

TPH Chromatogram on Soil Sample: 1398344 <Sample Information>

TPH Interpretation

Job	Sample	Matrix	Location	Sample Ref	Sample ID	Sample Depth (m)	Gasoline / Diesel Present	TPH Interpretation
22-11245	1398342	S			TS101		No	N/A
22-11245	1398343	S			TS102		No	N/A
22-11245	1398344	S			TS103		No	N/A

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Ella Mcleod LK Consult Limited Unit 29 Eton Business Park Eton Hill Road Manchester M26 2ZS

Derwentside Environmental Testing Services Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 ZJN t: 01622 850410

DETS Report No: 23-11413

Site Reference:	Fairfield Road, Drovlsden
Project / Job Ref:	LKC 20 1761
Order No:	LKC201761-EM
Sample Receipt Date:	11/09/2023
Sample Scheduled Date:	11/09/2023
Report Issue Number:	1
Reporting Date:	18/09/2023

Authorised by:

Dave Ashworth

Technical Manager

Dates of laboratory activities for each tested analyte are available upon request.

Upinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Soil Analysis Certificate							
DETS Report No: 23-11413			Date Sampled	08/09/23	08/09/23	08/09/23	
LK Consult Limited			Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Fairfield Road, Drog	ylsden		TP / BH No	TS201	TS202	TS203	
			Valalities al Defe				
Project / Job Ref: LKC 20 1761 Order No: LKC201761-EM		ŀ	Additional Refs	None Supplied	None Supplied	None Supplied	
			Depth (m)	None Supplied	None Supplied	None Supplied	
Reporting Date: 18/09/2023		DI	ETS Sample No	674066	674067	674068	
Determinand	Unit	RL	Accreditation				
Asbestos Screen ^(S)	N/a	N/a	ISO17025	Not Detected	Not Detected	Not Detected	
pH	pH Units	N/a	MCERTS	8.5	8.5	8.5	
Total Cyanide	mg/kg	< 1	NONE	2	2	< 1	
Free Cyanide	mg/kg	< 1	NONE	< 1	< 1	< 1	
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	112	99	103	
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.11	0.10	0.10	
Organic Matter (SOM)	%	< 0.1	MCERTS	6.2	5.9	7.2	
Arsenic (As)	mg/kg	< 2	MCERTS	3	2	2	
W/S Boron	mg/kg	< 1	NONE	1.1	1.3	< 1	
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	< 0.2	< 0.2	
Chromium (Cr)	mg/kg	< 2	MCERTS	9	7	7	
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	
Copper (Cu)	mg/kg	< 4	MCERTS	16	15	15	
Lead (Pb)	mg/kg	< 3	MCERTS	26	20	21	
Mercury (Hg)	mg/kg	< 1	MCERTS	< 1	< 1	< 1	
Nickel (Ni)	mg/kg	< 3	MCERTS	6	5	5	
Selenium (Se)	mg/kg	< 2	MCERTS	< 2	< 2	< 2	
Vanadium (V)	mg/kg	< 1	MCERTS	7	6	6	
Zinc (Zn)	mg/kg	< 3	MCERTS	49	40	44	
Total Phenols (monohydric)	mg/kg	< 2	NONE	2.8	2	5	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)

Soil Analysis Certificate	- Speciated PAHs						
DETS Report No: 23-114	13		Date Sampled	08/09/23	08/09/23	08/09/23	
LK Consult Limited			Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Fairfield Road, Droylsden			TP / BH No	TS201	TS202	TS203	
Project / Job Ref: LKC 20		/	Additional Refs	None Supplied	None Supplied	None Supplied	-
Order No: LKC201761-EN		D	Depth (m)	None Supplied	None Supplied	None Supplied	-
Reporting Date: 18/09/2	2023	D	ETS Sample No	674066	674067	674068	
Determinand	Unit	RL	Accreditation				
Naphthalene	ma/ka	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Phenanthrene	mg/kg	< 0.1	MCERTS	0.32	0.31	0.37	
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Fluoranthene	mg/kg	< 0.1	MCERTS	0.67	0.57	0.74	
Pyrene	mg/kg	< 0.1	MCERTS	0.57	0.46	0.64	
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	0.34	0.27	0.34	
Chrysene	mg/kg	< 0.1	MCERTS	0.32	0.25	0.34	
Benzo(b)fluoranthene		< 0.1	MCERTS	0.35	0.28	0.38	
Benzo(k)fluoranthene		< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Benzo(a)pyrene		< 0.1	MCERTS	0.35	0.25	0.33	
Indeno(1,2,3-cd)pyrene		< 0.1	MCERTS	0.14	< 0.1	0.14	_
Dibenz(a,h)anthracene	00	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	_
Benzo(ghi)perylene			MCERTS	0.15	< 0.1	< 0.1	
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	3.2	2.4	3.3	

Soil Analysis Certificate - TPI	H CWG Bandeo	d					
DETS Report No: 23-11413			Date Sampled	08/09/23	08/09/23	08/09/23	
LK Consult Limited			Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Fairfield Road, Droylsden			TP / BH No	TS201	TS202	TS203	
Project / Job Ref: LKC 20 1761	A	Additional Refs	None Supplied	None Supplied	None Supplied		
Order No: LKC201761-EM			Depth (m)	None Supplied	None Supplied	None Supplied	
Reporting Date: 18/09/2023	DI	ETS Sample No	674066	674067	674068		
Determinand	Unit	RL	Accreditation				
Aliphatic >C5 - C6 : HS 1D MS AL	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Aliphatic >C6 - C8 : HS 1D MS AL	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	
Aliphatic >C8 - C10 : FH_CII_1D_AL	mg/kg	< 2	MCERTS	< 2	< 2	< 2	
Aliphatic >C10 - C12 : EH CU 1D AL	mg/kg	< 2	MCERTS	< 2	< 2	< 2	
Aliphatic >C12 - C16 :	mg/kg	< 3	MCERTS	< 3	< 3	< 3	
EH CU 1D AL Aliphatic >C16 - C21 : EH CU 1D AL	mg/kg	< 3	MCERTS	< 3	< 3	< 3	
Aliphatic >C21 - C34 : FH_CU_1D_AL	mg/kg	< 10	MCERTS	< 10	< 10	< 10	
Aliphatic >C34 - C44	mg/kg	< 10	NONE	< 10	< 10	< 10	
Aliphatic (C5 - C44) : HS 1D MS+EH CU 1D AL	mg/kg		NONE	< 21	< 21	< 21	
Aromatic >C5 - C7 : HS 1D MS AR	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Aromatic >C7 - C8 : HS 1D MS AR	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	
Aromatic >C8 - C10 : EH CU 1D AR	mg/kg	< 2	MCERTS	< 2	< 2	< 2	
Aromatic >C10 - C12 : EH CU 1D AR	mg/kg	< 2	MCERTS	< 2	< 2	< 2	
Aromatic >C12 - C16 : EH CU 1D AR	mg/kg	< 2	MCERTS	5	< 2	< 2	
Aromatic >C16 - C21 : EH CU 1D AR	mg/kg	< 3	MCERTS	12	< 3	< 3	
Aromatic >C21 - C35 : EH CU 1D AR	mg/kg	< 10	MCERTS	17	< 10	< 10	
Aromatic >C35 - C44	mg/kg	< 10	NONE	< 10	< 10	< 10	
Aromatic (C5 - C44) : HS_1D_MS+EH_CU_1D_AR	mg/kg	< 21	NONE	34	< 21	< 21	
Total >C5 - C44 : HS_1D_MS+EH_CU_1D_Tot	mg/kg	< 42	NONE	< 42	< 42	< 42	

Soil Analysis Certificate - BTEX / M	1TBE						
DETS Report No: 23-11413			Date Sampled	08/09/23	08/09/23	08/09/23	
LK Consult Limited		Т	ime Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Fairfield Road, Droyls		TP / BH No	TS201	TS202	TS203		
Project / Job Ref: LKC 20 1761	Ad	Iditional Refs	None Supplied	None Supplied	None Supplied		
Order No: LKC201761-EM	Depth (m)		None Supplied	None Supplied	None Supplied		
Reporting Date: 18/09/2023		DETS Sample No		674066	674067	674068	
Determinand	Unit	RL /	Accreditation				
Benzene : HS_1D_MS	ug/kg	< 2	MCERTS	< 2	< 2	< 2	
Toluene : HS_1D_MS	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Ethylbenzene : HS 1D MS	ug/kg	< 2	MCERTS	< 2	< 2	< 2	
p & m-xylene : HS_1D_MS	ug/kg	< 2	MCERTS	< 2	< 2	< 2	
o-xylene : HS_1D_MS	ug/kg	< 2	MCERTS	< 2	< 2	< 2	
MTBE : HS 1D MS	ug/kg	< 5	MCERTS	< 5	< 5	< 5	

Soil Analysis Certificate - Sample Descriptions
DETS Report No: 23-11413
LK Consult Limited
Site Reference: Fairfield Road, Droylsden
Project / Job Ref: LKC 20 1761
Order No: LKC201761-EM
Reporting Date: 18/09/2023

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
674066	TS201	None Supplied	None Supplied	28.4	Black loamy sand with vegetation
674067	TS202	None Supplied	None Supplied	28.6	Black loamy sand with vegetation
674068	TS203	None Supplied	None Supplied	29.4	Black loamy sand with vegetation

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm VS}$ Unsuitable Sample $^{\rm VS}$

Soil Analysis Certificate - Methodology & Miscellaneous Information	
DETS Report No: 23-11413	
LK Consult Limited	
Site Reference: Fairfield Road, Droylsden	
Project / Job Ref: LKC 20 1761	
Order No: LKC201761-EM	
Reporting Date: 18/09/2023	

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR		Determination of BTEX by headspace GC-MS	E001
Soil	D		Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D	Chloride - Water Soluble (2:1)	Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR	Cvanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D		Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH TEXAS (C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by beadspace GC-MS	E004
Soil	D		Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of TOC by combustion analyser.	E027
Soil	D	Organic Matter (SOM)	Determination of TOC by combustion analyser.	E027
Soil	D		Determination of TOC by combustion analyser.	E027
Soil	AR	Exchangeable Ammonium	Determination of ammonium by discrete analyser.	E029
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (11) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D		Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (11) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D		Gravimetrically determined through extraction with petroleum ether	E000
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR		Determination of phenols by distillation followed by colorimetry	E021
Soil	D		Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of total sulphate by extraction with 10% HCI followed by ICP-OES	E013
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)		E009
Soil	D		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR		Determination of sulphide by distillation followed by colorimetry	E018
Soil	D	Sulphur - Lotal	Determination of total sulphur by extraction with aqua-regia followed by ICP-OES	E024
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (11) sulphate	E010
	1	TPH CWG (ali: C5- C6, C6-C8, C8-C10,		1
Soil	AR	C10-C12, C12-C16, C16-C21, C21-C34,	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
		VOCs	Determination of volatile organic compounds by headspace GC-MS	E001
Soil	AR		Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	2001

AR As Received

st of HWOL Acronyms and Operators
TS Report No: 23-11413
Consult Limited
e Reference: Fairfield Road, Droylsden
oject / Job Ref: LKC 20 1761
der No: LKC201761-EM
porting Date: 18/09/2023

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total
	Det - Acronym
	Benzene - HS_1D_MS
	Ethylbenzene - HS_1D_MS
	MTBE - HS_1D_MS
	TPH CWG - Aliphatic >C10 - C12 - EH_CU_1D_AL
	TPH CWG - Aliphatic >C12 - C16 - EH_CU_1D_AL
	TPH CWG - Aliphatic >C16 - C21 - EH_CU_1D_AL
	TPH CWG - Aliphatic >C21 - C34 - EH_CU_1D_AL
	TPH CWG - Aliphatic >C5 - C44 - HS_1D_MS+EH_CU_1D_AL
	TPH CWG - Aliphatic >C5 - C6 - H5_1D_MS_AL
	TPH CWG - Aliphatic >C6 - C8 - HS_1D_MS_AL
	TPH CWG - Aliphatic >C8 - C10 - EH_CU_1D_AL

TPH CWG - Aromatic >C10 - C12 - EH_CU_1D_AR TPH CWG - Aromatic >C12 - C16 - EH_CU_1D_AR TPH CWG - Aromatic >C12 - C16 - EH_CU_1D_AR TPH CWG - Aromatic >C16 - C21 - EH_CU_1D_AR

m & p-xylene - HS_1D_MS o-Xylene - HS_1D_MS

TPH CWG - Aromatic >C1 - C1 - EH_CU_1D_AR TPH CWG - Aromatic >C2 - C3 - EH_CU_1D_AR TPH CWG - Aromatic >C5 - C44 - HS_1D_MS_EH_CU_1D_AR TPH CWG - Aromatic >C5 - C7 - HS_1D_MS_AR TPH CWG - Aromatic >C7 - C8 - HS_1D_MS_AR TPH CWG - Aromatic >C8 - C10 - EH_CU_1D_AR TPH CWG - Total >C5 - C44 - HS_1D_MS+EH_CU_1D_Total Toluene - HS_1D_MS m & p.w4opa_HS_1D_MS

Ella Mcleod LK Consult Limited Unit 29 Eton Business Park Eton Hill Road Manchester M26 2ZS

Derwentside Environmental Testing Services Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 ZJN t: 01622 850410

DETS Report No: 23-09647

Site Reference:	Fairfield Road, Droylsden
Project / Job Ref:	LKC 20 1761
Order No:	LKC201761-D1
Sample Receipt Date:	25/07/2023
Sample Scheduled Date:	25/07/2023
Report Issue Number:	2
Reporting Date:	09/08/2023

Authorised by:

Dave Ashworth Technical Manager

Dates of laboratory activities for each tested analyte are available upon request. This report supersedes 23-09647, issue no.1.

