CROSSRAIL TUNNEL IMPACT ASSESSMENT 81-88 BERESFORD STREET WOOLWICH B WOOLWICH LTD GMA-22277-23-402 REVISION 2 NOVEMBER 2023

CROSSRAIL TUNNEL IMPACT ASSESSMENT 81-88 BERESFORD STREET WOOLWICH B WOOLWICH LTD GMA-22277-23-402 REVISION 2 NOVEMBER 2023

Document Issue Record

Status	Final	Date of Issue	06/11/2023	
Prepared by			Approved by	
Kudzaishe Mawi	re	BSc (Hons), MSc, DIC, PhD, CEng, MICE, Pr. Eng (ECSA)	Simon Hassall	BSc (Hons), MSc, CEng, MICE, FGS

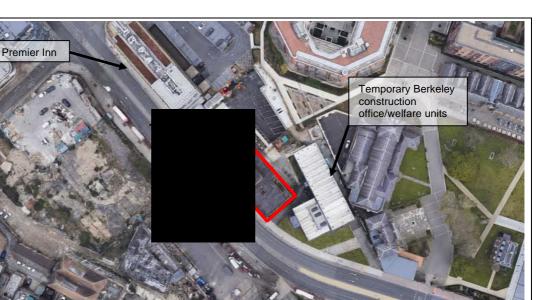
Rev	Prepared	Approved	Date of Issue	Reason(s) for Revision
0	КМ	SAH	31/10/2023	
1	КМ	SAH	03/11/2023	Update Figure 3
2	KM	SAH	06/11/2023	Update Appendix 1

TABLE OF CONTENTS

SECTION 1	INTRC	DUCTION	1
SECTION 2	DEVE	LOPMENT PROPOSALS	1
SECTION 3	CROS	SRAIL ASSET	2
SECTION 4	RELE\	ANT LU STANDARDS AD MANUALS	3
	4.2	ASSESSMENT OF LU TUNNELS	4
	4.3	TRACK CATEGORY	4
	4.4	MAINTENANCE REQUIREMENTS	4
SECTION 5	GEOT	ECHNICAL INPUT PARAMETERS	5
	5.1	EXISTING GROUND INVESTIGATION INFORMATION	
	5.2	SURFACE LEVELS	5
	5.3	STRATIGRAPHY AND SOIL PARAMETERS	5
	5.4	GROUND WATER	7
SECTION 6	LOAD	INPUT PARAMETERS	7
	6.1	PERMANENT RAFT LOADS	7
	6.2	DEMOLITION LOADS	9
	6.3	PILING PLATFORM	10
	6.4	PILING PLANT	10
	6.5	MODELLING LANDSCAPE	10
SECTION 7	ASSES	SSMENT METHODOLOGY	10
	7.1	ASSESSMENT TOOL	10
	7.2	MODEL GEOMETRY	
	7.3	CONSTRUCTION SEQUENCE	13
SECTION 8	ASSES	SSMENT APPROACH	14
	8.2	RADIUS OF CURVATURE	
	8.3	OVALLING (OR SQUATTING)	
SECTION 9	PDISP	PRESULTS – VERTICAL DISPLACEMENTS	
	9.1	GENERAL	
	9.2	EXISTING LOADING (CASE1-DRAINED)	
	9.3	DEMOLITION OF EXISTING BUILDING (CASE 2 – UNDRAINE	,
	9.4	REDEVELOPMENT (CASE 3 – UNDRAINED)	17
	9.5	LONG TERM (CASE 4 – DRAINED)	
	9.6	SUMMARY OF TUNNEL DISPLACEMENTS	
SECTION 10	TUNN	EL ASSESSMENT	
	10.1	LONGITUDINAL SESSEMENT – RADIUS OF CURVATURE	
	10.2	RADIAL ASSESSMENT – SQUAT / OVALISATION	
	10.3	TRACK ASSESSMENT	
	10.4	SUMMARY OF TUNNEL ASSESSMENT	
	10.4	TUNNEL LEAKAGE DUE TO LONGITIDUAL BENDING	
SECTION 11		RE WORKS	
	11.1	CONDITION SURVEYS	-
	11.2	MONITORING	28

APPENDIX 1 Project Drawings

APPENDIX 2 Crossrail Tunnel Details


APPENDIX 3 OASYS PDisp input data

SECTION 1 INTRODUCTION

- 1.1 B Woolwich Ltd proposes to redevelop an area of land located adjacent to Beresford Street, Woolwich currently occupied by a disused Catholic Club. The proposed redevelopment of the site comprises a 14-storey student accommodation tower block. The proposed development also includes:
 - *i.* Underground basement,
 - *ii.* Outdoor roof terrace atop the south-eastern half of the building
- 1.2 A section of Crossrail asset, the Elizabeth underground line, comprising two tunnels running in an east to west direction lies approximately 22 m below ground level and 15.4 m away from the proposed building. Crossrail requires a tunnel impact assessment due to the proposed development.
- 1.3 IDOM Merebrook (IDOM) has been appointed by B Woolwich Ltd to carry out a Ground Movement Assessment (GMA) to assess the impact of the proposed development on the Elizabeth underground line assets, and to check this against ground movement criteria set by London Underground to prevent disruption of its operations.
- 1.4 This report presents the findings of the Tunnel Impact Assessment which has been carried out in accordance with the guidelines set out in the relevant London Underground (LU) standards and manuals.
- 1.5 This report has been prepared for B Woolwich Ltd for the sole purpose described above and no extended duty of care to any third party is implied or offered. Third parties making reference to the report should consult B Woolwich Ltd and IDOM as to the extent to which the findings may be appropriate for their use.

SECTION 2 DEVELOPMENT PROPOSALS

- 2.1 The site is located approximately 13.7 km east of London City centre to the northeast of Beresford Street, Woolwich. The National Grid Reference (NGR) for the approximate centre of the site is 543678 179059.
- 2.2 The site occupies an area of approximately 0.10 hectares. The south-eastern boundary and part of the north-eastern boundary is formed by a wooden fence. The south-western and north-western boundaries are formed by the existing building that covers most of the site. The remaining part of the north-eastern boundary is formed by recently erected Heras fencing.
- 2.3 Beresford street is located immediately southwest of the site whilst the surrounding areas comprise recently constructed residential tower blocks, particularly to the north, and areas of public open space with some commercial buildings.
- 2.4 The site is almost completely occupied by an existing building that was formerly used as a Catholic Club. As the subject site lies within the footprint of a pre-existing

building, the site topography is flat. The existing site building is not adjoined to any other structures.

Figure 1: Recent satellite imagery of site (red boundary) and surrounding land.

- 2.5 The proposed development comprises a 14-storey high rise building with a basement. A raft foundation is proposed, with small clusters of piles in more heavily loaded areas to control settlement.
- 2.6 A contiguous pile wall will be installed along the north-east corner of the building to be used for gravity and lateral loads.

SECTION 3 CROSSRAIL ASSET

- 3.1 A portion of the Elizabeth Line Crossrail asset comprising two tunnels running in an east to west direction lies approximately 15.4 m to the northwest of the proposed building, as indicated in Figure 2, which is an extract from a drawing in Appendix 1. The west bound line is closer to the new building and the invert level is 22 m below ground level at +1.89 m AOD. Layout plan showing the point of the building closest to the tunnels is given in Figure 3.
- 3.2 Details of the tunnels are given on drawings in Appendix 2. Only the westbound tunnel was assessed.
- 3.3 The design load of the existing building has been provided by the structural engineer (Form Structural Design) as 90 kN/m². The cross section drawing showing the assumed load spread from the existing building onto the west bound tunnel is indicated in Figure 2.

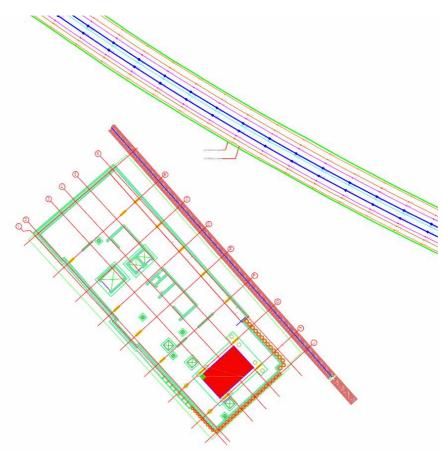


Figure 2: Crossrail Asset overview layout plan relative to proposed development

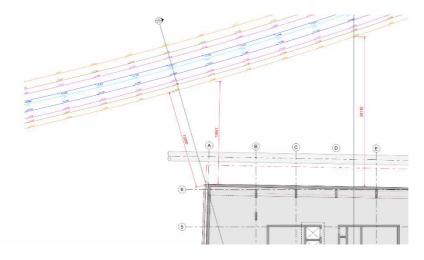


Figure 3: Crossrail asset relative to closest point to the proposed development

SECTION 4 RELEVANT LU STANDARDS AD MANUALS

4.1 The relevant LU Standards and manuals are given in Table 1.

η

Table 1: LU Standards and Manuals

Document Reference	Title	Version
S 1023	Infrastructure protection	A5
S 1050	Civil Engineering – Common Requirements	A9
S 1055	Civil Engineering – Deep Tube Tunnels and Shafts	A5
S 1158	Track – Inspection and Maintenance	A10
S 1159	Track – Dimensions and Tolerances	A4
G 0050	Civil Engineering – Common Requirements	A4

4.2 ASSESSMENT OF LU TUNNELS

- 4.2.1 The summary of assessment of the running tunnels was carried out in accordance with recommendations set out in LU Standard S1055. The following assessments are required:
 - *i.* Longitudinal assessment: minimum radius or curvature along the tunnel.
 - *ii.* Radial assessment: bending moments and hoop forces induce radial deformation, i.e., ovalisation.
 - *iii.* Track and clearance assessment: Track geometry and tunnel clearance changes due to induced ground movements
 - iv. Leakage at joints

4.3 TRACK CATEGORY

4.3.1 The running tracks are categorised to ensure that the requirements of inspection and maintenance activities can be determined based on the track category. The track category is defined in LU Standards S 1158 and each track section is allocated a track category A, B, C, and depending on the Loading Factor, to ensure the requirements of maintenance activities.

4.4 MAINTENANCE REQUIREMENTS

4.4.1 The maintenance requirements are given in LU Standards S 1159. On maintenance requirements, Track Category A and Category B values are more onerous and were therefore used for the assessment of the running and crossover tunnels. The values are summarised in Table 2.

Parameter	Safety Standard -SS	Maintenance Limit - ML	Maintenance Target - MT
Vertical profile - long undulations at 5m intervals (mm)	10	7	5
Vertical profile - short undulations at 1m intervals (mm)	-	3	2
Cross Level (cant) - Maximum permitted deviation from marked cant averaged over 5 sleepers (mm)	-40 / +30	-20 / +15	-15 / +10
Twist 2 metre base - cross level variation (mm)	25	20	12
Twist 10 metre base - cross level variation (mm)	40 1:250)	37 (1:270)	35 (1:286)

Table 2: Geometric standards - manual measurements

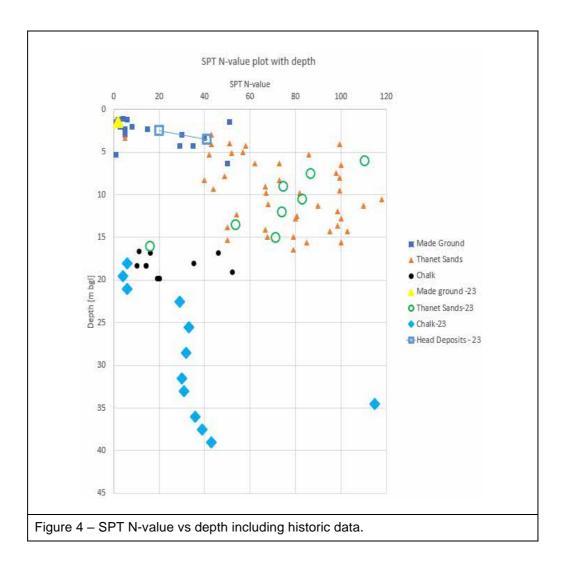
SECTION 5 GEOTECHNICAL INPUT PARAMETERS

5.1 EXISTING GROUND INVESTIGATION INFORMATION

5.1.1 IDOM carried out a preliminary intrusive ground investigation at the site in July 2023. The investigation comprised one cable percussion borehole (MBH01) and Standard Penetration Tests (SPTs) at approximate 1.0 metre intervals, to a depth of 40 metres below ground level (m bgl). The findings of the investigation are presented in IDOM report reference GEA-22277-23-283.

5.2 SURFACE LEVELS

5.2.1 According to the borehole levels reported in the geo-environmental report, current ground level at which the borehole was progressed from is +10.55 m AOD.


5.3 STRATIGRAPHY AND SOIL PARAMETERS

- 5.3.1 The stratigraphy and soil parameters at the site were estimated from site-specific ground investigation carried out by IDOM in 2023.
- 5.3.2 Table 3 summarises the ground profile developed from the respective borehole log.

Strata	Depth to Top of Range (m AOD)	Thickness Range (m)
Made Ground	10.55	2.20
Superficial – Head deposits	8.45	1.50
Solid – Thanet Sand Formation	6.98	14.10
Solid – Undifferentiated Chalk	-7.15	22.20

Table 3: Ground profile

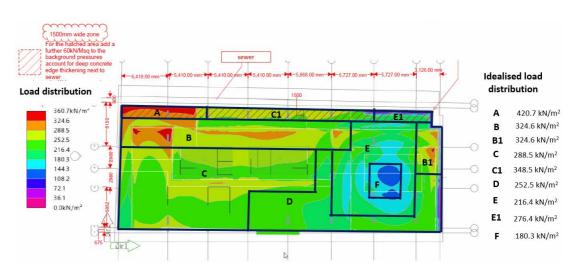
- 5.3.3 Figure 4 is a representation of the variation of SPT results with depth from the investigation and historic data from nearby sites that was reviewed. The following are the recommended SPT values adopted for correlation to obtain the geotechnical parameters.
 - *i.* Made ground N = 3
 - *ii.* Heads Deposits N = 20
 - iii. Thanet Sand Formation N = 80
 - *iv.* Undifferentiated chalk N = 30
- 5.3.4 The SPT values for Thanet Sand formation and undifferentiated Chalk are too low to directly correlate with soil stiffness. As such, reference was made to published literature and experience with the material types as discussed below.
- 5.3.5 Table 4 gives a summary of the stratigraphy and the relevant soil parameters used in the calculations.

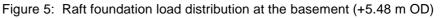
Stratum	Depth (m bgl)	Level of top of stratum (mOD)	Thickness (m)	Bulk unit weight (kN/m3)	Cu (kN/m2)	φ' (°)	Poisson's ratio	Eu (kPa)		E' (kPa)	
								Top*	Bottom*	Тор	Bottom
Made Ground	0.1	10.55	2.10	18	23	23	0.25	700	0[1]	70	00
Head Deposits	2.2	8.45	1.50	20	2	32	0.25	300	00 ^[1]	300	00
Thanet Sands	3.7	6.95	14.10	21	2	38	0.25	1600	000[2]	1600	00 ^[2]
Chalk	17.8	-7.15	Not proven	22	-	38	0.25	1000	000 ^[3]	10000	000[3]

Table 4: Soil parameters for ground movement analysis

nd)=2 x N (ref.

