

K2 Base Report

Collins shed 5

Project address Industrial Estate, Unit 1 Coldingham Rd, Eyemouth TD14 5AN,

UK

Company Maden Eco
Author Conor Maden

Issue date & version 30/11/2023 | K2 Base Version 3.1.107.0

$\langle \rangle$

About us

K2 Systems. Innovative mounting system from a strong team.

Since 2004 we have been developing pioneering and highly functional mounting system solutions for photovoltaic installations around the world. Our systems are designed in our own product development department where we continually optimize and adapt mounting systems to the ever-changing market

A knowledgeable and friendly team

Just like a mountain climbing team, K2 Systems is built on mutual trust. This applies to our customer service as well as within the company itself, because we believe a trusting partnership leads to successful photovoltaic projects.

Our employees place total focus on the needs and wishes of our customer. This is true in all company departments.

10 locations and worldwide sales network

In our international team, everyone works together to provide customers with competent, comprehensive and entirely personalized service.

This is especially true in the constant training our employees undergo with regards to product optimization, quality assurance, or innovations in construction techniques.

Quality management and certificates

K2 Systems stands for Connecting Strength, the highest quality, and precision-crafted and customized components. Our customers and business partners deeply appreciate all of these factors. Three independent authorities have tested, confirmed, and certified our skills and components. External authorities are not the only ones to have put K2 Systems to the test. Our internal quality control ensures that all our products are subject to a constant review process.

These measures all ensure the outstanding quality standards that exemplify products from K2 Systems, and which we maintain through largely exclusive "Made in Germany" or "Made in Europe" practices.

Product guarantee

K2 Systems offers a 12-year product warranty on all products in its integrated range. The use of high quality materials and a three-level quality inspection ensure these standards.

In a nutshell

As roof-top specialists, we offer effective and economical solutions for roofs all around the world and provide professional, fast and reliable support for our customers in the solar industry.

Contents

Project overview	Ц
Roof 1	6
Assembly plan	8
Results	10
Structural analysis report	13
Bill of material	18
Roof 2	19
Assembly plan	21
Results	24
Structural analysis report	27
Bill of material	32
Roof 3	33
Assembly plan	35
Results	38
Structural analysis report	47
Bill of material	46
Bill of material	47

Project overview

Project information

Name Collins shed 5

Address Industrial Estate, Unit 1 Coldingham Rd, Eyemouth TD14 5AN, UK

Ground elevation 37.25 m

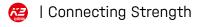
Author Conor Maden

Load settings

Design method BS EN Failure consequence class (CC) CC1

Design working life 25 years
Terrain category Sea

Environment Normal area
Basic wind speed 24.5 m/s

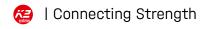

Snow load zone 3

Snow load on ground level 0.50 kN/m²

Roofs

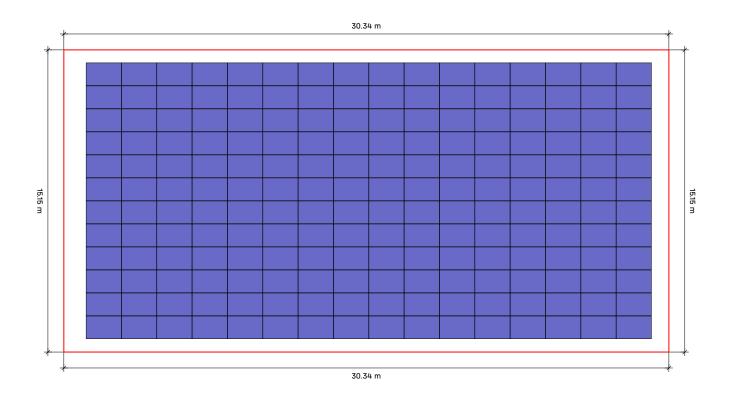
Roof	System	Module	Power	Quantity	Total power
Roof 1	<u>SolidRail</u>	TSM-440NEG9R.28 (Vertex S+)	440 Wp	192	84.48 kWp
Roof 2	<u>SolidRail</u>	TSM-440NEG9R.28 (Vertex S+)	440 Wp	191	84.04 kWp
Roof 3	K2 BasicRail	TSM-440NEG9R.28 (Vertex S+)	440 Wp	87	38.28 kWp
Total				470	206.80 kWp

Roofs


Project information

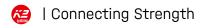
Name Collins shed 5

Address Industrial Estate, Unit 1 Coldingham Rd, Eyemouth TD14 5AN, UK

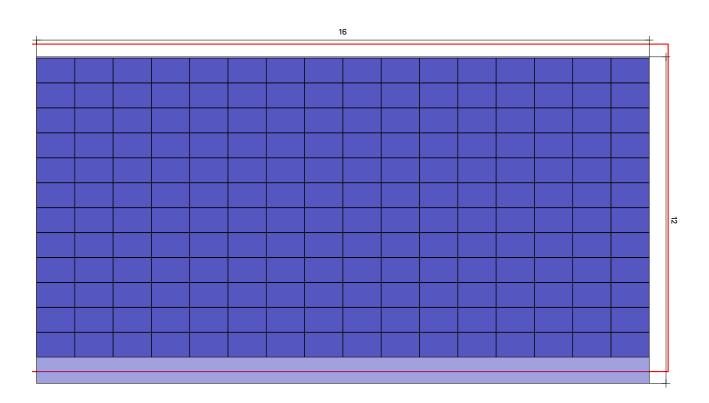

Ground elevation 37.25 m

Author Conor Maden

Roofs | Roof 1



Roof	System	Module	Power	Quantity	Total power
Roof 1	<u>SolidRail</u>	TSM-440NEG9R.28 (Vertex S+)	440 Wp	192	84.48 kWp


Roofs | Roof 1

Roofs | Roof 1 | Module array 1

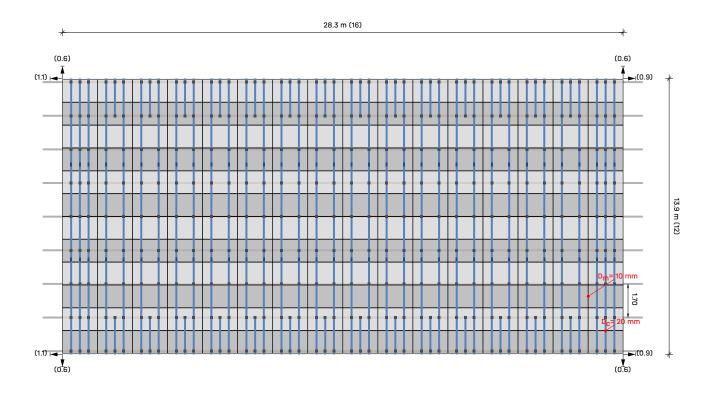
Roof (1) Module array 1

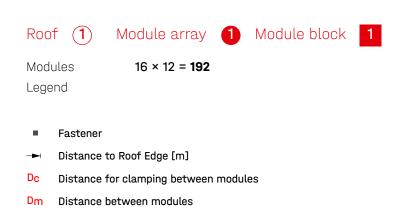
Mounting System SolidRail Module

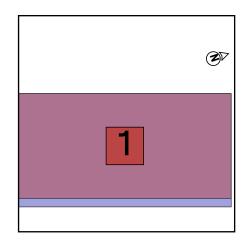
192(84.48 kWp) x TSM-440NEG9R.28 (Vertex

S+)

Row spacing 1.77 m







Roofs | Roof 1 | Module array 1 | Module blocks

Roof	System	Module	Power	Quantity	Total power
Roof 1	<u>SolidRail</u>	TSM-440NEG9R.28 (Vertex S+)	440 Wp	192	84.48 kWp

