

K2 Base Report

Iron Acton CE vc Primary School

Planned installation date 28/10/2023

Project address Wotton Rd, Iron Acton, Bristol BS37 9UZ, UK

Customer Iron Acton Primary School
Company Source Electrical Services Ltd

Author Adam Tyers

Issue date & version 14/11/2023 | K2 Base Version 3.1.104.0

About us

K2 Systems. Innovative mounting system from a strong team.

Since 2004 we have been developing pioneering and highly functional mounting system solutions for photovoltaic installations around the world. Our systems are designed in our own product development department where we continually optimize and adapt mounting systems to the ever-changing market

A knowledgeable and friendly team

Just like a mountain climbing team, K2 Systems is built on mutual trust. This applies to our customer service as well as within the company itself, because we believe a trusting partnership leads to successful photovoltaic projects.

Our employees place total focus on the needs and wishes of our customer. This is true in all company departments.

10 locations and worldwide sales network

In our international team, everyone works together to provide customers with competent, comprehensive and entirely personalized service.

This is especially true in the constant training our employees undergo with regards to product optimization, quality assurance, or innovations in construction techniques.

Quality management and certificates

K2 Systems stands for Connecting Strength, the highest quality, and precision-crafted and customized components. Our customers and business partners deeply appreciate all of these factors. Three independent authorities have tested, confirmed, and certified our skills and components. External authorities are not the only ones to have put K2 Systems to the test. Our internal quality control ensures that all our products are subject to a constant review process.

These measures all ensure the outstanding quality standards that exemplify products from K2 Systems, and which we maintain through largely exclusive "Made in Germany" or "Made in Europe" practices.

Product guarantee

K2 Systems offers a 12-year product warranty on all products in its integrated range. The use of high quality materials and a three-level quality inspection ensure these standards.

In a nutshell

As roof-top specialists, we offer effective and economical solutions for roofs all around the world and provide professional, fast and reliable support for our customers in the solar industry.

Contents

Project overview	4
Roof 1	6
Assembly plan	8
Results	10
Structural analysis report	13
Bill of material	18
Roof 2	19
Assembly plan	21
Results	23
Structural analysis report	26
Bill of material	31
Roof 3	32
Assembly plan	34
Results	36
Structural analysis report	38
Bill of material	42
Bill of material	43

Project overview

Project information

Name Iron Acton CE vc Primary School

Address Wotton Rd, Iron Acton, Bristol BS37 9UZ, UK

Ground elevation 64.12 m
Planned installation date 28/10/2023

Customer Iron Acton Primary School

Author Adam Tyers

Load settings

Design method

Failure consequence class (CC)

Design working life

25 years

Terrain category

Environment

Basic wind speed

distance to shoreline

Country Terrain

Normal area

21.5 m/s

30.00 km

Snow load zone 2

Snow load on ground level 0.40 kN/m²

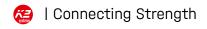
Roofs

Roof	System	Module	Power	Quantity	Total power
Roof 1	<u>SingleRail</u>	JAM54S31-400/MR (1000V)	400 Wp	22	8.8 kWp
Roof 2	<u>SingleRail</u>	JAM54S31-400/MR (1000V)	400 Wp	16	6.4 kWp
Roof 3	<u>SingleRail</u>	JAM54S31-400/MR (1000V)	400 Wp	6	2.4 kWp
Total				44	17.60 kWp

The selected mounting system can be installed as planned Thank you for choosing a K2 mounting system.

Roofs

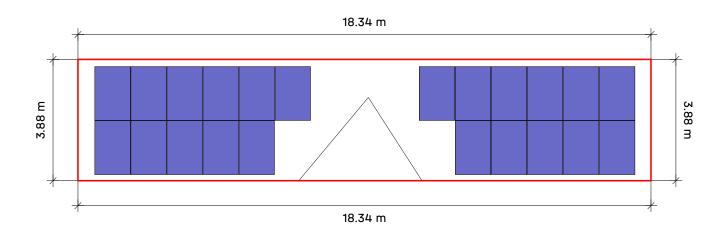
Project information


Name Iron Acton CE vc Primary School

Address Wotton Rd, Iron Acton, Bristol BS37 9UZ, UK

Ground elevation 64.12 m
Planned installation date 28/10/2023

Customer Iron Acton Primary School

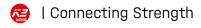

Author Adam Tyers

Roofs | Roof 1

Roof	System	Module	Power	Quantity	Total power
Roof 1	<u>SingleRail</u>	JAM54S31-400/MR (1000V)	400 Wp	22	8.8 kWp

Roofs | Roof 1 | Assembly plan

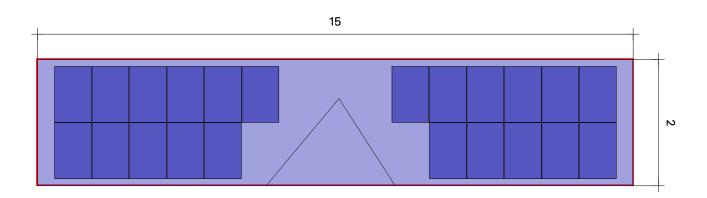
Base Rails


	Whole	Whole Rails		Rail cutting	
Туре	Total Rail Length	Quantity 4.40 m	Part of Rail	Length	Rest
Α	7.004	1	4.400	2.604	1.786
В	5.850	1	1.786	1.450	0.326

Fastener Spacing

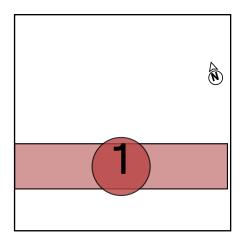
Module	Array	Distance
1	field area	1.50 m
1	eaves	1.50 m
1	corner region (eave)	1.50 m
1	corner region (ridge)	1.50 m
1	ridge	1.50 m

Module arrays


Module array	Width[m]	Length[m]	Width in modules	Length in modules
1	17.29	3.45	15	2

Roofs | Roof 1 | Module array 1

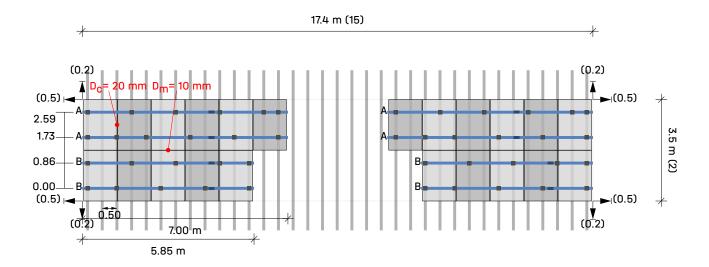
Roof 1 Module array 1


Mounting System

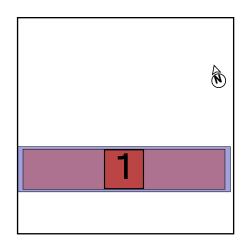
Module **22(8.8 kWp) x JAM54S31-400/MR**

(1000V)

SingleRail


Row spacing 1.73 m

Roofs | Roof 1 | Module array 1 | Module blocks



Roof 1 Module array 1 Module block 1

Modules (15 × 2) - 8 = 22

Legend

- Fastener
- Mounting rail: K2 SingleRail 36
- → Distance to Roof Edge [m]
- Dc Distance for clamping between modules
- Dm Distance between modules

Roof	System	Module	Power	Quantity	Total power
Roof 1	SingleRail	JAM54S31-400/MR (1000V)	400 Wp	22	8.8 kWp

Module

Name JAM54S31-400/MR (1000V)

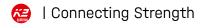
Manufacturer Shanghai JA Solar Technology Co. Ltd.

