

TECHNICAL NOTE – 9154/01 SURFACE WATER DRAINAGE DESIGN

Proposed Commercial Redevelopment, Penventon Farm Nursery, Lanner, Cornwall on Behalf of Warrior Warehouses Limited

Technical Note – 9154/01 Surface Wate Drainage Design

Project Title:	Proposed Commercial Redevelopment, Penventon Farm Nursery, Lanner, Cornwall, TR16 6AS							
Client:	Warrior Warehouses Limited							
Project No.:	9154 Date: September 2023 Issue No.: 1							
Title:	Surface Water Drainage Design							
Written By:	B. Thornton BSc (Hons)	Checked By:	J. Pockett MEng (Hons)	Authorised By:	D. Frosoni CEng MICE MCIWEM			

1.0 Introduction

- 1.1 This Technical Note has been prepared in relation to surface water drainage Planning Condition 4 (Cornwall Council Application Reference: PA20/08877) associated with the proposed construction of one commercial building with landscaping, access and parking at Penventon Farm Nursery, Lanner, Cornwall, TR16 6AS. Refer to enclosed CE Figure 9154/500 Figure 1 [Site Location Plan]. The proposal comprises the demolition of existing greenhouses on site, with one existing building to be retained, and the construction of a new warehouse. Refer to Drawing No. 07976-TDA-DR-PL-0006 [Block Plan and Site Location Plan] (by Trewin Design Architects) enclosed with this Technical Note.
- 1.2 This study advises on an appropriate surface water drainage scheme based on Sustainable Drainage Systems (SuDS) for the development site in line with national guidance, namely National Planning Policy Framework (NPPF) and its accompanying Planning Practice Guidance (PPG) and Cornwall Council (CC) Lead Local Flood Authority's (LLFA) requirements in relation to Planning Condition 4 below:

Condition 4:

The proposed surface water drainage systems shall be in accordance with the principles set out in Trewin Design Architects Flood Risk Assessment and Drainage Strategy. No development approved by this permission shall be commenced until details of a scheme for the provision of surface water management has been submitted to and approved by the LPA. The details shall include:

- Details of the final drainage schemes including calculations and layout
- A Construction Surface Water Management Plan
- A Construction Quality Plan
- A timetable of construction
- Confirmation of who will maintain the drainage systems and a plan for the future management and maintenance, including responsibilities for the drainage systems and overland flow routes. The plan must include a drawing which clearly indicates the management responsibility for each drainage element, and schedule of maintenance. The developer must inform the LPA of any variation from the details provided and agree these in writing before such variations are undertaken. The surface water drainage systems shall fully manage surface water flows resulting from the development site up to the 1 in 100 year peak rainfall

event plus a minimum allowance of 40% for the impacts of climate change. The approved scheme shall be implemented in accordance with the timetable so agreed and the scheme shall be managed and maintained in accordance with the approved details for the lifetime of the development.

- 1.3 This Report excludes the following elements of Condition 4 These elements will be provided by the Applicant separately: -
 - A Construction Quality Plan
 - A timetable of construction
 - Confirmation of who will maintain the drainage systems

2.0 Existing Site

- 2.1 The site currently comprises an existing garden centre, Penventon Nursery, including car parking in the east and greenhouses to the west of the site. Access to the site is taken from the A393 to the north of the site. The site area is approximately 0.6908ha.
- 2.2 The site is immediately bound to the north by an existing residential building "Oakwood House B&B and Campsite" with Penventon Nursery Garden Centre and the A393 beyond. To the east, south and west the site is bound by undeveloped greenfield land. Land use in the vicinity of the site is a mixture of commercial and agricultural.

Existing Topography

2.3 The topographical survey for the site indicates that the site falls from south west to north east. Existing ground levels across the site vary from 84.596mAOD in the south west of the site to 79.425mAOD in the north east of the site.

Nearby Watercourses/Drainage Features

2.4 There is an unnamed water course that runs alongside the site's eastern boundary. At its closest point the watercourse is located approximately 39.60m to the east of the site.

3.0 **Proposed Construction Surface Water Management Plan**

3.1 It is proposed that runoff during the construction period will discharge to a settlement lagoon. The silty water within this settlement lagoon would then be pumped to a siltbuster that would remove the sediment. The siltbuster system would then discharge clean runoff to a temporary infiltration system to the north of the site. Refer to CE Drawing 9154/502 [*Proposed Surface Water Drainage Layout*] enclosed.

4.0 Surface Water Drainage Proposals

Refer to CE Drawings 9154/502 [*Proposed Surface Water Drainage Layout*] and 9154/503 [*Proposed Surface Water Drainage Construction Details*] enclosed.

- 4.1 The drainage proposals for the site have been prepared in accordance with the following national and local guidance:
 - National Planning Policy Framework (July 2021);
 - Planning Practice Guidance Flood Risk and Coastal Change (August 2022);
 - Flood risk assessments: climate change allowances (May 2022);
 - C753 The SuDS Manual (CIRIA, November 2015);
 - Non-Statutory Technical Standards for SuDS (March 2015); and
 - Building Regulations 2010 Approved Document H (Drainage and Waste Disposal).

Drainage Hierarchy

- 4.2 The drainage proposals for the site have been developed in line with the national and local guidance, SuDS principles and Building Regulations guidelines following the drainage hierarchy as discussed below and as summarised in Table 4.1:
 - Rainwater re-use;
 - Infiltration to the maximum extent that is practical;
 - Discharge to surface waters (watercourses);
 - Discharge to a surface water sewer, highway drain or another drainage system; or
 - Discharge to combined sewer.

able 4.1. Neview of SubS components in accordance with the brainage merarchy							
SuDS Techniques	Proposed	Not proposed	Reason				
Store rainwater for re-use		Х	Rainwater butts will not be incorporated in the development.				
Use infiltration techniques	Х		Infiltration techniques have been shown to be feasible, therefore an infiltration strategy has been proposed.				
Attenuate rainwater in ponds or open water features		Х	The site comprises an existing car park which will remain operational; space is therefore not available for open SuDS.				
Attenuate rainwater in sealed tanks		Х	Infiltration is possible therefore an attenuation strategy is not being proposed.				
Discharge direct to a watercourse		Х	No connection is sought to the existing watercourse to the east of the site.				
Discharge to a surface water drain		Х	No connection sought to a surface water sewer.				
Discharge to a combined sewer		Х	No connection sought to a combined sewer.				

Table 4.1: Review of SuDS Components in accordance with the Drainage Hierarchy

Infiltration Potential

4.3 An intrusive site investigation was undertaken in February 2021 by Wheal Jane Consultancy. The results of this intrusive site investigation indicated that infiltration was possible on site. The lowest infiltration rate found on site was 2.54x10⁻⁵m/s this rate has been used in the design of SUDS features on site. In accordance with the

Drainage Hierarchy, it is proposed that an infiltration-based strategy will be utilised on site. The results of the intrusive site investigation are enclosed within this technical note.

Proposed Sustainable Drainage Systems (SuDS) Permeable Surfacing

- 4.4 Runoff from the proposed warehouse roof area will discharge directly into a permeable surfacing structure located throughout the proposed hardstanding area. This permeable surfacing structure will consist of interlocking permeable paving blocks. Runoff from the proposed hardstanding area will percolate through the permeable surfacing, into the storage medium below and discharge into the underlaying strata.
- 4.5 Proposed finished levels vary across the permeable surfacing, therefore, vertical restraints will be required to minimise the overall required excavation of the paving subbase. The proposed hardstanding area will be subdivided into three areas across the site for this reason.
- 4.6 Preliminary calculations indicate that a volume of 147.4m³ needs to be accommodated to drain surface water runoff from the site at the above-mentioned infiltration rate. This can be provided within three areas of permeable surfacing as set out in Table 4.2 below. Refer also to network design calculations enclosed within this *Technical Note*.

