

Factual Site Investigation

Leachate Treatment Plant, Joint Stocks Landfill, Coxhoe

Durham County Council

S220506

Solmek Ltd

12 Yarm Road Stockton-on-Tees TS18 3NA Tel: 01642 607083

www.solmek.com

info@solmek.com

FACTUAL SITE INVESTIGATION REPORT

LEACHATE TREATMENT PLANT, JOINT STOCKS LANDFILL, COXHOE

TABLE OF CONTENTS

1	EXECUTIVE SUMMARY	2
2	INTRODUCTION	3
3	SITE DESCRIPTION AND FIELDWORK	3
4	GROUND CONDITIONS	4
5	CONTAMINATION TESTING RESULTS	4
6	GROUND GAS ASSESSMENT	5
7	GEOTECHNICAL TESTING	6

TABLE 1: SUMMARY OF GROUNDWATER STRIKES	4
TABLE 2: SUMMARY OF MONITORING WELL RESPONSE ZONES	5
TABLE 3: SUMMARY OF GAS MONITORING RESULTS	6

APPENDICES

Appendix A:	Drawings
Appendix B:	Borehole & Trial Pit Logs
Appendix C:	Contamination Laboratory Results
Appendix D:	Geotechnical Laboratory Results
Appendix E:	Notes on Limitations & Contamination Guidelines

Revision	Date	Prepared By	Signed
		L Cassidy Senior Environmental Engineer	0
		Checked By	
Final	September 2022	R Woods Principal Geotechnical Engineer	
		Approved By	
		R Woods Principal Geotechnical Engineer	

1 EXECUTIVE SUMMARY

Site Address	Joint Stocks Landfill, Coxhoe			
Proposed	The site is expected to be developed with a new leachate treatment plant.			
Development				
Fieldwork	4no cable percussive boreholes with rotary core follow-on (BH01 to BH04) to a maximum depth of 24.00m			
	below ground level (bgl).			
	4no machine excavated trial pits (TP01-TP04) to a maximum depth of 3.80mbgl.			
Ground	Made ground was generally encountered to depths of between 2.30 and 15.90mbgl. Locally not terminated			
Conditions	but proven to 3.60-3.80mbgl.			
	Drift deposits only encountered within BH02 and BH02, comprising sightly sandy gravelly clay and slightly			
	clayey slightly gravelly sand, respectively.			
	Rockhead of limestone within BH01 (6.50mbgl) and BH02 (9.30mbgl), rockhead of mudstone within BH03			
	(15.90mbgl) and BH04 (14.80mbgl).			
	Groundwater strikes were encountered within BH03 & BH04 at 13.60-14.50mbgl.			
Contamination	4no made ground samples.			
Testing	Chemical testing results provided in Appendix C.			
Gas Monitoring	Six visits undertaken to date.			
Results	Flows 0.1/hr.			
	Generally no VOCs. CO or H ₂ S recorded (CO 1ppm within BH04 during Visit 1)			
	No methane recorded within BH02, 0-0,7% in BH01, 1,2-2,3% in BH03 and 55,2-64,6% in BH04.			
	CQ_{2} generally between 1.7 and 5.6% (20.9-30.3% in BH04).			
	Ω_2 between 1.4 and 20.5%.			
Geotechnical	Standard Penetration Tests within granular deposits recorded an N value of 36			
Testing	SPTs within cohesive deposits ranged from 8 to 27			
	Geotechnical Jaboratory testing scheduled in arrement with Sirius			
	Contracting and a could a solution of a contraction of the could be and th			
	Geolechnical lesting results provided in Appendix D.			

2 INTRODUCTION

2.1 Authorisation

The site investigation described in this report was carried out by Solmek to the instructions of Sirius, on behalf of Durham County Council, on land located at Joint Stocks Landfill, Coxhoe (Appendix A, Figure 1).

2.2 Scope of Works

The site is expected to be developed with a new leachate treatment plant.

A geotechnical and environmental investigation including a ground gas risk assessment was requested. The type and position of exploratory positions and the scope and nature of testing were all determined by Sirius.

The fieldwork and testing was generally carried out according to the recommendations of BS5930:2015+A1:2020 "Code of Practice for Ground Investigations" and where applicable BS EN 1997-2:2007 with soil descriptions to BS EN 14688-1:2013 where applicable. The information provided in this report is based on the investigation fieldwork and is subject to the comments and approval of the various regulatory authorities.

There may be other conditions prevailing on the site which have not been disclosed by this investigation and which have not been taken into account by this report. Solmek reserve the right to alter conclusions and recommendations should further information be available or provided. Any schematic representation or opinion of the possible configuration of ground conditions between exploratory holes is conjectural and given for guidance only and confirmation of intermediate ground conditions should be considered if deemed necessary.

3 SITE DESCRIPTION AND FIELDWORK

A site inspection, as recommended in BS 5930 and BS 10175, was undertaken on 24th May 2022. The site is centred at Ordnance Survey Co-ordinates 432844,536566.

The site consists of a roughly rectangular area with a rough grassed surfacing and a mostly level topography. The site itself is undeveloped.

The surrounding area consists of waste management buildings immediately northeast and to the west, open fields to the north and a road (B6291) to the south. The wider area is generally rural.

3.1 Fieldwork

The fieldwork commenced on 24th May 2022. The extent of the investigation was:

Ground penetrating radar (GPR) scan of the exploratory positions to check for underground utilities. 4no cable percussive boreholes with rotary core follow-on (BH01 to BH04) to a maximum depth of 24.00m below ground level (bgl).

• The borehole locations and depths were specified by Sirius.

Gas monitoring wells were installed within BH01 to BH04.

• Gas response zones were designed by Sirius and are shown in Table 2.

4no machine excavated trial pits (TP01-TP04) to a maximum depth of 3.80mbgl.

• The trial pit locations were specified by Sirius.

Insitu testing in the exploratory positions as Standard Penetration Tests (SPTs).

Retrieval of samples for geotechnical and chemical testing.

Topographic survey of fieldwork positions.

The boreholes were backfilled with bentonite below combined gas/groundwater installations, whilst trial pits were backfilled with arisings.

Descriptions of the strata encountered in the boreholes and trial pits together with details of sampling and groundwater are presented in Appendix B of this report. A plan showing the location of the boreholes and trial pits can be found in Appendix A (Figure 2).

4 GROUND CONDITIONS

A brief summary of the ground conditions encountered is given below. Borehole & trial pit logs are provided in Appendix B.

4.1 Made Ground

Made ground across the site was variable uniform and was encountered to a minimum depth of 2.30mbgl in BH01 and a maximum depth of 15.90mbgl in BH03. The made ground generally comprised a surface covering of topsoil, overlying soft to firm sandy gravelly clay (reworked) with the gravel variably comprising mudstone, sandstone, limestone and coal.

Locally, the cohesive made ground was overlain by a band (0.50-1.20m thick) of granular made ground with the gravel component variably comprising limestone, coal, mudstone, brick and macadam.

The made ground was not fully penetrated within the trial pits, which terminated at 3.60-3.80mbgl.

4.2 Natural Deposits

Natural drift deposits were encountered within BH01 and BH02 only, with BH03 and BH04 encountering rockhead directly beneath the made ground and the trial pits not penetrating the made ground.

Within BH01, the drift deposits comprised firm slightly sandy gravelly medium to high strength clay from 2.30 to 6.50mbgl.

Within BH02, dense slightly clayey slightly gravelly sand was encountered instead, from 6.60 to 9.30mbgl.

4.3 Solid Geology

Rockhead was variable, with extremely weak limestone encountered within BH01 (6.50mbgl) and BH02 (9.30mbgl), whilst rockhead of extremely weak mudstone was encountered within BH03 (15.90mbgl) and BH04 (14.80mbgl).

Drilling continued to 24.00mbgl within all boreholes, generally comprising limestone in BH01, limestone in BH02 with mudstone from 13.00-18.30mbgl, mudstone to 19.10mbgl overlying sandstone to 24.00mbgl in BH03 and mudstone to 19.60mbgl overlying sandstone to 24.00mbgl in BH04.

4.4 Groundwater

Groundwater strikes, where encountered, are presented on the exploratory logs (Appendix B) and are summarised below in Table 1:

Exploratory Position	Depth Encountered (mbgl)	Depth after 20 minutes (mbgl)	Strata
BH03	14.50	13.90	MADE GROUND
BH04	13.60	12.80	MADE GROUND

TABLE 1: SUMMARY OF GROUNDWATER STRIKES

It should be noted the rapid rate of advancement of the exploratory holes may mask minor seepages and it should be borne in mind that water levels fluctuate with a number of influences including season, rainfall, dewatering and pumping activities. Therefore, water levels significantly higher than those found during this investigation may be encountered.

5 CONTAMINATION TESTING RESULTS

The site is expected to be developed with a new leachate treatment facility. The chemical samples were

generally retrieved in line with BS ISO 18400-105:2017 "Soil Quality. Sampling". The chemical results are presented in Appendix C.

5.1 Contamination Testing and Rationale

5.1.1 Soil Contamination Testing

To provide information upon the possibility of ground contamination, 4no samples of made ground were selected for contamination testing:

TP01 – 0.10m (Made ground – topsoil) TP02 – 0.60m (Made ground – granular) TP03 – 0.10m (Made ground – topsoil) TP04 – 0.50m (Made ground – granular)

The samples selected are considered to provide coverage of the made ground and natural deposits from across the site that would be most likely to be exposed during future site works. The samples were tested for the following contaminant suites:

4no Metals, semi-metals, non-metals, inorganic determinants
4no Organic Matter
4no Speciated Polyaromatic Hydrocarbons (PAHs)
4no Total Petroleum Hydrocarbon Criteria Working Group fractions (TPHCWG)
4no Phenol
4no Asbestos identification screenings

5.2 Test Results

The test results are presented in Appendix C.

6 GROUND GAS

The site is expected to be developed with a new leachate treatment facility.

Ground gases such as carbon dioxide (CO_2) , methane (CH_4) , carbon monoxide (CO) and volatile organic compounds (VOCs) can be classed as a form of contamination where there is a potential risk to human health.

For this report, gas monitoring is via measuring emissions from four standpipes that were installed within the boreholes during the sitework. The gas monitoring consisted of six visits.

6.1 Monitoring Wells and Response Zones

During the site investigation works, gas monitoring wells were installed within all four boreholes, at the request of Sirius. The response zones were specified by Sirius, and are briefly summarised below in Table 2.

TABLE 2: SUMMARY OF MONITORING WELL RESPONSE ZONES

Borehole	Pipework	Installation Depth (mbgl)	Response zone of slotted pipework (mbgl)	Response Zone Stratum
BH01	50mm HDPE pipe	6.50	1.00-6.50	MADE GROUND/CLAY
BH02	50mm HDPE pipe	12.00	9.00-12.00	LIMESTONE
BH03	50mm HDPE pipe	24.00	16.00-24.00	MUDSTONE/SANDSTONE
BH04	50mm HDPE pipe	12.00	3.00-12.00	MADE GROUND

6.2 Ground Gas Results

Six visits have been completed to date. The atmospheric pressure has an impact on the concentrations of gas released. Atmospheric pressure was between 988 and 1007 during the six visits to date. The results for the visits undertaken to date are summarised below in Table 3 and are presented in full in Appendix E.