Module

Name TSM-440NEG9R.28 (Vertex S+)

Manufacturer Trina Solar Energy

Output power 440 Wp

Dimensions 1,762×1,134×30 mm

Weight 21.1 kg

Components

Fastener 8×85/50 - FZD

Base rails K2 SolidRail Light 37

Screw-In Depth -3.00 mm

L2 (Height Adapter plate) 31.00 mm

Type Rail Adaptor Adaptor Plate

Direction adapter plate up

Loads on modules (module dimensioning)

Array	A-TrA -	ultimate state [Pa]					Serviceability [Pa]			
/ indy	[m ²]	Pressure L	Pressure II	Uplift ⊥	Uplift II	Pressure 	Pressure II	Uplift ⊥	Uplift II	
field area	2.00	742.7	156.9	-668.0	31.6	588.1	124.5	-498.5	31.6	
ridge	2.00	742.7	156.9	-1,585.1	31.6	588.1	124.5	-1,217.7	31.6	
gableboard	2.00	742.7	156.9	-1,847.1	31.6	588.1	124.5	-1,423.2	31.6	
corner region (eave)	2.00	742.7	156.9	-1,978.1	31.6	588.1	124.5	-1,526.0	31.6	
eaves	2.00	742.7	156.9	-930.0	31.6	588.1	124.5	-704.0	31.6	

Utilisation result

		ultimate limit state		Usab	Distar	nces	maxim	um values	
No.	roof areas	Pr	CL	Fst	Pr	Fst	BR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst\;D_{max}[m]$
1	field area	46.6	0.0	81.7	64.3	1.700		0.531	1.899
1	ridge	74.1	4.3	138.3	99.8	1.700		0.468	1.229
1	gableboard	86.3	5.1	160.4	116.7	1.700		0.448	1.060
1	corner region (eave)	92.4	4.3	171.4	125.1	1.700		0.439	0.992
1	eaves	43.5	2.0	83.3	57.7	1.700		0.548	1.950

 Fst D_{max} maximum fastener spacing
BR Base Rail
Usab. serviceability limit state
CL Cantilever

Notes

- The structural design complies with BS EN 1990 Basis of Structural Design.
- Snow loads are determined in accordance with National Annex BS NA EN 1991-1-3 (2018) UK National Annex to EC1 Action on structures general actions snow loads.
- Wind loads are determined in accordance with National Annex BS NA EN 1991-1-4 UK National Annex to EC1 Action on structures, general actions wind actions.
- Service life is recognised according to 'Eurocode EN 1991 Action on structures, Snow loads' and 'Eurocode EN 1991 Actions on structures, Wind actions'. Subject to the Building Regulations and for security-relevant reasons the installation has to be dismantled at the end of its service life.
- Failure consequence class is considered according to 'Eurocode EN 1990 Basis of structural design'.
- Data and results must be verified with regard to local conditions and checked by a suitably qualified person. Please see our TCU under https://k2-systems.com/en/base-tcu, in particular § 2 ("technical and specialist requirements for the customer"), § 7 ("warranty provisions") and § 8 ("limitation of liability").
- One or more components are overloaded. Please check and adjust the system utilisation and your input parameters.

General information

Name Collins shed 5
Mounting System SolidRail
Author Conor Maden

Location information

Address Industrial Estate, Unit 1 Coldingham Rd, Eyemouth TD14 5AN, UK

Ground elevation 37.25 m

Roof information

Building height 10.00 m

Roof type Gable roof

Roof pitch 15°

Fastening method Roof construction

Roof covering Corrugated

Min. roof edge distance 0.00 m

Wave distance 150.0 mm

Wave height 51.0 mm

Purlin Distance 1.70 m

Purlin Material Steel

Purlin Width 80.00 mm

set eaves purlin No

Distance to the eaves 775.0 mm

set ridge purlin No

Distance to the ridge 775.0 mm

Loads

Design method BS EN
Failure consequence class (CC) CC1
Design working life 25 years
Terrain category Sea

Velocity pressure $q_{p,50} = 1.116 \text{ kN/m}^2$

Adjustment factor for service life $f_w = 0.921$

Velocity pressure $q_{p,25} = 1.028 \text{ kN/m}^2$

Roof areas

Wind load

Array	load impact area [m²]	maxCpe ₁₀	minCpe ₁₀	wind pressure [kN/m²]	wind suction [kN/m²]
field area	10.00	0.200	-0.600	0.206	-0.617
ridge	10.00	0.200	-1.300	0.206	-1.336
gableboard	10.00	0.200	-1.500	0.206	-1.541
corner region (eave)	10.00	0.200	-1.600	0.206	-1.644
eaves	10.00	0.200	-0.800	0.206	-0.822

Snow load

Snow load zone 3

Environment Normal terrain

Snow guard No

Snow load on ground level $s_k = 0.500 \text{ kN/m}^2$

Shape Coefficient for Snow $\mu_i = 0.800$ Factor for roof pitch $d_i = 0.966$

Snow load on roof $s_{i.50} = 0.386 \text{ kN/m}^2$

Adjustment factor for service life $f_s = 0.929$

Snow load on roof $s_{i,25} = 0.359 \text{ kN/m}^2$

Dead Load

Weight of module $G_M = 21.1 \text{ kg}$ Weight of mounting system per = 3.8 kg

module

Module area $A_{M} = 2.00 \text{ m}^2$

Dead weight of module per m^2 = 10.56 kg/ m^2 Dead weight of mounting system per = 1.90 kg/ m^2

 m^2

Total Dead Load (excl. ballast) per = 0.12 kN/m²

 m^2

Load Combinations

Ultimate limit state

Partial safety factor unfavourable permanent load	$\gamma_{\text{G,sup}}$	= 1.35
Partial safety factor favourable permanent load	$\gamma_{\text{G,inf}}$	= 1.00
Partial safety factor destabilising permanent load	$\gamma_{G,dst}$	= 1.10
Partial safety factor stabilising permanent load	$\gamma_{G,stb}$	= 0.90
Partial safety factor first variable load	γ _Q	= 1.50
Partial safety factor variable loads	Υ _Q	= 1.50
Combination coefficient with regards to wind	$\psi_{\text{o,w}}$	= 0.60
Combination coefficient with regards to wind (additional varying influences)	$\psi_{\text{1,W}}$	= 0.20
Combination coefficient with regards to Snow	$\psi_{\text{o,s}}$	= 0.50
Importance factor permanent	$\mathbf{K}_{Fl,G}$	= 0.90
Importance factor variable	$\mathbf{K}_{Fl,Q}$	= 0.85
Characteristic dead weight	\mathbf{G}_{k}	
Characteristic snow load on the roof	$S_{i,n}$	
Characteristic wind load	\mathbf{W}_{k}	
Load case combination 01 $E_d = \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,O} * S_{i,n}$		

 $E_d = \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q * \kappa_{Fl,Q} * W_{k,Pressure}$

 $E_d = \gamma_{G,inf} * G_k + \gamma_Q * \kappa_{Fl,Q} * W_{k,Uplift}$

 $\mathbf{E_{d}} = \mathbf{\gamma_{G,sup}} * \mathbf{\kappa_{Fl,G}} * \mathbf{G_{k}} + \mathbf{\gamma_{Q}} * \mathbf{\kappa_{Fl,Q}} * (\mathbf{W_{k,Pressure}} + \mathbf{\psi_{0,S}} * \mathbf{S_{i,n}})$

 $E_{\text{d}} = \gamma_{\text{G,sup}} * \kappa_{\text{Fl,G}} * G_{\text{k}} + \gamma_{\text{Q}} * \kappa_{\text{Fl,Q}} * (S_{\text{i,n}} + \psi_{\text{0,W}} * W_{\text{k,Pressure}})$