^[3] E' (Chalk) = 1GPa (ref. Ciria guide C574)


5.4 **GROUND WATER**


5.4.1 No groundwater was encountered to a depth of 40 m below ground level.

LOAD INPUT PARAMETERS **SECTION 6**

6.1 PERMANENT RAFT LOADS

6.1.1 A raft foundation is proposed, with small clusters of piles in more heavily loaded areas to control settlements. The load distribution across the basement foundation footprint was determined iteratively following change in soil's spring stiffness (modulus of subgrade reaction) to keep the predicted settlement below 25 mm. Settlement piles are used where the predicted settlement is more than 25 mm. Figure 5 shows the raft load distribution contours and Figure 6 shows the idealized load zones A to F used in the model.

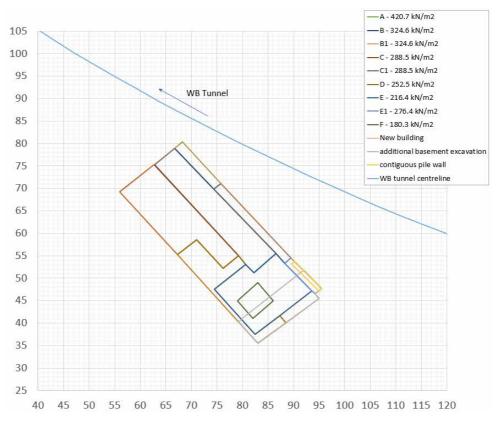


Figure 6: Indicative raft load arrangement at basement level (+5.48 m OD)

6.1.2 The estimated equivalent loads for each zone are summarised in Table 5.

 Table 5: Dead load due to raft and superstructure

Zone	Dead Load (kN/m2)	Invert level (mOD)	Comment	
A	420.7	4.20	Raft deepened such that the tunnel above (outside) the 45-degree "zone of influence" load from the building	
В	324.6	5.48	Basement level	
B1	324.6	5.48	Basement level	
С	288.5	5.48	Basement level	
C1	348.5	4.20	Raft deepened such that the tunnel above (outside) the 45-degree "zone of influence" load from the building	
D	252.5	5.48	Basement level	

Zone	Dead Load (kN/m2)	Invert level (mOD)	Comment	
E	216.4	5.48	Basement level	
E1	276.4	4.20	Raft deepened such that the tunnel above (outside) the 45-degree "zone of influence" load from the building	
F	180.3	5.48	Basement level	

6.2 **DEMOLITION LOADS**

- 6.2.1 The existing superstructure on site is to be demolished to make way for the new development. The demolition loads were determined in the context of the following proposed construction sequence:
 - *i.* Demolish existing building superstructure own to grid floor level. This will partially reduce load on existing tunnel as the existing structure does surcharge the tunnel .
 - *ii.* Demolish existing ground floor slab and in sequence, backfill to existing basement retaining walls to give the required passive resistance and lateral support.
 - *iii.* Level the backfill to give suitable piling mat for sheet piling to rear section and suit cut off level for settlement control piles. Break out voids in existing slab as required beforehand to suit pile arrangement.
 - *iv.* Install contiguous pile wall and any settlement control piles from lower-level piling mat. (No bored piles to be within 3.0 m of any tunnel zone.)
 - *v.* Excavate to basement formation the section to the east beyond the existing building. The contiguous pile wall installed along the north-east section the new building will be used for gravity and lateral loads.
 - *vi.* Install lateral propping system between sheet piling and existing basement wall to front and flank. Excavation is now top supported laterally.
 - vii. To rear area firstly, demolish and excavate down to formation level, breaking out existing reinforced concrete wall and existing basement slab to an agreed extent. Batter back to maintain lateral support to existing basement retaining wall to front elevation, to maintain support. Existing tunnel is now unloaded from existing building.
- 6.2.2 From the second point on the construction sequence, the basement will be backfilled and therefore, there is a reduction in the stress unloading associated with demolition of the superstructure.

i.	Existing ground level	= 10.55 mOD
ii.	Existing basement level	= 7.53 mOD
iii.	Density of platform material	= 22 KN/m ³
iv.	Load due to backfill	= (10.55 - 7.53) x 22 = 66.44 kN/m ²
V.	Load due to existing building	= 90 kN/m ²

- *vi.* Therefore, net stressing unloading = -90 +66.44 = -23.56 kN/m²
- 6.2.4 The new building extends beyond the footprint of the existing building towards the east by approximately 10 m. This footprint of the new building will be excavated by 5.05 m to 10.5 mOAD. Assuming soil density of 19 kN/m³, the net stress unloading = $-5.05 \times 19 \text{ kN/m}^3 = -95.95 \text{ kN/m}^2$.

6.3 PILING PLATFORM

6.3.1 The piling platform will comprise backfill to existing basement retaining wall level, designed to also provide the required passive resistance and lateral support. Therefore, there is no additional load due to piling platform.

6.4 PILING PLANT

6.4.1 The piling rig for the installation of the contiguous pile wall and any settlement piles will be positioned within the building footprint and far away from the 3.0 m Crossrail boundary zone. Therefore, no further consideration of the piling plant is necessary.

6.5 MODELLING LANDSCAPE

6.5.1 The existing ground level is at approximately +10.55 mOD and mostly paved. Therefore, there is no net loading arising from landscaping.

SECTION 7 ASSESSMENT METHODOLOGY

7.1 ASSESSMENT TOOL

7.1.1 The assessment of the ground movements and impact of the redevelopment on the site was carried out using Oasys PDISP software. PDISP is a pressure induced displacement analysis and is a program which can calculate the displacements (and stresses if required) within a linear elastic or non-linear soil mass, arising from uniform normal or tangential pressure, applied to rectangular and circular loaded planes.

- 7.1.2 The stages of the redevelopment that were modelled are demolition and hence installation of the piling platform and excavation for basement extension, construction of the new building, and long-term conditions.
- 7.1.3 The OASYS software program PDISP was used to set up models reflecting each stage of construction to estimate the ground movement during the development of the site.
- 7.1.4 The size of the tunnel is such that the vertical and lateral movements of soil at the crown and invert of the tunnel were computed using PDISP. In the software analyses, the Boussinesq method is used to predict the movements of the ground.

7.2 MODEL GEOMETRY

- 7.2.1 The west bound tunnel is closer to the new building and was therefore modelled and analysed. The tunnel is circular with the following dimensions.
 - *i.* Outer diameter = 6.8 m
 - *ii.* Internal diameter = 6.2 m
- 7.2.2 The tunnel displacements have been calculated at approximately 1.0 m intervals along the line of the running tunnel and to at least 50 m outside the portion that is closest to the new building, see Figure 7.
- 7.2.3 Ground movements have been calculated at 4 locations at the running tunnel forming a square in which the tunnel sists, as illustrated in Figure 7.
- 7.2.4 The crown and invert levels of the tunnel at portion closest to the new building are as follows:
 - i. Crown level -6.847 mOD
 - *ii.* Invert level -13.647 mOD

n

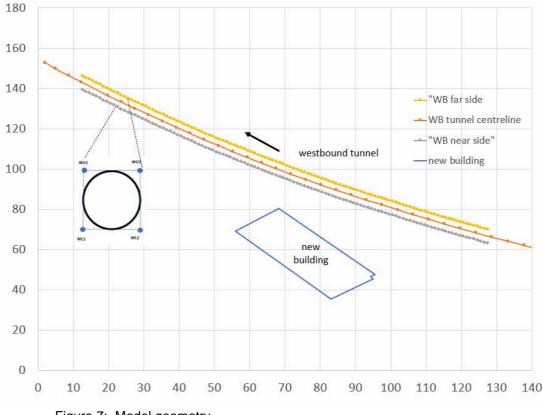


Figure 7: Model geometry

- 7.2.5 The PDISP programme uses Bousinesq stress distribution and elastic soil parameters. It is therefore possible to carry out analyses for different loading cases and sum the displacements.
- 7.2.6 Throughout this report, heave (upwards movement) is denoted as a negative value and settlement (downwards movement) is denoted as a positive value. PDISP uses the same sign convention. Figure 8 is a model geometry of points of displacements along the tunnel. Displacements at each of the 464 points were measured during the analyses.

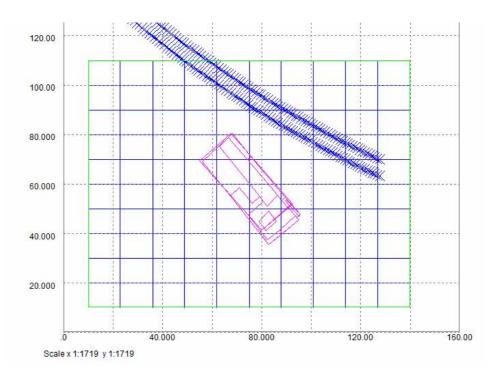


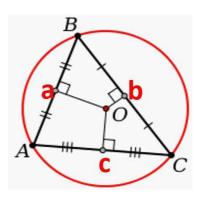
Figure 8: Modelling of settlement points along the running tunnels

7.3 CONSTRUCTION SEQUENCE

- 7.3.1 Modelling the construction sequence has been modelled in PDISP as a series of loading cases given below. The cases provide the load conditions likely to give the maximum heave or settlement movements at the tunnels during and after the construction phase.
- 7.3.1.1 Case 1 Existing Loading
 - *i.* Application of 90 kN/m² surcharge to simulate existing building on site.
- 7.3.1.2 Case 2 Demolition and construction of piling platform undrained condition
 - *i.* Application of -23.56 kN/m² surcharge to simulate demolition and construction of pile platform.
 - *ii.* Application of -95.95 kN/m² surcharge to simulate excavation for basement extension to the east.
- 7.3.1.3 Case 3 Construction stage undrained condition
 - *i.* Application of -23.56 kN/m² surcharge to simulate demolition and construction of pile platform.
 - *ii.* Application of -95.95 kN/m² surcharge to simulate excavation for basement extension to the east.
 - *iii.* Construction of the new building (application of raft design loads)

n

- 7.3.1.4 Case 4 Long-term drained condition (drained parameters)
 - *i.* Application of -23.56 kN/m² surcharge to simulate demolition and construction of pile platform.
 - *ii.* Application of -95.95 kN/m² surcharge to simulate excavation for basement extension to the east.
 - *iii.* Construction of the new building (application of raft design loads)
- 7.3.2 Results from PDISP analyses for the three stages analysed are presented in this section. Both the loading regime and the resultant displacements are provided. The displacements are presented in shaded format around the site to visually show the extent of the displacement beyond the site.


SECTION 8 ASSESSMENT APPROACH

- 8.1 The effect of the induced ground movements on the existing tunnel structures was assessed by considering the following at the three stages of construction:
 - *i.* Calculation of the change in tunnel radius of curvature.
 - *ii.* Calculation of ovalling (or squatting) induced.

8.2 RADIUS OF CURVATURE

- 8.2.1 The following formula has been used to calculate the imposed radius of tunnel curvature based on the ground movements calculated in the PDISP ground movement model:
 - *i.* The diameter of the circumcircle can be computed as the length of any side of the triangle, divided by the sine of the opposite angle. (As a consequence of the law of sines, it does not matter which side is taken: the results will be the same.)
 - *ii.* The triangle's nine-point circle has half the diameter of the circumcircle. The diameter of the circumcircle of the triangle \triangle ABC is given below.

diameter =
$$\frac{abc}{2 \cdot \text{area}} = \frac{|AB||BC||CA|}{2|\Delta ABC|}$$

= $\frac{abc}{2\sqrt{s(s-a)(s-b)(s-c)}}$
= $\frac{2abc}{\sqrt{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}}$

Where a, b, c = the lengths of the side of the triangle

s = (a + b + c)/2 is the semi-perimeter

8.3 OVALLING (OR SQUATTING)

- 8.3.1 Calculation of ovalling (or squatting) induced in the tunnel is the difference between the movement of the crown (top) of tunnel and invert (bottom) of the tunnel.
- 8.3.2 In this analysis positions EU1, EU2 (eastbound) and WU1, WU2 (westbound) are at crown level and positions EL1, EL2 (eastbound) and WL1, WL2 (westbound) are at invert level.

SECTION 9 PDISP RESULTS – VERTICAL DISPLACEMENTS

9.1 GENERAL

- 9.1.1 Results of PDSIP analyses are presented below according to the construction stages modelled. PDISP input data is presented in Appendix 3.
- 9.1.2 The load cases considered are as follows:
 - *i.* Existing loading (Case 1-Drained)
 - ii. Demolition of existing building (Case 2 Undrained)
 - iii. Redevelopment (Case 3-undrained)
 - iv. Long term (Case 4-Drained)

9.2 EXISTING LOADING (CASE1-DRAINED)

- 9.2.1 The existing building load is 90 kN/m² and is applied at the raft level of +5.3 m OD.
- 9.2.2 The vertical displacements at the top of the running tunnel are given in figure 8. The displacements range from 0 mm to +2 mm.

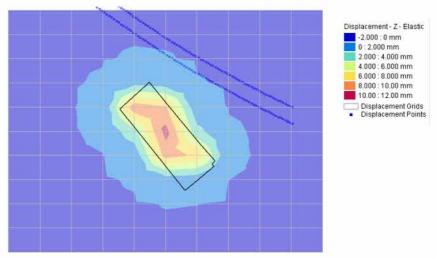
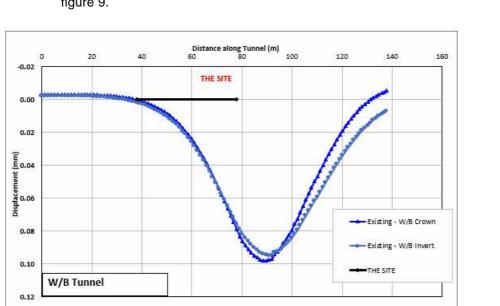



Figure 8 Existing building - vertical displacements along the running tunnel

9.2.3 Vertical displacements of the crown and invert of the running tunnel are given in figure 9.

9.3 DEMOLITION OF EXISTING BUILDING (CASE 2 – UNDRAINED)

- 9.3.1 Demolition of the existing building will result in stress unloading. The loads applied in this case are as follows:
 - i. Load due to demolition of existing building is -23.56 kN/m²
 - $\it ii.$ Load due to basement extension is -95.95 kN/m^2
- 9.3.2 The incremental vertical displacements at the top of the running tunnel are given in figure 10. The displacements range from -0.4 mm to 2 mm.

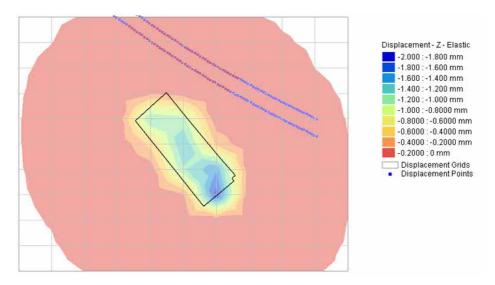


Figure 10 Demolition of existing building and basement exaction – vertical displacements along running tunnel

9.3.3 Vertical displacements of the crown and invert of the running tunnel are given in figure 11.

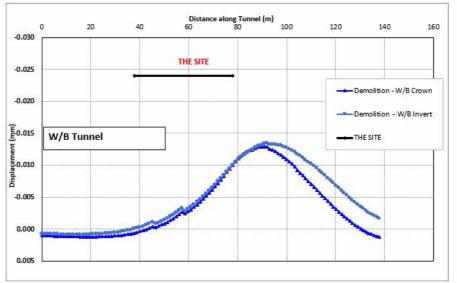


Figure 11 Demolition of existing building and basement exaction – cumulative vertical displacements of running tunnel

9.4 **REDEVELOPMENT (CASE 3 – UNDRAINED)**

- 9.4.1 The loads applied due to construction of the new building are given in Figure 5.
- 9.4.2 The incremental vertical displacements at the top of the running tunnel are given in Figure 12. The displacements range from 0 mm to +5 mm.

