{3.74} pt button, y	^{3.74} ou agree to			

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	0.15	0.15
1 in 1 year (l/s):	0.13	0.13
1 in 30 years (I/s):	0.35	0.35
1 in 100 year (I/s):	0.49	0.49
1 in 200 years (I/s):	0.57	0.57

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

We use cookies on this site to enhance your user experience

By clicking the Accept button, you agree to us doing so.

16.5.2 IH124 method

Item Value in 100 + CC (w) 0.8014 Climate Change Allowance Factor 1.40 CC (w) 1.1214 Climate Change Allowance Factor 1.40 CC (w) 1.1214 SAAR (mm) - Current 604.00 Required to meet Greenfield and Post Development N0 0ft 0.3200 SAAR (mm) - Current 604.00 Required to meet Greenfield 1 in 00 + CC (w) 0.3200 SAAR (mm) + CC 845.60 Volume of Storage Creenfield 1 in 00 + CC (w) 6.9121 SAAR (mm) + CC 845.60 Volume of Storage Creenfield 1 in 00 + CC (w) 6.9121 SPR (Greenfield 1 in 00 + CC meenfield 1 in 00 + CC 6.9121 1.2827 SPR (Greenfield 2 more of Storage Required to meet Greenfield 1 in 00 + CC -1.2827 SPR (Greenfield 3 more of Storage Required to meet Greenfield 1 in 00 + CC -1.2827 SPR (Greenfield 3 more of Storage Required to meet Greenfield 1 in 00 + CC -27.006 SPR (Greenfield 3 more of Storage Required to meet Greenfield 1 in 00 + CC -27.006 SPR (Inpermable) 0.0701 -27.006 Timpermable Area (Pre Development - ha) 0.020700 -27.006 Performed Development - ha) 0.023						
Canadian Januaria Lange Fact Processing of the sector of	Item	Value		Greenfield Run-off Rate -1 in 100 + CC (I/s)	0.8014	
Clance Lange Auguon FaorI. 100C. 100I. 100Maternal or approximation from the sector of the sect				Total Post Development		
Control Control <t< td=""><td>Climate Change Allowance Easter</td><td>1.40</td><td>ĺ</td><td>Run-off Rate - 1 in 100 +</td><td>1 1 2 4 4</td><td></td></t<>	Climate Change Allowance Easter	1.40	ĺ	Run-off Rate - 1 in 100 +	1 1 2 4 4	
AutomBrancementBr	Climate Change Allowance Factor	1.40		Difference between	1.1214	
Addings - CarrantOneRes. 1 & 100 - COAddingAddings - CarrantFranking Decays and Second						
Note of control Control 	SAAR(mm) - Current	604.00			0 3200	
Actions of ControlControlControlControlPR (constaint)ControlControlControlControlPR (constaint)ControlControlControlControlPR (constaint)ControlControlControlControlPR (constaint)ControlControlControlControlPresentation ControlControlControlControlControlPresentation ControlCon	oversion - ourient	604.00		Volume of Storage	0.3200	
Add (may - C <th< td=""><td></td><td></td><td>Ì</td><td>Required to meet</td><td></td><td></td></th<>			Ì	Required to meet		
Projection of any of a state of						
Control Contro Control Contro Control Contro Contro <thcontro< th=""> Contro Contro</thcontro<>			İ.			
Pin (denensing) pin (denensin) pin (denensing) pin (denens				Greenfield 1 in 100 + CC		
PR (pecential of all	SAAR (mm) + CC	845.60		volumes (m3)	6.9121	
Beneric and and a set of						
Primate intermation Differentiation of the second primate intermation of the second primat						
Product on solutionProduct on sol	SPR (Greenfield)	0.37		Run Off Rates	-1.2827	
primuma by per function beams of per sector by by the per sector by the per sector by by the per sector by the per sector by the per sector by the per sector by by the per sector by the per sector by the per sector						
Resumption Distance battering Distance battering <thdistance battering<="" th=""> Distance batteri</thdistance>						
part (monoto) marked for Development (m) marked for Development (m) <b< td=""><td></td><td></td><td></td><td>Difference between</td><td></td><td></td></b<>				Difference between		
BPR denomable input delCDSCC (mp)RT7300imput del serie have input del0.00000.000 <t< td=""><td></td><td></td><td> </td><td>Proposed Development</td><td></td><td></td></t<>				Proposed Development		
bix Ang Joan Control of Contro	SPR (Impermeable)	0.53	İ		-27.7066	
Impact All Procession Impact All Procession	Site Area (ha)		İ			
Provide and a protect open and a pr	Impermable Area (Pre Development - ha)	0.00000	ļ		_	
Promesols Aca (pro Developmento) promoto Aca (pro Developmento)<						
Importantial Anal (Pail Deviopment - h) Deviopment -	Permeanble Area (Pre Development - ha))	0.0701000		Greenfield (I/s)		Post Development (I/s)
CC (1 m m)0.051 in m m0.050.050.051 in m1 in m0.050.050.050.05hydrologa Region0.050.050.050.050.05Sin Type0.060.060.050.050.050.05Sin Type0.060.060.050.050.050.05Sin Type0.060.060.050.070.050.05Sin Type0.060.050.050.070.050.05Sin Type0.050.050.050.050.050.05Sin Type0.050.050.050.050.05 <td>Impermable Area (Post Development - ha)</td> <td>0.0237000</td> <td>Qbar</td> <td>0.17</td> <td>0.17</td> <td>0.24</td>	Impermable Area (Post Development - ha)	0.0237000	Qbar	0.17	0.17	0.24
GGP (1 is 10)0.2311 10 90 C0.540.540.56GGP (1 is 10)1.0 90 - C1.0 91.0 90 - C1.0 91.0 90 - CGGP (1 is 10)0.685 00.60 - C1.0 01.0 00.0 0GGP (1 is 10)0.685 00.64 01.0 00.0 00.0 0GGP (1 is 10)0.685 00.64 00.64 10.64 10.64 1GGP (1 is 10)0.64 500.64 10.64 10.64 10.64 1GGP (1 is 10)0.64 500.64 10.64 10.64 10.64 1GGP (1 is 10)0.63 500.50 10.64 10.64 10.64 1GGP (1 is 10)0.63 500.50 10.64 10.64 10.64 1GGP (1 is 10)0.63 500.50 10.64 10.64 10.64 1GGP (1 is 10)0.61 500.50 10.60 10.00 10.00 1GGP (1 is 10)0.61 500.00 10.00 10.00 10.00 1GGP (1 is 10)0.61 600.00 10.00 10.00 10.00 1GGP (1 is 10)0.00 10.00 10.00 10.00 10.00 1GGP	Permeanble Area (Post Development - ha)					0.20
Cdr (1 not 0)0.300.000.000.00Refer (1 not 0)0.0000.0000.0000.0000.000CREE (1 not 0)0.0000.0000.0000.0000.0000.000CREE (1 not 0)0.0000.0000.0000.0000.0000.000<		0.85				
Set TypeSet TypeSet TypeNome of the set of t	GCF (1 in 100)					
takada 10 va Shour and of a second of a		6				
Reprint Part of the state o	Soil Type Rainfall 100 Yrs 6 hours mm	63				
CREENFELD RUN OFFOLD NUMNUM CIRENProvince (NUM<						Volume (6 hr) - Standard
1 n0.4602.0600.4203.1101 n0.63986.5501.1691.169GREENED DUNC PF + CC1.0100.5395.5600.7711.1210 all hypermaks170.1700.5375.5680.7985.6681 n1.0100.5371.5880.6604.5221 n1.0100.5371.2840.2031.2841 n0.0100.03711.2840.2031.2841 n1.0100.01711.2840.0000.0000 memaks0.01000.0000.0000.0000 memaks0.01000.0000.0000.0000 memaks0.01000.0000.0000.0001 n0.01000.01000.0000.0000.0000 memaks0.01010.01010.0000.0000.0000 memaks0.01010.01010.0000.0000.0001 n0.00010.01440.0000.0000.0000 memaks0.00010.01440.0000.0000.0001 n0.00010.01440.0000.0000.0001 n0.00010.01440.0000.0000.0001 n0.00010.0000.0000.0000.0000.0001 n0.00010.0000.0000.0000.0000.0001 n0.00010.0000.0000.0000.0000.0001 n0.00010.0000.0000.000 <td>GREENFIELD RUN-OFF</td> <td></td> <td></td> <td>l/s/ha (QBarA)</td> <td></td> <td></td>	GREENFIELD RUN-OFF			l/s/ha (QBarA)		
1 h m m 1 h m m 1 h m m 1 h m m 0 m0.888 0.45609.5600 7.1101.6171 1.6271GRE PREL DUN-OF * CC 1 h m 3 + CC0.717 h m 0.27213.600 0.40020.700 0.40020.4002 1.6300RE - DEVEL OPMENT KUN-OF A. Lange models 1 h m 3 + CC0.8771 0.40220.40011.4141 1.44411.4441RE - DEVEL OPMENT KUN-OF A. Lange models 0.6141permetable Surface Run-Of (A)-A (Sam) 0.00000.0000 0.00000.00001 h m 30.0000#D/071 0.00000.00000.00001 h m 30.0000#D/071 0.00000.00000.00001 h m 30.0000#D/071 0.00000.00000.00001 h m 30.0000#D/071 0.00000.00000.00001 h m 30.00000.00000.00000.00001		120.8699			0.4004	9.4449
1 + 1000.0007.71101.1501.150Corr1 × 1.0001 × 1.0000.0000.0000.000REPERLED.LUV.CF (L. Same rainst)tupermeable Sarias Run.Off (//h.0168.4)1.14182.4011.2401PRE -DEVELOPMENT RUV.FF (L. Same rainst)tupermeable Sarias Run.Off (//h.0168.4)Vem (PA)1.000PRE -DEVELOPMENT RUV.FF (L. Same rainst)tupermeable Sarias Run.Off (//h.0168.4)Vem (PA)PRE -DEVELOPMENT RUV.FF (L. Same rainst)tupermeable Sarias Run.Off (//h.0168.4)0.0000.000PRE -DEVELOPMENT RUV.FF (L. Same rainst)tupermeable Sarias Run.Off (//h.0168.4)0.0000.000Prema able Sarias Calculationn = 0.000#50/010.0000.000Prema able Sarias CalculationPrema able Sarias Calculation Prema Ru0.0000.0000.0001 in 11 = 0.000#50/010.0000.0001.617Table Sarias Calculation Prema Ru0.000#50/010.0000.0001 in 11 = 0.0000.0000.0000.0001.6171 in 11 = 0.0000.0000.0000.0001.6171 in 10.00000.0000.0000.0000.0001 in 10.00000.0000.0000.0000.0001 in 1000.00010.00000.0000.0000.0001 in 1000.00010.00000.00000.00000.00001 in 1000.00010.00000.00000.00000.00001 in 1000.00010.0001 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
GREEMELD NUM-OFF - CCInt COInt CO <thint co<="" th="">Int COInt CO</thint>	1 in 100					
1 in 1 + CC0.0130.04600.46 (2)1 in 3 + CC0.0776.25 (2)1.7301.24 (2)PRE OFLICIPMENT FUUE TOWER (and the introl)0.0776.25 (2)1.7301.730PRE OFLICIPMENT FUUE TOWER (and the introl)0.0700.0000.0000.0001 in 10.0000.0000.0000.0000.0001 in 10.0000.0000.0000.0000.0000 in 10.0000.0000.0000.0000.0001 in 01.000.0000.0000.0000.0001 in 01.000.0000.0000.0000.0001 in 01.000.0000.0000.0000.0001 in 01.000.0000.0000.0000.0001 in 00.0000.0000.0000.0000.0001 in 00.0000.0000.0000.0000.0001 in 100.0140.0000.0000.0000.0001 in 100.0000.0000.0000.0000.0001 in 100.0000.0000.0000.0000.0001 in 10 + CC0.0000.0000.0000.0000.0001 in 10 + CC0.0000.0000.0000.0000.0001 in 10 + CC0.0000.0000.0000.0000.0001 in 10 + CC0.0000.0000.0000.0000.0001 in 10 + CC0.0000.0000.0000.0001 in 10 + CC<	GREENFIELD RUN-OFF + CC					
1 in 10 - C0.0770.8221.2801.201PRE_OVELOPMENT RUN-OF (Lo same rains)imprenable Surface Run-Off (V/n (Gleat)Volume (6/)Premable Surface Run-Off (V/n (Gleat)0.0000.0001 n30.000#50/070.0001 n30.000#50/070.0001 n30.000#50/070.0001 n30.000#50/070.0001 n30.000#50/070.0001 n30.000#50/070.0001 n30.000#50/070.0001 n10.000#50/070.0001 n10.000#50/070.0001 n10.000#50/070.0001 n10.000#50/070.0001 n10.000#50/070.0001 n10.0000.0001.0001 n10.0000.0001.0001 n10.0000.0001.0001 n10.0000.0001.0001 n10.0000.0000.0001 td< td=""><td>Qbar Impermeable</td><td>179.1793</td><td></td><td>3.5836</td><td></td><td></td></td<>	Qbar Impermeable	179.1793		3.5836		
The toto + CC0.0010.0010.0010.0010.000<				8.2422		
ImportantionImportantionImportantionImportantion1 mi0.00018/0/00.0001 mi0.00018/0/00.0001 mi0.00018/0/00.000Primable Surface CacluationPrimable Surface Cacluation0.0000.0001 mi0.0000.0000.0000.000Cher Primable Surface Cacluation + Surface Cacluation0.0000.0000.0001 mi0.0000.00010/000.0000.0001 mi0.0000.00010/000.0000.0001 mi0.0000.00010/000.0000.0001 mi0.0000.00010/000.0000.0001 mi0.0000.0000.0000.0000.0001 mi0.0000.0000.0000.000 </td <td>1 in 100 + CC</td> <td></td> <td>0.8014</td> <td>11.4316</td> <td></td> <td>17.3093</td>	1 in 100 + CC		0.8014	11.4316		17.3093
Only Importances 28.3322 0.000 #P/VII 0.000 0.000 1 1 0.000 #P/VII 0.000 #P/VII 0.000 0.000 1 1 0.000 #P/VII 0.000 #P/VII 0.000 0.000 Comparing the surface Calculation Permable Surface Res of 100 0.600 0.000 0.000 1 1 0.000 0.000 0.000 0.000 0.000 0.000 1 1 0.0160 0.0160 0.000 0.000 0.000 0.000 1 1 0.0400 0.0160 #P/VII 0.401 0.4110 0.4160 0.00		rainfall)	Impermeable Surface Run-Off (I/s/ha (QBarA)		Volume (6 hr)
1 mi0.0000.0000.0000.0001 mi0.0000.0000.0000.0000.000Permable Surfac CalculationPermable Surfac Run (10)0.0000.0000.0000.07 Permable Surfac Run (10)0.0500.0500.0500.0500.07 Permable Surfac Run (10)0.0500.0500.0500.0501 mi1.0700.0500.0500.0500.0501 mi0.0500.0500.0500.0500.0500.0700.0500.0500.0500.0500.0500.0710.0700.0500.0500.0500.0500.0710.0700.0500.0500.0500.0500.0710.0700.0000.0000.0000.0000.0710.0720.0000.0000.0000.0001 mi0.0720.0000.0000.0000.0001 mi0.0720.0000.0000.0000.0001 mi0.0720.0000.0000.0000.0001 mi0.0720.0000.0000.0000.0001 mi0.0720.0730.05000.0000.0001 mi0.0720.0730.05000.0000.0001 mi0.0720.0740.0500.0001 mi0.0720.0740.0500.0001 mi0.0720.0770.0740.0721 mi0.0720.0770.0740.0721 mi0.076<		262 6325	0.0000	#DIV/01	0.0000	0.0000
1 m 30 0.0000 #D/V/0 0.000 0.000 Permable Surface Calculation Permable Surface Run-Off (M) 0.000 0.000 Obs Permable 110.0000 0.000 0.000 0.000 Obs Permable 110.0000 0.0300 0.3300 0.3300 0.3300 0.3300 0.3300 In 10 0.0300 0.3300 <th< td=""><td></td><td>203.0325</td><td></td><td></td><td></td><td></td></th<>		203.0325				
Permeable Surface Calculation Permeable Surface Run-off (lg) Image: surface Calculation 0hr Permeable 0.089 0.186 0.5521 0.0504 1 in 10 0.088 0.3999 1.1603 0.4418 1 in 10 0.0462 0.1640 0.4521 0.4117 1 in 10 0.0452 0.1640 6.2599 1.1603 0 Gene 0.94522 0.1640 6.2590 0.4232 0.0111 1 in 10 0.94522 0.1640 6.2590 0.4232 0.0111 1 in 10 0.9452 0.1640 6.2590 0.4232 0.0100 1 in 10 0.9452 0.0000 0.0000 0.0000 0.0000 1 in 10 0.0011 0.0012 0.000 0.0000 0.0000 0.0000 1 in 10 0.0011 10.0012 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0	1 in 30		0.0000	#DIV/0!	0.0000	0.0000
Oute Permeable 120.000 0.1005 0.4004 0.4004 0.4004 1 n.03 0.1004 0.3005 0.4004 0.4004 1 n.03 0.1004 0.3005 0.4004 0.4004 0 n.000 0.3005 0.4004 0.4004 0.4004 0.4004 0 n.001 0.4004 60.000 0.4004 0.4004 0.4004 1 n.03 0.000 0.000 0.000 0.4004 0.4004 1 n.03 0.000 0.000 0.000 0.000 0.000 1 n.03 0.0002 0.0000 0.0000 0.0000 0.0000 1 n.03 0.0002 0.0000 0.0000 0.0000 0.0000 1 n.03 0.0002 0.0000 0.0000 0.0000 0.0000 1 n.03 0.000 0.0000 0.0000 0.0000 0.0000 1 n.03 0.000 0.0000 0.0000 0.0000 0.0000 1 n.03 0.000 0.0000 0.0000 0.0000					0.0000	0.0000
1 in 1 0.1440 3.0143 0.4321 3.113 1 in 30 0.386 8.390 1.155 8.4188 1 in 100 0.640 6100 1.6217 1.1677 0 av 38.602 0.0195 62000 0.0264 0.0001 1 in 30 0.385 670/0 0.0264 0.0001 1 in 100 0.5466 470/0 1.6217 1.1674 PRE DEVELOPMENT RUN-OFF + CC (Increased rainfall) Impermable Surface Run-Off (w) 0.000 0.000 0.000 1 in 100 300.817 0.0000 0.000 0.0000 0.0000 1 in 100 300.817 0.0000 0.0000 0.0000 0.0000 1 in 100 0.0117 9.0212 5.440 0.753 0.0200 1 in 100 0.0215 5.440 0.753 0.2409 0.0000 1 in 100 10.0215 0.0215 5.440 0.753 0.0200 1 in 100 10.0215 0.0215 5.4401 0.753 0.0200		120.8699		3.6521	0.5084	
1 in 300.33860.33860.40000.4116500.4116500.4116501 in 00in 00.0000.4000	1 in 1		0.1440	3.1043	0.4321	
Impermable Surface Calculation = Permable Surface Calculation Other 98.5023 0.0165 0.700/00 0.505 0.0000 1 in 3 0.386 60.000 0.482 3.113 1 in 30 0.386 60.000 0.482 3.113 1 in 10 0.586 60.000 1.615 8.1488 PEREDEVELOPMENT RUN-OFF > Coltron-saved rainability mpermeable Surface Calculation 0.0000 0.0000 0.0000 1 in 14 CC 0.0000 0.0000 0.0000 0.0000 1 in 14 CC 0.02778 12482 1.733 124891 1 in 14 CC 0.0278 6.0215 6.0404 0.758 0.0000 1 in 14 CC 0.0215 6.0414 0.758 0.0000 1.0145 1.0145 1.0145 1.0145 1.0145 1.0145<				8.3999		8.4188
Obset 384.023 0.1955 #DV/01 0.0364 0.0001 1 n.3 0.3858 #DV/02 1.1618 8.4188 1 n.3 0.3858 #DV/02 1.1618 8.4188 Impartmable Surface Calculation Obset Impermable 399.317 0.000 0.000 0.0000 1 n.1 + CC 0.0000 0.0000 0.0000 0.0000 1 n.1 + CC 0.0000 0.0000 0.0000 0.0000 0.0000 1 n.1 + CC 0.0000 0.0000 0.0000 0.0000 0.0000 Permable Surface Calculation Permable Surface Run-off (#) 0.0000 0.0000 0.0000 1 n 10 + CC 0.0000 0.0000 0.0000 0.0000 0.0000 1 n 10 + CC 0.0000 0.0000 0.0000 0.0000 0.0000 1 n 10 + CC 0.0216 0.4110 0.778 0.4040 0.758 0.0000 1 n 1 0 + CC 0.0216 0.0217 0.4040	1 in 100				1.6217	11.6/64
1 m 30 0.3880 #EDW01 1.6213 8.4188 PRE DEVELOPMENT RUN-OFF + CC (ncreased rainfall) impermeable Surface Run-Off (%) 1.6217 11.674 Impermeable Surface Calculation 0.000 0.000 0.000 0.000 1 in 1 + CC 0.000 0.000 0.000 0.000 1 in 1 + CC 0.000 0.000 0.000 0.000 1 in 1 + CC 0.0213 5.440 0.758 1.753 Obar Permeable Surface Calculation Permeable Surface Calculation 0.0213 5.440 0.758 1 in 1 + CC 0.213 4.0019 0.4406 4.5122 1 in 1 + CC 0.213 4.0019 0.4406 4.5122 1 in 1 + CC 0.213 4.0019 0.4406 4.5122 1 in 1 + CC 0.213 4.0019 0.4401 17.333 12.4801 1 in 1 + CC 0.213 4.019 0.4506 4.512 1.333 12.4801 1 in 1 + CC 0.2135 4.6019 0.4506 1.539 6.5261		384.5023	0.1695	#DIV/0!		
In 10 0.5460 #DV/01 1.527 (1.1676) PRE DEVELOPMENT RUN-0FF + CC (Increased rainfall) Impermable Surface Run-0ff (%) Obar Inpermable 300172 0.000 0.000 0.0000 In 1 + 4C 0.000 0.000 0.0000 0.0000 0.0000 In 1 + 4C 0.0000 0.0000 0.0000 0.0000 0.0000 Permable Surface Calculation Permable Surface Run-off (%) 0.0000 0.0000 0.0000 Calce Permetable 118 10 * CC 0.0000 0.0000 0.0000 0.0000 Calce Permetable Surface Calculation 0.0000 0.0000 0.0000 0.0000 The 10 * CC 0.0212 6.440 0.750 0.0000 Calce Permetable Surface Calculation * Permable Surface Calculation 0.0000 0.0000 0.0000 The 10 * CC 0.0215 6.4091 0.7205 0.0000 0.0000 Calce Permetable Surface Calculation Impermable Surface Calculation 0.0000 0.0000 0.0000 0.0000 0.0000						3.1113
