

PROPOSED RESIDENTIAL DEVELOPMENT

19 HERTFORD COURT

ENFIELD

LONDON, N13 4DD

DRAINAGE STRATEGY

FOR

MS G. THEODOROU

13th December 2023

Report No.: 5918 DS

P02

Contents Amendment Record

Revision	Date	Author	Checker	Approver
P01	06/12/2023	Kapriel Chiarini	Jack Moss	Jack Moss
P02	13/12/2023	Kapriel Chiarini	Jack Moss	Jack Moss

Original Author: Kapriel Chiarini MEng (Hons) GMICE						
Original Checker: Jack Moss MEng (Hons) CEng MICE MCIWEM						
Original Approver: Jack Moss MEng (Hons) CEng MICE MCIWEM						
Project Number: 5918	Current Revision:	P02	Date:	13/12/2023		
Considine Limited 25 Hollingworth Court Turkey Mill, Ashford Road Maidstone Kent ME14 5PP						

Contents

1.	Intro	oduction and Brief1
2.	Exist	ing Site Conditions
2.	.1	Location2
2	.2	Site Topography4
2	.3	Site Geology4
2	.4	Hydrogeology and Hydrology5
3.	Prop	oosed Development7
4.	Prop	oosed Foul Water Strategy9
4.	.1	Existing Development Foul Water System9
4	.2	Capacity Check9
4	.3	Foul Water Strategy10
5.	Prop	oosed Surface Water Strategy
5	.1	Existing Surface Water Strategy11
5	.2	Existing Run Off Rates11
5	.3	Managing Surface Water13
5	.4	Managing Surface Water – Scheme Proposals13
5	.5	Exceedance and Surface Water Conveyance16
5.	.6	Surface Water Strategy Summary16
6.	Cond	clusions

List of Appendices

- Appendix 1 Proposed Site Plan
- Appendix 2 Foul Water & Surface Water Drainage Strategy
- Appendix 3 Drained Areas Analysis
- Appendix 4 CIRIA C753 Pollution Indices
- Appendix 5 Preliminary Surface Water Network Calculations
- Appendix 6 Greenfield Runoff Rates
- Appendix 7 Brownfield Runoff Rates
- Appendix 8 Sewer Records

1. Introduction and Brief

This report has been prepared for Ms G. Theodorou to provide guidance on the method of foul and surface water disposal for the proposed residential development at 19 Hertford Court, Enfield, London, N13 4DD. The proposal is to demolish four garages with a flat above and to construct two dwellings in their place.

Figure 1.1 – Development Proposals – full drawings within Appendix 1

This document has been produced in accordance with current best practice and recommendations and guidance set out in the National Planning Policy Framework (NPPF).

Considine has no responsibility to any other parties to whom this report may be circulated, in part or in full, and any such parties rely on the contents of this report solely at their own risk.

All copyright and other intellectual rights in and over this report and its contents shall remain vested in Considine. The client and any other person authorised by them is granted irrevocable royalty free licence to use and reproduce this report for all purposes relating to the property, but Considine shall not be liable for any use of the report for any purpose other than that for which it was originally prepared.

2. Existing Site Conditions

2.1 Location

The development site is located at 19 Hertford Court, Enfield, London, N13 4DD. The British National Grid Reference is E: 531366, N: 193408. The figures below show the site in the wider area, more locally and then an aerial image to show the site in its current context.

Figure 2.1 – Site location general area. Location shown by red circle. © Google Maps

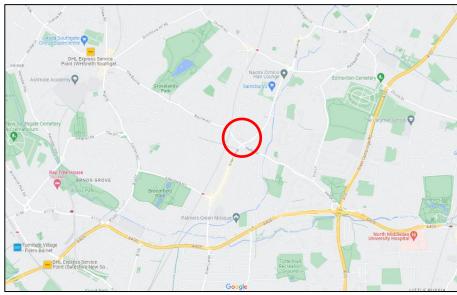


Figure 2.2 – Site Location shown by red circle. © Google Maps

The following aerial image provides additional information about the context of the site and surrounding areas.

Figure 2.3 – Aerial image of site © Google Maps. Approximate site boundary shown in red.

The site currently comprises four garages with a flat above with an access path and surrounding grass. It is bounded by Herford Court and a number of residential dwellings on all boundaries.

The existing development impermeable areas are summarised as follows:

	Area (m²)
Total Site Area:	198
Existing Roof Area:	89
Existing Fully Permeable Hardstandings (Type A):	0
Existing Permeable Hardstandings (Type B/C):	0
Existing Impermeable Hardstandings (Not Positively Drained):	0
Existing Impermeable Hardstandings (Positively Drained):	16
Total Existing Drained Area:	105

Figure 2.4 – Drained Areas Analysis Extract (Pre-Development)

2.2 Site Topography

A review of the topographical survey indicates that the site is generally flat.

2.3 Site Geology

A review of the BGS online bedrock mapping tool has identified that the development site is likely underlain by the London Clay Formation (Clay). This formation is described by BGS as 'The London Clay mainly comprises bioturbated or poorly laminated, blue-grey or grey-brown, slightly calcareous, silty to very silty clay, clayey silt and sometimes silt, with some layers of sandy clay'.

Figure 2.5 – BGS Extracts: Bedrock Geology © BGS

A review of the BGS online superficial deposits mapping tool has identified no known superficial deposits.

Figure 2.6 – BGS Extracts: Superficial Geology © BGS

At the time of writing, no site investigation has been undertaken to confirm the site geology.

2.4 Hydrogeology and Hydrology

The Environment Agency provide information about the groundwater and aquifers. Review of that information confirms that the site is within Groundwater Source Protection Zone 1. It is not located over an Aquifer in terms of the Bedrock, nor it is also located within a Groundwater Vulnerability Zone. The following EA Extracts identify the zoning for the site.

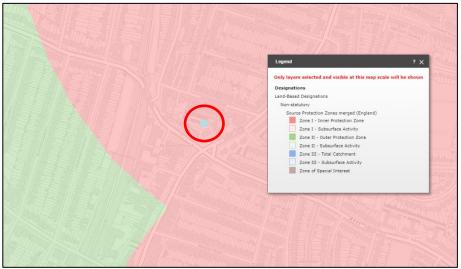


Figure 2.7 – Groundwater Source Protection Zone © Environment Agency

As defined within the figure above, the site is within Groundwater Source Protection Zone 1. This zone is defined by a travel time of 50-days or less from any point within the zone at, or below, the water table. Additionally, the zone has as a minimum a 50-metre radius. It is based principally on biological decay criteria and is designed to protect against the transmission of toxic chemicals and water-borne disease.

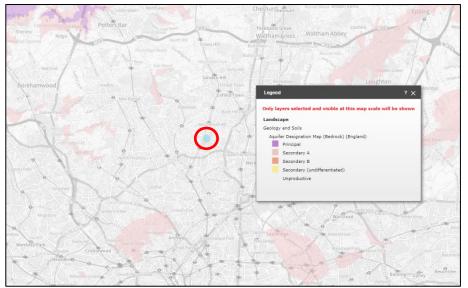


Figure 2.8 – Aquifer Designations Map (Bedrock) © Environment Agency

As noted within the figure above, the site is not above an Aquifer.

Legend ? X Only layers selected and visible at this map scale will be shown Landscape Geology and Solis Groundwater Vulnerability Maps (England) Soluble Rock Rick Malium - Migh Medium - Low Low Unproductive

Figure 2.9 – Groundwater Vulnerability Zone Map © Environment Agency

As noted within the above figure, the site is not within a Groundwater Vulnerability Zone.