Output power 400 Wp

Dimensions 1,722×1,134×30 mm

Weight 21.5 kg

Components


Fastener SingleHook 3S
Base rails K2 SingleRail 36

Loads on modules (module dimensioning)

Array	A-TrAultimate state [Pa]				Serviceabil	ity [Pa]			
	[m ²]	Pressure ⊥	Pressure II	Uplift ⊥	Uplift II	Pressure 	Pressure II	Uplift ⊥	Uplift II
field area	1.95	631.2	237.3	-801.2	60.3	499.9	189.0	-605.8	60.3
eaves	1.95	721.7	237.3	-801.2	60.3	571.0	189.0	-605.8	60.3
corner region (eave)	1.95	993.4	237.3	-1,072.8	60.3	784.0	189.0	-818.9	60.3
corner region (ridge)	1.95	721.7	237.3	-1,435.0	60.3	571.0	189.0	-1,103.0	60.3
ridge	1.95	631.2	237.3	-801.2	60.3	499.9	189.0	-605.8	60.3

Utilisation result

		ultima	te limit	state	Usab	Distar	ices	maxim	um values
No.	roof areas	Pr	CL	Fst	Pr	Fst	BR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	L _{max} [m]	Fst D _{max} [m]
1	field area	42.0	0.0	56.0	42.6	1.500		0.532	1.856
1	eaves	44.1	2.8	56.0	42.6	1.500		0.532	1.856
1	corner region (eave)	57.6	5.4	73.8	57.6	1.500		0.488	1.722
1	corner region (ridge)	73.5	6.9	97.5	77.5	1.500		0.449	1.538
1	ridge	42.0	9.7	56.0	42.6	1.500		0.532	1.856

Fst **Fastener**

 σ Stress

f Deflection

F Force

 $\text{CL/L}_{\text{max}} \ \ \text{maximum cantilever length}$

BR Base Rail

Usab. serviceability limit state

CL Cantilever

Notes

- The structural design complies with BS EN 1990 Basis of Structural Design.
- Snow loads are determined in accordance with National Annex BS NA EN 1991-1-3 (2018) UK National Annex to EC1 Action on structures general actions snow loads.
- Wind loads are determined in accordance with National Annex BS NA EN 1991-1-4 UK National Annex to EC1 Action on structures, general actions wind actions.
- Service life is recognised according to 'Eurocode EN 1991 Action on structures, Snow loads' and 'Eurocode EN 1991 Actions on structures, Wind actions'. Subject to the Building Regulations and for security-relevant reasons the installation has to be dismantled at the end of its service life.
- Failure consequence class is considered according to 'Eurocode EN 1990 Basis of structural design'.
- Data and results must be verified with regard to local conditions and checked by a suitably qualified person. Please see our TCU under https://k2-systems.com/en/base-tcu, in particular § 2 ("technical and specialist requirements for the customer"), § 7 ("warranty provisions") and § 8 ("limitation of liability").

General information

Name Iron Acton CE vc Primary School

Mounting System SingleRail
Author Adam Tyers

Location information

Address Wotton Rd, Iron Acton, Bristol BS37 9UZ, UK

Ground elevation 64.12 m

Roof information

Building height 10.00 m

Roof type Monopitch roof

Roof pitch 30°

Fastening method Roof construction

Roof covering Tile

Min. roof edge distance 0.00 m

Rafter Spacing 0.500 m

Rafter width 40.0 mm

set edge rafter left No

Rafter spacing left 170.0 mm

Rafter spacing right No

Rafter Spacing 170.0 mm
Batten spacing 340.0 mm

Loads

Design method BS EN
Failure consequence class (CC) CC1
Design working life 25 years

Terrain category Country Terrain

distance to shoreline 30.00 km

Wind load

Velocity pressure $q_{p,50} = 0.771 \text{ kN/m}^2$

Adjustment factor for service life $f_w = 1.000$

Velocity pressure $q_{0.25} = 0.710 \text{ kN/m}^2$

Roof areas

Array	load impact area [m²]	maxCpe ₁₀	minCpe ₁₀	wind pressure [kN/m²]	wind suction [kN/m²]
field area	10.00	0.400	-1.000	0.284	-0.710
eaves	10.00	0.500	-1.000	0.355	-0.710
corner region (eave)	10.00	0.800	-1.300	0.568	-0.923
corner region (ridge)	10.00	0.500	-1.700	0.355	-1.207
ridge	10.00	0.400	-1.000	0.284	-0.710

Snow load

Snow load zone 2

Environment Normal terrain

Snow guard No.

Snow load on ground level $s_k = 0.400 \text{ kN/m}^2$

Shape Coefficient for Snow $\mu_i = 0.800$ Factor for roof pitch $d_i = 0.866$

Snow load on roof $s_{i.50} = 0.277 \text{ kN/m}^2$

Adjustment factor for service life $f_s = 1.000$

Snow load on roof $s_{i,25} = 0.257 \text{ kN/m}^2$

Dead Load

Weight of module $G_M = 21.5 \text{ kg}$ Weight of mounting system per = 2.5 kg

module

mouute

Module area $A_{M} = 1.95 \text{ m}^{2}$

Dead weight of module per m^2 = 11.01 kg/ m^2 Dead weight of mounting system per = 1.28 kg/ m^2