Serviceability limit state

Load case combination 02

Load case combination 03 Load case combination 04

Load case combination 06

Combination coefficient with regards to wind	$\psi_{\text{o,}}$	= 0.60
	W	
Combination coefficient with regards to Snow	$\psi_{0.8}$	= 0.50

Load case combination 01	$E_d = G_k + S_{i,n}$
Load case combination 02	$E_d = G_k + W_{k,Pressure}$
Load case combination 03	$E_d = G_k + W_{k,Pressure} + \psi_{0,S} * S_{i,n}$
Load case combination 04	$E_d = G_k + S_{i,n} + \psi_{0,W} * W_{k,Pressure}$
Load case combination 06	$E_d = G_k + W_{k,Uplift}$

Maximum load on modules (Mounting system dimensioning)

Array	A-TrA -	ultimate state [kN/m²]				Se	rviceability	viceability [kN/m²]		
Allay	[m ²]	Pressure 1	Pressure II	Uplift ⊥	Uplift II	Pressure 	Pressure II	Uplift ⊥	Uplift II	
field area	10.00	0.743	0.157	-0.668	0.032	0.588	0.125	-0.498	0.032	
ridge	10.00	0.743	0.157	-1.585	0.032	0.588	0.125	-1.218	0.032	
gableboard	10.00	0.743	0.157	-1.847	0.032	0.588	0.125	-1.423	0.032	
corner region (eave)	10.00	0.743	0.157	-1.978	0.032	0.588	0.125	-1.526	0.032	
eaves	10.00	0.743	0.157	-0.930	0.032	0.588	0.125	-0.704	0.032	

Max. load on fastener

Array	A-TrA -	ultimate state [kN]				Serviceability [kN]			
Array	[m ²]	Pressure _	Pressure II	Uplift ⊥	Uplift II	Pressure L	Pressure II	Uplift ⊥	Uplift II
field area	10.00	1.224	0.258	-1.101	0.052	0.969	0.205	-0.821	0.052
ridge	10.00	0.918	0.194	-1.959	0.039	0.727	0.154	-1.505	0.039
gableboard	10.00	0.918	0.194	-2.282	0.039	0.727	0.154	-1.759	0.039
corner region (eave)	10.00	0.918	0.194	-2.444	0.039	0.727	0.154	-1.886	0.039
eaves	10.00	0.918	0.194	-1.149	0.039	0.727	0.154	-0.870	0.039

Resistance Values of Components

Base Rails

Base Rails	Α	I_{y}	I_z	W_{y}	W_z
	[cm ²]	[cm^4]	[cm^4]	[cm ³]	[cm³]
K2 SolidRail Light 37	3.150	4.36	6.98	2.25	3.54

Fastener

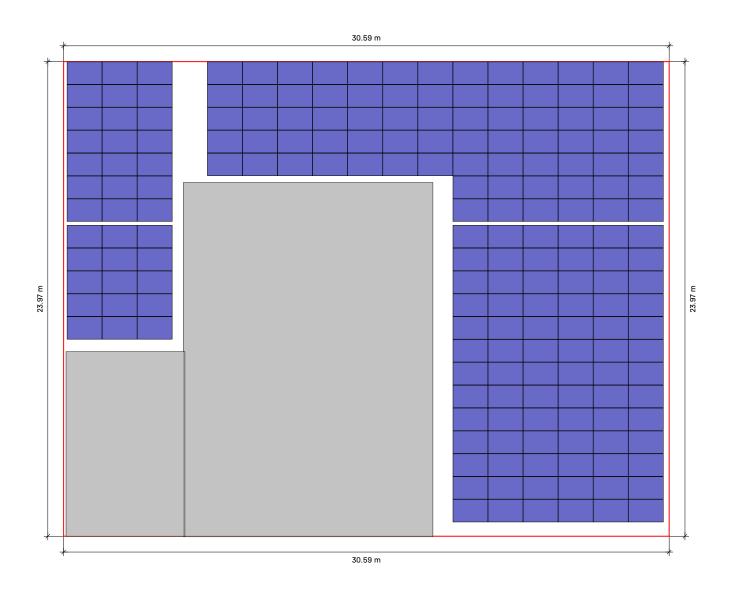
Fastener	$R_{D,Uplift,Perpendicular}$ [kN]	$R_{D,Pressure,Perpendicular}$ [kN]	$R_{D,Pressure,Parallel}$ [kN]
Solarfastener 8×85/50 - FZD	1.79	1.79	0.31

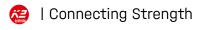
Utilisation result

		ultimate limit state		Usab	Distar	nces	maxim	um values	
No.	roof areas	Pr	CL	Fst	Pr	Fst	BR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst\;D_{max}[m]$
1	field area	46.6	0.0	81.7	64.3	1.700		0.531	1.899
1	ridge	74.1	4.3	138.3	99.8	1.700		0.468	1.229
1	gableboard	86.3	5.1	160.4	116.7	1.700		0.448	1.060
1	corner region (eave)	92.4	4.3	171.4	125.1	1.700		0.439	0.992
1	eaves	43.5	2.0	83.3	57.7	1.700		0.548	1.950

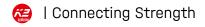
 Fst D_{max} maximum fastener spacing
BR Base Rail
Usab. serviceability limit state
CL Cantilever

Roofs | Roof 1 | Bill of material

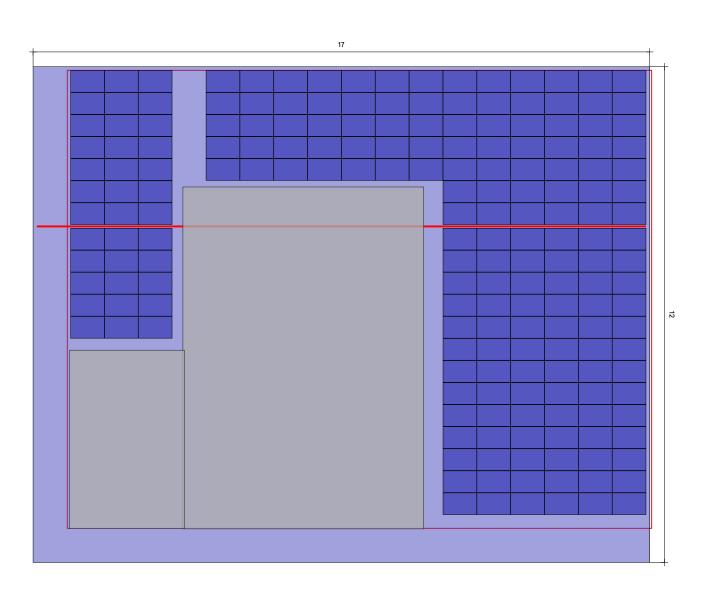

Position	Item no.	Item description	Quantity	Weight
1	2003013	Solarfastener 8×85/50 - FZD	362	34.0 kg
2	1000041	T-Bolt 28/15 M10×30	362	8.5 kg
3	1000042	Hexagon flange nut M10	362	4.0 kg
4	2002544	Adapterplate M10	362	16.3 kg
5	2002589	OneEnd Black Set 30-42	96	8.4 kg
6	2003072	OneMid Black Set 30-42	402	31.8 kg
7	1004765	SolidRail Light End Cap	124	0.7 kg
8	2002870	K2 Solar Cable Manager	192	0.5 kg
9	2004395	SolidRail Light; 4.80 m	116	475.5 kg
10	1004107	SolidRail UtraLight+Light RailConnector Set	68	15.3 kg
Total				594.9 kg