Permeable Pavement Area	Area (m²)	Sub- base Depth (m)	Storage Provided (m ³)	Half Drain Time (mins)
1	620	0.35	29.5	88
2	378	0.35	35.1	116
3	1290	0.35	82.8	88

Table 4.2:Permeable Pavement Summary (1:100 year + 45% Storm)

Design Exceedance

4.7 Should the drainage system fail due to extreme rainfall events or blockage, exceedance flow would follow the existing site topography and gravitate to the eastern boundary of the site, where it would flow naturally into the undeveloped greenfield land and existing watercourse in that area. Some exceedance flow would also head in a northernly direction, this would primarily enter an area of undeveloped land. However, there is an existing Bed and Breakfast beyond this land. Exceedance flows may impact on this site depending on existing ground levels within the undeveloped greenfield land. Exceedance flows would not negatively impact the proposed development. Exceedance flow routes are shown on CE Plan 9154/502 [*Proposed Surface Water Drainage Layout*] enclosed within this *Technical Note*.

Water Quality

- 4.8 Water quality has been assessed in line with the Simple Index approach from Chapter 26 of CIRIA *C753 The SuDS Manual:*
 - 1) Step 1 Allocate suitable pollution hazard indices for the proposed land use.

- 2) Step 2 Select SuDS with a total pollution mitigation index that equals or exceeds the pollution hazard index.
- 4.9 The pollution hazard indices for the proposed land use are medium (commercial yard and delivery areas). The pollution hazard indices for the proposed land uses are shown in Table 4.3 below.

|--|

Land use	Pollution hazard level	Total suspended solids (TSS)	Metals	Hydrocarbons
Commercial yard and delivery area	Medium	0.7	0.6	0.7

4.10 The Pollution Mitigation Indices for permeable surfacing are equal to the Pollution Hazard Indices for Commercial yards and delivery areas. Refer to Table 4.4 below. Therefore, the proposed strategy will provide sufficient water quality treatment for the site prior to discharge.

Table 4.4: Pollution Mitigation Indices for Discharge to Groundwater from the Proposed Site (from Table 26.4 of CIRIA C753 The SuDS Manual)

SuDS Feature	Total suspended solids (TSS)	Metals	Hydrocarbons	
Permeable Surfacing	0.7	0.6	0.7	

Adoption and Maintenance

4.11 All on site surface water drainage systems will remain private, and will be the responsibility of the site owner or a private management company acting on behalf of the owner. A draft Maintenance Schedule is outlined below and summarised in Table 4.5.

Permeable Paving

- 4.12 Permeable surfaces need to be regularly cleaned of silt and other sediments to preserve their infiltration capability. A brush and suction cleaner, which can be a lorry mounted device or a smaller precinct sweeper, should be used and the sweeping regime should be as follows:
 - End of winter (April) to collect winter debris
 - Mid-summer (July/August) to collect dust, flower and grass type deposits
 - After autumn leaf fall (November)
- 4.13 If reconstruction is necessary, the following procedure should be followed:
 - Lift surface layer and laying course
 - Remove any geotextile filter layer
 - Inspect sub-base and remove, wash and replace if required
 - Renew any geotextile layer
 - Renew laying course, jointing material and concrete block paving

4.14 Materials removed from the voids or the layers below the surface of the paving may contain hazardous substances such as heavy metals and hydrocarbons which may need to be disposed of as controlled waste.

Pipework and Catchpits

4.15 It is not envisaged that silt build up within the pipework systems will require a rigorous maintenance regime so long as silt is removed from upstream catch pits on a regular basis. Notwithstanding this, a suitable maintenance regime for the systems will comprise of routine inspection (every six months) and silt removal (as necessary).

Drainage Element	Schedule	Maintenance Requirement	Frequency
		Remove litter and debris	Monthly
	Regular	Mow grass at margins	 Monthly, or as required
		Brushing and vacuuming over whole surface	 Mid-summer, after autumn leaf fall and end of winter
Permeable surfacing	Occasional	Removal of weeds	As required
	Remedial	 Remedial work to any depressions or damage considered a hazard to end users or detrimental to performance Rehabilitation of surface and upper sub-structure by remedial sweeping 	 As require Every 10-15 years or as required
	Monitoring	 Initial inspection Inspect for evidence of weed growth or poor operation Inspect silt accumulation rates Monitor inspection chambers 	 Monthly for 3 months after installation Three monthly, 48 hours after large storm in first six months Annually Annually
Pipework &	Regular	 Inspect for accumulation of silt Inspect inlets, outlets and overflows for blockages Inspect for debris and litter 	Every six months
Catchpits	Occasional	Remove debris and litterRemove silt	As required

 Table 4.5:
 Draft Maintenance Schedule for Proposed Drainage Infrastructure

Note: In addition to the above maintenance requirements, it is recommended that all drainage elements are inspected:

Following the first storm event

Monthly for the first 3 months following commissioning

Cole Easdon Consultants Limited September 2023

Technical Note – 9154/01 Surface Wate Drainage Design

Enclosures					
CE Drawing 9154/500	Site Location Plan				
CE Drawing 9154/502	Proposed Surface Water Drainage Layout				
CE Drawing 9154/503	Proposed Surface Water Drainage Construction Details				
Drawing No. 07976-TDA-DR-PL-0006	Block plan and site location plan (by Trewin Design Architects)				
9154 Permeable Surfacing Section One	Network Design				
9154 Permeable Surfacing Section Two	Network Design				
9154 Permeable Surfacing Section Three Network Design					
Soakaway Letter Report – Penventon N	ursery 20468				

The methodology adopted and the sources of information used by Cole Easdon Consultants Limited (CE) in providing its services are outlined within this Report. Any information provided by third parties and referred to herein has not been checked or verified by CE, unless otherwise expressly stated within this Report. This Report was checked and approved on the date shown in the Title Block and the Report (including its base information, adopted parameters and assessment methodology) is therefore valid on this date. Circumstances, regulations, assessment methodology and professional standards do change which could subsequently affect the validity of this Report.

All intellectual property rights in or arising out of or in connection with this Report are owned by CE. The Report has been prepared for the Client named on the title block who has a licence to copy and use this Report only for the purposes for which it was prepared and provided. The licence to use and copy this Report is subject to other Terms & Conditions agreed between CE and the Client. This document cannot be assigned or transferred to any third party and no third party may rely upon this document nor shall CE have any liability to any third party for the contents of this Report without the express written agreement of both CE and the Client.