Borehole	Flow Range (I/hr)	CH₄ Range (%v/v)	CO₂ Range (%v/v)	O₂ Range (%v/v)	PID Range (ppm)	CO Range (ppm)	H₂S Range (ppm)	GW Range (mbgl)
BH01	0.1	0.0 - 0.7	2.3 – 5.6	6.4 – 17.0	0	0	0	Dry
BH02	0.1	0.0	1.7 – 2.5	16.3 – 20.5	0	0	0	10.82 - 11.00
BH03	0.1	1.2 – 2.3	2.5 – 3.0	9.6 – 15.8	0	0	0	16.40 - 20.20
BH04	0.1	55.2 - 64.6	20.9 - 30.3	1.4 – 3.0	0	0 – 1	0	11.25 – 12.00

TABLE 3: SUMMARY OF GAS MONITORING RESULTS

7 GEOTECHNICAL TESTING

Samples taken from the boreholes and trial pits underwent a series of geotechnical tests (BS 1377:1990) to aid foundation design and soil description. In addition, insitu Standard Penetration Tests (SPTs) were undertaken at regular intervals during drilling. The geotechnical results are presented in Appendix D.

The scope of the testing undertaken was determined in agreement with Sirius.

7.1 In-Situ Testing

Standard Penetration Tests (SPTs) undertaken within the made ground deposits generally yielded N values of between 6 and 50+.

Within the natural granular deposits, N values of 36 were recorded, indicating medium dense deposits. Within localised bands of cohesive deposits, N values ranged from 8 to 27, indicating medium to high strength deposits.

SPT N values upon the rockhead yielded N values of 50+.

7.2 Laboratory Testing

The scope of the laboratory testing to be undertaken was determined in agreement with Sirius. The below testing was scheduled:

6no Moisture Contents 3no Atterberg Limits 4no Particle Size Distribution 6no Particle Density 2no Compaction – 2.5kg 2no Suite C (Brownfield) Tests 4no Laboratory Shear Vanes 5no Unconsolidated Undrained Triaxials 5no One Dimensional Consolidations 4no Sulphate Content (Soil) 4no pH (Soil) 2no Permeability (Constant Head) 7no Point Load Tests (Rock) 6no Unconfined Compressive Strength Tests (Rock)

The geotechnical results are presented in Appendix D.

SOLMEK

APPENDIX A: Figures & Drawings

	12-16 Yarm Road, Stockton on Tees, TS18 3NA Tel: 01642 607083 Email: info@solmek.com
F	Figure Title
E	Exploratory Hole Location Plan
F	Project Number
S	\$220506
F	Project Name
L	eachate Treatment Plant, Joint Stocks Landfill, Coxhoe
(Client
[Durham CC
ſ	Date
,	June 2022
ſ	DRG Number
F	-igure 2
5	Scale
1	1:500 @ A4 [DO NOT SCALE]
[egend Key Locations By Type - CP+RC Locations By Type - TP Project Bounds - Project Bounds

Title	Date	
Figures 3 & 4	August 2022	
Project		
Joint Stocks Landfill, Coxhoe		
Client		
Durham County Council		

Figure 6: TP02 Spoil.

Title	Date
Figures 5 & 6	August 2022
Project	
Joint Stocks Landfill, Coxhoe	
Client	
Durham County Council	

Title	Date	
Figures 7 & 8	August 2022	
Project		
Joint Stocks Landfill, Coxhoe		
Client		
Durham County Council		

Title	Date	
Figures 9 & 10	August 2022	
	_	
Project		
Joint Stocks Landfill, Coxhoe		
Client		
Durham County Council		

Figure 12: BH03 16.50-19.50m.

Title	Date	
Figures 11 & 12	August 2022	Solmek Ltd. 12 Yarm Road
Project		Stockton-on-Tees
Joint Stocks Landfill, Coxhoe		TS18 3NA
Client		 Tel: +44 (0) 1642 607083
Durham County Council		Fax: +44 (0) 1642 612355
		e-mail: south@solmek.com
		www.solmek.com
		SOLMER

Figure 14: BH03 22.50-24.00m.

Title	Date	
Figures 13 & 14	August 2022	Solmek Ltd.
		12 Yarm Road
Project		Stockton-on-Tees
Joint Stocks Landfill, Coxhoe		TS18 3NA
Client		Tel: +44 (0) 1642 607083
Durham County Council		Fax: +44 (0) 1642 612355
		e-mail: south@solmek.com
		www.solmek.com
		SOLMEK

Figure 16: BH04 18.00-21.00m.

Title	Date	
Figures 15 & 16	August 2022	Solmek Ltd.
		12 Yarm Road
Project		Stockton-on-Tees
Joint Stocks Landfill, Coxhoe		TS18 3NA
Client		Tel: +44 (0) 1642 607083
Durham County Council		Fax: +44 (0) 1642 612355
		e-mail: south@solmek.com
		www.solmek.com
		JOLIVIER

Figure 17: BH04 21.00-24.00m.

Title	Date	
Figure 17	August 2022	Solmek Ltd.
		12 Yarm Road
Project		Stockton-on-Tees
Joint Stocks Landfill, Coxhoe		TS18 3NA
Client		 Tel: +44 (0) 1642 607083
Durham County Council		Eax: +44 (0) 1642 612355
		e-mail: south@solmek.com
		www.solmek.com
		SOLMEK

APPENDIX B: Borehole & Trial Pit Logs

er Ke	Sample	s & In Situ	Testing	Depth	l evel		
Wat	Depth	Туре	Results	(m)	(m)	Legend	
				0.50	133.23		
				1.70	132.03		
				2.40	131.33		
				3.60	130.13		

er Ke	Sample	s & In Situ	I Testing	Depth	l evel	
Wat Stril	Depth	Туре	Results	(m)	(m)	Legend
				0.50	132.60	
				1.00	132.10	
				1.70	131.40	
				3.80	129.30	

er ée	Sample	s & In Situ	I Testing	Depth	l evel		
Wat Stril	Depth	Туре	Results	(m)	(m)	Legend	
				0.30	135.07		
				1.20	134.17		
				3.70	131.67		

er Ke	Sample	s & In Situ	Testing	Depth Level			
Wat Stril	Depth	Туре	Results	(m)	(m)	Legend	
				0.30	133.81		
				0.45	133.66		
				0.90	133.21		
				3.70	130.41		

APPENDIX C: Contamination Laboratory Results

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	22-21809-1		
Initial Date of Issue:	22-Jun-2022		
Client	Solmek Ltd		
Client Address:	12 Yarm Road Stockton-on-Tees TS18 3NA		
Contact(s):	Lab Leo Cassidy Office		
Project	S220506 LTP Coxhoe		
Quotation No.:		Date Received:	13-Jun-2022
Order No.:	SOL-6300	Date Instructed:	13-Jun-2022
No. of Samples:	4		
Turnaround (Wkdays):	5	Results Due:	17-Jun-2022
Date Approved:	22-Jun-2022		
Approved By:			
Details:	Stuart Henderson, Technical Manager		

mc

Final Report

THE ENVIRONM

ICY'S

2183

Project: S220506 LTP Coxhoe

Client: Solmek Ltd	Chemtest Job No.:		22-21809	22-21809	22-21809	22-21809		
Quotation No.:	Chemtest Sample ID.: Sample Location: Sample Type: Date Sampled: 2		1446644	1446645	1446646	1446647		
			TP01	TP02	TP03	TP04		
			SOIL	SOIL	SOIL	SOIL		
			27-May-2022	27-May-2022	27-May-2022	27-May-2022		
			Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD				
АСМ Туре	U	2192		N/A	-	-	-	-
Ashastas Identification		2102		NI/A	No Asbestos	No Asbestos	No Asbestos	No Asbestos
	0	2192		IN/A	Detected	Detected	Detected	Detected
Moisture	N	2030	%	0.020	25	18	32	14
Soil Colour	N	2040		N/A	Brown	Brown	Brown	Brown
Other Material	N	2040		NI/A	Stones	Stones and	Stones and	Stones
	N	2040		11/7	Stones	Roots	Roots	Stories
Soil Texture	N	2040		N/A	Clay	Clay	Clay	Clay
рН	М	2010		4.0	8.6	8.8	8.2	8.7
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40	2.6	0.66	0.99	0.82
Sulphate (2:1 Water Soluble) as SO4	М	2120	mg/l	10	78	24	150	27
Cyanide (Total)	М	2300	mg/kg	0.50	[B] < 0.50	[B] < 0.50	[B] < 0.50	[B] < 0.50
Arsenic	M	2455	mg/kg	0.5	5.1	3.1	6.9	5.4
Cadmium	М	2455	mg/kg	0.10	0.46	0.26	0.66	0.26
Chromium	М	2455	mg/kg	0.5	6.6	5.1	11	8.5
Copper	М	2455	mg/kg	0.50	28	10	20	17
Mercury	M	2455	mg/kg	0.05	0.07	< 0.05	0.05	0.08
Nickel	M	2455	mg/kg	0.50	10	6.2	16	12
Lead	М	2455	mg/kg	0.50	51	37	47	70
Selenium	М	2455	mg/kg	0.25	0.66	0.44	1.0	0.90
Zinc	М	2455	mg/kg	0.50	62	49	75	61
Organic Matter	М	2625	%	0.40	31	9.3	17	19
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0
Aliphatic TPH >C8-C10	М	2680	mg/kg	1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0
Aliphatic TPH >C10-C12	М	2680	mg/kg	1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0
Aliphatic TPH >C12-C16	М	2680	mg/kg	1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0
Aliphatic TPH >C16-C21	М	2680	mg/kg	1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0
Aliphatic TPH >C21-C35	М	2680	mg/kg	1.0	[B] 45	[B] < 1.0	[B] < 1.0	[B] 37
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	[B] 45	[B] < 5.0	[B] < 5.0	[B] 37
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0
Aromatic TPH >C8-C10	М	2680	mg/kg	1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0
Aromatic TPH >C10-C12	М	2680	mg/kg	1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0
Aromatic TPH >C12-C16	М	2680	mg/kg	1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0
Aromatic TPH >C21-C35	М	2680	mg/kg	1.0	[B] 280	[B] < 1.0	[B] < 1.0	[B] 540
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0	[B] < 1.0
Total Aromatic Hydrocarbons	N	2680	ma/ka	5.0	[B] 280	[B] < 5.0	[B] < 5.0	[B] 540