PRE DEVELOPMENT RUN-OFF + CC (increased rainfall) Inpermeable Surface Run-Off (b) Increased surface Run-Off (b) Gear Impermable 390.827 0.000 0.0000 0.0000 1 in 1 + CC 0.000 0.0000 0.0000 0.0000 1 in 30 + CC 0.0000 0.0000 0.0000 0.0000 0 and the permeable Surface Run-off (b) 0.0000 0.0000 0.0000 0 and the permeable Surface Run-off (b) 0.0000 0.0000 0.0000 0 and the permeable Surface Calculation 0.0000 0.0000 0.0000 0 and the permeable Surface Calculation 0.0000 0.0000 0.0000 0 and the permeable Surface Calculation 0.0000 0.0000 0.0000 0 bar 569.9920 0.2512 5.4140 0.7536 0.0000 1 in 1 + CC 0.0000 0.05778 12.4522 1.7333 12.4801 1 in 30 + CC 0.0000 0.02778 12.4522 1.7333 12.4801 0 for permeable Surface Run-off (b) Volume (6 h) 1.7379 0.0276 0.0162 4.8			0.3898			11.6764
Impermeable Deam impermeable Deam impermeableImpermeable 300.8270.00000.00000.00001 in 1+0C0.00000.00000.00000.00001 in 1+0 + CC0.00000.00000.00000.0000Permeable Surface CalculationPermeable Surface Calculation0.00000.00000.0000Permeable Surface CalculationPermeable Surface Calculation0.00000.00000.0000Permeable Surface CalculationPermeable Surface Calculation0.00000.00000.0000Permeable Surface Calculation0.00000.00000.00000.0000Permeable Surface Calculation0.00000.00000.00000.0000Permeable Surface Calculation0.00000.00000.00000.00000.0000Permeable Surface Calculation0.00000.00000.00000.00000.00000.0000Permeable Surface Calculation0.0000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Obsr Instruct 390.8127 0.0000 0.0000 1 in 1 + CC 0.0000 0.0000 0.0000 1 in 10 + CC 0.0000 0.0000 0.0000 Permable Surface Calculation Permable Surface Run-off (/s)	PRE DEVELOPMENT RUN-OFF + CC (incl	eased rainfall)	Impermeable Surface Run-Off (l/s)		
1 in 1 + CC 0.0000 0.0000 0.0000 1 in 10 + CC 0.0000 0.0000 0.0000 Permable Surface Calculation Permable Surface Calculation 0.756 1 in 1 + CC 0.2512 5.4140 0.756 1 in 3 + CC 0.2512 5.4140 0.756 1 in 3 + CC 0.5778 12.4522 1.733 12.4601 1 in 1 + CC 0.8041 17.2705 2.4041 17.3993 0 bar 569.920 0.2512 5.4140 0.758 6.0000 1 in 10 + CC 0.8041 17.2705 2.4041 17.3993 6.0000 1 in 10 + CC 0.8174 14.4019 0.6466 4.6122 17.33 12.4010 POST DEVELOPMENT RUN-CPF (l.e. same tanifall) inspresable Surface Run-CPf (l.//ha (SarA) 0.4006 4.6122 17.33 12.4010 In 10 + CC 0.1062 4.4161 0.3167 2.2491 17.308 POST DEVELOPMENT RUN-CPF (l.e. same tanifall) 0.2576 5.2776 0.376 2.2991 1 in 10 </td <td>Obar Impermeable</td> <td>390.8127</td> <td>0.0000</td> <td>0.0000</td> <td></td> <td>0.0000</td>	Obar Impermeable	390.8127	0.0000	0.0000		0.0000
1 in 30 + CC 0.0000 0.0000 0.0000 Permeable Surface Calculation Permeable Surface Ru-off (/s)	1 in 1 +CC		0.0000	0.0000		0.0000
Permeable Surface Calculation Permeable Surface Run-off (//s) O Int Cbar Permeable 179.179 0.2213 4.6019 0.6406 4.4012 Ini 130 + CC 0.0273 1.7273 1.24201 1.7333 1.24201 Ini 100 + CC 0.0577 1.2422 1.733 1.24201 Char Permeable Surface Calculation 0.755 0.0000 0.0756 0.0001 Ini 100 + CC 0.2131 4.6019 0.466 4.122 Ini 100 + CC 0.2131 4.6019 0.466 4.122 Ini 100 + CC 0.05778 12.4522 1.7333 12.4801 POST DEVELOPMENT RUN-OFF (Je. same rainfall) Impermeable Surface Run-off (Jr./Inis (GarA) Vene (6th) mpermeable Surface Calculation 0.0227 1.7271 0.852 2.2541 Qhar Inpermeable 2.8532 0.1122 2.474 0.3265 0.6971 Qhar Inpermeable Surface Calculation 0.3661818 0.1195 0.8502 2.5502 Qhar Inpermeable Surface Calculation 0.3661818 0.1195 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Obar Permeable 173.173 0.2512 5.4140 0.756 1 in 1-0C 0.2533 4.6019 0.646 5.4122 1 in 30 + CC 0.8014 17.2705 2.401 17.333 Impermeable Surface Calculation Termate Surface Calculation Obar 0.5017 2.4022 1.733 1.4001 Obar 0.5078 2.4242 1.733 1.4401 Obar 0.5078 2.4242 1.733 1.4401 Obar 0.5078 2.4242 1.733 1.4401 POST DEVELOPMENT RUN-OFF (les.amer rainfall) impermeable Surface Calculation Volume (h) Volume (h) Molecclassical and provide and p				0.0000		0.0000
1 in 1 - CC 0.2135 4.6019 0.6405 4.6122 1 in 10 + CC 0.5777 72.4522 1.7333 12.4001 Tompermeable Surface Calculation + Permeable Surface Calculation 0.755 0.0007 0.755 1 in 1 + CC 0.2131 4.6019 0.6466 4.6122 1 in 3 0 + CC 0.2133 4.6019 0.6466 4.6122 1 in 3 0 + CC 0.2517 5.4140 0.7533 12.4601 POST DEVELOPMENT RUN-OFF (Le. same rainfall) Impermeable Surface Run-Off (V/sha (Garx) volame (6hr) mpermeable Surface Calculation 0.0257 5.2776 0.3740 - QLar Impermeable 0.2657 12.1271 0.6522 6.2634 QLar Impermeable 0.3086 16.1595 6.1619 Permeable Surface Run-Off (V/s) - - - QLar Impermeable 1.0269 0.0112 2.474 0.355 QLar Impermeable 1.0269 0.1122 2.474 0.355 QLar Impermeable 0.02605 0.2660 0.745	Qbar Permeable		0.2512			
1 in 100 + CC 0.8014 17.2706 2.4041 17.309 Impermable Surface Calculation Obsr 55.99.920 0.2512 5.4140 0.7536 0.0000 1 in 1 + CC 0.2133 4.6019 0.6466 4.6122 1 in 30 + CC 0.8014 17.2706 2.4041 17.3033 POST DEVELOPMENT RUN-OFF (Je. same rainfall) Impermable Surface Run-Off (Jr/In (GarA) Volume (6 hr) Oper memory colspan="2">POST DEVELOPMENT RUN-OFF (Je. Same rainfall) Impermable Surface Run-Off (Jr/In (GarA) Volume (6 hr) Oper memory colspan="2">Oper memory colspan= 2" O	1 in 1 +CC					
Impermeable Surface Calculation Obs 0.2511 5.4440 0.755 0.2511 5.4440 0.755 0.4600 4.4601 0.4600 4.4601 0.4600 4.4601 0.4600 4.4601 0.4600 4.4601 0.4600 4.4601 17.42482 1.733 1.24901 0.577 1.42401 1.733 1.24901 0.577 1.42401 1.733 1.24901 0.577 1.42401 1.733 1.24901 0.0570 2.4041 1.733 1.24901 0.1505 5.2726 0.376 0.2162 2.4411 0.3367 2.2391 2.2391 2.2391 2.2391 2.2391 2.2391 2.	1 in 30 + CC		0.5778		1.7333	12.4801
Obs/ 1 in 1-C S5:19:20 0.2512 S.4140 0.7556 0.0000 1 in 30 + CC 0.5778 12.4522 1.7333 12.4601 POST DEVELOPMENT RUN-OFF (Jo. same rainfall) Impermeable Surface Run-Off (Jr/Ins (Garx) Volume (kH) mpermeable Surface Calculation	111100+00				2.4041	17.3093
1in 30 + CC 0.5778 12.4522 1.7333 12.4601 POST DEVELOPMENT RUN-OFF (Je. same rainfall) Impermeable Surface Run-Off (Jr/hs (GarA) Volume (6hr) Reperted Calculation	Qbar	569.9920	0.2512	5.4140		
1in 100 + CC 0.0.001 17.2705 2.4041 17.309 POST DEVLED/RHX TRUN-DFF (Les amure anishil) Impermeable Surface Calculation Noume (N/h) (GasAmure anishil)	1 in 1 +CC			4.6019		
POST DEVELCPMENT RUN-OFF (i.e. surveil (i.e. (i.	1 in 100 + CC					
mpermeable Surface Calculation Impermeable Impermeable Second Secon	POST DEVELOPMENT RUN-OFF (i.e. sam					
1 in 1 0.0162 4.4818 0.3167 2.2943 1 in 30 0.274 12.1271 0.5862 6.2081 Permable Surface Calculation Permable Surface Num.off (W) Permable Surface Calculation Permable Surface Calculation 0.3385 1.1959 8.610 Obar Permable 10.2899 0.1122 2.4174 0.3385 2.0544 0.111 0.0953 2.0544 0.2280 2.0544 1.111 0.0053 2.0544 0.2572 5.5500 0.7700 5.5725 1.111 0.0060 0.3577 7.7115 1.0774 7.2728 Obar Permable 384.5023 0.2371 7.6900 0.714 4.3337 Obar Permable 384.5023 0.2371 7.6900 0.716 4.3337 1111 0.0060 0.2646 6.5365 0.6047 4.3337 1111 0.0060 0.5454 17.6971 1.632 1.6338 POST DEVELOPMENT RUN-OFF + CC (ncreased rainfall) impermable Surface Run-Off (U) Impermable Surface Run-Off (V) 4.0013 3.6401 1 111 + 0C 0.1457 6.6438 3.4011 1 111 + 0C 0		363 0305	0.4050	E 0700	0.0710	•
11 n30 0.2274 12.1271 0.8622 6.2081 01 11 n10 0.3368 16.8196 1.1890 8.6104 Permeable Surface Calculation Permeable Surface Run-Off (№) Obar Permeable 12.0899 0.1122 2.474 0.3365 2.0548 0.2800 2.0594 1 n 1 0.0065 2.0548 0.2800 0.7740 5.5725 1 n 10 0.3378 7.7715 1.0724 7.788 Obar Permeable 349.5922 0.2271 7.6900 0.7714 Obar Permeable 349.5922 0.2271 7.6900 0.7144 1 n30 0.0000 0.2496 6.5490 0.7149 1 n30 0.0000 0.2496 6.5491 1.6392 1.1396 POST DEVELOPMENT RUN-OFF + 0C (Increased rainfall) Increased rainfall) Increased rainfall) Increased rainfall 3.0011 in 30 + 0C 0.04261 7.7746 9.2030 3.2011 3.4011 1 in 100 + 0C 0.4261		263.6325				2 2943
Permeable Surface Calculation Permeable Surface Run-off (//s) Image: Calculation Obar Permeable 120.809 0.0122 2.474 0.335 Obar Permeable 0.0053 2.0548 0.2860 2.0549 1 in 30 0.2880 5.5500 0.7740 5.5725 Obar Permeable 0.3378 7.7715 1.0734 7.7880 Obar Permeable 384.5023 0.2271 7.6900 0.7146 Obar Permeable 384.5023 0.2271 7.6900 0.7146 Obar Permeable 384.5023 0.2271 7.6900 0.7146 Obar Permeable 384.5023 0.2271 6.568 0.6947 4.357 Obar Permeable 0.0000 0.5454 17.6871 1.6382 11.786 Obar In 100 0.0000 0.7545 2.683 16.3381 POST DEVELOPMENT RUN-OFF + CC (Increased rainfall) Impermeable Surface Run-off (//s) 0.4011 3.4011 In 104 - CC 0.1375 6.6438 0.4301 3.4011 Obar Impermeable	1 in 30		0.2874	12.1271	0.8622	
Ober Permeable 10.2869 0.112 2.4174 0.385 1 in 1 0.0653 2.6548 0.2800 2.6543 1 in 30 0.2580 5.5500 0.7740 5.5723 1 in 10 0.3757 7.7115 1.0740 5.7228 Obar Permeable Impermeable Surface Calculation + Permeable Surface Calculation 1 1 Obar Permeable 3.85520 2.2371 1.6536 0.6047 4.3537 1 in 10 0.0000 0.2545 1.6330 1.1530 1.1530 1 in 10 0.0000 0.5454 1.76871 1.6332 1.1530 POST DEVELOPMENT RUN-OFF + CC (increased rainfall) impermeable Surface Run-Off (Us) - - - mpermeable 390.8127 0.1652 7.8163 - 4.0013 1 in 1 + CC 0.1575 6.6448 - 3.0011 1 in 1 + CC 0.1663 3.5856 0.4988 - Permeable Surface Run-off (Us) - - - - 1 in 1					1.1959	8.6104
1 in 1 0.0053 2.0548 0.2860 2.0549 1 in 30 0.2800 5.5500 0.7740 5.5725 1 in 100 0.3578 7.7115 1.0734 7.7288 Obar Permeable 384.5023 0.22371 7.6900 0.7114 Obar Permeable 384.5023 0.22371 7.6900 0.7114 1 in 1 0.0000 0.2545 17.6971 1.6362 11.7806 1 in 30 0.0000 0.5454 17.6971 1.6362 11.7806 POST DEVELOPMENT RUN-OFF + CC (increased rainfall) impermeable Surface Run-Off (ir) 16.3391 1.6391 Prost DEVELOPMENT RUN-OFF + CC (increased rainfall) impermeable Surface Run-Off (ir) 4.0013 3.0011 1 in 100 + CC 0.04261 7.7813 4.0013 1 in 100 + CC 0.04261 7.3714 9.2030 1 in 100 + CC 0.04261 7.353 4.0013 1 in 100 + CC 0.04261 7.353 1.27641 Permeable Surface Run-Off (ir)		120 8000			0 3265	
11 n30 0.289 5.5900 0.7740 5.5725 11 n100 0.3575 7.7115 1.0724 7.7286 Obar Permeable Surface Calculation + Permeable Surface Calculation 1 7.7286 1 Obar Permeable 384.502 0.2016 6.5865 0.6647 4.3327 1 n 10 0.0000 0.5545 17.6871 1.3582 1.7866 1 n 10 0.0000 0.5545 17.6871 1.3582 1.7866 1 n 10 0.0000 0.5454 17.6371 1.5391 1.5391 POST DEVELOPMENT RUN-OFF + CC (Increased rainfall) impermeable Surface Run-Off (0.5	1 in 1	120.0099		2.0548		2.0594
Impermeable Surface Calculation + Permeable Surface Calculation Image of the second sec	1 in 30		0.2580		0.7740	5.5725
Obar Permeable 338.4502 0.2371 7.6900 0.7114 1 in 1 0.0000 0.2010 6.5385 0.6007 4.3337 1 in 30 0.0000 0.5454 17.6671 1.6392 11.7806 1 in 10 0.0000 0.7564 24.5312 2.2683 16.3391 POST DEVELOPMENT RUN-DF + CC (Increased rainfall) impermeable Surface Calculation 7.653 4.0013 Optime In 1 and CC 0.1575 6.6438 3.0011 1 in 1 a + CC 0.4327 7.1653 4.0013 1 in 100 + CC 0.04261 7.7774 9.2020 Permeable Surface Calculation Permeable Surface Run-Off (V/s) 12.7641 Char Permeable 17.8778 0.4026 3.5526 Obar Permeable 17.87178 0.1663 3.5536 0.4286 1 in 1 + CC 0.1413 3.0460 0.4240 3.0529 1 in 1 + CC 0.3514 1.14572 3.5570 1 in 1 + CC 0.5394 1.1473 3.5570 Unpermeable Surface Calcul	1 in 100		0.3578 Impermeable Surface Calculation		1.0734 sulation	7.7288
1 in 1 0.0000 0.2016 6.5365 0.6047 4.337 1 in 30 0.0000 0.5545 17.8571 1.6322 11.7806 POST DEVELOPMENT RUN-DFF + CC (increased rainfall) Impermeable Surface Run-Off (<i>ib</i>) Obar impermeable 390.8127 0.1852 7.8163 4.0013 Obar impermeable 390.8127 0.1857 6.6438 4.0013 Obar impermeable 390.8127 0.1857 6.6438 4.0013 Obar impermeable 390.8127 0.1675 6.6438 4.0013 1 in 10 + CC 0.04261 17.9774 9.2030 9.2030 1 in 10 + CC 0.0509 24.9333 0.1663 3.503 0.4240 3.0529 1 in 14 CC 0.1663 3.5034 0.4240 3.0529 1.1473 3.8070 1 in 14 CC 0.1663 3.5034 0.4240 3.0529 1.1473 3.8070 1.1473 3.8070 1 in 14 CC 0.3544 0.2	Ohar Permeable	384,5023				
11 n30 0.0000 0.5454 17.8671 1.6362 11.7806 11 n100 0.0000 0.7564 24.5312 2.2693 16.3391 POST DEVELOPMENT RUN-OFF + CC (increased rainfall) inpermeable Surface Run-Off (is) 2.663 16.3391 Impermeable Surface Calculation 0 0 0 0 0 Quar Impermeable 390.8127 0.1852 7.8163 4.0013 1 in 100 + CC 0.04561 17.9774 9.2020 Permeable Surface Run-Off (is) 12.7641 9.2020 Permeable Surface Run-Off (is) 0.4563 0.4988 Char Permeable 17.9739 0.1663 3.5536 0.4988 Obar Permeable 17.9739 0.1663 3.5536 0.4988 3.5529 1 in 10 + CC 0.1413 3.0460 0.4240 3.5529 1.1473 3.5507 1 in 10 + CC 0.3534 6.2422 1.1473 3.5507 1 in 10 + CC 0.5394 1.2436 1.14572 Intermeable Surface Calcuat	1 in 1	0.0000	0.2016	6.5365	0.6047	
POST DEVELOPMENT RUN-OFF + CC (increased rainfall) Impermeable Surface Run-Off (is)	1 in 30			17.6871		
Impermeable Impermeable			0.7564	24.5312	2.2693	16.3391
Impermeable Impermeable	POST DEVELOPMENT RUN-OFF + CC (in	creased rainfall)	Impermeable Surface Run-Off (l/s)		
1 in 1 + CC 0.1575 6.6438 3.4011 1 in 30 + CC 0.4261 71.9774 9.2030 2ermeable Surface Calculation Permeable Surface Run-off (W) 12.7641 2ermeable Surface Calculation Permeable Surface Run-off (W) 12.7641 1 in 1 + CC 0.1663 3.5836 0.4986 1 in 1 + CC 0.1413 3.0466 0.4240 3.0529 1 in 1 + CC 0.3824 8.2422 1.1473 8.2607 1 in 10 + CC 0.3504 11.4572 8.2607 1 in 10 + CC 0.5304 11.4316 1.5913 11.4572 Impermeable Surface Calculation Unpermeable Sur	mpermeable Surface Calculation					
1 in 30 + CC 0.4261 17.9774 9.2030 1 in 100 + CC 0.5090 24.9330 12.7641 Permeable Surface Calculation Permeable Surface Run-off (/s) 0 Obar Permeable 179.774 0.0583 3.5830 0.4881 1 in 14-CC 0.1663 3.5830 0.4240 3.0553 1 in 30 + CC 0.03824 8.2422 1.1473 8.2607 1 in 100 + CC 0.3543 1.14376 1.14373 8.2607 1 in 100 + CC 0.3545 1.14316 1.5943 11.4572 Impermeable Surface Calculation + Permeable Surface Calculation 0 bar 6569.920 0.3555 11.1936 0.4988 4.0013 1 in 14-CC 0.2868 9.6899 0.4240 6.6540 1 in 13 0 + CC 0.2868 9.6899 0.4240 6.6540		390.8127		7.8163		4.0013
1 in 100 + CC 0.0509 24 333 12.7641 Permable Surface Calculation Permable Surface Run-off (V) 1 1 Obar Permable 173.1793 0.1663 3.5536 0.4988 1 in 1+CC 0.1413 3.0460 0.4240 3.0529 1 in 30 + CC 0.3824 8.2422 1.1473 8.2607 1 in 30 + CC 0.5394 11.3161 1.5913 11.4572 Unpermeable Surface Calculation + Permable Surface Calculation + Demable + De	1 in 30 + CC		0.4261	17.9774		
Obar Permeable 179.1793 0.1663 3.5536 0.4988 1 in 1 + CC 0.1413 3.0460 0.4240 3.0529 1 in 30 + CC 0.3824 8.2422 1.1473 8.2607 1 in 10 + CC 0.3324 8.2422 1.1473 8.2607 Impermeable Surface Calculation + Permeable Surface Calculation Cobar 0.5391 11.398 0.4988 Obar 569.992 0.3515 11.398 0.4988 4.0013 1 in 10 - CC 0.2385 9.6899 0.4240 6.5540 1 in 1 - CC 0.2385 9.6899 0.4240 6.5540 1 in 3 0 - CC 0.2885 9.6899 0.4240 6.5540	1 in 100 + CC		0.5909	24.9339		
1 in 1 - CC 0.1413 3.0460 0.4240 3.0529 1 in 30 + CC 0.3824 8.2422 1.1473 8.2607 1 in 100 + CC 0.5304 11.4316 1.5913 11.4572 Impermeable Surface Calculation + Permeable Surface Calculation Qbar 569.920 0.3515 11.398 0.4988 4.0013 1 in 1 - CC 0.2868 9.6899 0.4240 6.4540 1 in 3 + CC 0.2868 9.6899 0.4240 6.4540		470 4700			0.4000	
1 m 30 + CC 0.3824 8.2422 1.1473 8.2007 1 in 100 + CC 0.5304 11.1316 1.5913 11.14572 Impermeable Surface Calculation + Permeable Surface Calculation Obsr 0.3515 11.3998 0.4988 4.0013 Obsr 0.2385 0.4240 6.4540 1 in 1 + CC 0.2885 9.6899 0.4240 6.4540 1 in 30 + CC 0.8085 26.2195 1.1473 17.4637		1/9.1/93		3.5836		3.0529
Impermeable Surface Calculation + Permeable Surface Calculation Obar 569.992 0.3515 11.398 0.4858 4.0013 1 in 1 + CC 0.2388 9.6899 0.4240 6.4540 1 in 3 + CC 0.8085 26.2195 1.1473 17.4637	1 in 30 + CC		0.3824	8.2422	1.1473	8.2607
Obar 569.9920 0.3515 11.3986 0.4988 4.0013 1 in 1 + CC 0.2988 9.6899 0.4240 6.4540 1 in 30 + CC 0.8065 26.2196 1.1473 17.4637	1 in 100 + CC		0.5304	11.4316	1.5913	11.4572
1 in 1 +CC 0.2988 9.6899 0.4240 6.4540 1 in 30 + CC 0.8085 26.2196 1.1473 17.4637	1111100 + CC					
1 in 30 + CC 0.8085 26.2196 1.1473 17.4637		Impermeable Surf			0.4099	4 0012
1 in 100 + CC 1.1214 36.3655 1.5913 24.2214	Qbar 1 in 1 +CC	Impermeable Surf 569.9920	0.3515	11.3998		
	Qbar 1 in 1 +CC 1 in 30 + CC	Impermeable Surf 569.9920	0.3515 0.2988 0.8085	11.3998 9.6899 26.2196	0.4240	6.4540 17.4637