It is important though to understand that pollution risks are an issue for the underlying geology. As such the risk of Pollution can be assessed using the Source, Pathway, Receptor model as follows.

Source – there are two sources of potential contamination on the site. Firstly, contamination as a result of current and previous site activities and secondly from the proposed site activities. The current site comprises four garages and a flat with little contamination risk. The proposed development is for residential purposes. Therefore, the risk of contamination is still considered low.

Pathway – the pathway is the vertical movement of water through the subsoils and the bedrock. This can be by direct surface down soakage or from drainage features such as soakaways or other infiltration systems. The infiltration potential at ground level is low at the site, and therefore the opportunities for ingress of contaminants is also low.

Receptor – the receptor is the actual uses of groundwater that receives flow from the vicinity of the discharge, such as groundwater, watercourses etc. There is little opportunity for infiltration, therefore the risk is considered low.

Water Quality and Surface Water runoff is addressed later in this report.

3. Proposed Development

The proposal is to demolish four garages with a flat above and to construct two dwellings in their place. The figure below shows the Architect's current proposals.

Figure 3.1 – Proposed Site Plan – full drawing within Appendix 1.

The proposed development impermeable areas are shown in the figure below and are summarised as follows:

	Area (m ²)
Total Site Area:	198
Proposed Roof Area:	130
Proposed Fully Permeable Hardstandings (Type A):	0
Proposed Permeable Hardstandings (Type B/C):	0
Proposed Impermeable Hardstandings (Not Positively Drained):	10
Proposed Impermeable Hardstandings (Positively Drained):	0
Total Proposed Drained Area:	140

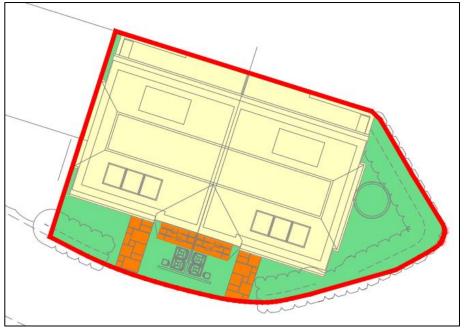


Figure 3.2 – Drained Areas Analysis Extract (Post-Development)

It is evident that the proposals increase the impermeable areas by $35m^2$.

4. Proposed Foul Water Strategy

4.1 Existing Development Foul Water System

Thames Water sewer assets indicate that the adjoining road, Bourne Hill has a 300mmØ public foul pipe to the east and a 375mmØ public foul pipe to the east, but the topographical survey suggests sewer networks in Hertford Court.

It is assumed that there is an existing on-site foul network that connects to the public sewer.

4.2 Capacity Check

Since the OFWAT Regulation changes of April 2018 it is no longer a requisite to check available capacity. The new requirement is for the sewer authority to accept all discharge from new development sites into their nearest available sewer. In exchange they receive an enhanced connection payment per dwelling in order to fund network improvements. If the local network does not have available capacity and the improvement programme is not going to be completed until sometime after the development is complete, then the sewer authority (Thames Water Services) can work with the developers to agree temporary solutions to the capacity issue – these measures can include on site storage or timed pumping.

The proposal is to demolish four garages with a flat above and to construct two dwellings in their place.

4.2.1 Existing Occupancy

The site is brownfield currently serving four garages with a flat above. Therefore, foul discharge is expected and has been approximated as follows.

The Foul Water expected to be generated by the existing site has a peak flow of approximately 0.042 litres per second with an average flow of 0.007 litres per second.

Residential Load

2 bed unit = 1 x 4P = 4P Total residential population (P) = 4P

Total occupancy of 4 persons @150 litres per day (Flows and Loads) = 600 l/day. 600 / (24x60x60) = 600 / 86,400 = 0.007 l/s average which is 0.042 l/s peak flow.

4.2.2 Proposed Occupancy

The Foul Water expected to be generated by the site has a peak flow of approximately 5.787 litres per second with an average flow of 0.965 litres per second. This is calculated as follows: -

Residential Load

2 bed unit = 2 x 4P = 8P Total residential population (P) = 8P

Total occupancy of 8 persons @150 litres per day (Flows and Loads) = 1200 l/day. 1200 / (24x60x60) = 1200 / 86,400 = 0.014 l/s average which is 0.084 l/s peak flow.

This is an increase in peak flow by approximately 0.042 l/s. It is a requirement that the local drainage authority is consulted to approve the means and mode of connecting the new development to the public sewer network under a formal Section 106 connection agreement.

4.3 Foul Water Strategy

On the basis of the above, it is proposed that the foul network is connected to the existing public foul sewer via the network in Hertford Court. A drainage survey will be required to distinguish between the foul and surface water networks.

Detailed site investigation shall be required prior to detailed design, to ascertain the opportunities and constraints of a gravity connection.

A formal Section 106 connection approval will be required from the sewer authority.

5. Proposed Surface Water Strategy

5.1 Existing Surface Water Strategy

A review of the BGS online bedrock mapping tool has identified that the development site is likely underlain by the London Clay Formation (Clay).

Thames Water sewer indicate that the adjoining road, Bourne Hill has a 450mmØ public surface water pipe to the west and a 225mmØ public foul pipe to the east. However, the topographical survey suggests sewer networks in Hertford Court.

The existing site likely drains to the sewer network in Hertford Court.

Further investigation of the existing run off rates have been explored below.

5.2 Existing Run Off Rates

The existing site comprises four garages with a flat above with an access path with surrounding grass. The site is considered as brownfield in nature.

The underlying geology from review of BGS data indicates that the site is likely impermeable in terms of infiltration. Accordingly, the existing runoff rates have been calculated using Innovyze: MicroDrainage using the IH124 methodology.

The Interim Code of Practice recommends that the IH124 method is applied with 50ha, and the resulting discharge is linearly interpolated for the required area. MicroDrainage ICP SuDS Mean Annual Flood tool allows for the aforementioned requirement, and has been used accordingly. The table below outlines the Greenfield Runoff rates for the existing site.

Greenfield Runoff Rat	tes	S		
	Greenfield Site	Greenfield Runoff		
	(0.020 ha) for Proposed			
	Ir			
		Area (0.016ha)		
Qbar	0.1	0.1		
1 in 1 year (l/s)	0.1	0.1		
1 in 30 years (l/s)	0.2	0.1		
1 in 100 years (l/s)	0.3	0.2		

Table 6.1 - Summary of Greenfield Runoff Rates obtained from MicroDrainage.

As the site is actually brownfield in nature, the existing runoff rates from the developed site have also been assessed.

The brownfield site has been assessed using the modified rational method to understand the predevelopment and post-development discharge rates and volumes. The following tables highlight the findings of this assessment, and the calculations can be found within the Appendices. Table 6.2 - Summary of Brownfield Runoff Rates.

	Pre-Development Runoff Rates	Post-Development Runoff Rates	Post-Development Runoff Rates (+40% CC)
1 in 2 year (l/s)	1.017	1.463	2.0482
1 in 30 years (I/s)	2.567	3.691	5.1676
1 in 100 years (l/s)	3.384	4.867	6.8131

The previous table defines the pre-development and post-development runoff rates, based on the average intensity for a 15min storm for the respective events and assuming no restriction within the proposed drainage network. It is evident that there shall be a net increase from the proposed development.