 m^2

Total Dead Load (excl. ballast) per = 0.12 kN/m²

 m^2

Load Combinations

Ultimate limit state

Partial safety factor unfavourable permanent load	$\gamma_{\text{G,sup}}$	= 1.35
Partial safety factor favourable permanent load	$\gamma_{\text{G,inf}}$	= 1.00
Partial safety factor destabilising permanent load	$\gamma_{\text{G,dst}}$	= 1.10
Partial safety factor stabilising permanent load	$\gamma_{\text{G,stb}}$	= 0.90
Partial safety factor first variable load	$\gamma_{\scriptscriptstyle Q}$	= 1.50
Partial safety factor variable loads	$\gamma_{\scriptscriptstyle Q}$	= 1.50
Combination coefficient with regards to wind	$\psi_{\text{o,w}}$	= 0.60
Combination coefficient with regards to wind (additional varying influences)	$\psi_{\text{1,W}}$	= 0.20
Combination coefficient with regards to Snow	$\psi_{\text{o,s}}$	= 0.50
Importance factor permanent	$\mathbf{K}_{Fl,G}$	= 0.90
Importance factor variable	$\mathbf{K}_{\mathrm{Fl,Q}}$	= 0.85
Characteristic dead weight	\mathbf{G}_{k}	
Characteristic snow load on the roof	$\mathbf{S}_{\mathrm{i,n}}$	
Characteristic wind load	\mathbf{W}_{k}	
Load case combination 01 $E_d = \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,Q} * S_{i,n}$		

Load case combination 01	$E_d = \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,Q} * S_{i,n}$
Load case combination 02	$E_d = \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,Q} * W_{k,Pressure}$
Load case combination 03	$E_{d} = \gamma_{G,sup} * \kappa_{Fl,G} * G_{k} + \gamma_{Q} * \kappa_{Fl,Q} * (W_{k,Pressure} + \psi_{0,S} * S_{i,n})$
Load case combination 04	$E_{d} = \gamma_{G,sup} * \kappa_{Fl,G} * G_{k} + \gamma_{Q} * \kappa_{Fl,Q} * (S_{i,n} + \psi_{0,W} * W_{k,Pressure})$
Load case combination 06	$E_d = V_{G,inf} * G_k + V_Q * K_{Fl,Q} * W_{k,Uplift}$

Serviceability limit state

Combination coefficient with regards to wind	$\psi_{\text{o,}}$	= 0.60
	W	
Combination coefficient with regards to Snow	$\psi_{0.8}$	= 0.50

Load case combination 01	$E_d = G_k + S_{i,n}$
Load case combination 02	$E_d = G_k + W_{k,Pressure}$
Load case combination 03	$E_d = G_k + W_{k,Pressure} + \psi_{0,S} * S_{i,n}$
Load case combination 04	$E_d = G_k + S_{i,n} + \psi_{0,W} * W_{k,Pressure}$
Load case combination 06	$E_d = G_k + W_{k,Uplift}$

Maximum load on modules (Mounting system dimensioning)

Array	A-TrA -	ultimate state [kN/m²]			Sei	Serviceability [kN/m²]			
, ω,	[m ²]	Pressure ⊥	Pressure II	Uplift ⊥	Uplift II	Pressure L	Pressure II	Uplift ⊥	Uplift II
field area	10.00	0.631	0.237	-0.801	0.060	0.500	0.189	-0.606	0.060
eaves	10.00	0.722	0.237	-0.801	0.060	0.571	0.189	-0.606	0.060
corner region (eave)	10.00	0.993	0.237	-1.073	0.060	0.784	0.189	-0.819	0.060
corner region (ridge)	10.00	0.722	0.237	-1.435	0.060	0.571	0.189	-1.103	0.060
ridge	10.00	0.631	0.237	-0.801	0.060	0.500	0.189	-0.606	0.060

Max. load on fastener

Array	A-TrA -	ultimate state [kN]				Serviceability [kN]			
	[m ²]	Pressure L	Pressure II	Uplift ⊥	Uplift II	Pressure 1	Pressure II	Uplift ⊥	Uplift II
field area	10.00	0.897	0.337	-1.138	0.086	0.710	0.268	-0.861	0.086
eaves	10.00	1.025	0.337	-1.138	0.086	0.811	0.268	-0.861	0.086
corner region (eave)	10.00	1.411	0.337	-1.524	0.086	1.114	0.268	-1.163	0.086
corner region (ridge)	10.00	1.025	0.337	-2.039	0.086	0.811	0.268	-1.567	0.086
ridge	10.00	0.897	0.337	-1.138	0.086	0.710	0.268	-0.861	0.086

Resistance Values of Components

Base Rails

Base Rails	А	I_y	Iz	W_y	W_z
	[cm ²]	[cm^4]	[cm^4]	[cm³]	[cm ³]
K2 SingleRail 36	2.850	4.02	6.37	2.14	3.09

Fastener

Fastener	$R_{D,Uplift,Perpendicular}$ [kN]	$R_{D,Pressure,Perpendicular}$ [kN]	$R_{D,Pressure,Parallel}$ [kN]
SingleHook 3S	2.17	2.67	2.40

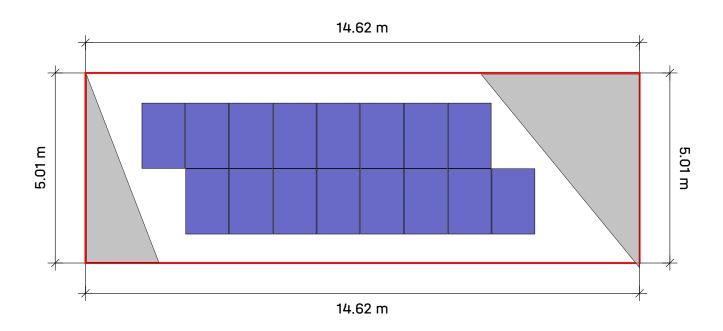
Utilisation result

		ultima	te limit	state	Usab.	Distan	ces	maxim	um values
No.	roof areas	Pr	CL	Fst	Pr	Fst	BR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	Fst D _{max} [m]
1	field area	42.0	0.0	56.0	42.6	1.500		0.532	1.856
1	eaves	44.1	2.8	56.0	42.6	1.500		0.532	1.856
1	corner region (eave)	57.6	5.4	73.8	57.6	1.500		0.488	1.722
1	corner region (ridge)	73.5	6.9	97.5	77.5	1.500		0.449	1.538
1	ridge	42.0	9.7	56.0	42.6	1.500		0.532	1.856

PrProfileFstFastener σ StressfDeflectionFForce CL/L_{max} maximum cantilever length


Fst D_{max} maximum fastener spacing
BR Base Rail
Usab. serviceability limit state
CL Cantilever