🗲 Cole Easdon

Enclosures

Private package reatment works Private package treatment works Private package Private package treatment works Private package Private package treatment works Private package Private	Key: Site boundary Deposed impermeable area Area: 0.4289 ha Deposed surface water drain and inspection chamber Deposed tanked permeable Deposed tanked permeable Deposed tanked permeable Deposed tanked permeable Deposed vertical restraints Deposed vertical restraints Design excedence route 1.8371 Design excedence route Surface VIEN 1 All versi are in metres above Ordnance datum 3. Surface water drainge systems designed 4. Surface water drainge systems designed 5. Surface water drainge systems designed 6. Surface water drainge systems designed 6. Surface water drainge systems de
RKING No. spaces us Surfacing	Client Cole Easdon.com www.ColeEasdon.com
	Job Title Proposed Warehouse Penventon Farm Nursery Lanner TR16 6AS Drawing Title Proposed Surface Water Drainage Layout
REFERENCE DRAWINGS: Drawing No. Drawing Title 07976-TDA-DR-PL-0006 Block Plan and Site A03 Sept 2020 Trewin Design Architects	Drawing Status: FOR COMMENT FOR PLANNING FOR TENDER FOR APPROVAL FOR CONSTRUCTION AS BUILT **CONSTRUCTION AT CLIENT / CONTRACTOR RISK** Designed by: BT Drawn by: BT JP Date Scale September 2023 Drawn 52 Checked by: JP Date Scale September 2023 Drawn 52 Checked by: JP Rev. 9154/502

All Domestic Drainage to comply with the British Standard

following: i) Wavin Ösma ii) Hepworth clay or iii) Polypipe

drawings. All spur connections to be laid at 1 in 80 unless otherwise stated on the drawings. Minimum cover to be

Pipe bedding as specified by the drainage manufacturer. All pipes that pass under buildings to have a minimum 100mm granular surround. Where drains pass through external walls the pipe is to be lintelled over with a minimum 50mm clear space around the pipe. Rigid pipes to be fixed to the wall externally and internally to prevent movement within the

Where required, Step Irons to be built into the inspection aforementioned British Standard and Building Regulations. The top step iron shall be fixed not more than 750mm below the surface and the lowest step to be fixed not more

Class C250 for areas with light vehicular usage such as car

BLE 1:	PROCESSED AN	ND AS-DUG GR	ANULAR BEDDI	NG AND SIDEFILL MATERIALS FOR RIGID PIPE					
Pipe	Nominal	Class of	Suitable Materials						
nominal size (DN)	maximum particle size (mm) See note (c)	maximum bedding article size See note (d) M (mm) See note (c) a Si		OR: Materials specified in British Standards See note (a)					
100	10	S B F N	0.15 0.30 0.15 0.30	10mm nominal single-size Fine aggregate					
Over 100 to 150	16	S B F	0.15 0.30 0.15 0.30	10mm or 14mm nominal single-size or 14mm to 5mm graded Fine nagregate					
Over 150 to 300	20	S B F N	0.15 0.30 0.15 0.30	10, 14 or 20mm nominal single-size or 14mm to 5mm graded or 20 to 5mm graded All-in gagregate or fine gagregate					
Over 300 to 550	20	S B F N	0.15 0.30 0.15 0.30	14mm or 20mm nominal single-size or 14mm to 5mm graded or 20 to 5mm graded All-in agaregate or fine agaregate					
Over 550	40	S B F N	0.15 0.30 0.15 0.30	14, 20 or 40mm nominal single-size crushed rock or 14mm to 5mm, 20 to 5mm or 40 to 5mm graded All-in aggregate or fine aggregate					

(a) Processed granular materials to include aggregates to BS EN 13242.

(b) Compaction Fraction value (CF), see Appendix B of WIs IGN No. 4-08-02.

(c) The nominal maximum particle sizes apply both to processed and as-dug materials (see Section 4 of IGN No. 4-08-01-Issue 4 and No.4-08-01 Amendment [Nov 2008]).

Bedding classes are defined in:-BS EN 1295–1:1997 Structural Design of Buried Pipelines under various conditions of loading. TRRL – Simplified Table of External Loads on Buried Pipelines.

(e) The sulphate content of bedding and sidefill materials for use with cementitious pipe should not be greater than 0.3% as sulphur trioxide.

TABLE 2: PROCESSED GRANULAR BEDDING AND SIDEFILL MATERIALS FOR FLEXIBLE PIPES

		Suitable Materials			
Pipe nominal bore (mm) (See note (d)	e nominal Nominal ETINER: re (mm) maximum Maximum CF value for a note (d) particle acceptability zze, See note (b)		OR: Materials specified in British Standards See note (a)		
	()	Non-pressure pipe	Pressure pipe		
100	10	0.15	0.30	10mm nominal single—size	
0ver 100 to 150	16	0.15	0.30	10 or 14mm nominal single-size or 14mm to 5mm graded	
Over 150 to 300	20	0.15	0.30	10, 14 or 20mm nominal single—size or 14mm to 5mm graded or 20mm to 5mm graded	
Over 300 to 550	20	0.15	0.30	14mm or 20mm nominal single—size or 14mm to 5mm graded or 20 to 5mm graded	
Over 550	40	0.15	0.30	14, 20 or 40mm single—size or 14mm to 5mm graded or 20mm to 5mm graded or 40 to 5mm graded.	
Notos					

(a) Processed granular materials to include aggregates to BS EN 13242.

(b) Compaction Fraction value (CF), see Appendix B of WIs IGN No. 4-08-02.

(c) For the purpose of this table, PE pipes of 630mm 0D can be regarded as having nominal bores of over 550mm, irrespective of wall thickness.

(d) Nominal bore is used in preference to DN because of the different nominal size classification for

(e) For PE80 and PE100 polyethene pipe complying with current relevant Water Industry Specifications, the maximum sidefill particle size may be increased to 10% of the pipe nominal size.

(f) For E' values for processed granular materials reference should be made to Table A.3 of Wis IGN No. 4-08-02 where specific site tests have not been performed.

(g) For ferrous cementitious pipeline materials, the sulphate content of bedding and sidefill materials should not be greater than 0.3% as sulphur trioxide.

		No. By	Date		Revision	Details		
		C Copyright	t					
		E A C			Г			
		I YIL		DIE	Eg	ISO	Or	
		T						
		01793 61	9 965 cec	@ColeFasc	lon com l w		isdon co	m
		01700 01	0 000 000	@COICE430			150011.00	
	2-4 Course of Class B	Client						
	engineening brick, conrete	Warric	or Ware	houses	s Ltd			
	cover frame seating ring.							
	675mm x 675mm opening in		sod W/	arehous				
	cover slab		nton E	orm Nu				
					rsery			
			r					
		IR16	6AS					
	Lifting eyes in concrete rings to be pointed	Drawing Title						
		Propo	sed Su	rface W	/ater Dr	rainage	;	
	Benching slope to be 1:10 to	Const	ruction	Details				
	Bottom precast concrete ring							
	to be build into base concrete minimum 75mm							
		Drawing Status:						
]		FOR COMMENT	FOR PLANNING	FOR TENDER	FOR APPROVAL	FOR CONSTRU	ICTION AS	BUILT
		CONSTRU		NT / CONTRAC	TOR RISK			
		Designed by:		Drawn by:		Checked by:		
	225mm to barrel of pipe	BT		BT	Sool-	JP		
		August	t		NTS			
					_			
2m		Drg. No.					Rev.	
		9154/5	503					

A 393

Key: To be read in conjunction with Arboricultural and Net Gain report

 Site boundary
 Tree protection fencing
 Category B trees
 Category C trees
Grassland - other natural grassland (species-rich wildflower grassland on bank) Newly planted species rich hedge associated with bank or ditch
Heathland and scrub - mixed scrub

Bat box information

Bat boxes to be mounted onto the existing building or large trees on the cormish hedgebank at the southwest perimeter.

Bird box information

Pre-fabricated bird boxes to be mounted onto the large tress at the site perimeters or incorporating them into the existing building.