Roofs | Roof 2



Roof	System	Module	Power	Quantity	Total power
Roof 2	<u>SolidRail</u>	TSM-440NEG9R.28 (Vertex S+)	440 Wp	191	84.04 kWp


Roofs | Roof 2

Roofs | Roof 2 | Module array 1

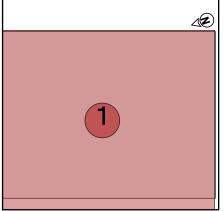
Roof (2) Module array (1)

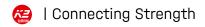
Mounting System

Module

SolidRail

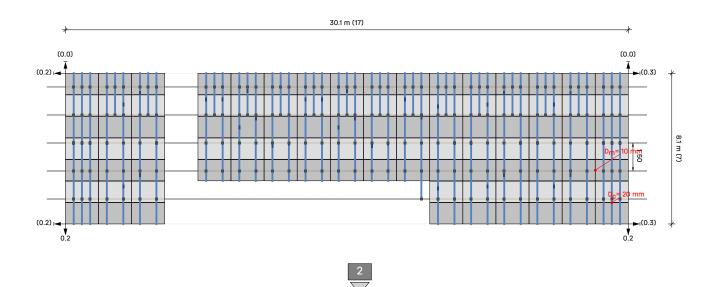
191(84.04 kWp) x


TSM-440NEG9R.28 (Vertex

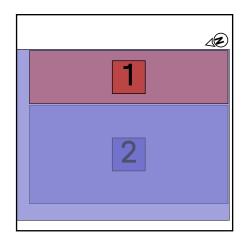

S+)

1.77 m

Row spacing



Roofs | Roof 2 | Module array 1 | Module blocks



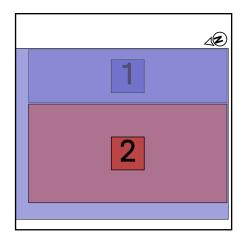


Modules $(17 \times 7) - 21 = 98$

Legend

- Next block indicator
- Fastener
- → Distance to Roof Edge [m]
- → Dist. to neighbour module block/array [m]
- Dc Distance for clamping between modules
- Dm Distance between modules

Roofs | Roof 2 | Module array 1 | Module blocks



Modules $(17 \times 13) - 128 = 93$

Legend

- Next block indicator
- Fastener
- → Distance to Roof Edge [m]
- → Dist. to neighbour module block/array [m]
- Dc Distance for clamping between modules
- Dm Distance between modules

Roof	System	Module	Power	Quantity	Total power
Roof 2	<u>SolidRail</u>	TSM-440NEG9R.28 (Vertex S+)	440 Wp	191	84.04 kWp

Module

Name TSM-440NEG9R.28 (Vertex S+)

Manufacturer Trina Solar Energy

Output power 440 Wp

Dimensions 1,762×1,134×30 mm

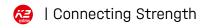
Weight 21.1 kg

Components

Fastener Solarfastener 8×85/70 - FZD

Base rails K2 SolidRail Light 37

Screw-In Depth -3.00 mm


L2 (Height Adapter plate) 31.00 mm

Type Rail Adaptor Adaptor Plate

Direction adapter plate up

Loads on modules (module dimensioning)

Array	A-TrA -	ultimate state [Pa]				Serviceability [Pa]			
/ litay	[m ²]	Pressure L	Pressure II	Uplift ⊥	Uplift II	Pressure L	Pressure II	Uplift ⊥	Uplift II
field area	2.00	742.7	156.9	-668.0	31.6	588.1	124.5	-498.5	31.6
ridge	2.00	742.7	156.9	-1,585.1	31.6	588.1	124.5	-1,217.7	31.6
gableboard	2.00	742.7	156.9	-1,847.1	31.6	588.1	124.5	-1,423.2	31.6
corner region (eave)	2.00	742.7	156.9	-1,978.1	31.6	588.1	124.5	-1,526.0	31.6
eaves	2.00	742.7	156.9	-930.0	31.6	588.1	124.5	-704.0	31.6

Utilisation result

		ultimate limit state		Usab. Distances		maximum values			
No.	roof areas	Pr	CL	Fst	Pr	Fst	BR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst\;D_{max}[m]$
1	field area	36.3	155.6	72.1	39.0	1.500		0.546	1.899
1	ridge	57.7	78.8	122.1	60.5	1.500		0.482	1.229
1	gableboard	67.2	289.6	141.5	70.7	1.500		0.461	1.060
1	corner region (eave)	71.9	0.9	151.2	75.8	1.500		0.452	0.992
1	eaves	33.9	0.5	98.0	35.0	1.500		0.563	1.531

 $\begin{array}{lll} \text{Pr} & \textbf{Profile} \\ \\ \text{Fst} & \textbf{Fastener} \\ \\ \sigma & \textbf{Stress} \\ \\ \text{f} & \textbf{Deflection} \\ \\ \text{F} & \textbf{Force} \\ \\ \text{CL/L}_{\text{max}} & \textbf{maximum cantilever length} \\ \end{array}$

Fst D_{max} maximum fastener spacing
BR Base Rail
Usab. serviceability limit state
CL Cantilever

Notes

- The structural design complies with BS EN 1990 Basis of Structural Design.
- Snow loads are determined in accordance with National Annex BS NA EN 1991-1-3 (2018) UK National Annex to EC1 Action on structures general actions snow loads.
- Wind loads are determined in accordance with National Annex BS NA EN 1991-1-4 UK National Annex to EC1 Action on structures, general actions wind actions.
- Service life is recognised according to 'Eurocode EN 1991 Action on structures, Snow loads' and 'Eurocode EN 1991 Actions on structures, Wind actions'. Subject to the Building Regulations and for security-relevant reasons the installation has to be dismantled at the end of its service life.
- Failure consequence class is considered according to 'Eurocode EN 1990 Basis of structural design'.
- Data and results must be verified with regard to local conditions and checked by a suitably qualified person. Please see our TCU under https://k2-systems.com/en/base-tcu, in particular § 2 ("technical and specialist requirements for the customer"), § 7 ("warranty provisions") and § 8 ("limitation of liability").
- One or more components are overloaded. Please check and adjust the system utilisation and your input parameters.

General information

Name Collins shed 5
Mounting System SolidRail
Author Conor Maden

Location information

Address Industrial Estate, Unit 1 Coldingham Rd, Eyemouth TD14 5AN, UK

Ground elevation 37.25 m

Roof information

Building height 10.00 m

Roof type Gable roof

Roof pitch 15°

Fastening method Roof construction

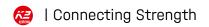
Roof covering Corrugated Min. roof edge distance 0.00 m Wave distance 150.0 mm Wave height 51.0 mm 1.50 m Purlin Distance Purlin Material Steel 80.00 mm Purlin Width Purlin Height 215.00 mm

set eaves purlin No

Distance to the eaves 735.0 mm

set ridge purlin No

Distance to the ridge 735.0 mm


Loads

Design method BS EN
Failure consequence class (CC) CC1
Design working life 25 years
Terrain category Sea

Wind load

Velocity pressure $q_{p,50} = 1.116 \text{ kN/m}^2$ Adjustment factor for service life $f_w = 0.921$

Velocity pressure $q_{D,25} = 1.028 \text{ kN/m}^2$

Roof areas

Array	load impact area [m²]	maxCpe ₁₀	minCpe ₁₀	wind pressure [kN/m²]	wind suction [kN/m²]
field area	10.00	0.200	-0.600	0.206	-0.617
ridge	10.00	0.200	-1.300	0.206	-1.336
gableboard	10.00	0.200	-1.500	0.206	-1.541
corner region (eave)	10.00	0.200	-1.600	0.206	-1.644
eaves	10.00	0.200	-0.800	0.206	-0.822

Snow load

Snow load zone 3

Environment Normal terrain

Snow guard No.