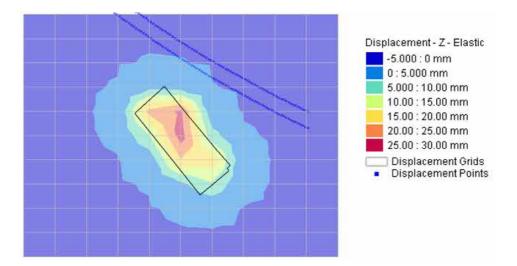


Figure 12 Redevelopment - incremental vertical displacements along running tunnel

9.4.3 The cumulative vertical displacements (case 2 + case 3) of the crown and invert of the running tunnel are given in Figure 13.

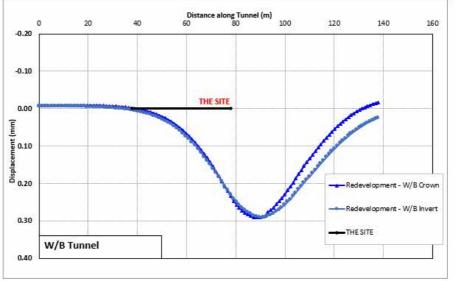


Figure 13 Redevelopment - cumulative vertical displacements of running tunnel

9.5 LONG TERM (CASE 4 – DRAINED)

- 9.5.1 In case 4 the vertical loads are the same as in case 3 but with drained parameters for cohesive soils.
- 9.5.2 The incremental vertical displacements at the top of the running tunnel are given in Figure 14. The displacements range from 0 mm to +5.0 mm.

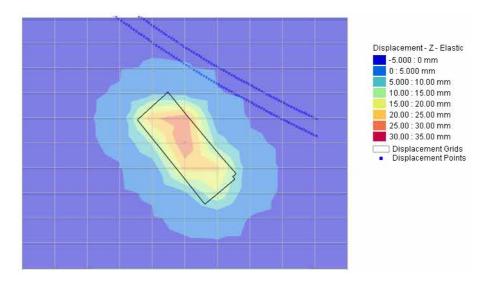


Figure 14 Redevelopment – incremental vertical displacements

9.5.3 The cumulative vertical displacements of the crown and invert of the running tunnel are given in Figure 15.

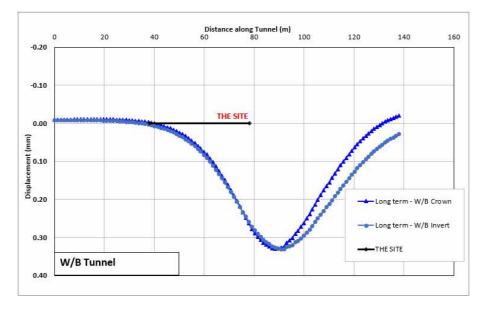


Figure 15 Redevelopment - cumulative vertical displacements of running tunnel

9.6 SUMMARY OF TUNNEL DISPLACEMENTS

9.6.1 A summary of the calculated vertical displacements is given in Table 6.

Stage details	Maximum settlement of Westbound tunnel (mm)				
	Crown	Invert			
Current Loading (Drained)	0.10	0.10			
Demolition – minimum unloading (Undrained)	0	0			
Loading – Maximum building load (Undrained)	0.29	0.29			
Loading – Maximum building load (Drained)	0.33	0.33			

Table 6: I	Maximum	cumulative	vertical	displacement
------------	---------	------------	----------	--------------

9.6.2 The maximum displacement is 0.33 mm during long term and the maximum slope is about 1:102000 also at long-term condition.

SECTION 10 TUNNEL ASSESSMENT

10.1 LONGITUDINAL SESSEMENT – RADIUS OF CURVATURE

- 10.1.1 Radius of curvature represents the deformation of the tunnel since it was constructed. The higher the calculated radius of curvature is, the lower the impact of the tunnel.
- 10.1.2 The allowable (limiting) radius (R'lim) of longitudinal bending of the tunnel in compression was calculated from the following two equations:
 - *i.* $R'_{lim} = E \times I / M \text{ and } M = \sigma \times I / y$
 - *ii.* Hence $R'_{lim} = E \times y / \sigma$

Where $E = Young's modulus of steel = 100 GN/m^2$

- I = moment of inertia
- M = moment
- σ = permissible compressive strength
- y = lever arm (radius of tunnel) = 3.1 m
- 10.1.2 According to LU Standard S 1055 A5, Deep Tube Tunnels and Shafts:
 - *i.* Permissible compressive strength (σ) = 150 N/mm² Grade 10 cast iron lining
 - ii. Young's modulus of steel (E) = 100 GPa

- 10.1.2 Therefore, the limiting or allowable radius of curvature, **R**_{'lim} = 2.1 km
- 10.1.3 The calculated radius of curvature of the crown for the running tunnel are given in Figure 16.

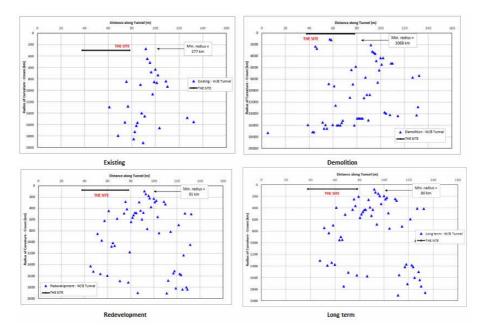


Figure 16 Radius of curvature

- 10.1.4 The minimum radius of curvature is 80 km (long term), and is greater that the assessed allowable value of 2.1 km.
- 10.1.5 Therefore, the bending of the tunnel resulting from the proposed development is acceptable for the westbound Elizabeth lining running tunnel.

10.2 RADIAL ASSESSMENT – SQUAT / OVALISATION

- 10.2.1 Squat or ovalisation of the change in shape of the tunnel measures in terms of the difference in vertical movement between the crown and the invert of the tunnel.
- 10.2.2 The calculated squat/ovalisation of the running tunnels is shown in figure 17.
- 10.2.3 The maximum squat is 0.1 mm and maximum ovalisation of -0.45 mm for the westbound tunnel.

M

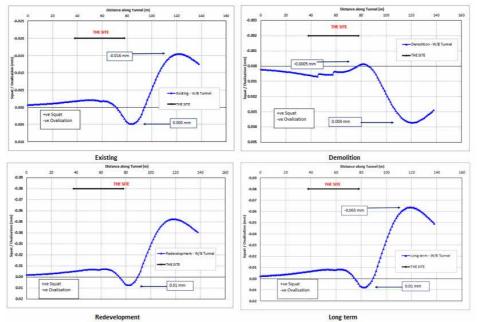


Figure 17 Squat / ovalisation of the running tunnels

10.2.4 The additional squat / ovalisation due to the proposed redevelopment is less than 0.001 % of the tunnel diameter. Therefore, the proposed redevelopment will have minimal effect on the Elizabeth line running tunnels.

10.3 TRACK ASSESSMENT

- 10.3.1 General
- 10.3.1.1 The deformation of the tunnels should not adversely affect the safety of passengers, vehicles, or the track itself.
- 10.3.1.2 According to the LU Engineering Standard S1159, the following are the key parameters of concern:
 - *i.* Vertical profile (long undulations 5m intervals): Maximum deviation measured at 5m intervals.
 - *ii.* Vertical profile (short undulation 1 m straightedge): Maximum permitted vertical error in the rail suing 2 m long straightedge.
 - *iii.* Cross Level (cant): Maximum permitted deviation from marked cant averaged over 5 slippers.
 - *iv.* Twist 2 metre base (cross level variation): The maximum values of twist on a 2 m base.
 - *v.* Twist 10 metre twist (cross level variation), concrete track: The maximum values of the twist on a 10 m base.

- 10.3.1.3 The maintenance requirements for Track Category A and Category B values are more onerous, and these are given in Table 2 in Section 4.3.
- 10.3.2 Vertical profile
- 10.3.2.1 Vertical profile long undulation
 - *i.* The vertical profiles of the track at 5 m intervals (long undulation) are given in figure 18. The values are within the Maintenance Target (MT) value of 5 mm.

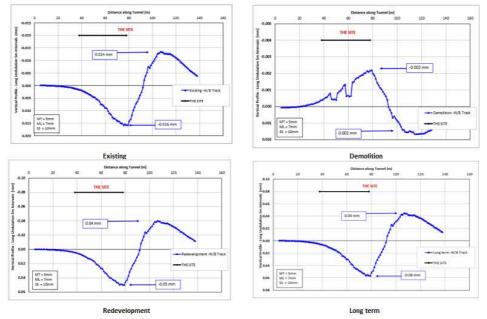


Figure 18 Vertical profile - Long undulation 5 m intervals

10.3.2.2 Vertical profile - 1 m straight edge

i. The vertical profiles of the track at 1 m straight edge (short undulation) are given in figure 19. The values are within the Maintenance Target (MT) value of 2 mm.

M

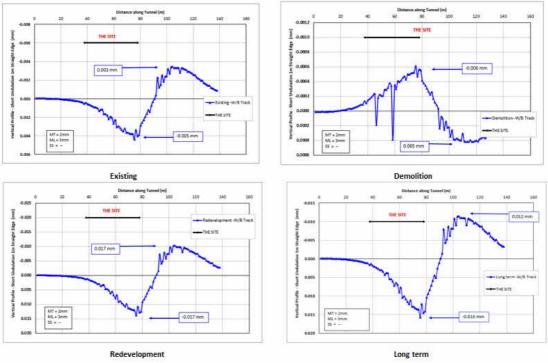


Figure 19 Vertical profile – Short undulation (1 m straight edge)

- 10.3.3 Cross Level (Cant)
- 10.3.3.1 The cross level (cant) averaged over 5 sleepers is given in Figure 20. The values are within the Maintenance Target (MT) value of -15/+10 mm.

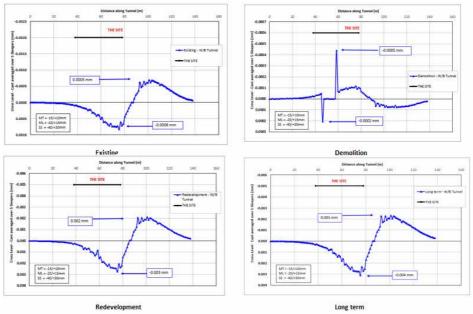
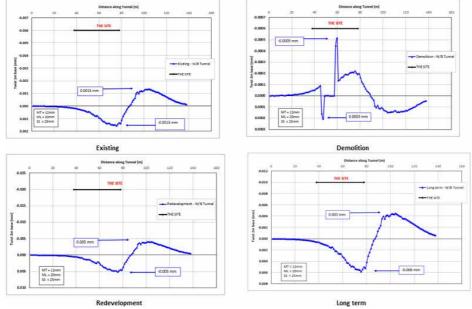
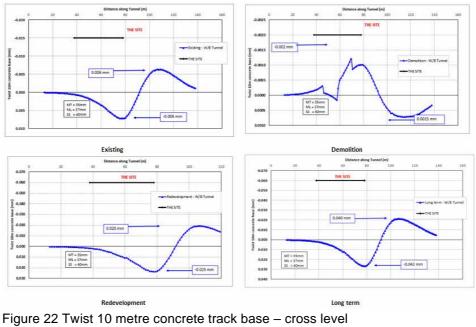



Figure 20 cross level (cant) averaged over 5 sleepers

10.3.4 Twist

10.3.4.1 Twist 2 metre base cross level variation (mm)



i. The Twist 2 metre base is given in figure 21. The values are within the Maintenance Target (MT) value of 12 mm.

Figure 21 Twist 2 metre base cross level variation (mm)

10.3.4.2 Twist 10 metre concrete track base - cross level

i. The Twist 10 metre concrete track base is given in Figure 22. These are within the Maintenance Target (MT) value of 35 mm.

10.4 SUMMARY OF TUNNEL ASSESSMENT

10.4.1 A summary of the tunnel assessment results is given in Table 7.

Parameter		Limit/Target	Value	Stage
Longitudinal assessment – radius of curvature (km)		2.1 ^[1]	81	Long term
Radial assessment – squat / ovalisation (%)		-	0.001	Long term
	Vertical profile – long undulation at 5 m intervals (mm)	5 ^[2]	0.04	Redevelopment
	Vertical profile - short undulations at 1m intervals (mm)	2 ^[2]	0.017	Long term
Track assessment	Cross level (cant) – Maximum permitted deviation from marked cant averaged over 5 m sleepers (mm)	-15/+10 ^[2]	0.004	Long term & Redevelopment
	Twist 2 metre base - cross lever variation (mm)	12 ^[2]	0.005	Long term
	Twist 10 metre base - cross level variation (mm)	35 ^[2]	0.020	Long term
	Note ^[1] Calculated allowable ^[2] Maintenance Target [MT] adopted as most onerous			

Table 7: Summary of the T	unnel Assessment
---------------------------	------------------

10.4.2 As shown from sections 10.3.2 to section 10.3.4 and summarised in Table 7, the calculated deformations of the tunnels are not likely to adversely affect the safety of the passengers, vehicles, or the track itself.

10.4 TUNNEL LEAKAGE DUE TO LONGITIDUAL BENDING

10.4.1 The permissible stresses for gey cast iron and wrought bolts given in LU Standard S 1055 are summarised in Table 7.

