

Consulting Civil Engineers

Foul and Surface Water Drainage Strategy Report

Wildfowlers, Shore Road, Bosham, Chichester PO18 8QL

For

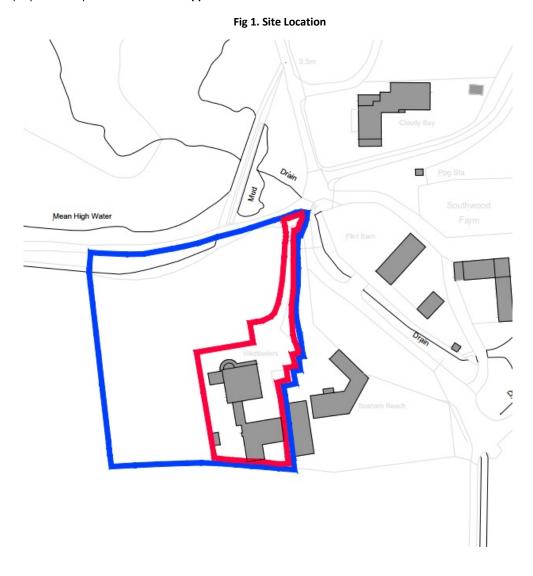
Mr & Mrs Bradley

Rev - P

Reference C2104

Date 17th June 2022

Revision	Date of Issue	Comments	Prepared By	Checked By
Р	17.06.2022	Initial Issue	LH	CS


Contents

1	INTRODUCTION	3
2	SITE GEOLOGY	4
3	EXISTING DRAINAGE	4
	PROPOSED DRAINAGE STRATEGY	
4	PROPOSED DRAINAGE STRATEGY	٠ ٩
5	MAINTENANCE	б
6	SUMMARY AND CONCLUSIONS	10
	APPENDICES	

1 Introduction

- 1.1.1 CGS Civils Ltd have been appointed by Mr & Mrs Bradley to undertake a drainage strategy report for a proposed development at Wildfowlers, Shore Road in Bosham, Chichester.
- 1.1.2 The purpose of this drainage strategy is to demonstrate how the development area can be satisfactorily drained without increasing flood risk onsite and elsewhere.
- 1.1.3 The existing site consists of a single domestic dwelling with an external hot tub and greenhouse. The proposed development will consist of the demolition of the existing dwelling and greenhouse and the development of a new dwelling house with the development of an external pool.
- 1.1.4 The proposed development is located as OS Grid Reference SU 80576 03216 and has the post code PO18 8QL.
- 1.1.5 The proposed site plan can be found in **Appendix A.**

2 Site Geology

2.1 British Geological Survey information

- 2.1.1 The British Geological Survey confirms the bedrock geology to be made up of multiple chalk formations. The BGS website confirms the superficial deposits on site to be made up of Head Formation, which is comprised of Clay, Silt, Sand and Gravel.
- 2.1.2 The British Geological survey also holds records of historical boreholes near the site which give some insight into the ground geology.
 - Borehole SU80SW84 (Located approx. 663m East of the site) Clay, Silt, Sand and Chalk

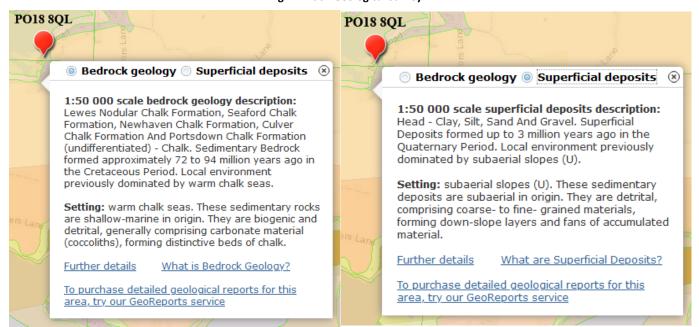


Fig 2. British Geological Survey

3 Existing Drainage

3.1.1 It is not currently known how the existing site discharges surface water runoff. However, it is believed that surface water discharges ground via infiltration.

4 Proposed Drainage Strategy

4.1 SuDS Hierarchy

4.1.1 All options for the destination of run-off generated on site have been assessed in line with the SuDS hierarchy as set out in Building Regulations Part H document and DEFRA's Draft National Standards for SuDS.