Roofs | Roof 1 | Bill of material


Position	Item no.	Item description	Quantity	Weight
1	2003215	SingleHook 3S	44	23.3 kg
2	2004112	Wood screw 8×100	88	2.4 kg
3	2002514	OneEnd Set 30-42	16	1.4 kg
4	2003071	OneMid Set 30-42	36	2.8 kg
5	1004767	SingleRail 36 End Cap	16	0.1 kg
6	2002870	K2 Solar Cable Manager	22	0.1 kg
7	2003222	SingleRail 36; 4.40 m	12	40.7 kg
8	2001976	SingleRail 36 RailConnector Set	8	3.0 kg
Total				73 8 kg

Roofs | Roof 2

Roof	System	Module	Power	Quantity	Total power
Roof 2	SingleRail	JAM54S31-400/MR (1000V)	400 Wp	16	6.4 kWp

Roofs | Roof 2 | Assembly plan

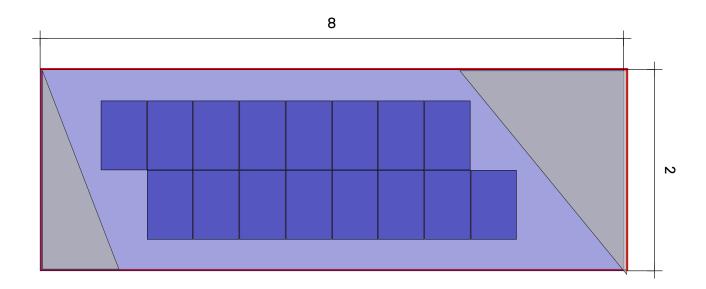
Base Rails

	Whole Rails Rail cutting				
Туре	Total Rail Length	Quantity 4.40 m	Part of Rail	Length	Rest
Α	9.312	2	4.400	0.700	3.690
В	9.312	2	3.690	0.700	2.980
С	9.312	2	2.980	0.700	2.270
D	9.312	2	2.270	0.700	1.560

Fastener Spacing

Module	Array	Distance
1	field area	1.50 m
1	eaves	1.50 m
1	corner region (eave)	1.50 m
1	corner region (ridge)	1.50 m
1	ridge	1.50 m

Module arrays

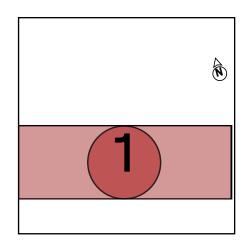

Module array	Width[m]	Length[m]	Width in modules	Length in modules
1	13.83	3.45	8	2

Roofs | Roof 2 | Module array 1

Roof (2) Module array (1)

would array

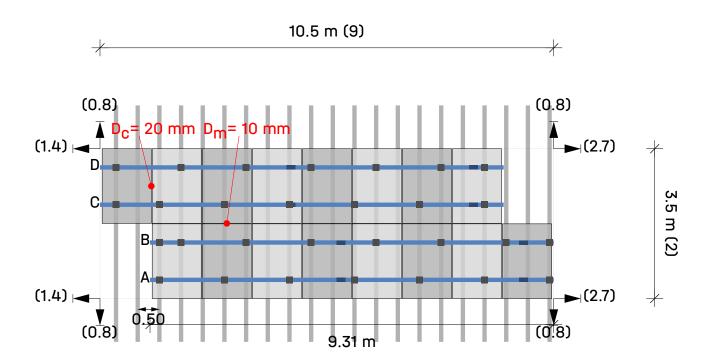
SingleRail


Mounting System Module

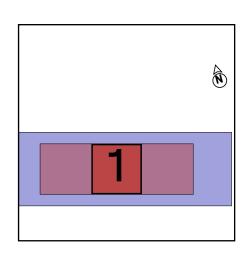
16(6.4 kWp) x JAM54S31-400/MR

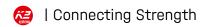
(1000V)

Row spacing


1.73 m

Roofs | Roof 2 | Module array 1 | Module blocks





Modules $(9 \times 2) - 2 = 16$ Legend

- Fastener
- Mounting rail: K2 SingleRail 36
- → Distance to Roof Edge [m]
- Dc Distance for clamping between modules
- Dm Distance between modules

Roof	System	Module	Power	Quantity	Total power
Roof 2	<u>SingleRail</u>	JAM54S31-400/MR (1000V)	400 Wp	16	6.4 kWp

Module

Name JAM54S31-400/MR (1000V)

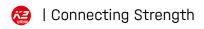
Manufacturer Shanghai JA Solar Technology Co. Ltd.

Output power 400 Wp

Dimensions 1,722×1,134×30 mm

Weight 21.5 kg

Components


Fastener SingleHook 3S
Base rails K2 SingleRail 36

Loads on modules (module dimensioning)

Array	A-TrA -	ultimate state [Pa]				Serviceabil	ity [Pa]		
,	[m ²]	Pressure ⊥	Pressure II	Uplift ⊥	Uplift II	Pressure 1	Pressure II	Uplift ⊥	Uplift II
field area	1.95	599.0	237.3	-678.7	60.3	474.7	189.0	-509.8	60.3
eaves	1.95	660.5	237.3	-678.7	60.3	522.9	189.0	-509.8	60.3
corner region (eave)	1.95	895.4	237.3	-913.6	60.3	707.2	189.0	-694.0	60.3
corner region (ridge)	1.95	660.5	237.3	-1,226.8	60.3	522.9	189.0	-939.7	60.3
ridge	1.95	599.0	237.3	-678.7	60.3	474.7	189.0	-509.8	60.3

Utilisation result

		ultima	te limit	state	_Usab	Distar	ices	maxim	um values
No.	roof areas	Pr	CL	Fst	Pr	Fst	BR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst\;D_{max}[m]$
1	field area	38.0	16.5	48.0	35.9	1.500		0.559	1.938
1	eaves	41.1	0.0	48.0	37.7	1.500		0.551	1.915
1	corner region (eave)	52.8	5.5	63.4	50.4	1.500		0.507	1.781
1	corner region (ridge)	63.2	19.2	83.9	66.0	1.500		0.470	1.664
1	ridge	38.0	16.5	48.0	35.9	1.500		0.559	1.938

Fst **Fastener**

σ Stress

f Deflection

F Force

 $\text{CL/L}_{\text{max}} \ \ \text{maximum cantilever length}$

BR Base Rail

Usab. serviceability limit state

CL Cantilever

Notes

- The structural design complies with BS EN 1990 Basis of Structural Design.
- Snow loads are determined in accordance with National Annex BS NA EN 1991-1-3 (2018) UK National Annex to EC1 Action on structures general actions snow loads.
- Wind loads are determined in accordance with National Annex BS NA EN 1991-1-4 UK National Annex to EC1 Action on structures, general actions wind actions.
- Service life is recognised according to 'Eurocode EN 1991 Action on structures, Snow loads' and 'Eurocode EN 1991 Actions on structures, Wind actions'. Subject to the Building Regulations and for security-relevant reasons the installation has to be dismantled at the end of its service life.
- Failure consequence class is considered according to 'Eurocode EN 1990 Basis of structural design'.
- Data and results must be verified with regard to local conditions and checked by a suitably qualified person. Please see our TCU under https://k2-systems.com/en/base-tcu, in particular § 2 ("technical and specialist requirements for the customer"), § 7 ("warranty provisions") and § 8 ("limitation of liability").