Table 6.3 - Summary of Brownfield Runoff Volumes.

	Pre-Development Runoff Volumes	Post-Development Runoff Volumes	Post-Development Runoff Volumes (Whole Site +40% CC
1 in 100 years (m 3)	8.46	12.17	17.04

The previous table defines the pre-development and post-development runoff volume, based on the average intensity for a 360min storm for the respective event and assuming no restriction within the proposed drainage network. It is evident that there shall be a minor net increase from the proposed development.

In accordance with LLFA requirements, brownfield sites should be restricted to 50% of the predevelopment brownfield runoff rate. The pre-development runoff rate for the 1 in 2 year event is 1.017l/s. Generally, flow control devices are compromised when discharging at rates less than 2l/s due to the required orifice sizes and risk of blockage.

Methods for managing surface water are discussed in the following sections.

5.3 Managing Surface Water

The management of surface water has been assessed in accordance with the guidance set out in CIRIA report C753 'The SuDS Manual 2015'.

To mimic the natural catchment processes as closely as possible, a "management train" is required. This concept is fundamental to successful management of surface water and employs drainage techniques in series to incrementally reduce pollution, flow rates and volumes.

The hierarchy of techniques and processes that should be considered in developing the management train are as follows:

- **Prevention.** The use of good site design and housekeeping measures to prevent run off transporting pollutants to the drainage system.
- Source Control. Control of run off at or very near to its source. This includes disposal methods that comprise green roofs, permeable pavements, rainwater harvesting or other permeable surfaces.
- **Site Control.** Management of surface water locally within a development site. This includes disposal techniques that comprise infiltration structures and detention basins.
- **Regional Control.** Management of run off from a site, or series of sites, typically in a balancing pond or wetland. However, for this development regional controls do not apply.

5.4 Managing Surface Water – Scheme Proposals

Wherever possible, surface water should be managed in small cost-effective landscaped features located within small sub catchments rather than being conveyed to and managed in large systems at the bottom of the drained area. The techniques that are higher in the hierarchy are preferred to those further down so that prevention and control of water at source should always be considered before site or regional controls. However, where upstream opportunities are restricted, a number of lower hierarchy options should be used in series and water should only be conveyed elsewhere if it cannot be dealt with on site.

5.4.1 Prevention & Water Quality

There are a number of factors that contribute to pollution incidents and water quality issues such as sediments, oil, fertilisers, pesticides, animal waste and litter, but improvements can be made by managing surface water and stormwater particularly during extreme weather events.

Sustainable drainage systems mimic natural drainage and help to improve water quality by reducing sediment and contaminants from runoff leading to a number of benefits such as aesthetic, health, and opportunities for wildlife and biodiversity.

It is proposed to utilise raingardens and catchpits to maximise pollution control at the site.

A CIRIA C753 Pollution Indices table has been produced and can be found in the Appendices. It is evident that using the aforementioned features shall not increase the risk of polluting downstream waters.

5.4.2 Source Control

As already noted, source control features include permeable pavements and other infiltration structures which are explored further as follows.

Permeable Pavements (Type A & B)

The site does not lend itself to the use of permeable paving due to the limited hardstanding proposed, and therefore Type A & B permeable pavements have been discounted from this development.

Green Roofs

The roof lines do not naturally lend themselves to utilising green roofs. Therefore, green roofs have been discounted from this development.

Rainwater Harvesting

As rainwater harvesting is considered full for a storm event, no rainwater harvesting has been proposed at this stage; water butts could be considered at detailed design stage.

5.4.3 Site Control

As previously mentioned, site control includes disposal techniques that comprise infiltration structures and detention basins. The opportunities of utilising these have been explored below.

Soakaways

The site is unlikely suitable for concentrated infiltration techniques such as soakaways due to the anticipated strata. Therefore, soakaways have been discounted at this stage.

Attenuation Tanks

As infiltration is unlikely viable, it is proposed that an attenuation tank is utilised to assist with a restricted offsite discharge of surface water.

Ponds

The site use does not naturally lend itself to the use of ponds. Therefore, ponds have been discounted from this development.

Detention Basins

The site use does not naturally lend itself to the use of detention basins. Therefore, detention basins have been discounted from this development.

Permeable Pavements (Type C)

The site does not lend itself to the use of permeable paving due to the limited hardstanding proposed, and therefore Type C permeable pavements have been discounted from this development.

Swales

The site use does not naturally lend itself to the use of swales. Therefore, swales have been discounted from this development.

5.4.4 Strategy Proposals & Preliminary Sizing Estimations

An element of site control must include provision for Climate Change.

National policy for climate change allowance changed in 2022, requiring developments to consider the 1:30 year event plus climate change allowance and the 1:100 year event plus climate change allowance, in addition to all events previously considered. The climate change allowance varies between areas and a site specific assessment of the required climate change allowance is required by referring to the Department for Environment, Food and Rural Affairs (DEFRA) online tool. Designs should consider the upper end climate change allowance for the relevant epoch.

A summary of the allowances for this particular site can be found within the following table.

Peak Rainfall Climate Change Allowances				
Epoch	2050s	2070s		
1:30 year event (3.3% AEP)	35%	35%		
1:100 year event (1% AEP)	40%	40%		

Table 6.4 – Climate Change Allowances

Based on the previous table, the following events and respective climate change allowance should be considered for the development: 1:30 year event plus 35% climate change allowance, and the 1:100 year event plus 40% climate change allowance.

As previously calculated, the brownfield pre-development runoff rate for the 1 in 2 year event is 1.017l/s. Generally, flow control devices are compromised when discharging at rates less than 2l/s due to the required orifice sizes and risk of blockage. Therefore, it is proposed that the offsite discharge is restricted to 2l/s for the 1:100-year event plus a 40% climate change allowance. This shall still be an improvement on the anticipated pre-development scenario, as the site had no restricted discharge.

It is proposed that the site connects to the existing public sewer, Thames Water sewer assets will need to be obtained to confirm the point of connection, and that the flow is restricted through a flow control such as Hydro-Brake. A geocellular attenuation tank shall provide storage sufficient for the 1:100-year event plus 40% climate change allowance.

It is proposed that the connection to the public sewer is made via gravity, but this should be confirmed through detailed investigations at the detailed design stage.

The individual elements have been explored further below:

Geocellular Attenuation Tank

As previously mentioned, the offsite discharge is to be restricted to 2l/s for the 1:100-year event, plus a 40% climate change allowance. As can be seen by the appended MicroDrainage calculations, a geocellular attenuation tank with effective dimensions of 5m x 1m x 0.8m deep can fully accommodate the 1:100-year event with a 40% climate change allowance. The attenuation tank requires a minimum of 95% voids.

Raingardens

As rainwater pipes tend to discharge directly into the below ground drainage, this bypasses the proposed permeable paving. Therefore, raingardens are proposed for each rainwater pipe which allows the water to filter through in a similar way to permeable pavement but with even better pollution control. The water then enters the below ground drainage via a perforated pipe.

5.5 Exceedance and Surface Water Conveyance

Exceedance routes shall be provided by appropriate external levels design during the detailed design stage. The exceedance routes shall need to accommodate system failure and events greater than the 1:100-year event inclusive of a 40% climate change allowance.

5.6 Surface Water Strategy Summary

The existing site comprises four garages with a flat above with an access path with surrounding grass. The site is considered as brownfield in nature.