Discharge Destination	
Discharge to Ground	Yes – Restricted to an assumed infiltration rate of 1x10 ⁻⁵ m/s
Discharge to Watercourse	N/A
Discharge to Surface Water Sewer	N/A
Discharge to Other Sewer	N/A

4.2 Surface Water Drainage

- 4.2.1 Based upon the information gathered from the British Geology Survey website, it is proposed that all surface water runoff is to be discharged to ground via infiltration at an assumed rate of 1x10⁻⁵m/s. All roof areas are to be collected into a positive drainage network before being discharged to ground through the use of a geocellular soakaway and all hard paved areas are to be freely drained to ground via porous construction. All infiltration features on site have been designed to cater for the 1 in 100-year +40% storm. An infiltration test to BRE 365 is required to be undertaken to confirm the infiltration rate of the soil on site.
- 4.2.2 Hydraulic calculations have been carried out which can be found at Appendix C.

4.3 Foul water drainage

4.3.1 The foul water will discharge into a new private foul water treatment plant, all treatment effluent runoff will be discharged into ground via percolation through the use of a drainage field. This is subject to a percolation test to BS 6297.

5 Maintenance

5.1 Introduction

- 5.1.1 During construction, the Contractor will be responsible for maintaining the drainage and SuDS (Sustainable Drainage Systems). Upon handover, the occupier will take on the responsibility of these duties as laid out in this report.
- 5.1.2 The maintenance schedule for the proposed development will be split down into two separate categories; SuDS features and regular private drainage.

5.2 SuDS at Wildfowlers, Shore Road in Bosham

- 5.2.1 As listed above, in section 5.1.2, the SuDS features used on site will be Soakaway and Permeable Paving
- 5.2.2 The SuDS features have been designed for easy maintenance and comprise:
 - Regular Day-to-Day care litter collection, regular gardening to control vegetation growth and checking inlets where water enters the SuDS features
 - · Occasional tasks checking the SuDS features and removing any silt that builds up in the SuDS feature
 - Remedial work repairing damage where necessary

5.3 SuDS Drainage Maintenance Specification

5.3.1 Soakaway

In order to maintain the functioning of the attenuation tanks, the following maintenance requirements should be adhered to:

Table 21.3 Operation and maintenar	nce requirements for attenuation storage tanks	
Maintenance Schedule	Required Action	Typical Frequency
	Inspect and identify any areas that are not operating correctly. If required, take remedial action	Monthly for 3 months, then annually
Regular Maintenance	Remove debris from the catchment surface (where it may cause risks to performance)	Monthly
	For systems where rainfall infiltrates into the tank from above, check surface of filter for blockage by sediment, algae, or other matter; remove and replace surface infiltration medium as necessary.	Annually
	Remove sediment from per-treatment structures and/or internal forebays	Annually, or as required
Remedial Actions	Repair/rehabilitate inlets, outlet, overflows and vents	As required
Monitoring	Inspect/check all inlets, outlets, vents, and overflows to ensure that they are in good condition and operating as designed	Annually
	Survey inside of tank for sediment build-up and remove if necessary	Every 5 years or as required

5.3.2 Permeable Paving

In order to maintain the functioning of the permeable paving, the following maintenance requirements should be adhered to:

Maintenance Schedule	Required Action	Typical Frequency	
Regular Maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface)	Once a year, after autumn leaf fall, or reduced frequency as required, based on site-specific observations of clogging or manufacturer's recommendations – pay particular attention to areas where water runs onto pervious surface from adjacent impermeable areas as this area is most likely to collect the most sediment	
	Stabilise and mow contributing and adjacent areas	As required	
Occasional maintenance	Removal of weeds or management using glyphosate applied directly into the weeds by an applicator rather than spraying	As required – once per year on less frequently used pavements	
	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50mm of level of the paving	As required	
Remedial Actions	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost jointing material	As required	
	Rehabilitation of surface and upper substructure by remedial sweeping	Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging)	
	Initial inspection	Monthly for three months after installation	
Monitoring	Inspect for evidence of poor operation and/or weed growth – if required take remedial action	Three-monthly, 48h after large storms in first six months	
	Inspect silt accumulation rate and establish appropriate brushing frequencies	Annually	
	Monitor inspection chambers	Annually	

5.4 General Drainage Maintenance Specification

- 5.4.1 Inlet Structures and Inspection Chambers
 - Inlet structures such as rainwater downpipes, road gullies and channel drains should be free from obstruction at all times to all free flow through the SuDS
 - Inspection Chambers and Rodding Eyes are used on bends or where pipes come together. They allow access and cleaning to the system if necessary.