Project: S220506 LTP Coxhoe

Client: Solmek Ltd	Chemtest Job No.:			22-21809	22-21809	22-21809	22-21809	
Quotation No.:	(Chemte	est Sam	ple ID.:	1446644	1446645	1446646	1446647
	Sample Location:			TP01	TP02	TP03	TP04	
			Sample	e Type:	SOIL	SOIL	SOIL	SOIL
			Date Sa	ampled:	27-May-2022	27-May-2022	27-May-2022	27-May-2022
			Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD				
Total Petroleum Hydrocarbons	Ν	2680	mg/kg	10.0	[B] 320	[B] < 10	[B] < 10	[B] 570
Naphthalene	М	2700	mg/kg	0.10	< 0.10	0.47	< 0.10	< 0.10
Acenaphthylene	М	2700	mg/kg	0.10	< 0.10	0.31	< 0.10	< 0.10
Acenaphthene	М	2700	mg/kg	0.10	< 0.10	0.43	< 0.10	< 0.10
Fluorene	М	2700	mg/kg	0.10	< 0.10	0.62	< 0.10	< 0.10
Phenanthrene	М	2700	mg/kg	0.10	< 0.10	3.0	< 0.10	1.1
Anthracene	М	2700	mg/kg	0.10	< 0.10	2.0	< 0.10	0.15
Fluoranthene	М	2700	mg/kg	0.10	1.7	12	< 0.10	0.62
Pyrene	М	2700	mg/kg	0.10	1.3	12	< 0.10	0.87
Benzo[a]anthracene	М	2700	mg/kg	0.10	1.8	11	< 0.10	0.66
Chrysene	М	2700	mg/kg	0.10	1.1	13	< 0.10	0.52
Benzo[b]fluoranthene	М	2700	mg/kg	0.10	1.5	15	< 0.10	< 0.10
Benzo[k]fluoranthene	М	2700	mg/kg	0.10	0.63	5.3	< 0.10	< 0.10
Benzo[a]pyrene	М	2700	mg/kg	0.10	0.68	9.8	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	М	2700	mg/kg	0.10	< 0.10	6.6	< 0.10	< 0.10
Dibenz(a,h)Anthracene	М	2700	mg/kg	0.10	< 0.10	3.0	< 0.10	< 0.10
Benzo[g,h,i]perylene	М	2700	mg/kg	0.10	< 0.10	6.5	< 0.10	< 0.10
Total Of 16 PAH's	М	2700	mg/kg	2.0	8.7	100	< 2.0	3.9
Benzene	М	2760	µg/kg	1.0		[B] < 1.0		[B] < 1.0
Toluene	М	2760	µg/kg	1.0		[B] < 1.0		[B] < 1.0
Ethylbenzene	М	2760	µg/kg	1.0		[B] < 1.0		[B] < 1.0
m & p-Xylene	М	2760	µg/kg	1.0		[B] < 1.0		[B] < 1.0
o-Xylene	М	2760	µg/kg	1.0		[B] < 1.0		[B] < 1.0
Total Phenols	М	2920	mg/kg	0.10	< 0.10	0.39	0.29	< 0.10

Chemtest Job No:	22-21809				Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1446644					Limits	
Sample Ref:						Stable, Non-	
Sample ID:						reactive	
Sample Location:	TP01					hazardous	Hazardous
Top Depth(m):					Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:	27-May-2022					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	М	%	18	3	5	6
Loss On Ignition	2610	М	%	11			10
Total BTEX	2760	М	mg/kg	[B] < 0.010	6		-
Total PCBs (7 Congeners)	2815	М	mg/kg	< 0.10	1		
TPH Total WAC	2670	М	mg/kg	[B] 320	500		-
Total (Of 17) PAH's	2700	Ν	mg/kg	8.7	100		
рН	2010	М		8.6		>6	
Acid Neutralisation Capacity	2015	Ν	mol/kg	0.0060		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
			mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455	U	0.0005	0.0050	0.5	2	25
Barium	1455	U	0.13	1.3	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0033	0.033	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0042	0.042	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	0.0024	0.024	0.5	10	50
Antimony	1455	U	0.0008	0.0078	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	0.004	0.036	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	1.3	13	10	150	500
Sulphate	1220	U	5.1	51	1000	20000	50000
Total Dissolved Solids	1020	N	120	1200	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	7.4	74	500	800	1000

Solid Information					
Dry mass of test portion/kg	0.090				
Moisture (%)	25				

Waste Acceptance Criteria

Project: S220506 LTP Coxhoe

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.
-

1000

Project: S220506 LTP Coxhoe							
Chemtest Job No:	22-21809	22-21809			Landfill	Waste Acceptanc	e Criteria
Chemtest Sample ID:	1446647	1446647				Limits	
Sample Ref: Sample ID:						Stable, Non- reactive	
Sample Location: Top Depth(m): Bottom Depth(m):	TP04				Inert Waste	hazardous waste in non-	Hazardous Waste
Sampling Date:	27-May-2022				Lanum	Landfill	Lanum
Determinand	SOP	Accred	Units			Lanum	
Total Organic Carbon	2625	M	%	11	3	5	6
Loss On Ignition	2610	M	%	9.5			10
Total BTEX	2760	M	ma/ka	[B] < 0.010	6		
Total PCBs (7 Congeners)	2815	М	mg/kg	< 0.10	1		
TPH Total WAC	2670	М	mg/kg	[B] 570	500		
Total (Of 17) PAH's	2700	N	mg/kg	3.9	100		
pH	2010	М		8.7		>6	
Acid Neutralisation Capacity	2015	Ν	mol/kg	0.0060		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	s for compliance	eaching test
-			mg/l	mg/kg	using E	3S EN 12457 at L/	S 10 l/kg
Arsenic	1455	U	0.0015	0.015	0.5	2	25
Barium	1455	U	0.031	0.31	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0013	0.013	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0042	0.042	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	0.0012	0.012	0.5	10	50
Antimony	1455	U	0.0018	0.018	0.06	0.7	5
Selenium	1455	U	0.0013	0.013	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	1.3	13	10	150	500
Sulphate	1220	U	11	110	1000	20000	50000
Total Dissolved Solids	1020	N	91	910	4000	60000	10000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	14

1920

1610

U

U

Waste Acceptance Criteria

Dissolved Organic Carbon

Phenol Index

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

< 0.030

21

< 0.30

210

1

500

-

800

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1446644			TP01	27-May-2022	В	Amber Glass 250ml
1446644			TP01	27-May-2022	В	Amber Glass 60ml
1446644			TP01	27-May-2022	В	Plastic Tub 500g
1446645			TP02	27-May-2022	В	Amber Glass 250ml
1446645			TP02	27-May-2022	В	Amber Glass 60ml
1446645			TP02	27-May-2022	В	Plastic Tub 500g
1446646			TP03	27-May-2022	В	Amber Glass 250ml
1446646			TP03	27-May-2022	В	Amber Glass 60ml
1446646			TP03	27-May-2022	В	Plastic Tub 500g
1446647			TP04	27-May-2022	В	Amber Glass 250ml
1446647			TP04	27-May-2022	В	Amber Glass 60ml
1446647			TP04	27-May-2022	В	Plastic Tub 500g

Test Methods

SOP	Title	Parameters included	Method summary
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	pH	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS

Test Methods

SOP	Title	Parameters included	Method summary
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key	
U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of UKAS accreditation

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

The following tests were analysed on samples as received and the results subsequently

corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

Uncertainty of measurement for the determinands tested are available upon request

Sample Deviation Codes

A - Date of sampling not supplied

The results relate only to the items tested

All results are expressed on a dry weight basis

B - Sample age exceeds stability time (sampling to extraction)

None of the results in this report have been recovery corrected

- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

APPENDIX D: Geotechnical Laboratory Results

Laboratory Report Fr	Solmek 12-16 Yarm Road, Stockton on Tees,		
ite name	Job number	TS18 3NA	
	\$220506	01642 607083	UKAS TESTING
	5220500	lab@solmek.com	7607

Client details:

Reference:	S220506
Name:	Solmek
Address:	12 Yarm Road,
	Stockton-on-tees,
	TS18 3NA
Telephone:	01642 607083
Emoile	lcassidv@solmek.com
Email:	icassiay@sonnex.com
EAO	Leo Cassidy
FAO.	Leo cassidy
Date commenced:	14/07/2022
	- ,, -: ==
Date reported:	19/07/2022

Observations and interpretations are outside of the UKAS Accreditiation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced in full, without the prior written approval of the laboratory.

Samples will be held at the laboratory for a period of 4 weeks after the report date. After the above reporting date the samples will be disposed of. Should further testing be required then the office should be informed before the above date.

Signature:	Approved Signitories:
	D.Anderson (Associate Director)
	J. Brischuk (Laboratory Manager)

Summary of Classification Tests									Solmek 12-10 tai Road, Stockton	on				
Site name	LTP Coxhoe				101	S220506			01642 607083 lab@solmek.com		7083 nek.com	UKAS TESTING 7607		
Hole	De Top m	pth Base m	Туре	w %	Oven temp. oc	wa %	Pa %	Pr %	wL %	wP %	IP %	IL	Plasticity class	Preparation method
BH01	3.00		В	25	105	30	83	17	39-s	20	19	0.526	CI	Tested after >425µm removed by hand
BH02	2.00		U	14	105	20	69	31	39-s	17	22	0.136	CI	Tested after >425µm removed by hand
BH03	2.00		U	20	105	32	62	38	38-s	16	22	0.727	CI	Tested after >425µm removed by hand
BH03	12.00		U	13	105									
BH04	3.00		U	12	105									
BH04	10.50		U	22	105									

All tests found in Solmek UKAS Schedule of Accreditation are tested to standard unless otherwise indicated

Key	Description		Category	BS Test Code
W	Moisture content			BS 1377:1990 Part 2 Clause 3.2
wa	Equivalent moisture content pa sieve	ssing 425µm		BS 1377:1990 Part 2 Clause 3.2
1 4/1	Liquid limit Single point		-S	BS 1377:1990 Part 2 Clause 4.4
VV L	Four point		-f	BS 1377:1990 Part 2 Clause 4.3
wP	Plastic limit			BS 1377:1990 Part 2 Clause 5.2
Ра	Percentage passing 425um siev	е		
Pr	Percentage retained 425um siev	ve		
IP	Plasticity index			BS 1377:1990 Part 2 Clause 5.4
IL	Liquidity index			BS 1377:1990 Part 2 Clause 5.4
	Suffix indicating test is "Not UK/	AS Accredited"	*	

Approved by	JBrischuk
Approval date	18/07/2022 15:53
Date report generated	
Report Number	

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	96		
10	94		
6.3	91		
5	90		
3.35	88		
2	85		
1.18	82		
0.6	78		
0.425	75		
0.3	72		
0.212	68		
0.15	66		
0.063	50		

Dry Mass of sample, g

828

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	14.8
Sand	34.8
Fines <0.063mm	50.0

Grading Analysis		
D100	mm	
D60	mm	0.108
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with test method unless noted below

Accreditation status

Approved by	JBrischuk	
Approval date	15/07/2022 08:29	

	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse		
LAT		SILT			SAND			GRAVEL		COBBLES	BOOLDERS

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	72		
28	72		
20	72		
14	72		
10	71		
6.3	70		
5	69		
3.35	67		
2	65		
1.18	64		
0.6	62		
0.425	60		
0.3	58		
0.212	56		
0.15	52		
0.063	43		

Dry Mass of sample, g

697

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	34.7
Sand	22.0
Fines <0.063mm	43.0

Grading Analysis		
D100	mm	
D60	mm	0.416
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with test method unless noted below

Sample tested was deviating in accordance with BS1377 test standard

Accreditation status

Approved by	JBrischuk	
Approval date	15/07/2022 08:36	

PARTICLE SIZE DISTRIBUTION Solmek 12-16 Yarm Road, Stockton on Tees, Site name Job number

Sieving		Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	53		
37.5	53		
28	53		
20	53		
14	53		
10	52		
6.3	50		
5	50		
3.35	49		
2	48		
1.18	47		
0.6	45		
0.425	44		
0.3	42		
0.212	40		
0.15	38		
0.063	32		

