Certificate of sampling

Sampling of soils

Sampled in accordance with documented IHTP

Labora	atory Reference:	OCMT-5367-01035	Certificate Reference	e: OCMT-5367-1035-S01
	Client:	Commercial Recycling (Southern Ltd)	Issue Numbe	r: 1.1 - BS8601
	Client Address:	Canford Recycling Centre, Arena Way, Bourner	mouth,BH21 3BW	
	Site	Canford Recycling Centre	Client Order Numbe	r: J.Leach Clay/Tsoil
Sar	mple Reference:	Bulk Sample - 10mm Manufactured	Site Sample Number	: DP213
Sou	urce of Material:	Ex-Site	Date Sampled	d: 04/04/2023
	Location:	Stockpile in Building	Time Sampled	: 14:00
Mate	erial Description:	10mm Manufactured Soil	Sampled By	: DP
Clients Indicate	ed Specification:	BS 3882/ BS 8601	Date Received	d: 04/04/2023
Maxim	num Dimension:	10mm		
	Material Type:	Soil	Material Source Type	: Land Based
Sample	Location Type:	Stockpile	Weathe	r: Sunny, Inside
investigation and interests	Sampling Plan:	S 1		,,
Variation to Samp	ling Procedure:	None		
Comme	ents on Sample:	None		
Sampling Sketch:				
(if required)				
Tests Required:	BS 8601 Topso	bil Suite, General Contamination Suite (inc. GA	C Report)	
Remarka	None		Approved by	1.
nemarks.	None			Martin Slater - Material Technologist
			Sheet Beference	- 501-Rev3-Δμα22
			Sheet helefende	5. 301-nev3-Aug22
Refer to the rema	rks section for	any additions, deviations or exclusions from t	he stated test	ema Chem Limited
The results within analysis.	this test repor	t are representative of the samples submitted	at the time of	Unit 1 - Building 267A Commercial Road
This test report sh	nould not be re	produced, except in full, without the express p	ermission of	Bournemouth Dorset
the issuing labora Bulk samples are	retained for a	period of 28 days from receipt		BH23 6NW

Certificate of test Internal Laboratory Transfer Header

Laboratory Reference: OCMT-5367-1035 Certificate Reference: OCMT-5367-1035-IntTran8601 Issue Number: 1 Client: Commercial Recycling (Southern Ltd) Clients Address: Canford Recycling Centre, Arena Way, Bournemouth, BH21 3BW Site: Canford Recycling Centre Client Order Number: J.Leach Clay/Tsoil Sample Reference: Bulk Sample - 10mm Manufactured Soil Sample Certificate: Yes - See enclosed Source: Ex-Site Date Sampled: 04/04/2023 Location of Sample on Site: Stockpile in Building Sampled by: DP Material Description: 10mm Manufactured Soil Date Received: 04/04/2023 Clients Indicated Specification: BS 3882/ BS 8601

Analysis undertaken:

Test	Laboratory
BS 8601 Subsoil Suite	Oemachem, Unit 4 Trinity Court
General Contamination Suite (inc. GAC Report)	Oemachem, Unit 4 Trinity Court
Soil Suitability Report (GAC on General Contamination Suite)	Oemachem, Unit 4 Trinity Court

See attached interlaboratory certificate(s) of test OCLA - 5367 - C00289

Remarks: This sample was transferred from Oema, Unit 1, Building 267A, Commercial Road, Christchurch. BH23 6NW

Approved By: Date Approved: 02/05/2023 Sheet Ref: IntTran-Rev1-Oct22

Refer to the remarks section for any additions, deviations or exclusions from the stated test & preparation methods.

The results within this test report are representative of the samples submitted at the time of analysis. This test report should not be reproduced, except in full, without the express permission of the issuing laboratory.