G2

TREWIN DESIGN ARCHITECTS

1 Stanhope Square Holsworthy Devon EX22 6DR - 01409253013 www.trewin-design.co.uk - create@trewin-design.co.uk

This drawing has been prepared solely for the purposes of the stage indicated on the drawing. As such this drawing may not include sufficient detail for any stage beyond that indicated. This drawing forms part of an information pack relating to the indicated stage and should be read in conjunction with all other drawings, reports specifications and schedules, including those from other Consultants. Contractors must check all dimension on site before fabrication. As built drawings are not based on surveyed information unless stated otherwise. Only figured dimensions are to be worked from. All discrepancies to be reported to Trewin Design Architects Ltd before proceeding. Copyright - All rights reserved.

Drawing title

Block Plan and Site Location Plan

Job title

New Warehouse Penventon Farm Nursery Lanner

Client

Warrior Warehouses Ltd

Stage	PL - Detailed Design	Issued for	Client/Stage Approved
Scale @ A1	As indicated	Date	15/09/2020
Drawn by	SD	Checked by	JT
Drawing num	ıber		Revision

07976-TDA-DR-PL-0006 A03

RevisionDescription02Planning Application

Initials SMD

Cole Easdon		Page 1
160 Aztec, Aztec West	9154 Proposed Warehouse	
Almondsbury	Penventon Farm Nursery	
Bristol, BS32 4TU	Permeable Paving Area 1	Micro
Date 21/09/2023 08:24	Designed by bthornton	Drainage
File 9154 Permeable Surfacin	Checked by DF	brainage
Innovyze	Network 2020.1	
STORM SEWER DESIGN }	by the Modified Rational Method	
Design	<u>Criteria for Storm</u>	
Pipe Sizes STA	NDARD Manhole Sizes STANDARD	
FSR Rainfall	Model - England and Wales	
Return Period (years) M5-60 (mm)	100 PIM 18.800 Add Flow / Climate Chang	ア(%) 100 e(%) 0
Ratio R	0.268 Minimum Backdrop Heigh	t (m) 0.200
Maximum Rainfall (mm/hr)	50 Maximum Backdrop Heigh 30 Min Design Depth for Optimicatio	t (m) 1.500
Foul Sewage (1/s/ha)	0.000 Min Vel for Auto Design only	(m/s) 1.00
Volumetric Runoff Coeff.	0.750 Min Slope for Optimisation	(1:X) 500
Desiane	d with Level Soffits	
Network De	esign Table for Storm	
PN Length Fall Slope I.Area T.I	E. Base k HYD DIA Section	Type Auto
(m) (m) (1:X) (ha) (min	ns) Flow (l/s) (mm) SECT (mm)	Design
\$1.0001.0000.010100.00.1111\$1.0011.0000.010100.00.0000	.00 0.0 0.600 o 150 Pipe/Con .00 0.0 0.600 o 150 Pipe/Con	duit 🔒 duit 🔒
Netwo	rk Results Table	
PN Rain T.C. US/IL Σ I.A	rea Σ Base Foul Add Flow Vel Ca	ap Flow
(mm/nr) (mins) (m) (na) FIOW (I/S) (I/S) (I/S) (M/S) (I/	5) (1/5)
S1.000 50.00 1.02 81.590 0.	111 0.0 0.0 0.0 1.00 17 111 0.0 0.0 0.0 1.00 17	7.8 15.0
51.001 50.00 1.05 81.500 0.		.0 13.0
©198	2-2020 Innovyze	

Cole Easdon								Page	2		
160 Aztec, Aztec	West		915	54 Pr	oposed Wa	arehou	se				
Almondsbury Penventon Farm Nursery											
Bristol, BS32 4TU Permeable Paving Area 1 Micro											
Date 21/09/2023 08:24 Designed by bthornton Designed											
File 9154 Permeab	le Sur	facin	Che	ecked	l by DF			Didi	lage		
Innovyze			Net	work	2020.1						
Manhole Schedules for Storm											
MH Name	MH CL (m)	MH Depth (m)	MH Connect	tion	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Dian (n
C.D. annachla, Cumfacing	0.0 0 5 0	0 4 6 0	Onen Mer	hala	1200	C1 000	01 E00	1 5 0			
SPermeable Surfacing	82.050	0.460	Open Mar	nole	1200	S1.000	81.590	150	C1 000	01 500	
SDummy Pump	82.050	0.470	Open Mar	nole	1200	51.001	01.080	150	SI.000	81.580	
5	82.050	0.480	open Mar	noie	0		OUTFALL		51.001	81.570	
No coordinat	es have	been s	specified	l, lay	out inform	ation c	annot be p	roduced.			
	1166	TIOWI	Liig Outi	Laii	Decalls	IOI SC	OTH				
On Pipe	utfall e Number	Outfa Name	ll C. Le [.] e (m)	vel I	. Level (m) I.	Min Level (m)	D,L W (mm) (mm)				
	S1.001		s 82.	050	81.570	0.000	0 0				
			©1982-2	020	Innovyze						

Cole Easdon		Page 3
160 Aztec, Aztec West	9154 Proposed Warehouse	
Almondsbury	Penventon Farm Nursery	
Bristol, BS32 4TU	Permeable Paving Area 1	Mirro
Date 21/09/2023 08:24	Designed by bthornton	
File 9154 Permeable Surfacin	Checked by DF	Diamage
Innovyze	Network 2020.1	

Online Controls for Storm

Pump Manhole: SDummy Pump, DS/PN: S1.001, Volume (m³): 0.5

Invert Level (m) 81.580

Depth (m) Flow (1/s) Depth (m) Flow <th

0.000	0.0000	T . T 0 0	0.0000	1.000	0.0000	2.700	0.0000
0.400	0.0000	1.200	0.0000	2.000	0.0000	2.800	0.0000
0.500	0.0000	1.300	0.0000	2.100	0.0000	2.900	0.0000
0.600	0.0000	1.400	0.0000	2.200	0.0000	3.000	0.0000
0.700	0.0000	1.500	0.0000	2.300	0.0000		
0.800	0.0000	1.600	0.0000	2.400	0.0000		

Cole Easdon		Page 4
160 Aztec, Aztec West	9154 Proposed Warehouse	
Almondsbury	Penventon Farm Nursery	
Bristol, BS32 4TU	Permeable Paving Area 1	Micro
Date 21/09/2023 08:24	Designed by bthornton	
File 9154 Permeable Surfacin	Checked by DF	Diamage
Innovyze	Network 2020.1	

Storage Structures for Storm

Porous Car Park Manhole: SPermeable Surfacing, DS/PN: S1.000

Infiltration Coefficient Base (m/hr)	0.09144	Width (m)	20.0
Membrane Percolation (mm/hr)	1000	Length (m)	31.0
Max Percolation (l/s)	172.2	Slope (1:X)	1000.0
Safety Factor	3.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	81.590	Cap Volume Depth (m)	0.250