Dry Mass of sample, g

654

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	52.4
Sand	15.2
Fines <0.063mm	32.0

Grading Analysis		
D100	mm	
D60	mm	51.7
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with test method unless noted below

Sample tested was deviating in accordance with BS1377 test standard

Accreditation status

Approved by	JBrischuk
Approval date	15/07/2022 08:35

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	99		
3.35	99		
2	98		
1.18	97		
0.6	95		
0.425	94		
0.3	93		
0.212	91		
0.15	89]	
0.063	84		

-					
Drv	Mass	of	sam	ple,	0

Medium

GRAVEL

ļ

6

Fine

20

Coarse

2

498

BOULDERS

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	2.4
Sand	13.6
Fines <0.063mm	84.0

60

COBBLES

200

Grading Analysis		
D100	mm	
D60	mm	
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with test method unless noted below

Accreditation status

20

10

0

0.002

CLAY

0.006

Medium

SILT

Fine

0.02

Coarse

0.06

0.2

Fine

0.6

Medium

SAND

Particle Size mm

Coarse

Approved by	JBrischuk
Approval date	15/07/2022 08:36

Test Frame Load Ring Pressure Gauge Digital Caliper Balance

TRI 004
LOAD CELL 003
PRE 006
CAL-005
BAL-007

	Unconsolidate	ed Undraine	Job Ref	S220506	
UKAS TESTING 7607	Compression of pore pressu	Test withou ure - single	ut measurement specimen	Borehole/Pit No.	BH03
Site Name	LTP Coxhoe			Sample No.	
Soil Description				Depth	6.00
Specimen Reference		Specimen Depth	m	Sample Type	U
Specimen Description	High strength CLAY			KeyLAB ID	SLMK2022071461
Test Method	BS1377 : Part 7 : 19	90, clause 8, sing	gle specimen	Date of test	27/06/2022

TRI 004

PRE 006

CAL-005

BAL-007

	Unconsolidated Undrain	ed Triaxial	Job Ref	S220506
UKAS TESTING 7607	Compression Test without of pore pressure - single	out measurement e specimen	Borehole/Pit No.	BH03
Site Name	LTP Coxhoe		Sample No.	
Soil Description			Depth	12.00
Specimen Reference	Specimen Depth	m	Sample Type	U
Specimen Description	Very high strength CLAY		KeyLAB ID	SLMK2022071463
Test Method	BS1377 : Part 7 : 1990, clause 8, si	ngle specimen	Date of test	27/06/2022
Test Number	1		Tracable Equipment	Record

kPa

kPa

kPa ½(σ1-σ3)f

%

150

17.3

174

87

Compound

Axial Strain

Mode of Failure

Deviator Stress, (σ1 - σ3)f

Undrained Shear Strength, cu

Cell Pressure

At failure

	¢	>									Job	Ref				S22	20506			
		NS NG	ONE	E DIMENS BS13	ONAL C 77:Part 5	ONSO :1990,	LIDAT clause	'ION ∋ 3	TEST		Bore	ehole/	Pit No	D.		BI	H02			
Site	Name	e	LTP Coxho	e						Sam	ple N	0.								
Soil	Desc	ription									Dep	th			2					
Spe	ecimer	1			Specime	n			m	1	Sam	ple T	уре				U			
Spe	erence	2			Depth						Kev	AB II))		s	LMK20	2207	22071457 /2022		
Des Tes	scriptio at Meth	n od	BS1377:Pa	art 5:1990, c	lause 3						Date	start	ed			28/0	6/202			
	0.480																			<u>ן</u>
	0.470				– e _o															-
	0.460							_											+	
latio	0.450																	_	++	-
Voids F	0.440										_									
	0.430																			-
	0.420																			
	0.410																			
	0.400						~		$\left \right\rangle$											
	0.390								\square	0										
(əi	0.380 25.00	, <u>-</u>																		ן ר
og tim	20.00																			
/yr (l	10.00	, <u> </u>						_	×											_
v m ²	5.00	,								_							_			_
0	0.00	1			10				00					100)()				10	
		•		1		1	Арр	lied P	ressure kF	Pa				100						
App Pres	lied sure	Voids ratio	Мv	Cv (t50, log)	(t90, root	Csec	c	Prep	paration											
kF 0	Pa 0	0.471	m2/MN	m2/yr	m2/yr			Inde	ex tests		iauid	limit			% Pla	stic limi	it		9/	6
5	0	0.422	0.67		6.8	0.000	78			_	90.0				,					•
10	00	0.406	0.22	5.2	13	0.000	74	Part	icle density	/				a	assumed		2.65	5	Ν	/lg/m3
5	0	0.394	0.044	0.2	0.0	0.000	,,,	Spe	cimen deta	ails					Initial		Fina	ıl		
20	00	0.382	0.057	13	25	0.0004	47	Diar	neter						75.01		-		n	nm
								Heig	int sture Conto	ant					20.01		18.7	9 7	n	nm 6
								Bulk	densitv						3.36	+	10.1			/lg/m3
						1		Dry	density						1.80	1			N	/lg/m3
								Voic	ls Ratio						0.471					
								Satu	iration						486	21.0			%	6
								AVE	laye tempe	erati	ure fo	i test				Z1.U			- °	Pa
							Sett	lement on	satu	uratior	۱							%	6	
								Rem	narks											
Final v	alues s	hould be use	ed with caution		Tested	C	hecked		Approved	d	Т	Prin	ted ·				Fig	No		
Cv plot	tted at i	mid point of l	oad incremen	its		ľ						1		07.7	000 00 15		g.			
Cv cor	rected	to 20oC											19/	07/20	022 09:13				1	

	C	ð _									Job	Ref			S22	0506		
		A S	ONE	E DIMENS BS13	IONAL C 77:Part 5	ONS(:1990	OLID/), clau	ATION Ise 3	I TES	т	Bor	ehole/Pi	it No.		Bł	H02		
Sit	e Nam	e	LTP Coxho	be						Sar	nple No.							
So	il Desc	ription									Dep	oth				5		
Sp	ecimer	1			Specime	n				m	Sar	nple Typ	be			U		
Sp	ecimer	9 1			Depth						Kev	LAB ID		5	SLMK20	2207145	58	
De Te	escriptic est Meth	n Iod	BS1377:Pa	art 5:1990, c	lause 3						Dat	e started	d		24/06	6/2022		
	0.500) 			e _o													
	0.490	,																
	0.480	,									_				_			
tatio	0.470	,																
Voids F	0.460)																
	0.450)																
	0.440)																
	0.430)																
	0.420)																
	0.410)																
(ə)	0.400)																
g tim	8.00)																
yr (lo	6.00 4.00)								×_ *								
v m²/	2.00)									*							
Ú	0.00)			10									1000				
		1			10		A	Applied	100 Pressu	re kPa				1000			1	10000
Ap	plied		Мv	Cv	(t90, root	Cs	ес	Pre	eparatio	on								
k	Pa	voids ratio	m2/MN	(130, log) m2/yr) m2/yr													
(0.0	0.499	-	-	-	-		Inc	lex test	S	Liquio	l limit		% Pla	astic limi	t		%
2	200	0.460	0.27	4.4	20 26	0.00	032 071	Pa	rticle de	ensity				assumed		2.65		Mg/m3
3	800	0.421	0.12	3	16	0.00	007						-	1		F ¹ · · · I	_	
3	00 800	0.438	0.061	5.7	34	0.00	063	Sp Dia	ecimer ameter	i details				74.98		Final		mm
								He	ight					20.07		18.98		mm
								Mo	oisture (Content				93.7		19.3		%
								Bu	IK dens	sity tv			-	3.42				Mg/m3
-								Vo	ids Rat	io			├	0.499				wig/113
								Sa	turation	ı			╞	497				%
					Average tempera							or test			21.0			оС
								Sw	elling F	Pressure	e turoti-	n						kPa ∞
								Re	marks	011 5d	urallu	1	L					70
						 			1.							.		
Final	values s	ed	App	roved		Printe	ed :			r⊦ıg. No)							
Cv pl Cv co	otted at	mid point of I to 20oC	oad incremer	Its									19/0	7/2022 09:13			1	
									-							•		

	¢	Ð									Jo	b Ref				S220506						
			ONE	E DIMENS BS13	IONAL C 77:Part 5	DATI	ON 1 3	TEST	Bo	orehole	/Pit N	lo.		ВН03								
Sit	te Nam	e	LTP Coxho	e								ample I	No.									
Sc	oil Desc	ription									De	Depth						2				
Sp	ecimer	1			Specime	n				m	Sa	ample ⁻	Гуре				U					
Sp	becimer	<u>ย</u> า			Depth						Ke	eyLAB	ID		s	LMK20	22071	460				
Te	escriptions in the scription of the scri	nod	BS1377:Pa	art 5:1990, c	lause 3						Da	, ate stai	rted			28/06	6/2022	2				
	0.520)																				
	0.500)			- e _o		_					_		++				++				
	0.480)																				
tatio	0.460)						٩														
Voids F	0.440)																				
	0.420)						~														
	0.400) -								M												
	0.380)					_					_		++			+-+-	++				
	0.360)																				
	0.340)																				
(e	0.320 10.00)																				
g time	8.00) <u> </u>																				
r (lo	6.00									×												
' m²/y	2.00	,																				
ò	0.00				1	×																
		1			10		100 Applied Pressure k				а			1000					10000			
Ар	plied		Мv	Cv	(t90, root	Cs	ec		Prep	aration												
k	xPa	Voids ratio	m2/MN	(130,10g) m2/yr) m2/yr																	
(0.0	0.508	-	-	-		-		Index	< tests	Liqu	id limit			% Pla	stic limi	t		%			
	100	0.454	0.71	0.02	18	-2.15	⊑+09 0069		Parti	cle density					assumed		2.65		Mg/m3			
2	200	0.397	0.24	6.2	19	0.00	082		0		1.				Initial		Final	1	-			
2	200	0.394	0.079	5.5	32	0.00	054		Diam	imen detai ieter	IS				74.99	-	- Filla		mm			
									Heig	ht					20.12		18.60)	mm			
									Mois Bulk	ture Conter density	nt			-	25.7	_	18.8					
									Dry c	lensity				-	1.76				Mg/m3			
									Void	s Ratio					0.508							
					Saturation							(134				%			
									Avera	age tempei ling Pressu	rature	ior test	[-		21.0			OC kPa			
									Settle	ement on s	aturati	ion		E					%			
									Rem	arks												
			L				1					-										
Final	values s	should be use	ed with caution	n	Tested		Chec	ked		Approved		Pri	nted :				Fig. I	No				
Cv pl	lotted at	mid point of I	oad incremer	nts									19	9/07/	2022 09:13							
Cv co	orrected	to 20oC															1					