16.5.3 Rainwater Harvesting Calculator

2	🚔 Rainwater Harvesting Calculator 📃 📼 💌					
		Annual Demand/Yield	Micro			
		Annual Demand	Drainage			
		Daily requirement per person (1) 40.0	ОК			
		Number of persons 15	Cancel			
		Annual Yield	Help			
		Collection area (m²) 125	Print			
		Runoff Coefficient 0.900				
		AAR (mm) Map 600				
		Hydraulic Filter Efficiency 0.90				
		Depression Storage (mm) 0.0				
		Number of Rainfall Events/Year 150				
		Feasibility				
		Annual non-potable water demand () 219000.0				
		Annual rainfall yield () 60750.0				
	Annual Demand/Yield	Demand exceeds rainfall yield, rainwater harvesting is feasible for storm water control under BS8515:2009+A1:2013 detailed design approach. Select				
	Volume	Volume tab to size stormwater control section of tank.				
		Enter Collection Area between 1 and 100000				

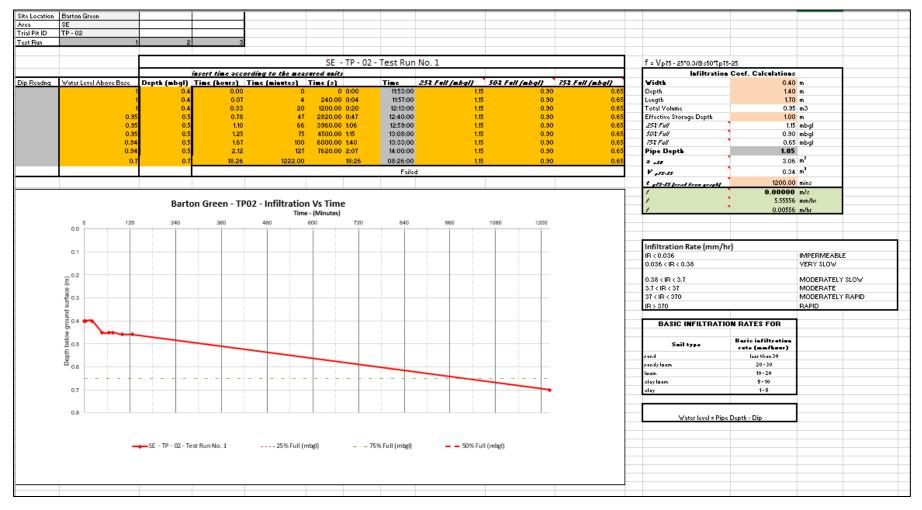
16.5.4 Storage Estimates

🕖 Quick Storage	Estimate		- • •	
	Variables			
Micro Drainage	FSR Rainfall ~	Cv (Summer)	0.750	
or of the second	Return Period (years) 100	Cv (Winter)	0.840	
Variables	Region England and Wales 🗸	Impermeable Area (ha)	0.030	
Results	Map M5-60 (mm) 20.000	Maximum Allowable Discharge (I/s)	2.0	
Design	Ratio R 0.400	Infiltration Coefficient (m/hr)	0.00000	
Overview 2D		Safety Factor	2.0	
Overview 3D		Climate Change (%)	40	
Vt				
VL				
		Analyse OK	Cancel Help	
Enter Maximum Allowable Discharge between 0.0 and 999999.0				

🖌 Quick Storage	Estimate
	Results
Micro Drainage	Global Variables require approximate storage of between 12 m ³ and 17 m ³ .
Variables	These values are estimates only and should not be used for design purposes.
Results	
Design	
Overview 2D	
Overview 3D	
Vt	
	Analyse OK Cancel Help
	Enter Maximum Allowable Discharge between 0.0 and 999999.0

16.6 Appendix 6 - Site Investigation

16.6.1 Site Investigation Photos



16.6.2 Infiltration Data and Results

Report Reference: SWDS - 2023 - 000029

te Location	Barton (Green																			
	SE																				
Pit ID	TP - 04																				
Run			1		2		3														
										SE .	TP - 04 -	Test Run	No.1				f	= Vp75 - 25"0.3/a = 50"tp75-	05		
								ding to		Sered enits		TESLKUN	NO. 1						-25 Coef. Calculations		
Reading	Water L		B	Death		Time (hou						Time	252 Fall (m.	L_0	502 Fell (mbgl)	152 Fell (=bgl)		idth	0.40		
seading	water L	evel ADO	Ve Dase	Debce	nogij	TIME NOT	0.00	INC NIL			0:00	11:49:00	274 7 411 / 1	0.825	0.65			epth	1.00		
			0.6		0.4		0.13		8	480.00		11:57:00		0.825	0.65			ingth	1.00		
			0.55		0.4		0.40		24			12:13:00		0.825	0.65			argen otal Volume	0.40		
			0.5		0.5		0.85		51			12:40:00		0.825	0.65			ifective Storage Depth	0.70		
			0.5		0.5		1.15		69			12:58:00		0.825	0.65			St Full		mbgl	
			0.5		0.5		1.32		79			13:08:00		0.825	0.65			or Full		mbgl	
			0.48		0.5		1.73		104	6240.00		13:33:00		0.825	0.65			58:Full		mbgl	
			0.40		0.5		2.18		131			14:00:00		0.825	0.65			ipe Depth	1.85		
			0.40		0.8		18.24		1220.00		18:24	08:24:00		0.825	0.65			· · · · ·	1.50		
			0.2		0.0		10.24		1220.00						0.65	0.415			0.14		
										Re	ached 25% wi	ithin 24 hours	. Second run und	jertaken.				15-15			
																	1	pTS-IS [could from graph]	1200.00 0.00000		
					Barto	on Green	1 - TPO)4 - Infi	Itratior	n Vs Time	e						- 1				
									Time	e - (Minutes)							- 1		4.66667		
	(D	120		240	360		480		600	720	840	960		1080 1200		1		0.00467	m/hr	
	0.0					-															
	0.1									_							In	filtration Rate (mm/hr	-1		
																		< 0.036	1	IMPERMEABLE	
																		036 < IR < 0.38		VERY SLOW	
	£ 0.2																				
	8																	38 < IR < 3.7		MODERATELY	SLOW
										i		i	i				3.	7 < IB < 37		MODERATE	
	egung o.a																37	7 < IR < 370		MODERATELY R	RAPID
	P																IB	> 370		RAPID	
	unou6 /																	BASIC INFILTRATIO	N RATES FOR		
	Noled 0.5	- \			· - · - ·					· · - · - · + ·	+										
	д u.s			_														Suil type	Baric infiltration rate (mm/hour)		
	Depth																1.00	nd	lors than 30		
	0.6						i	-										ndy loam	20-30		
			+		- +				_			4						am	10-20		
																		aylaam	5-10		
	0.7																	ay	1-5		
																		-7			
	8.0																				
																		Water level = Pipe	Depth - Dip		
			-	🛻 SE - T	Р - 04 - Те	st Run No. 1	L	2	25% Full (n	mbgl}	75	% Full (mbgl)		50% Ful	(mbgl)						
												. 67									

16.6.3 Soakaway Test Location Map

16.7 Appendix 7 – SuDS Suitability Assessment

16.7.1 SuDS Suitability Table

Suds Technique	Typical Uses	Potential Issues	Potential Suitability
Rainwater Harvesting	Capture of rainwater into a tank(s) for use (usually non-potable) such as irrigation, toilet flushing, vehicle or plant cleansing.	Care is needed to prevent the development of bacteria, algae and insect infestation.	Suitable on small scale for interception storage
Infiltration: Soakaways Infiltration Trenches and Basins	Infiltration components are used to capture surface water runoff and allow it to infiltrate (soak) and filter through to the subsoil layer, into the groundwater.	Poorly draining bedrock but groundwater table is potentially < 3m below surface. Could increase flood risk. Maintenance	Unsuitable – following subject site investigation
Green/Brown /Blue Roofs	Used on flat or shallow pitched roofs to provide a durable roof covering which also provides thermal insulation, amenity space, biodiversity habitat as well as attenuation of rainwater.	Maintenance - Ensuring safe access	Suitable
Rain Gardens	Creation of planted landscaped areas to allow the diversion of a portion of rainwater from either downpipes or surrounding paved surfaces. Raingardens can either allow infiltration into the ground or have tanked systems for water retention.	Require maintenance	Suitable – Poor infiltration.
Permeable Pavements / Surfaces	Permeable hard surfaces that allow rainwater to pass through either into the ground or to tanked systems. Good as interception storage.	Potential impact of saturation on pavement stability to be considered. May require extensive use of impermeable membranes and under-	Suitable – Poor infiltration

Suds Technique	Typical Uses	Potential Issues	Potential Suitability
		drainage. Maintenance required.	
Swales	Dry ditches used as landscape features to allow the storage and infiltration of rainwater. Often used as linear features alongside roads, footpaths or rail lines but capable of being integrated into the design of many open spaces.	Finding available space in proposed site layout	Suitable
Detention Basin/Ponds	Landscape features designed to store and in some cases infiltrate rainwater. Detentions basins are usually dry, whereas a pond should retain water. These features need areas of open space but can often be combined with other sustainable drainage techniques.	Potential health and safety issues. Finding available space in proposed site layout	Unsuitable - space
Storage Tanks/ Geocellular Storage	Usually below ground level, they attenuate rainwater for later slow release back into the drainage system.	Pumping may sometimes be required to empty the tank into the drainage system	Suitable
Oversized Piping	Using larger than necessary pipework creates additional space to store rainwater.	Lacks the wider benefits of the green infrastructure-based techniques	Suitable

16.8 Appendix 8 – Descriptions Of SuDS Techniques

16.8.1 Living/Green Roofs

Green roofs are multi-layered vegetated systems, built on roof covers. These systems are designed to return the surface water runoff from a building to the sites pre-construction level, and can be built into new build or retrofitted and are suitable for any building with flat to gently sloping roofs providing the existing roof can take the required load.

Figure 3: Green roof at the Queen Elizabeth Olympic Park (University of East London)

The topographical variation is incorporated into the substrate depth. It varies between 75 and 200 mm to create varied microclimates and hydrological regimes increasing habitat heterogeneity.

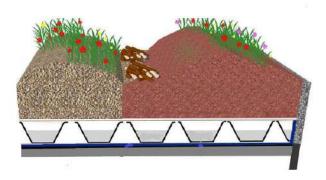
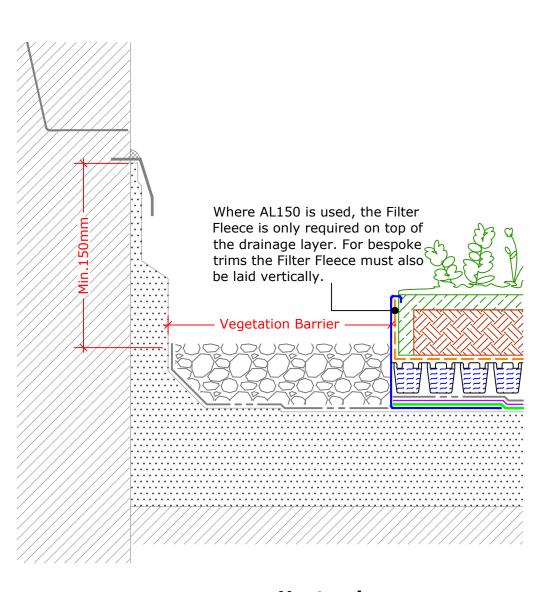
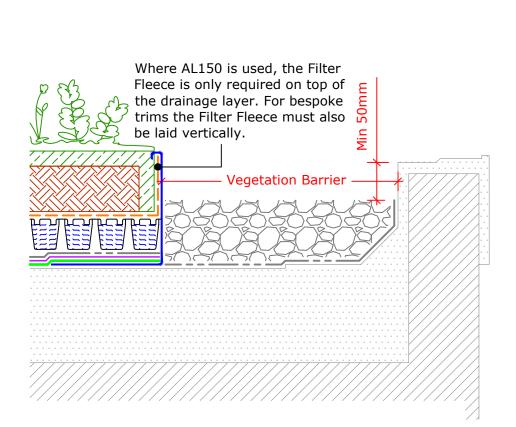


Figure 4: Biodiverse green roof diagram (University of East London)

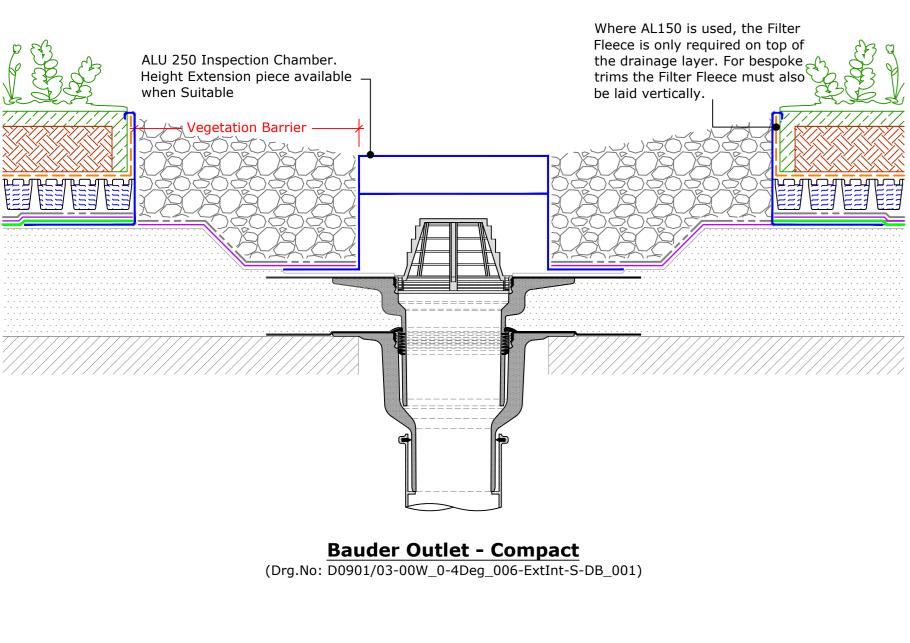


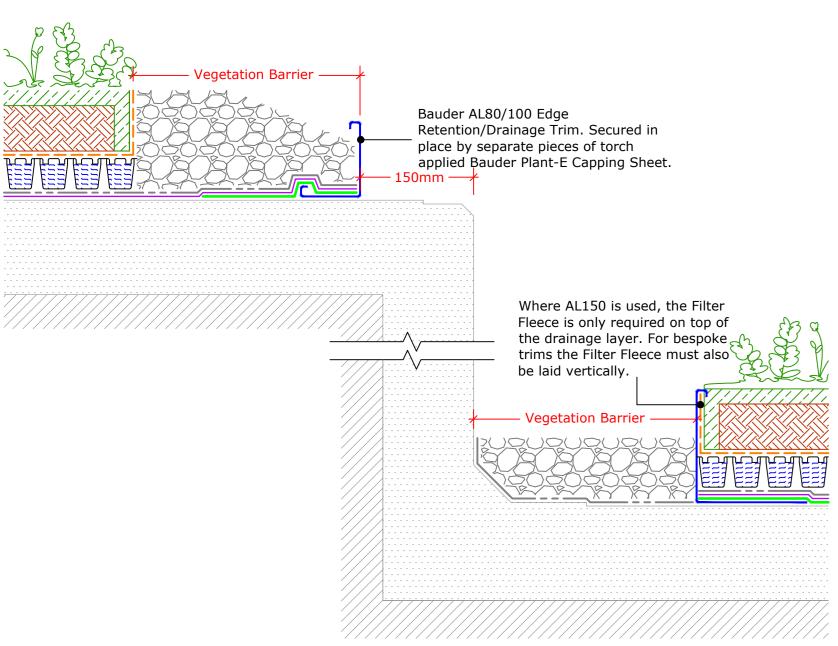
Above the roof decking lies a standard waterproofing layer. The geocomposite drainage and water attenuation layers provide a water volume of 12 l/m². Geotextile filters are then places to act as root barriers and prevent sediments being released from the roof.

The outlet will be sized appropriately in order to cope with storm events.



16.8.2 Living/Green Roofs - Product Example


<u>Upstand</u> (Drg.No: D0901/03-00W_0-4Deg_201-ExtInt-S-DB_001)



Perimeter Kerb (Drg.No: D0901/03-00W_0-4Deg_002-ExtInt-S-DB_001)

<u>Change In Levels</u> (Drg.No: D0901/03-00W_0-4Deg_210-ExtInt_001)

PRODUCT DATA SHEET

Bauder SB Substrate Sedum Blanket

A British grown Sedum blanket produced on a fully bio-degradable coir mat carrier designed to be used over Bauder (FLL Compliant) Extensive Substrate.