Snow load on ground level $s_k = 0.500 \text{ kN/m}^2$

Shape Coefficient for Snow $\mu_i = 0.800$ Factor for roof pitch $d_i = 0.966$

Snow load on roof $s_{i.50} = 0.386 \text{ kN/m}^2$

Adjustment factor for service life $f_s = 0.929$

Snow load on roof $s_{i,25} = 0.359 \text{ kN/m}^2$

Dead Load

Weight of module $G_M = 21.1 \text{ kg}$ Weight of mounting system per = 3.8 kg

module

module

Module area $A_M = 2.00 \text{ m}^2$

Dead weight of module per m^2 = 10.56 kg/ m^2 Dead weight of mounting system per = 1.90 kg/ m^2

 m^2

Total Dead Load (excl. ballast) per = 0.12 kN/m²

 m^2

Load Combinations

Ultimate limit state

Partial safety factor unfavourable permanent load	$\gamma_{\text{G,sup}}$	= 1.35
Partial safety factor favourable permanent load	$\gamma_{\text{G,inf}}$	= 1.00
Partial safety factor destabilising permanent load	$\gamma_{\text{G,dst}}$	= 1.10
Partial safety factor stabilising permanent load	$\gamma_{\text{G,stb}}$	= 0.90
Partial safety factor first variable load	$\gamma_{\scriptscriptstyle Q}$	= 1.50
Partial safety factor variable loads	$\gamma_{\scriptscriptstyle Q}$	= 1.50
Combination coefficient with regards to wind	$\psi_{\text{o,w}}$	= 0.60
Combination coefficient with regards to wind (additional varying influences)	$\psi_{\text{1,W}}$	= 0.20
Combination coefficient with regards to Snow	$\psi_{\text{o,s}}$	= 0.50
Importance factor permanent	$\mathbf{K}_{Fl,G}$	= 0.90
Importance factor variable	$\mathbf{K}_{\mathrm{Fl,Q}}$	= 0.85
Characteristic dead weight	\mathbf{G}_{k}	
Characteristic snow load on the roof	$\mathbf{S}_{\mathrm{i,n}}$	
Characteristic wind load	W_{k}	
Load case combination 01 F. = v. * K * G. + v. * K * S.		

Load case combination 01	$E_{d} = \gamma_{G,sup} * \kappa_{Fl,G} * G_{k} + \gamma_{0} * \kappa_{Fl,0} * S_{i,n}$
Load case combination 02	$E_d = \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,Q} * W_{k,Pressure}$
Load case combination 03	$E_d = \gamma_G,sup * \kappa_Fl,G * G_k + \gamma_Q * \kappa_Fl,Q * (W_k,Pressure + \psi_0,S * S_i,n)$
Load case combination 04	$E_{d} = \gamma_{G,sup} * \kappa_{Fl,G} * G_{k} + \gamma_{0} * \kappa_{Fl,0} * (S_{i,n} + \psi_{0,W} * W_{k,Pressure})$
Load case combination 06	$E_d = \gamma_{G,inf} * G_k + \gamma_Q * \kappa_{Fl,Q} * W_{k,Uplift}$

Serviceability limit state

Combination coefficient with regards to wind	$\psi_{\text{o,}}$	= 0.60
	W	
Combination coefficient with regards to Snow	$\psi_{0.8}$	= 0.50

Load case combination 01	$E_d = G_k + S_{i,n}$
Load case combination 02	$E_d = G_k + W_{k,Pressure}$
Load case combination 03	$E_d = G_k + W_{k,Pressure} + \psi_{0,S} * S_{i,n}$
Load case combination 04	$E_d = G_k + S_{i,n} + \psi_{0,W} * W_{k,Pressure}$
Load case combination 06	$E_d = G_k + W_{k,Uplift}$

Maximum load on modules (Mounting system dimensioning)

Array	A-TrA -	ultimate state [kN/m²]				Sei	Serviceability [kN/m²]			
Array	[m ²]	Pressure 1	Pressure II	Uplift ⊥	Uplift II	Pressure L	Pressure II	Uplift ⊥	Uplift II	
field area	10.00	0.743	0.157	-0.668	0.032	0.588	0.125	-0.498	0.032	
ridge	10.00	0.743	0.157	-1.585	0.032	0.588	0.125	-1.218	0.032	
gableboard	10.00	0.743	0.157	-1.847	0.032	0.588	0.125	-1.423	0.032	
corner region (eave)	10.00	0.743	0.157	-1.978	0.032	0.588	0.125	-1.526	0.032	
eaves	10.00	0.743	0.157	-0.930	0.032	0.588	0.125	-0.704	0.032	

Max. load on fastener

Array	A-TrA -	ultimate state [kN]				Serviceability [kN]			
Array	[m ²]	Pressure L	Pressure II	Uplift ⊥	Uplift II	Pressure L	Pressure II	Uplift ⊥	Uplift II
field area	10.00	1.080	0.228	-0.971	0.046	0.855	0.181	-0.725	0.046
ridge	10.00	0.810	0.171	-1.728	0.034	0.641	0.136	-1.328	0.034
gableboard	10.00	0.810	0.171	-2.014	0.034	0.641	0.136	-1.552	0.034
corner region (eave)	10.00	0.810	0.171	-2.157	0.034	0.641	0.136	-1.664	0.034
eaves	10.00	1.080	0.228	-1.352	0.046	0.855	0.181	-1.023	0.046

Resistance Values of Components

Base Rails

Base Rails	A	l _y	l _z	W _y	W _z
	[cm²]	[cm^4]	[cm^4]	[cm³]	[cm ³]
K2 SolidRail Light 37	3.150	4.36	6.98	2.25	3.54

Fastener

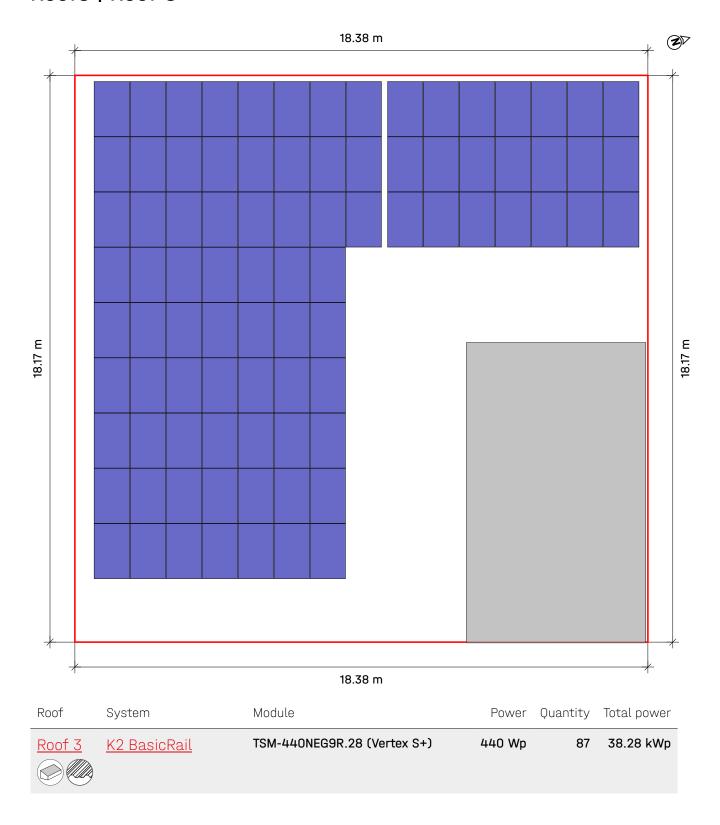
Fastener	$R_{D,Uplift,Perpendicular}$ [kN]	$R_{D,Pressure,Perpendicular}$ [kN]	$R_{D,Pressure,Parallel}$ [kN]
Solarfastener 8×85/70 - FZD	2.56	2.56	0.31