	¢.	2										Job	Ref					S220	506		
			ONE	E DIMENS BS13	IONAL C 77:Part 5	ONS :1990	OLIE 0, cla	DAT	ION 3	TEST		Bor	ehole	e/Pit	No.			BH	03		
Sit	te Nam	e	LTP Coxho	e							T	Sar	nple	No.							
So	oil Desc	ription									\uparrow	Dep	oth					12	2		
Sp	pecimer	1			Specime	n				m		Sar	mnle	Type	2				1		
Re Sp	eferenc becimer	<u>e</u> า			Depth						+	Ka					CI MI	V202	2074	460	
De Te	escriptions	on Jod	BS1377:Pa	art 5:1990, c	lause 3							Dat	LAD	rted			3LIVII 2	RZUZ	20712	+03	
	0.450)										Du						.0,00,			
	0.440	,			– e _o								_								
	0.430)										_	_								
ttio	0.420	,										_	_								
Voids Ra	0.410) <u> </u>										_	_								
-	0.400) -																			
	0.390) <u> </u>						++				_	-		++		_				
	0.380									٩		۹	-								
	0.370)								•		\$									
	0.360)																			
(ə)	0.350 50.00										,	×									
og tim	40.00																				
yr (lo	20.00																				
/ m ² /	10.00	,																			
ú	0.00				,					*	*	*									
		1			10			Арр	1 lied P	00 ressure kPa	а					1000					10000
Ар	plied		Мv	Cv	CV (t90, root	Cs	sec		Prep	paration											
Pre:	ssure Pa	Voids ratio	m2/MN	(t50, log) m2/vr) m2/vr																
(0.0	0.441	-	-	-		-		Inde	x tests	L	iquic	d limi	t		%	Plastic	limit			%
2	200 250	0.382	0.21	5.6 4.1	18 7.4	0.00	0083 0076		Part	icle density						assume	d		2.65		Ma/m
3	300	0.371	0.08	2.6	6.9	0.00	0083			seriony					-		-				
2	200	0.372	0.01	49	140	0.00	025		Spe	cimen detai	ls				┝	Initial 74 ดุค			Final		
		0.010	0.010	73	140	0.00			Heig	jht					┢	20.07			19.08		-mm
									Mois	sture Conter	nt					18.1			18.7		%
									Bulk	density					┝	2.17					-Mg/m
-									Void	ls Ratio					┢	0.441	-+				
									Satu	iration					╞	109					%
									Ave	rage tempei	ratu	ure fo	or tes	st			21.0	0	_		oC
									Swe	Illing Pressu	ire	urot ⁱ -									_kPa ₀∕
-									Rem	narks	all	nallo	11		L						70
Final	values	should be use	d with caution	n	Tested		Chec	ked		Approved			Pr	inter	1 :			T	Fig N	lo	
Cv pl	otted at	mid point of l	oad incremen	nts						, , , , , , , , , , , , , , , , , , , ,									g. i		
Cv co	orrected	to 20oC													19/0	//2022 09:	13			1	
											-										

	¢)										Job	Ref				S22	20506	i		
		s s	ONE	DIMENS BS13	IONAL C 77:Part 5	ONS :1990	OLID/), clau	ATIO Ise 3	ΝT	EST		Bore	hole/	Pit N	0.		Bł	-104			
Site	Name	•	LTP Coxho	e								Sam	ple N	0.							
Soil	Descr	iption										Dept	th					5			
Spe	ecimen				Specime	n				m		Sam	ple T	vpe				U			
Ref Spe	erence ecimen				Depth							Kovi						2207	1/65		
Des	scription	n nd	BS1377 Pa	art 5.1990 c	ause 3						_	Date	_AD II	ed		<u> </u>	24/06	2207 5/202	2)	
103	0.570		001077.10	art 0. 1000, 0								Date					24/00	5/202	2		
	0.560				- e _o														_		_
	0.550							_										_	_		-
atio	0.540							_							+		_		_		_
Voids R	0.530														++-				-		-
	0.520																				
	0.510										5										
	0.500	1																			-
	0.490																		_		-
	0.480							_							+				-		_
(ə	0.470 5.00																				
(log tim	4.00 3.00									××											
Cv m²/yr	2.00 1.00																	_			
-	0.00	1			10			Applied	10		 >				10	000				1	0000
App	lied			CV	CV	1	<u> </u>	-philec		vision	a										
Pres	sure v	/oids ratio	M∨	(t50, log)	(t90, root)	Cs	ec		TOPO												
kF 0.	Pa .0	0.564	m2/MN -	m2/yr -	m2/yr -	-	-	Ir	ndex	tests	L	.iquid	limit			% Pla	astic limi	t		G	%
15	50 50 00	0.522	0.27	2.5 2.6	11 6	0.00	008 0065 0091	Ρ	artic	le density	/					assumed		2.65	5	I	Mg/m3
								S	peci	men deta	ils					Initial		Fina	al		
								D н	iame Ieiah	eter t					⊢	75.01 20.03	_	- 19.2	7	-	mm mm
								M	loist	ure Conte	ent					21.1	_	21.5	5	-	%
								В	ulk c	density	-					2.05				_	Mg/m3
								D	ry de	ensity						1.69					Mg/m3
								V	oids	Ratio						0.564				_	0/
-								S ^	atura		aroti	ire fo	r teet		⊢	99	21.0			–Ľ	70 ∩C
								A S	welli	ing Press	ure	ur e 101	ເວລເ				21.0			-,	kPa
								S R	ettle	ment on s arks	satu	iration	1								%
Finals			d with courting		Tested		Check	ed		Δοριογος	4		Drin	tod ·				Fig	No		
Cv plot	tted at n	nid point of l	oad incremen	ts	1 COLEU		CHECK	Ju		, hhimed	A		1 1111	.cu .	15			l' ig.	INU		
Cv cor	rected t	o 20oC												19	/07/2	2022 09:13				1	

					Particle Density by Gas	Jar	Tests -	Sun	nmary of Results
Project No.			Projec	t Nam	e				
S22	20506	Corr			 	_TP C	oxhoe		
Hole No.	Ref	Top	Base	Туре	Soil Description at test horizon	Parti I	cle Density Mg/m3		Remarks
BH01		5.00		в			2.61		
BH02		5.00		U			2.67		
BH02		7.50		В			2.66		
BH03		12.00		U			2.63		
BH04		3.00		U			2.66		
BH04		5.00		U			2.66		
Notes	•		•	•		•	Date Printe	d	Table
Tests perform Gas Jar tests	ned in a to BS1	iccordan 377: Pa	rt 2 : 199	BS 137 90, clau	7 unless annotated otherwise ise 8.2		19/07/2022		
		-		,					sheet

SITE NAME: LTP Coxhoe JOB NUMBER: S220506

Hole	Depth m	Type	Hand Vane (kPa)
BH01	6.00	BULK	40kPa
BH02	5.00	U100	120+ kPa
BH03	9.00	BULK	81kPa
BH04	10.50	U100	70kPa

LABORATORY REPORT

4043

Contract Number: PSL22/4213

Report Date: 14 July 2022

Client's Reference: S220506

Client Name: Solmek 12 Yarm Road Stockton-on-Tees TS18 3NA

For the attention of: Leo Cassidy

Contract Title: LTP Coxhoe

Date Received:20/6/2022Date Commenced:20/6/2022Date Completed:14/7/2022

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

A Watkins (Director) R Berriman (Quality Manager)

L Knight (Assistant Laboratory Manager) S Eyre (Senior Technician) S Royle (Laboratory Manager)

T Watkins (Senior Technician)

Page 1 of

5 – 7 Hexthorpe Road, Hexthorpe, Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642 e-mail: rberriman@prosoils.co.uk awatkins@prosoils.co.uk

SUMMARY OF POINT LOAD TEST RESULTS

ISRM Suggested Methods : 2007

Borehole	Depth (m)	Sample Ref	Test	Orientation	Dime (m	nsions m)	Area	D _e ²	D _e	Failure]	Load (P)	Is	Corr Fac	$\mathbf{I}_{\mathrm{s50}}$	Failure Type	Remarks
Number		Ku	турс	Par / Perp	W	D	(mm2)		(mm)	(Mpa)	(kN)	(MPa)	F	(MPa)	турс	
BH02	14.20		Α	Perp	100	38	3800	4838.31	69.56	-	2.44	0.50	1.160	0.59	Valid	
BH02	14.80		Α	Perp	100	43	4300	5474.93	73.99	-	0.61	0.11	1.193	0.13	Valid	
BH03	16.50		Α	Perp	100	50	5000	6366.20	79.79	-	2.95	0.46	1.234	0.57	Valid	
BH03	19.35		Α	Perp	100	37	3700	4710.99	68.64	-	1.24	0.26	1.153	0.30	Valid	
BH03	22.70		Α	Perp	100	57	5700	7257.47	85.19	-	2.95	0.41	1.271	0.52	Valid	
BH03	23.70		Α	Perp	100	48	4800	6111.55	78.18	-	2.42	0.40	1.223	0.48	Valid	
BH04	18.40		Α	Perp	100	37	3700	4710.99	68.64	-	1.42	0.30	1.153	0.35	Valid	
<u>*Note</u>	All testing c	carried out or	n samples a	at as received wa	ater conte	ent		Par = j	parallel, Per	p = perpendi	cular, U = R	andom		A = Axial, D) = Diametral	, I = Irregular
															C	ontract No:
$(\diamond \langle)$										<u>Г</u> ТР С	oxhoe				Р	SL22/4213
	Drei	locole		oile I ek	oral	0.774					JUANUU				(Client Ref:
4043	Pro	essio	nal S	ons Lab	orai	ory										S220506

SUMMARY OF POINT LOAD TEST RESULTS

ISRM Suggested Methods : 2007

Borehole	Depth	Sample	Test	Orientation	Dime (m	nsions m)	D _e ²	D _e	Failur	e Load	Is	Corr Fac	I _{s50}	Failure	Remarks
Nulliber	(111)	Kei	туре	Par / Perp	L	D		(mm)	(Mpa)	(k N)	(MPa)	F	(MPa)	туре	
BH02	14.20		D	Par	-	100	10000	100.00	-	1.24	0.124	1.366	0.17	Valid	
BH02	14.80		D	Par	-	100	10000	100.00	-	0.56	0.056	1.366	0.08	Valid	
BH03	16.50		D	Par	-	100	10000	100.00	-	0.50	0.050	1.366	0.07	Valid	
BH03	19.35		D	Par	-	100	10000	100.00	-	0.40	0.040	1.366	0.05	Valid	
BH03	22.70		D	Par	-	100	10000	100.00	-	0.35	0.035	1.366	0.05	Valid	
BH03	23.70		D	Par	-	100	10000	100.00	-	0.38	0.038	1.366	0.05	Valid	
BH04	18.40		D	Par	-	100	10000	100.00	-	0.23	0.023	1.366	0.03	Valid	
<u>*Note</u>	All testing of	carried out or	n samples a	at as received wa	ater cont	ent		Par =	parallel, Perj	p = perpendi	cular, U = Ra	andom			
															Contract No:
$(\diamond \langle)$										LТР (ovhoe				PSL22/4213
UKAS TESTING	Dura	incete									JUANUE				Client Ref:
4043	Pro	ressio	nal S	ons Lab	orai	ory									S220506

DETERMINATION OF UNCONFINED COMPRESSIVE STRENGTH

ISRM Suggested Methods, pp 111 –116, 1981.