Intended Use

Bauder SB Substrate Sedum Blanket is a mature vegetation blanket, sown with a broad variety of sedums. It is intended for application directly over Bauder FLL compliant, Extensive Substrate (see Product Data Sheet) as the underlying growing medium. The product is designed to enable rapid rooting to the substrate to speed up establishment times.

The SB Blanket is grown in the UK. Typically, it is not supplied until it is least one year old, this insures the root structure has developed, enabling it to cope with harvesting, transportation and relaying which can stress young sedum plants. The vegetation within this product is a broad mix of hardy sedum species.

PRODUCT INFORMATION AND TECHNICAL PERFORMANCE					
Characteristic	Unit	Value			
Maximum saturated weight	kg/m²	≤ 24			
Thickness	mm	30 to 40			
Vegetation	Nos	Sown with 13 to 17 sedum species Species mixes are adjusted from time to time. Please contact Bauder Technical for more information.			
Material		Substrate and sedum plants, grown on a Coir mat carrier. (100% Bio-degradable)			
Typical supply size	m	1 x 2.4			
Rolls per pallet	Rolls	Typically 20 rolls - Dependant on weight (40m ²)			
Pallets per articulated lorry	Pallets	26 pallets – Dependant on weight (1040m ²)			

UNITED KINGDOM

Bauder Ltd 70 Landseer Road, Ipswich, Suffolk IP3 0DH T: +44 (0)1473 257671 E: <u>info@bauder.co.uk</u> bauder.co.uk

IRELAND

PRODUCT DATA SHEET

CERTIFICATION AND ENVIRONMENTAL INFORMATION

5 ()	ISO 9001:2015 Quality Management Certificates EN1271 (UK) and 70499/03-15_e (Germany).
Recycled content	≥ 95% recycled material

INSTALLATION GUIDANCE

Normally installed directly onto the levelled substrate, it should be installed immediately on delivery, SB Blanket should only be layed by skilled operative. Care should be taken not to traffic the sedum during or after installation. See Bauder's Green Roof Installation Guide for full details.

The correct watering and aftercare is required for this product.

Bauder reserves the right to amend information and product specifications without prior notice. All reasonable care has been taken to ensure that all data is current at the time of print, however because Bauder pursues a policy of constant development we recommend ensuring that your copy of this information is current by contacting out Technical Department at technical@bauder.co.uk.

Recommendations for use should be verified as to the suitability and compliance with actual requirements, specifications, installation techniques and any applicable laws and regulations.

UNITED KINGDOM

Bauder Ltd 70 Landseer Road, Ipswich, Suffolk IP3 0DH T: +44 (0)1473 257671 E: <u>info@bauder.co.uk</u> bauder.co.uk

IRELAND

PRODUCT DATA SHEET

Bauder (FLL Compliant) Extensive/Biodiverse/Intensive Substrate

Lightweight, free draining substrates designed as a growing medium for a range of different plant species.

Intended Use

This FLL/GRO compliant substrate provides a free draining, growing medium for green roof systems. It is a lightweight substrate designed for most vegetation (Sedum, Wildflower or Grass blankets, Specimen shrubs and trees, plug-plants or seed). Additionally, it provides aeration qualities with some inherent water retention.

PRODUCT INFORMATION AND TECHNICAL PERFORMANCE						
Characteristic	Unit	Extensive Value	Biodiverse Value	Intensive Value		
Maximum saturated weight	kg/m³	≤1,200	≤1,200	≤1,250		
Typical supply weight	kg/m³	c. 900	c. 950	c. 1,000		
Water storage	By vol	35%	35%	35%		
pH value	рН	6 - 8.5	6 - 8.5	6 - 8.5		
Bulk bag size	m³	1.25	1.25	1.25		
Small bag size	Litre	25	25	25		
Material	Recycled crushed brick, expanded clay, shale, composted pine bark					

CERTIFICATION AND ENVIRONMENTAL INFORMATION

International Standards Organisation (ISO)	ISO 9001:2015 Quality Management Certificates EN1271 (UK) and 70499/03-15_e (Germany).
	ISO 14001:2015 Environmental Management Certificates A10552 (UK) and 70499/03-15_d (Germany).
	ISO 50001: 2011 Energy Management Certificate 70499/03-15_c (Germany)
Recycled content	≥ 95% recycled material

UNITED KINGDOM

Bauder Ltd 70 Landseer Road, Ipswich, Suffolk IP3 0DH T: +44 (0)1473 257671 E: <u>info@bauder.co.uk</u> bauder.co.uk

IRELAND

INSTALLATION GUIDANCE

Normally installed above a filter fleece and drainage board product. Substrates are raked out to give an even coverage of the required depth after settlement. See Bauder's Green Roof Installation Guide for full details.

Bauder reserves the right to amend information and product specifications without prior notice. All reasonable care has been taken to ensure that all data is current at the time of print, however because Bauder pursues a policy of constant development we recommend ensuring that your copy of this information is current by contacting our Technical Department at technical@bauder.co.uk

Recommendations for use should be verified as to the suitability and compliance with actual requirements, specifications, installation techniques and any applicable laws and regulations.

UNITED KINGDOM

Bauder Ltd 70 Landseer Road, Ipswich, Suffolk IP3 0DH T: +44 (0)1473 257671 E: <u>info@bauder.co.uk</u> bauder.co.uk

IRELAND

PRODUCT DATA SHEET

Bauder Filter Fleece

Fine mesh PP geotextile used in conjunction with Bauder substrates.

Intended Use

Bauder's Filter fleece is designed to separate and contain Bauder substrates from the drainage element of the green roof system. It prevents fine material from being washed out of the substrate layer.

PRODUCT INFORMATION AND TECHNICAL PERFORMANCE						
Characteristic	Test method	Unit	Value			
Weight	DIN EN 1848-1	g/m²	125			
Pore size	-	mm	0.13			
Water storage	-	Litre/m ²	0			
Thickness	-	mm	1			
Size (supplied in rolls)	-	m	1 or 2 x 100			
Coverage	-	m²	100 or 200			
Material	Polypropylene fleece					

CERTIFICATION AND ENVIRONMENTAL INFORMATION

International Standards Organisation (ISO)	ISO 9001:2015 Quality Management Certificates EN1271 (UK) and 70499/03-15_e (Germany).
	ISO 14001:2015 Environmental Management Certificates A10552 (UK) and 70499/03-15_d (Germany).
	ISO 50001: 2011 Energy Management Certificate 70499/03-15_c (Germany).
Recycled content	Varied ≥10%

UNITED KINGDOM Bauder Ltd 70 Landseer Road, Ipswich, Suffolk IP3 0DH T: +44 (0)1473 257671 E: <u>info@bauder.co.uk</u> bauder.co.uk

IRELAND

INSTALLATION GUIDANCE

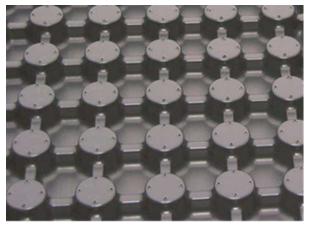
Normally installed to contain the substrate. The fleece should be taken up the sides of the substrate between the substrate and drainage trim or pebble margin. Fleece joints should be overlapped 150mm. Fleece should not be taken over the top of drainage outlets.

See Bauder's Green Roof Installation Guide for full details.

Bauder reserves the right to amend information and product specifications without prior notice. All reasonable care has been taken to ensure that all data is current at the time of print, however because Bauder pursues a policy of constant development we recommend ensuring that your copy of this information is current by contacting our Technical Department at technical@bauder.co.uk

Recommendations for use should be verified as to the suitability and compliance with actual requirements, specifications, installation techniques and any applicable laws and regulations.

UNITED KINGDOM


Bauder Ltd 70 Landseer Road, Ipswich, Suffolk IP3 0DH T: +44 (0)1473 257671 E: <u>info@bauder.co.uk</u> bauder.co.uk

IRELAND

PRODUCT DATA SHEET

Bauder DSE60 Drainage and Protection Layer

HDPE Water storage and multi-directional drainage layer. Used on roofs below 5° pitch.

Intended Use

Provides a pressure resistant stable base for high loads or support for roof mounted equipment without compression to the drainage capacity. If DSE60 is filled with Bauder Mineral Drain, it provides a robust temporary finish able to accept site traffic, including vehicles.

PRODUCT INFORMATION AND TECHNICAL PERFORMANCE					
Characteristic	Test method	Unit	Value		
Weight (dry)	EN 1848-1	Kg/m²	2		
Weight (filled with mineral drain)		Kg/m²	51.9		
Depth		mm	60		
Capacity		l/m²	33		
Water storage capacity		l/m²	17		
Water Storage (when filled with mineral drain)		l/m²	10-12		
Material			High density polyethylene		
Board Size		m	0.975 x 1.975 (1.93 m ²)		
Coverage		m²	1.9		

CERTIFICATION AND ENVIRONMENTAL INFORMATION			
International Standards Organisation (ISO)	ISO 9001:2015 Quality Management Certificates EN1271 (UK) and 70499/03-15_e (Germany).		
	ISO 14001:2015 Environmental Management Certificates A10552 (UK) and 70499/03-15_d (Germany).		
	ISO 50001: 2011 Energy Management Certificate 70499/03-15_c (Germany)		
Recycled content	100% recycled high density polyethylene		

INSTALLATION GUIDANCE

Normally installed over a protection layer, sheets are laid open cels down (as above) over entire areas. Butt up each sheet overlaping the lips. See Bauder's Green Roof Installation Guide for full details.

Bauder reserves the right to amend information and product specifications without prior notice. All reasonable care has been taken to ensure that all data is current at the time of print, however because Bauder pursues a policy of constant development we recommend ensuring that your copy of this information is current by contacting our Technical Department at <u>technical@bauder.co.uk</u>

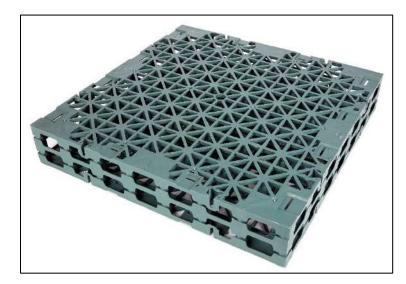
Recommendations for use should be verified as to the suitability and compliance with actual requirements, specifications, installation techniques and any applicable laws and regulations.

UNITED KINGDOM

Bauder Ltd		
70 Landseer Road, Ipsw	rich, Suffolk IP3 0DH	
T: +44 (0)1473 257671	E: info@bauder.co.uk	W: bauder.co.uk

IRELAND

PRODUCT DATA SHEET


Bauder Attenuation Cell 100

Multi-directional drainage layer. Used primarily in Bauder Blue Roof Systems.

Intended Use

Designed to hold storm water during severe rain events. The product is over 95% void. It has excellent compressive strength for use under green roofs and hard landscaping surfaces. Attenuation Cell 100 is laid on a protection layer above the completed waterproofing to provide continuous drainage within hard and soft landscaping.

The Cross Connectors connect the cells together horizontally, the Shear connectors connect two layers of cells should they be required.

Attenuation Cell Cross Connector - Deep

Attenuation Cell 100

Attenuation Cell Shear Connector

ATTENUATION CELL PRODUCT INFORMATION AND TECHNICAL PERFORMANCE			
Characteristic	Test method	Unit	Value
Weight (dry)	_	Per piece	2.9
		kg/m² 8.05	8.05
Waight (asturated)		Per piece	2.9
Weight (saturated)	-	kg/m²	8.05
			0.34 per piece (≥94.4%)
Water storage	-	m²	Total capacity would be >91ltrs/m ²
Commencial strength	EN 100 10010	N/m²	≥400 KN/m ² Vertically
Compressive strength	EN ISO 10319		≥100 KN/m ² Laterally
Depth	-	mm	100
Size	-	m	0.6 x 0.6
Approximate coverage	-	m²	0.36 (2.77 pieces per m ²)

UNITED KINGDOM

Bauder Ltd 70 Landseer Road, Ipswich, Suffolk IP3 0DH T: +44 (0)1473 257671 E: <u>info@bauder.co.uk</u> bauder.co.uk

IRELAND

PRODUCT DATA SHEET

ATTENUATION CELL CROSS CONNECTORS – DEEP/SHEAR CONNECTORS PRODUCT INFORMATION AND TECHNICAL PERFORMANCE

Characteristic	Unit	Cross Connector – Deep Value	Shear Connector (vertical) Value	
Weight	kg	0.1	0.08	
Size	mm	40 x 25 x 23	40 x 25 diameter	
Number per bag	Number	500	500	
Minumum numbers of connectors per cell	N/m ²	2 (or as required)	1 (or as required)	
Approximate coverage per bag	mm	90m ² (based on 2 per cell)	180m ² (based on 1 connector per cell)	

CERTIFICATION AND ENVIRONMENTAL INFORMATION	
DIBt DIN EN ISO 1183-1 Plastic Density	0.95 g/cm ³ – 1.10 g/cm ³
	RAL Deutsches Institut für Gütesicherung und Kennzeichnung e.V. and protected by registration with the German Patent and Trademark Office as a collective mark. Quality mark rainwater systems
Manufactured from	High Density Polypropylene (100% recycled material)

INSTALLATION GUIDANCE

Normally installed over a protection layer, cells are clipped together using cross conectors (ordered separately) to form a single layer over the entire blue roof area. If a second layer is required then shear connectors are required to connect the two layers.

See Bauder's Blue Roof Installation Guide for full details.

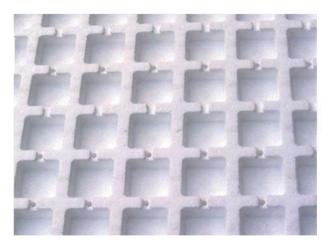
Bauder reserves the right to amend information and product specifications without prior notice. All reasonable care has been taken to ensure that all data is current at the time of print, however because Bauder pursues a policy of constant development we recommend ensuring that your copy of this information is current by contacting our Technical Department at technical@bauder.co.uk

Recommendations for use should be verified as to the suitability and compliance with actual requirements, specifications, installation techniques and any applicable laws and regulations.

UNITED KINGDOM

Bauder Ltd 70 Landseer Road, Ipswich, Suffolk IP3 0DH T: +44 (0)1473 257671 E: <u>info@bauder.co.uk</u> bauder.co.uk

IRELAND


PRODUCT DATASHEET

Bauder Reservoir Board Drainage and Protection Layer

Water storage, multi-directional drainage layer. Used on roofs above 5° pitch.

Intended Use

Laid on to the completed waterproofing to provide continuous drainage and increased water capacity for the vegetation on pitched roofs. Also used in intensive roof systems.

PRODUCT INFORMATION AND TECHNICAL PERFORMANCE			
Characteristic	Test method	Unit	Value
Weight (dry)	DIN EN 1848-1	Kg/m ²	0.65 or 0.95
Weight (saturated)		Kg/m ²	10.65 or 22.45
Water Storage		Ltr	10 or 22.5
Depth		mm	50 or 75
Size		m	0.795 x 1,298 (rebated)
Coverage		m²	1

CERTIFICATION AND ENVIRONMENTAL INFORMATION		
International Standards Organisation (ISO)	ISO 9001:2015 Quality Management Certificates EN1271 (UK) and 70499/03-15_e (Germany).	
	ISO 14001:2015 Environmental Management Certificates A10552 (UK) and 70499/03-15_d (Germany).	
	ISO 50001: 2011 Energy Management Certificate 70499/03-15_c	
Material	Expanded Polystyrene	

INSTALLATION GUIDANCE

Normally installed with a protection layer, boards are laid over entire areas. Interlock each board. See Bauder's Green Roof Installation Guide for full details.

UNITED KINGDOM

IRELAND

TECHNICAL DATA SHEET

Bauder Drainage Board

DESCRIPTION

Lightweight multidirectional drainage to allow for free dispersal of the water to the nearest outlet. Used within schemes where the growing medium is of sufficient depth to negate the need for additional water storage for the vegetation.

TECHNICAL DATA:

Composition

Material

expanded polystyrene – 15% recycled material

Weights and sizes

Standard width:	0.795 metre (rebated)
Standard length:	1.298 metres (rebated)
Coverage:	1m²
Thickness:	50mm
Weight:	ca. 0.65Kg/m²
Compressive strength	ca. 45kN/m²

Supply Form

Boards

UNITED KINGDOM

Bauder Ltd 70 Landseer Road Ipswich Suffolk England IP3 0DH T: +44 (0)1473 257671 E: info@bauder.co.uk bauder.co.uk

IRELAND

Bauder Ltd O'Duffy Centre Cross Lane Carrickmacross Co. Monaghan Ireland T: +353 (0)42 9692 333 E: info@bauder.ie bauder.ie

PRODUCT DATA SHEET

Bauder FSM 600 & FSM 1100 Protection Mat

Heavy duty protection layer made from polyester and polypropylene fibres. Supplied in two thicknesses.

Intended Use

Laid on the completed waterproofing to protect the completed waterproofing from mechanical damage.

PRODUCT INFORMATION AND TECHNICAL PERFORMANCE				
Characteristic	Unit	FSM 600 Value	FSM 1100 Value	
Weight (dry)	kg/m²	0.6	1.1	
Weight (saturated)	kg/m²	3.6	7.1	
Water storage	Litre/m ²	3	6	
Thickness	mm	4	8	
Size (supplied in rolls)	m	2 x 30	2 x 15	
Coverage	m²	60	30	
Material	-	Polyester and polypropylene fibre mix		

CERTIFICATION AND ENVIRONMENTAL INFORMATION		
International Standards Organisation (ISO)	ISO 9001:2015 Quality Management Certificates EN1271 (UK) and 70499/03-15_e (Germany)	
	ISO 14001:2015 Environmental Management Certificates A10552 (UK) and 70499/03-15_d (Germany)	
	ISO 50001: 2011 Energy Management Certificate 70499/03-15_c (Germany)	
Recycled content	100% - Polyester and polypropylene fibre mix	

INSTALLATION GUIDANCE

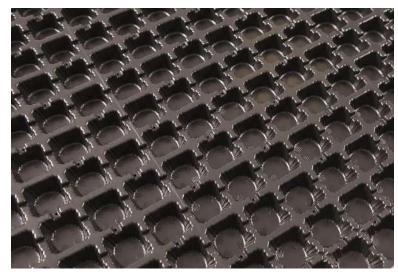
Normally installed under the entire green roof are, but kept clear of all outlets and drainage trims. FSM mats should be lapped by 150mm at all joints.

See Bauder's Green Roof Installation Guide for full details.

Bauder reserves the right to amend information and product specifications without prior notice. All reasonable care has been taken to ensure that all data is current at the time of print, however because Bauder pursues a policy of constant development we recommend ensuring that your copy of this information is current by contacting our Technical Department at technical@bauder.co.uk

Recommendations for use should be verified as to the suitability and compliance with actual requirements, specifications, installation techniques and any applicable laws and regulations.

UNITED KINGDOM


Bauder Ltd 70 Landseer Road, Ipswich, Suffolk IP3 0DH T: +44 (0)1473 257671 E: <u>info@bauder.co.uk</u> bauder.co.uk

IRELAND

TECHNICAL DATA SHEET

BauderGREEN DSE 20 drainage board

HDPE water storage and multi-directional drainage layer. Used on roofs below 5° pitch.

Intended Use

Laid on to the completed waterproofing to provide continuous drainage within hard and soft landscaping. It is primarily used where the load is moderate, such as extensive green roofs, beneath paving laid on sand/cement or gravel bedding or within planter beds.

PRODUCT INFORMATION AND TECHNICAL PERFORMANCE			
Characteristic	Test method	Unit	Value
Weight (dry)	EN 1848-1	kg/m²	1.2
Weight (saturated)		kg/m²	8.6
Water Storage		Ltr	7.4
Material			recycled high density polyethylene
Nominal Thickness		mm	2
Depth		mm	20
Board Size		m	1.06 x 2.36 (2.5 m ²)
Approx. Coverage		m²	2

CERTIFICATION AND ENVIRONMENTAL INFORMATION		
International Standards Organisation (ISO)	ISO 9001:2015 Quality Management Certificates EN1271 (UK) and 70499/03-15_e (Germany).	
	ISO 14001:2015 Environmental Management Certificates A10552 (UK) and 70499/03-15_d (Germany).	
	ISO 50001: 2011 Energy Management Certificate 70499/03-15_c (Germany)	
Recycled content	100% recycled high density polyethylene	

INSTALLATION GUIDANCE

Normally installed over a protection layer, sheets are laid (open cels up) over entire areas. Overlap each sheet by one full cup. See Bauder's Green Roof Installation Guide for full details.

Bauder reserves the right to amend information and product specifications without prior notice. All reasonable care has been taken to ensure that all data is current at the time of print, however because Bauder pursues a policy of constant development we recommend ensuring that your copy of this information is current by contacting our Technical Department at technical@bauder.co.uk

Recommendations for use should be verified as to the suitability and compliance with actual requirements, specifications, installation techniques and any applicable laws and regulations.