Reason for Re-Issue: Sample Id' amended

Opinions and interpretations are outside the laboratory's scope of ISO 1702b accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Soil Analysis Certificate								
DETS Report No: 23-09647			Date Sampled	21/07/23	21/07/23	21/07/23	21/07/23	
LK Consult Limited			Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	
Site Reference: Fairfield Road, Dro	ylsden		TP / BH No	Plot 55 Front TS	Plot 56 Front TS	Plot 57 Front TS	Plot 59 Front TS	
Project / Job Ref: LKC 20 1761		A	Additional Refs			None Supplied	None Supplied	
Order No: LKC201761-D1			Depth (m)	None Supplied		None Supplied	None Supplied	
Reporting Date: 09/08/2023		DI	ETS Sample No	665896	665897	665898	665899	
		DI						
Determinand	Unit		Accreditation					
Asbestos Screen ^(S)	N/a	N/a	IS017025	Not Detected	Not Detected	Not Detected	Not Detected	
pH	pH Units	N/a	MCERTS	8.4	8.3	8.2	8.1	
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	34	35	18	44	
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.03	0.04	0.02	0.04	
Organic Matter (SOM)	%	< 0.1	MCERTS	4.1	3.9	4.7	4.4	
Arsenic (As)	mg/kg	< 2	MCERTS	8	9	9	7	
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	< 0.2	0.2	< 0.2	
Chromium (Cr)	mg/kg	< 2	MCERTS	19	19	21	23	
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	
Copper (Cu)	mg/kg	< 4	MCERTS	53	23	26	18	
Lead (Pb)	mg/kg	< 3	MCERTS	109	84	69	45	
Mercury (Hg)	mg/kg	< 1	MCERTS	< 1	< 1	< 1	< 1	
Nickel (Ni)	mg/kg	< 3	MCERTS	14	12	15	18	
Selenium (Se)	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	
Vanadium (V)	mg/kg	< 1	MCERTS	24	27	27	27	
Zinc (Zn)	mg/kg	< 3	MCERTS	75	63	88	66	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)

Soil Analysis Certificate								
DETS Report No: 23-0964	47		Date Sampled	21/07/23	21/07/23	21/07/23	21/07/23	
LK Consult Limited			Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	
Site Reference: Fairfield	Road, Droylsden		TP / BH No	Plot 55 Front TS	Plot 56 Front TS	Plot 57 Front TS	Plot 59 Front TS	
Project / Job Ref: LKC 20			Additional Refs	None Supplied		None Supplied		
Order No: LKC201761-D1			Depth (m)	None Supplied		None Supplied		
Reporting Date: 09/08/2	2023	D	ETS Sample No	665896	665897	665898	665899	
Determiner	11	DL	A					
Determinand			Accreditation	0.4	0.1	0.4	0.1	
Naphthalene		< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
Acenaphthylene	0 0	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
Acenaphthene	0 0		MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
Fluorene	0 0	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
Phenanthrene		< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.24	
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
Fluoranthene	3.3	< 0.1	MCERTS	0.26	0.27	0.26		
Pyrene		< 0.1	MCERTS	0.22	0.25	0.25	0.20	
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
Chrysene	5 5	< 0.1	MCERTS	0.14	0.15	0.15	< 0.1	
Benzo(b)fluoranthene			MCERTS	0.14	0.14	0.14	< 0.1	
Benzo(k)fluoranthene		< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	0.12	< 0.1	< 0.1	
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
Benzo(ghi)perylene			MCERTS		< 0.1	< 0.1	< 0.1	
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	< 1.6	< 1.6	< 1.6	< 1.6	

Soil Analysis Certificate - Sample Descriptions
DETS Report No: 23-09647
LK Consult Limited
Site Reference: Fairfield Road, Droylsden
Project / Job Ref: LKC 20 1761
Order No: LKC201761-D1
Reporting Date: 09/08/2023

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
665896	Plot 55 Front TS	None Supplied	None Supplied	14.9	Brown sandy clay with stones and vegetation
665897	Plot 56 Front TS	None Supplied	None Supplied	15.4	Brown sandy clay with stones and vegetation
665898	Plot 57 Front TS	None Supplied	None Supplied	19.6	Brown sandy clay with stones and vegetation
665899	Plot 59 Front TS	None Supplied	None Supplied	20.8	Brown sandy clay with stones and vegetation

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm VS}$ Unsuitable Sample $^{\rm US}$

Page 4 of 6

pil Analysis Certificate - Methodology & Miscellaneous Information
ETS Report No: 23-09647
Consult Limited
te Reference: Fairfield Road, Droylsden
oject / Job Ref: LKC 20 1761
rder No: LKC201761-D1
Phonting Date: 09/08/2023

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR	BTEX	Determination of BTEX by headspace GC-MS	E001
Soil	D	Cations	Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D	Chloride - Water Soluble (2:1)	Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D		Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR	EPH (C10 – C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH Product ID	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH TEXAS (C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by beadspace GC-MS	E004
Soil	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of TOC by combustion analyser.	E027
Soil	D		Determination of TOC by combustion analyser.	E027
Soil	D		Determination of TOC by combustion analyser.	E027
Soil	AR		Determination of ammonium by discrete analyser.	E029
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (11) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D		Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D		Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (11) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D		Gravimetrically determined through extraction with petroleum ether	E000
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR		Determination of phenols by distillation followed by colorimetry	E021
Soil	D		Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil	D		Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR		Determination of sulphide by distillation followed by colorimetry	E018
Soil	D		Determination of total sulphur by extraction with aqua-regia followed by ICP-OES	E024
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)		E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with	E010
	 	TPH CWG (ali: C5- C6, C6-C8, C8-C10,	iron (II) sulphate	╉─────
Soil	AR	C10-C12, C12-C16, C16-C21, C21-C34,	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	TPH LOM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
Soil	AR	VOCs VPH (C6-C8 & C8-C10)		E001
3011			Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

AR As Received

List of HWOL Acronyms and Operators DETS Report No: 23-09647 LK Consult Limited Site Reference: Fairfield Road, Droylsden Project / Job Ref: LKC 20 1761 Order No: LKC201761-D1 Reporting Date: 09/08/2023

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
I	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total
+	Uperator to indicate cumulative eg. EH+HS_TOTAL or EH_CU+HS_TOTAL

Det - Acronym

Topsoil Source : Plots 61-62 faifield Rd, Droylden

TIM O'HARE ASSOCIATES SOIL & LANDSCAPE CONSULTANCY

Client:	MB Soils & Groundworks Ltd		
Project:	Yew Tree Farm Phase Five		
Job:	Topsoil Analysis - BS3882:2015		
Date:	29/07/2022		
Job Ref No:	TOHA/22/7593/85		
Sample Refer	rence		
			Accreditation
Clay (<0.002m	nm)	%	UKAS
Silt (0.002-0.0		%	UKAS
Sand (0.063-2		%	UKAS
	(UK Classification)	-	UKAS
Stones (2-20m		% DW	GLP
Stones (20-50 Stones (>50m		% DW % DW	GLP
5101103 (> 00111		75 000	GLP
H Value (1:2.	5 water extract)	units	UKAS
	ductivity (1:2.5 water extract)	uS/cm	UKAS
Electrical Con	ductivity (1:2 CaSO, extract)	uS/cm	UKAS
	Sodium Percentage	%	UKAS
Organic Matte		%	UKAS
Total Nitrogen	(Dumas)	%	UKAS
C: N Ratio	and a second	ratio	UKAS
xtractable Ph xtractable Po		mg/l	UKAS
xtractable Ma		mg/l	UKAS
	Streedill	mg/i	UNAS
Total Arsenic (As)	mg/kg	MCERTS
Total Cadmiun		mg/kg	MCERTS
Total Chromiu	m (Cr)	mg/kg	MCERTS
	romium (Cr VI)	mg/kg	MCERTS
Total Copper (mg/kg	MCERTS
Total Lead (Pb Total Mercury		mg/kg	MCERTS
Total Nickel (N	(ng)	mg/kg	MCERTS
Total Selenium		mg/kg	MCERTS MCERTS
Total Zinc (Zn)		mg/kg	MCERTS
Nater Soluble		mg/kg	MCERTS
Total Cyanide		mg/kg	MCERTS
Total (mono) F	henols	mg/kg	MCERTS
Naphthalene		mg/kg	MCERTS
cenaphthyler		mg/kg	MCERTS
cenaphthene		mg/kg	MCERTS
luorene		mg/kg	MCERTS
henanthrene		mg/kg	MCERTS
luoranthene		mg/kg	MCERTS MCERTS
Vrene		mg/kg mg/kg	MCERTS
Benz(a)anthra	Cene	mg/kg	MCERTS
Chrysene		mg/kg	MCERTS
Benzo(b)fluora	inthene	mg/kg	MCERTS
Benzo(k)fluora		mg/kg	MCERTS
Benzo(a)pyren	e	mg/kg	MCERTS
ndeno(1.2.3-c		mg/kg	MCERTS
Dibenzo(a.h)a		mg/kg	MCERTS
Senzo(q,h,i)pe	IN USEPA16)	mg/kg	MCERTS MCERTS
Stat FALIS (SL		mg/kg	MUERIS
liphatic TPH :	>C5 - C6	mg/kg	MCERTS
liphatic TPH :		mg/kg	MCERTS
liphatic TPH :	>C8 - C10	mg/kg	MCERTS
liphatic TPH :		mg/kg	MCERTS
liphatic TPH :		mg/kg	MCERTS
liphatic TPH :		mg/kg	MCERTS
liphatic TPH :	(05-035)	mg/kg	MCERTS
Aromatic TPH	>C5 - C7	mg/kg	MCERTS MCERTS
romatic TPH		mg/kg	MCERTS
romatic TPH	>C8-C10	mg/kg	MCERTS
romatic TPH	>C10 - C12	mg/kg	MCERTS
romatic TPH	>C12 - C16	mg/kg	MCERTS
romatic TPH		mg/kg	MCERTS
romatic TPH		mg/kg	MCERTS
romatic TPH	(65 - 635)	mg/kg	MCERTS
enzene		mg/kg	MCERTS
oluene		mg/kg	MCERTS
thylbenzene		mg/kg	MCERTS
& m-xylene		mg/kg	MCERTS
-xylene		mg/kg	MCERTS
	Tertiary Butyl Ether)	mg/kg	MCERTS
abaataa A		Luna	100 17111
sbestos Scre	en	ND/D	ISO 17025

	Burscough
_	Topsoil
-	21
-	21
-	69
-	11 68 SCL
-	301
-	3
-	0
-	
-	75
-	7.5 668 2306
-	2206
-	0.7
-	EA
-	0.19
-	0.19
-	0.7 5.1 0.19 15 12 60 164
-	80
-	164
-	
-	7
-	7 <0.2 17 <1.8 19 24 <0.3 15 <1.0 35 0.7 <1.0 <1.0
-	17
-	<18
-	10
-	24
-	10.2
-	< 0.3
-	< 1.0
-	35
-	07
-	110
-	< 1.0
-	\$ 1.0
	< 0.05
	< 0.05
	< 0.05 < 0.05 < 0.05
	< 0.05 < 0.05 < 0.05 < 0.05
	< 0.05 < 0.05 < 0.05 < 0.05 0.56
	< 0.05 < 0.05 < 0.05 < 0.05 0.56 < 0.05
	< 0.05 < 0.05 < 0.05 < 0.05 0.56 < 0.05 0.50
	< 0.05 < 0.05 < 0.05 < 0.05 0.56 < 0.05 0.50 0.47
	<0.05 <0.05 <0.05 <0.05 0.56 <0.05 0.50 0.47
	< 0.05 < 0.05 < 0.05 < 0.05 0.56 < 0.05 0.50 0.47 0.23 0.20
	<0.05 <0.05 <0.05 <0.05 <0.56 <0.05 0.50 0.47 0.23 0.29 0.22
	< 0.05 < 0.05 < 0.05 < 0.05 0.56 < 0.05 0.50 0.47 0.23 0.29 0.23
	<0.05 <0.05 <0.05 <0.05 <0.05 0.56 <0.05 0.50 0.47 0.23 0.29 0.23 0.11
	<0.05 <0.05 <0.05 <0.05 0.56 <0.05 0.50 0.47 0.23 0.29 0.23 0.11 <0.05
	<0.05 <0.05 <0.05 <0.05 0.56 0.50 0.47 0.23 0.29 0.23 0.11 <0.05 <0.05 <0.05
	<0.05 <0.05 <0.05 <0.05 0.56 <0.05 0.50 0.47 0.23 0.29 0.23 0.11 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0.50 0.50
	<0.05 <0.05 <0.05 <0.05 <0.05 0.56 <0.05 0.50 0.47 0.23 0.29 0.23 0.11 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 2.4
	<0.05 <0.05 <0.05 <0.05 0.56 <0.05 0.50 0.47 0.23 0.29 0.23 0.11 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 2.4
	< 0.001 < 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001
	< 0.001 < 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001
	< 0.001 < 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0
	< 0.001 < 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
	< 0.001 < 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
	< 0.001 < 0.001 < 0.001 < 2.00 < 2.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0

< 10

< 0.001 < 0.001 < 0.001

< 0.001 < 0.001 < 0.001

٢

Not-detected

Harriet MacRae BSc MSc Graduate Soil Scientist

Visual Examination The sample was described as a very dark grey (Munsell Colour 10YR 3/1), slightly moist, friable, very slightly calcareous SANDY CLAY LOAM with a well developed, fine to medium and occasionally coarse granular and sub-angular blocky structure. The sample was slightly stony. No unusual odours, deleterious materials, roots or rhizomes of permicious weeds were observed.

SCL = SANDY CLAY LOAM

Results of analysis should be read in conjunction with the report they were issued with

The contents of this certificate shall not be reproduced without the express written permission of Tim O'Hare Associates LLP.