Utilisation result

		ultim	ate limit	state	Usab.	Distar	nces	maxim	um values
No.	roof areas	Pr	CL	Fst	Pr	Fst	BR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	L _{max} [m]	Fst D _{max} [m]
1	field area	36.3	155.6	72.1	39.0	1.500		0.546	1.899
1	ridge	57.7	78.8	122.1	60.5	1.500		0.482	1.229
1	gableboard	67.2	289.6	141.5	70.7	1.500		0.461	1.060
1	corner region (eave)	71.9	0.9	151.2	75.8	1.500		0.452	0.992
1	eaves	33.9	0.5	98.0	35.0	1.500		0.563	1.531

 Fst D_{max} maximum fastener spacing
BR Base Rail
Usab. serviceability limit state
CL Cantilever

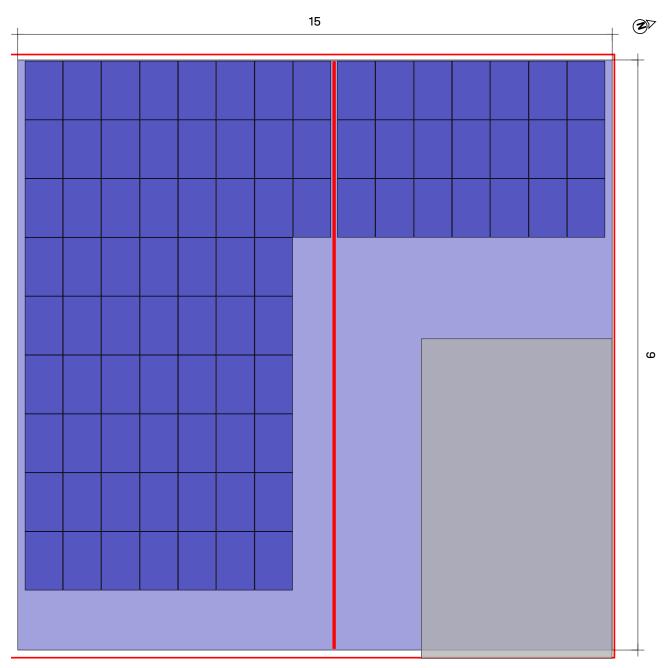


Roofs | Roof 2 | Bill of material

Position	Item no.	Item description	Quantity	Weight
1	2003028	Solarfastener 8×85/70 - FZD	367	37.4 kg
2	1000041	T-Bolt 28/15 M10×30	367	8.6 kg
3	1000042	Hexagon flange nut M10	367	4.0 kg
4	2002544	Adapterplate M10	367	16.5 kg
5	2002589	OneEnd Black Set 30-42	124	10.8 kg
6	2003072	OneMid Black Set 30-42	376	29.7 kg
7	1004765	SolidRail Light End Cap	140	0.8 kg
8	2002870	K2 Solar Cable Manager	191	0.5 kg
9	2003233	SolidRail Light; 4.40 m	124	462.9 kg
10	1004107	SolidRail UtraLight+Light RailConnector Set	95	21.4 kg
Total				592.7 kg

Roofs | Roof 3

Roofs | Roof 3 | Assembly plan


Base Rails

	Whole	e Rails			
Туре	Total Rail Length	Quantity 4.40 m	Part of Rail	Length	Rest
Α	8.178	1	4.400	3.778	0.612
В	9.332	2	4.400	0.700	3.690
С	9.332	2	3.690	0.700	2.980
D	9.332	2	2.980	0.700	2.270
E	9.332	2	2.270	0.700	1.560
F	9.332	2	1.560	0.700	0.850
G	9.332	2	0.850	0.700	0.140

Module arrays

Module array	Width[m]	Length[m]	Width in modules	Length in modules
1	17.47	17.71	15	9

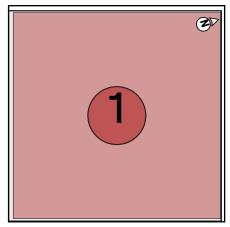
Roofs | Roof 3 | Module array 1

Roof (3) Module array 1

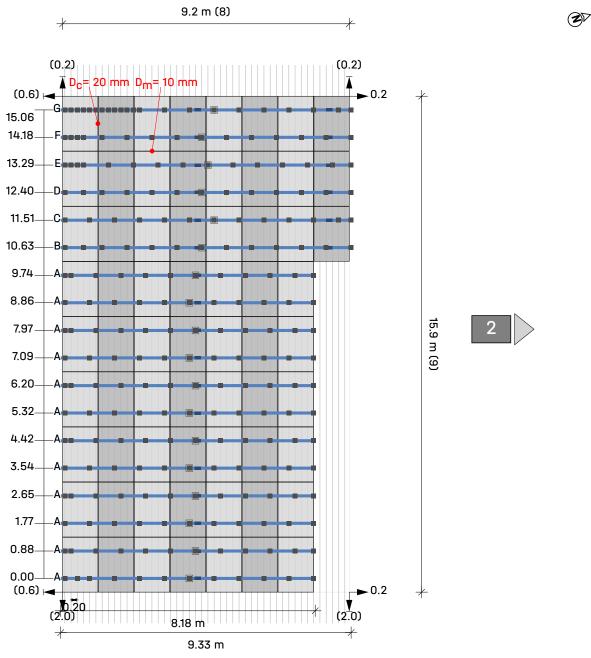
Mounting System

Module

K2 BasicRail


87(38.28 kWp) x

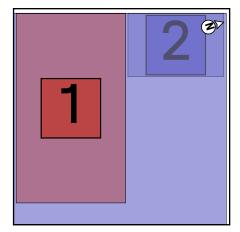
TSM-440NEG9R.28 (Vertex


S+)

Row spacing

1.77 m

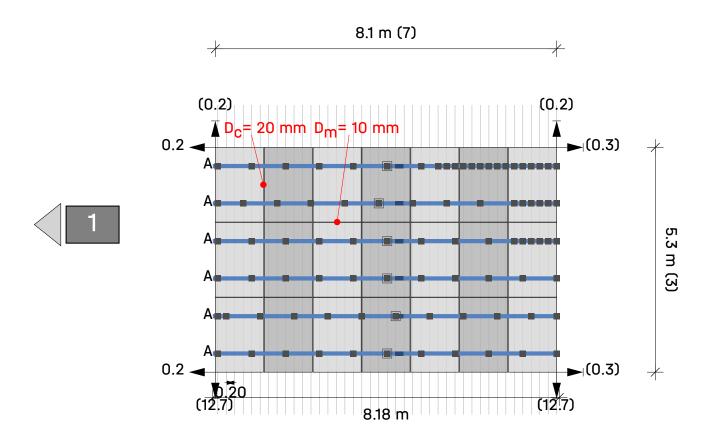
Roofs | Roof 3 | Module array 1 | Module blocks