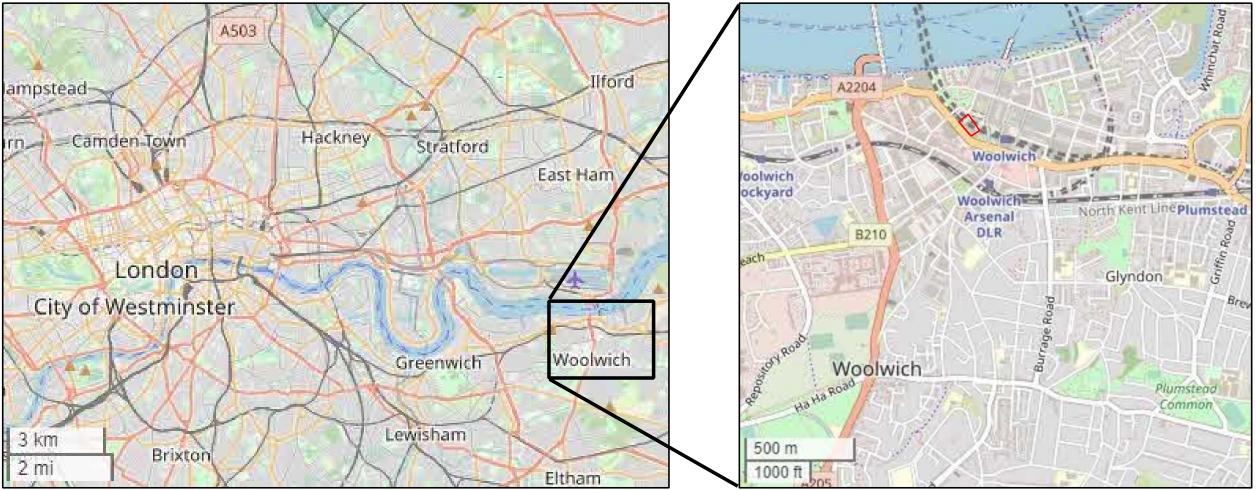
Property	Value – Grade 10 Cast Iron
Cast iron permissible bending tensile strength (N/mm ²)	38
Cast iron permissible compressive strength (N/mm ²)	150
Cast iron permissible shear strength (N/mm ²)	44
Cast iron Young's modulus (N/mm ²)	100000
Cast iron Poisson's ratio	0.26
Wrought iron bolt ultimate tensile strength (N/mm ²)	342
Wrought iron bolt ultimate shear strength (N/mm ²)	137
Wrought iron bolt permissible tensile strength (N/mm ²)	114
Wrought iron bolt permissible shear strength (N/mm ²)	46

Table 7: Material properties - grey cast iron linings and wrought iron

- 10.4.2 To review the structural impact of the redevelopment on the tunnels, the leakage potential cause by the longitudinal bending was considered. For the 101 km minimum radius of curvature, the theoretical width of the crack was calculated as follows:
 - *i.* Small crack width, $\delta = L \times D / R$

Where

- L = segment length = 0.508 m
- D = tunnel diameter = 3.2 m
- R = radius of curvature = 80 km
- 10.4.2.2 The estimated crack width (opening of compressed segment joint) is 0.020 mm.
- 10.4.3 Therefore, leakage at joints is not expected to increase.


SECTION 11 FUTURE WORKS

11.1 **CONDITION SURVEYS**

- 11.1.1 A pre- and post-condition survey is recommended to record the condition of the tunnels prior to demolition and to record any change of the condition following the demotion and construction works.
- 11.1.2 The survey will confirm the condition of the tunnels and allow comparison to be made with the LU Principal Inspection records.
- 11.1.3 Either a conventional condition survey or a 360-degree camera is proposed to be undertaken to note defects per ring number in accordance with LU Standards S 1055

11.2 **MONITORING**

11.2.1 The magnitude of the estimated displacements has minimal risk to LU assets. Therefore, it is not recommended to undertake movement or vibration monitoring along the tunnels during the demolition or construction of the Beresford development. APPENDIX 1 Project Drawings

Map Title

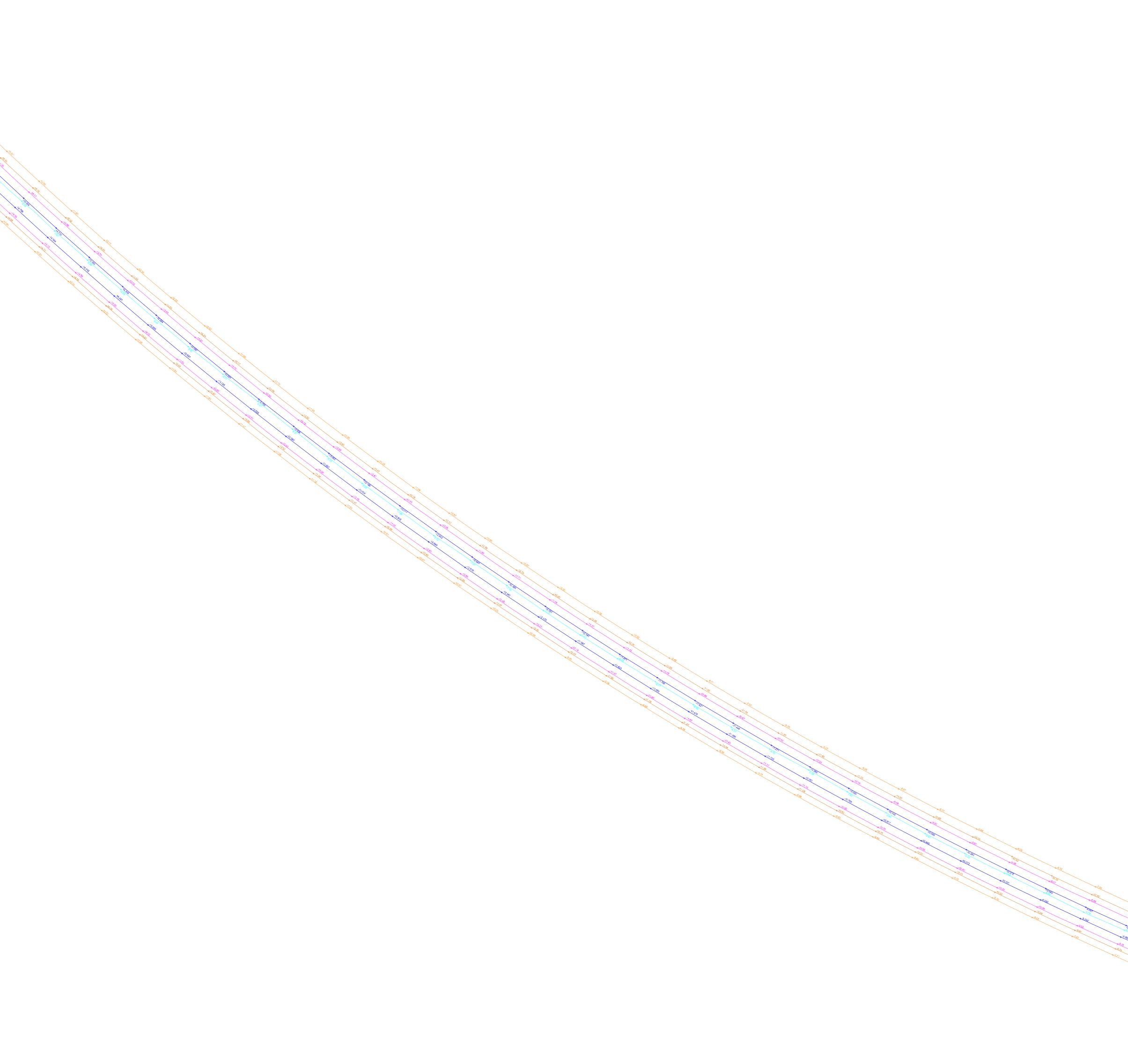
Client/Project

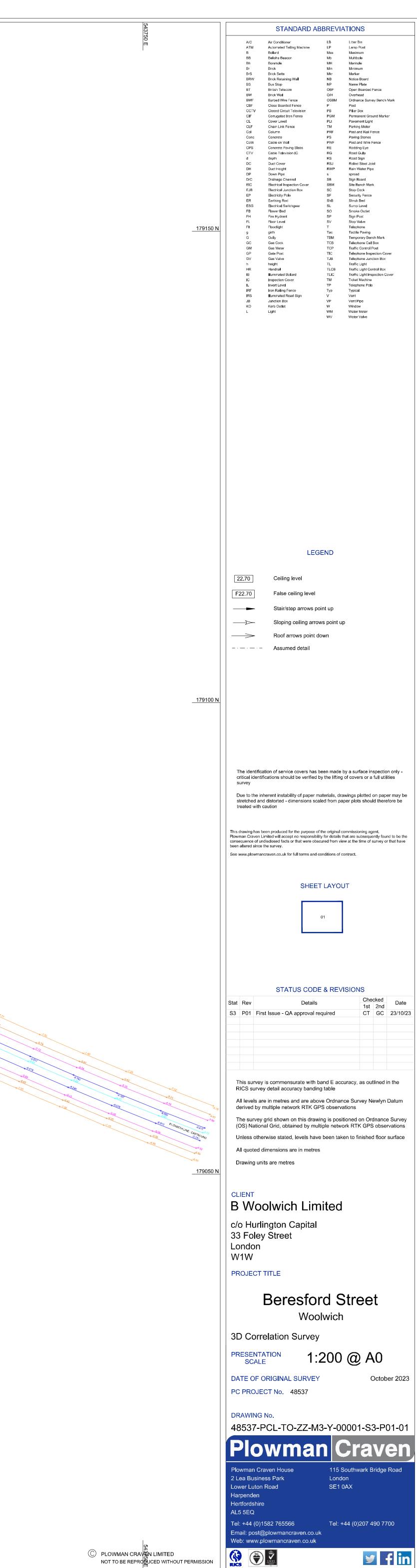
81 - 88 Beresford Street Hurlington Capital Ltd

Site Locaon Plan

ob no.	Drawing No.	Revision
22277	2277-001-001	-
cale	Date 17/07/2023	Frame dimensions A3
rawn	Checked	Approved
CMM	SE	SE