Cole Easdo	n						P	age 5
160 Aztec,	Aztec West		9154 F	roposed	Warehou	ıse		
Almondsbur	Y		Penven	ton Far	m Nursei	ry		
Bristol, B	S32 4TU		Permea	ble Pav	ing Area	a 1	N	Aicco
Date 21/09	/2023 08:24		Design	ed by b	thorntor	n		
File 9154	Permeable Sur	facin	Checke	ed by DF				Jialliage
Innovyze			Networ	k 2020.	1			
<u>Summ</u> Manhole Foul	ary of Critic Areal Reducti Hot Start I Headloss Coeff Sewage per hect Number of In Number of O Rainfal M5- Margin for F	<u>sal Resul</u> on Factor rt (mins) evel (mm) (Global) are (l/s) out Hydrogu Online Cont ffline Cont <u>Synth</u> 1 Model Region Enc 50 (mm) lood Risk Analy	Metwor ts by M mulation 1.000 0 0.500 Fl 0.000 caphs 0 M trols 1 M trols 0 M etic Rair gland and Warning sis Times	<u>Active aximum 1</u> <u>Criteria</u> Additiona MADD ow per Pe Number of Number of Number of Mather of State of 18.800 Co (mm) 300. Step Fin	Level (F Level (F Factor * Factor * Inlerson per Storage Time/Are Real Tim Ails Ratio v (Summer v (Summer v (Winter 0 DVI e Inertia	<pre>% of To 10m³/ha let Coef Day (1/ Structum a Diagra e Contro R 0.268) 0.750) 0.840 O Status a Status</pre>	for St tal Flow Storage fiecient per/day) ces 1 ums 0 bls 0 OFF OFF	Orm 0.000 2.000 0.800 0.000
Re	Pro Duration(s) turn Period(s) Climate Cha	file(s) (mins) (years) nge (%)	15, 30, 720,	60, 120, 960, 1440	, 180, 24 0, 2160,	Summer a 0, 360, 2880, 43 7200, 86	and Winte 480, 600 320, 5760 540, 1008 10 4	r , 0 0 5
DN	US/MH	Storm	Retur	n Climate d Change	First	(X) E	'irst (Y)	First (Z) Overflow
S1.000 SPer S1.001	meable Surfacin SDummy Pum	g 120 Wint p 180 Wint	er 10 er 10	0 +45% 0 +45%	100/30 t 100/30 s	Ninter Summer	FICUL	GVEIIIGW
			Water S	urcharged	Flooded			Half Drain
-	US/MH	Overflow	Level	Depth	Volume	Flow /	Overflow	Time
PN	Name	Act.	(m)	(m)	(m³)	Cap.	(1/s)	(mins)
S1.000 SPerm S1.001	eable Surfacing SDummy Pump		81.805 81.910	0.065 0.180	0.000	0.02		88
	PN S1.000 SE	US/MI Name Permeable S	H Furfacing	Pipe Flow (1/s)	Status	Level Exceede	d	
	S1.001	SDu	mmy Pump	U.U FI	JOOD RISK			
		©19	82-2020	Innovyz	ze			

Cole Easdon		Page 1							
160 Aztec, Aztec West	9154 Proposed Warehouse								
Almondsbury	Penventon Farm Nursery								
Bristol, BS32 4TU	Permeable Paving Area 2	Micro							
Date 21/09/2023 15:35	Designed by bthornton	Drainage							
File 9154 Permeable Surfacin	Checked by DF	brainage							
Innovyze	Network 2020.1								
STORM SEWER DESIGN	by the Modified Rational Method								
Design	Criteria for Storm								
Pipe Sizes STA	NDARD Manhole Sizes STANDARD								
FSR Rainfall Return Period (years) M5-60 (mm) Ratio R Maximum Rainfall (mm/hr) Maximum Time of Concentration (mins) Foul Sewage (l/s/ha) Volumetric Runoff Coeff. Designe	FIGE SIZES STANDARD Mainfole SIZES STANDARD FSR Rainfall Model - England and Wales Return Period (years) 100 PIMP (%) 100 M5-60 (mm) 18.800 Add Flow / Climate Change (%) 0 Ratio R 0.268 Minimum Backdrop Height (m) 0.200 Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 1.500 Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200 Foul Sewage (1/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00 Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500								
Network D	esign Table for Storm								
DN Longth Fall Slope T Area T	F Baco k HVD DIA Soction								
(m) (m) (1:X) (ha) (mi	ns) Flow (1/s) (mm) SECT (mm)	Design							
\$1.000 1.000 0.010 100.0 0.089 1 \$1.001 1.000 0.010 100.0 0.000 0	.00 0.0 0.600 o 150 Pipe/Con .00 0.0 0.600 o 150 Pipe/Con	duit 🤮 duit 🔒							
Netwo	ork Results Table								
PN Rain T.C. US/IL Σ I.A (mm/hr) (mins) (m) (ha	Area Σ Base Foul Add Flow Vel Ca	ap Flow							
	·, 120w (1,0, (1,0, (1,0, (m,0, (1,	0, (1,0)							
\$1.000 50.00 1.02 79.950 0. \$1.001 50.00 1.03 79.940 0.	089 0.0 0.0 0.0 1.00 17 089 0.0 0.0 0.0 1.00 17	7.8 12.1 7.8 12.1							
©198	2-2020 Innovyze								

Cole Easdon							Page	2]	
160 Aztec, Aztec	West		9154 P:	roposed W	arehou	se				
Almondsbury Penventon Farm Nursery										
Bristol, BS32 4TU Permeable Paving Area 2 Micco										
Date 21/09/2023 15:35 Designed by bthornton										
File 9154 Permeab	le Sur	facin	Checked	d by DF			Uldli	Idye		
Innovyze Network 2020.1										
Manhole Schedules for Storm										
MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diar (r
CDormophie Curfaging	90 500	0 550	Open Manhele	1200	S1 000	70 050	150			
SPermeable Surlacing	80.500	0.550	Open Manhole	1200	S1.000	79.950	150	g1 000	70 040	
SDuning Pump	80.500	0.560	Open Manhole	1200	51.001	/9.940 OUTENT	150	SI.000	79.940	
5	02.030	2.120	open Mannore			OUIFALL		51.001	19.930	
No coordinat	es have	been s	specified, la	yout inform	ation c	annot be p	roduced.			
	<u>Free</u>	Flowi	ing Outfall	Details	<u>for St</u>	orm				
01	ıtfall	Outfa	ll C. Level :	I. Level	Min	D.L W				
Pipe	e Number	Name	e (m)	(m) I.	Level (m)	(mm) (mm)				
	S1.001		S 82.050	79.930	0.000	0 0				
			©1982-2020	Innovvze						
									J	

Cole Easdon		Page 3
160 Aztec, Aztec West	9154 Proposed Warehouse	
Almondsbury	Penventon Farm Nursery	
Bristol, BS32 4TU	Permeable Paving Area 2	Mirro
Date 21/09/2023 15:35	Designed by bthornton	
File 9154 Permeable Surfacin	Checked by DF	Diamage
Innovyze	Network 2020.1	

Online Controls for Storm

Pump Manhole: SDummy Pump, DS/PN: S1.001, Volume (m³): 0.6

Invert Level (m) 79.940

Depth (m) Flow (1/s) Depth (m) Flow <th

0.200	0.0000	1.000	0.0000	1.000	0.0000	2.000	0.0000
0.300	0.0000	1.100	0.0000	1.900	0.0000	2.700	0.0000
0.400	0.0000	1.200	0.0000	2.000	0.0000	2.800	0.0000
0.500	0.0000	1.300	0.0000	2.100	0.0000	2.900	0.0000
0.600	0.0000	1.400	0.0000	2.200	0.0000	3.000	0.0000
0.700	0.0000	1.500	0.0000	2.300	0.0000		
0.800	0.0000	1.600	0.0000	2.400	0.0000		
	1						