UNITED KINGDOM

Bauder Ltd		
70 Landseer Road, Ipsw	ich, Suffolk IP3 0DH	
T: +44 (0)1473 257671	E: info@bauder.co.uk	W: bauder.co.uk

IRELAND

BauderBLUE ST-B adjustable flow restrictor (bitumen)

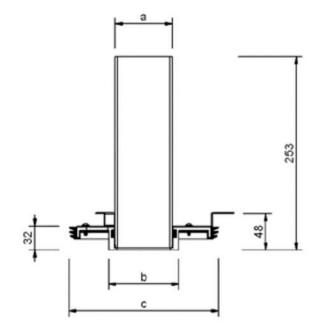
The BauderBLUE ST-B adjustable flow restrictor is fitted into the RWO and is used to control the flow of water from a blue roof, it is part of the Bauder blue roof system. It is comprised of four parts: baseplate with stainless steel slide control, overflow pipe, baseplate inner and outer seal. The polyamide baseplate fits within the 70mm vertical outlet, with the EPDM outer seal creating a watertight fit. The HDPE Overflow slots into the central hole of the baseplate with an inner EPDM seal preventing any leaks.

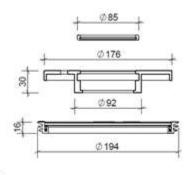
Intended Use

The BauderBLUE ST adjustable flow restrictor is designed to be fitted into a standard Bauder Bitumen Blue Roof Vertical Outlet DN70 as part of a Bauder Blue Roof system.

There are two versions of the restrictor, one for use with Bauder's hot melt system and the other used with Bauder's differing total roofing system.

The baseplate has a stainless-steel slide plate which can be set to 6 positions to control the flow rate for the outlet. The correct position for the plate will be shown on the Bauder Blue Roof Calculation Sheet.


PRODUCT INFORMATION AND TECHNICAL PERFORMANCE


Characteristic	Unit	Baseplate	
Material		Polyamide + stainless-steel Slide Control	
Height	mm	30 (42mm including Slide Control)	
Diameter (c)	mm	196	
Overflow External Diameter (a)	mm	75	
Supply Form		As part of a 4-part set	
		Overflow Pipe	
Material		HDPE	
Height	mm	250 maximum as Std (cut down to H-Max)	
Overflow Inner Diameter	mm	69	
Supply Form		As part of a 4-part set	

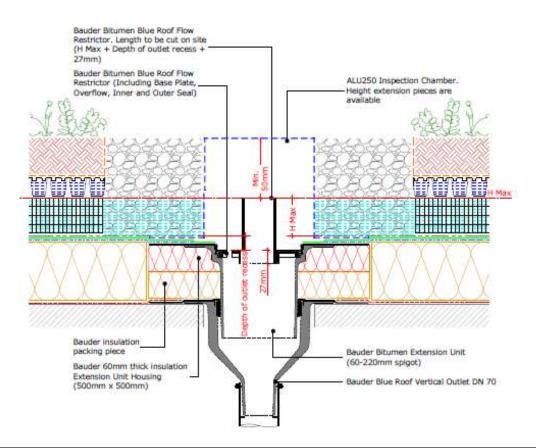
UNITED KINGDOM Bauder Ltd 70 Landseer Road, Ipswich, Suffolk IP3 0DH T: +44 (0)1473 257671 E: <u>info@bauder.co.uk</u> bauder.co.uk

IRELAND

PRODUCT INFORMATION AND TECHNICAL PERFORMANCE

Characteristic	Unit	Inner & Outer Seal				
Material		EPDM				
Diameter	mm	85 (innerseal) 194 (outer seal)				
Supply Form As part of a 4-part set						
Note: this product requires additional blue roof products to complete the system						

MAIN CHARACTERISTICS


- Robust, low maintenance design
- Overflow pipe is cut to a bespoke length for individual project
- UV/IR radiation resistant
- Flow Rate can be adjusted via 6 position slide plate to match that required for a particular roof/site.
- Follows the NFRC (National Federation of Roofing Contractors) Technical Guidance Notes for the Construction and Design of Blue Roofs & CIRIA Blue Roof Guidance (Construction Industry Research and Information Association)
- Packaging: Supplied in PE plastic bag including installation guide within a cardboard box.

UNITED KINGDOM Bauder Ltd 70 Landseer Road, Ipswich, Suffolk IP3 0DH T: +44 (0)1473 257671 E: <u>info@bauder.co.uk</u> <u>bauder.co.uk</u>

IRELAND

Section Detail

Discharge rate in I/s - Bauder Adjustable Flow Restrictor - Bitumen																				
	Head of water in mm																			
	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200
Position 1	0.3	0.4	0.5	0.5	0.6	0.7	0.7	0.7	0.8	0.8	0.8	0.9	0.9	0.9	1.0	1.0	1.0	1.1	1.1	1.1
Position 2	0.8	0.9	1.0	1.1	1.2	1.2	1.3	1.4	1.4	1.5	1.5	1.6	1.6	1.7	1.7	1.8	1.8	1.9	1.9	2.0
Position 3	1.2	1.4	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.0	3.1	3.2
Position 4	1.2	1.9	2.1	2.4	2.5	2.7	2.8	3.0	3.1	3.3	3.4	3.5	3.6	3.7	3.9	4.0	4.1	4.2	4.3	4.4
Position 5	1.6	2.6	2.9	3.1	3.3	3.5	3.7	3.9	4.1	4.2	4.4	4.5	4.7	4.8	5.0	5.1	5.3	5.4	5.5	5.7
Position 6	1.4	3.0	3.4	3.7	3.9	4.2	4.4	4.6	4.9	5.1	5.3	5.5	5.6	5.8	6.0	6.1	6.3	6.5	6.7	6.8

BLUE ROOF SURFACE FINISHES

Blue Roofs should have a surface finish above the water attenuation layers. This surface finish can be constructed from any suitable permeable surface, to provide visual masking, protection of the system, filtration of airborne debris to prevent b lockages and ballasting preventing wind uplift and floatation of the components. An impermeable surface can be used but adequate measures should be taken to ensure the water can filter into the Blue Roof attenuation void.

UNITED KINGDOM Bauder Ltd 70 Landseer Road, Ipswich, Suffolk IP3 0DH T: +44 (0)1473 257671 E: <u>info@bauder.co.uk</u> bauder.co.uk

IRELAND

BLUE ROOF DESIGN GUIDANCE

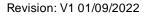
- A Blue Roof should not be considered as a water storage solution.
- No British or European standard covers this type of application at the present time.
- The Blue Roof must be designed to attenuate the predicted rainfall volume, required to prevent ponding or flooding on the roof surface. The surfacing should drain by direct permeability or drainage channels linking into the Blue Roof system.
- Emergency drainage must be provided within the primary outlet or by a secondary method of drainage to facilitate the removal of excess rainfall, if the designed capacity is exceeded. This should be placed at the top of the water attenuation layer.
- The Blue Roof, void forming components, thermal insulation and waterproofing must have the correct structural capacity to resist permanent (dead) load of the required finishes and any temporary (live) loading produced by maintenance/emergency vehicles or other elements. The components should be designed to accommodate the full capacity of the predicted storm water for a 24-hour period.
- All components must have chemical resistance to all potential hazardous material e.g., Fertilisers, petrochemicals and water bound pollutants carried in by rainfall typically from 4-9PH.
- An electronic or suitable integrity test should take place, by an independent and competent person, on the completed waterproofing prior to the installation of any Blue Roof void forming or landscaping components. The satisfactory waterproofing integrity certification must be retained.
- See Bauder's Blue Roof Design Considerations for more information.

BLUE ROOF MAINTENANCE GUIDANCE

When maintaining a blue roof, the following considerations should apply:

- Regularly clear all debris from the roof surface, rainwater outlets, chutes, gutters etc. Debris must be removed from the roof and not simply flushed down rainwater pipes.
- Annually inspect the waterproofing system visible at all upstands, to ensure it is firmly adhered to the detail that it is waterproofing.
- Cut back tree limbs that overhang the roof to give a one metre clearance outside the roof edge. This will significantly reduce blockage of drainage ways due to fallen leaves.
- Ensure that all rainwater pipes are free from blockages and that water flows freely through them.
- For full details see Bauder's Blue Roof Maintenance Guide.

CERTIFICATION AND ENVIRONM	ENTAL INFORMATION
Environmental Accreditation	Interseroh Climate Protection Certificate
Third Party Accreditation	TUV (Germany)
International Standards Organisation (ISO)	ISO 9001:2015 Quality Management Certificates EN1253-2
	ISO 14001:2015 Environmental Management Certificates EN1253-2
Product testing	All components comply with EN 1253-2 Regulated Building Products
Supply Form	Boxed on pallet (circa 60 per pallet)
Packaging	Tran sparent Plastic Bag (80my - 0.029Kg LDPE) within Cardboard box 0.311 Kg (FSC Certified)
Recycled content of packaging	none


INSTALLATION GUIDANCE

This Adjustable Flow Restrictor is designed to fit into the Bauder DN70 Compact Outlet. It is recommended that the restrictor is NOT fitted until the roof is completed finished and rainwater run-off is flowing clear. The base plate and overflow have seals which must be fitted to ensure the restrictor is watertight, a lubricant is supplied. The flow position on the slide control should be selected and locked into place using a Torx 2 screwdriver prior to fitting.

UNITED KINGDOM

Bauder I td 70 Landseer Road, Ipswich, Suffolk IP3 0DH T:+44 (0)1473257671 E: info@bauder.co.uk bauder.co.uk

IRELAND

Bauder reserves the right to update this data set without prior notice and this document is uncontrolled if printed or stored. Always confirm the latest version is used for the adoption of this product, available from our website: bauder.co.uk/technical-centre.

Intended use of this product should be verified with Bauder to ensure suitability and compliance with applicable guidance, regulations, legislations, project requirements, specifications, and installation techniques.

UNITED KINGDOM

Bauder Ltd 70 Landseer Road, Ipswich, Suffolk IP3 0DH T: +44 (0)1473 257671 E: info@bauder.co.uk bauder.co.uk

IRELAND

TECHNICAL DATA SHEET

BauderGREEN FSM 600 protection mat

Heavy duty protection layer made from polyester and polypropylene fibres.

Intended Use

Laid on the completed waterproofing to protect the completed waterproofing from mechanical damage.

PRODUCT INFORMATION AND TECHNICAL PERFORMANCE							
Characteristic	Unit	FSM 600 Value					
Weight (dry)	kg/m²	0.6					
Weight (saturated)	kg/m²	3.6					
Water storage	Litre/m ²	3					
Thickness	mm	4					
Size (supplied in rolls)	m	2 x 30					
Coverage	m²	60					
Material	-	Polyester and polypropylene fibre mix					

CERTIFICATION AND ENVIRONMENTAL INFORMATION					
International Standards Organisation (ISO)	ISO 9001:2015 Quality Management Certificates EN1271 (UK) and 70499/03-15_e (Germany)				
	ISO 14001:2015 Environmental Management Certificates A10552 (UK) and 70499/03-15_d (Germany)				
	ISO 50001: 2011 Energy Management Certificate 70499/03-15_c (Germany)				
Recycled content	100% - Polyester and polypropylene fibre mix				

INSTALLATION GUIDANCE

Normally installed under the entire green roof are, but kept clear of all outlets and drainage trims. FSM mats should be lapped by 150mm at all joints.

See Bauder's Green Roof Installation Guide for full details.

Bauder reserves the right to amend information and product specifications without prior notice. All reasonable care has been taken to ensure that all data is current at the time of print, however because Bauder pursues a policy of constant development we recommend ensuring that your copy of this information is current by contacting our Technical Department at technical@bauder.co.uk

Recommendations for use should be verified as to the suitability and compliance with actual requirements, specifications, installation techniques and any applicable laws and regulations.

UNITED KINGDOM

Bauder Ltd 70 Landseer Road, Ipswich, Suffolk IP3 0DH T: +44 (0)1473 257671 E: <u>info@bauder.co.uk</u> bauder.co.uk

IRELAND

16.8.3 Rainwater Harvesting

16.8.4 Rain Garden

A rain garden is a shallow depression, with absorbent, yet free draining soil and plants that can withstand occasional temporary flooding. Rain gardens are designed to mimic the natural water retention of undeveloped land and to reduce the volume of rainwater running off into drains from impervious areas and treat low level pollution.

Rain gardens usually absorb all the rainwater that flows into them, but when they do fill up following particularly heavy rainfall, any excess water is redirected to the existing drains. These simple rain gardens do not require any redesign of the existing drainage system and can be installed wherever space permits (see Planning and Design below) and in most soil types.

Figure 5: Rain Garden Cross Sections Examples

Rain gardens are usually situated some distance from buildings or site boundaries, although the exact location will depend on the local topography and available space. In order to reduce the likelihood of property damage to insignificant levels, it is recommended that rain gardens are situated at least 3m (10 feet) from any building, or be impermeable lined to protect foundations.

A rain garden 150mm deep and 20% of the area of the area of the roof that it serves will be able to intercept all of the run-off from a typical summer storm where 10-15mm of rain might fall. Rain gardens on more permeable soils will be even more effective. Over the course of an average year, a rain garden of this size will intercept most of the rainfall that it receives, only overflowing after several days of persistent rainfall.

16.8.5 Permeable Paving

Various options are available for the type of permeable paving that can be installed. Permeable block paving allows for infiltration through gaps in the surface. This can be underlain by a geotextile membrane and fine gravel course followed by with a sub-base or geocellular crates as shown in the figures below.

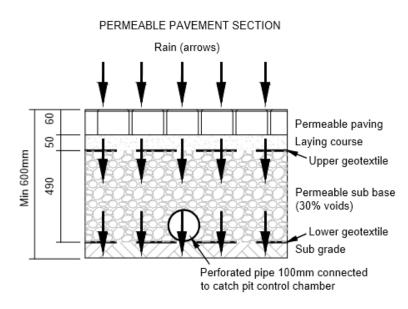


Figure 6 Block Permeable Paving with sub-base

The use of geocellular module storage provides structural strength (up to 400kN/m2) and high-water storage capacity with void space of 95%+.

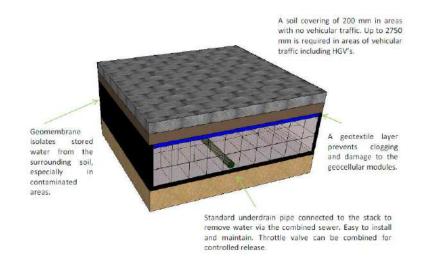


Figure 7: Block Permeable Paving with Geocellular Module

16.8.6 SuDs Planter Storage Volume/Rain water Harvesting Systems

SuDs planters are an innovative way of increasing the water attenuation, additionally providing an opportunity to green areas where is not practical to remove or break up permeable surfaces. With excellent retro-fit potential SuDs planters can be designed to receive rain water from a drainpipe or other inlet or simply used to receive rainwater falling on them. SuDS planters are best placed where they can be used in conjunction with other SuDS.

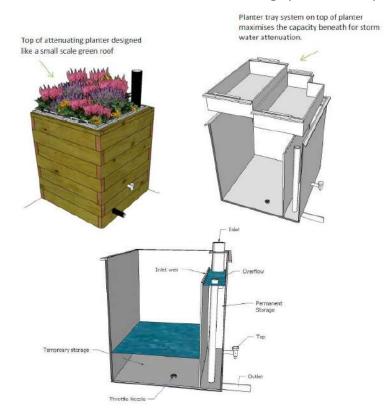


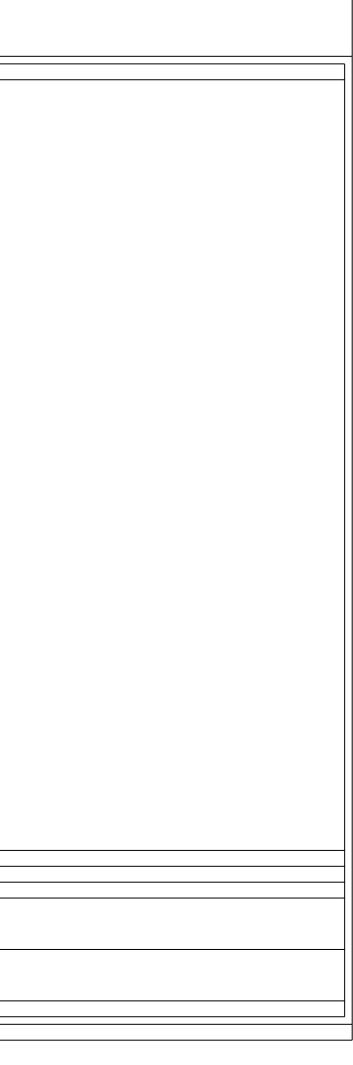
Table 9: SuDS Planter with attenuation storage (Thames Water)

They offer multi-use benefits such as aesthetic improvements and biodiversity potential. Furthermore, with capacity for water storage, they are well situated in grow your own schemes, providing a substrate for plant growth and a water storage capacity, for use in watering other plants.

16.8.7 Geocellular structures, oversized pipes and tanks

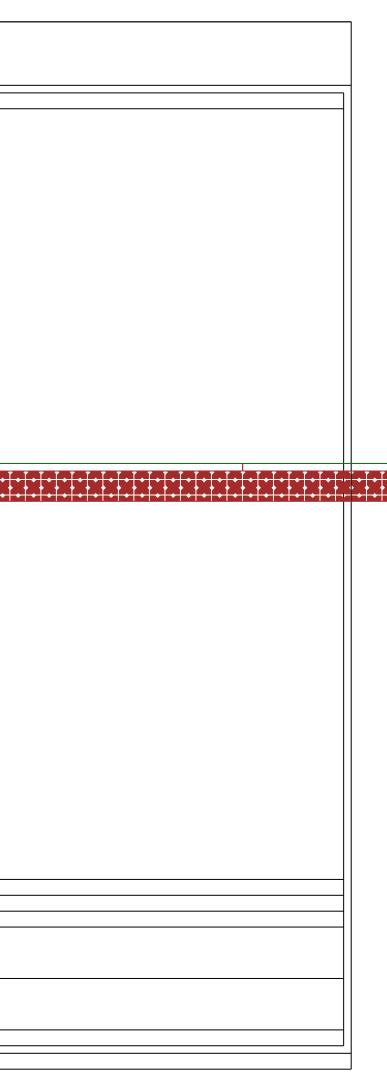
Modular plastic geocellular structures, with a high void ratio, are a new below ground storage arrangement that can replace underground pipes or tanks that have been used to store water. They can also be used to convey or infiltrate surface water runoff into the ground.

Underground storage features attenuate an agreed volume with a control structure to limit the discharge rate. Structural design must be provided to ensure integrity of the box, pipe or tank under loading. Silt interception and management arrangement is critical to long-term effectiveness of these structures and this must be demonstrated at design stage and confirmed for the design life of the development. It can be implemented either in the form if a modular box system with inlet and outlet pipework connected to the sides of the structure or in the form of a honeycomb structure with perforated pipes running under or through the box. Water is forced into the box when flows increase. There are now shallow, load bearing boxes which can be used under pavements and in particular below permeable pavement which protects the box from silt contamination and provides treatment with enhanced storage. Moreover, geocellular systems can be installed above a high-water table.



16.9 Appendix 9 - Microdrainage Modelling

16.9.1 Layout of Network / Cross Sections

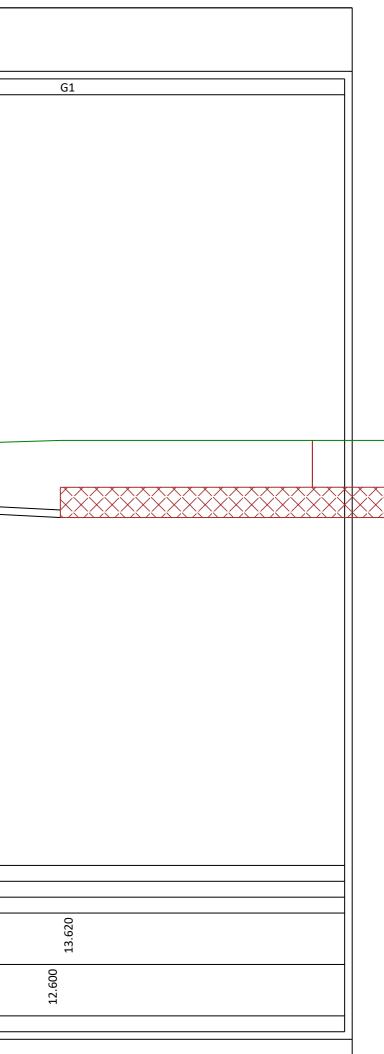

PDF to follow this page.