General information

Name Iron Acton CE vc Primary School

Mounting System SingleRail
Author Adam Tyers

Location information

Address Wotton Rd, Iron Acton, Bristol BS37 9UZ, UK

Ground elevation 64.12 m

Roof information

Building height 6.00 m

Roof type Monopitch roof

Roof pitch 30°

Fastening method Roof construction

Roof covering Tile

Min. roof edge distance 0.00 m

Rafter Spacing 0.500 m

Rafter width 40.0 mm

set edge rafter left No

Rafter spacing left 310.0 mm

Rafter spacing right No

Rafter Spacing 310.0 mm
Batten spacing 340.0 mm

Loads

Design method BS EN Failure consequence class (CC) CC1

Design working life 25 years

Terrain category Country Terrain

distance to shoreline 30.00 km

Wind load

Velocity pressure $q_{p,50} = 0.667 \text{ kN/m}^2$

Adjustment factor for service life $f_w = 1.000$

Velocity pressure $q_{0.25} = 0.614 \text{ kN/m}^2$

Roof areas

Array	load impact area [m²]	maxCpe ₁₀	minCpe ₁₀	wind pressure [kN/m²]	wind suction [kN/m²]
field area	10.00	0.400	-1.000	0.246	-0.614
eaves	10.00	0.500	-1.000	0.307	-0.614
corner region (eave)	10.00	0.800	-1.300	0.491	-0.798
corner region (ridge)	10.00	0.500	-1.700	0.307	-1.044
ridge	10.00	0.400	-1.000	0.246	-0.614

Snow load

Snow load zone 2

Environment Normal terrain

Snow guard N

Snow load on ground level $s_k = 0.400 \text{ kN/m}^2$

Shape Coefficient for Snow $\mu_i = 0.800$ Factor for roof pitch $d_i = 0.866$

Snow load on roof $s_{i.50} = 0.277 \text{ kN/m}^2$

Adjustment factor for service life $f_s = 1.000$

Snow load on roof $s_{i,25} = 0.257 \text{ kN/m}^2$

Dead Load

Weight of module $G_M = 21.5 \text{ kg}$ Weight of mounting system per = 2.5 kg

module

nouute

Module area $A_M = 1.95 \text{ m}^2$

Dead weight of module per m^2 = 11.01 kg/ m^2 Dead weight of mounting system per = 1.28 kg/ m^2

m²

Total Dead Load (excl. ballast) per = 0.12 kN/m²

 m^2

Load Combinations

Ultimate limit state

Partial safety factor unfavourable permanent load	$\gamma_{\text{G,sup}}$	= 1.35
Partial safety factor favourable permanent load	$\gamma_{\text{G,inf}}$	= 1.00
Partial safety factor destabilising permanent load	$\gamma_{\text{G,dst}}$	= 1.10
Partial safety factor stabilising permanent load	$\gamma_{\text{G,stb}}$	= 0.90
Partial safety factor first variable load	$\gamma_{\scriptscriptstyle Q}$	= 1.50
Partial safety factor variable loads	$\gamma_{\scriptscriptstyle Q}$	= 1.50
Combination coefficient with regards to wind	$\psi_{\text{o,w}}$	= 0.60
Combination coefficient with regards to wind (additional varying influences)	$\psi_{\text{1,W}}$	= 0.20
Combination coefficient with regards to Snow	$\psi_{\text{o,s}}$	= 0.50
Importance factor permanent	$\mathbf{K}_{\mathrm{Fl,G}}$	= 0.90
Importance factor variable	$\mathbf{K}_{\mathrm{Fl,Q}}$	= 0.85
Characteristic dead weight	$\mathbf{G}_{\mathbf{k}}$	
Characteristic snow load on the roof	$\boldsymbol{S}_{i,n}$	
Characteristic wind load	\mathbf{W}_{k}	
Load case combination 01 $ E_d = \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,Q} * S_{i,n} $		

Load case combination 01	$E_d = \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,Q} * S_{i,n}$
Load case combination 02	$E_d = \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,0} * W_{k,Pressure}$
Load case combination 03	$E_{d} = \gamma_{G,sup} * \kappa_{Fl,G} * G_{k} + \gamma_{Q} * \kappa_{Fl,Q} * (W_{k,Pressure} + \psi_{0,S} * S_{i,n})$
Load case combination 04	$E_{d} = \gamma_{G,sup} * \kappa_{Fl,G} * G_{k} + \gamma_{Q} * \kappa_{Fl,Q} * (S_{i,n} + \psi_{0,W} * W_{k,Pressure})$
Load case combination 06	$E_d = \gamma_{G,inf} * G_k + \gamma_Q * \kappa_{Fl,Q} * W_{k,Uplift}$

Serviceability limit state

Combination coefficient with regards to wind	$\psi_{\text{o,}}$	= 0.60
	W	
Combination coefficient with regards to Snow	$\psi_{0.8}$	= 0.50

Load case combination 01	$E_d = G_k + S_{i,n}$
Load case combination 02	$E_d = G_k + W_{k,Pressure}$
Load case combination 03	$E_d = G_k + W_{k,Pressure} + \psi_{0,S} * S_{i,n}$
Load case combination 04	$E_d = G_k + S_{i,n} + \psi_{0,W} * W_{k,Pressure}$
Load case combination 06	$E_d = G_k + W_{k,Uplift}$

Maximum load on modules (Mounting system dimensioning)

Array	A-TrA _	ultimate state [kN/m²]			Se	rviceability	[kN/m²]	<u> </u>	
, ay	[m ²]	Pressure 1	Pressure II	Uplift ⊥	Uplift II	Pressure L	Pressure II	Uplift ⊥	Uplift II
field area	10.00	0.599	0.237	-0.679	0.060	0.475	0.189	-0.510	0.060
eaves	10.00	0.660	0.237	-0.679	0.060	0.523	0.189	-0.510	0.060
corner region (eave)	10.00	0.895	0.237	-0.914	0.060	0.707	0.189	-0.694	0.060
corner region (ridge)	10.00	0.660	0.237	-1.227	0.060	0.523	0.189	-0.940	0.060
ridge	10.00	0.599	0.237	-0.679	0.060	0.475	0.189	-0.510	0.060