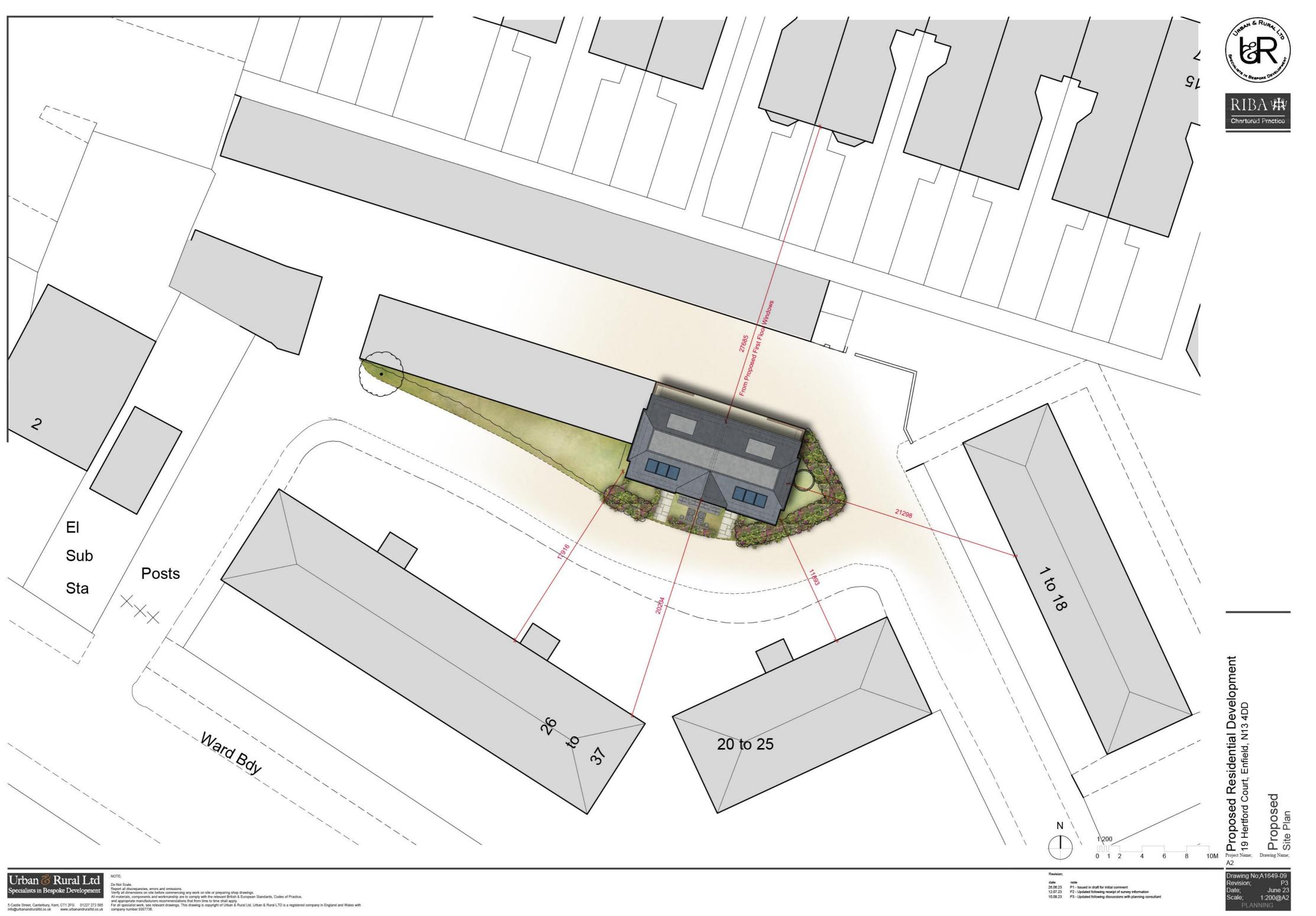
The proposal is to utilise rainwater gardens, catchpits, a geocellular attenuation tank, and a Hydro-Brake. Accordingly, all storm events up to and including the critical 100-year event with a 40% allowance for climate change will be assessed when considering the volume for the attenuation structures.

The attenuation structures will be sized to accommodate a 1 in 100-year storm event with a 40% allowance for future climate change. It is proposed that the site connects to the existing public surface water sewer via the network in Hertford Court. A drainage survey will be required to distinguish between the foul and surface water networks.

It is anticipated that a condition will be imposed on a planning permission requiring further details of the surface water drainage system to be submitted for approval.

It is evident from the aforementioned that a suitable surface water network can be provided that accords with National and Local Planning Policy Guidance.

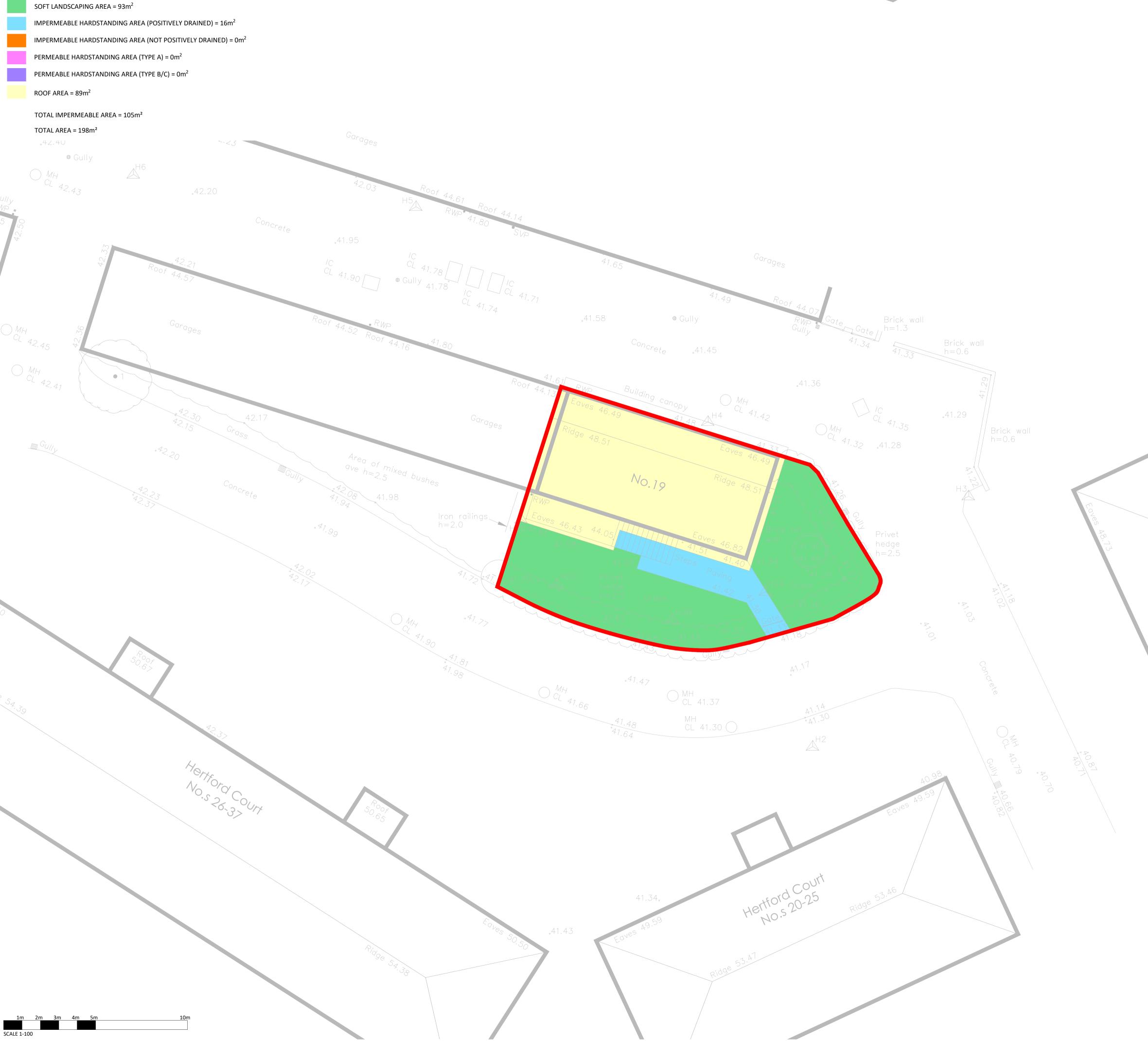
6. Conclusions


This document has been produced in accordance with current best practice and recommendations and guidance set out in the National Planning Policy Framework (NPPF) and as required by Kent County Council's Drainage and Planning Policy Statement (2017).