Jo

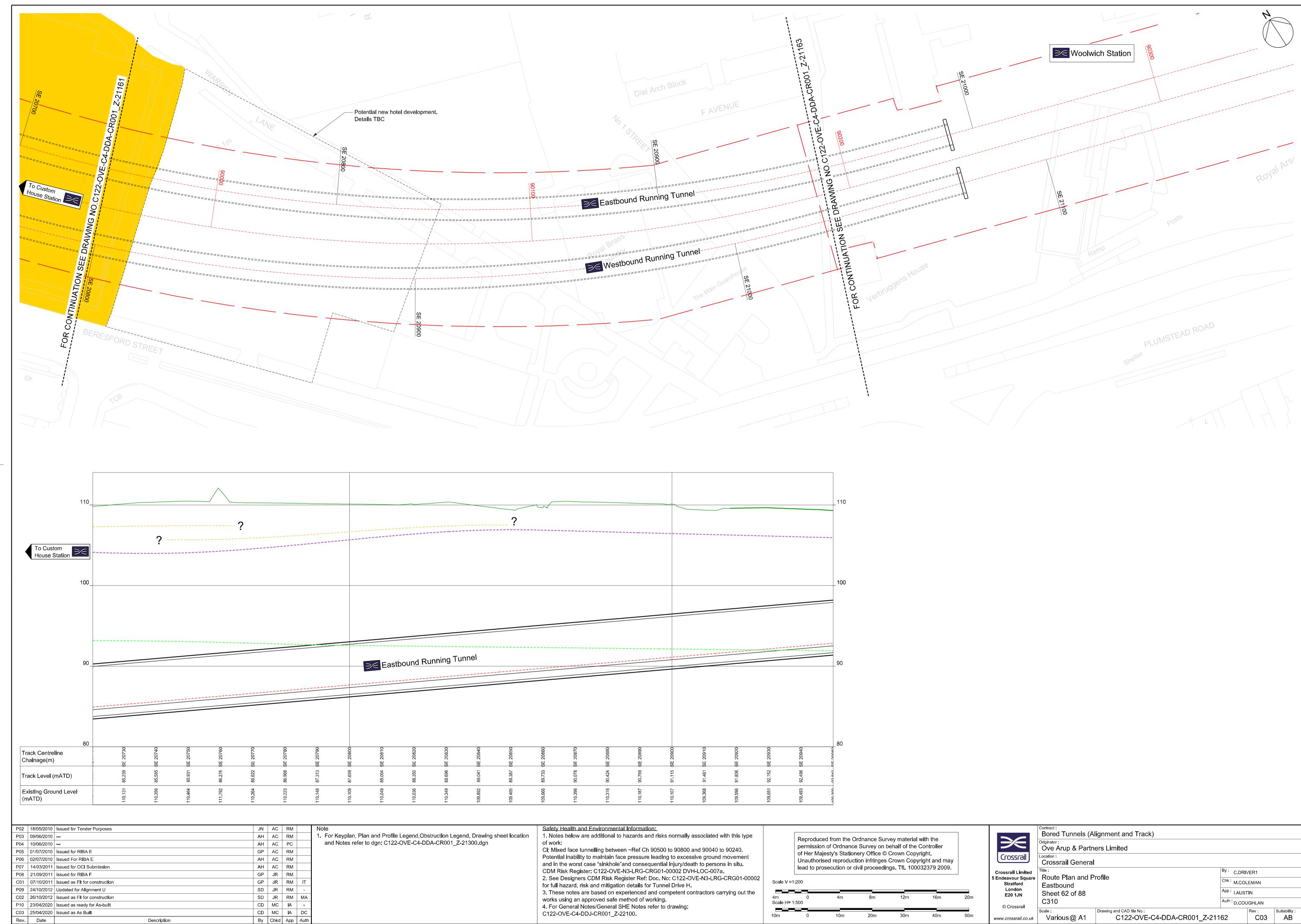

Dr



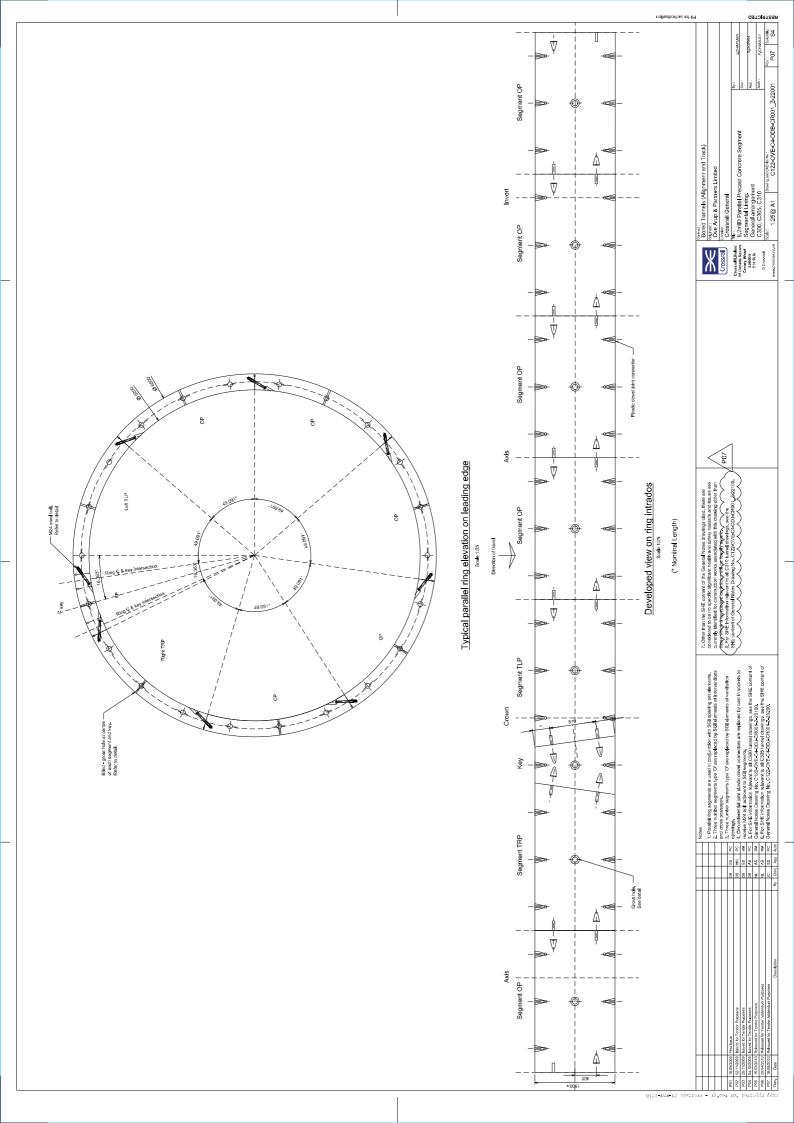
179150 N

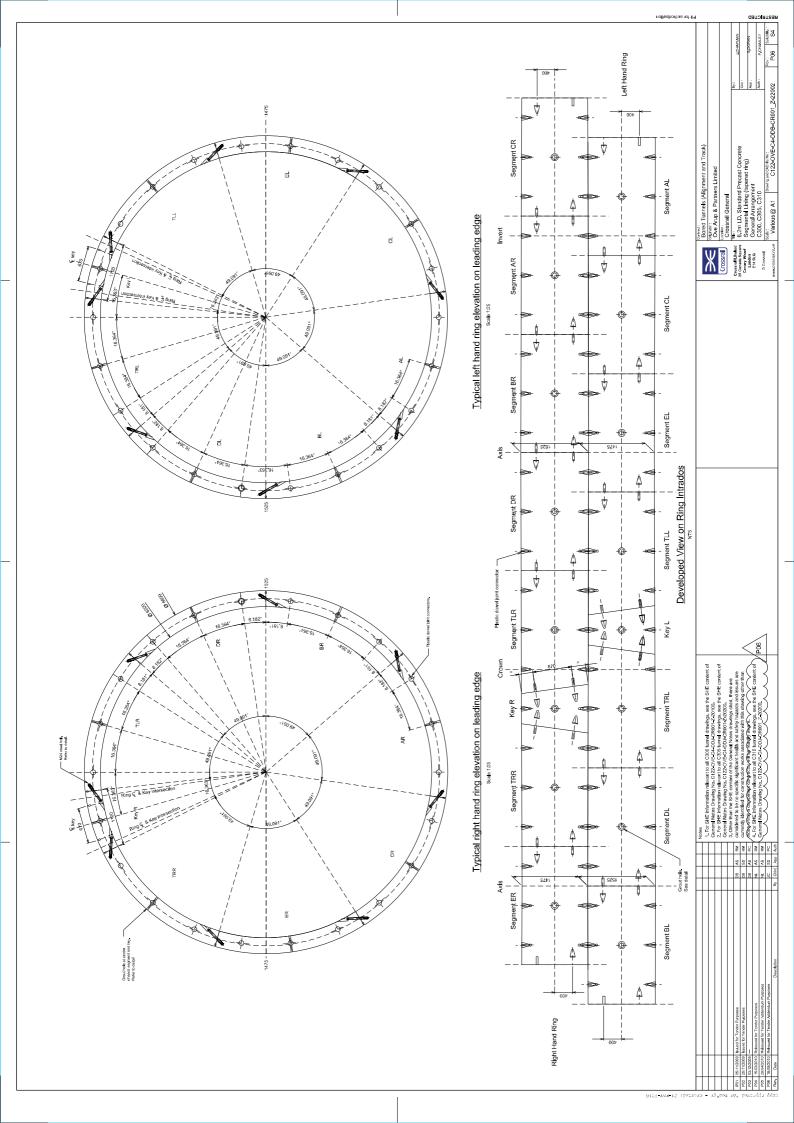

179100 N

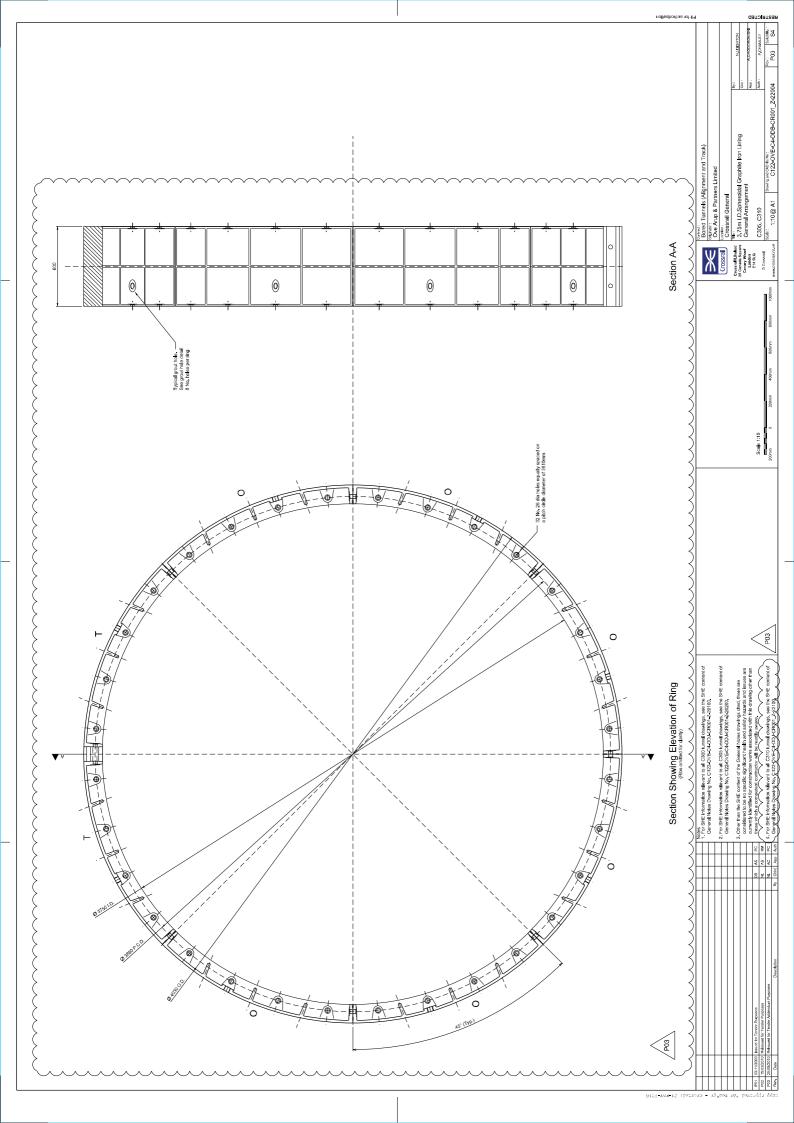
179050 N



🍠 🕇 in



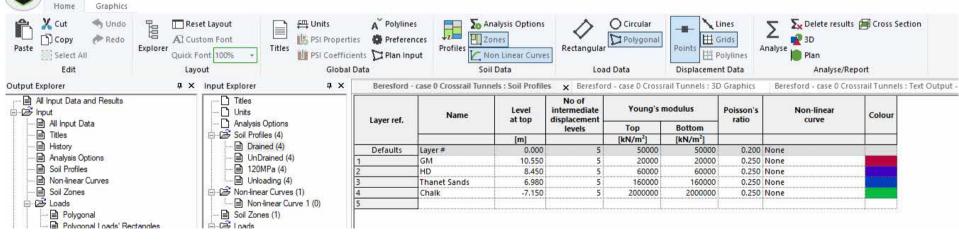

APPENDIX 2 Crossrail Tunnel Details



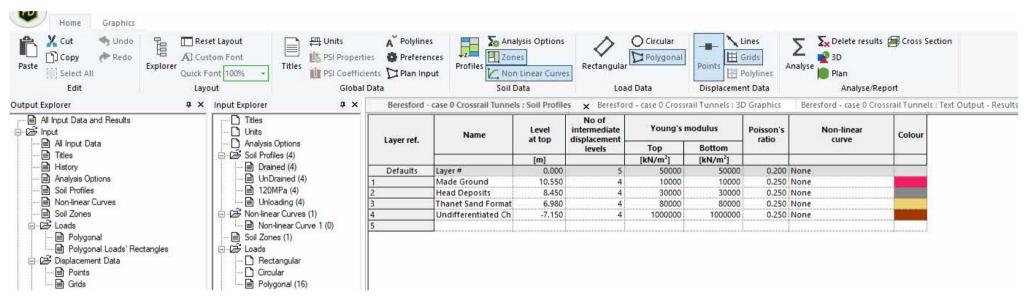
rawing sheet location).dgn	 Safety Health and Environmental Information:. 1. Notes below are additional to hazards and risks normally associated with this type of work: Ci; Mixed face tunnelling between ~Ref Ch 90500 to 90800 and 90040 to 90240. Potential inability to maintain face pressure leading to excessive ground movement and in the worst case "sinkhole" and consequential injury/death to persons in situ. CDM Risk Register: C122-OVE-N3-LRG-CRG01-00002 DVH-LOC-007a. 2. See Designers CDM Risk Register Ref: Doc. No: C122-OVE-N3-LRG-CRG01-00002 for full hazard, risk and mitigation details for Tunnel Drive H. 3. These notes are based on experienced and competent contractors carrying out the works using an approved safe method of working. 4. For General Notes/General SHE Notes refer to drawing: C122-OVE-C4-DDJ-CR001 Z-22100. 	Scale V =1 4m Scale H= 1	permissic of Her Ma Unauthor lead to pr :200	ed from the C n of Ordnance ijesty's Station ised reproduc osecution or c 4m	e Survey on b nery Office © tion infringes	ehalf of the C Crown Copy Crown Copy	Controller right. right and may	
		TOM	U	TUM	2011	30m	40m	501

						As
	Contract : Bored Tunnels (Al	ignment and Track)				1
\gg	Originator : Ove Arup & Partn	ers Limited				
Crossrail	Location : Crossrail General					
Crossrail Limited	Title :		By: C.DRI	VER1		
Endeavour Square Stratford	Route Plan and P Eastbound	rofile	Chk : M.COL	EMAN		
London E20 1JN	Sheet 62 of 88		App : I.AUS	Γ Ι Ν] []
© Crossrail	C310		Auth : D.COL	JGHLAN		
ww.crossrail.co.uk	^{Scale :} Various@ A1	Drawing and CAD file No : C122-OVE-C4-DDA-CR001_Z-211	62	Rev : C03	Suitability : AB	RESTRICTED

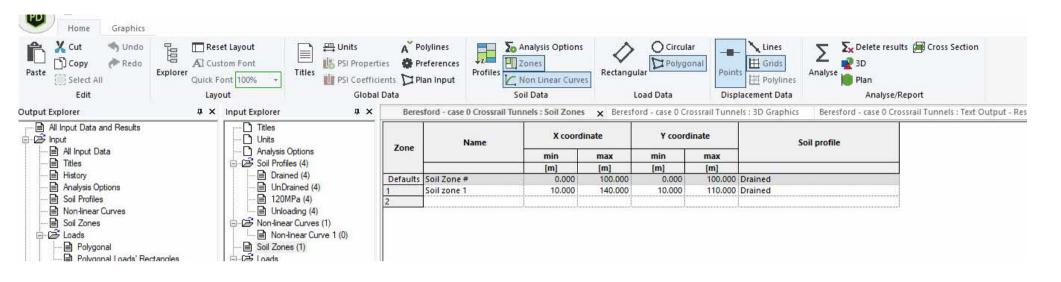
APPENDIX 3 OASYS PDisp input data


n

1 Soil profiles


1.1 Undrained (exiting building)

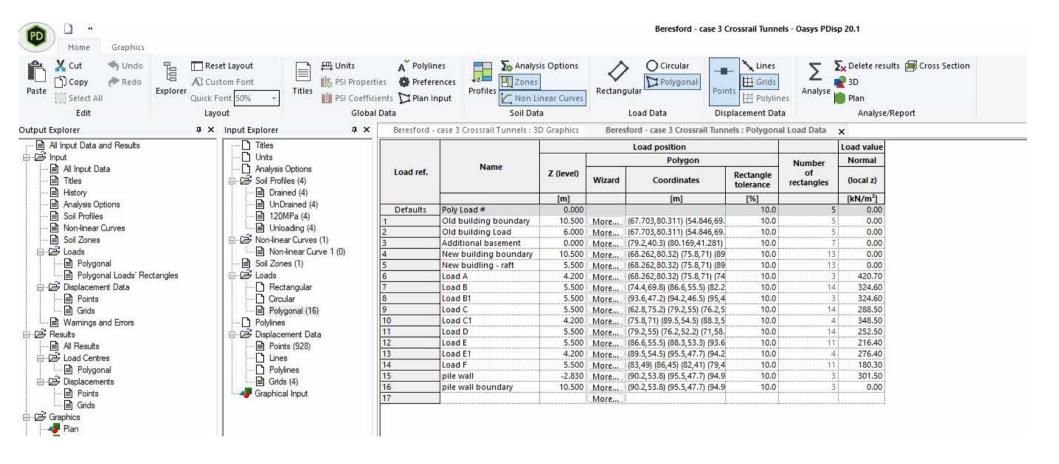
Edit	Aplorer Quick Fo Layo	om Font nt 100% + ut	les PSI Popera PSI Coeffici Global	ents 🗗 Plan Ing Data	nces Profiles Con Soil C	i Linear Curve Data	Rectangular	O Circular D Polygonal	Points 🖽 Displaceme	Polylines nt Data	Analyse Plan Analyse	Report	
put Explorer 副 All Input Data and Results 쟏 Input	4 X	Input Explorer Titles	ф×	Layer ref.	case 0 Crossrail Tunnel Name	Level at top	No of intermediate displacement	Young's n	an a	Poisson's ratio	Berestord - case 0 C Non-linear curve	Colour	s : Text Output - Res
All Input Data		Analysis Option		Layer iei.		actop	levels	Тор	Bottom	Tacio	curve	Contraction of the second seco	
Titles		□ 2 Soil Profiles (4)				[m]		[kN/m ²]	[kN/m ²]				
History		Drained (4		Defaults	Layer #	0.000	5	50000	50000	0.200	None		
Analysis Options		🖹 UnDrained		1	Made Ground	10.550	4	10000	10000	0.250	None		
Soil Profiles		🗎 120MPa (4		2	Head Deposits	8.450		30000	30000		None		
Non-linear Curves		🔄 🖹 Unloading		3	Thanet Sand Format	6.980		80000	80000		None		
	ingles		r Curve 1 (0))	5	Undifferentiated Ch	-7.150	4	1000000	1000000	0.250	None		


1.3 Undrained (Redevelopment stage)

1.4 Drained (long-term)

Paste Cut Select All Edit	Al Cust Cuick Fo Layou	om Font nt 100% +	1.000	A Polyline ties Preferen cients D Plan Ing al Data	nces	Linear Curve	s Rectangular	O Circular	Points	Polylines		Delete results 3D Plan Analyse/Rep		ction
utput Explorer	φ×	Input Explorer	ą ×	Beresford -	case 0 Crossrail Tunnel	s : Soil Profile	s 🗙 Beresfor	d - case 0 Cross	rail Tunnels : 30	O Graphics	Beresfor	d - case 0 Cros	srail Tunnel	: Text Output - Resu
All Input Data and Results		Titles		Layer ref.	Name	Level at top	No of intermediate displacement	Young's r	nodulus	Poisson's ratio	A Charles of	n-linear curve	Colour	
All Input Data		Analysis		Layer rei.		urtop	levels	Тор	Bottom	iuuo		curre		
Titles		🖨 🔁 Soil Profi			8 J	[m]		[kN/m ²]	[kN/m ²]					
History		Drain		Defaults	Layer #	0.000	5	50000	50000	0.200	None			
Analysis Options)rained (4)	1	Made Ground	10.550	4	10000	10000	0.250	None			
Soil Profiles		- 🗎 120M		2	Head Deposits	8.450	4	30000	30000	0.250	None		3	
Non-linear Curves			ading (4)	3	Thanet Sand Format	6.980	4	80000	80000	0.250	None			
🖹 Soil Zones		🗄 🔁 Non-linea		4	Undifferentiated Ch	-7.150	4	1000000	1000000	0.250	None			
🚊 🔁 Loads		Non-	-linear Curve 1 (0)	5										
Polygonal Polygonal Becta	1.20	Soil Zone	es <mark>(</mark> 1)											