Inlet Structures and Inspection Chambers	
Regular Maintenance	Frequency
Inlet Structures	
Inspect rainwater downpipes, channel drains and road gullies, removing obstructions and silt as necessary. Check that there is no physical damage.	Monthly
Strim vegetation 1m min surround to structures and keep area free from silt and debris	
Inspections Chambers and below ground control chambers. Remove cover and inspect, ensuring that the water is flowing freely and that the exit route for water is unobstructed. Remove debris and silt.	Annually
Undertake inspection after leaf fall in Autumn	
Occasional Maintenance	
Check topsoil levels are 20mm above edges of chambers to avoid mower damage.	As necessary
Remedial Work	
Repair physical damage if necessary	As required

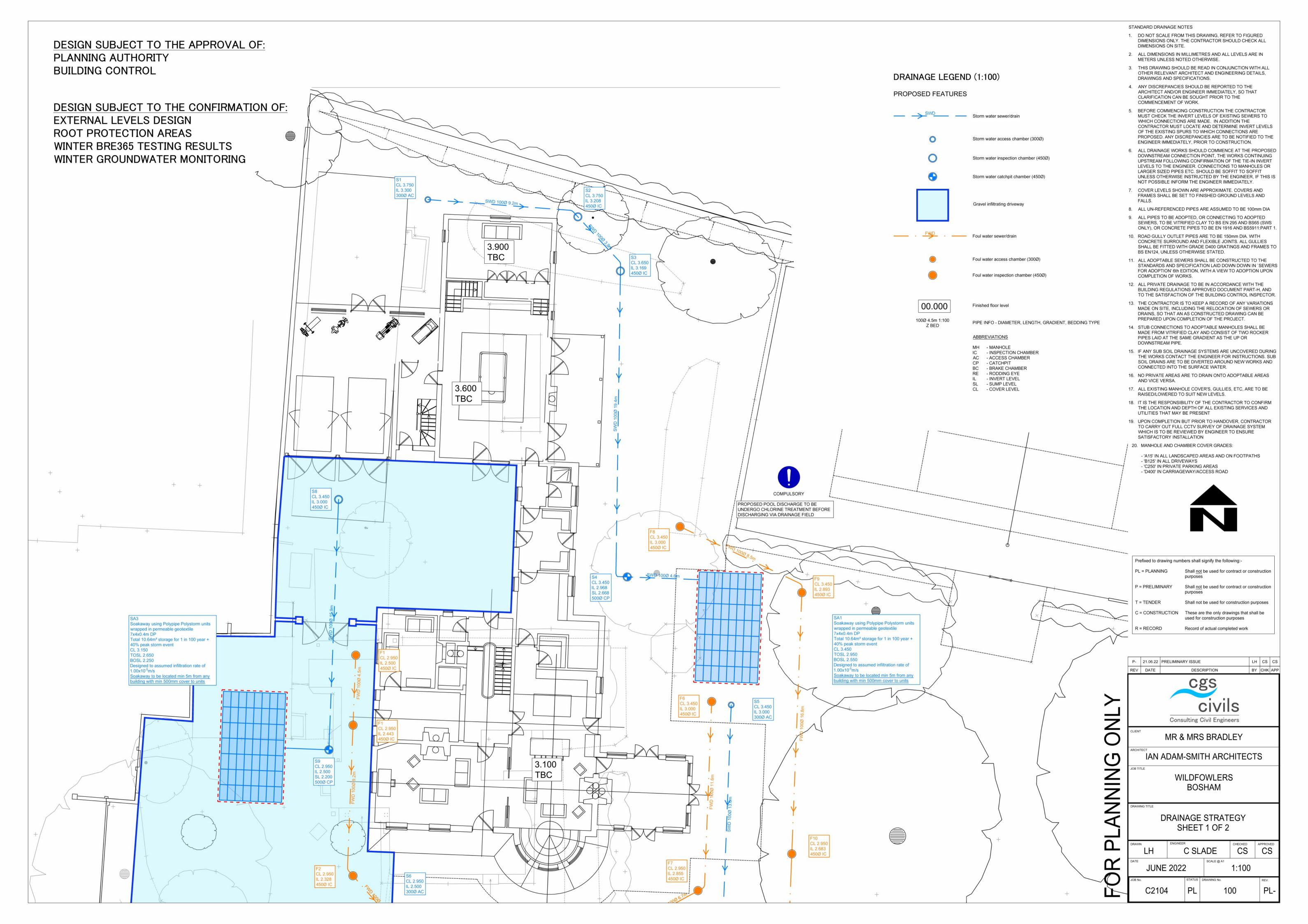
5.4.2 Below ground drainage pipes

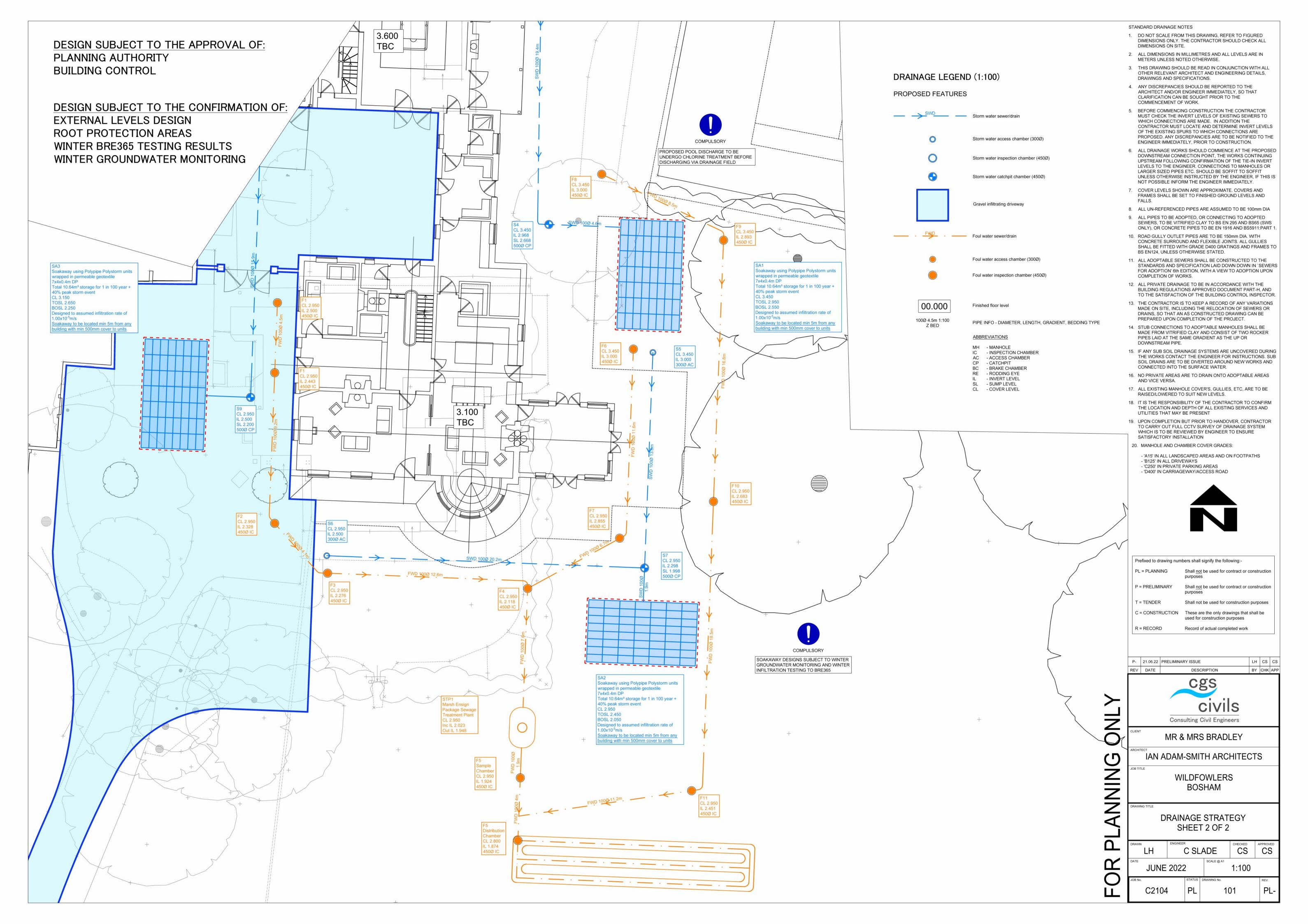
 Below ground drainage pipes convey water to the SuDS system. They should always be free from obstruction to allow free flow