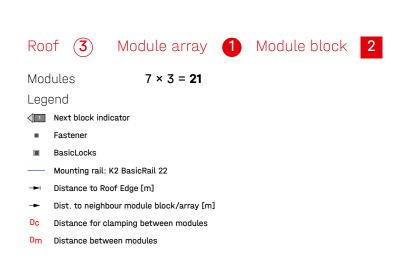

Roof 3 Module array 1 Module block

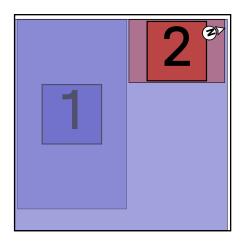
Modules $(8 \times 9) - 6 = 66$

Legend

Next block indicator


- Fastener
- BasicLocks
- Mounting rail: K2 BasicRail 22
- → Distance to Roof Edge [m]
- → Dist. to neighbour module block/array [m]
- Dc Distance for clamping between modules
- Dm Distance between modules





Roofs | Roof 3 | Module array 1 | Module blocks

Results | Roof 3

Roof	System	Module	Power	Quantity	Total power
Roof 3	K2 BasicRail	TSM-440NEG9R.28 (Vertex S+)	440 Wp	87	38.28 kWp

Module

Name TSM-440NEG9R.28 (Vertex S+)

Manufacturer Trina Solar Energy

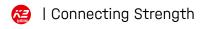
Output power 440 Wp

Dimensions 1,762×1,134×30 mm

Weight 21.1 kg

Components

Fastener K2 BasicClip
Base rails K2 BasicRail 22


Metal screw Thread-forming metal screw 6.0×38

Loads on modules (module dimensioning)

Array	A-TrA	ultimate state [Pa]				Serviceabi	lity [Pa]		
- Tiray	[m ²]	Pressure ⊥	Pressure II	Uplift ⊥	Uplift II	Pressure 	Pressure II	Uplift ⊥	Uplift II
field area	2.00	713.5	153.3	-952.1	28.7	564.6	121.6	-723.6	28.7
corner region (eave)	2.00	713.5	153.3	-1,775.9	28.7	564.6	121.6	-1,369.8	28.7
gableboard	2.00	713.5	153.3	-1,187.5	28.7	564.6	121.6	-908.2	28.7
corner region (ridge)	2.00	713.5	153.3	-2,952.8	28.7	564.6	121.6	-2,292.8	28.7
ridge	2.00	713.5	153.3	-1,069.8	28.7	564.6	121.6	-815.9	28.7

Utilisation result

		ultima	te limit	state	Usab.	Distan	ces	maxim	um values
No.	roof areas	Pr	CL	Fst	Pr	Fst	BR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	L _{max} [m]	Fst D _{max} [m]
1	field area	27.7	3.0	74.5	41.7	0.800		0.436	0.850
1	corner region (eave)	12.8	6.8	68.5	4.9	0.400		0.400	0.584
1	gableboard	34.5	4.5	92.3	52.4	0.800		0.410	0.850
1	corner region (ridge)	5.3	11.2	56.5	1.0	0.200		0.200	0.354
1	ridge	31.1	3.4	83.4	47.0	0.800		0.422	0.850

Results | Roof 3

Pr Profile

Fst Fastener

Stress

f Deflection

Force

 CL/L_{max} maximum cantilever length

 $Fst \ D_{max} \ \ \textbf{maximum fastener spacing}$

BR Base Rail

Usab. serviceability limit state

CL Cantilever

Results | Roof 3

Notes

- The quantity for K2 BasicRail BasicClips is calculated in such a way, that according to the Assembly Instructions a BasicClip can be installed on the crest to the left and right of a Rail Connector Set.
- The structural design complies with BS EN 1990 Basis of Structural Design.
- Snow loads are determined in accordance with National Annex BS NA EN 1991-1-3 (2018) UK National Annex to EC1 Action on structures general actions snow loads.
- Wind loads are determined in accordance with National Annex BS NA EN 1991-1-4 UK National Annex to EC1 Action on structures, general actions wind actions.
- Service life is recognised according to 'Eurocode EN 1991 Action on structures, Snow loads' and 'Eurocode EN 1991 Actions on structures, Wind actions'. Subject to the Building Regulations and for security-relevant reasons the installation has to be dismantled at the end of its service life.
- Failure consequence class is considered according to 'Eurocode EN 1990 Basis of structural design'.
- Data and results must be verified with regard to local conditions and checked by a suitably qualified person. Please see our TCU under https://k2-systems.com/en/base-tcu, in particular § 2 ("technical and specialist requirements for the customer"), § 7 ("warranty provisions") and § 8 ("limitation of liability").

General information

Name Collins shed 5
Mounting System K2 BasicRail
Author Conor Maden

Location information

Address Industrial Estate, Unit 1 Coldingham Rd, Eyemouth TD14 5AN, UK

Ground elevation 37.25 m

Roof information

Building height 6.00 m

Roof type Monopitch roof

Roof pitch 15°

Fastening method Roof cover Roof covering Trapezoidal Min. roof edge distance 0.00 m Crest distance 200.0 mm Crest width 22.0 mm 40.0 mm Crest height Roof material Steel Sheet quality S235 Sheet thickness 0.500 mm

Loads

Design method BS EN
Failure consequence class (CC) CC1
Design working life 25 years
Terrain category Sea

Wind load

Velocity pressure $q_{p,50} = 1.002 \text{ kN/m}^2$

Adjustment factor for service life $f_w = 0.921$

Velocity pressure $q_{p,25} = 0.923 \text{ kN/m}^2$

Roof areas

Array	load impact area [m²]	maxCpe ₁₀	minCpe ₁₀	wind pressure [kN/m²]	wind suction [kN/m²]
field area	10.00	0.200	-0.900	0.185	-0.831
corner region (eave)	10.00	0.200	-1.600	0.185	-1.477
gableboard	10.00	0.200	-1.100	0.185	-1.015
corner region (ridge)	10.00	0.200	-2.600	0.185	-2.400
ridge	10.00	0.200	-1.000	0.185	-0.923

Snow load

Snow load zone 3

Environment Normal terrain

Snow guard No

Snow load on ground level $s_k = 0.500 \text{ kN/m}^2$

Shape Coefficient for Snow $\mu_i = 0.800$ Factor for roof pitch $d_i = 0.966$

Snow load on roof $s_{i.50} = 0.386 \text{ kN/m}^2$

Adjustment factor for service life $f_s = 0.929$

Snow load on roof $s_{i,25} = 0.359 \text{ kN/m}^2$

Dead Load

Weight of module $G_M = 21.1 \text{ kg}$ Weight of mounting system per module = 1.5 kg

Module area $A_{M} = 2.00 \text{ m}^{2}$

Dead weight of module per m^2 = 10.56 kg/ m^2 Dead weight of mounting system per = 0.75 kg/ m^2

 m^2

Total Dead Load (excl. ballast) per = 0.11 kN/m²

 m^2

Load Combinations

Ultimate limit state

Partial safety factor unfavourable permanent load	$\gamma_{G, sup}$	= 1.35
Partial safety factor favourable permanent load	$\gamma_{\text{G,inf}}$	= 1.00
Partial safety factor destabilising permanent load	$\gamma_{\text{G,dst}}$	= 1.10
Partial safety factor stabilising permanent load	$\gamma_{\text{G,stb}}$	= 0.90
Partial safety factor first variable load	Υo	= 1.50
Partial safety factor variable loads	$\gamma_{\scriptscriptstyle Q}$	= 1.50
Combination coefficient with regards to wind	$\psi_{\text{o,w}}$	= 0.60
Combination coefficient with regards to wind (additional varying influences)	$\psi_{\text{1,W}}$	= 0.20
Combination coefficient with regards to Snow	$\psi_{\text{o,s}}$	= 0.50
Importance factor permanent	$\mathbf{K}_{Fl,G}$	= 0.90
Importance factor variable	$\mathbf{K}_{\mathrm{Fl,Q}}$	= 0.85
Characteristic dead weight	\mathbf{G}_{k}	
Characteristic snow load on the roof	$S_{i,n}$	
Characteristic wind load	\mathbf{W}_{k}	
Load case combination 01 $\mathbf{E}_{r} = \mathbf{v}_{o} * \mathbf{K}_{r \circ o} * \mathbf{G}_{r} + \mathbf{v}_{o} * \mathbf{K}_{r \circ o} * \mathbf{S}_{r}$		