Max. load on fastener

Array	A-TrA -	ultimate state [kN]				Serviceabili	ty [kN]		
	[m ²]	Pressure ⊥	Pressure II	Uplift ⊥	Uplift II	Pressure L	Pressure II	Uplift ⊥	Uplift II
field area	10.00	0.851	0.337	-0.964	0.086	0.674	0.268	-0.724	0.086
eaves	10.00	0.938	0.337	-0.964	0.086	0.743	0.268	-0.724	0.086
corner region (eave)	10.00	1.272	0.337	-1.298	0.086	1.005	0.268	-0.986	0.086
corner region (ridge)	10.00	0.938	0.337	-1.743	0.086	0.743	0.268	-1.335	0.086
ridge	10.00	0.851	0.337	-0.964	0.086	0.674	0.268	-0.724	0.086

Resistance Values of Components

Base Rails

Base Rails	А	I_y	Iz	W_y	W_z
	[cm ²]	[cm^4]	[cm^4]	[cm ³]	[cm ³]
K2 SingleRail 36	2.850	4.02	6.37	2.14	3.09

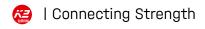
Fastener

Fastener	$R_{D,Uplift,Perpendicular}$ [kN]	$R_{D,Pressure,Perpendicular}$ [kN]	$R_{D,Pressure,Parallel}$ [kN]
SingleHook 3S	2.17	2.67	2.40

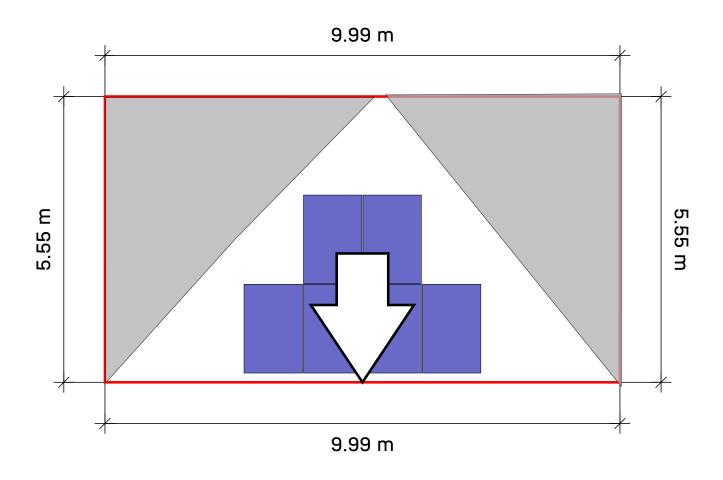
Utilisation result

		ultimate limit state		Usab.	Distances		maximum values		
No.	roof areas	Pr	CL	Fst	Pr	Fst	BR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	L _{max} [m]	Fst D _{max} [m]
1	field area	38.0	16.5	48.0	35.9	1.500		0.559	1.938
1	eaves	41.1	0.0	48.0	37.7	1.500		0.551	1.915
1	corner region (eave)	52.8	5.5	63.4	50.4	1.500		0.507	1.781
1	corner region (ridge)	63.2	19.2	83.9	66.0	1.500		0.470	1.664
1	ridge	38.0	16.5	48.0	35.9	1.500		0.559	1.938

PrProfileFstFastener σ StressfDeflectionFForce CL/L_{max} maximum cantilever length


Fst D_{max} maximum fastener spacing
BR Base Rail
Usab. serviceability limit state
CL Cantilever

Roofs | Roof 2 | Bill of material


Position	Item no.	Item description	Quantity	Weight
1	2003215	SingleHook 3S	29	15.4 kg
2	2004112	Wood screw 8×100	58	1.6 kg
3	2002514	OneEnd Set 30-42	8	0.7 kg
4	2003071	OneMid Set 30-42	28	2.2 kg
5	1004767	SingleRail 36 End Cap	8	0.1 kg
6	2002870	K2 Solar Cable Manager	16	0.0 kg
7	2003222	SingleRail 36; 4.40 m	9	30.5 kg
8	2001976	SingleRail 36 RailConnector Set	8	3.0 kg
Total				53 5 ka

Roofs | Roof 3

Roof	System	Module	Power	Quantity	Total power
Roof 3	<u>SingleRail</u>	JAM54S31-400/MR (1000V)	400 Wp	6	2.4 kWp

Roofs | Roof 3 | Assembly plan

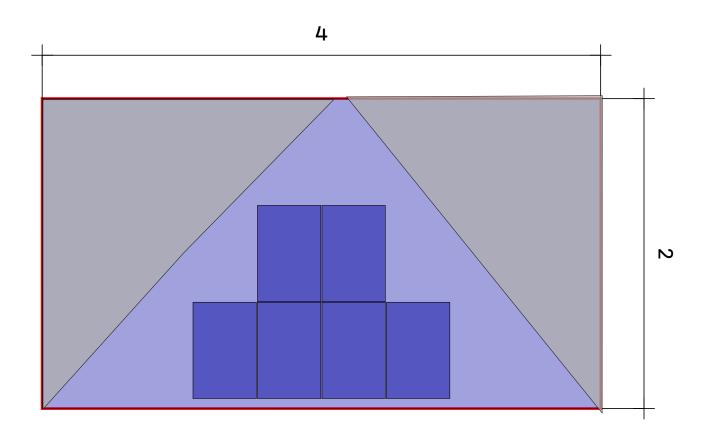
Base Rails

	Whole	e Rails	Rail cutting				
Туре	Total Rail Length	Quantity 4.40 m	Part of Rail	Length	Rest		
Α	2.388		4.400	2.388	2.002		
В	4.696	1	2.002	0.700	1.292		
С	4.696	1	1.292	0.700	0.582		

Fastener Spacing

Module	Array	Distance
1	field area	1.50 m
1	eaves	1.50 m

Module arrays

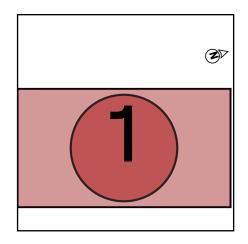

Module array	Width[m]	Length[m]	Width in modules	Length in modules
1	9.21	5.19	4	2

Roofs | Roof 3 | Module array 1

Roof (3) Module array (1)