Bulk samples are retained for a period of 28 days from receipt

Oemachem Limited Unit 4, Trinity Court Brunel Road Totton Southampton SO40 3WX

Customer: Customer Address:

Date of Report:	
OCLA:	
Client:	
Client Address	
Issue Number:	

Date of Report: OCLA: Client: Client Address Issue Number:

of which plastics * (%)

of which sharps * (%)

	Results		Multipurpos	Specific Purpose Subsoil Range			
Soil Texture			Range	Acidic	Calcareous		
Sand * (%)	30		20 - 85				
Silt * (%)	10		0 - 65				
Clay * (%)	60			10 - 80			
Soil texture (<2mm) +	Sandy Clay Loam	Yes	BS 8	601: 2013 Figure 1 - Textural Class	ification		
Mass Loss on Ignition			_				
Mass loss on Ignition (%)*	2.8	No		≤2			
Maximum Coarse Fragment Co	ntent		_				
Partcle size > 2 mm * (%)	23.6	Yes		0 - 40			
Partcle size > 20 mm * (%)	0	Yes		0 – 20			
Partcle size > 75 mm * (%)	0	Yes		0			
Soil pH (Measured in Water)							
Soil pU*** (Nr.)	8.25		5.5 - 8.5	3.5 – 5.5	7.5 – 8.5		
			Yes	No	Yes		
Carbonate							
Carbonate (%)*	2.5		_	-	> 1		
	2.3				Yes		
Exchangeable Sodium Percenta	age (ESP)						
ESP ¹⁾ * (%)	3.06	Yes	< 15				
¹⁾ Limit only	applies where soil electrical condu	ctivity≥28	300µS·cm-1				
Electrical Conductivity							
Electrical conductivity*	421						
(µS⋅cm-1)							
			All Subsoil Specifications				
Potentially Phytotoxic Elements	s (by soil pH)		Soil pH <6.0	Soil pH 6.0 to 7.0	Soil pH >7.0		
Zinc*** (mg/kg)	102	Yes	< 200	< 200	< 300		
Copper*** (mg/kg)	23	Yes	< 100	< 135	< 200		
Nickel*** (mg/kg)	8	Yes	< 60	< 75	< 110		
Other Contaminants							
>2mm contaminants* (%)	0	Yes	< 0.5				

Compliance to the requirements of BS 8601: 2013 is as noted in the table below:

< 0.25

Zero in 1 kg air-dried soil

Yes

Yes

0

0

	Multipurpos	Specific Purpose Ra	inge
	e Subsoil Range	Acidic	Calcareous
Compliance (Pass/Fail):	Fail	Fail	Fail

Date of F	Report:	
OCLA:		
Client:		
Client Ad	Idress	
Issue Nu	mber:	

BTEX						
Analyte	Method	Limits of Detection	Results	Units	Deviating Code	
Benzene***	181A	0.01	< 0.01	m g/kg	DC4/DC5	
Toluene***	181A	0.01	< 0.01	m g/kg	DC4/DC5	
Ethylbenzene***	181A	0.01	< 0.01	m g/kg	DC4/DC5	
m/p-Xylene***	181A	0.01	< 0.01	m g/kg	DC4/DC5	
o-Xylene***	181A	0.01	< 0.01	m g/kg	DC4/DC5	
MTBE*	181A	0.01	< 0.01	m g/kg	DC4/DC5	

Polyaromatic Hydrocarbon												
Analyte	Method	Limits of Detection	Results	Units	Deviating Code							
Naphthalene*	181	0.01	0.04	mg/kg	-							
Acenaphthylene*	181	0.01	0.04	mg/kg	-							
Acenaphthene*	181	0.01	0.01	mg/kg	-							
Fluorene*	181	0.01	0.02	mg/kg	-							
Phenanthrene*	181	0.01	0.34	mg/kg	-							
Anthracene*	181	0.01	0.17	mg/kg	-							
Fluoranthene*	181	0.01	1.57	mg/kg	-							
Pyrene*	181	0.01	1.3	mg/kg	-							
Benzo(a)anthracene*	181	0.01	0.6	mg/kg	-							
Chrysene*	181	0.01	0.6	mg/kg	-							
Benzo(b)fluoranthene*	181	0.01	0.36	mg/kg	-							
Benzo(k)fluoranthene*	181	0.01	0.44	mg/kg	-							
Benzo(a)pyrene*	181	0.01	0.45	mg/kg	-							
Indeno(1,2,3-cd)pyrene*	181	0.01	0.26	mg/kg	-							
Dibenzo(a,h)anthracene*	181	0.01	0.08	mg/kg	-							
Benzo[g,h,i]perylene*	181	0.01	0.4	mg/kg	-							
Total PAH(16)*	181	0.04	6.64	mg/kg	-							