2 Soil zones



3 Loads

Copy Redo Select All Edit	Reset Layout Al Custom Font Quick Font 50% Layout	Titles FSI Properti UPSI Coefficie Global	ents 🔽 Plan Ir	ences Profiles Zones	near Curves	Rectang		Grids	es Analyse	Ex Delete resul 2 3D Plan Analyse/R
put Explorer	4 × Input Explorer	ļ X	Beresford -	case 0 Crossrail Tunnels : 31	D Graphics	Beres	sford - case 0 Crossrail Tunn	els : Polygona	al Load Data	×
All Input Data and Results	Titles					2	Load position			Load value
B All head Date	Units	0.1		Name			Polygon		Number	Normal
All Input Data	🖨 🗁 Soil Pro		Load ref.	, tunc	Z (level)	Wizard	Coordinates	Rectangle tolerance	of rectangles	(local z)
History		iined (4) Drained (4)		2	[m]		[m]	[%]		[kN/m ²]
Soil Profiles	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MPa (4)	Defaults	Poly Load #	0.000			10.0	5	0.00
		loading (4)	1	Old building boundary	10.500	More	(67.703,80.311) (54.846,69.	10.0	5	0.00
Non-linear Curves			2	Old building Load	6.000	More	(67.703,80.311) (54.846,69.	10.0	5	90.00
Soil Zones	🖻 🗁 Non-lin	19 State 19 Mar 19 Ma	3	Additional basement	0.000	More	(79.2,40.3) (80.169,41.281)	10.0	7	0.00
		n-linear Curve 1 (0)	4	New building boundary	10.500	More	(68.262,80.32) (75.8,71) (89	10.0	13	
Polygonal	Soil Zo	nes (1)	5	New buidling - raft	5.500		(68.262,80.32) (75.8,71) (89	10.0	13	
Polygonal Loads' Rectangles	🖨 🗁 Loads	22 22	6	Load A	4.200	More	(68.262,80.32) (75.8,71) (74	10.0	3	
🖻 🧭 Displacement Data		ctangular	7	Load B	5.500	More	(74.4,69.8) (86.6,55.5) (82.2	10.0	14	
🖹 Points	Circ	1	8	Load B1	5.500		(93.6,47.2) (94.2,46.5) (95,4	10.0	3	
Grids	Pol	ygonal (16)	9	Load C	5.500		(62.8,75.2) (79.2,55) (76.2,5	10.0	14	
Warnings and Errors	Polyline		10	Load C1	4.200		(75.8,71) (89.5,54.5) (88.3,5	10.0	4	
🔁 Results	🖨 🗁 Displac	ement Data	11	Load D	5,500		(79.2,55) (76.2,52.2) (71,58.	10.0	14	
All Results	Poi	nts (928)	12	Load E	5,500		(86.6,55.5) (88.3,53.3) (93.6	10.0	11	
🗄 🗃 Load Centres	🗌 🔤 🗋 Lin		13	Load E1	4.200		(89.5,54.5) (95.5,47.7) (94.2	10.0	4	
Polygonal	Pol		14	Load F	5,500		(83,49) (86,45) (82,41) (79,4	10.0	11	
Displacements	📄 🖬 Gri		15	pile wall	-2.830		(90.2,53.8) (95.5,47.7) (94.9	10.0	3	
Points			16	pile wall boundary	10.500	More	(90.2,53.8) (95.5,47.7) (94.9	10.0	3	0.00

Home Graphics										
Paste Select All	Reset Layout Custom Font ck Font 50% Layout	ents 🔁 Plan I	ences	inear Curves	Rectang		Lines	Analyse es	2 3D	f Cross Section
	× Input Explorer 4 ×	Beresford -	case 2 Crossrail Tunnels : 3	D Graphics	Bere	sford - case 2 Crossrail Tunr	nels : Polygona	al Load Data	×	
🛁 All Input Data and Results	Titles	2		Ú		Load position			Load value	
🖉 🗗 🔤	D Units		La como			Polygon		Number	Normal	
📄 All Input Data 📄 Titles	Analysis Options	Load ref.	Name	Z (level)	Wizard	Coordinates	Rectangle tolerance	of rectangles	(local z)	
History	····· Drained (4)		-	[m]		[m]	[%]		[kN/m ²]	
Analysis Options	Diagonal (4)	Defaults	Poly Load #	0.000			10.0	5	0.00	
- Soil Profiles	📄 120MPa (4)	1	Old building boundary	10.500	More	(67.703,80.311) (54.846,69.	10.0	5	0.00	
Non-linear Curves	Unloading (4)	2	Old building Load	6.000	More	(67.703,80.311) (54.846,69.	10.0	- 5	-23.56	
Soil Zones	ia⊡ 🔁 Non-linear Curves (1)	3	Additional basement	0.000		(79.2,40.3) (80.169,41.281)	10.0	7		
⊡ 🗁 Loads		4	New building boundary	10.500		(68.262,80.32) (75.8,71) (89	10.0	13	Construction of the second second second	
Polygonal	Soil Zones (1)	5	New buidling - raft	5.500		(68.262,80.32) (75.8,71) (89	10.0	13		
Polygonal Loads' Rectangles		6	Load A	4.200		(68.262,80.32) (75.8,71) (74		3		
Displacement Data	Rectangular	/	Load B	5.500		(74.4,69.8) (86.6,55.5) (82.2		14		
Points	Circular	9	Load B1 Load C	·		(93.6,47.2) (94.2,46.5) (95,4	10.0	3		
Grids	Polygonal (16)	10	Load C			(62.8,75.2) (79.2,55) (76.2,5 (75.8,71) (89.5,54.5) (88.3,5		4		
Warnings and Errors	Polylines	11	Load D			(79.2,55) (76.2,52.2) (71,58.	10.0	4		
	Displacement Data	12	Load E	5,500		(86.6,55.5) (88.3,53.3) (93.6		11		
All Results	Points (928)	13	Load E1	4.200		(89.5,54.5) (95.5,47.7) (94.2		4		
	D Lines	14	Load F	5,500		(83,49) (86,45) (82,41) (79,4	10.0	11		
Polygonal	D Polylines	15	pile wall	-2.830		(90.2,53.8) (95.5,47.7) (94.9	10.0	3	0.00	
	Grids (4)	16	pile wall boundary	10.500		(90.2,53.8) (95.5,47.7) (94.9	10.0	3		
📄 Points	Graphical Input	17			More	1	·····		3	

3.3 Cases 3 & 4 Loading and Long term

4 Grids

Home Graphics								Beresf	ord - case 3 Cro	ossrail Tunnels	- Oasys PDis	p 20.1					
Paste E Edit		ont 50% 👻	Titles	ies 🔹 P ents 🏹 P	Polylines Preferences Prof	Analysis Option	Rectangu	O Circu Ular Polyg	Points	Lines	Analyse	Delete resul 3D Plan Analyse/F		Section			
put Explorer		Input Explorer	τ×	ensense F	ord - case 3 Cross	rail Tunnels : 3D Graphic	s Beresfor	rd - case 3 Cro	ssrail Tunnels	: Polygonal Lo	ad Data	Beresford - ca	se 3 Crossrail	Tunnels : Disp	lacement Poir	nts Be	resford - case 3 C
- 🖹 All Input Data and Results		Titles			1				Base I	ine to be extru	ıded	041 (600)-612 (120) 0		Extru	ision	T	
🗁 Input		Units	ša.	Ref.	Name	Direction of extrusion		Start			End		Intervals	Distance	Intervals	Calculate	Detailed results
All Input Data 📄 Titles		Analysis O		, NCL		chi datori,	x	Y	Z(level)	х	Y	Z(level)	NT-9976-9691-9691	699 90 A 999 5 19	NE-4972 - 422-340		10000
History		Draine	od (4)				[m]	[m]	[m]	[m]	[m]	[m]	[No.]	[m]	[No.]	1	
Analysis Options		UnDra		Defaults	Displacement Gr		0.000	0.000	0.000	1.000	1.000		10			No	Yes
Soil Profiles		□ □ 01Dra		1	Ground level	Global X	10.000	10.000	10.500		110.000		10			Yes	No
				2	Crown	Global X	10.000	10.000	-8.750		110.000		10			Yes	Yes
Non-linear Curves		Unload		3	Centre level	Global X	10.000	10.000	-12.150		110.000		10			Yes	Yes
Soil Zones		Non-linear		4	Invert level	Global X	10.000	10.000	-15.551		110.000	-11.571	10	130.000	10	Yes	No
Coads Coads	angles	Soil Zones ⇒ 22 Loads → Crcula → Crcula → Polygo → Polygines → 22 Displacem	ingular ar onal (16)	2	4	annan an tha ann an tha an						[<u>I</u>		<u></u>	

5 Displacement points

464 data points

Deresit	ord - case 4 Crossrail WB Tu	il Data innel : 3D Graph	•	Load Data esford - case	Displacement D se 4 Crossrail WB Tunnel : D		
Ref.	Name	x	Y	Z(level)	Calculate	Detailed Results	
		[m]	[m]	[m]			
Defaults	Displacement Point #	0.000	0.000	0.000	Yes	Yes	
1	WU1	12.640	139.210	-8.750	Yes	Yes	
2	WU1	13.640	138.400	<mark>-8.715</mark>	Yes	Yes	
3	WU1	14.640	137.590	- <mark>8.68</mark> 1	Yes	Yes	
4	WU1	15.640	136.780	-8.646	Yes	Yes	
5	WU1	16.640	135.970	- <mark>8.61</mark> 2	Yes	Yes	
6	WU1	17.640	135.160	-8.577	Yes	Yes	
7	WU1	18.640	134.040	-8.542	Yes	Yes	
8	WU1	19.640	133.230	-8.508	Yes	Yes	
9	WU1	20.640	132.420	-8.473	Yes	Yes	
10	WU1	21.640	131.610	-8.439	Yes	Yes	
11	WU1	22.640	130.800	-8.404	Yes	Yes	
12	WU1	23.640	129.670	-8.369		Yes	
13	WU1	24.640	128.860	-8.335	Yes	Yes	
14	WU1	25.640	128.050	-8.300		Yes	
15	WU1	26.640	127.350	-8.266	Yes	Yes	
16	WU1	27.640	126.600	-8.231	Yes	Yes	
17	WU1	28.640	125.880	-8.196		Yes	
18	WU1	29.640	124.910	-8.162	Yes	Yes	
19	WU1	30.640	124.220	-8.127		Yes	
20	WU1	31.640	123.250	-8.093	Yes	Yes	
21	WU1	32.640	122.400	-8.058		Yes	
22	WU1	33.640	121.600	-8.023		Yes	
23	WU1	34.640	120.800	-7.989	Yes	Yes	
24	WU1	35.640	120.100	-7.954	Yes	Yes	
25	WU1	36.640	119.300	-7.920		Yes	
26	WU1	37.640	118.500	-7.885		Yes	
27	WU1	38.640	117.700	-7.850		Yes	
28	WU1	39.640	116.900	-7.816	Yes	Yes	
29	WU1	40.640	116.200	-7.781	Yes	Yes	
30	WU1	41.640	115.200	-7.747	Yes	Yes	
31	WU1	42.640	114.600	-7.712	Yes	Yes	
32	WU1	43.640	113.800	-7.677	Yes	Yes	
33	WU1	44.640	113.000	-7.643	Yes	Yes	
34	WU1	45.640	112.200	-7.608	Yes	Yes	

----- ---- ---- ---- ----

21	VVO1		114.000		1.5.2	1.0.2
32	WU1	43.640	113.800	-7.677	Yes	Yes
33	WU1	44.640	113.000	-7.643	Yes	Yes
34	WU1	45.640	112.200	-7.608	Yes	Yes
35	WU1	46.640	111.400	-7.574	Yes	Yes
36	WU1	47.640	110.600	-7.539	Yes	Yes
37	WU1	48.640	109.900	-7.504	Yes	Yes
38	WU1	49.640	109.200	-7.470	Yes	Yes
39	WU1	50.640	108.350	-7.435	Yes	Yes
40	WU1	51.640	107.730	-7.401	Yes	Yes
41	WU1	52.640	107.200	-7.366	Yes	Yes
42	WU1	53.640	106.400	-7.331	Yes	Yes
43	WU1	54.640	105.700	-7.297	Yes	Yes
44	WU1	55.640	105.000	-7.262	Yes	Yes
45	WU1	56.640	104.200	-7.228	Yes	Yes
46	WU1	57.640	103.600	-7,193	Yes	Yes
47	WU1	58.640	103.000	-7.158	Yes	Yes
48	WU1	59.640	102.200	-7.124	Yes	Yes
49	WU1	60.640	101.600	-7.089	Yes	Yes
50	WU1	61.640	100.800	-7.055	Yes	Yes
51	14/111	62.640	100 100	7 020	Ver	Ver

roperties Proferences	Profiles	Rectangular	Points H Polylines	D Analys
Global Data	Soil Data	Load Data	Displacement Data	

4 ×

			1			
Ref.	Name	x	Y	Z(level)	Calculate	Detailed Results
		[m]	[m]	[m]		
Defaults	Displacement Point #	0.000	0.000	0.000		Yes
101	WU1	112.640	70.500	-5.290	Yes	Yes
102	WU1	113.640	69.970	-5.255	Yes	Yes
103	WU1	114.640	69.440	-5.221	Yes	Yes
104	WU1	115.640	68.900	-5.186		Yes
105	WU1	116.640	68.370	-5.152		Yes
106	WU1	117.640	68.000	-5.117		Yes
107	WU1	118.640	67.470	-5.082		Yes
108	WU1	119.640	66.940	-5.048		Yes
109	WU1	120.640	66.400	-5.013		Yes
						÷······
110	WU1	121.640	65.870	-4.979		Yes
111	WU1	122.640	65.600	-4.944		Yes
112	WU1	123.640	65.070	-4.909		Yes
113	WU1	124.640	64.540	-4.875		Yes
114	WU1	125.640	64.000	-4.840		Yes
115	WU1	126.640	63.470	<mark>-4.806</mark>	Yes	Yes
116	WU1	127.640	63.100	-4.771	Yes	Yes
117	WU2	12.640	146.013	-8.750	Yes	Yes
118	WU2	13.640	145.203	-8.715	Yes	Yes
119	WU2	14.640	144.393	-8.681		Yes
120	WU2	15.640	143.583	-8.646		Yes
121	WU2	16.640	142.774	-8.612		Yes
122	WU2	17.640	141.964	-8.577		Yes
123	WU2	18.640	140.839	-8.542		Yes
124	WU2		·····	-8.508	Vec	Yes
124	WU2	19.640	140.029			\$•••••••
		20.640	139.220	-8.473		Yes
126	WU2	21.640	138.410	-8.439		Yes
127	WU2	22.640	137.600	-8.404		Yes
128	WU2	23.640	136.470	-8.369		Yes
129	WU2	24.640	135.660	-8.335	Yes	Yes
130	WU2	25.640	134.850	-8.300	Yes	Yes
131	WU2	26.640	134.150	-8.266		Yes
132	WU2	27.640	133.400	-8.231	Yes	Yes
133	WU2	28.640	132.676	-8.196		Yes
134	WU2	29.640	131.710	-8.162	Yes	Yes
135	WU2	30.640	131.016	-8.127	Yes	Yes
136	WU2	31.640	130.050	-8.093		Yes
137	WU2	32.640	129.200	-8.058		Yes
138	WU2	33.640	128.400	-8.023		Yes
139	WU2	34.640	127,600	-7.989		Yes
140	WU2	35.640	126.900	-7.954		
					:	Yes
141	WU2	36.640	126,100	-7.920		Yes
142	WU2	37.640	125.300	-7.885		Yes
143	WU2	38.640	124.500	-7.850	•	Yes
144	WU2	39.640	123,700	-7.816		Yes
145	WU2	40.640	123.000	-7.781		Yes
146	WU2	41.640	122.000	-7.747	Yes	Yes
147	WU2	42.640	121.400	-7.712	Yes	Yes
148	WU2	43.640	120.600	-7.677	Yes	Yes
149	WU2	44.640	119.800	-7.643		Yes
150	WU2	45.640	119.000	-7,608		Yes
151	W/112	46 640	118 200	7 574		Ver