Mounting System

Module

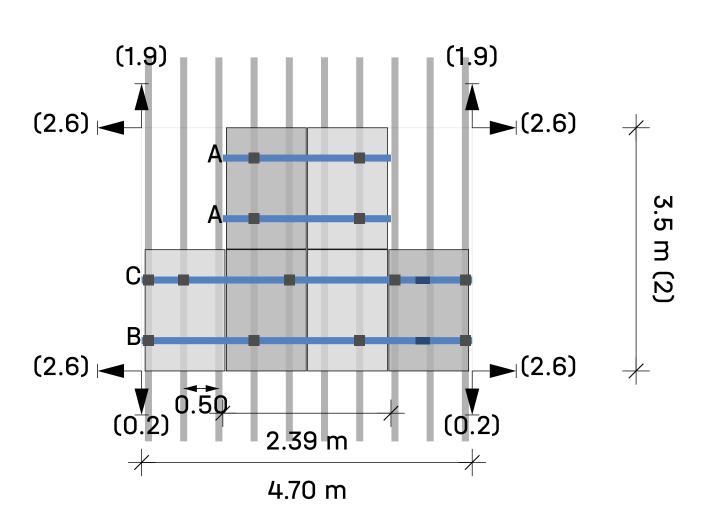

SingleRail

6(2.4 kWp) x JAM54S31-400/MR

(1000V)

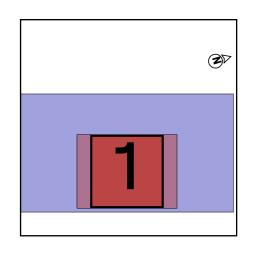
Row spacing

1.73 m



2

Roofs | Roof 3 | Module array 1 | Module blocks



Roof 3 Module array 1 Module block 1

Modules $(4 \times 2) - 2 = 6$ Legend

- Fastener
- Mounting rail: K2 SingleRail 36
- → Distance to Roof Edge [m]
- Dc Distance for clamping between modules
- Dm Distance between modules

Roof	System	Module	Power	Quantity	Total power
Roof 3	<u>SingleRail</u>	JAM54S31-400/MR (1000V)	400 Wp	6	2.4 kWp

Module

Name JAM54S31-400/MR (1000V)

Manufacturer Shanghai JA Solar Technology Co. Ltd.

Output power 400 Wp

Dimensions 1,722×1,134×30 mm

Weight 21.5 kg

Components

Fastener SingleHook 3S
Base rails K2 SingleRail 36

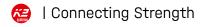
Loads on modules (module dimensioning)

Array	A-TrA [m ²]	ultimate state [Pa]				Serviceability [Pa]			
			Pressure II	Uplift ⊥	Uplift II	Pressure ⊥	Pressure II	Uplift ⊥	Uplift II
field area	1.95	599.0	237.3	-678.7	60.3	474.7	189.0	-509.8	60.3
eaves	1.95	660.5	237.3	-678.7	60.3	522.9	189.0	-509.8	60.3

Utilisation result

		ultimate limit state		Usab.	Usab. Distances		maximum values		
No.	roof areas	Pr	CL	Fst	Pr	Fst	BR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst\;D_{max}[m]$
1	field area	38.0	16.6	48.0	35.9	1.500		0.559	1.938
1	eaves	41.1	0.9	48.0	37.7	1.500		0.551	1.915

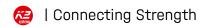
 ${\rm Pr} \qquad \qquad {\rm Fst} \,\, {\rm D}_{\rm max} \,\, {\rm maximum} \,\, {\rm fastener} \,\, {\rm spacing} \,\,$


Fst **Fastener** BR **Base Rail**

σ Stress Usab. serviceability limit state

f **Deflection** CL **Cantilever**

F Force


 CL/L_{max} maximum cantilever length

Notes

- The structural design complies with BS EN 1990 Basis of Structural Design.
- Snow loads are determined in accordance with National Annex BS NA EN 1991-1-3 (2018) UK National Annex to EC1 Action on structures general actions snow loads.
- Wind loads are determined in accordance with National Annex BS NA EN 1991-1-4 UK National Annex to EC1 Action on structures, general actions wind actions.
- Service life is recognised according to 'Eurocode EN 1991 Action on structures, Snow loads' and 'Eurocode EN 1991 Actions on structures, Wind actions'. Subject to the Building Regulations and for security-relevant reasons the installation has to be dismantled at the end of its service life.
- Failure consequence class is considered according to 'Eurocode EN 1990 Basis of structural design'.
- Data and results must be verified with regard to local conditions and checked by a suitably qualified person. Please see our TCU under https://k2-systems.com/en/base-tcu, in particular § 2 ("technical and specialist requirements for the customer"), § 7 ("warranty provisions") and § 8 ("limitation of liability").

General information

Name Iron Acton CE vc Primary School

Mounting System SingleRail
Author Adam Tyers

Location information

Address Wotton Rd, Iron Acton, Bristol BS37 9UZ, UK

Ground elevation 64.12 m

Roof information

Building height 6.00 m

Roof type Monopitch roof

Roof pitch 30°

Fastening method Roof construction

Roof covering Tile

Min. roof edge distance 0.00 m

Rafter Spacing 0.500 m

Rafter width 40.0 mm

set edge rafter left No

Rafter spacing left 245.0 mm

Rafter spacing right No

Rafter Spacing 245.0 mm
Batten spacing 340.0 mm

Loads

Design method BS EN Failure consequence class (CC) CC1

Design working life 25 years

Terrain category Country Terrain

distance to shoreline 30.00 km

Wind load

Velocity pressure $q_{p,50} = 0.667 \text{ kN/m}^2$

Adjustment factor for service life $f_w = 0.921$

Velocity pressure $q_{0.25} = 0.614 \text{ kN/m}^2$

Roof areas

Array	load impact area [m²]	maxCpe ₁₀	minCpe ₁₀	wind pressure [kN/m²]	
field area	10.00	0.400	-1.000	0.246	-0.614
eaves	10.00	0.500	-1.000	0.307	-0.614

Snow load

Snow load zone 2

Environment Normal terrain

Snow guard No

Snow load on ground level $s_k = 0.400 \text{ kN/m}^2$

Shape Coefficient for Snow $\mu_i = 0.800$ Factor for roof pitch $d_i = 0.866$

Snow load on roof $s_{i.50} = 0.277 \text{ kN/m}^2$

Adjustment factor for service life $f_s = 0.929$

Snow load on roof $s_{i,25} = 0.257 \text{ kN/m}^2$

Dead Load

Weight of module $G_{M} = 21.5 \text{ kg}$ Weight of mounting system per module = 2.5 kg