Tim O'Hare Associates LLP Howbery Park Wallingford Oxfordshire OX10 8BA www.toha.co.uk

Topsoil Source: PLots 37-44 FAIRFIELD RD, DROYLODEN

GRAPPENHALL SOURCE

Analytical Report Number: 20-34336 Project / Site name: Astor Drive Your Order No: 12.613.HM.A

Lab Sample Number				1643369	1643370
Sample Reference	TS101	TS102			
Sample Number	None Supplied	None Supplied			
Depth (m)	None Supplied	None Supplied			
Date Sampled	07/10/2020	07/10/2020			
Time Taken	None Supplied	None Supplied			
Analytical Parameter (Soll Analysis)	Units	Limit of detection	Accreditation Status		-01
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Molsture Content	%	N/A	NONE		25
Total mass of sample received	kg	0.001	NONE	0.6	Z
Asbestos in Soll	Туре	N/A	ISO 17025	Not-detected	Not-detected
General Inorganics					
pH - Automated	pH Units	N/A	MCERTS	7	7
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1
Fotal Sulphate as SO4	mg/kg	50	MCERTS	600	680
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	52	120
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.026	0.058
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	25.9	58.2
Sulphide	mg/kg	1	MCERTS	24	28
Fotal Sulphur	mg/kg	50	MCERTS	280	310
Speciated PAHs					_
Naphthalene	mg/kg	0.05	MCERTS	< 0,05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	0,48
Anthracene	rng/kg	0.05	MCERTS	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.81
Pyrene	mg/kg	0.05	MCERTS	< 0.05	0.75
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	0.38
Chrysene	mg/kg	0.05	MCERTS	< 0.05	0.47
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.45
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.27
Benzo(a)pyrene	mg/kg	0.05	MCERTS MCERTS	< 0.05	0.42
Indeno(1,2,3-cd)pyrene	mg/kg	0.05		< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS MCERTS	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	\$ 0.05	\$ 0105
Total PAH	mg/kg	0.8	MCERTS	< 0.80	4.03
Speciated Total EPA-16 PAHs	119/149	0.0	TIGHTE		
Heavy Metals / Metalloids					
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	16	18
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2
Chromlum (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0
Chromlum (aqua regia extractable)	mg/kg	1	MCERTS	25	23
Copper (aqua regia extractable)	mg/kg	1	MCERTS	60	62
					70

Chromium (hexavalent)	rng/kg	4	MCERTS	< 4.0	< 4.0
Chromlum (aqua regia extractable)	rng/kg	1	MCERTS	25	23
Copper (aqua regia extractable)	mg/kg	1	MCERTS	60	62
Lead (aqua regia extractable)	mg/kg	1	MCERTS	67	78
Mercury (aqua regia extractable)	mg/kg	0,3	MCERTS	< 0.3	< 0.3
Nickel (agua regia extractable)	mg/kg	1	MCERTS	20	20
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	1.2
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	75	84

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Analytical Report Number: 20-34336 Project / Site name: Astor Drive Your Order No: 12.613.HM.A

Lab Sample Number	1643369	1643370			
Sample Reference	TS101	TS102			
Sample Number				None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied
Date Sampled				07/10/2020	07/10/2020
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Petroleum Hydrocarbons					
трн (С5 - С6)	mg/kg	1	NONE	< 1.0	< 1.0
ТРН (Сб - С8)	mg/kg	0.1	MCERTS	< 0.1	< 0.1
ТРН (С8 - С10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1
ТРН (С10 - С12)	mg/kg	2	MCERTS	< 2,0	< 2.0
ТРН (С12 - С16)	mg/kg	4	MCERTS	< 4.0	< 4.0
ТРН (С16 - С21)	mg/kg	1	MCERTS	< 1.0	< 1.0
ТРН (С21 - С35)	mg/kg	1	MCERTS	< 1.0	< 1.0
ТРН (С35 - С40)	mg/kg	10	MCERTS	< 10	< 10
TPH Total C5 - C40	rng/kg	10	MCERTS	< 10	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample

SOIL & LANDSCAPL CONSULTANCY

Client:	MB Soils & Groundworks Ltd								
Project: Wrexham Road, Chester Job: Topsoll Analysis - BS3882:2015									
	lob: Topsoll Analysis - B\$3882:2015 Date: 15/02/2022								
Job Ref No: TOHA/22/7331/SS									
SOD REI NO.	1011022/331135								
Sample Refer	ence								
			Accreditation						
Clay (< 0.002m		%	UKAS.						
Silt (0.002-0.0		%	UKAS						
Sand (0.063-2		%	UKAS						
	(UK Classification)		UKAS						
Stones (2-20m		% DW	GLP						
Stones (20-50		% DW	GLP						
Stones (>50m	m)	% DW	GLP						
-111/-1 71-0	P	1	10/10						
	5 water extract)	units	UKAS						
	luctivity (1:2.5 water extract) luctivity (1:2 CaSO, extract)	uS/cm uS/cm	UKAS						
	Sodium Percentage	with the second	UKAS UKAS						
Organic Matter		%	UKAS						
Total Nitrogen		%	UKAS						
C : N Ratio	(Dunius)	ratio	UKAS						
Extractable Ph	osphorus	mg/l	UKAS						
Extractable Po		mg/	UKAS						
Extractable Ma		mg/l	UKAS						
		1 0.84	0.00						
Total Arsenic (As)	mg/kg	MCERTS						
Total Cadmium		mg/kg	MCERTS						
Total Chromiur		mg/kg	MCERTS						
Hexavalent Ch	romium (Cr VI)	mg/kg	MCERTS						
Total Copper (0		mg/kg	MCERTS						
Total Lead (Pb		mg/kg	MCERTS						
Total Mercury (mg/kg	MCERTS						
Total Nickel (Ni		mg/kg	MCERTS						
Total Selenium	(Se)	mg/kg	MCERTS						
Total Zinc (Zn)		mg/kg	MCERTS						
Water Soluble		mg/kg	MCERTS						
Fotal Cyanide (mg/kg	MCERTS						
fotal (mono) Pl	nenols	mg/kg	MCERTS						
			1100000						
laphthalene		mg/kg	MCERTS						
Acenaphthylen	3	mg/kg	MCERTS						
Acenaphthene		mg/kg	MCERTS MCERTS						
Phenanthrene		mg/kg mg/kg	MCERTS						
Anthracene		mg/kg	MCERTS						
luoranthene		mg/kg	MCERTS						
yrene		mg/kg	MCERTS						
Benz(a)anthrac	ene	mg/kg	MCERTS						
Chrysene		mg/kg	MCERTS						
Benzo(b)fluorar	thene	mg/kg	MCERTS						
Benzo(k)fluorar		mg/kg	MCERTS						
Benzo(a)pyrene		mg/kg	MCERTS						
ndeno(1,2,3-cd)pyrene	mg/kg	MCERTS						
)ibenzo(a,h)an	hracene	mg/kg	MCERTS						
lenzo(g,h,i)per		mg/kg	MCERTS						
otal PAHs (sur	n USEPA16)	mg/kg	MCERTS						
liphatic TPH >		mg/kg	MCERTS						
liphatic TPH >		mg/kg	MCERTS						
liphatic TPH >		mg/kg	MCERTS						
liphatic TPH >		mg/kg	MCERTS						
liphatic TPH >		mg/kg	MCERTS						
liphatic TPH >		mg/kg	MCERTS						
liphatic TPH >0 liphatic TPH (C		mg/kg	MCERTS						
romatic TPH (C		mg/kg	MCERTS						
romatic TPH >		mg/kg mg/kg	MCERTS						
romatic TPH >		mg/kg	MCERTS						
romatic TPH >		mg/kg	MCERTS						
romatic TPH >	C12 - C16	mg/kg	MCERTS						
romatic TPH >	C16 - C21	mg/kg	MCERTS						
romatic TPH >		mg/kg	MCERTS						
romatic TPH (C		mg/kg	MCERTS						
enzene		mg/kg	MCERTS						
oluene		mg/kg	MCERTS						
thylbenzene		mg/kg	MCERTS						
& m-xylene		mg/kg	MCERTS						
xylene		mg/kg	MCERTS						
TBE (Methyl Te	ertiary Butyl Ether)	mg/kg	MCERTS						

10	-
9	-
81	-
18	-
2	-
1	-
0	-
0	-
6.4	
73	
2069	
1.0	
5.7 0.30	
0.30	
11	
29	
82	
84	
8	-
< 0.2	-
14	-
< 4.0	÷
30	÷
59	-
< 0.3	-
13	-
< 1.0	-
48	-
0.3	
	-
	-
< 1.0	
< 0.05	
< 0.05	
0.26	
0.22	
1.00	٦
< 0.05	1
0.85	1
0.88	٦
0.57	٦
0.53	1
0.37	٦
0.37 0.27 0.33	١
0.33	١
< 0.05	١
< 0.05	1
< 0.05	١
	1
5.3	

Wrexham Road Chester Topsoil

	< 0.001	
	< 0.001	
	< 1.0	_
	< 2.0	
	< 8.0	
	25	
1	26	-
	< 0.001	
	< 0.001	_
	< 0.001	_
	< 1.0	_
	< 2.0	
	< 10	
	< 10	Ĩ.
E	< 10	_
Г	< 0.001	-
	< 0.001	1
-	< 0.001	

< 0.001

LS = LOAMY SAND

Visual Examination The sample was described as a very dark greyish brown (Munsell Colour 10YR 3/2), dry, friable, non-calcareous LOAMY SAND with a weakly developed, fine to medium granular structure. The sample was virtually stone-free and no unusual odours, deleterious materials, roots or rhizomes of pernicious weeds were observed.

Tilly Kimble-Wilde BSc MSc Graduate Soil Scientist

Results of analysis should be read in conjunction with the report they were issued with

The contents of this certificate shall not be reproduced without the express written permission of Tim O'Hare Associates LLP.

Tim O'Hare Associates LLP Howbery Park Wallingford Oxfordshire OX10 8BA www.toha.co.uk

Catherine Baranek LK Consult Limited Unit 29 Eton Business Park Eton Hill Road Manchester M26 2ZS

Derwentside Environmental Testing Services Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 22-10945

Site Reference:	Fairfield Road, Drovlsden
Project / Job Ref:	LKC 20 1761
Order No:	LKC 20 1761-CB
Sample Receipt Date:	20/12/2022
Sample Scheduled Date:	21/12/2022
Report Issue Number:	1
Reporting Date:	04/01/2023

Authorised by:

Dave Ashworth Technical Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Soil Analysis Certificate						
DETS Report No: 22-10945			Date Sampled	19/12/22		
LK Consult Limited			Time Sampled	None Supplied		
Site Reference: Fairfield Road, Droylsde	en	TP / BH No		Plot 43 & 44 Topsoil (TS)		
Project / Job Ref: LKC 20 1761		/	Additional Refs	None Supplied		
Order No: LKC 20 1761-CB			Depth (m)	None Supplied		
Reporting Date: 04/01/2023		D	ETS Sample No	625904		
Determinand	Unit	RL	Accreditation			
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected		
PH	pH Units	N/a	MCERTS	7.2		
Total Cyanide	mg/kg	< 1	NONE	< 1		
Free Cyanide	mg/kg	< 1	NONE	< 1		
W/S Sulphate as SO. (2:1)	ma/l	< 10	MCEDTS	17		

W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	17		
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.02		
Organic Matter (SOM)	%	< 0.1	MCERTS	3.3		
Arsenic (As)	mg/kg	< 2	MCERTS	9		
W/S Boron	mg/kg	< 1	NONE	< 1		
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2		
Chromium (Cr)	mg/kg	< 2	MCERTS	19		
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2		
Copper (Cu)	mg/kg	< 4	MCERTS	31		
Lead (Pb)	mg/kg	< 3	MCERTS	49		
Mercury (Hg)	mg/kg	< 1	MCERTS	< 1		
Nickel (Ni)	mg/kg	< 3	MCERTS	14		
Selenium (Se)	mg/kg	< 2	MCERTS	< 3		
Vanadium (V)	mg/kg	< 1	MCERTS	23		
Zinc (Zn)	mg/kg	< 3	MCERTS	54		
Total Phenols (monohydric)	mg/kg	< 1	NONE	< 2		

 Total Phenols (monohydric)
 mg/kg
 < 1</th>
 NONE
 < 2</th>

 Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)
 Subcontracted analysis (S)

Soil Analysis Certificate - Speciated PAHs									
DETS Report No: 22-1094	45		Date Sampled	19/12/22					
LK Consult Limited			Time Sampled	None Supplied					
Site Reference: Fairfield Road, Droylsden		TP / BH No		Plot 43 & 44 Topsoil (TS)					
Project / Job Ref: LKC 20) 1761	A	Additional Refs	None Supplied					
Order No: LKC 20 1761-C			Depth (m)	None Supplied					
Reporting Date: 04/01/2	023	DE	ETS Sample No	625904					
Determinand	Unit	RL	Accreditation						
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1					
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1					
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1					
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1					
Phenanthrene	mg/kg	< 0.1	MCERTS	< 0.1					
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1					
Fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1					
Pyrene	mg/kg	< 0.1	MCERTS	< 0.1					
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	< 0.1					
Chrysene	mg/kg	< 0.1	MCERTS	< 0.1					
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1					
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1					
Benzo(a)pyrene	0 0	< 0.1	MCERTS	< 0.1					
Indeno(1,2,3-cd)pyrene		< 0.1	MCERTS	< 0.1					
Dibenz(a,h)anthracene	0 0		MCERTS	< 0.1					
Benzo(ghi)perylene		< 0.1	MCERTS	< 0.1					
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	< 1.6					