TPH												
Analyte	Method	Limits of Detection	Results	Units	Deviating Code							
TPH aromatic $C_5 - C_7^*$	181	0.01	< 0.01	mg/kg	DC4/DC5							
TPH aromatic C ₇ -C ₈ *	181	0.01	< 0.01	mg/kg	DC4/DC5							
TPH aromatic C ₈ -C ₁₀ *	181	1.0	< 1.0	mg/kg	DC4/DC5							
TPH aromatic C ₁₀ -C ₁₂ *	181	1.0	< 1.0	mg/kg	DC4/DC5							
TPH aromatic C ₁₂ -C ₁₆ **	181	1.0	< 1.0	mg/kg	DC4/DC5							
TPH aromatic C ₁₆ - C ₂₁ *	181	1.0	2.8	mg/kg	DC4/DC5							
TPH aromatic C ₂₁ -C ₃₅ *	181	1.0		mg/kg	DC4/DC5							
TPH aromatic C_{35} - C_{40}^*	181	1.0	13.0 mg/kg		DC4/DC5							
TPH aliphatic C_5 - C_6 *	181	0.01	< 0.01	mg/kg	DC4/DC5							
TPH aliphatic C ₆ -C ₈ *	181	0.01	< 0.01	mg/kg	DC4/DC5							
TPH aliphatic $C_8 - C_{10}^*$	181	1.0	< 1.0	mg/kg	DC4/DC5							
TPH aliphatic C ₁₀ -C ₁₂ *	181	1.0	< 1.0	mg/kg	DC4/DC5							
TPH aliphatic C ₁₂ -C ₁₆ *	181	1.0	< 1.0	mg/kg	DC4/DC5							
TPH aliphatic C ₁₆ - C ₂₁ *	181	1.0	< 1.0	mg/kg	DC4/DC5							
TPH aliphatic C ₂₁ -C ₃₅ *	181	1.0	5.8	mg/kg	DC4/DC5							
TPH aliphatic C ₃₅ -C ₄₀ *	181	1.0	8.3	mg/kg	DC4/DC5							

Report No: OCLA-5367 Sample ID: C00289 PO: OCMT 5367

In partnership with

Soils Suitability Report Suitability Assessment Report Soil Compliance Table 2nd May 2023

MTS Environmental Ltd

Contact: Luke Bridges, Director luke.bridges@mtsenvironmental.co.uk 0117 3704250

OEMA

Contact: Martin Slater, Material Technologist martins@oema.co.uk

DISCLAIMER: This document was prepared by MTS Environmental Ltd solely on behalf of OEMA Ltd. MTS accepts no responsibility or liability for any use that is made of this document other than the purpose for which it was originally commissioned and prepared.

Suitability Assessment Comments

This soils suitability report is purely based on the sample data received from OEMA laboratory for a soils sample (Report Number: OCLA 5367) analysed on the 25th April 2023 and issued to MTS on the 2nd May 2023. Only one sample was taken and tested, therefore this report is based on these results. Amplified sampling is required to give the suitability assessment and potential uses outlined in this report continued certainty.

The sample comprises a bulk sample of 10mm manufactured soil; the source of the material is unknown. The source site is the recycling centre, and the sample is taken from the stockpile in the building. Exact details of the site location are unknown so no site investigation or desk study into the site has been done. It is unknown if there have been any pollution incidents at the site.

The sample has been tested based on a standard soils suite.

The sample analysis has been assessed by MTS against a number of criteria to determine potential uses. The criteria that have been assessed are:

Category 4 Screening Levels (C4SLs) – based on 6% Soil Organic Matter Suitable 4 Use Levels (S4ULs) Environment Agency Soil Guideline Values EIC/AGS/CL:AIRE or ATRISKSOIL Limits

A waste classification has not been conducted as the material is not waste.

Table 1 below details which criteria the material complies with and highlights the potential uses. It must be noted that there are a number of determinants that are missing from the analysis suite and therefore not all of the limits could be assessed. The conclusions of this report are based on the results provided and no ground investigation has been completed; it cannot be confirmed if the material complies with determinant levels that have not been tested.

It is advised that further testing is completed to ensure the material complies with all the available guidance limits for each set of criteria.

