Air Flow Measurement

Test Certificate

Plot Name & Site Address

Job Reference AT10525

Schedule Test Date

30/11/2023

12 Seymour Close, Clevedon,

Complete Energy Consultancy

1/italaan			
Kitchen Other	Utility	En Suite	Sanitary Accomm.
60 / 35	30 / 24	15 / 12	6/5
	Other	Other	Other

Please note:

The minimum benchmark for the Resistance Factor is included in the above targets. Further details can be found on the following page.

Recorded Air Flow Measurements - Litres / Second						
Fan Location	System	Measured Flow	Design Target	Pass / Fail	Test Engineers' Comments	
Kitchen Cooker		37.4	30	PASS		
Sanitary Accomm.		11.6	6	PASS		
Bathroom		13.7	15	PASS		

Test Engineer's Details				
Engineer's Name	Richard			
Engineer's Signature	A.			

Flow Rate Test Equipment				
Equipment Used	Calibration Expires			

Air Flow Measurement

Reasons for Failure

Dependent upon the location of Fan System – each Air Flow Measurement Test is required to meet certain Design Target criteria in order to achieve a 'PASS'.

Consultancy

Table 1:

Design Target / Minimum Value					
Kitchen	Kitchen	Utility	Bathroom	Sanitary Accomm.	
Cooker	Other				
30 / 24	60 / 35	30 / 24	15 / 12	6/5	

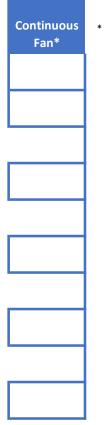
For example, based upon the table above – for the testing of a Kitchen – Cooker Hood the Design Target is stated as 30.0 Litres / Second – with a minimum 'Pass' Rate of 24.0 Litres / Second.

Complete Energy Consultancy use calibrated equipment to carry out all testing. The equipment we use is a non-powered anemometer flow hood which gives a resistance factor when testing. Minimum benchmark levels have been set which factor the impact of the test equipment. If the fan performance exceeds the minimum benchmark value indicated in Table 1 it would be reasonable for us to assume that the fan is performing to the required level and accept the test results as showing compliance with Part F of the Building Regulations.

If any of your tests 'fail' - our Engineer will record the 'Reason for Failure' for one of the following reasons detailed below:-

The Fan - If the fan is not powerful enough, it will not produce a satisfactory flow rate to achieve Part F compliance. When purchasing an extractor fan, it is important to over-compensate, as with 'off-the-shelf' products the manufacturers' stated ventilation rates are recorded in a laboratory environment and, in some cases, may not represent an accurate level post-installation.

The Ducting – If the ducting is flexible and not rigid, there is the possibility of problems such as kinks or splits and (especially in the case of cavity wall constructions). It is also possible that the movement of materials within the wall may have compressed the ducting


The Outside Vent – It is possible for the outside vent to become blocked, or in the case of an incorrect installation it may not be properly connected to the ducting. It is also possible for the vent flaps to 'stick' or in the case of a low ventilation rate, for them to not open due to air resistance. Tile vents may also cause a reduction in the ventilation rate due to their reduced size.

'Unknown' – Our Engineer was unable to determine the cause of failure. It is recommended that you contact your installation engineer to carry out further investigations.

Please Note:

Our Engineers are unable to take apart fans or ducting to investigate reasons for failure, as they are not necessarily qualified installation engineers.

Air Flow Measurement

* Enter any text to enable Continuous fan calc.