Soil Analysis Certificate	e - TPH LQM Banded	ł				
DETS Report No: 22-109	45	Date Sampled		19/12/22		
LK Consult Limited			Time Sampled	None Supplied		
Site Reference: Fairfield	Road, Droylsden		TP / BH No	Plot 43 & 44		
				Topsoil (TS)		
	47/4					
Project / Job Ref: LKC 20		ŀ	Additional Refs	None Supplied		
Order No: LKC 20 1761-C			Depth (m)	None Supplied	 	
Reporting Date: 04/01/2	2023	DI	ETS Sample No	625904		
Determiner a	11-14	DL	A			
Determinand			Accreditation	0.01		
Aliphatic >C5 - C6	5 5	< 0.01	NONE	< 0.01	 	
Aliphatic >C6 - C8	5 5	< 0.05		< 0.05	 	
Aliphatic >C8 - C10	5 5			< 2	 	
Aliphatic >C10 - C12	mg/kg			< 2	 	
Aliphatic >C12 - C16	5 5			< 3	 	
Aliphatic >C16 - C35				< 10	 	
Aliphatic >C35 - C44				< 10	 	
Aliphatic (C5 - C44)	mg/kg			< 30		
Aromatic >C5 - C7	5 5	< 0.01	NONE	< 0.01		
Aromatic >C7 - C8	0 0	< 0.05		< 0.05		
Aromatic >C8 - C10	mg/kg		MCERTS	< 2	 	
Aromatic >C10 - C12	mg/kg		MCERTS	< 2	 	
Aromatic >C12 - C16	mg/kg	< 2	MCERTS	< 2		
Aromatic >C16 - C21	mg/kg			< 3		
Aromatic >C21 - C35	mg/kg			< 10		
Aromatic >C35 - C44	J J			< 10		
Aromatic (>C5 - C44)	mg/kg	< 30		< 30		
Total >C5 - C44	mg/kg	< 60	NONE	< 60		

Soil Analysis Certificate -	BTEX / MTBE				
DETS Report No: 22-10945	ETS Report No: 22-10945 Date Sampled			19/12/22	2
LK Consult Limited			Time Sampled	None Supplied	E Construction of the second se
Site Reference: Fairfield Road, Droylsden			TP / BH No	Plot 43 & 44 Topsoil (TS)	
Project / Job Ref: LKC 20 1	761	/	Additional Refs	None Supplied	
Order No: LKC 20 1761-CB			Depth (m)	None Supplied	t t t t t t t t t t t t t t t t t t t
Reporting Date: 04/01/20	23	D	ETS Sample No	625904	4
Determinand	Unit	DI	Accreditation		
Benzene	ug/kg		MCERTS	< 2	2
Toluene	ug/kg	< 5	MCERTS	< 5	5
Ethylbenzene	ug/kg	< 2	MCERTS	< 2	2
p & m-xylene	ug/kg	< 2	MCERTS	< 2	2
o-xylene	ug/kg	< 2	MCERTS	< 2	2
MTBE	ug/kg	< 5	MCERTS	< 5	

DETS	S Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description		
	625904	Plot 43 & 44 Topsoil (TS)	None Supplied	None Supplied	14.1	Brown sandy clay with stones		

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm VS}$ Unsuitable Sample $^{\rm US}$

Page 6 of 7

Soil Analysis Certificate - Methodology & Miscellaneous Information	
DETS Report No: 22-10945	
LK Consult Limited	
Site Reference: Fairfield Road, Droylsden	
Project / Job Ref: LKC 20 1761	
Order No: LKC 20 1761-CB	
Reporting Date: 04/01/2023	

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR		Determination of BTEX by headspace GC-MS	E001
Soil	D		Determination of cations in soil by agua-regia digestion followed by ICP-OES	E002
Soil	D	Chloride - Water Soluble (2:1)	Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR		Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D		Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR		Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D		Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	C12-C16, C16-C21, C21-C40)		E004
Soil	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D	Fraction Organic Carbon (FOC)	Determination of TOC by combustion analyser.	E027
Soil	D		Determination of TOC by combustion analyser.	E027
Soil	D		Determination of TOC by combustion analyser.	E027
Soil	AR	Exchangeable Ammonium	Determination of ammonium by discrete analyser.	E029
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D	Magnesium - Water Soluble		E025
Soil	D	Metals		E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil Soil	D	Nitrate - Water Soluble (2:1) Organic Matter	Determination of nitrate by extraction with water & analysed by ion chromatography Determination of organic matter by oxidising with potassium dichromate followed by titration with	E009 E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the	E005
Soil	AR		use of surrogate and internal standards Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D		Gravimetrically determined through extraction with petroleum ether	E008 E011
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E011 E007
Soil	AR		Determination of phenols by distillation followed by colorimetry	E007
Soil	D		Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of prosphate by extraction with 10% HCI followed by ICP-OES	E013
Soil	D		Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of water soluble sulphate by extraction with water a analysed by ion chromatography Determination of water soluble sulphate by extraction with water followed by ICP-OES	E009
Soil	AR		Determination of sulphide by distillation followed by colorimetry	E018
Soil	D		Determination of sulphue by distination rollowed by colorinner y	E010
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and beyane followed by	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)		E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with	E010
Soil	AR	TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34,	iron (II) sulphate Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)		E004
L I				E001
Soil	AR	VOCs	Determination of volatile organic compounds by headspace GC-MS Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

D Dried AR As Received

APPENDIX D IMPORTED CLEAN INERT FILL TESTING DATA

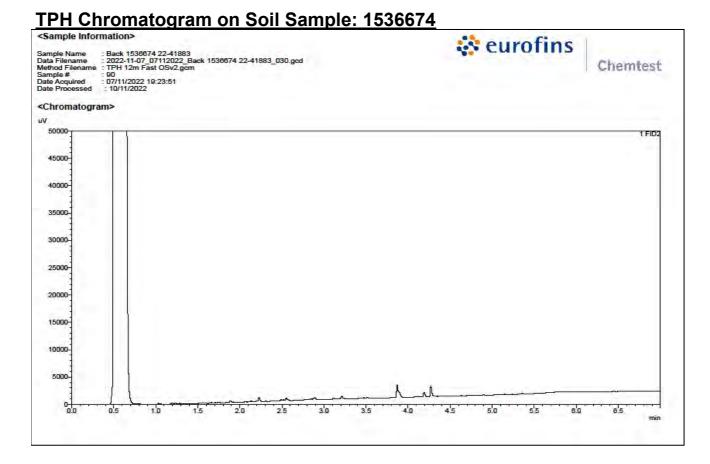
🔅 eurofins

Chemtest

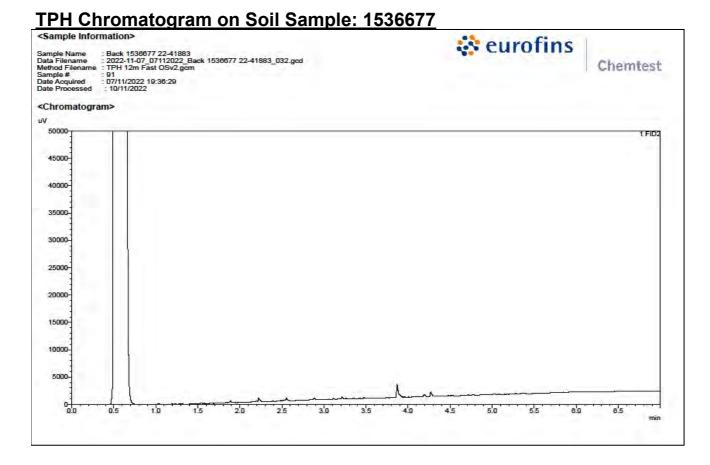
Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

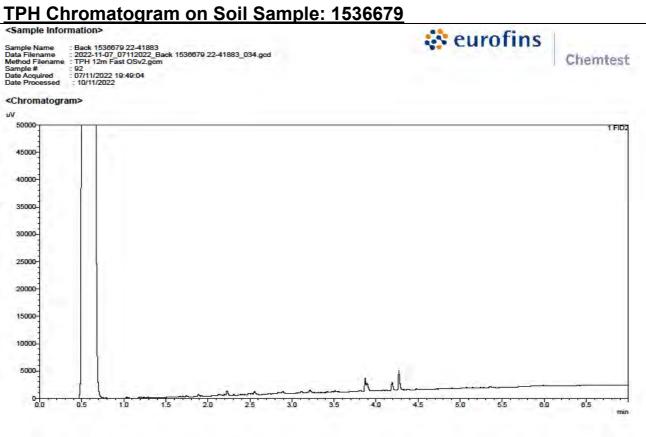
Final Report

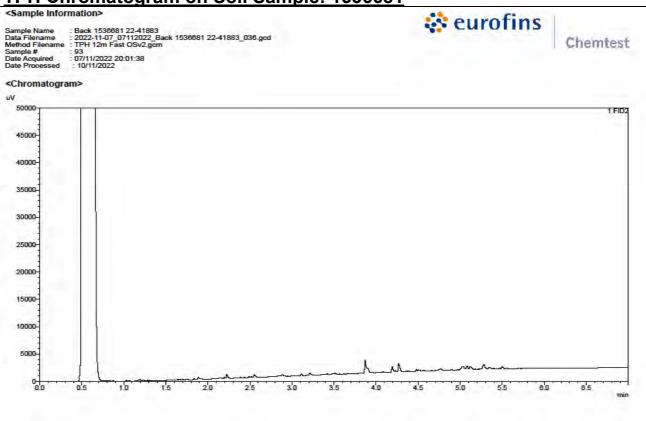
Report No.:	22-41883-1		
Initial Date of Issue:	12-Nov-2022		
Client	LK Consult		
Client Address:	Unit 29 Eton Business Park Eton Hill Road Radcliffe Manchester Lancashire M26 2ZS		
Contact(s):	Catherine Baranek Contaminated Land		
Project	LKC 20 1761 Fairfield Road		
Quotation No.:		Date Received:	02-Nov-2022
Order No.:	740690	Date Instructed:	04-Nov-2022
No. of Samples:	7		
Turnaround (Wkdays):	5	Results Due:	10-Nov-2022
Date Approved:	12-Nov-2022		
Approved By:			
Details:	Stuart Henderson, Technical Manager		

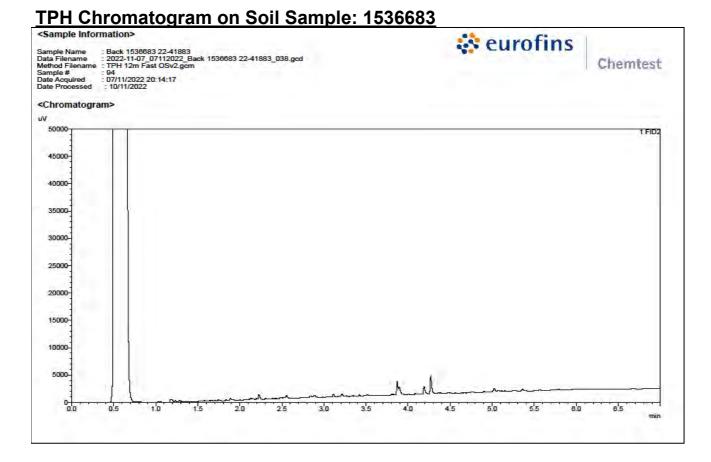

Project: LKC 20 1761 Fairfield Road

Client: LK Consult		Che	mtest Jo	ob No.:	22-41883	22-41883	22-41883	22-41883	22-41883	22-41883	22-41883
Quotation No.:	(Chemte	est Sam	ple ID.:	1536674	1536677	1536679	1536680	1536681	1536682	1536683
Order No.: 740690		Clie	nt Samp	le Ref.:	Plot 61 Rear	Plot 62 Rear	Apartment	Plot 38 Rear	Plot 38 Rear	Plot 37 Rear	Plot 37 Rear
			ent Sam		TS	TS	TS	Sub	TS	Sub	TS
			Sample	e Type:	SOIL						
			Date Sa	ampled:	01-Nov-2022						
			Asbest	os Lab:	COVENTRY						
Determinand	Accred.	SOP	Units	LOD							
АСМ Туре	U	2192		N/A	-	-	-	-	-	-	-
		0400		N1/A	No Asbestos						
Asbestos Identification	U	2192		N/A	Detected						
Moisture	N	2030	%	0.020	19	20	15	21	22	21	28
Soil Colour	N	2040		N/A	Brown						
Other Meterial	N	00.40		N1/A	Stones and	01	01	Stones and	0.4	01	01
Other Material	N	2040		N/A	Roots	Stones	Stones	Roots	Stones	Stones	Stones
Soil Texture	N	2040		N/A	Loam	Sand	Sand	Sand	Sand	Sand	Sand
Chromatogram (TPH)	N			N/A	See Attached	See Attached	See Attached		See Attached		See Attached
pH	U	2010		4.0	8.2	8.4	6.7	7.0	7.0	7.1	6.9
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	0.58	0.47	< 0.40		0.48		< 0.40
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	< 0.010	< 0.010	0.043	< 0.010	0.039	0.012	< 0.010
Cyanide (Free)	U	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50		< 0.50		< 0.50
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50		< 0.50		< 0.50
Arsenic	U	2455	mg/kg	0.5	2.6	4.0	3.1	7.5	6.5	5.5	5.6
Cadmium	U	2455	mg/kg	0.10	< 0.10	0.20	0.22	0.19	0.13	0.11	0.16
Chromium	U	2455	mg/kg	0.5	3.4	5.3	5.6	15	15	12	11
Copper	U	2455	mg/kg	0.50	11	21	8.9	78	19	17	20
Mercury	U	2455	mg/kg	0.05	0.06	0.12	0.05	0.07	0.06	0.05	0.10
Nickel	U	2455	mg/kg	0.50	4.5	6.2	5.2	9.6	9.9	7.5	11
Lead	U	2455	mg/kg	0.50	23	48	21	42	28	25	39
Selenium	U	2455	mg/kg	0.25	< 0.25	< 0.25	< 0.25	0.37	0.49	0.27	0.47
Vanadium	U	2455	mg/kg	0.5	3.8	6.6	6.7	16	16	14	12
Zinc	U	2455	mg/kg	0.50	19	71	26	49	37	29	43
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	4.5	7.8	2.2	4.5	11	2.8	6.9
Diesel Present	N	2670		N/A	False	False	False		False		False
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0
Aliphatic TPH >C8-C10	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0
Aliphatic TPH >C10-C12	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0
Aliphatic TPH >C12-C16	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0
Aliphatic TPH >C16-C21	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0
Aliphatic TPH >C21-C35	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0
Aliphatic TPH >C35-C44	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0
Total Aliphatic Hydrocarbons	Ν	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0		< 5.0		< 5.0
Aromatic TPH >C5-C7	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0
Aromatic TPH >C7-C8	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0
Aromatic TPH >C8-C10	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0