STM Environmental Consultants Model Version 1.1	File: Barton Green.pfd Network: Barton Green_SW	Page 1 Barton Green,
STM Environmental Consultants Model Version 1.1	M. Ashdown 20/11/2023	New Malden, Surrey, KT3 3HU
ENVIRONMENTAL CONSULTING. SOFTWARE & TRAINING Node Name	GR RG1_b	j Sulley, KIS SHO
A3 drawing		
Hor Scale 300		
Ver Scale 50		
Datum (m) 8.000 Link Name	1.000	
Section Type	1.000 1.0000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	
Slope (1:X)	60.0	
Cover Level (m)	<u>6</u>	
	13.650	
Invert Level (m)	13.100	
	13.	
Length (m)	6.759	
	· · · · ·	
	Flow+ v10.4 Copyright © 1988-2023 Causeway Technologies Ltd	

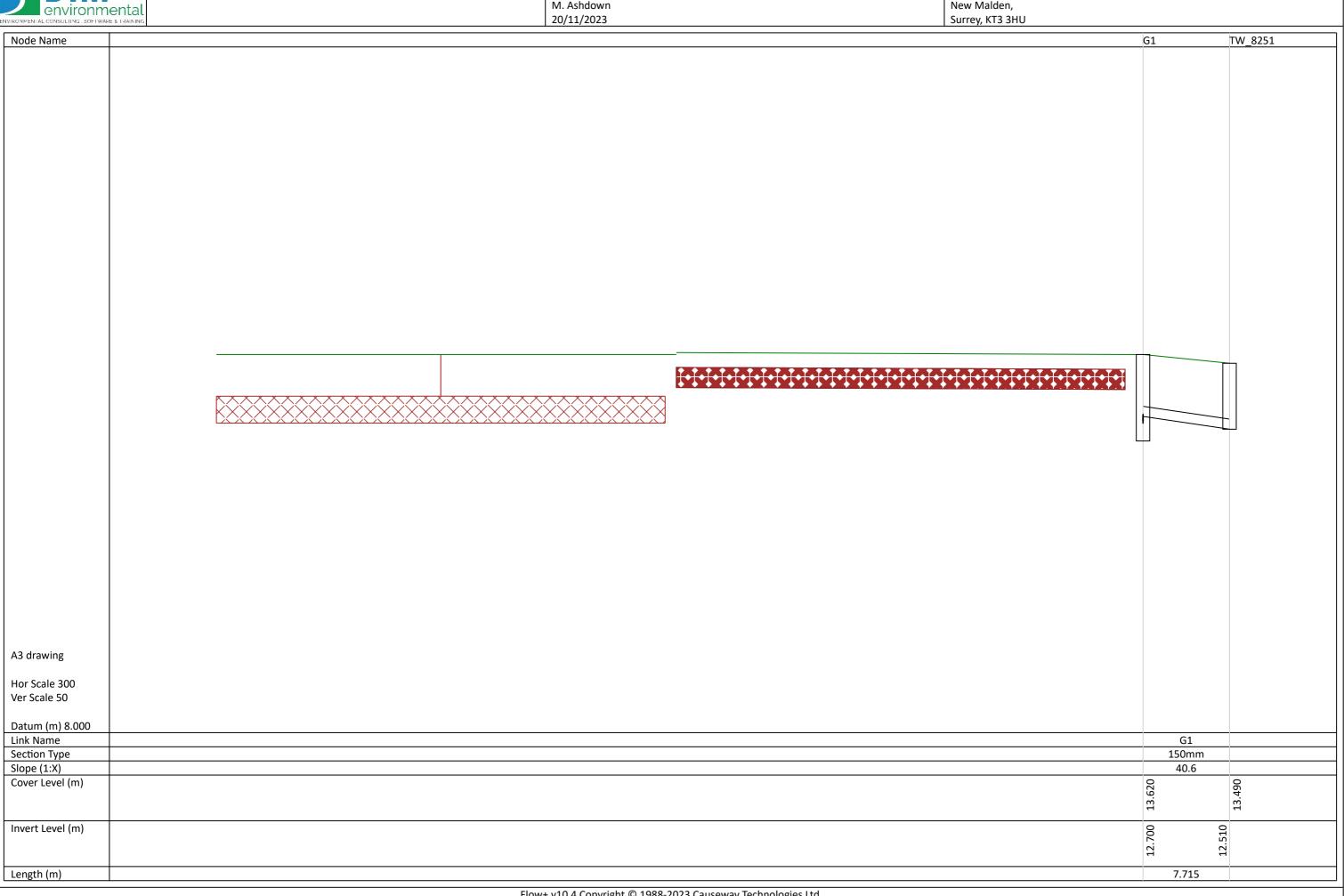
5	IS1	M	
		ronm	01100

VIRONMENTAL CONSULTING .	OFTWARE & TRAINING	20/11/2023	Surrey, KT3 3HU
Node Name	RG_1a		
_			
	<u>─</u> [*] !+!+!+!+!+!+!+!+!+!+!+!+!+!+! +!	<u>◆Ĩ◆Ĩ◆Ĩ◆Ĩ◆Ĩ◆Ĩ◆Ĩ◆Ĩ◆Ĩ◆Ĩ◆Ĩ◆Ĩ</u> ◆Ĩ	
) dua ula a			
drawing			
or Scale 300			
er Scale 500			
Scale 50			
itum (m) 8.00			
n Gi fName	-		
ectrionn Type			
6µ 68(1:X)			
over Level (m)	8		
	13.500		
vert Level (m)	8		
nvert Level (m)	2.8		
	H		
1201 916 12(m)			
(···/			

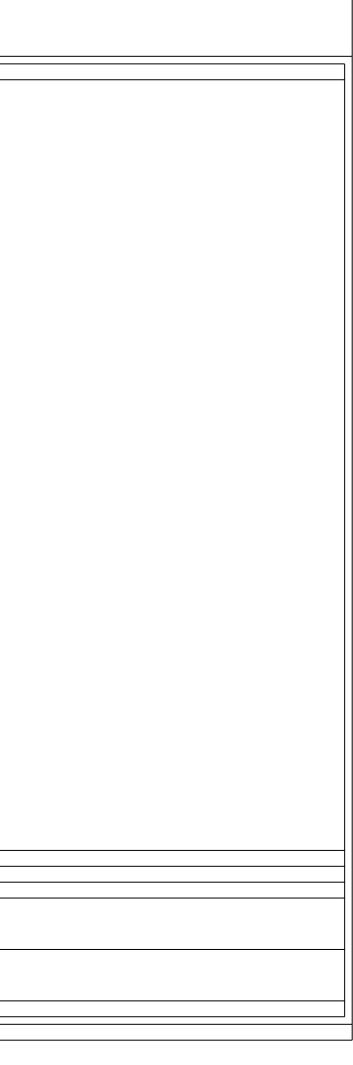
ironmenta

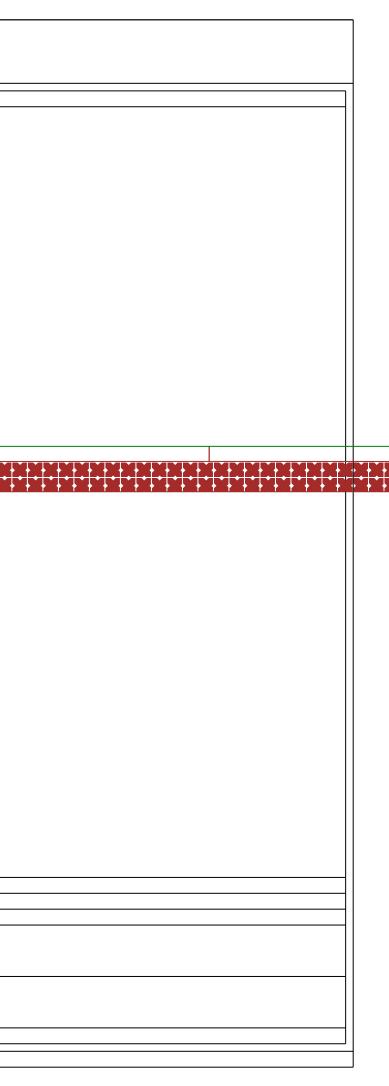

Node Name

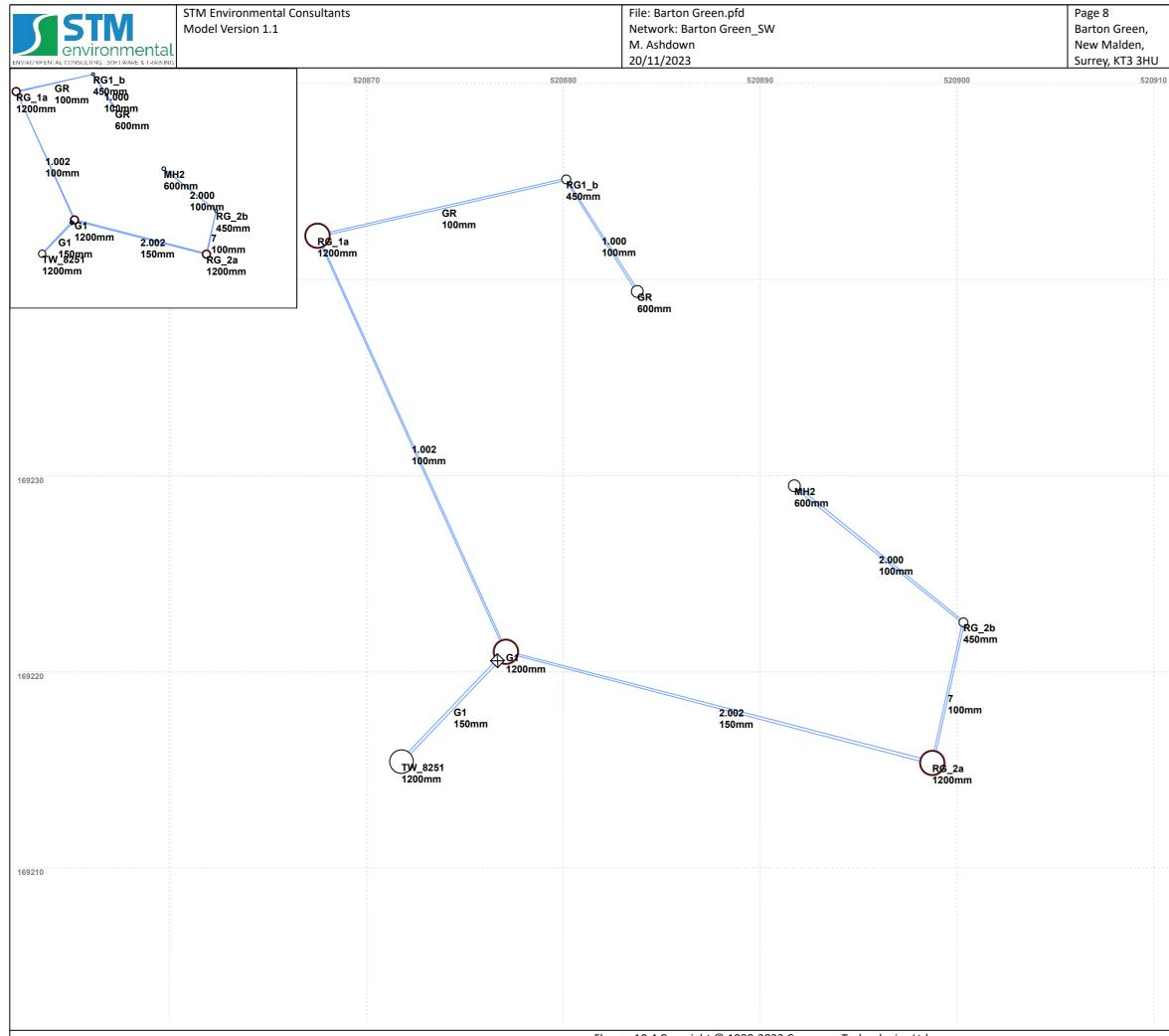
RG_1a


Network: Barton Green_SW

20/11/2023


L				
L				
L				
L				
L				
L				
L				
L				
L				
L				
L				
L				
L				
L				
L				
L				
L				
L				
L				
L	A3 drawing			
L	AS urawing			
L				
L	Hor Scale 300			
L	Ver Scale 50			
L				
L	Datum (m) 8.000			
L	Link Name		1.002	
L	Section Type		100mm	
L	Slope (1:X)		116.4	
L	Cover Level (m)	0		
L		.50		
L		13.500		
	Invert Level (m)	12.800		
		2.8		
		-		
	Length (m)		23.278	


	STM Environmental Consultants	File: Barton Green.pfd			Page 5
STM	Model Version 1.1	Network: Barton Greer	Barton Green,		
	iental	M. Ashdown			New Malden,
	Re & TRAINING	20/11/2023	1		Surrey, KT3 3HU
Node Name			MH2	RG_2b	
		l			
				-	
A3 drawing					
Hor Scale 300					
Ver Scale 50					
Datum (m) 8.000					
Link Name			2.000		
Section Type			100mm		
Slope (1:X) Cover Level (m)			80.0	0	
			13.650	13.700	
			13	13	
Invert Level (m)					
			13.000		
			13.		
Length (m)			11.057		
				l	
1	Flow	/+ v10.4 Copyright © 198	8-2023 Causeway Technolo	gies Ltd	

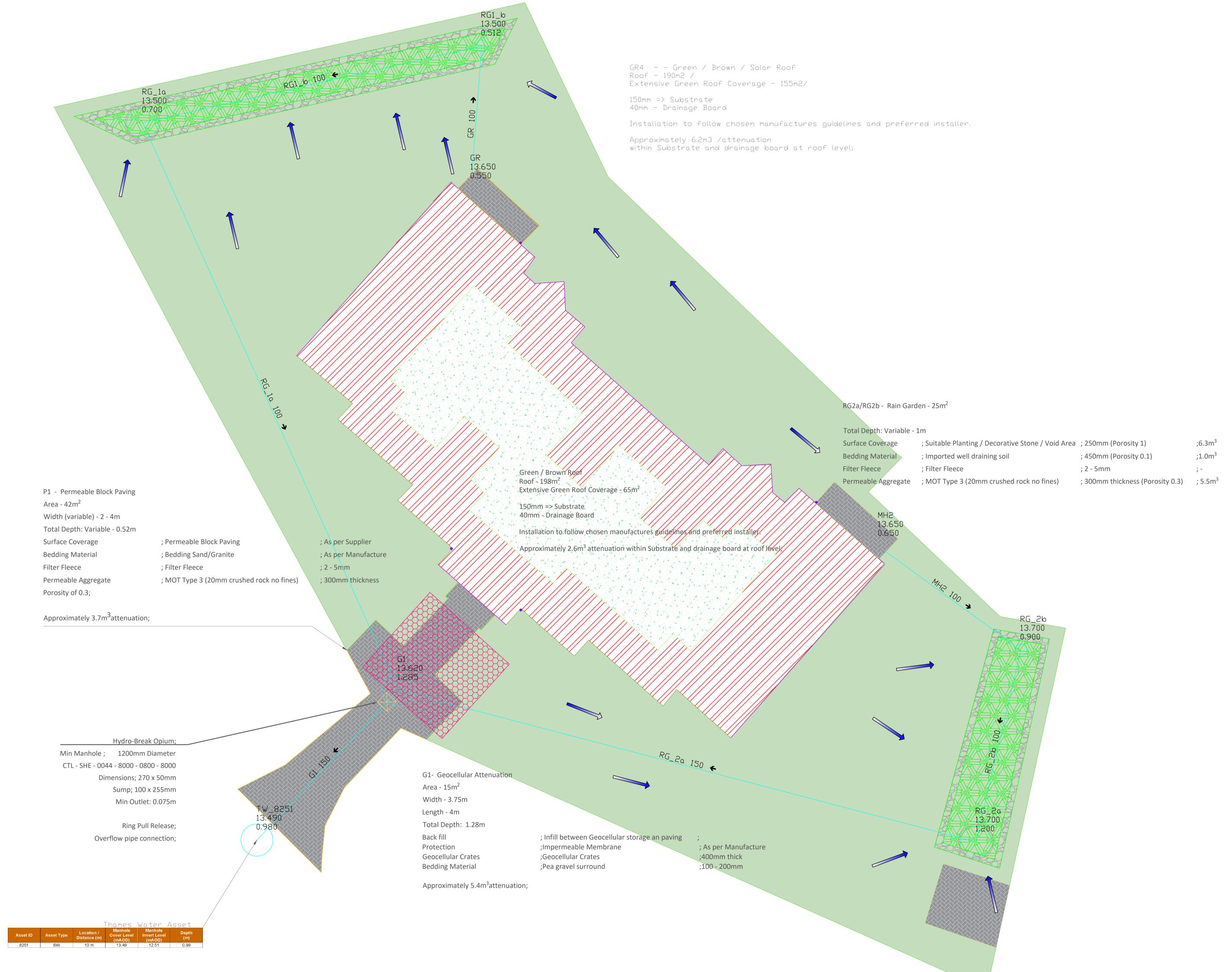

RG_21bode Name RG_2a

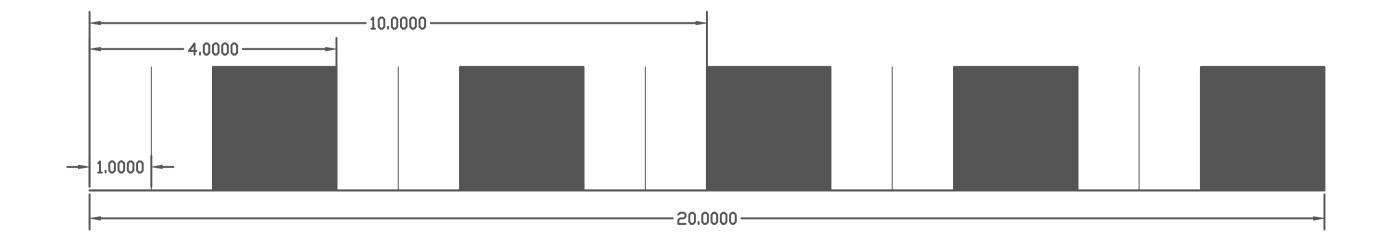
	A3 drawing		
	Hor Scale 300 Ver Scale 50		
	Datum (m) 8.000		
	Link7Name Sectrion Type		
	Sloop (1:X)		
13.700			
<u>12.800</u>	Invert Lev椴(m) 80 다		
	L∉r3g4412 (m)		

5	S	ГМ	

	Environmental Consultants el Version 1.1	File: Barton Green.pfd Network: Barton Green_SW M. Ashdown 20/11/2023		Page 7 Barton Green, New Malden, Surrey, KT3 3HU		
Node Name			RG_2a		G1	
A3 drawing						
Hor Scale 300 Ver Scale 50						
Datum (m) 8.000						
Link Name Section Type			1	2.002 50mm		[]
Slope (1:X)				106.6		
Cover Level (m)			13.700		13.620	
Invert Level (m)			12.800		12.590	
Length (m)				22.395		
	Flow	+ v10.4 Copyright © 1988-2023 Causeway Technologies Ltd				

0	20920




16.9.2 Layout of Network - Features, Exceedance flows and Sewer Connection PDF to follow this page.

RG1a/RG1b - Rain Garden - 20m²

Total Depth: Variable - 1m

Surface Coverage	; Suitable Planting / Decorative Stone / Void Area	; 250mm (Porosity 1)	;6.3m ³
Bedding Material	; Imported well draining soil	; 450mm (Porosity 0.1)	;0.7m ³
Filter Fleece	; Filter Fleece	; 2 - 5mm	; -
Permeable Aggregate	; MOT Type 3 (20mm crushed rock no fines)	; 300mm thickness (Porosity 0.3)	; 1.4m ³

MH4 B8.700(mADD) 87.400(mADD) 1.300(m)	Surface Water Manhole		Geocellular Storage Tank	#1.009 156# → 0.120m	Surface Water Pipe	Project Site	:SWDS - 2023 - 00029 :Barton Green,
Ο	Surface Water Inspection Manhole		Permeable Block Paving		Perforated Pipe		:New Malden, Surrey, :KT3 3HU
	Flow Control Chamber		Rain Garden (Gravel Sub-base)		Acco Drainage Channel	Company Client Issue	:STM Environmental :RAA Planning Ltd :No.1.0
ο	Rainwater Down Pipe		Soft Landscaping / Amenity Space	<	Overflow Flow Route	By	:Matthew Ashdown
	Bauder Biointensive Brown Roof	•	Rainwater Butt				
							North

16.9.3 Drainage Network Modelling Results

[]						
	STM Environmental Consultants	File: Barton Green.pfd	Page 1 Barton Green,			
	Model Version 1.1	=				
environmental		M. Ashdown	New Malden,			
ENVIRONMENTAL CONSULTING . SOFTWARE & TRAINING		20/11/2023	Surrey, KT3 3HU			
		Design Settings				
	Rainfall Methodology FSR		0.00			
	Return Period (years) 100		0.0			
	Additional Flow (%) 0		.00			
	FSR Region England and Wa		evel Soffits			
	M5-60 (mm) 20.000		.200			
	Ratio-R 0.400		.200			
	CV 0.750	Include Intermediate Ground √				
	Time of Entry (mins) 5.00	Enforce best practice design rules x				
	<u>A</u>	loptable Manhole Type				
Max Width (m		er (mm) Max Width (mm) Diameter (mm)	Max Width (mm) Diameter (mm)			
3	1200 499	1350 749 1500	900 1800			
		>900 Link+900 mm				
	Max Depth (m) Diamet 1.500	er (mm) Max Depth (m) Diameter (mm) 1050 99.999 1200				
	<u>15</u>	ANDARD Manhole Type				
Max Width (m 3	m) Diameter (mm) Max Width (mm) Diamet 374 1200 499	er (mm) Max Width (mm) Diameter (mm) 1350 749 1500	Max Width (mm) Diameter (mm) 900 1800			
		>900 Link+900 mm				
	Max Depth (m) Diamet 1.500	er (mm) Max Depth (m) Diameter (mm) 1050 99.999 1350				
	<u>Circular Link Type</u>					
	Shape Circular Barrels 1	Auto Increment (mm) 75 Follow Ground	x			
	Αν	ailable Diameters (mm)				
	100 150					
	Flow+ v10.4 Copyrigh	t © 1988-2023 Causeway Technologies Ltd				