	Criteria	Suitable for Use
	Residential (with homegrown	Yes (providing further
	products)	testing/confirmation)
	Residential (without homegrown	Yes (providing further
	products)	testing/confirmation)
	Allotment	No
C4SLs	Commercial	Yes (providing further
		testing/confirmation)
	Public Open Space (residential)	Yes (providing further
		testing/confirmation)
	Public Open Space (park)	Yes (providing further
		testing/confirmation)
	Residential (with homegrown	
	products)	Yes (providing further
S4ULs	Residential (without homegrown	testing/confirmation)
	products)	
	Allotment	

Table 1 – Suitable for use compliance

	Commercial	
	Public Open Space (residential)	
	Public Open Space (park)	
	Residential	Yes (providing further
EA Soil Guideline Values	Allotment	testing/confirmation)
	Commercial	
	Residential (with homegrown	No determinants tested
	products)	
EIC/AGS/CL:AIRE or	Residential (without homegrown	Yes (providing further
ATRISKSOIL	products)	testing/confirmation)
	Allotment	No
	Commercial	Yes (providing further
		testing/confirmation)

The missing determinants from the results and relating criteria are as follows:

Mercury (Inorganic/Methyl) - S4UL / EA SGV Vinyl Chloride, Trichloroethene, Tetrachloroethene, 1,2-Dichloroethane – C4SL

It should be noted that no testing of asbestos was undertaken but none was observed in the stockpile and none is known to be present in the material.

A WAC test is required if the material is intended to be sent to landfill to determine if it should be sent to an inert, non-hazardous or hazardous facility.

*Disclaimer: This report has been produced solely based on the results provided and further testing is required to confirm the suitability for use of this soil material depending on the intended project. This has been produced to the best knowledge and available guidance at the time of writing this report. An agronomist may need to be consulted before moving the material to confirm these findings and a full ground investigation conducted. If material is to be moved, then a Materials Management Plan should be followed.

As highlighted, there are missing determinants from this sample analysis which require testing to confirm the suitability for use under the criteria.

OEMA Soil Classification - OCLA 5166								
Sample ID	C00289							
Date Analysed	4/25/2023							