Cole Easdon		Page 4
160 Aztec, Aztec West	9154 Proposed Warehouse	
Almondsbury	Penventon Farm Nursery	
Bristol, BS32 4TU	Permeable Paving Area 2	Micro
Date 21/09/2023 15:35	Designed by bthornton	
File 9154 Permeable Surfacin	Checked by DF	Diamage
Innovyze	Network 2020.1	·

Storage Structures for Storm

Porous Car Park Manhole: SPermeable Surfacing, DS/PN: S1.000

Infiltration Coefficient Base (m/hr)	0.09144	Width (m)	12.0
Membrane Percolation (mm/hr)	1000	Length (m)	31.5
Max Percolation (l/s)	105.0	Slope (1:X)	1000.0
Safety Factor	3.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	79.950	Cap Volume Depth (m)	0.350

Cole Easdon	Page 5										
160 Aztec, Aztec West	9154 Proposed Warehouse										
Almondsbury	Penventon Farm Nursery										
Bristol, BS32 4TU	Permeable Paving Area 2										
Date 21/09/2023 15:35	Designed by bthornton										
File 9154 Permeable Surfacin	Checked by DF										
Innovyze	Network 2020.1										
Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR Region England and Wales Cv (Summer) 0.750 NS=60 (mm)											
Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years)											
US/MH Return Climate First (X) First (Y) PN Name Storm Period Change Surcharge Flood S1.000 SPermeable Surfacing 120 Winter 100 +45% 100/15 Winter S1.001 SDummy Pump 180 Winter 100 +45% 100/15 Summer 100/360 Winter											
	Water Surcharged Flooded										
US/MH First (Z)	Overflow Level Depth Volume Flow / Overflow										
PN Name Overflow	Act. (m) (m) (m ³) Cap. (1/s)										
S1.000 SPermeable Surfacing S1.001 SDummy Pump	80.2600.1600.0000.0280.4020.3120.0000.00										
	Half Drain Pipe										
US/MH	US/MH Time Flow Level										
PN Name	(mins) (1/s) Status Exceeded										
S1.000 SPermeable Surfacin S1.001 SDummy Pur	ng 116 0.2 FLOOD RISK mp 0.0 FLOOD RISK										
©1982-2020 Innovvze											

160 Aztec, Aztec West 9154 Proposed Warehouse Almondsbury Penventon Farm Nursery Bristol, BS32 4TU Permeable Paving Area 3 Date 22/09/2023 08:56 Designed by bthornton File 9154 Permeable Surfacin Checked by DF Innovyze Network 2020.1 Design Criteria for Storm Pipe Sizes STANDARD Manhole Sizes STANDARD	PIMP (%) 100 Method 0 Method 0 kdrop Height (m) 0.200 kdrop Height (m) 1.500 Optimisation (m) 1.200 esign only (m/s) 1.00									
Almondsbury Penventon Farm Nursery Bristol, BS32 4TU Permeable Paving Area 3 Date 22/09/2023 08:56 Designed by bthornton File 9154 Permeable Surfacin Checked by DF Innovyze Network 2020.1 Design Criteria for Storm Pipe Sizes STANDARD Manhole Sizes STANDARD	PIMP (%) 100 imate Change (%) 0 kdrop Height (m) 0.200 kdrop Height (m) 1.500 Optimisation (m) 1.200 esign only (m/s) 1.00									
Almondsbury Bristol, BS32 4TU Date 22/09/2023 08:56 File 9154 Permeable Surfacin Checked by DF Innovyze Network 2020.1 <u>STORM SEWER DESIGN by the Modified Rational</u> <u>Design Criteria for Storm</u> Pipe Sizes STANDARD Manhole Sizes STANDARD	Micro Drainage Method M									
Bristol, BS32 4TU Permeable Paving Area 3 Date 22/09/2023 08:56 Designed by bthornton File 9154 Permeable Surfacin Checked by DF Innovyze Network 2020.1 STORM SEWER DESIGN by the Modified Rational Design Criteria for Storm Pipe Sizes STANDARD Manhole Sizes STANDARD	Micro Drainage Method M									
Date 22/09/2023 08:56 File 9154 Permeable Surfacin Designed by bthornton Checked by DF Innovyze Network 2020.1 <u>STORM SEWER DESIGN by the Modified Rational</u> <u>Design Criteria for Storm</u> Pipe Sizes STANDARD Manhole Sizes STANDARD	PIMP (%) 100 imate Change (%) 0 kdrop Height (m) 0.200 kdrop Height (m) 1.500 Optimisation (m) 1.200 esign only (m/s) 1 00									
File 9154 Permeable Surfacin Checked by DF Innovyze Network 2020.1 <u>STORM SEWER DESIGN by the Modified Rational</u> <u>Design Criteria for Storm</u> Pipe Sizes STANDARD Manhole Sizes STANDARD										
Innovyze Network 2020.1 <u>STORM SEWER DESIGN by the Modified Rational</u> <u>Design Criteria for Storm</u> Pipe Sizes STANDARD Manhole Sizes STANDARD										
STORM SEWER DESIGN by the Modified Rational Design Criteria for Storm Pipe Sizes STANDARD Manhole Sizes STANDARD										
STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm Pipe Sizes STANDARD Manhole Sizes STANDARD FSR Rainfall Model - England and Wales Return Period (years) 100 PIMP (%) 100 M5-60 (mm) 18.800 Add Flow / Climate Change (%) 0 Ratio R 0.268 Minimum Backdrop Height (m) 0.200										
Maximum Rainfall (mm/hr) 50 Maximum Bac Maximum Time of Concentration (mins) 30 Min Design Depth for Foul Sewage (l/s/ha) 0.000 Min Vel for Auto D Volumetric Runoff Coeff. 0.750 Min Slope for Op Designed with Level Soffits	timisation (1:X) 500									
<u>Network Design Table for Storm</u>										
« - Indicates pipe capacity < flow										
PN Length Fall Slope I.Area T.E. Base k HYD D (m) (m) (1:X) (ha) (mins) Flow (l/s) (mm) SECT (m	[A Section Type Auto m) Design									
S1.000 44.420 0.444 100.0 0.049 1.00 0.0 0.600 0 1 S1.001 1.090 0.011 99.1 0.049 0.00 0.0 0.600 0 1 S1.002 1.000 0.010 100.0 0.131 0.00 0.0 0.600 0 1 S1.003 1.000 0.00 0.000 0.00 0.00 0.00 0 1	50Pipe/Conduit50Pipe/Conduit50Pipe/Conduit50Pipe/Conduit									
Network Results Table										
PN Rain T.C. US/IL Σ I.Area Σ Base Foul Add Fig (mm/br) (mins) (m) (ba) Flow (1/s) (1/s) (1/s)	(m/s) (1/s) (1/s)									
S1.000 50.00 1.74 82.350 0.049 0.0 0.0 0.5 S1.001 50.00 1.75 82.050 0.098 0.0 0.0 0.5 S1.002 50.00 1.77 82.040 0.229 0.0 0.0 0.5 S1.003 50.00 1.95 82.030 0.229 0.0 0.0 0.5	0 1.00 17.8 6.6 0 1.01 17.8 13.3 0 1.00 17.8« 31.0 0 0.09 1.6« 31.0									

Cole Easdon		Page 2
160 Aztec, Aztec West	9154 Proposed Warehouse	
Almondsbury	Penventon Farm Nursery	
Bristol, BS32 4TU	Permeable Paving Area 3	Mirro
Date 22/09/2023 08:56	Designed by bthornton	
File 9154 Permeable Surfacin	Checked by DF	Diamage
Innovyze	Network 2020.1	1

<u>Manhole Schedules for Storm</u>

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	P PN Le	ipes In Invert vel (m)	Diamete (mm)
SManhole 1	84.000	1.650	Open Manhole	1200	s1.000	82.350	150			
SManhole 2	84.000	2.094	Open Manhole	1200	S1.001	82.050	150	S1.000	81.906	15
SPermeable Paving	82.500	0.461	Open Manhole	1200	S1.002	82.040	150	S1.001	82.039	15
SDummy Pump	82.500	0.470	Open Manhole	1200	S1.003	82.030	150	S1.002	82.030	15
S	82.500	0.470	Open Manhole	0		OUTFALL		S1.003	82.030	15
	I	I		I	I			I		

No coordinates have been specified, layout information cannot be produced.