Below Ground Drainage Pipes	
Regular Maintenance	Frequency
Inspect and identify any areas that are not operating correctly. If required, take remedial action.	Monthly for 3 months then annually
Remove debris from the catchment surface (where it may cause risks to performance)	Monthly
Remove sediment from pre-treatment inlet structures and inspection chambers.	Annually or as required
Maintain vegetation to designed limits within the vicinity of below ground drainage pipes and tanks.	Monthly or as required
Remedial Work	
Repair physical damage if necessary	As required
Monitoring Inspect all inlets, outlets and vents to ensure that they are in good conditions and operating as designed.	Annually
Survey inside of pipe runs for sediment build up and remove if necessary.	Every 5 years or as required

6 Summary and Conclusions

- 6.1.1 CGS Civils has been instructed by Mr and Mrs Bradley to produce a Drainage statement under National Planning Policy Framework (NPPF) to support the Planning Application for the development of a new domestic dwelling with exterior pool.
- 6.1.2 The Surface Water will discharge to ground via infiltration at an assumed rate of 1x10⁻⁵m/s. All roof areas are to be discharged to ground via infiltration through the use of a geocellular soakaway. The access road and parking area is to be constructed of a gravel surface to allow surface water runoff to freely discharge to ground via infiltration.
- 6.1.3 The Foul water will discharge into a new proposed onsite package treatment plant and all treated effluent runoff will be discharged into ground via percolation through the use of a drainage field.
- 6.1.4 The report has demonstrated that the proposed drainage measures ensure that suitable means of surface water and foul drainage can be achieved for the proposed development.


7 Appendices


7.1 Appendix A – Site Plan

7.2 Appendix B – Drainage Layout

7.3 **Appendix C – Surface Water Calculations**

File: C2104_Flow.pfd Network: Storm Network Luke Honeywill 21/06/2022 Page 1 C2104 Wildfowlers Bosham

Design Settings

Rainfall Methodology FSR
Return Period (years) 2
Additional Flow (%) 0
FSR Region England and Wales
M5-60 (mm) 20.000
Ratio-R 0.400
CV 0.750
Time of Entry (mins) 5.00

Maximum Time of Concentration (mins) 30.00

Maximum Rainfall (mm/hr) 50.0

Minimum Velocity (m/s) 1.00

Connection Type Level Soffits

Minimum Backdrop Height (m) 0.200

Preferred Cover Depth (m) 0.350

Include Intermediate Ground

Enforce best practice design rules ✓

Nodes

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
S4	0.018	5.00	3.450	500	210.395	525.306	0.482
SA1			3.450	100	215.016	525.128	0.560
S 7	0.019	5.00	2.950	500	216.576	503.911	0.652
SA2			2.950	100	216.576	501.736	0.689
S9	0.016	5.00	3.150	500	191.243	514.879	0.450
SA3			3.150	100	187.706	514.879	0.510

Links

		Node	(m)	ks (mm) / n 0.600	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)
2.000	S7	SA2	2.175	0.600	2.298	2.261	0.037	58.8	100	5.04	50.0
3.000	S9	SA3	3.537	0.600	2.700	2.640	0.060	59.0	100	5.06	50.0

Name	Vel (m/s)			Depth	DS Depth (m)	` '			Pro Velocity (m/s)
1.000	1.002	7.9	2.4	0.382	0.460	0.018	0.0	38	0.880
2.000	1.006	7.9	2.6	0.552	0.589	0.019	0.0	39	0.902
3.000	1.005	7.9	2.2	0.350	0.410	0.016	0.0	36	0.854

File: C2104_Flow.pfd Network: Storm Network Luke Honeywill 21/06/2022 Page 2 C2104 Wildfowlers Bosham