<u> Results - Soil</u>


Project: LKC 20 1761 Fairfield Road


Client: LK Consult		Che	mtest Jo	ob No.:	22-41883	22-41883	22-41883	22-41883	22-41883	22-41883	22-41883
Quotation No.:	(Chemte	st Sam	ple ID.:	1536674	1536677	1536679	1536680	1536681	1536682	1536683
Order No.: 740690		Clie	nt Samp	le Ref.:	Plot 61 Rear	Plot 62 Rear	Apartment	Plot 38 Rear	Plot 38 Rear	Plot 37 Rear	Plot 37 Rear
		Cli	ent Sam	ple ID.:	TS	TS	TS	Sub	TS	Sub	TS
			Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Date Sa	ampled:	01-Nov-2022	01-Nov-2022	01-Nov-2022	01-Nov-2022	01-Nov-2022	01-Nov-2022	01-Nov-2022
			Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD							
Aromatic TPH >C10-C12	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0
Aromatic TPH >C12-C16	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0
Aromatic TPH >C16-C21	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0
Aromatic TPH >C21-C35	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0		< 5.0		< 5.0
Total Petroleum Hydrocarbons	Ν	2680	mg/kg	10.0	< 10	< 10	< 10		< 10		< 10
Benzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0
Toluene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0
Ethylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0
m & p-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0
o-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0
Methyl Tert-Butyl Ether	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0
Naphthalene	U	2800	mg/kg	0.10	0.59	0.64	0.39	0.79	1.4	0.77	1.0
Acenaphthylene	N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	U	2800	mg/kg	0.10	0.13	< 0.10	< 0.10	< 0.10	0.12	< 0.10	0.11
Fluorene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	0.15	0.18	< 0.10	0.11
Phenanthrene	U	2800	mg/kg	0.10	0.58	0.57	0.16	0.61	0.28	0.20	0.45
Anthracene	U	2800	mg/kg	0.10	0.14	0.11	< 0.10	0.16	< 0.10	< 0.10	0.12
Fluoranthene	U	2800	mg/kg	0.10	0.94	0.85	0.17	0.87	0.22	0.23	0.65
Pyrene	U	2800	mg/kg	0.10	0.90	0.78	0.21	0.84	0.20	0.24	0.61
Benzo[a]anthracene	U	2800	mg/kg	0.10	0.49	0.38	< 0.10	0.49	< 0.10	< 0.10	0.41
Chrysene	U	2800	mg/kg	0.10	0.41	0.35	< 0.10	0.39	< 0.10	< 0.10	0.28
Benzo[b]fluoranthene	U	2800	mg/kg	0.10	0.43	0.49	< 0.10	0.40	< 0.10	< 0.10	0.37
Benzo[k]fluoranthene	U	2800	mg/kg	0.10	0.12	0.11	< 0.10	0.16	< 0.10	< 0.10	0.16
Benzo[a]pyrene	U	2800	mg/kg	0.10	0.51	0.40	< 0.10	0.39	< 0.10	< 0.10	0.38
Indeno(1,2,3-c,d)Pyrene	U	2800	mg/kg	0.10	0.22	0.24	< 0.10	< 0.10	< 0.10	< 0.10	0.26
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2800	mg/kg	0.10	0.39	0.29	< 0.10	0.24	< 0.10	< 0.10	0.22
Total Of 16 PAH's	N	2800	mg/kg	2.0	5.9	5.2	< 2.0	5.5	2.4	< 2.0	5.1
Total Phenols	U	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10		< 0.10		< 0.10


Page 4 of 11

TPH Chromatogram on Soil Sample: 1536681 <Sample Information>

Page 8 of 11

TPH Interpretation

Job	Sample	Matrix	Location	Sample Ref	Sample ID	Sample Depth (m)	Gasoline / Diesel Present	TPH Interpretation
22-41883	1536674	S		Plot 61 Rear	TS		No	N/A
22-41883	1536677	S		Plot 62 Rear	TS		No	N/A
22-41883	1536679	S		Apartment	TS		No	N/A
22-41883	1536681	S		Plot 38 Rear	TS		No	N/A
22-41883	1536683	S		Plot 37 Rear	TS		No	N/A

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

😵 eurofins

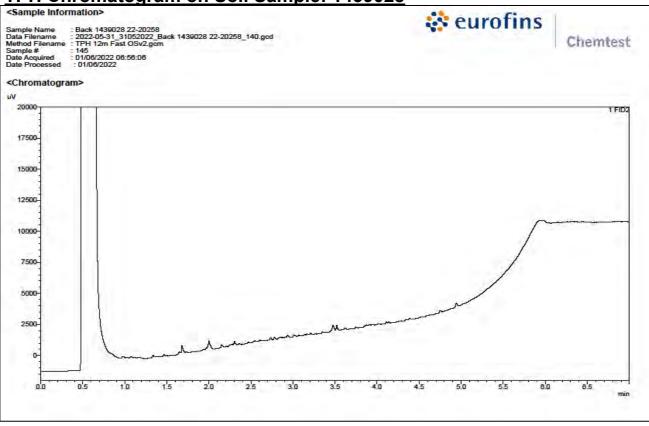
Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

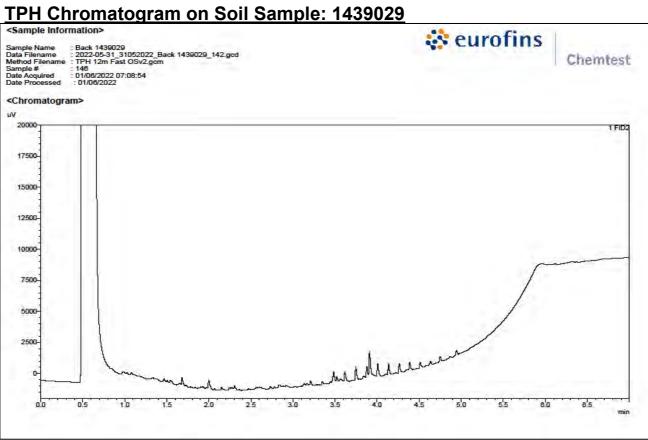
Report No.:	22-20258-1		
Initial Date of Issue:	08-Jun-2022		
Client	LK Consult		
Client Address:	Unit 29 Eton Business Park Eton Hill Road Radcliffe Manchester Lancashire M26 2ZS		
Contact(s):	Contaminated Land Ella Mcleod		
Project	LKC 20 1761 Fairfield Road, Droylsden	I	
Quotation No.:		Date Received:	31-May-2022
Order No.:	740322	Date Instructed:	31-May-2022
No. of Samples:	18		
Turnaround (Wkdays):	5	Results Due:	08-Jun-2022
Date Approved:	08-Jun-2022		
Approved By:			
Details:	Stuart Henderson, Technical Manager		

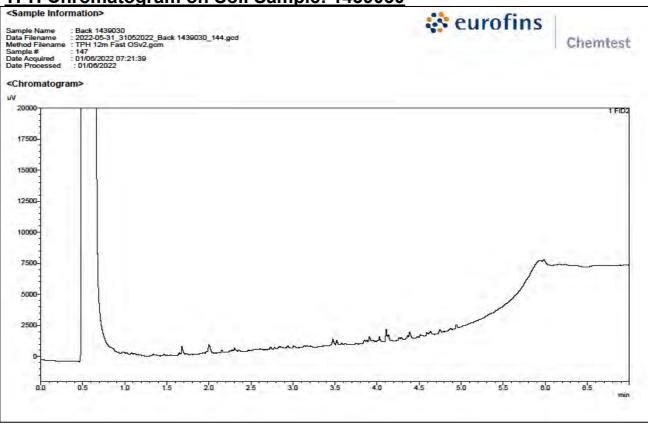
Final Report

Client: LK Consult		Che	mtest J	ob No.:	22-20258	22-20258	22-20258	22-20258	22-20258	22-20258	22-20258	22-20258
Quotation No.:	(st Sam		1439016	1439017	1439018	1439019	1439020	1439021	1439022	1439023
		Cli	ent Sam			Plot 37 MG2	Plot 38 MG1	Plot 38 MG2	Plot 39 MG1	Plot 39 MG2	Plot 40 MG1	Plot 40 MG2
		Sample Type:				SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
					27-May-2022	27-May-2022	27-May-2022	27-May-2022	27-May-2022	27-May-2022	27-May-2022	
			Asbest	-	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units									
АСМ Туре	U	2192		N/A	-	-	-	-	Fibres/Clumps	Fibres/Clumps	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	Chrysotile	Chrysotile	No Asbestos Detected	No Asbestos Detected
Asbestos by Gravimetry	U	2192	%	0.001					0.001	0.017		
Total Asbestos	U	2192	%	0.001					0.001	0.017		
Moisture	Ν	2030	%	0.020	23	24	13	13	19	21	14	13
Soil Colour	Ν	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	Brown	Brown
Other Material	Ν	2040		N/A	Stones	Stones and Roots	Stones and Roots	Stones and Roots	Stones	Stones	Stones and Roots	Stones
Soil Texture	Ν	2040		N/A	Sand	Sand	Sand	Sand	Clay	Clay	Clay	Clay
Chromatogram (TPH)	Ν			N/A								
рН	М	2010		4.0	8.3	7.8	8.2	8.4	9.3	9.6	8.8	9.0
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40								
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	0.056	0.084	0.13	0.15	1.4	1.9	0.71	0.61
Cyanide (Free)	М	2300	mg/kg	0.50								
Cyanide (Total)	М	2300	mg/kg	0.50								
Arsenic	М	2455	mg/kg	0.5	24	13	35	43	33	22	22	22
Cadmium	М	2455	mg/kg	0.10	1.2	0.98	1.9	6.4	2.7	2.4	3.0	3.2
Chromium	М	2455	mg/kg	0.5	20	14	27	32	24	14	18	19
Copper	М	2455	mg/kg	0.50	390	210	550	900	910	370	830	1400
Mercury	М	2455	mg/kg	0.05	0.14	0.11	0.16	0.15	0.21	0.19	0.17	0.17
Nickel	М	2455	mg/kg	0.50	12	10	18	20	220	14	22	21
Lead	М	2455	mg/kg	0.50	710	560	1000	1000	1500	910	1400	1400
Selenium	М	2455	mg/kg	0.25	0.94	0.83	1.4	1.6	2.0	1.3	0.97	0.99
Vanadium	U	2455	mg/kg	0.5	15	13	19	23	14	10	13	13
Zinc	М	2455	mg/kg	0.50	500	450	960	1200	890	660	1200	1000
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter	М	2625	%	0.40	21	13	9.5	10	4.1	5.1	6.3	3.6
Diesel Present	N	2670		N/A								
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0								
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0								
Aliphatic TPH >C8-C10	М	2680	mg/kg	1.0								
Aliphatic TPH >C10-C12	М	2680	mg/kg	1.0								
Aliphatic TPH >C12-C16	М	2680	mg/kg	1.0								
Aliphatic TPH >C16-C21	М	2680	mg/kg	1.0								
Aliphatic TPH >C21-C35	М	2680	mg/kg	1.0								
Aliphatic TPH >C35-C44	Ν	2680	mg/kg	1.0								
Total Aliphatic Hydrocarbons	Ν	2680	mg/kg	5.0								
Aromatic TPH >C5-C7	Ν	2680	mg/kg	1.0								
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0								