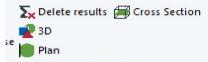
es 🔅 Pr nts 🔽 Pl Data	an Input	Iones Non Linear Curve pil Data		ular Polyg	Po	ints H Grids	
	ord - case 4 Crossrail WB Ti					WB Tunnel : Di	
Ref.	Name	x	Y	Z(level)	Calculate	Detailed Results	
		[m]	[m]	[m]			
	Displacement Point #	0.000	0.000	0.000		Yes	
201	WU2	96.640	85.900	-5.844		Yes	
202	WU2	97.640	85.400	-5.809		Yes	
203	WU2	98.640	84.868	-5.774		Yes	
204	WU2 WU2	99.640	84.337	-5.740		Yes	
205 206	WU2 WU2	100.640 101.640	83.805 83.273	-5.705 -5.671		Yes	
206	WU2 WU2	101.640	82.600	-5.636		Yes	
207	WU2	102.640	82.068	-5.601		Yes	
200	WU2	103.640	81.537	-5.567		Yes	
210	WU2	105.640	81.005	-5.532		Yes	
211	WU2	106.640	80.473	-5.498		Yes	
212	WU2	107.640	79.900	-5,463		Yes	
213	WU2	108.640	79.368	-5,428		Yes	
214	WU2	109.640	78.837	-5.394		Yes	
215	WU2	110.640	78.305	-5.359	Yes	Yes	
216	WU2	111.640	77.773	-5.325	Yes	Yes	
217	WU2	112.640	77.300	-5.290	Yes	Yes	
218	WU2	113.640	76.768	-5.255	Yes	Yes	
219	WU2	114.640	76.237	-5.221	Yes	Yes	
220	WU2	115.640	75.705	-5.186	Yes	Yes	
221	WU2	116.640	75.173	-5.152	Yes	Yes	
222	WU2	117.640	74.800	-5,117		Yes	
223	WU2	118.640	74.268	-5.082		Yes	
224	WU2	119.640	73.737	-5.048		Yes	
225 226	WU2 WU2	120.640	73.205	-5.013		Yes	
220	WU2 WU2	121.640 122.640	72.673 72.400	-4.979 -4.944		Yes Yes	
228	WU2	123.640	71.868	-4.909		Yes	
229	WU2	124.640	71.337	-4.875		Yes	
230	WU2	125.640	70.805	-4,840		Yes	
231	WU2	126.640	70.273	-4.806		Yes	
232	WU2	127.640	69.900	-4,771	Yes	Yes	
233	WL1	12.640	139.213	-15.550		Yes	
234	WL1	13.640	138.403	-15.515	Yes	Yes	
235	WL1	14.640	137.593	-15.481		Yes	
236	WL1	15.640	136.783	-15.446	Yes	Yes	
237	WL1	16.640	135.974	-15.412	Yes	Yes	
238	WL1	17.640	135.164	-15.377		Yes	
239	WL1	18.640	134.039	-15.342		Yes	
240	WL1	19.640	133.229	-15.308		Yes	
241	WL1	20.640	132.420	-15.273		Yes	
242	WL1	21.640	131.610	-15.239		Yes	
243	WL1	22.640	130.800	-15.204		Yes	
244	WL1	23.640	129.670	-15.169		Yes	
245	WL1	24.640	128.860	-15.135		Yes	
246	WL1	25.640	128.050	-15.100		Yes	
247 248	WL1 WL1	26.640	127.350	-15.066		Yes	
240	WL1	27.640 28.640	126.600 125.876	-15.031 -14.996		Yes Yes	
250	WL1	29.640	123.070	-14.962		Yes	
	\\/I 1	30.640	124.910	14.902		Vec	

Berestord - case 4 Crossrail WB Junnel - Oasys PL

	references	Analysis Options Zones Non Linear Curve	Rectang	ular	gonal	■ Line: 田田 Grid 田 Polyl	s Ai	
Data		oil Data		Load Data	Di	splacement D		
Beresf	ord - case 4 Crossrail WB1	Funnel : 3D Graph	raphics Beresford - case 4 Crossrail WB Tunnel :					
Ref.	Name	x	Y	Z(level)	Calculate	Detailed Results		
		[m]	[m]	[m]				
Defaults		0.000	0.000	0.000		Yes		
301 302	WL1	80.640	88.400	-13.197		Yes		
303	WL1	81.640 82.640	87.800 87.137	-13.163 -13.128		Yes Yes		
304	WL1	83.640	86.512	-13.093		Yes		
305	WL1	84.640	85.887	-13.059		Yes		
306	WL1	85.640	85.263	-13.024		Yes		
307	WL1	86.640	84.638	-12.990		Yes		
308	WL1	87.640	84.200	-12.955		Yes		
309	WL1	88.640	83.600	-12.920		Yes		
310	WL1	89.640	83.000	-12.886	Yes	Yes		
311	WL1	90.640	82.500	-12.851	Yes	Yes		
312	WL1	91.640	81.875	-12.817	Yes	Yes		
313	WL1	92.640	81.300	-12.782		Yes		
314	WL1	93.640	80.700	-12.747		Yes		
315	WL1	94.640	80.200	-12.713		Yes		
316	WL1	95.640	79.600	-12.678		Yes		
317 318	WL1	96.640	79.100	-12.644		Yes Yes		
319	WL1	97.640 98.640	78.600 78.068	-12.609 -12.574		Yes		
320	WL1	99.640	77.537	-12.540		Yes		
321	WL1	100.640	77.005	-12.505		Yes		
322	WL1	101.640	76.473	-12.471		Yes		
323	WL1	102.640	75.800	-12.436		Yes		
324	WL1	103.640	75.268	-12.401	Yes	Yes		
325	WL1	104.640	74.737	-12.367	Yes	Yes		
326	WL1	105.640	74.205	-12.332	Yes	Yes		
327	WL1	106.640	73.673	-12.298		Yes		
328	WL1	107.640	73.100	-12.263		Yes		
329	WL1	108.640	72.568	-12.228		Yes		
330	WL1	109.640	72.037	-12,194	*********	Yes		
331 332	WL1	110.640 111.640	71.505	-12.159 -12.125		Yes Yes		
333	WE1	112.640	70.500	-12.125		Yes		
334	WL1	113.640	69.968	-12.055		Yes		
335	WL1	114.640	69.437	-12.021		Yes		
336	WL1	115.640	68.905	-11.986	Yes	Yes		
337	WL1	116.640	68.373	-11.952	Yes	Yes		
338	WL1	117.640	68.000	-11.917	Yes	Yes		
339	WL1	118.640	67.468	-11.882		Yes		
340	WL1	119.640	66.937	-11.848		Yes		
341	WL1	120.640	66.405	-11.813		Yes		
342	WL1	121.640	65.873	-11.779		Yes		
343	WL1	122.640	65.600	-11.744		Yes		
344 345	WL1 WL1	123.640 124.640	65.068	-11.709		Yes		
345	WL1	124.640	64.537 64.005	-11.675 -11.640		Yes		
347	WL1	125.640	63,473	-11.606		Yes		
348	WL1	120.040	63.100	-11.571		Yes		
349	WL2	12.640	146.013	-15.550		Yes		
350	WL2	13.640	145.203	-15.515		Yes		
251	W/12	14 640	144 393	15 481	***********	Vor		

its Propertio Coefficie Global I	es 🏟 P ents 🏹 P	olylines references lan Input	Profiles	Analysis Option Iones Non Linear Cun NI Data	- Rectany	Circu gular Poly Load Data	gonal Po	ints H Poly	s Analyse
 τ×	Beresf	ord - case 4	Crossrail WB T	unnel : 3D Grap	hics Be	eresford - case	4 Crossrail \	WB Tunnel : D	Displacement P
	Ref.	,	Name	x	Y	Z(level)	Calculate	Detailed Results	
				[m]	[m]	[m]		ļ	
	Defaults	Displaceme	ent Point #	0.000	0.000	0.000	Yes	Yes	

Ref.		[m]	[m]	[m]		Results
Defaults	Displacement Point #	0.000	0.000	0,000	Ves	Yes
401	WL2	64.640	105.500	-13,751		Yes
402	WL2	65.640	104.800	-13.716		Yes
403	WL2	66.640	104.200	-13.682	***********************************	Yes
404	WL2	67.640	103.531	-13.647		Yes
405	WL2	68,640	102.882	-13,612		Yes
406	WL2	69.640	102.232	-13.578		Yes
407	WL2	70.640	102.252	-13.543		Yes
408	WL2	71.640	100.933	-13.509		Yes
409	WL2 WL2	72.640	100.200	-13.309	;	Yes
409	WL2	73,640	99,600	-13,439		Yes
411	WL2 WL2	74.640	98.900	-13,405		Yes
412	WL2 WL2	75.640	98.200	-13.405	*****	Yes
	WL2 WL2	76.640	97.600	-13.370		Yes
413						÷
414	WL2 WL2	77.640	97.000	-13.301		Yes
415		78.640	96,400	-13.266		Yes
416	WL2	79.640	95.800	-13.232		Yes
417	WL2	80.640	95.200	-13.197		Yes
418	WL2	81.640	94.600	-13.163		Yes
419	WL2	82.640	93.937	-13,128		Yes
420	WL2	83.640	93.312	-13.093		Yes
421	WL2	84.640	92.687	-13.059		Yes
422	WL2	85.640	92.063	-13.024		Yes
423	WL2	86.640	91.438	-12.990		Yes
424	WL2	87.640	91.000	-12,955		Yes
425	WL2	88.640	90.400	-12.920		Yes
426	WL2	89.640	89.800	-12.886	******	Yes
427	WL2	90.640	89.300	-12.851		Yes
428	WL2	91.640	88.675	-12.817		Yes
429	WL2	92.640	88.100	-12.782		Yes
430	WL2	93.640	87.500	-12.747		Yes
431	WL2	94.640	87.000	-12.713		Yes
432	WL2	95.640	86.400	-12.678		Yes
433	WL2	96.640	85.900	-12.644	Yes	Yes
434	WL2	97.640	85.400	-12.609		Yes
435	WL2	98.640	84.868	-12,574	Yes	Yes
436	WL2	99.640	84.337	-12.540	Yes	Yes
437	WL2	100.640	83.805	-12.505	Yes	Yes
438	WL2	101.640	83.273	-12,471	Yes	Yes
439	WL2	102.640	82.600	-12,436	Yes	Yes
440	WL2	103.640	82.068	-12,401	Yes	Yes
441	WL2	104.640	81.537	-12.367	Yes	Yes
442	WL2	105.640	81.005	-12.332	Yes	Yes
443	WL2	106.640	80.473	-12.298	Yes	Yes
444	WL2	107.640	79.900	-12.263	Yes	Yes
445	WL2	108.640	79.368	-12.228	Yes	Yes
446	WL2	109.640	78.837	-12.194		Yes
447	WL2	110.640	78.305	-12,159	Yes	Yes
448	WL2	111.640	77.773	-12.125		Yes
449	WL2	112.640	77.300	-12.090	Yes	Yes
	WL2	113.640	76,768	-12.055	Yes	Yes
50	WL2	T LONGTO :	1 011 001	101000		


Delete results ∰ Cross Section Nyse Plan Analyse/Report

nt Po<u>in</u>ts<u>×</u>

-

·/-···

Name	x	Y	Z(level)	Calculate	Detailed Results
	[m]	[m]	[m]		
Displacement Point #	0.000	0.000	0.000	Yes	Yes
WU1	62.640	100.100	-7.020	Yes	Yes
WU1	63.640	99.400	-6.985	Yes	Yes
WU1	64.640	98.700	-6.951	Yes	Yes
WU1	65.640	98.000	- <mark>6.916</mark>	Yes	Yes
WU1	66.640	97.400	-6.882	Yes	Yes
WU1	67.640	96,730	-6.847	Yes	Yes
WU1	68.640	96.080	-6.812	Yes	Yes
WU1	69.640	95.430	-6.778	Yes	Yes
WU1	70.640	94.780	-6.743	Yes	Yes
WU1	71.640	94.130	-6.709	Yes	Yes
WU1	72.640	93,400	-6.674	Yes	Yes
WU1	73.640	92.800	-6.639	Yes	Yes
WU1	74.640	92.100			Yes
WU1	75.640	91.400			Yes
WU1	76.640	90.800			Yes
WU1		90.200			Yes
WU1	78.640	89,600			Yes
WU1	79.640				Yes
WU1					Yes
			*****		Yes
				***********************************	Yes
					÷••••••
					Yes
					Yes
	WU1 WU1	Displacement Point # 0.000 WU1 62.640 WU1 63.640 WU1 64.640 WU1 65.640 WU1 65.640 WU1 65.640 WU1 66.640 WU1 67.640 WU1 69.640 WU1 70.640 WU1 70.640 WU1 71.640 WU1 72.640 WU1 73.640 WU1 74.640 WU1 75.640 WU1 76.640 WU1 76.640 WU1 76.640 WU1 76.640 WU1 76.640 WU1 80.640 WU1 80.640 WU1 80.640 WU1 83.640 WU1 83.640 WU1 83.640 WU1 83.640 WU1 83.640 WU1 83.640 WU1 83	Displacement Point # 0.000 0.000 WU1 62.640 100.100 WU1 63.640 99.400 WU1 64.640 98.700 WU1 65.640 98.000 WU1 65.640 97.400 WU1 66.640 96.730 WU1 69.640 95.430 WU1 70.640 94.780 WU1 71.640 94.780 WU1 71.640 92.800 WU1 73.640 92.800 WU1 75.640 91.400 WU1 75.640 90.800 WU1 75.640 90.200 WU1 75.640 90.200 WU1 78.640 88.400 WU1 83.640 85.10 WU1 83.640 85.110 WU1 83.640 85.260 WU1 83.640 83.600 WU1 83.640 83.600 WU1 83.640 83.600 <	Displacement Point # 0.000 0.000 0.000 WU1 62.640 100.100 -7.020 WU1 63.640 99.400 -6.985 WU1 65.640 98.000 -6.916 WU1 65.640 98.000 -6.917 WU1 66.640 97.400 -6.885 WU1 68.640 96.730 -6.647 WU1 69.640 95.430 -6.778 WU1 71.640 94.130 -6.709 WU1 71.640 92.800 -6.657 WU1 72.640 91.400 -6.570 WU1 75.640 91.400 -6.570 WU1 77.640 90.800 -6.351 WU1 77.640 90.800 -6.353 WU1 77.640 90.800 -6.353 WU1 83.640 87.800 -6.363 WU1 83.640 87.800 -6.354 WU1 83.640 87.800 -6.353	Displacement Point # 0.000 0.000 0.000 Yes WU1 62.640 100.100 -7.020 Yes WU1 63.640 99.400 -6.951 Yes WU1 65.640 98.000 -6.951 Yes WU1 65.640 98.000 -6.916 Yes WU1 67.640 96.730 -6.847 Yes WU1 68.640 96.080 -6.713 Yes WU1 69.640 93.400 -6.774 Yes WU1 71.640 94.130 -6.778 Yes WU1 72.640 92.800 -6.639 Yes WU1 73.640 92.800 -6.336 Yes WU1 76.640 90.800 -6.336 Yes WU1 77.640 90.200 -6.337 Yes WU1 79.640 89.600 -6.432 Yes WU1 83.640 83.800 -6.337 Yes WU1