Module area $A_M = 1.95 \text{ m}^2$ Dead weight of module per m² $= 11.01 \text{ kg/m}^2$ Dead weight of mounting system per $= 1.28 \text{ kg/m}^2$

m² Dead weight of mounting system per

111

Total Dead Load (excl. ballast) per = 0.12 kN/m²

 m^2

Load Combinations

Ultimate limit state

Partial safety factor unfavourable pern	nanent load	$\gamma_{G,sup}$	= 1.35
Partial safety factor favourable perma	nent load	$\gamma_{\text{G,inf}}$	= 1.00
Partial safety factor destabilising perm	$\gamma_{\text{G,dst}}$	= 1.10	
Partial safety factor stabilising perman	nent load	$\gamma_{\text{G,stb}}$	= 0.90
Partial safety factor first variable load		γ_{Q}	= 1.50
Partial safety factor variable loads		$\gamma_{\scriptscriptstyle Q}$	= 1.50
Combination coefficient with regards to	o wind	$\psi_{\text{o,w}}$	= 0.60
Combination coefficient with regards to influences)	$\psi_{\text{1,W}}$	= 0.20	
Combination coefficient with regards to	$\psi_{\text{o,s}}$	= 0.50	
Importance factor permanent		$\mathbf{K}_{Fl,G}$	= 0.90
Importance factor variable		$\mathbf{K}_{\mathrm{Fl,Q}}$	= 0.85
Characteristic dead weight		$\mathbf{G}_{\mathbf{k}}$	
Characteristic snow load on the roof		$\boldsymbol{S}_{i,n}$	
Characteristic wind load		W_k	
Load case combination 01	$E_d = \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q * \kappa_{Fl,Q} * S_{i,n}$		
Load case combination 02	$E_{d} = \gamma_{G,sup} * \kappa_{Fl,G} * G_{k} + \gamma_{Q} * \kappa_{Fl,Q} * W_{k,i}$	Pressure	
Load case combination 03	$E_{d} = \gamma_{G,sup} * \kappa_{Fl,G} * G_{k} + \gamma_{Q} * \kappa_{Fl,Q} * (W_{k})$,Pressure	+ $\psi_{0,S} * S_{i,n}$
Load case combination 04	$E_d = \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_0 * \kappa_{Fl,Q} * (S_{i,n})$, + ψ _{ο,ν}	* W _{k,Pressure})

Serviceability limit state

Load case combination 06

Combination coefficient with regards	ψ _{ο,}	= 0.60			
Combination coefficient with regards	now	Ψ _{0,S}	= 0.50		
Load case combination 01	E_d	= G _k + S _{i,n}			
Load case combination 02	E_d	= G _k + W _{k,Pressure}			
Load case combination 03	E_d	= $G_k + W_{k,Pressure} + \psi_{0,S} * S_{i,n}$			
Load case combination 04	E_d	= $G_k + S_{i,n} + \psi_{0,W} * W_{k,Pressure}$			
Load case combination 06	E_d	$= G_k + W_{k,Uplift}$			
	4				

Maximum load on modules (Mounting system dimensioning)

Array	A-TrA [m ²]	ultimate state [kN/m²]				Serviceability [kN/m²]			
Array	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Pressure II	Uplift ⊥	Uplift II	Pressure ⊥	Pressure II	Uplift ⊥	Uplift II
field area	10.00	0.599	0.237	-0.679	0.060	0.475	0.189	-0.510	0.060
eaves	10.00	0.660	0.237	-0.679	0.060	0.523	0.189	-0.510	0.060

 $E_d = \gamma_{G,inf} * G_k + \gamma_Q * \kappa_{Fl,Q} * W_{k,Uplift}$

Max. load on fastener

Arrav	A-TrA [m²]	ultimate state [kN]				Serviceability [kN]			
- 3		Pressure ⊥	Pressure II	Uplift ⊥	Uplift II	Pressure ⊥	Pressure II	Uplift ⊥	Uplift II
field area	10.00	0.851	0.337	-0.964	0.086	0.674	0.268	-0.724	0.086
eaves	10.00	0.938	0.337	-0.964	0.086	0.743	0.268	-0.724	0.086

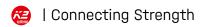
Resistance Values of Components

Base Rails

Base Rails	А	I_y	l _z	W_y	W_z
	[cm ²]	[cm^4]	[cm^4]	[cm³]	[cm³]
K2 SingleRail 36	2.850	4.02	6.37	2.14	3.09

Fastener

F


Fastener	R _{D,Uplift,Perpendicular} [kN]	$R_{D,Pressure,Perpendicular}$ [kN]	$R_{D,Pressure,Parallel}$ [kN]
SingleHook 3S	2.17	2.67	2.40

Utilisation result

		ultima	ltimate limit state Usab.		Distances		maxim	maximum values	
No.	roof areas	Pr	CL	Fst	Pr	Fst	BR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst\;D_{max}[m]$
1	field area	38.0	16.6	48.0	35.9	1.500		0.559	1.938
1	eaves	41.1	0.9	48.0	37.7	1.500		0.551	1.915
Pr Profile				Fst D _m	maximum	fastene	r spac	ing	

Force Cantileve

 CL/L_{max} maximum cantilever length

Roofs | Roof 3 | Bill of material

Position	Item no.	Item description	Quantity	Weight
1	2003215	SingleHook 3S	13	6.9 kg
2	2004112	Wood screw 8×100	26	0.7 kg
3	2002514	OneEnd Set 30-42	8	0.7 kg
4	2003071	OneMid Set 30-42	8	0.6 kg
5	1004767	SingleRail 36 End Cap	8	0.1 kg
6	2002870	K2 Solar Cable Manager	6	0.0 kg
7	2003222	SingleRail 36; 4.40 m	4	13.6 kg
8	2001976	SingleRail 36 RailConnector Set	2	0.8 kg
Total				23 3 ka

150.6 kg

Bill of material

Total

Position	Item no.	Item description	Quantity	Weight
1	2003215	SingleHook 3S	86	45.6 kg
2	2004112	Wood screw 8×100	172	4.6 kg
3	2002514	OneEnd Set 30-42	32	2.8 kg
4	2003071	OneMid Set 30-42	72	5.7 kg
5	1004767	SingleRail 36 End Cap	32	0.2 kg
6	2002870	K2 Solar Cable Manager	44	0.1 kg
7	2003222	SingleRail 36; 4.40 m	25	84.8 kg
8	2001976	SingleRail 36 RailConnector Set	18	6.8 kg

Thank you for choosing a K2 mounting system.

Systems from K2 Systems are quick and easy to install. We hope these instructions have helped. Please contact us with any questions or suggestions for improvement.

Our contact data:

k2-systems.com/en/contact

Service Hotline: +44 1189 701280

Our General Terms of Business apply. Please refer to k2-systems.com

K2 Solar Mounting Solutions Ltd

Unit 46 Easter Park
Benyon Road
Aldermaston, RG7 2PQ
Great Britain
+44 1189 701280
info@k2-systems.uk.com
k2-systems.com/en