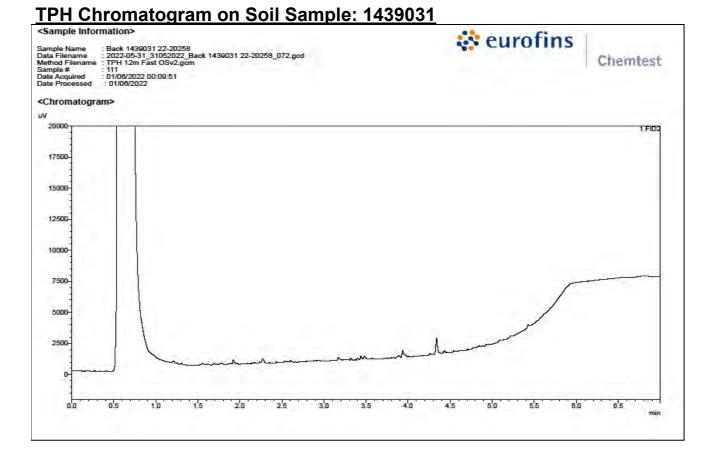

Client: LK Consult		Che	mtest Jo	ob No.:	22-20258	22-20258	22-20258	22-20258	22-20258	22-20258	22-20258	22-20258
Quotation No.:	0	Chemte	est Sam	ple ID.:	1439016	1439017	1439018	1439019	1439020	1439021	1439022	1439023
		Cli			Plot 37 MG1	Plot 37 MG2	Plot 38 MG1	Plot 38 MG2	Plot 39 MG1	Plot 39 MG2	Plot 40 MG1	Plot 40 MG2
				e Type:	SOIL							
			Date Sa	mpled:	27-May-2022							
			Asbest	os Lab:	DURHAM							
Determinand	Accred.	SOP	Units	LOD								
Aromatic TPH >C8-C10	М	2680	mg/kg	1.0								
Aromatic TPH >C10-C12	М		mg/kg	1.0								
Aromatic TPH >C12-C16	М	2680	mg/kg	1.0								
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0								
Aromatic TPH >C21-C35	М	2680	mg/kg	1.0								
Aromatic TPH >C35-C44	Ν	2680	mg/kg	1.0								
Total Aromatic Hydrocarbons	Ν	2680	mg/kg	5.0								
Total Petroleum Hydrocarbons	Ν	2680	mg/kg	10.0								
Benzene	М	2760	µg/kg	1.0								
Toluene	М	2760	µg/kg	1.0								
Ethylbenzene	М	2760	µg/kg	1.0								
m & p-Xylene	М	2760	µg/kg	1.0								
o-Xylene	М	2760	µg/kg	1.0								
Methyl Tert-Butyl Ether	М	2760	µg/kg	1.0								
Naphthalene	М	2800	mg/kg	0.10	1.8	< 0.10	< 0.10	2.7	0.55	0.64	0.45	< 0.10
Acenaphthylene	Ν	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	0.13	0.16	0.11	< 0.10	< 0.10
Acenaphthene	М	2800	mg/kg	0.10	4.1	< 0.10	< 0.10	6.0	0.63	1.1	0.61	< 0.10
Fluorene	М	2800	mg/kg	0.10	2.8	< 0.10	< 0.10	4.1	0.51	0.81	0.45	< 0.10
Phenanthrene	М	2800	mg/kg	0.10	28	1.4	13	34	4.1	8.8	3.9	3.9
Anthracene	М	2800	mg/kg	0.10	6.6	0.26	3.0	8.5	1.2	2.2	0.93	1.0
Fluoranthene	М	2800	mg/kg	0.10	29	2.3	13	31	5.9	14	6.8	5.0
Pyrene	М	2800	mg/kg	0.10	29	2.4	14	31	6.3	15	7.3	5.0
Benzo[a]anthracene	М	2800	mg/kg	0.10	14	1.3	6.8	15	3.3	7.1	4.5	2.5
Chrysene	М	2800	mg/kg	0.10	15	1.2	6.8	15	3.7	7.6	4.9	2.5
Benzo[b]fluoranthene	М	2800	mg/kg	0.10	15	1.9	7.3	15	4.4	9.5	7.3	3.2
Benzo[k]fluoranthene	М	2800	mg/kg	0.10	5.9	0.72	2.7	5.8	1.7	3.5	2.6	1.1
Benzo[a]pyrene	М	2800	mg/kg	0.10	14	1.6	6.9	14	4.0	8.6	6.3	2.9
Indeno(1,2,3-c,d)Pyrene	М	2800	mg/kg	0.10	6.8	1.1	3.4	7.0	2.5	4.7	3.9	1.5
Dibenz(a,h)Anthracene	Ν	2800	mg/kg	0.10	1.7	0.20	0.63	1.4	0.48	0.74	0.63	0.32
Benzo[g,h,i]perylene	М	2800	mg/kg	0.10	7.3	1.2	3.3	6.7	2.6	5.0	3.7	1.6
Total Of 16 PAH's	Ν	2800		2.0	180	16	81	200	42	89	54	31
Total Phenols	М	2920	mg/kg	0.10								

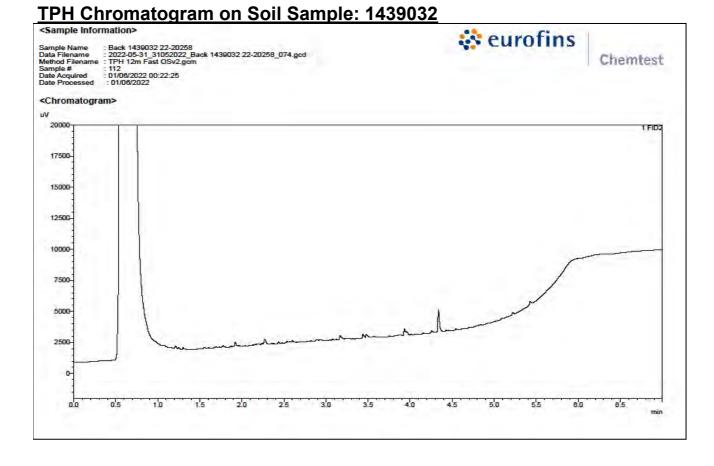
Client: LK Consult		Che	mtest J	ob No.:	22-20258	22-20258	22-20258	22-20258	22-20258	22-20258	22-20258	22-20258
Quotation No.:	(Chemte	est Sam	ple ID.:	1439024	1439025	1439026	1439027	1439028	1439029	1439030	1439031
		Cli	ent Sam	ple ID.:	Plot 41 MG1	Plot 41 MG2	Plot 42 MG1	Plot 42 MG2	Plot 43 SS105	Plot 44 SS106	Plot 45 SS101	Plot 46 SS102
				е Туре:	SOIL							
			Date Sa	ampled:	27-May-2022							
			Asbest	os Lab:	DURHAM							
Determinand	Accred.	SOP	Units									
АСМ Туре	U	2192		N/A	-	-	-	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected							
Asbestos by Gravimetry	U	2192	%	0.001								
Total Asbestos	U	2192	%	0.001								
Moisture	N	2030	%	0.020	14	10	15	12	6.2	6.1	12	15
Soil Colour	N	2040		N/A	Brown							
Other Material	Ν	2040		N/A	Stones	Stones	Stones and Roots	Stones	Stones	Stones	Stones and Roots	Stones and Roots
Soil Texture	N	2040		N/A	Clay	Clay	Clay	Clay	Sand	Sand	Sand	Clay
Chromatogram (TPH)	Ν			N/A					See Attached	See Attached	See Attached	See Attached
рН	М	2010		4.0	9.0	10.2	9.2	8.8	9.3	9.1	8.6	8.6
Boron (Hot Water Soluble)	M	2120	mg/kg	0.40					1.6	0.45	1.2	0.67
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	0.85	1.0	0.96	0.82	0.28	0.087	0.48	0.69
Cyanide (Free)	М	2300	mg/kg	0.50					< 0.50	< 0.50	< 0.50	< 0.50
Cyanide (Total)	М	2300	mg/kg	0.50					< 0.50	< 0.50	0.50	< 0.50
Arsenic	M	2455	mg/kg	0.5	29	25	30	19	2.7	1.9	4.8	7.3
Cadmium	M	2455	mg/kg	0.10	4.3	26	4.3	2.1	0.18	0.14	0.53	0.68
Chromium	M	2455	mg/kg	0.5	22	21	21	14	11	9.3	10	8.9
Copper	M	2455	mg/kg	0.50	1500	920	1100	460	11	9.4	90	160
Mercury	M	2455	mg/kg	0.05	0.20	0.18	0.31	0.16	< 0.05	< 0.05	< 0.05	< 0.05
Nickel Lead	M	2455 2455	mg/kg	0.50	24 2300	25 1900	21 1700	13 900	16 16	14 14	10 160	8.3 330
Selenium	M	2455	mg/kg mg/kg	0.50	1.1	1900	1.1	0.65	0.40	0.26	0.25	0.32
Vanadium	U	2455	mg/kg	0.25	1.1	1.2	1.1	9.8	10	7.8	7.7	6.9
Zinc	M	2455	mg/kg	0.50	1400	1300	1800	730	50	40	140	210
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter	M	2625	%	0.40	3.4	5.1	4.7	4.5	0.67	< 0.40	3.4	2.3
Diesel Present	N	2670		N/A					False	False	False	False
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0					< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0					< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	М	2680	mg/kg	1.0					< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	М	2680	mg/kg	1.0				1	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	М	2680	mg/kg	1.0					< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	М	2680	mg/kg	1.0					< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	М	2680	mg/kg	1.0					< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0					< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	Ν	2680	mg/kg	5.0					< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	Ν	2680	mg/kg	1.0					< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0					< 1.0	< 1.0	< 1.0	< 1.0

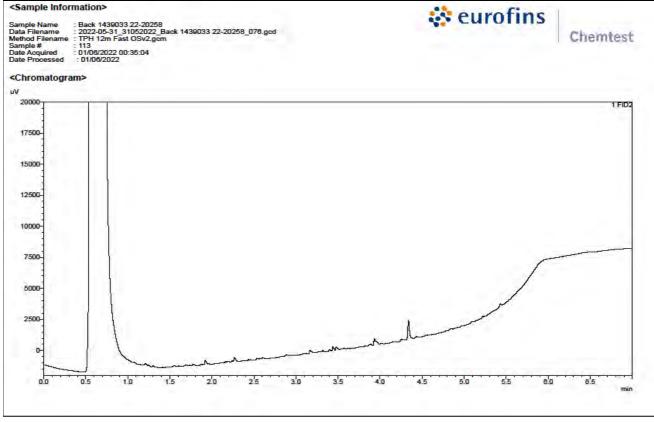

Client: LK Consult		Che	mtest J	ob No.:	22-20258	22-20258	22-20258	22-20258	22-20258	22-20258	22-20258	22-20258
Quotation No.:	(Chemte	est Sam	ple ID.:	1439024	1439025	1439026	1439027	1439028	1439029	1439030	1439031
		Cli	ent Sam	ple ID.:	Plot 41 MG1	Plot 41 MG2	Plot 42 MG1	Plot 42 MG2	Plot 43 SS105	Plot 44 SS106	Plot 45 SS101	Plot 46 SS102
			Sampl		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Date Sa	ampled:	27-May-2022	27-May-2022	27-May-2022	27-May-2022	27-May-2022	27-May-2022	27-May-2022	27-May-2022
			Asbest	os Lab:	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD								
Aromatic TPH >C8-C10	М	2680	mg/kg	1.0					< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	М	2680	mg/kg	1.0					< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	М	2680	mg/kg	1.0					< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0					< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	М	2680	mg/kg	1.0					< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	Ν	2680	mg/kg	1.0					< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	Ν	2680	mg/kg	5.0					< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	Ν	2680	mg/kg	10.0					< 10	< 10	< 10	< 10
Benzene	М	2760	µg/kg	1.0					< 1.0	< 1.0	< 1.0	< 1.0
Toluene	М	2760	µg/kg	1.0					< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	М	2760	µg/kg	1.0					< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	М	2760	µg/kg	1.0					< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	М	2760	µg/kg	1.0					< 1.0	< 1.0	< 1.0	< 1.0
Methyl Tert-Butyl Ether	М	2760	µg/kg	1.0					< 1.0	< 1.0	< 1.0	< 1.0
Naphthalene	М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	Ν	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	М	2800	mg/kg	0.10	5.6	2.3	3.9	2.3	< 0.10	< 0.10	2.5	0.83
Anthracene	М	2800	mg/kg	0.10	1.7	0.61	1.0	0.67	< 0.10	< 0.10	0.76	0.35
Fluoranthene	М	2800	mg/kg	0.10	8.1	4.6	6.1	4.9	0.58	< 0.10	3.4	1.6
Pyrene	М	2800	mg/kg	0.10	8.0	5.0	6.2	5.7	0.50	< 0.10	3.5	1.7
Benzo[a]anthracene	М	2800	mg/kg	0.10	4.2	3.1	3.2	2.7	< 0.10	< 0.10	1.4	0.80
Chrysene	М	2800	mg/kg	0.10	4.3	3.3	3.4	2.9	< 0.10	< 0.10	1.5	0.85
Benzo[b]fluoranthene	М	2800	mg/kg	0.10	5.4	4.6	4.3	4.2	< 0.10	< 0.10	2.0	1.2
Benzo[k]fluoranthene	М	2800	mg/kg	0.10	2.0	1.6	1.6	1.5	< 0.10	< 0.10	0.68	0.24
Benzo[a]pyrene	М	2800	mg/kg	0.10	4.9	4.0	4.0	4.3	< 0.10	< 0.10	1.7	0.90
Indeno(1,2,3-c,d)Pyrene	М	2800	mg/kg	0.10	2.6	2.2	2.1	2.5	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	Ν	2800	mg/kg	0.10	0.50	0.37	0.36	0.68	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	М	2800	mg/kg	0.10	2.7	2.3	2.1	2.6	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	Ν	2800	mg/kg	2.0	50	34	38	35	< 2.0	< 2.0	17	8.5
Total Phenols	М	2920	mg/kg	0.10					< 0.10	< 0.10	< 0.10	< 0.10


Client: LK Consult			mtest J			22-20258
Quotation No.:	st Sam	ple ID.:	1439032	1439033		
		Cli	ent Sam	ple ID.:	Plot 47 SS103	Plot 48 SS104
				e Type:	SOIL	SOIL
			Date Sa	ampled:	27-May-2022	27-May-2022
			Asbest	os Lab:	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD		
АСМ Туре	U	2192		N/A	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected
Asbestos by Gravimetry	U	2192	%	0.001		
Total Asbestos	U	2192	%	0.001		
Moisture	N	2030	%	0.020	22	19
Soil Colour	N	2040		N/A	Brown	Brown
Other Material	N	2040		N/A	Stones and Roots	Stones and Roots
Soil Texture	N	2040		N/A	Clay	Clay
Chromatogram (TPH)	Ν			N/A	See Attached	See Attached
pH	М	2010		4.0	8.6	8.8
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40	0.43	0.74
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	0.21	0.49
Cyanide (Free)	М	2300	mg/kg	0.50	< 0.50	< 0.50
Cyanide (Total)	М	2300	mg/kg	0.50	< 0.50	< 0.50
Arsenic	М	2455		0.5	2.3	8.3
Cadmium	М	2455	mg/kg	0.10	0.19	0.80
Chromium	М	2455	mg/kg	0.5	5.3	9.7
Copper	М	-	mg/kg	0.50	29	110
Mercury	М		mg/kg	0.05	< 0.05	< 0.05
Nickel	М	2455		0.50	4.7	9.6
Lead	М	2455	mg/kg	0.50	66	290
Selenium	М	2455	mg/kg	0.25	< 0.25	0.32
Vanadium	U	2455	mg/kg	0.5	5.2	9.0
Zinc	М		mg/kg	0.50	46	240
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50
Organic Matter	М	2625	%	0.40	4.1	2.1
Diesel Present	N	2670		N/A	False	False
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	Ν	2680		1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	М	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	М	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	М	-	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	М	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	М	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	Ν	2680		1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	Ν	2680		5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	Ν	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N		mg/kg	1.0	< 1.0	< 1.0