Hole Number	Sample Number	Sample Type	Top Depth (m)	Base Depth (m)	Sample Diameter (mm)	Sample Length (mm)	Height Ratio	Initial Mass	Bulk Density (Mg/m)	Moisture Content	Dry Density (Mg/m)	Load Failure (kN)	UCS	Failure Mode	Date Tested	Remarks
BH03		С	19.55	19.85	100	185	19	3481	2.40	1.7	2.36	207.2	26 4	Brittle	07/07/22	
BH03		C C	22.10	22.40	100	185	1.9	3574	2.46	2.2	2.41	233.2	29.7	Brittle	07/07/22	
BH04		C C	20.10	20.45	100	185	1.9	3674	2.53	3.0	2.45	219.7	28.0	Brittle	07/07/22	
BH04		C C	21.10	21.70	100	100	1.7	3322	2.30	2.1	2.43	259.2	33.0	Brittle	07/07/22	
BH04		C C	22.70	23.00	100	180	1.7	3630	2.57	2.1	2.51	324.8	41.3	Brittle	07/07/22	
BH04		C C	23.60	23.00	100	170	1.0	3299	2.47	3.5	2.39	248.4	31.6	Brittle	07/07/22	
DII04		U	20.00	21.00	100	1/0	1.7	5277	2.17	0.0	2.07	210.1	01.0	Diffee	01101122	

		Contract No:
	LTD Corboo	PSL22/4213
	LIF Coxhoe	Client Ref:
Professional Soils Laboratory		S220506

LABORATORY **REPORT**

4043

Contract Number: PSL22/5392

Report Date: 16 September 2022

Client's Reference: S220506

Client Name: Solmek 12 Yarm Road Stockton-on-Tees **TS18 3NA**

For the attention of: Leo Cassidy

Contract Title: LTP Coxhoe

Date Received: 17/8/2022 Date Commenced: 17/8/2022 Date Completed: 16/9/2022

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

A Watkins (Director)

R Berriman (Quality Manager)

L Knight (Assistant Laboratory Manager)

S Eyre (Senior Technician) (Laboratory Manager)

T Watkins

S Royle

5 – 7 Hexthorpe Road, Hexthorpe, **Doncaster DN4 0AR** tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642 e-mail: rberriman@prosoils.co.uk awatkins@prosoils.co.uk

(Senior Technician)

Page 1 of

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
BH01		В	6.00		Brown slightly gravelly sandy CLAY.
BH03		В	9.00		Brown slightly gravelly sandy CLAY.
BH04		U	3.00	3.45	Brown slightly gravelly sandy CLAY.

			Contract No:
$(\diamond \langle)$		I TD Corboo	PSL22/5392
			Client Ref:
4043	Professional Soils Laboratory		S220506

ONE DIMENSIONAL CONSOLIDATION TEST

BS 1377: Part 5: 1990: Clause 3

ONE DIMENSIONAL CONSOLIDATION TEST

BS 1377: Part 5: 1990: Clause 3

PERMEABILITY IN A TRIAXIAL CELL

BS 1377 : Part 6 : 1990: Clause 6

Hole Number:	BH01	Top Depth (m) :	6.00
Sample Number:		Base Depth (m) :	
Sample Type:	В	Lift Number:	
Date		Grid Reference:	

Description of Specimen
See summary of soil descriptions
Remarks
Undisturbed

Initial Specimen Conditions				
Height	mm	101.15		
Diameter	mm	101.54		
Area	mm ²	8097.75		
Volume	cm ³	819.09		
Mass	g	1744		
Dry Mass	g	1512		
Bulk Density	Mg/m^3	2.13		
Dry Density	Mg/m^3	1.85		
Moisture Content	%	15		
Voids Ratio	-	0.436		
Specific Gravity	Mg/m^3	2.65		
(assumed/measured)	-	assumed		

Final Specimen Conditions				
Moisture Content	%	17		
Bulk Density	Mg/m ³	2.15		
Dry Density	Mg/m ³	1.85		

Test Setup				
Date Started		30/08/2022		
Date Finished		07/09/2022		
Top Drain Used		Y		
Base Drain Used		Y		
Method of Saturation		By back pressure		
Direction Of Flow		Vertically Downwards		
Saturation Time	Days	1		
Consolidation Time	Days	3		
Permeability Time	Days	1		

B		I TD Covhoo	Contract No.
(><)-	AS 43 Professional Soils Laboratory		PSL22/5392
		L11 Coxhoe	Client Ref
4043			S220506

PERMEABILITY IN A TRIAXIAL CELL

BS 1377 : Part 6 : 1990 Clause 6

Specimen Details			
Hole Number		BH01	
Sample Depth	m	6.00	
Sample No.			
Grid Reference			
Lift Number			

Permeability Stage			
Cell Pressure	kPa	550	
Mean Effective Stress	kPa	150	
Back Pressure Diff.	kPa	20	
Mean Rate of Flow	ml/min	0.0005	
Average Temperature	'C	20	
Vertical Permeability Kv	m/s	5.1E-11	

		Contract No.	
(≯≮)-		I TD Corboo	PSL22/5392
		LII Coxiloe	Client Ref
4043	Professional Soils Laboratory		S220506

PERMEABILITY IN A TRIAXIAL CELL

BS 1377 : Part 6 : 1990: Clause 6

Hole Number:	ВН03	Top Depth (m) :	9.00
Sample Number:		Base Depth (m) :	
Sample Type:	В	Lift Number:	
Date		Grid Reference:	

Description of Specimen	
See summary of soil descriptions	
Remarks	
Undisturbed	

Initial Specimen Conditions			
Height	mm	100.97	
Diameter	mm	102.29	
Area	mm ²	8217.81	
Volume	cm ³	829.75	
Mass	g	1773	
Dry Mass	g	1509	
Bulk Density	Mg/m^3	2.14	
Dry Density	Mg/m^3	1.82	
Moisture Content	%	17	
Voids Ratio	-	0.457	
Specific Gravity	Mg/m^3	2.65	
(assumed/measured)	-	assumed	

Final Specimen Conditions			
Moisture Content	%	17	
Bulk Density	Mg/m ³	2.13	
Dry Density	Mg/m ³	1.82	

Test Setup			
Date Started 30/08/2022			
Date Finished		07/09/2022	
Top Drain Used		Y	
Base Drain Used		Y	
Method of Saturation		By back pressure	
Direction Of Flow		Vertically Downwards	
Saturation Time	Days	1	
Consolidation Time	Days	4	
Permeability Time	Days	1	

G			Contract No.
(><)-		I TD Covhoo	PSL22/5392
	Drefessional Saila Laboratory	L11 Coxhoe	Client Ref
4043	Professional Soils Laboratory		S220506

PERMEABILITY IN A TRIAXIAL CELL

BS 1377 : Part 6 : 1990 Clause 6

Specimen Details			
Hole Number		BH03	
Sample Depth	m	9.00	
Sample No.			
Grid Reference			
Lift Number			

Permeability Stage				
Cell Pressure kPa 500				
Mean Effective Stress	kPa	200		
Back Pressure Diff.	kPa	20		
Mean Rate of Flow	ml/min	0.0003		
Average Temperature	'C	20		
Vertical Permeability Kv	m/s	3.3E-11		

	PST.		Contract No. PSL22/5392
		LIP Coxhoe	Client Ref
4043	Professional Sons Laboratory		S220506

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	22-23394-1		
Initial Date of Issue:	27-Jun-2022		
Client	Solmek Ltd		
Client Address:	12 Yarm Road Stockton-on-Tees TS18 3NA		
Contact(s):	B Atkinson Joe Brischuk Lab Leo Cassidy Office		
Project	S220506 LTP Coxhoe		
Quotation No.:		Date Received:	23-Jun-2022
Order No.:	LAB1519	Date Instructed:	23-Jun-2022
No. of Samples:	6		
Turnaround (Wkdays):	5	Results Due:	29-Jun-2022
Date Approved:	27-Jun-2022		
Approved By:			
Details:	Stuart Henderson, Technical Manager		

Final Report

<u>Results - Soil</u>

Project: S220506 LTP Coxhoe

Client: Solmek Ltd	Chemtest Job No.:		22-23394	22-23394	22-23394	22-23394	22-23394	22-23394		
Quotation No.:	Chemtest Sample ID.:		1453620	1453621	1453622	1453623	1453624	1453625		
		Sample Location:		BH01	BH01	BH01	BH02	BH03	BH03	
	Sample Type:			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
		Top Depth (m):			0.70	3.00	5.00	7.50	2.00	12.00
	Bottom Depth (m):			0.80	3.45	5.45	7.95	2.45	12.45	
			Date Sa	ampled:	01-Jun-2022	01-Jun-2022	01-Jun-2022	01-Jun-2022	01-Jun-2022	01-Jun-2022
Determinand	Accred.	SOP	Units	LOD						
Moisture	Ν	2030	%	0.020	12	19	12	16	14	14
рН	U	2010		4.0	8.9	10.0		8.5		8.8
pH (2.5:1)	Ν	2010		4.0			7.6		7.8	
Sulphate (2:1 Water Soluble) as SO4	U	2120	mg/l	10	24	52	11	42	27	39

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES

APPENDIX E: Ground Gas Monitoring Results

Project number	S220506					
Project name	Leachate Treatment Plant					
Client	Durham County Council					
Visit no	1					
Date	29/07/2022					
Equipment	GFM 435 Gas Analyser					
Operator	LO					

Weather Conditions	Cloudy
Ground Conditions	Wet
Ambient Atmospheric Pressure	1003
Regional Pressure Trend	Falling

Position Flow Pr		Droccuro	CH4		CO2		02(0)	PID	CO	H2S	Groundwater	Depth to	Notos
POSITION	FIOW	Plessule	(% v/v)	GSV (l/hr)	(% v/v)	GSV (l/hr)	02 (/0 v/v)	(ppm)	(ppm)	(ppm)	Level (mbgl)	Base (mbgl)	Notes
BH01	0.1	1003	0.0	0.0000	2.3	0.0023	17.0	0.0	0.0	0.0	Dry	6.50	
BH02	0.1	1003	0.0	0.0000	2.3	0.0023	16.3	0.0	0.0	0.0	10.82	12.00	
BH03	0.1	1003	1.7	0.0017	2.7	0.0027	12.2	0.0	0.0	0.0	16.40	24.00	
BH04	0.1	1003	63.4	0.0634	20.9	0.0209	1.5	0.0	1.0	0.0	11.33	12.00	

KEY

Project number	S220506					
Project name	Leachate Treatment Plant					
Client	Durham County Council					
Visit no	2					
Date	12/08/2022					
Equipment	GFM 435 Gas Analyser					
Operator	LO					

Weather Conditions	Sunny
Ground Conditions	Dry
Ambient Atmospheric Pressure	1007
Regional Pressure Trend	Steady

Position Flow Pre-		Droccuro	С	H4	С	02	02(0)	PID	CO	H2S	Groundwater	Depth to	Notos
POSITION	FIOW	Plessule	(% v/v)	GSV (l/hr)	(% v/v)	GSV (l/hr)	02 (/0 v/v)	(ppm)	(ppm)	(ppm)	Level (mbgl)	Base (mbgl)	Notes
BH01	0.1	1007	0.0	0.0000	2.8	0.0028	15.1	0.0	0.0	0.0	Dry	6.50	
BH02	0.1	1007	0.0	0.0000	2.5	0.0025	18.1	0.0	0.0	0.0	10.90	12.00	
BH03	0.1	1007	2.3	0.0023	2.7	0.0027	12.1	0.0	0.0	0.0	17.40	24.00	
BH04	0.1	1007	64.6	0.0646	30.3	0.0303	1.4	0.0	0.0	0.0	12.30	12.00	