The report concludes:

- The site currently comprises four garages with a flat above with an access path and surrounding grass. It is bounded by Herford Court and a number of residential dwellings on all boundaries.
- A review of the BGS online superficial deposits mapping tool has identified no known superficial deposits.
- A review of the BGS online bedrock mapping tool has identified that the development site is likely underlain by the London Clay Formation (Clay).
- The proposal is to demolish four garages and a flat and to construct two dwellings.
- An assessment of peak foul water flow has been carried out in accordance with 'British Water Flows and Loads'. It is anticipated that there shall be an increase in peak flow by approximately 0.042 l/s.
- It is proposed that the foul network is connected to the existing public foul water sewer via the network in Hertford Court. A drainage survey will be required to distinguish between the foul and surface water networks. A connection is subject to a formal Section 106 connection agreement with Thames Water.
- The proposal is to utilise rainwater gardens, catchpits, a geocellular attenuation tank, and a Hydro-Brake.
- The surface water drainage strategy will include a 40% allowance from increased rainfall intensities as a direct result of climate change.
- It is evident that the site can be drained satisfactorily in accordance with Local and National Planning Policy Guidance. The details of the drainage systems should be the subject of suitably worded Planning Conditions which would require the schemes to be submitted to the local authority for approval prior to construction work commencing.

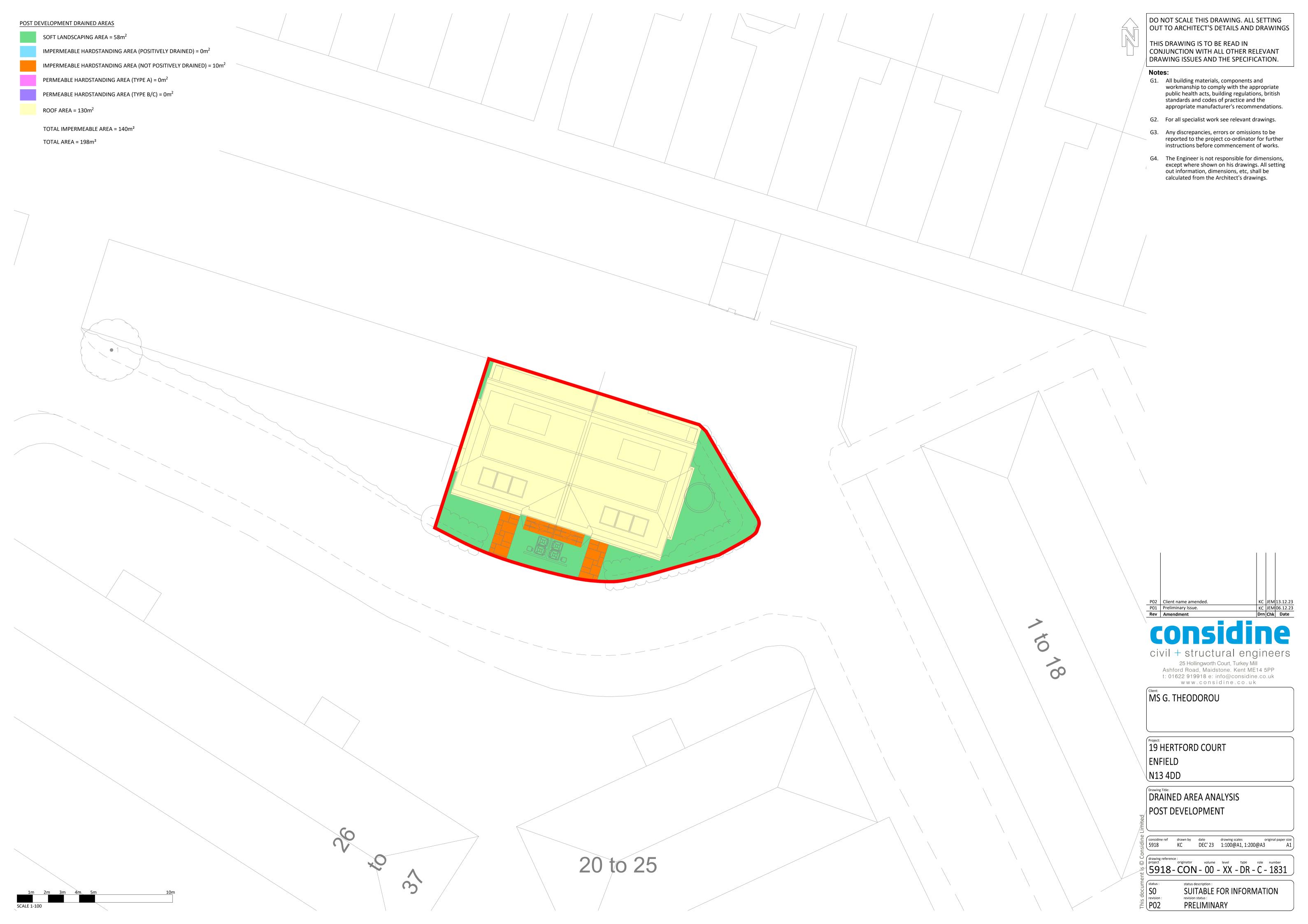
Appendix 1 – Proposed Site Plan



Appendix 2 – Foul Water & Surface Water Drainage Strategy

Appendix 3 – Drained Areas Analysis

PRE DEVELOPMENT DRAINED AREAS


DO NOT SCALE THIS DRAWING. ALL SETTING OUT TO ARCHITECT'S DETAILS AND DRAWINGS

THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL OTHER RELEVANT DRAWING ISSUES AND THE SPECIFICATION.

Notes:

- G1. All building materials, components and workmanship to comply with the appropriate public health acts, building regulations, british standards and codes of practice and the appropriate manufacturer's recommendations.
- G2. For all specialist work see relevant drawings.
- G3. Any discrepancies, errors or omissions to be reported to the project co-ordinator for further instructions before commencement of works.
- G4. The Engineer is not responsible for dimensions, except where shown on his drawings. All setting out information, dimensions, etc, shall be calculated from the Architect's drawings.