Client: LK Consult		Che	mtest Jo	ob No.:	22-20258	22-20258
Quotation No.:	C	Chemte	st Sam	ple ID.:	1439032	1439033
		Cli	ent Sam		Plot 47 SS103	Plot 48 SS104
				e Type:	SOIL	SOIL
			Date Sa	ampled:	27-May-2022	27-May-2022
			Asbest	os Lab:	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD		
Aromatic TPH >C8-C10	М	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	М	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	М	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	М	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	Ν	2680	mg/kg	1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	Ν	2680	mg/kg	10.0	< 10	< 10
Benzene	М	2760	µg/kg	1.0	< 1.0	< 1.0
Toluene	М	2760	µg/kg	1.0	< 1.0	< 1.0
Ethylbenzene	М	2760	µg/kg	1.0	< 1.0	< 1.0
m & p-Xylene	М	2760	µg/kg	1.0	< 1.0	< 1.0
o-Xylene	М	2760	µg/kg	1.0	< 1.0	< 1.0
Methyl Tert-Butyl Ether	М	2760	µg/kg	1.0	< 1.0	< 1.0
Naphthalene	М	2800	mg/kg	0.10	< 0.10	< 0.10
Acenaphthylene	N	2800	mg/kg	0.10	< 0.10	< 0.10
Acenaphthene	М	2800	mg/kg	0.10	< 0.10	< 0.10
Fluorene	М	2800	mg/kg	0.10	< 0.10	< 0.10
Phenanthrene	М	2800	mg/kg	0.10	0.43	0.84
Anthracene	М	2800	mg/kg	0.10	0.14	0.37
Fluoranthene	М	2800	mg/kg	0.10	0.79	1.6
Pyrene	М	2800	mg/kg	0.10	0.76	1.7
Benzo[a]anthracene	М	2800	mg/kg	0.10	< 0.10	1.0
Chrysene	М	2800	mg/kg	0.10	< 0.10	1.0
Benzo[b]fluoranthene	М	2800	mg/kg	0.10	< 0.10	1.2
Benzo[k]fluoranthene	М	2800	mg/kg	0.10	< 0.10	0.59
Benzo[a]pyrene	М	2800	mg/kg	0.10	< 0.10	1.2
Indeno(1,2,3-c,d)Pyrene	М	2800	mg/kg	0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	Ν	2800	mg/kg	0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	М	2800	mg/kg	0.10	< 0.10	< 0.10
Total Of 16 PAH's	N	2800	mg/kg	2.0	2.1	9.5
Total Phenols	М	2920	mg/kg	0.10	< 0.10	< 0.10




TPH Chromatogram on Soil Sample: 1439028 <sample Information>



TPH Chromatogram on Soil Sample: 1439030

Page 12 of 16

TPH Chromatogram on Soil Sample: 1439033 <Sample Information>

TPH Interpretation

Job	Sample	Matrix	Location	Sample Ref	Sample ID	Sample Depth (m)	Gasoline / Diesel Present	TPH Interpretation
22-20258	1439028	S			Plot 43 SS105		No	N/A
22-20258	1439029	S			Plot 44 SS106		No	N/A
22-20258	1439030	S			Plot 45 SS101		No	N/A
22-20258	1439031	S			Plot 46 SS102		No	N/A
22-20258	1439032	S			Plot 47 SS103		No	N/A
22-20258	1439033	S			Plot 48 SS104		No	N/A

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	pН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

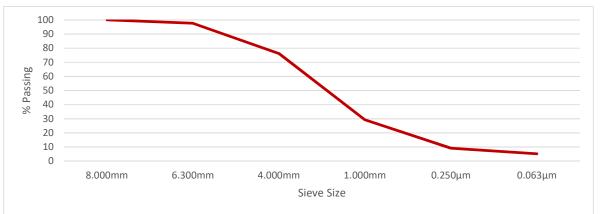
All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal


All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com Marshalls Plc Central Laboratory Brookfoot Works Halifax West Yorkshire HX3 9SX

Laboratory Test Report:

Sample Details:	
Site	Scoutmoor
Product	Grit Sand
Tested in accordance with	Marshalls Specification
Technician	C Wilson
Sample date	03 July 2023
Test date	07 July 2023
Moisture content (%)	2.49
Status	Fail
Technical Manger	B Paul
Authorised by	C Wilson - Laboratory Manager
Report Date	07 July 2023

Sieve Size	LCL	UCL
8.000mm	100	100
6.300mm	99	100
4.000mm	85	92
1.000mm	38	80
0.250µm	24	76
0.063µm	5	13
Pan		
Total		

% Passing	Retained (g)
100.0	0
97.6	119
76.2	1085
29.3	2368
9.2	1017
5.2	200.96
	262.04
	5052

😍 Marshalls

To be used for internal use only. If this information is to be passed on to third parties then seek authorisation from a Technical Manager or similar.

Product Testing Summary Tarmac - North & Scotland Region

B132 - Crown Farm

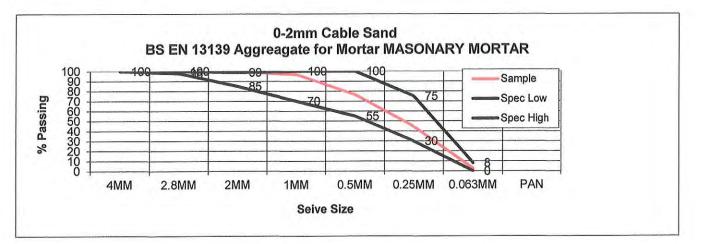
Sand (Silica)

	rties			Typical Cl	nemical Analys	sis	
Particle Density	Oven Dried	2.59		EN 1097-6	Iron	% as FE_2O_3	0.79
	Saturated Surface Dry	2.62			Calcium	% as CaO	0.26
	Apparent	2.66			Silicon	% as SiO ₂	93.16
Water Absorption		0.5	%	EN 1097-6	Magnesium	% as MgO	0.07
Aggregate Abrasion Valu	ue (AAV)	N/A		EN1097-8	Aluminum	% as Al ₂ O ₃	3.47
Polished Stone Value (P	SV)	N/A		EN1097-8	Phosphorus	% as P ₂ O ₅	<0.01
Los Angeles Coefficient	(LA)	N/A		EN1097-2	Titanium	% as TIO ₂	0.08
Micro-Deval Coefficient (M _{DE})	N/A		EN1097-1	Potassium % as K ₂ O		1.48
Magnesium Sulfate Sour	ndness	N/A	%	EN1267-2	Sodium	% as Na ₂ O	<0.01
Water Soluble Chloride		<0.001	%	EN1744-1			
Water Soluble Sulphate		<0.01	%	EN1744-1			
Acid Soluble Sulphate		<0.01	%	EN1744-1	Loss on Ignition	@ 1000C	0.57
Total Sulfur		0.01	%	EN1744-1	Additional Informati	on :	
Carbon Dioxide Content		2.03	%	EN196-21	Ten percent Fines Va	lue	N/A
Drying Shrinkage		0.018	%	EN1367-4	Modified ten percent	Fines Value	N/A
Resistance to Breakage		NPD	Мра	EN1926		Uncompacted	Compacted
Proportion of Crushed/Br	roken Surfaces	NPD	%	EN13383-1	Bulk Density 10mm		
Resistance to Freeze Th	aw	NPD	%	EN13383-2	Bulk Density 20mm		
Water Absorption		NPD	%	EN13383-2	Bulk Density 4/20mm		
Sonnenbrand		None		EN13383-2	Bulk Density Fine Agg	1.51	1.63
Resistance to Fragmenta	ation (Track Ballast)	NPD		EN1097-2	Carbonate Content (%)	4.61	
Resistance to Wear (Tra	ck Ballast)	NPD		EN1097-2			

Issued By :

Christopher Abbott **Technical Systems Manager**

Date of Issue :


16 September 2021

Marshalls Marshalls

Laboratory Grading Analysis

Source :	Scout Moor Quarry	Source :	Scout Moor Quarry
Material:	Fill Sand	Material:	Fill Sand

Test Method : Sampled by: Date Sampled :	Dry Sieve Central Lab 02/10/2018		Sample Area: Tested by: Date Tested :	Central Lab		
BS EN Seive	Weight (g.)	% Retained	% Passing 100	Over grading		
6.3MM	0	0	100	100	100	R.
4MM	0	0	100	100	100	
2.8MM	0	0	100	98	100	
2MM	0.4	0.09	100	85	99	(+-5)
1MM	13.4	3.11	97	70	100	(+-20)
0.5MM	86.8	20.13	77	55	100	FP
0.25MM	137.3	31.84	44.83	30	75	(+-25)
0.063MM	182.5	42.32	2.50	0	8	Cat 3 (+-5)
PAN	1.7	2.50				
Original Sample	ed Weight (g)	504.3				
Oven Dry Weigh	nt (g)	431.2		STATUS	Pass	
Loss in weight	(g)	73.1				
Moisture Conte	nt %	14.5%				
Washed Dry We	eight (g)	422.1	1			
Lost Mass when	n Grading	9.1]			

Aggregate Property Summary Sheet Scoutmoor Quarry, Edenfield Road, Ramsbottom

Summary of Findings:

le se	Crushed Gritstone				
Major	Minor	Trace			
Gritstone					
	and the second se	Major Minor			

Simplified Petrographic Description of Aggregate - BS EN 932-3:1997

Discrete Constituent	Particle Shape	Surface Texture	Coatings / Encrustations	
Gritstone	Angular	Rough		

	Test Result	Test Standard	Lab Ref. No.
			0
Aggregate Crushing Value	20	BS 812: Part 112:	SA4177/05
Aggregate Abrasion Value (MEAN)	8.3	BS EN 1097-8:	SA4177/05
Aggregate Impact Value (DRY)	19%	BS 812: Part 112:	SA4177/05
Polished Stone Value		BS EN 1097-8:	SA4177/05
Test Specimen	66.8		SA4177/05
Control Stone	50.3	Sec. 19	SA4177/05
Corrected PSV	69	S+52.5 - C	SA4177/05
10% Fines Value (Dry)	180kN	BS 812: Part 111:	SA4177/05
10% Fines Value (Soaked)	140kN	BS 812: Part 111:	SA4177/05
Carbon Dioxide (Co2)	0.07%	BS EN 196 Part 21	SA4177/05
Calcium Carbonate Equivalent (CaC03)	0.15%	BS EN 196 Part 21	SA4177/05
Calcareous Content	0.00%		SA4177/05
Particle Density :-		BS EN 1097-6:	SA4177/05
Particle density on an oven dried basis	2.55Mg/m3	-	1.000
Particle density on a saturated and surface dried basis	2.60Mg/m3		
Apparent Maximum Particle Density	2.67Mg/m3		
Water absorption (% of dry mass)	1.70%	10 C C C C C C C C C C C C C C C C C C C	1. 1. 1. 1. 1.
pH Values of Soils	10.3	BS EN:Part 3:	SA4177/05
Magnesium Sulfate Value	5	BS EN 1367-2 :	SA4177/05
Water Soluble Sulfate of Aggregates Sample as SO3	<0.01%	BS EN 1744-1 :	SA4177/05
Slake Durability Index	98.90%	ISRM Guidelines	SA4177/05
Los Angeles Coefficient (LA)	22	BS EN 1097 - 2	SA4177/05
Plastic Limits	Non Plastic	BS 1377 pt 2	SA4177/05
Particle Size Distribution	0	BS EN 966-1 :	SA4177/05
Were any unrepresentable lumps present ?	No		
Flakiness Index ofAggregate	24	BS EN 966-3 :	SA4177/05
		BS EN 13043 :	
Resistance to Wear of Aggregate - Micro Deval Test	44	BS EN 1097-1:	SA4177/05
Frost Heave of Aggregate		BS 812:Part 124:	SA4239
Mean Specimen	12.3		1
Mean Frost Heave	8.8		

Compaction Fraction	20-5mm Sample	Non Frost Susceptable 0.12	ISSN - 1353 - 2510	SA4177/05
(Shear Box Test) Angle of Friction	MOT Type 1 sample	35 Deg	SHW Volume 1, Series 600	SA4177/05
			Oxide Analysis	STR 151910
For all queries relating to the above t	est results please contact :		SiO2 TiO2	61.10% 1.10%
Paul Rogers			Al ₂ O ₃	17.10%
Sales Manager			Fe ₂ O	6.90%
Marshalls Aggregates			MnO	0.20%
Fletcher Bank Quarry			MgO	1.80%
Ramsbottom			CaO	0.50%
			Na ₂ O	
			1000	1.20%
BL0 0DD			K₂O	1.20% 3.00%
BL0 0DD Tel : 01706 282 770				3.00% 0.10%

Notes:

1. The above data is provided in good faith as a guide to typical values and does not constitute a specification.

2. Marshalls Mono Ltd reserve the right to alter data at any given time.

3. PSD for Indivua materials and test results are uponl test results are available upon request. PSD for specific materials

APPENDIX E GENERIC ASSESSMENT CRITERIA VALUES

CATEGORY 4 SCREENING LEVELS

Substance	Residential (with home- grown produce)	Residential (without home- grown produce)	Allotments	Commercial	Public Open Space 1	Public Open Space 2
Arsenic	37 mg/kg	40 mg/kg	49 mg/kg	640 mg/kg	79 mg/kg	170 mg/kg
Benzene	0.87 mg/kg	3.3 mg/kg	0.18 mg/kg	98 mg/kg	140 mg/kg	230 mg/kg
Benzo(a)pyrene	5.0 mg/kg	5.3 mg/kg	5.7 mg/kg	77 mg/kg	10 mg/kg	21 mg/kg
Cadmium	22 mg/kg	150 mg/kg	3.9 mg/kg	410 mg/kg	220 mg/kg	880 mg/kg
Chromium VI	21 mg/kg	21 mg/kg	170 mg/kg	49 mg/kg	21 mg/kg	250 mg/kg
Lead	200 mg/kg	310 mg/kg	80 mg/kg	2300 mg/kg	630 mg/kg	1300 mg/kg

Tetrachlorethene	0.31	0.32	2.0	24	3,200	1,400
(PCE) – 1% SOM	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Tetrachlorethene	0.70	0.71	4.8	55	3,300	1,900
(PCE) – 2.5% SOM	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Tetrachlorethene	1.6 mg/kg	1.6	11	130	3,400	2,500
(PCE) – 6% SOM		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Trichlorethene	0.0093	0.0097	0.032	0.73	76	41
(TCE) – 1% SOM	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Trichlorethene	0.020	0.020	0.072	1.5	78	54
(TCE) – 2.5% SOM	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Trichlorethene	0.043	0.045	0.16	3.4	79	69
(TCE) – 6% SOM	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Vinyl Chloride	0.0064	0.015	0.0017	1.1	7.8	18
(VC) – 1%SOM	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Vinyl Chloride	0.010	0.019	0.0031	1.4	7.8	19
(VC) – 2.5%SOM	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Vinyl Chloride	0.017	0.029	0.0058	2.2	7.8	19
(VC) – 6%SOM	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg

Summary Table for the Generic Assessment Criteria for Human Health Risk Assessment Land Quality Management (LQM) 2nd Edition.