Pipeline Schedule

Link	Leng		Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
1.000	4.62	24	59.3	100	Circular	3.450	2.968	0.382	3.450	2.890	0.460
2.000	2.17	75	58.8	100	Circular	2.950	2.298	0.552	2.950	2.261	0.589
3.000	3.53	37	59.0	100	Circular	3.150	2.700	0.350	3.150	2.640	0.410
	Link	US Nod			Node Type	MH Type	DS Node	Dia (mm)	Node Type	MI Typ	· -
:	1.000	S4	-	•	lanhole	Adoptable		100	Manhole	Adopt	
:	2.000	S7	5	500 M	lanhole	Adoptable	SA2	100	Manhole	Adopt	able
;	3.000	S9	5	00 M	lanhole	Adoptable	SA3	100	Manhole	Adopt	able

Node SA1 Soakaway Storage Structure

Base Inf Coefficient (m/hr)	0.03600	Invert Level (m)	2.550	Depth (m)	0.400
Side Inf Coefficient (m/hr)	0.03600	Time to half empty (mins)	547	Inf Depth (m)	
Safety Factor	2.0	Pit Width (m)	4.000	Number Required	1
Porosity	0.95	Pit Length (m)	7.000		

Node SA2 Soakaway Storage Structure

Base Inf Coefficient (m/hr)	0.03600	Invert Level (m)	2.050	Depth (m)	0.400
Side Inf Coefficient (m/hr)	0.03600	Time to half empty (mins)	547	Inf Depth (m)	
Safety Factor	2.0	Pit Width (m)	4.000	Number Required	1
Porosity	0.95	Pit Length (m)	7.000		

Node SA3 Soakaway Storage Structure

Base Inf Coefficient (m/hr)	0.03600	Invert Level (m)	2.250	Depth (m)	0.400
Side Inf Coefficient (m/hr)	0.03600	Time to half empty (mins)	547	Inf Depth (m)	
Safety Factor	2.0	Pit Width (m)	4.000	Number Required	1
Porosity	0.95	Pit Length (m)	7.000		

File: C2104_Flow.pfd Network: Storm Network Luke Honeywill 21/06/2022

Page 3 C2104 Wildfowlers Bosham

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	S4	11	3.192	0.224	11.3	0.2108	0.0000	FLOOD RISK
360 minute winter	SA1	352	2.942	0.052	1.5	10.4385	0.0000	OK
360 minute winter	S7	352	2.568	0.270	1.6	0.2104	0.0000	SURCHARGED
360 minute winter	SA2	352	2.568	0.307	1.7	10.6558	0.0000	OK
15 minute winter	S9	10	2.872	0.172	10.1	0.1562	0.0000	FLOOD RISK
360 minute winter	SA3	344	2.584	-0.056	1.4	8.8733	0.0000	OK
Link Event	US	. Li	ink	DS (Outflow	Velocity	Flow/Ca	p Link

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)
15 minute winter	S4	1.000	SA1	10.9	1.395	1.387	0.0358
360 minute winter	SA1	Infiltration		0.2			
360 minute winter	S 7	2.000	SA2	1.7	0.738	0.220	0.0170
360 minute winter	SA2	Infiltration		0.2			
15 minute winter	S9	3.000	SA3	9.8	1.248	1.237	0.0273
360 minute winter	SA3	Infiltration		0.2			

7.4 Appendix D – Borehole Logs

SU 80 SW 84

Surface level +4.2 m

Water not struck

8118 0332

Southwood Farm

84

Block D

Waste Bedrock

.

3.5 m 1.5 m+

British Geological Survey

October 1981

British Geological Survey

British Geological Survey

-		•	~
- 2			u
	-	•	-

Geological classification	Lithology	Thickness m	Depth m
<u> </u>	Soil	0.4	0.4
Brickearth	Clay, silty, mottled brown	2.3	2.7
Raised Beach Deposits (younger)	Silt, sandy, with chalk pellets and pebbles	0.8	3.5
Upper Chalk	Chalk, soft, with nodular flints, weathered at top	1.5+	5.0

British Geological Survey

British Geological Suffey

British Geological Survey

British Geological Survey

British Geological Survey

British Geological Survey