			C4SL - based on 6% SOM				Current S4UL						EAS	Soil Guideline Va	lue	EIC/AGS/CL:AIRE or ATRISKSOIL				
			Reside	ential				Residential									Residential			
				Without				With	Without									Without		
Determinent	L la lta	OEMA Analysis	With homegrown	homegrown		O		homegrown	homegrown		Commencial	DOC		Desidential		O a ma ma a mai a l	With homegrown	homegrown		O a manufact
Determinant	Units	Result	products	products	Allotment	Commercial	PUS resi PUS park	k products	products	Allotment	Commercial	POS resi	POS park	Residential	Allotment	Commercial	products	products	Allotment	Commercial
Loss on Ignition	70 0/	3 10)																	
Soil Organic Matter	// %	3.19																		
Total Inorganic Carbon	%	0.8	3																	
Total Carbon	%	2.1																		
% Water, air dried (<30°)	%																			
Water Content 105C	%																			
рН	pH Units	8.3	3																	
Antimony	mg/kg	2.3	}															550	ND	7500
Arsenic	mg/kg	19.2	37	7 40) 49	640	79 17	37	40	43	640) 79	0 170	37	43	640				
Barium	mg/kg	149)																	
Cadmium	mg/kg	0.0)	150		410	220 00	11		1.0	100	120	560	10	1 0	220				
	mg/kg	0.4)	150	5.9	410	220 00		CO	1.9	190	/ 120	500	10	1.0	230				
Chromium	mg/kg	18.6	-					910	910	18000	8600	1500	33000							
Chromium VI	mg/kg	<0.8	21	21	170	49	21 25	0 6	6	1.8	33	7.7	220							
Copper	mg/kg	43.4						2400	7100	520	68000	12000	44000							
Mercury	mg/kg	0.1						1.2	2 1.2	21	58	16	30	1	26	26				
Mercury (Inorganic)	mg/kg																			
Mercury (Methyl)	mg/kg																			
Molybdenum	mg/kg	1.2)															670	ND	17000
Nickel	mg/kg	10.4		010		0000	(00 100	130	180	53	980	230	0 800							
Lead	mg/kg	118	200	310	80	2300	630 130	250	120	0.0	12000	1100	1000	250	120	12000				
Thallium	mg/kg	<1.0)					200	430	00	12000		1800	300	120	13000				
Vanadium	mg/kg	21	-					410	1200	91	9000	2000	5000							
Zinc	mg/kg	136						3700	40000	620	730000	81000	170000							
Water Soluble Boron	mg/kg	0.6)					290	11000	45	240000	21000	46000							
Total Cyanide	mg/kg	<1.0)															34	34	34
PAH (total)	mg/kg	6.64																		
Acenaphthylene	mg/kg	0.04						920) 6000	160	100000	15000	30000							
Acenaphthene	mg/kg	0.01						1100) 6000	200	100000	15000	30000							
Fluorene	mg/kg	0.02	7					860	4500	160	71000	9900	20000							
Anthracene	mg/kg	0.17	1					11000	3/000	2200	540000	2100	6200							
Flouranthene	mg/kg	0.34	7					800	1500	90	22000	3100	6400							
Pyrene	mg/kg	1.37	3					2000	3800	620	54000	7400	15000							
Benz(a)anthracene	ma/ka	0.6)					13	3 15	13	180	29	62							
Chrysene	mg/kg	0.6						27	/ 32	19	350	57	/ 120							
Benzo(b)fluoranthene	mg/kg	0.36)					3.7	7 4	3.9	45	7.2	2 16							
Benzo(k)fluoranthene	mg/kg	0.44	ŀ					100) 110	130	1200	190) 440							
Benzo(a)pyrene	mg/kg	0.45	5 5	5 5.3	5.7	77	10 2	.1 3	3 3.2	3.5	36	5.7	' 13	2.4	2.7	36				
Indeno(1,2,3-c,d)pyrene	mg/kg	0.26						41	46	39	510	82	2 180							
Dibenz(a,h)anthracene	mg/kg	0.08	}					0.3	0.32	0.43	3.6	0.58	3 1.4							
Benzo(g,n,i)perylene	mg/kg	0.4	-					350) <u> </u>	640	4000	4000	2000							
мартнателе	шу/ку	0.04						10	13	24	1100	4900	5000							
TPH Total	ma/ka	53.91																		
TPH aromatic C5-C7	mg/kg	< 0.01						300) 1400	57	86000	56000	92000							
TPH aromatic C7-C8	mg/kg	<0.01						660	3900	120	180000	56000	100000					1		
TPH aromatic C8-C10	mg/kg	<1.0)					190	270	51	17000	5000	10000							
TPH aromatic C10-C12	mg/kg	<1.0)					380) 1200	74	34000	5000	10000							
TPH aromatic C12-C16	mg/kg	<1.0)					660	2500	130	38000	5000	10000							
TPH aromatic C16-C21	mg/kg	2.8	3					930	1900	260	28000	3800) 7800							
TPH aromatic C2F-C35	mg/kg	10.9						1700	1900	1600	28000	3800	7900							
TPH aliohatic C5-C6	mg/kg	-0 01						1700	1900	3900	12000	60000	18000							
TPH aliphatic C6-C8	ma/ka	<0.01 <0.01	3	+	1			530) 530	13000	40000	620000	320000							<u> </u>
TPH aliphatic C8-C10	mg/kg	<1.0)		1			150) 150	1700	11000	13000	21000							
TPH aliphatic C10-C12	mg/kg	<1.0)	1	1			760) 770	7300	47000	13000	24000							
TPH aliphatic C12-C16	mg/kg	<1.0)					4300	4300	13000	90000	13000	26000							
TPH aliphatic C16-C35	mg/kg	6.8	}					110000	110000	270000	1800000	250000	490000							
TPH aliphatic C35-C44	mg/kg	8.3	3					110000	110000	270000	1800000	250000	490000							
					ļ		ļ													
BIFX	mg/kg	< 0.01		7			70 11	0 0 0 0					110							
Benzene	mg/Kg	< 0.01	0.37	1.4	0.075	90	73 11	0 0.37	1.4	0.075	90	/ /3	100000	0.33	0.07	95				
Fthylhenzene	ma/ka	<0.01	+	-	+			060	3900	120	27000	25000	27000	010	120	4400				
Xvlene	ma/ka	<0.01 <0.01)	+				200	440	91	27000	23000	27000			2000				
MTBE	ma/ka	<0.02		1	1					1							160	220	90	24000
L	J		1	1		1	I I	1	1	1	1	1	1							