Analyse/Report

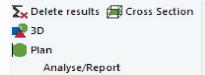
Ref.	Name	x	Y	Z(level)	Calculate	Detailed Results
		[m]	[m]	[m]		
Defaults	Displacement Point #	0.000	0.000	0.000	Yes	Yes
151	WU2	46.640	118.200	-7.574	Yes	Yes
152	WU2	47.640	117,400	-7.539	Yes	Yes
153	WU2	48.640	116.700	-7.504		Yes
154	WU2	49.640	116.000	-7.470		Yes
155	WU2	50.640	115.150	-7.435		Yes
156	WU2	51.640	114,532	-7.401		Yes
157	WU2	52,640	114.000	-7.366	*******	Yes
158	WU2	53.640	113.200	-7.331		Yes
159	WU2	54.640	112.500	-7.297		Yes
160	WU2	55.640	111.800	-7.262		Yes
				-7.228		
161	WU2	56.640	111.000			Yes
162	WU2	57.640	110.400	-7.193		Yes
163	WU2	58.640	109.800	-7.158		Yes
164	WU2	59.640	109.000	-7.124		Yes
165	WU2	60.640	108.400	-7.089		Yes
166	WU2	61.640	107.600	-7.055		Yes
167	WU2	62.640	106.900	-7.020	Yes	Yes
168	WU2	63.640	106.200	- <mark>6.98</mark> 5	Yes	Yes
169	WU2	64.640	105,500	-6.951	Yes	Yes
170	WU2	65.640	104.800	- <mark>6.916</mark>	Yes	Yes
171	WU2	66.640	104.200	-6.882	Yes	Yes
172	WU2	67.640	103.531	-6.847	Yes	Yes
173	WU2	68.640	102.882	-6.812	Yes	Yes
174	WU2	69.640	102.232	-6.778	Yes	Yes
175	WU2	70.640	101.583	-6.743	Yes	Yes
176	WU2	71.640	100.933	-6.709	Yes	Yes
177	WU2	72.640	100.200	-6.674	Yes	Yes
178	WU2	73.640	99.600	-6.639	Yes	Yes
179	WU2	74.640	98.900	-6.605	Yes	Yes
180	WU2	75.640	98.200	-6.570		Yes
181	WU2	76.640	97.600	-6.536	************************************	Yes
182	WU2	77.640	97.000	-6,501		Yes
183	WU2	78.640	96,400	-6.466		Yes
184	WU2	79.640	95.800	-6.432		Yes
185	WU2	80.640	95.200	-6,397		Yes
186	WU2	81.640	94.600	-6,363		Yes
187	WU2	82.640	93.937	-6.328		Yes
188	WU2	83.640	93.312	-6.293		Yes
189	WU2	84.640	92.687	-6.259		Yes
190	WU2	85.640	92.063	-6.224		Yes
191	WU2	86.640	91,438	-6.190		Yes
192	WU2	87.640	91.000	-6.155		Yes
193	WU2	88.640	90.400	-6.120		Yes
194	WU2	89.640	89.800	-6.086		Yes
195	WU2	90.640	89.300	-6.051	Yes	Yes
196	WU2	91.640	88.675	- <mark>6.0</mark> 17	Yes	Yes
197	WU2	92.640	88.100	-5,982	Yes	Yes
198	WU2	93.640	87.500	-5.947	Yes	Yes
199	WU2	94.640	87.000	-5.913		Yes
200	WU2	95.640	86.400	-5.878		Yes
201	W/H2	96 640	85 900	5 844		Ver

🗙 Delete results 🗃 Cross Secti

3D

Plan

Analyse/Report


ts y

Ref.	Name	x	Y	Z(level)	Calculate	Detaile Result
		[m]	[m]	[m]		
	Displacement Point #	0.000	0.000	0.000		Yes
251	WL1	30.640	124.216	-14.927		Yes
252	WL1	31.640	123.250	-14.893		Yes
253	WL1	32.640	122.400	-14.858		Yes
254	WL1	33.640	121.600	-14.823		Yes
255	WL1	34.640	120.800	-14.789		Yes
256	WL1	35.640	120.100	-14.754		Yes
257	WL1	36.640	119.300	-14.720		Yes
258	WL1	37.640	118.500	-14.685		Yes
259	WL1	38.640	117.700	-14.650		Yes
260	WL1	39.640	116.900	-14.616		Yes
261	WL1	40.640	116.200	-14.581		Yes
262	WL1	41.640	115.200	-14.547		Yes
263	WL1	42.640	114.600	-14.512		Yes
264	WL1	43.640	113.800	-14.477		Yes
265	WL1	44.640	113.000	-14.443		Yes
266	WL1	45.640	112.200	-14.408		Yes
267	WL1	46.640	111.400	-14.374		Yes
268	WL1	47.640	110.600	-14.339		Yes
269	WL1	48.640	109.900	-14.304		Yes
270	WL1	49.640	109.200	-14.270	Yes	Yes
271	WL1	50.640	108.350	-14.235	Yes	Yes
272	WL1	51.640	107.732	-14.201	Yes	Yes
273	WL1	52.640	107.200	-14.166	Yes	Yes
274	WL1	53.640	106.400	-14.131	Yes	Yes
275	WL1	54.640	105.700	-14.097	Yes	Yes
276	WL1	55.640	105.000	-14.062	Yes	Yes
277	WL1	56.640	104.200	-14.028	Yes	Yes
278	WL1	57.640	103.600	-13.993	Yes	Yes
279	WL1	58.640	103.000	-13.958	Yes	Yes
280	WL1	59.640	102.200	-13.924	Yes	Yes
281	WL1	60.640	101.600	-13.889	Yes	Yes
282	WL1	61.640	100.800	-13.855	Yes	Yes
283	WL1	62.640	100.100	-13.820	Yes	Yes
284	WL1	63.640	99.400	-13.785	Yes	Yes
285	WL1	64.640	98.700	-13.751	Yes	Yes
286	WL1	65.640	98.000	-13.716	Yes	Yes
287	WL1	66.640	97.400	-13.682	Yes	Yes
288	WL1	67.640	96.731	-13.647	Yes	Yes
289	WL1	68.640	96.082	-13.612	Yes	Yes
290	WL1	69.640	95.432	-13.578	Yes	Yes
291	WL1	70.640	94.783	-13.543	Yes	Yes
292	WL1	71.640	94.133	-13.509	Yes	Yes
293	WL1	72.640	93.400	-13.474		Yes
294	WL1	73.640	92.800	-13,439	Yes	Yes
295	WL1	74.640	92.100	-13.405	Yes	Yes
296	WL1	75.640	91.400	-13.370	Yes	Yes
297	WL1	76.640	90.800	-13.336	Yes	Yes
298	WL1	77.640	90.200	-13.301	Yes	Yes
299	WL1	78.640	89.600	-13.266	Yes	Yes
300	WL1	79.640	89.000	-13.232	Yes	Yes
201	TabTable /	80.640	88.400	13 107	Vec	Vec

_

η**ν 2**ν.1

Disp 20.1

ints x

Ref.	Name	Name X Y		Z(level)	Calculate	Detailed Results	
		[m]	[m]	[m]			
Defaults	Displacement Point #	0.000	0.000	0.000	Yes	Yes	
351	WL2	14.640	144.393	-15.481	Yes	Yes	
352	WL2	15.640	143.583	-15.446	Yes	Yes	
353	WL2	16.640	142.774	-15.412	Yes	Yes	
354	WL2	17.640	141.964	-15.377	Yes	Yes	
355	WL2	18.640	140.839	-15.342	Yes	Yes	
356	WL2	19.640	140.029	-15.308	Yes	Yes	
357	WL2	20.640	139.220	-15.273	Yes	Yes	
358	WL2	21.640	138.410	-15.239	Yes	Yes	
359	WL2	22.640	137.600	-15.204	Yes	Yes	
360	WL2	23.640	136.470	-15.169	Yes	Yes	
361	WL2	24.640	135.660	-15.135	Yes	Yes	
362	WL2	25.640	134.850	-15.100	Yes	Yes	
363	WL2	26.640	134.150	-15.066		Yes	
364	WL2	27.640	133.400	-15.031		Yes	
365	WL2	28.640	132.676	-14.996		Yes	
366	WL2	29.640	131.710	-14.962		Yes	
367	WL2	30.640	131.016	-14.927		Yes	
368	WL2	31,640	130.050	-14.893		Yes	
369	WL2	32.640	129.200	-14.858	Yes	Yes	
370	WL2	33.640	128.400	-14.823	*********************************	Yes	
371	WL2	34,640	127.600	-14,789		Yes	
372	WL2	35.640	126.900	-14.754		Yes	
373	WL2	36.640	126,100	-14.720		Yes	
374	WL2	37.640	125.300	-14.685		Yes	
375	WL2	38.640	124.500	-14.650		Yes	
376	WL2	39,640	123,700	-14.616		Yes	
377	WL2	40.640	123.000	-14.581		Yes	
378	WL2	41.640	122.000	-14.547		Yes	
379	WL2	42.640	121.400	-14.512		Yes	
380	WL2	43.640	120.600	-14.477		Yes	
381	WL2	44,640	119,800	-14.443		Yes	
382	WL2 WL2	44.640	119.000			Yes	
383	WL2 WL2	45.640	118.200	-14.408		Yes	
384	WL2 WL2				******	Yes	
385	WL2 WL2	47.640 48.640	117.400	-14.339 -14.304		\$	
and the second fill	WL2 WL2		116.700			Yes	
386 387		49.640	116.000	-14.270		Yes	
	WL2	50.640	115.150	-14.235		Yes	
388	WL2	51.640	114.532	-14.201		Yes	
389	WL2	52.640	112.000	-14.166		Yes	
390	WL2	53.640	113.200	-14.131		Yes	
391	WL2	54.640	112.500	-14.097		Yes	
392	WL2	55.640	111.800	-14.062	;	Yes	
393	WL2	56.640	111.000	-14.028		Yes	
394	WL2	57.640	110.400	-13.993		Yes	
395	WL2	58.640	109.800	-13.958		Yes	
396	WL2	59.640	109.000	-13.924		Yes	
397	WL2	60.640	108.400	-13.889		Yes	
398	WL2	61.640	107.600	-13.855		Yes	
399	WL2	62.640	106.900	-13.820		Yes	
400	WL2	63.640	106.200	-13.785		Yes	
401 4 ► \	TabTable /	64 640	105 500	13 751	Vac	Ver	

Analyse/Report

Ref.	Name	x	Y	Z(level)	Calculate	Results
		[m]	[m]	[m]		
Defaults	Displacement Point #	0.000	0.000	0.000	Yes	Yes
416	WL2	79.640	95.800	-13.232	Yes	Yes
417	WL2	80.640	95.200	-13.197		Yes
418	WL2	81.640	94.600	-13.163	Yes	Yes
419	WL2	82.640	93.937	-13,128	Yes	Yes
420	WL2	83.640	93.312	-13.093		Yes
421	WL2	84.640	92.687	-13.059	Yes	Yes
422	WL2	85.640	92.063	-13.024	Yes	Yes
423	WL2	86.640	91.438	-12.990	Yes	Yes
424	WL2	87.640	91.000	-12.955	Yes	Yes
425	WL2	88.640	90.400	-12.920	Yes	Yes
426	WL2	89.640	89.800	-12.886		Yes
427	WL2	90.640	89.300	-12.851	Yes	Yes
428	WL2	91.640	88.675	-12.817	Yes	Yes
429	WL2	92.640	88.100	-12.782		Yes
430	WL2	93.640	87.500	-12.747	Yes	Yes
431	WL2	94.640	87.000	-12.713		Yes
432	WL2	95.640	86.400	-12.678	Yes	Yes
433	WL2	96.640	85.900	-12.644	Yes	Yes
434	WL2	97.640	85.400	-12.609		Yes
435	WL2	98.640	84.868	-12.574	Yes	Yes
436	WL2	99,640	84.337	-12.540	Yes	Yes
437	WL2	100.640	83.805	-12.505		Yes
438	WL2	101.640	83.273	-12,471	Yes	Yes
439	WL2	102.640	82.600	-12.436	Yes	Yes
440	WL2	103.640	82.068	-12.401		Yes
441	WL2	104.640	81.537	-12.367		Yes
442	WL2	105.640	81.005	-12.332		Yes
443	WL2	106.640	80.473	-12.298		Yes
444	WL2	107.640	79.900	-12.263		Yes
445	WL2	108.640	79.368	-12.228		Yes
446	WL2	109.640	78.837	-12,194		Yes
447	WL2	110.640	78.305	-12.159		Yes
448	WL2	111.640	77.773	-12.125		Yes
449	WL2	112.640	77.300	-12.090		Yes
450	WL2	113.640	76.768	-12.055		Yes
451	WI2	114.640	76.237	-12.021		Yes
452	WL2	115.640	75,705	-11.986		Yes
453	WL2	116.640	75.173	-11.952		Yes
454	WL2	117,640	74.800	-11.917		Yes
455	WL2	118.640	74.268	-11.882		Yes
456	WL2	119.640	73.737	-11.848]	Yes
457	WL2	120.640	73.205	-11.813	******	Yes
458	WL2	121,640	72.673	-11.779		Yes
459	WL2	122.640	72.400	-11.744	;	Yes
460	WL2 WL2	123.640	71.868	-11.709		Yes
461	WL2	124.640	71.337	-11.675		Yes
462	WL2	125.640	70.805	-11.640		Yes
463	WL2	126.640	70.273	-11.606		Yes
465	WL2 WL2	127.640	69.900	-11.571		1
	TTLC	127.040	09,500	-11.3/1	163	Yes
465	1				l	<u>1</u>

IDOM Cromford Mills, Mill Lane, Matlock, Derbyshire DE4 3RQ t +44 (0)1773 829 988 e info.derbyshire@idom.com idom.com Registered in England No. 02740216 Registered office: as above