Free Flowing Outfall Details for Storm

Out: Pipe 1	fall Number	Outfall Name	c.	Level (m)	I.	Level (m)	Ι.	Min Level (m)	D,L (mm)	W (mm)
:	s1.003	S	8	82.500	1	82.030		0.000	0	0

Cole Easdon		Page 3
160 Aztec, Aztec West	9154 Proposed Warehouse	
Almondsbury	Penventon Farm Nursery	
Bristol, BS32 4TU	Permeable Paving Area 3	Mirro
Date 22/09/2023 08:56	Designed by bthornton	
File 9154 Permeable Surfacin	Checked by DF	Diamage
Innovyze	Network 2020.1	

Online Controls for Storm

Pump Manhole: SDummy Pump, DS/PN: S1.003, Volume (m³): 0.5

Invert Level (m) 82.030

Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 0.0000 0.900 0.0000 1.700 0.0000 2.500 0.0000 0.0000 0.200 0.0000 1.000 1.800 0.0000 2.600 0.0000 1.900 2.700 0.300 0.0000 1.100 0.0000 0.0000 0.0000 0.400 0.0000 1.200 0.0000 2.000 0.0000 2.800 0.0000 0.0000 0.0000 2.100 0.0000 2.900 0.0000

2.200 2.300

2.400

0.0000

0.000

0.0000

3.000

0.0000

1.300

 1.400
 0.0000

 1.500
 0.0000

 1.600
 0.0000

0.500

0.600

0.700

0.800

0.0000

0.0000

Cole Easdon		Page 4
160 Aztec, Aztec West	9154 Proposed Warehouse	
Almondsbury	Penventon Farm Nursery	
Bristol, BS32 4TU	Permeable Paving Area 3	Micro
Date 22/09/2023 08:56	Designed by bthornton	
File 9154 Permeable Surfacin	Checked by DF	Diamage
Innovyze	Network 2020.1	·

Storage Structures for Storm

Porous Car Park Manhole: SPermeable Paving, DS/PN: S1.002

Infiltration Coefficient Base (m/hr)	0.09144	Width (m)	30.0
Membrane Percolation (mm/hr)	1000	Length (m)	43.0
Max Percolation (l/s)	358.3	Slope (1:X)	1000.0
Safety Factor	3.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	82.040	Cap Volume Depth (m)	0.350

Cole Ea	sdon							Page 5	
160 Azt	ec, Aztec West		9154 H	Proposed	d Wareho	ouse			
Almonds	bury		Penver	nton Fai	rm Nurse	ery			
Bristol	, BS32 4TU		Permea		Mirm				
Date 22	/09/2023 08:56		Desigr	ned by b	othornt	on		Drainago	
File 91	54 Permeable Sur	facin	Checke	ed by Di	E			Diamage	
Innovyz	e		Networ	ck 2020	.1		·		
Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Offline Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR Ratio R 0.268 Region England and Wales Cv (Summer) 0.750 M5-60 (mm) 18.800 Cv (Winter) 0.840									
	Pro Duration(s) Return Period(s) Climate Cha	Analy file(s) (mins) (years) nge (%)	sis Time DTS St 15, 30, 720,	step Fi atus , 60, 120 960, 144	ne Inert. ON 0, 180, 2 40, 2160,	ia Stat Summer 40, 360 2880, 7200,	us OFF and Wint), 480, 60 4320, 576 8640, 100 1	er 0, 0, 80 00 45	
PN	US/MH Name	Storm	Return Period	Climate Change	First Surcha	(X) arge	First (Y) Flood	First (Z) Overflow	
\$1.000 \$1.001 \$1.002 \$1.003	SManhole 1 SManhole 2 SPermeable Paving SDummy Pump	15 Summer 15 Summer 120 Winter 180 Winter	100 100 100 100 100	+45% +45% +45% +45%	100/15 s 100/15 s 100/30 v 100/30 s	Summer Summer Vinter Summer			
		W	ater Su	rcharged	Flooded			Half Drain	
	US/MH 0	Overflow I	Level	Depth	Volume	Flow /	Overflow	Time	
PN	Name	Act.	(m)	(m)	(m³)	Cap.	(l/s)	(mins)	
\$1.000 \$1.001 \$1.002 \$1.003	SManhole 1 SManhole 2 SPermeable Paving SDummy Pump	83 82 82 82	8.589 2.805 2.255 2.364	1.089 0.605 0.065 0.184	0.000 0.000 0.000 0.000	1.30 4.48 0.03 0.00		88	
		©193	82-2020	Innovy	/ze				

Cole Easdon		Page 6
160 Aztec, Aztec West	9154 Proposed Warehouse	
Almondsbury	Penventon Farm Nursery	
Bristol, BS32 4TU	Permeable Paving Area 3	Mirro
Date 22/09/2023 08:56	Designed by bthornton	
File 9154 Permeable Surfacin	Checked by DF	Diamage
Innovyze	Network 2020.1	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name	Pipe Flow (l/s)	Status	Level Exceeded
S1.000	SManhole 1	22.4	SURCHARGED	
S1.001	SManhole 2	48.6	SURCHARGED	
S1.002	SPermeable Paving	0.4	FLOOD RISK	
S1.003	SDummy Pump	0.0	FLOOD RISK	

Soakaway Investigation

Letter Report In line with BRE Digest 365

Site Name:	Penventon Nursery
Job Number:	20468
Client:	Mr S Keverne
Date:	26 February 2021
Introduction	

- Wheal Jane Consultancy (WJC) was commissioned by Mr S Parker on behalf of Mr S Keverne, to undertake a Soakaway Investigation at the site known as "Penventon Nursery."
- This report has been prepared by Wheal Jane Consultancy solely for the benefit of the client. It shall not be relied upon or transferred to any third party without the prior written authorisation of WJC.
- The aim of this investigation is to assess the site's drainage characteristic by completing soakaway tests in line with BRE 365.

Site Works

- An intrusive site investigation was conducted on Thursday 18th February 2021. The investigation was overseen by a geotechnical engineer from Wheal Jane Consultancy.
- The site works can be summarised as follows;

Exploratory Hole Type	Exploratory Hole ID	Hole Depths (mBGL)
Trial Pit	TP01 – TP03	0.80 – 2.50
• Exploratory hole logs are included as Appendix A.		

- Trial Pit Photographs are included as Appendix B.
- A plan showing the location of the exploratory holes is provided as Figure 3.1.