Load case combination 01	$E_d = \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q * \kappa_{Fl,Q} * S_{i,n}$
Load case combination 02	$E_d = \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q * \kappa_{Fl,Q} * W_{k,Pressure}$
Load case combination 03	$E_{d} = \gamma_{G,sup} * \kappa_{Fl,G} * G_{k} + \gamma_{Q} * \kappa_{Fl,Q} * (W_{k,Pressure} + \psi_{0,S} * S_{i,n})$
Load case combination 04	$E_d = \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q * \kappa_{Fl,Q} * (S_{i,n} + \psi_{0,W} * W_{k,Pressure})$
Load case combination 06	$E_d = \gamma_{G,inf} * G_k + \gamma_Q * \kappa_{Fl,Q} * W_{k,Uplift}$

Serviceability limit state

Combination coefficient with regards to wind	$\Psi_{o,}$	= 0.60
	W	
Combination coefficient with regards to Snow	$\psi_{0.8}$	= 0.50

Load case combination 01	$E_d = G_k + S_{i,n}$
Load case combination 02	$E_d = G_k + W_{k,Pressure}$
Load case combination 03	$E_d = G_k + W_{k,Pressure} + \psi_{0,S} * S_{i,n}$
Load case combination 04	$E_d = G_k + S_{i,n} + \psi_{0,W} * W_{k,Pressure}$
Load case combination 06	$E_d = G_k + W_{k,Uplift}$

Maximum load on modules (Mounting system dimensioning)

Λrray	Array	A-TrA -	ultimate state [kN/m²]			Ser	rviceability	[kN/m²]	
Miray	[m ²]	Pressure ⊥	Pressure II	Uplift ⊥	Uplift II	Pressure 	Pressure II	Uplift ⊥	Uplift II
field area	10.00	0.713	0.153	-0.952	0.029	0.565	0.122	-0.724	0.029
corner region (eave)	10.00	0.713	0.153	-1.776	0.029	0.565	0.122	-1.370	0.029
gableboard	10.00	0.713	0.153	-1.187	0.029	0.565	0.122	-0.908	0.029
corner region (ridge)	10.00	0.713	0.153	-2.953	0.029	0.565	0.122	-2.293	0.029
ridge	10.00	0.713	0.153	-1.070	0.029	0.565	0.122	-0.816	0.029

Max. load on fastener

Array	A-TrA -	ultimate state [kN]				Serviceability [kN]			
Array	[m ²]	Pressure ⊥	Pressure II	Uplift ⊥	Uplift II	Pressure L	Pressure II	Uplift ⊥	Uplift II
field area	10.00	0.553	0.119	-0.738	0.022	0.438	0.094	-0.561	0.022
corner region (eave)	10.00	0.277	0.059	-0.688	0.011	0.219	0.047	-0.531	0.011
gableboard	10.00	0.553	0.119	-0.921	0.022	0.438	0.094	-0.704	0.022
corner region (ridge)	10.00	0.138	0.030	-0.572	0.006	0.109	0.024	-0.444	0.006
ridge	10.00	0.553	0.119	-0.829	0.022	0.438	0.094	-0.633	0.022

Resistance Values of Components

Base Rails

Base Rails	A [cm²]	l _y [cm^4]	l _z [cm^4]	W _y [cm³]	W_z [cm 3]
K2 BasicRail 22	2.380	1.52	7.74	1.08	2.46

Fastener

Fastener	$R_{D,Uplift,Perpendicular}$ [kN]	$R_{D,Pressure,Perpendicular}$ [kN]	R _{D,Pressure,Parallel} [kN]
K2 BasicClip	1.02	-	0.96
Thread-forming metal screw 6.0×38	0.65	-	0.62

Utilisation result

		ultimate limit state			Usab.	sab. Distances		maximum values	
No.	roof areas	Pr	CL	Fst	Pr	Fst	BR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst\;D_{max}[m]$
1	field area	27.7	3.0	74.5	41.7	0.800		0.436	0.850
1	corner region (eave)	12.8	6.8	68.5	4.9	0.400		0.400	0.584
1	gableboard	34.5	4.5	92.3	52.4	0.800		0.410	0.850
1	corner region (ridge)	5.3	11.2	56.5	1.0	0.200		0.200	0.354
1	ridge	31.1	3.4	83.4	47.0	0.800		0.422	0.850

PrProfileFstFastener σ StressfDeflectionFForce CL/L_{max} maximum cantilever length

Fst D_{max} maximum fastener spacing
BR Base Rail
Usab. serviceability limit state
CL Cantilever

Roofs | Roof 3 | Bill of material

Position	Item no.	Item description	Quantity	Weight
1	1001164	K2 BasicClip	346	10.4 kg
2	1005193	Thread-forming metal screw 6.0×38	692	4.8 kg
3	2003071	OneMid Set 30-42	150	11.9 kg
4	2002514	OneEnd Set 30-42	48	4.2 kg
5	2003240	K2 BasicRail 22; 4.40m	49	138.6 kg
6	1003571	K2 BasicRail BasicConnector Set	30	1.5 kg
7	1003558	K2 BasicRail BasicLock 22 Set	24	1.2 kg
Total				172.5 kg

Bill of material

Position	Item no.	Item description	Quantity	Weight
1	2003013	Solarfastener 8×85/50 - FZD	362	34.0 kg
2	1000041	T-Bolt 28/15 M10×30	729	17.1 kg
3	1000042	Hexagon flange nut M10	729	8.0 kg
4	2002544	Adapterplate M10	729	32.8 kg
5	2002589	OneEnd Black Set 30-42	220	19.1 kg
6	2003072	OneMid Black Set 30-42	778	61.5 kg
7	1004765	SolidRail Light End Cap	264	1.6 kg
8	2002870	K2 Solar Cable Manager	383	1.1 kg
9	2004395	SolidRail Light; 4.80 m	116	475.5 kg
10	1004107	SolidRail UtraLight+Light RailConnector Set	163	36.7 kg
11	2003028	Solarfastener 8×85/70 - FZD	367	37.4 kg
12	2003233	SolidRail Light; 4.40 m	124	462.9 kg
13	1001164	K2 BasicClip	346	10.4 kg
14	1005193	Thread-forming metal screw 6.0×38	692	4.8 kg
15	2003071	OneMid Set 30-42	150	11.9 kg
16	2002514	OneEnd Set 30-42	48	4.2 kg
17	2003240	K2 BasicRail 22; 4.40m	49	138.6 kg
18	1003571	K2 BasicRail BasicConnector Set	30	1.5 kg
19	1003558	K2 BasicRail BasicLock 22 Set	24	1.2 kg
Total				1,360.2 kg

K2 Base Report 3.1.107.0 | 30/11/2023 | Collins shed 5

Thank you for choosing a K2 mounting system.

Systems from K2 Systems are quick and easy to install. We hope these instructions have helped. Please contact us with any questions or suggestions for improvement.

Our contact data:

k2-systems.com/en/contact

Service Hotline: +44 1189 701280

Our General Terms of Business apply. Please refer to k2-systems.com

K2 Solar Mounting Solutions Ltd

Unit 46 Easter Park
Benyon Road
Aldermaston, RG7 2PQ
Great Britain
+44 1189 701280
info@k2-systems.uk.com
k2-systems.com/en