KEY

Project number	S220506					
Project name	Leachate Treatment Plant					
Client	Durham County Council					
Visit no	3					
Date	25/08/2022					
Equipment	GFM 435 Gas Analyser					
Operator	LO					

Weather Conditions	Cloudy
Ground Conditions	Wet
Ambient Atmospheric Pressure	1003
Regional Pressure Trend	Steady

Position Flow		Droccuro		CH4		CO2		02(0)	PID	CO	H2S	Groundwater	Depth to	Notos
POSITION	FIOW	Plessule	(% v/v)	GSV (l/hr)	(% v/v)	GSV (l/hr)	02 (/0 v/v)	(ppm)	(ppm)	(ppm)	Level (mbgl)	Base (mbgl)	Notes	
BH01	0.1	1003	0.0	0.0000	3.5	0.0035	14.0	0.0	0.0	0.0	Dry	6.50		
BH02	0.1	1003	0.0	0.0000	2.4	0.0024	17.9	0.0	0.0	0.0	10.95	12.00		
BH03	0.1	1003	1.2	0.0012	2.5	0.0025	15.8	0.0	0.0	0.0	18.56	24.00		
BH04	0.1	1003	55.2	0.0552	27.6	0.0276	3.0	0.0	0.0	0.0	11.36	12.00		

KEY

Project number	S220506
Project name	Leachate Treatment Plant
Client	Durham County Council
Visit no	4
Date	08/09/2022
Equipment	GFM 435 Gas Analyser
Operator	LO

Weather Conditions	Wet
Ground Conditions	Wet
Ambient Atmospheric Pressure	990
Regional Pressure Trend	Falling

Desition Flow	Drossuro	C	H4	С	02	02(0)	PID	CO	H2S	Groundwater	Depth to	Notos	
POSITION	FIOW	Plessule	(% v/v)	GSV (l/hr)	(% v/v)	GSV (l/hr)	02 (/0 v/v)	(ppm)	(ppm)	(ppm)	Level (mbgl)	Base (mbgl)	Notes
BH01	0.1	990	0.7	0.0007	4.2	0.0042	10.5	0.0	0.0	0.0	Dry	6.50	
BH02	0.1	990	0.0	0.0000	2.4	0.0024	17.3	0.0	0.0	0.0	10.89	12.00	
BH03	0.1	990	2.1	0.0021	2.7	0.0027	12.2	0.0	0.0	0.0	19.30	24.00	
BH04	0.1	990	62.8	0.0628	28.0	0.0280	1.8	0.0	0.0	0.0	11.30	12.00	

KEY

Project number	S220506
Project name	Leachate Treatment Plant
Client	Durham County Council
Visit no	4
Date	08/09/2022
Equipment	GFM 435 Gas Analyser
Operator	LO

Weather Conditions	Wet
Ground Conditions	Wet
Ambient Atmospheric Pressure	990
Regional Pressure Trend	Falling

Desition Flow	Drossuro	C	H4	С	02	02(0)	PID	CO	H2S	Groundwater	Depth to	Notos	
POSITION	FIOW	Plessule	(% v/v)	GSV (l/hr)	(% v/v)	GSV (l/hr)	02 (/0 v/v)	(ppm)	(ppm)	(ppm)	Level (mbgl)	Base (mbgl)	Notes
BH01	0.1	990	0.0	0.0000	3.7	0.0037	14.2	0.0	0.0	0.0	Dry	6.50	
BH02	0.1	990	0.0	0.0000	1.7	0.0017	18.8	0.0	0.0	0.0	11.00	12.00	
BH03	0.1	990	2.2	0.0022	3.0	0.0030	12.2	0.0	0.0	0.0	20.20	24.00	
BH04	0.1	990	60.9	0.0609	28.4	0.0284	1.5	0.0	0.0	0.0	11.25	12.00	

KEY

Project number	S220506
Project name	Leachate Treatment Plant
Client	Durham County Council
Visit no	4
Date	08/09/2022
Equipment	GFM 435 Gas Analyser
Operator	LO

Weather Conditions	Wet
Ground Conditions	Wet
Ambient Atmospheric Pressure	990
Regional Pressure Trend	Falling

Desition Flow	Drossuro	C	H4	С	02	02(0)	PID	CO	H2S	Groundwater	Depth to	Notos	
POSITION	FIUW	Plessule	(% v/v)	GSV (l/hr)	(% v/v)	GSV (l/hr)	02 (70 070)	(ppm)	(ppm)	(ppm)	Level (mbgl)	Base (mbgl)	Notes
BH01	0.1	990	0.6	0.0006	5.6	0.0056	6.4	0.0	0.0	0.0	Dry	6.50	
BH02	0.1	990	0.0	0.0000	0.0	0.0000	20.5	0.0	0.0	0.0	11.00	12.00	
BH03	0.1	990	2.0	0.0020	3.2	0.0032	9.6	0.0	0.0	0.0	20.09	24.00	
BH04	0.1	990	55.9	0.0559	27.1	0.0271	2.7	0.0	0.0	0.0	11.36	12.00	

KEY

APPENDIX F: Notes on Limitations & Contamination Guidance

Report Information

Key	
U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of UKAS accreditation

Uncertainty of measurement for the determinands tested are available upon request

The following tests were analysed on samples as received and the results subsequently

corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

A - Date of sampling not supplied

The results relate only to the items tested

All results are expressed on a dry weight basis

B - Sample age exceeds stability time (sampling to extraction)

None of the results in this report have been recovery corrected

- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

UK BACKGROUND

Environmental Protection Act 1990: Part 2A Revised Statutory Guidance (April 2012)

This revised document explains how the Local Authority should decide if land, based on a legal interpretation, is contaminated. The document replaces the previous guidance given in Annex 3 of DEFRA Circular 01/2006, issued in accordance with section 78YA of the 1990 Environmental Protection Act.

The main objectives of the Part 2A regime are to "identify and remove unacceptable risks to human health and the environment" and to "seek to ensure that contaminated land is made suitable for its current use".

Part 2A uses a risk based approach to defining contaminated land whereby the "risk" is interpreted as "the likelihood that harm, or pollution of water, will occur as a result of contaminants in, on or under the land" and by "the scale and seriousness of such harm or pollution if it did occur".

For a relevant risk to exist a contaminant, pathway and receptor linkage must be present before the land can be considered to be contaminated. The document explains that "for a risk to exist there must be contaminants present in, on or under the land in a form and quantity that poses a hazard, and one or more pathways by which they might significantly harm people, the environment, or property; or significantly pollute controlled waters."

A conceptual model is used to develop and communicate the risks associated with a particular site.

To determine if land is contaminated the local authority use various categories from 1 to 4. Categories 1 and 2 include "land which is capable of being determined as contaminated land on grounds of significant possibility of significant harm to human health."

Categories 3 and 4 "encompass land which is not capable of being determined on such grounds".

PRELIMINARY CONCEPTUAL MODEL

Preliminary Conceptual Models are undertaken in accordance with CIRIA C552. The Preliminary Conceptual Model assesses the consequence and the likelihood of a risk being realised to provide a risk classification, using the tables detailed below.

CONSEQUENCE OF RISK BEING REALISED (Based on C552 CIRIA, 2001)

Classification	Definition	Example
Severe	Short-term (acute) risk to human health, the environment, an element of the development or other aspect with is likely to result in <i>significant harm</i> , damage or both.	High concentrations of cyanide on the surface of an informal recreational area. Major spills of contaminants from site into controlled water. High concentrations of explosive gas in the subsurface environment that have a clear unobstructed pathway into buildings.
Moderate	Chronic damage to human health, a plausible chance that an event will occur, although the timeline is not immediate to be in the short-term.	Appreciable concentration of contamination that over the longer- term will cause significant harm i.e. high lead concentration in topsoil. Shallow mine workings that are potentially unstable but may remain in a satisfactory or stable conditions for a number of years.
Mild	Low level pollution of non-sensitive water, a feasible hazardous scenario although the timeline of such occurring can probably be considered in 10's of years.	The effect of high sulphate concentrations on structural concrete. Pollution of non-classified groundwater.
Minor	Harm, although not necessarily significant to human health, or with respect to other aspects of the development, which are considered implausible in terms of occurrence, or will have little consequential impact.	The presence of contaminants at such low concentrations that protective equipment is required during site works. Any damage to structures is minimal and will not be structural in characteristics.

PROBABILITY OF RISK BEING REALISED (C552 CIRIA, 2001)

Classification	Definition
High Likelihood	There is a viable pollutant linkage and an event that either appears very likely in the short
	term and almost inevitable over the long term, or there is evidence that the receptor has
	been harmed or polluted.
Likely	There is a viable pollutant linkage and all elements are present and in the right place, which
	means that it is probable that an event will occur. Circumstances are such that an event is
	not inevitable, but possible in the short term and likely over the long term.
Low Likelihood	There is a viable pollutant linkage and circumstances are possible under which an event
	could occur. However, it is by no means certain that even over a longer period such event
	would take place, and is less likely in the shorter term.
Unlikely	There is a viable pollutant linkage but circumstances are such that it is improbable that an
	event would occur even in the very long term.

RISK CLASSIFICATION MATRIX (C552 CIRIA, 2001)

Risk = Probability x		Consequence					
Consequence		Severe	Moderate	Mild	Minor		
Probability	High likelihood	Very high risk	High risk	Moderate risk	Moderate/low risk		
	Likely	High risk	Moderate risk	Moderate/low risk	Low risk		
	Low likelihood	Moderate risk	Moderate/low risk	Low risk	Very low risk		
	Unlikely	Moderate/low risk	Low risk	Very low risk	Very low risk		

HUMAN RECEPTORS

Human exposure to contaminants present in soils can occur via several pathways. Direct exposure pathways include dermal absorption after contact with contaminated ground, inhalation of soil or dust, inhalation of volatised compounds, and inadvertent soil ingestion (or deliberate soil ingestion in the case of some children). Other indirect pathways include human ingestion of plants grown in contaminated soil or contaminated ground or surface water. Contaminants associated with wind blown dust can affect humans on surrounding sites.

VEGETATION

Plants can be affected by soil contamination in a number of ways resulting in growth inhibition, nutrient deficiencies and yellowing of leaves. Contaminants are taken up by plants through the roots and through foliage. Contaminants identified as being highly phytotoxic include boron, cadmium, copper, lead, nickel, and zinc.

To establish if the levels of contaminants present on a site may pose a risk to vegetation the results of the contamination testing are compared to a series of threshold values published in 'Code of Good Agricultural Practice for the Protection of Soil'.

GROUNDWATER AND SURFACE WATER RECEPTORS

The principal pathway by which soil contamination may reach the water environment is through a slow seepage or leaching to groundwater or surface water. The potential for contaminants to migrate along such pathways is dependent on the chemical and physical characteristics of the contaminants and the local hydrogeology. Surface watercourses may also accumulate contamination as contaminated sediments are deposited within the water body.

Where the site investigated overlies major/principal aquifers (and in some cases minor/secondary aquifers depending on certain conditions), groundwater Source Protection Zones and areas in close proximity to groundwater abstractions, contamination test results have been compared with the Water Supply (Water Quality) Regulations 1989 and The Water Supply (Water Quality) Regulations 2000.