Appendix 4 – CIRIA C753 Pollution Indices

CIRIA C753 **POLLUTION INDICES**

Project No:	5918	Sheet No.	1
Made By:	кс	Revision:	P01
Date:	17/11/2023	Project:	19 He

17/11/2023 Project: 19 Hertford Court, Enfield

Land Use	Pollution Hazard Level	Total Suspended Suspended Solids (TSS)	Metals	Hydrocarbons	Applicable
Residential Roofs	Very Low	0.20	0.20	0.05	x
Other Roofs (typically commercial/industrial roofs)	Low	0.30	0.20	0.05	
Individual property driveways, residential car parks, low traffic roads, (eg cul de sacs, homezones and general access roads) and non-residential car parking with infrequent change (eg schools, offices) ie < 300 traffic movements/day	Low	0.50	0.40	0.40	
Commercial yard and delivery areas, non-residential car parking with frequent change (eg hospitals, retail), all roads except low traffic roads and trunk roads/motorways	Medium	0.70	0.60	0.70	
Sites with heavy pollution (eg haulage yards, lorry parks, highly frequented lorry approaches to industrial estates, waste sites), sites where chemicals and fuels (other than domestic fuel oil) are to be delivered, handled, stored used or manufactured; industrial sites; trunk roads and motorways.	High	0.80	0.80	0.90	

Up to 0.8 where there is potential for metals to leach from the roof

These should only be used if considered appropriate as part of a detailed risk assessment. Refer to CIRIA C753

	Total Suspended Suspended Solids (TSS)	Metals	Hydrocarbons
Total Polution Hazard Indices	0.20	0.20	0.05

CIRIA C753 POLLUTION INDICES

Project No:	5918	Sheet No.	2
Made By:	КС	Revision:	P01
Date:	17/11/2023	Project:	19 Hertford Court, Enfield

Type of SuDS Component	Total Suspended Suspended Solids (TSS)	Metals	Hydrocarbons	Applicable
Filter Strip	0.40	0.40	0.50	
Filter Drain	0.40	0.40	0.40	
Swale	0.50	0.60	0.60	
Bioretention System	0.80	0.80	0.80	x
Permeable Pavement	0.70	0.60	0.70	
Detention Basin	0.50	0.50	0.60	
Pond	0.70	0.70	0.50	
Wetland	0.80	0.80	0.80	
Downstream Defender® Vortex	0.30	0.20	0.20	
Downstream Defender® Vortex Plus	0.50	0.40	0.50	
Downstream Defender® Advanced Vortex	0.50	0.40	0.50	
Klargester AquaTreat®	0.80	0.60	0.90	
Standard Catchpit	0.10	0.00	0.00	X

Select Primary Mitigation: Bioretention System

	Total Suspended Suspended Solids (TSS)	Metals	Hydrocarbons
Total Mitigation Indices	0.85	0.80	0.80
Total Polution Hazard Indices	0.20	0.20	0.05
Indices Balance	-0.65	-0.6	-0.75

ACCEPTABLE

ACCEPTABLE

ACCEPTABLE

Appendix 5 – Preliminary Surface Water Network Calculations

Considine L											Page 1
25 Hollingw	orth	Cour	t		5918						
Kent					19 H	ERTFOR	D COURI	, ENI	FIEL	D	
ME14 5PP					ATT1	-P01					Micro
Date 17/11/2023 12:08						qned b	y KC				
File 5918-A				01		ked by	-				Draina
Innovyze		10011	. 10 0 1	• • • • •		-	trol 20	20 1	3		
тшоууге					SOUL	ce con	LIUI ZU	20.1	•)		
		Summ	arv of	Resu	lts f	or 2 w	ear Ret	urn F	Peri	h	
		ballin	ary or	nebu	100 1	OI Z Y			CII	<u></u>	
				Half Dı	cain T:	ime : 4	minutes.				
	Storm	n	Max	Max	м	ax	Max	Ma	x	Max	Status
	Event	=	Level	Depth	Infil	tration	Control	Σ Out	flow	Volume	
			(m)	(m)	(1	/s)	(1/s)	(1/	s)	(m³)	
15	min	Summer	98.583	0 083		0.0	1.6		1.6	0.4	ОК
			98.578			0.0	1.5		1.5		
			98.562			0.0	1.2		1.2		
			98.555			0.0	1.0		1.0		
			98.549			0.0	0.8		0.8		
			98.544			0.0	0.7		0.7		
			98.538			0.0	0.6		0.6		
			98.534			0.0	0.5		0.5		
			98.531			0.0	0.4		0.4		
			98.528			0.0	0.3		0.3		
			98.525			0.0	0.3		0.3		
			98.521			0.0	0.2		0.2		
			98.518			0.0	0.1		0.1		
			98.516			0.0	0.1		0.1		
			98.514			0.0	0.1		0.1		
			98.512			0.0	0.1		0.1		
			98.511			0.0	0.1		0.1		
8640	min	Summer	98.511	0.011		0.0	0.1		0.1		
10080	min	Summer	98.510	0.010		0.0	0.0		0.0	0.0	ОК
			98.588			0.0	1.7		1.7		
10080	min	Summer Winter	98.510	0.010	Rain	0.0	0.0 1.7 I Dischar	-	0.0	0.0 0.4	0 ŀ
			Eveilt	(1		(m ³)	(m ³)	e	(1111)	,	
						()	()				
		15	min Sur	nmer 3	35.773	0.0) ().9		12	
		30	min Sur	nmer 2	22.507	0.0) 1	.2		19	

	Even	t	(mm/hr)		Volume (m ³)	(mins)
15	min	Summer	35.773	0.0	0.9	12
30	min	Summer	22.507	0.0	1.2	19
60	min	Summer	13.637	0.0	1.4	34
120	min	Summer	9.985	0.0	2.1	64
180	min	Summer	7.960	0.0	2.5	94
240	min	Summer	6.653	0.0	2.8	124
360	min	Summer	5.033	0.0	3.2	184
480	min	Summer	4.064	0.0	3.4	244
600	min	Summer	3.421	0.0	3.6	306
720	min	Summer	2.962	0.0	3.7	368
960	min	Summer	2.349	0.0	3.9	488
1440	min	Summer	1.682	0.0	4.2	726
2160	min	Summer	1.211	0.0	4.6	1080
2880	min	Summer	0.966	0.0	4.9	1464
4320	min	Summer	0.714	0.0		
5760	min	Summer	0.583	0.0	5.9	2920
7200	min	Summer	0.504	0.0		
				0.0		4344
				0.0		
15	min	Winter	35.773	0.0	1.0	12
		©1	L982-202	20 Innov	yze	

Considine Limited		Page 2
25 Hollingworth Court	5918	
Kent	19 HERTFORD COURT, ENFIELD	
ME14 5PP	ATT1-P01	Mirro
Date 17/11/2023 12:08	Designed by KC	Drainage
File 5918-ATT1-100Yr+40%-P01	Checked by JEM	Diamage
Innovyze	Source Control 2020.1.3	