	STM Environmental Consultants	File: Barton Green.pfd	Page 2
STM	Model Version 1.1	Network: Barton Green_SW	Barton Green,
environmental		M. Ashdown	New Malden,
ENVIRONMENTAL CONSULTING, SOFTWARE & TRAINING		20/11/2023	Surrey, KT3 3HU

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
RG1_b	0.010	5.00	13.500	450	520880.146	169245.106	0.513
RG_1a	0.000	5.00	13.500	1200	520867.506	169242.234	0.700
GR	0.010	5.00	13.650	600	520883.755	169239.391	0.550
G1	0.010	5.00	13.620	1200	520877.080	169221.016	1.285
TW_8251			13.490	1200	520871.775	169215.415	0.980
RG_2a			13.700	1200	520898.746	169215.349	1.200
RG_2b	0.010	5.00	13.700	450	520900.326	169222.519	0.900
MH2	0.010	5.00	13.650	600	520891.737	169229.482	0.650

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
G1	G1	TW_8251	7.715	0.600	12.700	12.510	0.190	40.6	150	5.97	50.0
1.000	GR	RG1_b	6.759	0.600	13.100	12.987	0.113	60.0	100	5.11	50.0
2.002	RG_2a	G1	22.395	0.600	12.800	12.590	0.210	106.6	150	5.72	50.0
7	RG_2b	RG_2a	7.342	0.600	12.800	12.800	0.000	0.0	100	5.34	50.0
1.002	RG_1a	G1	23.278	0.600	12.800	12.600	0.200	116.4	100	5.88	50.0
GR	RG1_b	RG_1a	12.962	0.600	13.000	12.800	0.200	64.8	100	5.34	50.0
2.000	MH2	RG_2b	11.057	0.600	13.000	12.862	0.138	80.0	100	5.21	50.0

Name	Vel (m/s)	Cap (l/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (I/s)	Pro Depth (mm)	Pro Velocity (m/s)
G1	1.584	28.0	6.8	0.770	0.830	0.050	0.0	50	1.307
1.000	0.996	7.8	1.4	0.450	0.413	0.010	0.0	29	0.750
2.002	0.972	17.2	2.7	0.750	0.880	0.020	0.0	40	0.710
7	1.000	7.9	2.7	0.800	0.800	0.020	0.0	0	∞
1.002	0.712	5.6	2.7	0.600	0.920	0.020	0.0	49	0.704
GR	0.958	7.5	2.7	0.400	0.600	0.020	0.0	42	0.883
2.000	0.861	6.8	1.4	0.550	0.738	0.010	0.0	30	0.668

 STM Environmental Consultants
 File: Barton Green.pfd
 Page 3

 Model Version 1.1
 Network: Barton Green_SW
 Barton Green,

 M. Ashdown
 New Malden,

 20/11/2023
 Surrey, KT3 3HU

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
G1	7.715	40.6	150	Circular	13.620	12.700	0.770	13.490	12.510	0.830
1.000	6.759	60.0	100	Circular	13.650	13.100	0.450	13.500	12.987	0.413
2.002	22.395	106.6	150	Circular	13.700	12.800	0.750	13.620	12.590	0.880
7	7.342	0.0	100	Circular	13.700	12.800	0.800	13.700	12.800	0.800
1.002	23.278	116.4	100	Circular	13.500	12.800	0.600	13.620	12.600	0.920
GR	12.962	64.8	100	Circular	13.500	13.000	0.400	13.500	12.800	0.600
2.000	11.057	80.0	100	Circular	13.650	13.000	0.550	13.700	12.862	0.738

Link	US	Dia	Node	МН	DS	Dia	Node	МН
	Node	(mm)	Туре	Туре	Node	(mm)	Туре	Туре
G1	G1	1200	Manhole	Adoptable	TW_8251	1200	Manhole	Adoptable
1.000	GR	600	Manhole	Adoptable	RG1_b	450	Manhole	Adoptable
2.002	RG_2a	1200	Manhole	1 STANDARD	G1	1200	Manhole	Adoptable
7	RG_2b	450	Manhole	1 STANDARD	RG_2a	1200	Manhole	1 STANDARD
1.002	RG_1a	1200	Manhole	Adoptable	G1	1200	Manhole	Adoptable
GR	RG1_b	450	Manhole	Adoptable	RG_1a	1200	Manhole	Adoptable
2.000	MH2	600	Manhole	Adoptable	RG_2b	450	Manhole	1 STANDARD

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
RG1_b	520880.146	169245.106	13.500	0.513	450	0 <	1.000	12.987	100
) [`] 1 (GR	13.000	100
RG_1a	520867.506	169242.234	13.500	0.700	1200	1	GR	12.800	100
							1.002	12.800	100

STM Environmenta Model Version 1.1	l Consultants		Net M.	: Barton (work: Bar Ashdown 11/2023	ton Gree				Nev	e 4 ton Gree v Malder rey, KT3 3	n,
			<u>Ma</u>	nhole Sch	<u>nedule</u>						
Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connection	ns	Link	IL (m)	Dia (mm)	
GR	520883.755	169239.391	13.650	0.550	600	°					
<u></u>	F 20077 000	160221 016	12 620	1 205	1200		0	1.000	13.100	100	
G1	520877.080	169221.016	13.020	1.285	1200	z J	1 2	2.002 1.002	12.590 12.600	150 100	
						0 "	0	G1	12.700	150	
TW_8251	520871.775	169215.415	13.490	0.980	1200		1	G1	12.510	150	
RG_2a	520898.746	169215.349	13.700	1.200	1200	0 <	1	7	12.800	100	
							0	2.002	12.800	150	
RG_2b	520900.326	169222.519	13.700	0.900	450	1	1	2.000	12.862	100	
						o	0	7	12.800	100	
MH2	520891.737	169229.482	13.650	0.650	600		0	2 000	13.000	100	
			Sim	ulation S	ettings		U	2.000	13.000	100	
					-						
Rainfall Method		d and Wales				ed Normal			1 ye 20 ye		
	(mm) 20.000 atio-R 0.400	d and Wales	Additi	n Down T onal Stora	age (m³∕h	ns) 240 na) 20.0			100 ye ۱scharge ۱		0.0 0.0 √
Ra Summ				onal Stora ck Discha					ischarge \ 360 minu		\checkmark

STM Environmental Consultants Model Version 1.1					File: Barto Network: M. Ashdov 20/11/202	Barton Gr vn				Page 5 Barton Green, New Malden, Surrey, KT3 3HU				
THE THE CONSCENTER. SOLT WATE &	BOUNDS				Storm Di					Surrey, Ki	5 5110			
			15 30	60 1	20 360	480	960 1	440 10	080					
Re	turn Period	Climate Chang			tional Flow	Return	-	mate Chang		onal Area				
	(years)	(CC %)	(A %)		(Q %)	(yea	-	(CC %)	•	A %)	(Q	-		
	1 2		0 0	0 0	0 0		30 100	4 4		C		0 0		
				<u>Pre</u>	-developmen	t Discharg	<u>e Rate</u>							
		Site Make reenfield Meth Drained Area (h	od IH124	d	Soil Index SPR Region	0.10	Growth Fa	Factor 30 ye actor 100 ye etterment ('	ar 2.48	Q 3	1 year (l/s) 0 year (l/s) 0 year (l/s)			
		SAAR (mr	m)	Growth	n Factor 1 year	0.85		QB	ar					
				Pre-o	development l	Discharge	<u>Volume</u>							
	Positiv	Site M Greenfield M vely Drained Are	lethod FSR/F		l Index 1 SPR 0.10 CWI	Cli	ırn Period (y mate Chang n Duration (r	e (%) 0		Bettermer ff Volume	nt (%) 0 PR e (m³)			
				Ν	lode GR Time-	Area Diag	<u>ram</u>							
	Ove	Overrio rrides Design A	des Design Are dditional Inflov		Depression St pression Stora Applies to	ige Depth	(mm) 20	Evapo-t	ranspiratic	on (mm/d	ay) 3			
Time Area Tir (mins) (ha) (mi	ns) (ha)	(mins) (rea Tim ha) (mir	ns) (ha)	Time (mins)	Area (ha)	Time (mins)	Area (ha)	Time (mins)	Area (ha)	Time (mins)	Area (ha)	Time (mins)	Area (ha)
0-8 0.000 40			.000 120-1			0.000				0.000	280-288	0.000	320-328	0.00
8-160.0004816-240.00056	56 0.000 64 0.000	88-96 0. 96-104 0.	.000 128-1	136 0.000 144 0.000	168-176 176-184	0.000	208-216 216-224		248-256 256-264	0.000	288-296 296-304	0.000	328-336 336-344	0.00 0.00
	72 0.000	104-112 0		L44 0.000 L52 0.000		0.000				0.000	304-312		344-352	0.00
	80 0.000	112-120 0		160 0.000		0.000	232-240			0.000	312-320		352-360	0.00
				+ v10.4 Copyr										

	STM Environmental Consultants	File: Barton Green.pfd	Page 6
	Model Version 1.1	Network: Barton Green_SW	Barton Green,
environmental		M. Ashdown	New Malden,
ENVIRONMENTAL CONSULTING . SOFTWARE & TRAINING		20/11/2023	Surrey, KT3 3HU

Node G1 Online Hydro-Brake[®] Control

Flap Valve	х	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	х	Sump Available	\checkmark
Invert Level (m)	12.700	Product Number	CTL-SHE-0044-8000-0800-8000
Design Depth (m)	0.800	Min Outlet Diameter (m)	0.075
Design Flow (I/s)	0.8	Min Node Diameter (mm)	1200

Node RG 1a Depth/Area Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Safety Factor	2.0	Invert Level (m)	12.800
Side Inf Coefficient (m/hr)	0.00000	Porosity	0.30	Time to half empty (mins)	0

Depth	Area	Inf Area	Depth	Area	Inf Area	Depth	Area	Inf Area	
(m)	(m²)	(m²)	(m)	(m²)	(m²)	(m)	(m²)	(m²)	
0.000	30.0	0.0	0.200	30.0	0.0	0.201	0.0	0.0	

Node RG_1a Depth/Area Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Safety Factor	2.0	Invert Level (m)	13.400
Side Inf Coefficient (m/hr)	0.00000	Porosity	1.00	Time to half empty (mins)	

•		Inf Area	•		Inf Area	· ·			
(m)	(m²)	(m²)	(m)	(m²)	(m²)	(m)	(m²)	(m²)	
0.000	30.0	0.0	0.100	30.0	0.0	0.101	0.0	0.0	

Node RG_1a Depth/Area Storage Structure

Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr)		Safety Factor Porosity		Invert Level (m) Time to half empty (mins)	
Donth Area Inf	Анаа Г	Jointh Area I	A	Douth Area Inf Area	

•		Inf Area (m²)	•						
0.000	30.0	0.0	0.400	30.0	0.0	0.401	0.0	0.0	

ENVIRONMENTAL CONSULTING, SOFTWARE & TRAINING	STM Environmental Consultants Model Version 1.1	File: Barton Green.pfd Network: Barton Green_SW M. Ashdown 20/11/2023	Page 7 Barton Green, New Malden, Surrey, KT3 3HU
	Node RG_2	a Depth/Area Storage Structure	
	Base Inf Coefficient (m/hr) 0.00000 Side Inf Coefficient (m/hr) 0.00000	Safety Factor2.0Invert Level (m)Porosity0.30Time to half empty (mins)	12.800 0
	(m) (m²) (m²)	Area Inf Area Depth Area Inf Area (m) (m²) (m²) (m) (m²) (m²) 0.300 25.0 0.0 0.301 0.0 0.0	
	Node RG_2	a Depth/Area Storage Structure	
	Base Inf Coefficient (m/hr) 0.00000 Side Inf Coefficient (m/hr) 0.00000	Safety Factor2.0Invert Level (m)Porosity1.00Time to half empty (mins)	13.500
	(m) (m²) (m²)	Area Inf Area Depth Area Inf Area (m) (m²) (m²) (m) (m²) (m²) 0.200 30.0 0.0 0.201 0.0 0.0	
	Node RG_2	a Depth/Area Storage Structure	
	Base Inf Coefficient (m/hr) 0.00000 Side Inf Coefficient (m/hr) 0.00000	Safety Factor2.0Invert Level (m)Porosity0.10Time to half empty (mins)	13.100 0
	(m) (m²) (m²)	Area Inf Area Depth Area Inf Area (m) (m²) (m²) (m) (m²) (m²) 0.400 25.0 0.0 0.401 0.0 0.0	
	Node G1	Depth/Area Storage Structure	
	Base Inf Coefficient (m/hr) 0.00000 Side Inf Coefficient (m/hr) 0.00000	Safety Factor2.0Invert Level (m)Porosity0.90Time to half empty (mins)	12.600 116
	(m) (m²) (m²)	Area Inf Area Depth Area Inf Area (m) (m²) (m²) (m) (m²) (m²) 0.400 15.0 0.0 0.401 0.0 0.0	

STM Environmental Consultants	File: Barton Green.pfd	Page 8							
Model Version 1.1	Network: Barton Green_SW	Barton Green,							
	M. Ashdown	New Malden,							
	20/11/2023	Surrey, KT3 3HU							
Node G1 Carpark Storage Structure									
Base Inf Coefficient (m/hr) 0.00000	Porosity 0.30 Width (m)	4.200 Depth (m) 0.300							
Side Inf Coefficient (m/hr) 0.00000	Invert Level (m) 13.100 Length (m)	10.000 Inf Depth (m)							
Safety Factor 2.0	Time to half empty (mins) 0 Slope (1:X)	350.0							
	Other (defaults)								
		hended Losses x							
Exit Loss (manhole) 0.	50 Exit Loss (junction) 0.000 F	Flood Risk (m) 0.300							
	Approval Settings								
Node Size √	Backdrops 🗸 Max	kimum Surcharged Depth (m) 0.100							
Node Losses 🗸	Minimum Backdrop Height (m) 0.200	Flooding √							
Link Size √	Maximum Backdrop Height (m) 1.500	Return Period (years) 30							
Minimum Diameter (mm) 100	Full Bore Velocity \checkmark	Time to Half Empty √							
Link Length √	Minimum Full Bore Velocity (m/s) 1.000	Return Period (years) 10							
Maximum Length (m) 100.000	Maximum Full Bore Velocity (m/s) 3.000	Discharge Rates 🗸							
Coordinates √	Proportional Velocity \checkmark	1 year (l/s) 0.3							
Accuracy (m) 1.000	Return Period (years) 100	30 year (l/s) 0.9							
Crossings √	Minimum Proportional Velocity (m/s) 0.750	100 year (l/s) 1.2							
Cover Depth √	Maximum Proportional Velocity (m/s) 3.000	Discharge Volume 🗸							
Minimum Cover Depth (m) 1.200	Surcharged Depth \checkmark	100 year 360 minute (m ³) 18							
Maximum Cover Depth (m) 3.000	Return Period (years) 100								
	Approval Results								
The network has be	en designed for a 1 in 100 year storm using FSR rainfall								
It contains 8 nodes									
The total impermea	-								
	have been defined at 1 node								
1 online control has									
6 structures have be	en defined, providing 13m ³ of storage below the flood risl	k level							
Infiltration has not l									
Simulations have be	en completed using FSR summer storms from 15 to 1440 r	minute duration							
Flow	v10.4 Copyright © 1988-2023 Causeway Technologies Ltd	d							

	STM Environmental Consultants	File: Barton Green.pfd	Page 9
	Model Version 1.1	Network: Barton Green_SW	Barton Green,
environmental		M. Ashdown	New Malden,
ENVIRONMENTAL CONSULTING, SOFTWARE & TRAINING		20/11/2023	Surrey, KT3 3HU

4 manholes are smaller than that required by the library

Node	Required	Actual
	Dia (mm)	Dia (mm)
RG1_b	1200	450
GR	1200	600
RG_2b	1200	450
MH2	1200	600

6 connections have combined exit and entry losses less than the recomended total

Node	US Link	DS Link	US Exit	DS Entry	Angle	Recommended
			Loss	Loss	(degrees)	Node Losses
RG1_b	1.000	GR	0.250	0.250	71	0.900
RG_1a	GR	1.002	0.250	0.250	101	1.200
G1	2.002	G1	0.250	0.250	61	0.900
G1	1.002	G1	0.250	0.250	68	0.900
RG_2a	7	2.002	0.250	0.250	92	1.200
RG_2b	2.000	7	0.250	0.250	63	0.900

No circular links have diameters < 100mm

No links have lengths > 100.000m

No links have lengths that differ from their coordinated length by more than 1.000m

No links cross one or more other links

7 links have cover depth outside the range 1.200-3.000m

STM Environmental Consultants			File: Barton	-		Page 10
Model Version 1.1				rton Green_	Barton Green,	
environmental			M. Ashdown			New Malden,
ENVIRONMENTAL CONSULTING . SOFTWARE & TRAINING			20/11/2023			Surrey, KT3 3HU
	US Node	DS No	de Link	Minimum	Maximum	
				Depth (m)	Depth (m)	
	G1	TW_82	251 G1	0.770	0.830	
	GR	RG1_b		0.413	0.450	
	RG_2a	G1	2.002	0.750	0.880	
	RG_2b	RG_2a	7	0.800	0.800	
	RG_1a	G1	1.002	0.600	0.920	
	 RG1_b	RG_1a	GR	0.400	0.600	
	MH2	RG_2b		0.550	0.738	
		_				
	1 node ha	as backdı	rops outside	the range 0.	200-1.500m	
	N	lode l	US Link DS	Link Back		
	_			(m		
	RC	G_2b 2	2.000 7	0	.062	
5 1	nks have fu	ıll hore v	elocity outsi	de the range	1.000-3.000m/s	
					1.000 0.000	
	US	S Node	DS Node	Link Velo		
	<u> </u>				n/s)	
	GF		RG1_b		.996	
		5_2a	G1		.972	
		G_1a			.712	
		G1_b	_		.958	
	IVI	H2	RG_2b	2.000 0	.861	
4 links have peak propor	tional veloc	ity outsi	ide the range	e 0.750-3.000	m/s during the 100 year	return period
US Node	DS Node	Link	Velocity (m/s)		Event	
G1	TW_8251	G1		100 year +40	0% CC 15 minute summe	r
	G1	2.002		-	0% CC 15 minute summe	
	G1 G1	1.002			0% CC 15 minute summe	
1 10_10	<u> </u>	1.002	0.540		, s se is minute summe	
MH2		2.000	0.744	100 year +40	% CC 15 minute summe	r
MH2	RG_2b	2.000	0.744	100 year +40	0% CC 15 minute summe	r

Flow+ v10.4 Copyright © 1988-2023 Causeway Technologies Ltd

	STM Environmental	Consultants			File: Barton	•	Page 11
	Model Version 1.1				Network: Ba	arton Green_SW	Barton Green,
environmental					M. Ashdow	n	New Malden,
ENVIRONMENTAL CONSULTING, SOFTWARE & TRAINING					20/11/2023	3	Surrey, KT3 3HU
		US Node	DS Node	Link	Surcharged	Event	
					Depth (m)		
		RG_2a	G1	2.002	0.350	100 year +40% CC 240 minute summer	
		RG_2b	RG_2a	7	0.400	100 year +40% CC 240 minute summer	
		RG_1a	G1	1.002	0.400	100 year +40% CC 240 minute summer	
		RG1_b	RG_1a	GR	0.200	100 year +40% CC 240 minute summer	

No nodes flood during the 30 year return period

0.200 100 year +40% CC 240 minute summer

MH2

RG 2b

2.000

No infiltrating structures failed to half empty in 1440 minutes during the 10 year return period

1 outfall has a discharge rate greater than 0.3l/s during the 1 year return period

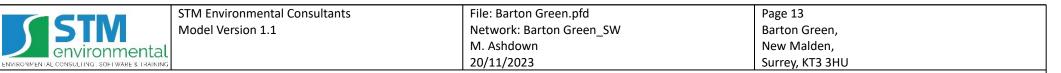
US Node	DS Node	Link	Discharge Rate (I/s)	Event
G1	TW 8251	G1	0.6	1 year 120 minute summer

No outfalls have a discharge rate greater than 0.9I/s during the 30 year return period

No outfalls have a discharge rate greater than 1.21/s during the 100 year return period

1 outfall has a discharge volume greater than 18m³ during the 100 year 360 minute storm

US Node	DS Node	Link	Discharge	Event
			Volume (m³)	
G1	TW_8251	G1	23.9	100 year +40% CC 360 minute summer