			Generic Assessment Criteria (mg/kg) Dry weight soil			
	Contaminant	SOM	Residential	Allotments	Commercial	
	Beryllium	6%	51	55	420	
	Boron	6%	291	45	192000	
s	Chromium (III)	6%	3000	34600	30400	
Metals	Chromium (VI)	6%	4.3	2.1	35	
Ň	Copper	6%	2330	524	71700	
	Vanadium	6%	75	18	3160	
	Zinc	6%	3750	618	665000	
	Acenaphthene	1%	210	34	85000(57) ^{sol}	
		2.5%	480	85	98000(141) ^{sol}	
	,	6%	1000	200	100000	
		1%	170	28	84000(86) ^{sol}	
	Acenaphthylene	2.5%	400	69	97000(212) ^{sol}	
		6%	850	160	100000	
		1%	2300	380	530000	
	Anthracene	2.5%	4900	950	540000	
		6%	9200	2200	540000	
		1%	3.1	2.5	90	
	Benz(a)anthracene	2.5%	4.7	5.5	95	
		6%	5.9	10	97	
	Benzo(a)pyrene	1%	0.83	0.60	14	
		2.5%	0.94	1.2	14	
		6%	1.0	2.1	14	
		1%	5.6	3.5	100	
	Benzo(b)fluoranthene	2.5%	6.5	7.4	100	
Hs		6%	7.0	13	100	
PA		1%	44	70	650	
) s	Benzo(ghi)perylene	2.5%	46	120	660	
noo		6%	47	160	660	
art		1%	8.5	6.8	140	
õ	Benzo(k)fluoranthene	2.5%	9.6	14	140	
lyd		6%	10	23	140	
C L	Chrysene	1%	6.0	2.6	140	
nati		2.5%	8.0	5.8	140	
nor		6%	9.3	12	140	
N N	Dibenzo(ah)anthracene	1%	0.76	0.76	13	
yclic Aromatic Hydrocarbons (PAHs)		2.5%	0.86	1.5	13	
δ		6%	0.90	2.3	13	
Polyc	Fluoranthene	1%	260	52	2300	
-		2.5%	460	130	2300	
		6%	670	290	2300	
		1%	160	27	64000(31) ^{sol}	
	Fluorene	2.5%	380	67	69000	
		6%	780	160	71000	
		1%	3.2	1.8	60	
	Indeno(123-cd)pyrene	2.5%	3.9	3.8	61	
		6%	4.2	7.1	62	
	Naphthalene	1%	1.5	4.1	200(76) ^{sol}	
		2.5%	3.7	9.9	480(183) ^{sol}	
		6%	8.7	23	1100(432) ^{sol}	
		1%	92	16	22000	
	Phenanthrene	2.5%	200	38	22000	
		6%	380	90	23000	
		1%	560	110	54000	
	Pyrene	2.5%	1000	270	54000	
		6%	1600	620	54000	

Contaminant	SOM	Residential	Allotments	Commercial			
	50M	Residential	Anotments	Commercial			
Aliphatic EC 5-6	1%	20	740	3400(304) ^{sol}			
EC 5-6 EC>6-8	1%	30 73	2300	<u> </u>			
EC>8-10	1%	19	320	8300(144) 2100(78) ^{sol}			
EC>10-12	1%	93(48) ^{sol}	2200	10000(48) ^{sol}			
EC>10-12 EC>12-16	1%	740(24) ^{sol}	11000	61000(48)			
EC>16-21	1%	45000(8.48) ^{sol}	260000	1600000			
EC>21-35	1%	45000(8.48) ^{sol}	260000	1600000			
EC>35-44	1%	45000(8.48) ^{sol}	260000	1600000			
Aliphatic	170	40000(0.40)	200000	1000000			
EC 5-6	2.5%	55	1700	6200(558) ^{sol}			
EC>6-8	2.5%	160	5600	18000(322) ^{sol}			
EC>0-8 EC>8-10	2.5%	46	770	5100(190) ^{sol}			
EC>10-12	2.5%	230(118) ^{sol}	4400	24000(118) ^{sol}			
EC>12-16	2.5%	1700(59) ^{sol}	13000	83000(59) ^{sol}			
EC>16-21	2.5%	64000(21) ^{sol}	270000	1800000			
EC>21-35	2.5%	64000(21) ^{sol}	270000	1800000			
EC>35-44	2.5%	64000(21) ^{sol}	270000	1800000			
Aliphatic	2.070	0-000(21)	210000	100000			
EC 5-6	6%	110	3900	13000(1150) ^{sol}			
EC 5-6 EC>6-8	6%	370	1300	42000(736) ^{sol}			
EC>0-8 EC>8-10	6%	110	1700	12000(730)			
EC>10-12	6%	540(283) ^{sol}	7300	49000(283) ^{sol}			
EC>12-16	6%	3000(142) ^{sol}	13000	91000(203)			
EC>16-21	6%	76000	270000	1800000			
EC>21-35	6%	76000	270000	1800000			
EC>35-44	6%	76000	270000	1800000			
EC5-7(benzene as non-threshold) EC>7-8(toluene)	1% 1%	65 120	13 22	28000(1220) ^{sol} 59000(869) ^{sol}			
EC>8-10	1%	27	8.6	3700(613) ^{sol}			
EC>10-12	1%	69	13	17000(364) ^{sol}			
EC>12-16	1%	140	23	36000(169) ^{sol}			
EC>16-21	1%	250	46	28000			
EC>21-35	1%	890	370	28000			
EC>35-44	1%	890	370	28000			
Aliphatic							
EC5-7(benzene as non-threshold)	2.5%	130	27	49000(2260) ^{sol}			
EC>7-8(toluene)	2.5%	270	51	110000(1920) ^{sc}			
EC>8-10	2.5%	65	21	8600(1500) ^{sol}			
EC>10-12	2.5%	160	31	29000(899) ^{sol}			
EC>12-16	2.5%	310	57	37000			
EC>16-21	2.5%	480	110	28000			
EC>21-35	2.5%	1100	820	28000			
EC>35-44	2.5%	1100	820	28000			
Aliphatic							
EC5-7(benzene as non-threshold)	6%	280	57	90000(4710) ^{sol}			
EC>7-8(toluene)	6%	611	120	190000(4360) ^{sc}			
EC>8-10	6%	151	51	18000(3580) ^{sol}			
EC>10-12	6%	346	74	34500(2150) ^{sol}			
EC>12-16	6%	593	130	37800			
EC>16-21	6%	770	260	28000			
EC>21-35	6%	1230	1600	28000			
EC>35-44	6%	1230	1600	28000			
Aliphatic +Aromatic	1%	1200	1200	28000			
	2.5%	1300	2100	28000			
>EC44	6%	1300	3000	28000			

all GAC are based on Sandy loam soils with a pH 7. ^{Sol} = solubility limit (potentially use if free product identified, although highly conservative)

		Generic Assessment Criteria (mg/kg) Dry weight soil				
Contaminant		SOM	Residential	Allotments	Commercial	
		1%	0.0054	0.0046	0.71	
	1,2 Dichloroethane	2.5%	0.0080	0.0083	1.0	
		6%	0.014	0.016	1.8	
	1,1,1 Trichloroethane	1%	6.2	48	700	
		2.5%	13	110	1400	
		6%	28	240	3100	
	1,1,2,2-Tetrachloroethanes	1%	1.4	0.41	290	
		2.5%	2.9	0.89	580	
		6%	6.3	2.0	1200	
		1%	0.90	0.79	120	
Se	1,1,1,2-Tetrachloroethanes	2.5%	2.1	1.9	4.4	
ŝ	.,.,.	6%	4.8	4.4	590	
Explosives		1%	0.94	1.6	130	
Ă	Tetrachloroethene (TCE)	2.5%	2.1	3.7	290	
∞ð		6%	4.8	8.7	660	
Alkenes		1%	0.018	0.16	3.0	
	Tetrachloromethane (carbon tetrachloride)	2.5%	0.039	0.37	6.6	
		6%	0.089	0.85	15	
p	Trichloroethene	1%	0.11	0.43	13	
s a		2.5%	0.22	0.95	25	
ne		6%	0.49	2.2	55	
IKa			0.49		110	
Chloalkanes and	Trichloromethane (chloroform)	1% 2.5%	1.3	0.36 0.70	190	
cP		6%	2.7	1.5	370	
	Chloroethene (vinyl chloride)	1% 2.5%	0.00047 0.00064	0.00055 0.0010	0.063	
		6%	0.00084	0.0010	0.081 0.12	
	2.4.6 Tripitritolyopo (TNT)	1%	1.6	0.24	1000	
	2,4,6-Trinitritoluene (TNT)	2.5%	3.7	0.58 1.4	1000	
		6%	8.0		1100	
	RDX and HMX	1%	3.5	0.52	6400	
		2.5%	7.4	1.1	6400	
		6%	16	2.5	6400	
	Aldrin and Dieldrin	1%	0.69	0.13	90	
		2.5%	1.4	0.32	91	
		6%	2.2	0.73	92	
	Atrazine	1%	0.24	0.037	870	
		2.5%	0.56	0.085	880	
ŝ		6%	1.3	0.20	880	
106	Dichlorvos	1%	0.29	0.044	842	
STIC		2.5%	0.6	0.091	872	
Pesticides		6%	1.3	0.2	893	
		1%	2.8	0.44	2580(7E-5) ^{sol}	
	Endosulfanns (2 isomers)	2.5%	6.6	1.1	3160(2E-4) ^{sol}	
		6%	15	2.6	3480	
	Hovachloroovelebovana (2 icomore) inc	1%	1.7	0.26	1120	
	Hexachlorocyclohexane (3 isomers), inc Lindane	2.5%	3.9	0.64	1130	
		6%	8.5	1.5	1130	

N.B

all GAC are based on Sandy loam soils with a pH 7.

		Gene	Generic Assessment Criteria (mg/kg) Dry weight soil			
Contaminant		SOM	Residential	Allotments	Commercial	
	Chlorobenzene	1%	0.33	5.9	59	
		2.5%	0.73	14	130	
		6%	1.7	32	310	
	Dichlorobenzenes (3 isomers)	1%	16	94	2100(571) ^{sol}	
		2.5%	39	230	5100(1370) ^{sol}	
		6%	91	540	12000(3240) ^{sol}	
ŝ	Trichlorobenzenes (3 isomers)	1%	1.0	2.6	6.1	
ene		2.5%	4.7	12	28	
Chlorobenzenes		6%	6.1	28	620	
obe	Tetrachlorobenzenes (3 isomers)	1%	12	4.4	1800(122) ^{sol}	
or		2.5%	29	11	3200(304) ^{sol}	
Ch		6%	62	26	4500(728) ^{sol}	
	Pentachlorobenzene	1%	5.2	1.2	650(43) ^{sol}	
		2.5%	10	3.1	770(107) ^{sol}	
		6%	17	7.1	830	
	Hexachlorobenzene	1%	0.59(0.2) ^{sol}	0.18	48(0.20) ^{sol}	
		2.5%	1.0(0.50) ^{sol}	0.42	53	
		6%	1.4	0.92	55	
-	Chlorophenols (4 congeners)	1%	0.87	0.13	3500	
oue		2.5%	2.0	0.3	4000	
Chlorophenol		6%	4.4	0.70	4200	
2 C	Pentachlorophenol	1%	0.55	0.084	1200	
, Pic		2.5%	1.3	0.21	1300	
0		6%	2.96	0.49	1400	
	Carbon Disulphide	1%	0.10	4.8	12	
		2.5%	0.20	10	23	
Others		6%	0.44	23	50	
Gt	Hexachlorobutadiene	1%	0.21	0.25	32	
Ĭ		2.5%	0.51	0.61	69	
		6%	1.2	1.4	120	

N.B

all GAC are based on Sandy loam soils with a pH 7. ^{Sol} = solubility limit (potentially use if free product identified, although highly conservative)

Based across the UK with offices in Manchester, London, Liverpool, Swindon and Glasgow.

Manchester (Head Office)

Unit 29 Eton Business Park Eton Hill Rd, Radcliffe M26 2ZS

t: 0161 763 7200 e: info@thelkgroup.com

Glasgow

Wright Business Centre 1 Lonmay Road Glasgow G33 4EL

t: 0141 773 6269 e: info@thelkgroup.com

Swindon

39 Bowman House Business Centre Bowman Court Whitehill Lane Royal Wootton Bassett Swindon SN4 7DB

t : 01793 987 390 e : info@thelkgroup.com

Liverpool

The Corn Exchange Fenwick Street Liverpool L2 7QL

t: 0151 235 8716 e: info@thelkgroup.com

London

Brooklands Business Park Wellington Way Weybridge KT13 0TT

t: 01932 871872 e: info@thelkgroup.com

- >>>> Geotechnical
- Contaminated Land
- Flood Risk and Drainage
- ≫ Asbestos
- Invasive Species
- Land Remediation
- Project Management
- Land Drilling