Summary of Results for 2 year Return Period

	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
30	min Winte:	98.575	0.075	0.0	1.4	1.4	0.4	ОК
60	min Winter	98.556	0.056	0.0	1.0	1.0	0.3	ОК
120	min Winte	r 98.547	0.047	0.0	0.8	0.8	0.2	ОК
180	min Winte	r 98.541	0.041	0.0	0.6	0.6	0.2	ОК
240	min Winte	98.537	0.037	0.0	0.5	0.5	0.2	ОК
360	min Winte	98.532	0.032	0.0	0.4	0.4	0.2	ОК
480	min Winter	98.528	0.028	0.0	0.3	0.3	0.1	ОК
600	min Winte	98.526	0.026	0.0	0.3	0.3	0.1	O K
720	min Winter	98.524	0.024	0.0	0.2	0.2	0.1	ОК
960	min Winte	r 98.521	0.021	0.0	0.2	0.2	0.1	O K
1440	min Winte	r 98.518	0.018	0.0	0.1	0.1	0.1	ΟK
2160	min Winte	r 98.515	0.015	0.0	0.1	0.1	0.1	ΟK
2880	min Winter	r 98.513	0.013	0.0	0.1	0.1	0.1	ΟK
4320	min Winte	r 98.512	0.012	0.0	0.1	0.1	0.1	ΟK
5760	min Winte	r 98.510	0.010	0.0	0.0	0.0	0.0	ΟK
7200	min Winte	r 98.510	0.010	0.0	0.0	0.0	0.0	ΟK
8640	min Winte	r 98.509	0.009	0.0	0.0	0.0	0.0	ΟK
10080	min Winte	r 98.509	0.009	0.0	0.0	0.0	0.0	O K

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
30	min	Winter	22.507	0.0	1.3	20
60	min	Winter	13.637	0.0	1.6	34
120	min	Winter	9.985	0.0	2.3	64
180	min	Winter	7.960	0.0	2.8	94
240	min	Winter	6.653	0.0	3.1	124
360	min	Winter	5.033	0.0	3.5	186
480	min	Winter	4.064	0.0	3.8	246
600	min	Winter	3.421	0.0	4.0	296
720	min	Winter	2.962	0.0	4.2	368
960	min	Winter	2.349	0.0	4.4	480
1440	min	Winter	1.682	0.0	4.7	734
2160	min	Winter	1.211	0.0	5.1	1092
2880	min	Winter	0.966	0.0	5.5	1456
4320	min	Winter	0.714	0.0	6.0	2188
5760	min	Winter	0.583	0.0	6.6	2880
7200	min	Winter	0.504	0.0	7.1	3528
8640	min	Winter	0.451	0.0	7.6	4288
10080	min	Winter	0.412	0.0	8.1	5088

5918	
19 HERTFORD COURT, ENFIELD	
ATT1-P01	— Micro
Designed by KC	
Checked by JEM	Drainag
Source Control 2020.1.3	
infall Details	
on 2013	
on GB 531366 193408 TQ 31366 93408	
pe Point	
ns Yes	
,	
s) 15	
s) 10080	
° +0	
ne Area Diagram	
al Area (ha) 0.014	
ime (mins) Area	
rom: To: (ha)	
0 4 0.014	
	ATT1-P01 Designed by KC Checked by JEM Source Control 2020.1.3 infall Details el FEH s) 2 pn 2013 on GB 531366 193408 TQ 31366 93408 pe Point ns Yes c) 0.750 c) 0.840 s) 15 s) 10080 % +0 he Area Diagram al Area (ha) 0.014

onsidine Limited					Pa	.ge 4
5 Hollingworth Cou	urt	5918				
lent		19 HERTI	FORD COU	RT, ENFIELD		
IE14 5PP		ATT1-P01		,		
	0.0					icro
ate 17/11/2023 12		Designed	-			rainag
ile 5918-ATT1-100	Yr+40%-P01	. Checked	by JEM			
nnovyze		Source (Control	2020.1.3		
		Model Det	ails			
	Storage is (Online Cover	Level (m) 100.000		
	Cellu	lar Storag	e Struct	ure		
) Safety Fact		
	tion Coefficier tion Coefficier	• •	,		ty 0.95	
Depth (m) Ai	rea (m²) Inf. A	Area (m²) De	pth (m) A	rea (m²) Inf.	Area (m²)	
0.000 0.800	5.0 5.0	0.0	0.801	0.0	0.0	
	Hydro-Brake	e® Optimum	Outflow	Control		
	Un	it Reference	MD-SHE-0	070-2000-0800)-2000	
	Des	ign Head (m)			0.800	
	Desig	n Flow (l/s)			2.0	
		Flush-Flo ^m	м	Calcu	lated	
		Objective	e Minimis	e upstream st	corage	
		Applicatior		Su	irface	
		mp Available			Yes	
		iameter (mm)			70	
		rt Level (m)		ç	98.500	
	n Outlet Pipe D				100	
Sugge	ested Manhole D	iameter (mm)			1200	
	Control	Points	Head (m)	Flow (l/s)		
	Design Point	(Calculated)	0.800	2.0		
	2	Flush-Flo™				
		Kick-Flo®	0.504	1.6		
	Mean Flow over	Head Range	-	1.7		
The hydrological cal Hydro-Brake® Optimum Hydro-Brake Optimum®	n as specified.	Should and	other type	of control o	levice othe	r than a
invalidated				1 (1 (-) D		
Depth (m) Flow (1/s 0.100 1.		2.4	3.000	10w (1/s) Dep 3.7	7.000	5.5
0.200 2.		2.4	3.500	3.9	7.500	5.6
0.300 2.		2.0	4.000	4.2	8.000	5.8
0.400 1.		2.9	4.000	4.2	8.500	5.0 6.0
	2.000	3.0	4.300 5.000	4.7	9.000	6.2
	.8 2.200	3.2	5.500	4.9	9.500	6.3
	2.200	3.3	6.000	5.1	2.000	0.0
	2.400	3.4	6.500	5.3		

onsidine I										Page 1
Hollingv	vorth	Cour	t		5918					
nt					19 HERTFORD COURT, ENFIELD					
14 5PP					ATT1	-P01				Micco
te 17/11/	2023	12.0	7			gned by	V KC			- Micro
le 5918-A				01			-			Draina
	7111-	TUUIL	⊤4∪ ∂ −P	••••		ked by		0 1 0		
novyze					Sour	ce Cont	crol 2020	J.1.3		
		_	-							
		Summa	ary of	Resul	ts ic	or 30 y	ear Retu	rn Perio	20	
				Half Dr	oin T	ime : 8 m	minutes			
				nali Di	ain i.		millinules.			
	Storm	n	Max	Max	М	ax	Max	Max	Max	Status
	Event	5	Level	Depth	Infil	tration	Control S	Outflow	Volume	
			(m)	(m)	(1	/s)	(l/s)	(l/s)	(m³)	
15	min	Summer	98.771	0.271		0.0	2.0	2.0	1.3	ОК
			98.765			0.0	2.0	2.0	1.3	
			98.700			0.0	2.0	2.0		
			98.633			0.0	1.9	1.9		
180	min	Summer	98.594	0.094		0.0	1.7	1.7	0.4	ОК
240	min	Summer	98.577	0.077		0.0	1.5	1.5	0.4	0 K
360	min	Summer	98.560	0.060		0.0	1.1	1.1	0.3	O K
			98.551			0.0	0.9	0.9	0.2	
			98.545			0.0	0.8	0.8	0.2	
			98.541			0.0	0.6	0.6	0.2	
			98.536			0.0	0.5	0.5	0.2	
			98.530 98.524			0.0	0.4 0.3	0.4 0.3	0.1	
			98.521			0.0	0.3	0.3	0.1	
			98.518			0.0	0.1	0.1	0.1	
			98.516			0.0	0.1	0.1	0.1	
7200	min	Summer	98.515	0.015		0.0	0.1	0.1	0.1	ОК
8640	min	Summer	98.514	0.014		0.0	0.1	0.1	0.1	ОК
			98.513			0.0	0.1	0.1	0.1	O K
15	min	Winter	98.810	0.310		0.0	2.0	2.0	1.5	ОК
			Storm	I	Rain	Flooded	Discharge	e Time-Pe	ak	
			Event	(m	m/hr)	Volume	Volume	(mins))	
						(m³)	(m³)			
		15	min Sur	nmer 9	0.257	0.0	2.4	1	13	
		30	min Sur	mmer 5	7.524	0.0	3.0)	21	
			min Sur		4.985	0.0	3.7		38	
			min Sur		2.603	0.0	4.7		66	
			min Sur		7.091	0.0	5.4		96	
			min Sur		3.861	0.0	5.8		24	
			min Sur		0.147	0.0	6.4		84	
			min Sur min Sur		8.041	0.0	6.8		44	
			min Sur		6.680 5.727	0.0	7.0		06 66	
			min Sur		4.474	0.0	7.5		90	
			min Sur		3.137	0.0			30	
			min Sur		2.203	0.0	8.3		96	
			min Sur		1.722	0.0			32	