Should a surface water receptor, such as a fresh water environment (river, canal, stream, lake etc), or marine environment be considered sensitive in relation to a site, then test results are compared with DEFRA & SEPA Environmental Quality Standards (2004). Many of the Environmental Quality Standards are hardness (CaCO₃) depended. Where no hardness values are available, Solmek assume conservative values (of between 0 and 50mg/l).

In the absence of vulnerable ground and surface water environments, Solmek may compare any test results with the Environment Agency Leachate Quality Threshold Values.

DETAILED QUANTITATIVE RISK ASSESSMENT (DQRA)

In line with Environment Agency's guidance document Environment Agency Land Contamination Risk Management, which replaced the now-withdrawn Contaminated Land Report 11 – Model Procedures for the Management of Land Contamination (2004), a DQRA for groundwater/human health may be required following a Phase 2 investigation and before the preparation of a Phase 3 Remediation Strategy. For human health DQRA, a site specific assessment criteria is undertaken using CLEA Software Version 1.06. For groundwater DQRA, the Environment Agency Remedial Targets Worksheet Version 3.1 is used.

WASTE CLASSIFICATION AND WASTE ACCEPTANCE CRITERIA

During the site strip and construction activities, material may be required to be removed from site. Any such material would require classification, in line with Environment Agency Technical Guidance *Waste Classification: Guidance on the classification and assessment of waste (2015).* This would classify the material as either Non-Hazardous or Hazardous Waste.

Once the material has been classified, determining the suitable landfill for disposal is governed by landfill directive Waste Acceptance Criteria (WAC) testing, with landfills categorized as Inert Waste, Stable Non-Reactive Hazardous Waste and Hazardous Waste. The WAC testing relates to materials that are to be exported from a site/development to landfill, and do not directly relate to human health specifically. The testing results are generally presented as certificates which can be used by site owners/contractors etc, which should be presented to the accepting waste facility or waste contractor.

If waste classification and/or WAC testing are not undertaken, material taken off site may be subject to WAC testing by the appropriate waste disposal company. The decision on whether or not to accept waste, or whether further testing is required, is at the discretion of the waste disposal company.

The below flow chart provides further information on the waste classification process.

CONSTRUCTION MATERIALS

Materials at risk from possible soil contaminants include inorganic matrices such as cement and concrete and also organic material such as plastics and rubbers. Acid ground conditions and high levels of sulphates can accelerate the corrosion of building materials. Where pH and soluble sulphate analysis has been undertaken, Solmek compare the test results with the guidelines presented within BRE Special Digest 1, 2005 (3rd Edition) 'Concrete in Aggressive Ground'. Plastics and rubbers are generally used for piping and service ducts and are potentially attacked by a range of chemicals, most of which are organic, particularly petroleum based substances. Drinking water supplies can be tainted by substances that can penetrate piping and water companies enforce stringent threshold values.

The levels of potential contaminants should be compared to thresholds supplied in the UK Water Industry Research (UKWIR) publication "Guidance for the selection of Water Supply Pipes to be used in Brownfield Sites" (January 2011). A Brownfield Site is defined in the document as "Land or premises that have not previously been used or developed that may be vacant or derelict". It should be noted that Brownfield sites may not be contaminated. The guidance does not apply to Greenfield Sites however water companies may have their own assessment criteria which should be checked by the developer. The table below outlines the pipe material selection threshold concentrations.

	Pipe Material (Threshold concentrations in mg/kg)									
Parameter group	PE	PVC	Barrier pipe (PE-AL-PE)	Wrapped Steel	Wrapped Ductile Iron	Copper				
Extended VOC suite by purge and trap or head space and GC-MS with TIC	0.5	0.125	Pass	Pass	Pass	Pass				
+ BTEX + MTBE	0.1	0.03	Pass	Pass	Pass	Pass				
SVOCs TIC by purge and trap or head space and GC-MS with TIC (aliphatic and aromatic C5-C10)	2	1.4	Pass	Pass	Pass	Pass				
+ Phenols	2	0.4	Pass	Pass	Pass	Pass				
+ Cresols and chlorinated phenols	2	0.04	Pass	Pass	Pass	Pass				
Mineral oil C11-C20	10	Pass	Pass	Pass	Pass	Pass				
Mineral oil C21-C40	500	Pass	Pass	Pass	Pass	Pass				
Corrosive (Conductivity, Redox and pH)	Pass	Pass	Pass	Corrosive if pH <7 and conductivity >400µS/cm	Corrosive if pH <5, Eh not neutral and conductivity >400µS/cm	Corrosive if pH <5 or >8 and Eh positive				
Specific suite identified as relevant following site investigation										
Ethers	0.5	1	Pass	Pass	Pass	Pass				
Nitrobenzene	0.5	0.4	Pass	Pass	Pass	Pass				
Ketones	0.5	0.02	Pass	Pass	Pass	Pass				
Aldehydes	0.5	0.02	Pass	Pass	Pass	Pass				
Amines	Fail	Pass	Pass	Pass	Pass	Pass				

REQUIREMENTS OF PARTIES WITHIN THE DEVELOPMENT PROCESS

Interested parties involved in the development process may use the data in different ways and there may be varying views and interpretation of the factual data. Local Authority staff may have a view on contamination and human health and the wider environment. The Environment Agency are concerned principally with the protection of Controlled waters. Building insurers, funders and purchasers may be primarily concerned with issues of potential commercial blight. Purchasers are also not always fully informed, and perceptions on issues associated with risk can affect the decision to purchase. Developers and construction organisations will focus on financial aspects of dealing with the contamination in the context of the development and construction programme.

RISKS & LIABILITIES FROM CONTAMINATION

In simple terms, risks associated with contamination may be considered in terms of 1) statutory risks and 2) development related risks. If contamination is severe or forms a potential hazard based on its potential to affect groundwater, surface water or human health, a statutory risk may be present, and as such, if the risk is not reduced, criminal proceedings may be instigated by a government body or local authority.

If the contamination is less severe or not considered to be mobile, it may be considered a commercial liability which could, in theory remain untreated, but which may at a later date affect the value of the property, or, with changing legislation, become a statutory risk. Commercial liabilities could give rise to civil proceedings by third parties if there are grounds for action.

★Solmek conditions of offer, notes on limitations & basis for contract (ref: version1/2022)

These conditions accompany our tender and supercede any previous conditions issued. Solmek will prepare a report solely for the use of the Client (the party invoiced) and its agent(s). No reliance should be placed on the contents of this report, in whole or in part by 3rd parties. The report, its content and format and associated data are copyright, and the property of Solmek. Photocopying of part or all of the contents, transfer or reproduction of any kind is forbidden without written permission from Solmek. A charge may be levied against such approval, the same to be made at the discretion of Solmek.

Solmek cannot be held liable and do not warrant, or otherwise guarantee the validity of information provided by third parties and subsequently used in our reports. Solmek are not responsible for the action negligent of otherwise of subcontractors or third parties.

Site investigation is a process of sampling. The scope and size of an investigation may be considered proportional to levels of confidence regarding the ground and groundwater conditions. The exploratory holes undertaken investigate only a small volume of the ground in relation to the overall size of the site, and can only provide a general indication of site conditions. The opinions provided and recommendations given in this report are based on the ground conditions as encountered within each of the exploratory holes. There may be different ground conditions elsewhere on the site which have not been identified by this investigation and which therefore have not been taken into account in this report. Reports are generally subject to the comments of the local authority and Environment Agency. The comments made on groundwater conditions are based on observations made at the time that site work was carried out. It should be noted that mobile contamination, ground gas levels and groundwater levels may vary owing to seasonal, tidal and/or weather related effects. Solmek cannot be held liable for any unrecorded or unforeseen obstructions between exploratory boreholes and trial pits. This includes instances where previous structures on the site (buried man made structures) or the presence of boulder clay (cobbles and/or boulder obstructions) have been anticipated. All types of piling operations should make allowance for obstructions within the construction budget to accommodate this. Unrecorded ancient mining may occur anywhere where seams that have been worked and influence the rock and soil above. Dissolution cavities can occur where gypsum or chalk is present. Rotary drilling is the recommended technique to prove the integrity of the rock.

Where the scope of the investigation is limited via access to information, time constraints, equipment limitations, testing, interpretation or by the client or his agents budgetary constraints, elements not set out in the proposal and excluded from the report are deemed to be omitted from the scope of the investigation.

Desk studies are generally prepared in accordance with RICS guidelines. Environmental site investigations are generally undertaken as 'exploratory investigations' in accordance with the definitions provided in paragraph 5.4 of BS 10175:2011 in order to confirm the conceptual assumptions. You are advised to familiarize yourself with the typical scope of such an investigation. No pumping of water will be undertaken unless a licence or facilities/equipment have been arranged by others.

Where the type, number or/and depth of exploratory hole is specified by others, Solmek cannot and will not be responsible for any subsequent shortfall or inadequacy in data, and any consequent shortfall in interpretation of environmental and geotechnical aspects which may be required at a later date in order to facilitate the design of permanent or temporary works.

All information acquired by Solmek in the course of investigation is the property of Solmek, and, only also becomes the joint property of the Client only on the complete settlement of all invoices relating to the project. Solmek reserve the right to use the information in commercial tendering and marketing, unless the Client expressly wishes otherwise in writing. The quoted rates do not include VAT, and payment terms are 30 days from dispatch of invoice from our offices. Quotes are subject to a site visit.

We have allowed for 1 mobilisation and normal working hours unless otherwise stated. The scope of the investigation may be reviewed following the desk study and/or fieldwork. The presence or otherwise of Japanese Knotweed or other invasive plants can be difficult to identify especially during winter months. If Japanese Knotweed or other invasive species are suspect, it should be confirmed by an ecologist. We have not allowed for acquiring services information, and cannot be responsible for damage to underground services or pipes not shown to us or not clearly shown on plans. Costs incurred will be passed on to you, and in commissioning Solmek you understand and accept that you/your agent have a contractual relationship with Solmek & you accept this. Our rates assume unobstructed, reasonably level and firm access to the exploratory positions and adequate clear working areas and headroom. We have priced on the basis that you or your client have the necessary permissions, wayleaves and approvals to access land. All boreholes and pits are backfilled with arisings except where gas monitoring pipes are installed with stopcock covers. Solmek are not responsible for any uneven surfaces as a result of siteworks and rutting and backfilled excavations may require re-levelling and/or making good by others after fieldwork is complete, and Solmek has not allowed for this. No price has been provided or requested for a return visit to remove pipework and covers. Hourly rates apply to consultancy only and do not include expenses unless otherwise shown. If warranties are required, legal costs incurred will be passed on to you assuming Solmek agree to complete such warranties, modified or otherwise and you understand and agree to pay all costs.

We reserve the right to pursue full payment of the invoice prior to release of any information including reports. We advise you/your client that we may elect to pursue our statutory rights under late payment legislation, and will apply 8% to the base rate for unreasonably late payments. Solmek are exempt from the CIS Scheme. Solmek offer to undertake work <u>only</u> in strict accordance with conditions covered by our current insurances, which are available for inspection. Solmek are not responsible for acts, negligent or otherwise of subcontractors and as a matter of policy cannot indemnify any other parties. Professional indemnity Insurance is limited to ten times the invoice net total except where stated otherwise by Solmek. Solmek give notice that consequential loss as a direct or indirect result of Solmek's activities or omission of the same are excluded.