File: Barton Green.pfd Network: Barton Green_SW M. Ashdown 20/11/2023

Page 12 Barton Green, New Malden, Surrey, KT3 3HU

<u>Rainfall</u>

Event	Peak Intensity	Average Intensity	Event	Peak Intensity	Average Intensity	
	(mm/hr)	(mm/hr)		(mm/hr)	(mm/hr)	
1 year 15 minute summer	109.521	30.991	30 year +40% CC 15 minute summer	376.189	106.449	
1 year 30 minute summer	71.439	20.215	30 year +40% CC 30 minute summer	244.900	69.298	
1 year 60 minute summer	48.435	12.800	30 year +40% CC 60 minute summer	163.225	43.136	
1 year 120 minute summer	30.053	7.942	30 year +40% CC 120 minute summer	98.613	26.061	
1 year 180 minute summer	23.233	5.979	30 year +40% CC 180 minute summer	74.617	19.202	
1 year 240 minute summer	18.475	4.882	30 year +40% CC 240 minute summer	58.245	15.393	
1 year 360 minute summer	14.169	3.646	30 year +40% CC 360 minute summer	43.710	11.248	
1 year 480 minute summer	11.185	2.956	30 year +40% CC 480 minute summer	34.053	8.999	
1 year 600 minute summer	9.182	2.511	30 year +40% CC 600 minute summer	27.658	7.565	
1 year 720 minute summer	8.203	2.199	30 year +40% CC 720 minute summer	24.485	6.562	
1 year 960 minute summer	6.768	1.782	30 year +40% CC 960 minute summer	19.901	5.240	
1 year 1440 minute summer	4.949	1.326	30 year +40% CC 1440 minute summer	14.225	3.812	
10 year 15 minute summer	211.819	59.937	100 year +40% CC 15 minute summer	488.233	138.153	
10 year 30 minute summer	136.831	38.718	100 year +40% CC 30 minute summer	320.551	90.705	
10 year 60 minute summer	90.826	24.003	100 year +40% CC 60 minute summer	214.603	56.713	
10 year 120 minute summer	54.899	14.508	100 year +40% CC 120 minute summer	129.587	34.246	
10 year 180 minute summer	41.666	10.722	100 year +40% CC 180 minute summer	97.729	25.149	
10 year 240 minute summer	32.645	8.627	100 year +40% CC 240 minute summer	75.977	20.078	
10 year 360 minute summer	24.632	6.339	100 year +40% CC 360 minute summer	56.677	14.585	
10 year 480 minute summer	19.260	5.090	100 year +40% CC 480 minute summer	43.979	11.622	
10 year 600 minute summer	15.690	4.291	100 year +40% CC 600 minute summer	35.604	9.738	
10 year 720 minute summer	13.925	3.732	100 year +40% CC 720 minute summer	31.433	8.424	
10 year 960 minute summer	11.365	2.993	100 year +40% CC 960 minute summer	25.432	6.697	
10 year 1440 minute summer	8.174	2.191	100 year +40% CC 1440 minute summer	18.055	4.839	

Results for 1 year Critical Storm Duration. Lowest mass balance: 98.64%

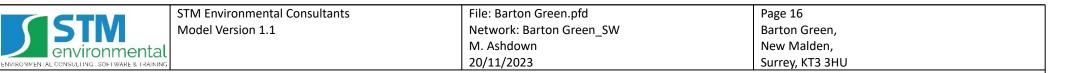
Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	RG1_b	9	13.032	0.045	1.3	0.0246	0.0000	OK
30 minute summer	RG_1a	20	12.827	0.027	1.2	0.2724	0.0000	OK
15 minute summer	GR	1	13.100	0.000	0.0	0.0000	0.0000	OK
180 minute summer	G1	120	12.804	0.214	1.9	3.0461	0.0000	OK
180 minute summer	TW_8251	120	12.526	0.016	0.6	0.0000	0.0000	OK
15 minute summer	RG_2a	12	12.837	0.037	2.6	0.3156	0.0000	OK
15 minute summer	RG_2b	12	12.873	0.073	2.6	0.0279	0.0000	OK
15 minute summer	MH2	11	13.030	0.030	1.3	0.0180	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute summer	RG1_b	GR	RG_1a	1.3	0.985	0.178	0.0214	
30 minute summer	RG_1a	1.002	G1	0.9	0.253	0.158	0.1095	
15 minute summer	GR	1.000	RG1_b	0.0	0.000	0.000	0.0115	
180 minute summer	G1	G1	TW_8251	0.6	0.646	0.023	0.0076	3.7
15 minute summer	RG_2a	2.002	G1	2.2	0.559	0.130	0.1840	
15 minute summer	RG_2b	7	RG_2a	2.6	0.692	0.327	0.0321	
15 minute summer	MH2	2.000	RG_2b	1.3	0.656	0.192	0.0219	

	STM Environmental Consultants	File: Barton Green.pfd	Page 14
	Model Version 1.1	Network: Barton Green_SW	Barton Green,
environmental		M. Ashdown	New Malden,
ENVIRONMENTAL CONSULTING . SOFTWARE & TRAINING		20/11/2023	Surrey, KT3 3HU

Results for 10 year Critical Storm Duration. Lowest mass balance: 98.64%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	RG1_b	10	13.043	0.056	2.6	0.0309	0.0000	ОК
180 minute summer	RG_1a	128	12.886	0.086	1.2	0.8738	0.0000	ОК
15 minute summer	GR	1	13.100	0.000	0.0	0.0000	0.0000	ОК
180 minute summer	G1	128	12.886	0.296	3.0	4.2611	0.0000	SURCHARGED
180 minute summer	TW_8251	128	12.526	0.016	0.7	0.0000	0.0000	OK
180 minute summer	RG_2a	128	12.886	0.086	1.6	0.7438	0.0000	ОК
15 minute summer	RG_2b	11	12.936	0.136	5.2	0.0519	0.0000	SURCHARGED
15 minute summer	MH2	10	13.043	0.043	2.6	0.0253	0.0000	ОК


Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute summer	RG1_b	GR	RG_1a	2.6	1.034	0.347	0.0377	
180 minute summer	RG_1a	1.002	G1	0.7	0.146	0.125	0.1746	
15 minute summer	GR	1.000	RG1_b	0.0	0.000	0.000	0.0154	
180 minute summer	G1	G1	TW_8251	0.7	0.665	0.025	0.0081	8.2
180 minute summer	RG_2a	2.002	G1	1.5	0.180	0.086	0.3144	
15 minute summer	RG_2b	7	RG_2a	5.0	0.741	0.638	0.0444	
15 minute summer	MH2	2.000	RG_2b	2.6	0.755	0.383	0.0519	

Results for 30 year +40% CC Critical Storm Duration. Lowest mass balance: 98.64%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
120 minute summer	RG1_b	120	13.096	0.109	2.0	0.0600	0.0000	ОК
120 minute summer	RG_1a	122	13.096	0.296	2.1	2.4299	0.0000	SURCHARGED
15 minute summer	GR	1	13.100	0.000	0.0	0.0000	0.0000	ОК
120 minute summer	G1	120	13.096	0.506	4.5	6.0840	0.0000	SURCHARGED
30 minute summer	TW_8251	76	12.526	0.016	0.7	0.0000	0.0000	ОК
120 minute summer	RG_2a	122	13.096	0.296	3.7	2.5558	0.0000	SURCHARGED
120 minute summer	RG_2b	120	13.096	0.296	4.0	0.1130	0.0000	SURCHARGED
15 minute summer	MH2	11	13.122	0.122	4.6	0.0720	0.0000	SURCHARGED

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
120 minute summer	RG1_b	GR	RG_1a	2.0	0.686	0.266	0.1008	
120 minute summer	RG_1a	1.002	G1	1.0	0.182	0.177	0.1821	
15 minute summer	GR	1.000	RG1_b	0.0	0.000	0.000	0.0206	
120 minute summer	G1	G1	TW_8251	0.7	0.665	0.025	0.0082	12.5
120 minute summer	RG_2a	2.002	G1	2.2	0.258	0.130	0.3943	
120 minute summer	RG_2b	7	RG_2a	3.7	0.549	0.469	0.0574	
15 minute summer	MH2	2.000	RG_2b	4.1	0.721	0.607	0.0865	

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 98.64%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
240 minute summer	RG1_b	224	13.300	0.313	1.6	0.1719	0.0000	FLOOD RISK
240 minute summer	RG_1a	224	13.300	0.500	1.7	3.2711	0.0000	FLOOD RISK
240 minute summer	GR	224	13.300	0.200	0.1	0.0566	0.0000	SURCHARGED
240 minute summer	G1	224	13.300	0.710	3.2	8.6885	0.0000	SURCHARGED
15 minute summer	TW_8251	68	12.526	0.016	0.7	0.0000	0.0000	ОК
240 minute summer	RG_2a	224	13.300	0.500	3.0	3.3198	0.0000	SURCHARGED
240 minute summer	RG_2b	224	13.300	0.500	3.2	0.1906	0.0000	SURCHARGED
240 minute summer	MH2	224	13.300	0.300	1.6	0.1772	0.0000	SURCHARGED

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
240 minute summer	RG1_b	GR	RG_1a	1.6	0.553	0.212	0.1014	
240 minute summer	RG_1a	1.002	G1	0.5	0.147	0.088	0.1821	
240 minute summer	GR	1.000	RG1_b	-0.1	-0.021	-0.018	0.0529	
240 minute summer	G1	G1	TW_8251	0.7	0.665	0.025	0.0082	16.1
240 minute summer	RG_2a	2.002	G1	1.6	0.194	0.092	0.3943	
240 minute summer	RG_2b	7	RG_2a	3.0	0.409	0.379	0.0574	
240 minute summer	MH2	2.000	RG_2b	1.6	0.590	0.236	0.0865	

16.10 Appendix 10 – SuDS Maintenance Manual

All maintenance activities will be the responsibility of the developer RAA Partners Ltd . They will appoint a management company to undertake the general maintenance duties within the site and will join service agreements with the suppliers and manufactures of the SuDS/Pumps when required.

The information presented below is taken from the CIRIA SuDS Manual (Report c753) and <u>SuDS</u>. Further details on installation and maintenance can be found detailed below and online.

16.10.1 Pervious Pavements

Maintenance Schedule	Required Action	Typical Frequency	Responsibility
Regu l ar maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface).	Once a year, after autumn leaf fall, or reduced frequency as required, based on site- specific observations of clogging or manufacturer's recommendations - pay particular attention to areas where water runs onto pervious surface from adjacent impermeable areas as this area is most likely to collect the most sediment.	
Occasional maintenance	Stabilise and mow contributing and areas.	As required.	RAA Partners Ltd will
	Removal of weeds or manage using weed killer applied directly into the weeds rather than spraying.	As required - once per year on less frequently used pavements.	be responsible.
	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50 mm of the level of the paving.	As required.	
Remedial actions	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and lost material.	As required.	

Maintenance Schedule	Required Action	Typical Frequency	Responsibility
	Rehabilitation of surface and upper substructure by remedial sweeping.	Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging).	
	Initial Inspection.	Monthly for three months after installation.	RAA Partners Ltd will be responsible.
Monitoring	Inspect for evidence of poor operation and/or weed growth - if required, take remedial action.	Three-monthly, 48h after large storms in first six months.	
	Inspect silt accumulation rates and establish appropriate brushing frequencies.	Annually.	
	Monitor Inspection chambers.	Annually.	

Many of the specific maintenance activities for pervious pavements can be undertaken as part of a general site cleaning contract (many car parks or roads are swept to remove litter and for visual reasons to keep them tidy). Therefore, if litter management is already required at the site, this should have marginal cost implications.

16.10.2 Geo-Cellular Maintenance

Maintenance Schedule	Required Action	Typical Frequency	Responsibility
	Inspect for sediment and debris in pre-treatment components and floor of inspection tube or chamber and inside of concrete manhole rings.	Annually.	
Regular maintenance	Cleaning of gutters and any filters on downpipes.	Annually (or as requi red based on i nspections).	RAA Partners Ltd will be responsible.
	Trimming any roots that may be causing blockages.	Annually (or as required).	
Occasional maintenance	Remove sediment and debris from manhole, storage structure and components and floor of inspection tube or chamber and inside of concrete manhole rings.	As required, based on Inspections.	
	Reconstruct geocellular and/or replace or clean void fill, if performance failure occurs	As required	
Remedial actions	Replacement of clogged geotextile (will require reconstruction of soakaway).	As required.	RAA Partners Ltd will be responsible.
	Inspect silt raps and note rate of sediment accumulation.	Monthly in the first year and then annually.	
Monitoring	Check soakaway to ensure emptying is occurring.	Annually.	

Maintenance will usually be carried out manually, although a suction tanker can be used for sediment / debris removal for large systems. If maintenance is not

undertaken for long periods, deposits can become hard-packed and require considerable effort to remove.

Replacement of the geocellular units will be necessary if the system becomes blocked with silt. Effective monitoring will give information on changes in infiltration rate and provide a warning of potential failure in the long term.

Areas draining to infiltration components should be regularly swept to prevent silt being washed off the surface. This will minimize the need for maintenance.

Maintenance responsibility should be placed with an appropriate organisation, and maintenance schedules should be developed during the design phase.

16.10.3 Soakaway Maintenance

Maintenance Schedule	Required Action	Typical Frequency	Responsibility
	Inspect for sediment and debris in pre-treatment components and floor of inspection tube or chamber and inside of concrete manhole rings.	Annually.	
Regular maintenance	Cleaning of gutters and any filters on downpipes.	Annually (or as required based on inspections).	RAA Partners Ltd will be responsible.
	Trimming any roots that may be causing blockages.	Annually (or as required).	
Occasional maintenance	Remove sediment and debris from manhole, storage structure and components and floor of inspection tube or chamber and inside of concrete manhole rings.	As required, based on Inspections.	
	Reconstruct of silted soakaway and/or replace or clean fill, if performance failure occurs	As required	
Remedial actions	Replacement of pipes / gutters / manholes / remove vegetation /	As required.	RAA Partners Ltd will be responsible.
	Inspect silt raps and note rate of sediment accumulation.	Monthly in the first year and then annually.	
Monitoring	Check soakaway to ensure emptying is occurring after heavy rainfall	After Storm events / Annually.	

Maintenance will usually be carried out manually, although a suction tanker can be used for sediment / debris removal for large systems. If maintenance is not undertaken for long periods, deposits can become hard-packed and require considerable effort to remove.

Replacement of the soakaway will be necessary if the system becomes blocked with silted. Effective monitoring will give information on changes in infiltration rate and provide a warning of potential failure in the long term.

Areas draining to infiltration components should be regularly swept to prevent silt being washed off the surface. This will minimize the need for maintenance.

Maintenance responsibility should be placed with an appropriate organisation, and maintenance schedules should be developed during the design phase.

16.10.4 Rain Garden Maintenance

Maintenance Schedule	Required Action	Typical Frequency	Responsibility
	Inspect for sediment and debris in inlet and outlet components	Quarterly; As required.	
Regular maintenance	Inspection & Cleaning of gutters and any filters on downpipes feeding into rain gardens as required.	Quarterly; As required.	
	Remove, replace and maintain vegetation as required;	Monthly inspections Summer; As required	
	Ensuring cuttings are removed to prevent debris build up; Weeding of flower bed to maintain the desired vegetation, density and biodiversity - Vegetation management	Quarterly during Winter month; Or as required.	
Remedial actions	Replace dead or overgrown vegetation as required.	As required.	RAA Partners Ltd will be responsible.
	Replacement of clogged geotextile (will require reconstruction of raingarden).	As required.	
Monitoring	Inspect silt traps / discharge points and note rate of sediment accumulation and ensure no erosion pathways forming.	Monthly in the first year and then annually.	
	Check raingardens are emptying as required following a storm event occurring.	After storms; When possible.	

Maintenance will be carried out manually. All monitoring and maintenance will be carried out by the appointed estate management company that undertakes the general landscaping maintenance.

16.10.5 SuDS Planters Maintenance

Maintenance Schedule	Required Action	Typical Frequency	Responsibility
	Inspect for sediment and debris in inlet and outlet components	Quarterly; As required.	
Regular	Inspection & Cleaning of gutters and any filters on downpipes feeding into rain gardens as required.	Quarterly; As required.	
maintenance			
	Remove, replace and maintain vegetation as required;	Monthly inspections during Spring / Summer	
	Ensuring cuttings are removed to prevent debris build up;	Autumn / Winter - As	
	Weeding of flower bed to maintain the desired vegetation, density and biodiversity -	required.	
	Vegetation management		RAA Partners Ltd
			will be responsible.
Remedial actions	Replace dead vegetation as required.	As required.	
	Cut back vegetation as required.		
	Inspect silt traps / discharge points and note rate	Monthly in the first year and	
	of sediment accumulation and ensure no	then annually.	
Monitoring	erosion pathways forming.		
	Check Planters are emptying as required	After storms; When possible.	
	following a storm event occurring.		

Maintenance will be carried out manually. All monitoring and maintenance will be carried out by the appointed estate management company that undertakes the general landscaping maintenance.

16.10.6 SuDS Rain Water Butt Maintenance

Maintenance Schedule	Required Action	Typical Frequency	Responsibility
Regu l ar maintenance	Inspect for sediment and debris in inlet and outlet components; Inspection & Cleaning of gutters and any filters on downpipes feeding into the Rain Water Butts.	Quarterly; As required. Increase freq. to Monthly during Autumn; Quarterly; Increase freq. to Monthly during Autumn;	
Remedial actions	Cleaning of the water butt. Fully drain the water butt and clear out debris and enable access; Scrub out the inside of the butt or tank with a coarse brush, if accessible, using a proprietary cleaning product such as Just Water Butt Cleaner or garden disinfectant; Rinse with clean water; Cleaning of Gutters; Clean or fit a new filter;	Annually; Or as required.	RAA Partners Ltd will be responsible.
Remedial actions	Use water/empty water butts - to clean, water plants (inside & out); Empty water Butt more frequently during the winter, to allow for storage during storms and to keep the water fresh;	Once every two weeks; as required	

Maintenance will be carried out manually. All monitoring and maintenance will be carried out by the appointed estate management company that undertakes the general landscaping maintenance.

16.10.7 Green & Blue Roof Maintenance

Maintenance Schedule	Required Action	Typical Frequency	Responsibility
	Remove any dead vegetation and debris from the roof surface, ensure that any gutters, chute outlets and downpipes are free from blockages and that water can flow freely.		
	Cleaning of gutters and any filters on downpipes.		
Preliminary Maintenance Procedures	Ensure that any new items of plant/equipment on the roof are mounted on suitable isolated slabs and that any fixings used to secure the plant/equipment in place do not penetrate the waterproofing. If in doubt, please contact Bauder for further advice.	Bi-Annually - Spring and Autumn	RAA Partners Ltd will be responsible for setting up the management company.
	Ensure that all protective metal flashings and termination bars remain securely fixed in place. Advise the client of the need to repair or renew as necessary.		
	Examine all mastic sealant and mortar pointing for signs of degradation. Advise the client of the need to repair or renew as necessary.		
	Any vegetation which has encroached into the vegetation barriers (pebbles) should be removed. If movement/settlement of the pebble vegetation barrier has occurred, additional washed 20/40 mm grade stone pebbles similar to the existing are to be added. Flint ballast with sharp edges is unsuitable and may damage the waterproofing.	As required	RAA Partners Ltd will be responsible for setting up the management company.
General Horticultural Information	The cultivation of intensive green roof substrate may be carried out in the same way as with any normal horticultural growing medium. However, care must be taken not to mechanically damage the either the waterproofing system or any of the green roof components, as this would invalidate the guarantee. The use of fertilizers and weed killers will have no detrimental effect on either the waterproofing or the green roof system.	As required	RAA Partners Ltd will be responsible for setting up the management company.

	The Building owner should keep a record of all inspections and maintenance carried out on the roof. Any signs of damage or degradation to either the waterproofing or the green roof installation should be reported to Bauder Ltd (or chosen provider) immediately, in order that arrangements can be made for remedial work to be carried out if necessary.	As required	RAA Partners Ltd will be responsible for setting up the management company.
Remedial actions	Works to adjoining areas - When carrying out any maintenance to adjoining roof areas, care must be taken not to damage either the green roof landscaping or the waterproofing system.		the management company.
	If it is considered that either element has been affected, then Bauder (or provider) should be contacted for advice. Any waterproofing damage caused after completion of the original installation may invalidate the guarantee.	As required.	

16.10.8 Flow Control Maintenance

Maintenance Schedule	Required Action	Typical Frequency	Responsibility
	Inspect for sediment and debris;	Quarterly; As required.	
Regular maintenance	Inspection & Cleaning of SuDS components upstream of flow control element.	Quarterly; Increase freq. to Monthly during Autumn;	
Remedial actions	Removal of debris and sediment;	Annually; Or as required.	
Remedial actions	Replacement of parts; Manhole cover, filters or components of flow control device;	As required;	RAA Partners Ltd
Monitoring	Ensure flow control device is function correctly during and after storm events; Check water levels up stream and downstream of flow control device	Monthly; During 1 st year of installation or during and after storm event; When possible Reduce to Quarterly following the 1 st year;	will be responsible for setting up the management company.
	Check for damage to flow control components	Annually;	
	Check for securely fitting manhole lid; Ensures debris cannot enter the system unfiltered;	Annually;	