Ground Conditions

_	Depth Encol	untered (mBGL)	- Typical	Brief
Strata	From	То	Thickness (m)	Description &
	TIOIII	10		Comments
				Hardcore or
				Brown sandy
				gravelly CLAY
				with
Made Ground	0.00	0.40 - 0.90	0.6	anthropogenic
				components of
				concrete, brick,
				metal, ceramic
				and timber.

Soakaway Investigation

Letter Report

In line with BRE Digest 365

Mylor Slate Formation	0.40 - 0.60	0.80 – 2.50	Unproven	Light orangish brown gravelly CLAY/Orangish brown sandy gravelly CLAY
 Material described as Made Ground was encountered across the site to depths of up to 0.90m. The unit varies in thickness, from 0.40m in TP02 in the east of the site to 0.90m in TP01 in the south east. The base of the Made Ground was not encountered in TP01. The material is generally described as 'Hardcore or Brown sandy gravelly CLAY with anthropogenic components of concrete, brick, metal, ceramic and timber.' 			ncountered across varies in If the site to of the Made dcore or Brown mponents of	
Mylor Slate Formation:	 Materia encoun 2.50m i underta In gene brown g 	 Material described as Weathered Mylor Slate Formation was encountered in TP02 and TP03 to a maximum depth of 2.50m in TP02 where the deep infiltration test was undertaken. In general, the unit may be described as 'Light orangish brown gravelly CLAY.' 		
Soakaway Test Re	sults			
Exploratory Hole	Test 1	Test 2	Test 3	Average
TP01	5.58E-3	5.58E-3	5.58E-3	5.58E-3
TP02	4.48E-5	3.69E-5	2.54E-5	3.57E-5
TP03	Failed	-	-	-

• Soakaway records are contained as Appendix C.

Soakaway Investigation Letter Report In line with BRE Digest 365

FIGURES

Title: Site Location Plan Project: Penventon Nursery Client: Mr S Keverne Report Title: Drainage Investigation Date: 22/02/2021 Ref: 20468

Figure:

2.1

Title:

Current Site Layout

Project:

Penventon Nursery

20468

Client:

Mr S Keverne

Date:	22/02/2021
Scale:	NTS
Drawn by:	BH
Revision:	A
Figure:	2.2

Title:

Proposed Site Layout

Project:

Penventon Nursery

20468

Client:

Mr S Keverne

Date:	22/02/2021
Scale:	NTS
Drawn by:	BH
Revision:	A
Figure:	2.3

Soakaway Investigation Letter Report In line with BRE Digest 365

Appendix A

Exploratory Hole Logs

Produced by the GEOtechnical DAtabase SYstem (GEODASY) © all rights reserved

Produced by the GEOtechnical DAtabase SYstem (GEODASY) © all rights reserved

Produced by the GEOtechnical DAtabase SYstem (GEODASY) © all rights reserved

Soakaway Investigation Letter Report In line with BRE Digest 365

Appendix B

Trial Pit Photographs

Trial Pit:

TP02

Trial Pit: TP02

Penventon Nursery	20468
Drainage Investigation	Trial Pit Photographs
Mr S Keverne	February 2021

Trial Pit:

Penventon Nursery	20468
Drainage Investigation	Trial Pit Photographs
Mr S Keverne	February 2021

Trial Pit: **TP03** Penventon Nursery 20468 Drainage Investigation Trial Pit Photographs February 2021 Mr S Keverne

Soakaway Investigation Letter Report In line with BRE Digest 365

Appendix C

Soakaway Records

Wheal Jane Consultancy

Soakaway Test (BRE Digest 365)

Site : Penventon Nursery

Client : Mr S Keverne

Engineer: Wheal Jane Consultancy

Location	Date	Level	Location
TP01	18/02/2021	87.00	Lanner

Pit Width (m)	1.70
Pit Depth (m)	0.90
Pit Length (m)	2.50

Soil type at test level	MADE GROUND: Hardcore
Groundwater	None
Drain discharge depth	N/A
Sidewall stability	Slightly unstable
Stone filled or open pit	Open pit

	1	2	3
Effective depth (m)	0.50	0.50	0.50
Volume outflowing between 75% & 25% (m3)	1.06	1.06	1.06
Mean surface area through which outflow occurs (m2)	6.35	6.35	6.35
Time for outflow between 75% & 25% (min)	0.50	0.50	0.50
SOIL INFILTRATION RATE (ms-1), f	5.58E-3	5.58E-3	5.58E-3

Elapsed time	Depth to Water	Depth to Water	Depth to Water
(mins)	Test 1	Test 2	Test 3
0	0.40	0.40	0.40
1	0.90	0.90	0.90

Remarks

Job Number

20468

Sheet

1/1

Wheal Jane Consultancy

Soakaway Test (BRE Digest 365)

Site : Penventon Nursery

Client : Mr S Keverne

Engineer: Wheal Jane Consultancy

Location	Date	Level	Location
TP02	18/02/2021	87.00	Lanner

Pit Width (m)	1.00
Pit Depth (m)	2.50
Pit Length (m)	2.60

Soil type at test level	Orangish brown sandy gravelly CLAY
Groundwater	None
Drain discharge depth	N/A
Sidewall stability	Fairly Stable
Stone filled or open pit	Open pit

	1	2	3
Effective depth (m)	1.00	1.00	1.00
Volume outflowing between 75% & 25% (m3)	1.30	1.30	1.30
Mean surface area through which outflow occurs (m2)	6.20	6.20	6.20
Time for outflow between 75% & 25% (min)	78.00	94.67	137.50
SOIL INFILTRATION RATE (ms-1), f	4.48E-5	3.69E-5	2.54E-5

Elapsed time	Depth to Water	Depth to Water	Depth to Water
(mins)	Test 1	Test 2	Test 3
0	1.50	1.50	1.50
1	1.52	1.53	1.51
2		1.54	1.53
3	1.58		
5	1.62		1.55
7		1.58	
8	1.65		
11	1.67		
12		1.62	
15			1.58
20		1.65	
25			1.62
35	1.70		
40		1.70	
45			1.69
50	1.85		
60		1.75	1.75
75	2.00		
90		1.90	1.82
95	2.08		
105	2.21		
118	2.25		
120		2.12	1.95
130		2.19	
135			2.00
150		2.23	2.04
157		2.26	
165			2.15
180			2.18
195			2.24
205			2.28

Produced by the GEOtechnical DAtabase SYstem (GEODASY) © all rights reserved

Job Number

20468

Sheet

1/1

Remarks

Wheal Jane Consultancy

Soakaway Test (BRE Digest 365)

Site : Penventon Nursery

Client : Mr S Keverne

Engineer: Wheal Jane Consultancy

Location	Date	Level	Location
TP03	18/02/2021	82.00	Lanner

Pit Width (m)	1.10
Pit Depth (m)	0.80
Pit Length (m)	1.85

Soil type at test level	Light orangish brown gravelly CLAY
Groundwater	None
Drain discharge depth	N/A
Sidewall stability	Fairly Stable
Stone filled or open pit	Open pit

	1
Effective depth (m)	0.40
Volume outflowing between 75% & 25% (m3)	
Mean surface area through which outflow occurs (m2)	
Time for outflow between 75% & 25% (min)	
SOIL INFILTRATION RATE (ms-1), f	Test Failed

Elapsed time	Depth to Water
(mins)	Test 1
0	0.40
60	0.40
120	0.40
180	0.40
240	0.40
300	0.40
360	0.40

Job Number

20468

Sheet

1/1

Remarks