2880 min Summer

4320 min Summer

5760 min Summer

7200 min Summer

8640 min Summer

10080 min Summer

15 min Winter

1.722

1.229

0.977

0.825

0.722

0.649

90.257

0.0

0.0

0.0

0.0

0.0

0.0

©1982-2020 Innovyze

2128

2840

3608

4408 5088

14

8.7

9.8

10.4

10.9

11.4

2.7

9.3

Considine Limited		Page 2
25 Hollingworth Court	5918	
Kent	19 HERTFORD COURT, ENFIELD	
ME14 5PP	ATT1-P01	Mirro
Date 17/11/2023 12:07	Designed by KC	Drainage
File 5918-ATT1-100Yr+40%-P01	Checked by JEM	Diamage
Innovyze	Source Control 2020.1.3	

Summary	of	Results	for	30	year	Return	Period

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Σ Outflow (l/s)	Max Volume (m³)	Status
30	min W:	inter	98.786	0.286	0.0	2.0	2.0	1.4	ОК
60	min W:	inter	98.684	0.184	0.0	2.0	2.0	0.9	ОК
120	min W:	inter	98.596	0.096	0.0	1.7	1.7	0.5	ОК
180	min W:	inter	98.572	0.072	0.0	1.4	1.4	0.3	ОК
240	min W:	inter	98.560	0.060	0.0	1.1	1.1	0.3	ОК
360	min W:	inter	98.548	0.048	0.0	0.8	0.8	0.2	ОК
480	min W:	inter	98.542	0.042	0.0	0.7	0.7	0.2	ОК
600	min W:	inter	98.538	0.038	0.0	0.6	0.6	0.2	ОК
720	min W:	inter	98.534	0.034	0.0	0.5	0.5	0.2	ОК
960	min W:	inter	98.530	0.030	0.0	0.4	0.4	0.1	ОК
1440	min W:	inter	98.525	0.025	0.0	0.3	0.3	0.1	ОК
2160	min W:	inter	98.521	0.021	0.0	0.2	0.2	0.1	ΟK
2880	min W:	inter	98.518	0.018	0.0	0.1	0.1	0.1	ΟK
4320	min W:	inter	98.515	0.015	0.0	0.1	0.1	0.1	ОК
5760	min W:	inter	98.514	0.014	0.0	0.1	0.1	0.1	ОК
7200	min W:	inter	98.512	0.012	0.0	0.1	0.1	0.1	ОК
8640	min W:	inter	98.512	0.012	0.0	0.1	0.1	0.1	ОК
10080	min W:	inter	98.511	0.011	0.0	0.1	0.1	0.1	ОК

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
30	min	Winter	57.524	0.0	3.4	23
60	min	Winter	34.985	0.0	4.1	38
120	min	Winter	22.603	0.0	5.3	66
180	min	Winter	17.091	0.0	6.0	96
240	min	Winter	13.861	0.0	6.5	124
360	min	Winter	10.147	0.0	7.2	184
480	min	Winter	8.041	0.0	7.6	246
600	min	Winter	6.680	0.0	7.9	308
720	min	Winter	5.727	0.0	8.1	368
960	min	Winter	4.474	0.0	8.4	486
1440	min	Winter	3.137	0.0	8.9	714
2160	min	Winter	2.203	0.0	9.3	1084
2880	min	Winter	1.722	0.0	9.7	1452
4320	min	Winter	1.229	0.0	10.4	2224
5760	min	Winter	0.977	0.0	11.0	2912
7200	min	Winter	0.825	0.0	11.6	3672
8640	min	Winter	0.722	0.0	12.2	4432
10080	min	Winter	0.649	0.0	12.8	5136

Considine Limited	-	Page 3
25 Hollingworth Court	5918	
Kent	19 HERTFORD COURT, ENFIELD	
ME14 5PP	ATT1-P01	— Micro
Date 17/11/2023 12:07	Designed by KC	
File 5918-ATT1-100Yr+40%-P01	Checked by JEM	Drainag
Innovyze	Source Control 2020.1.3	
R	ainfall Details	
_		
Rainfall Mo Return Period (yea		
FEH Rainfall Vers		
Site Locat	ion GB 531366 193408 TQ 31366 93408	
Data T		
Summer Sto. Winter Sto		
Winter Sto Cv (Summ		
Cv (Winte		
Shortest Storm (mi	*	
Longest Storm (mi		
Climate Change	e % +0	
T	ime Area Diagram	
То	tal Area (ha) 0.014	
	Time (mins) Area	
E	'rom: To: (ha)	
	0 4 0.014	

onsidine Limited					Page	4
5 Hollingworth Cour	t	5918				
lent		19 HERTF	ORD COU	RT, ENFIELD		
IE14 5PP		ATT1-P01			Mico	
ate 17/11/2023 12:0	7	Designed	bv KC			
ile 5918-ATT1-100Yr		2	-		Drai	Dag
	1408 101.	Source C	-	2020 1 3		
nnovyze		Source c	ONCIOL .	2020.1.3		
		Model Deta	ails			
	Storage is	Online Cover	Level (m)) 100.000		
	Cellu	lar Storage	Struct	ure		
	on Coefficie	evert Level (m ent Base (m/hr ent Side (m/hr) 0.00000) Porosit		
Depth (m) Area	a (m²) Inf.	Area (m²) Dep	oth (m) A	rea (m²) Inf.	Area (m²)	
0.000 0.800	5.0 5.0	0.0	0.801	0.0	0.0	
	Hydro-Brak	e® Optimum	Outflow	Control		
	ŢŢ	nit Reference	MD-SHE-0	070-2000-0800	-2000	
		sign Head (m)	ND DILL 0		0.800	
		gn Flow (l/s)			2.0	
		Flush-Flo™			lated	
		-	Minimis	e upstream st	-	
		Application		Su	rface	
		ump Available Diameter (mm)			Yes 70	
		ert Level (m)		9	8.500	
Minimum C		Diameter (mm)		2	100	
	-	Diameter (mm)			1200	
	Control	Points	Head (m)	Flow (l/s)		
D	esian Point	(Calculated)	0.800	2.0		
2.	001911 101110	Flush-Flo™	0.240			
		Kick-Flo®	0.504	1.6		
Me	ean Flow ove	er Head Range	-	1.7		
The hydrological calcu Hydro-Brake® Optimum a Hydro-Brake Optimum® b invalidated	as specified	. Should ano	ther type	of control d	evice other t	
Depth (m) Flow (l/s)	Depth (m) H	Clow (l/s) Dep	oth (m) F	low (l/s) Dep	th (m) Flow (1/s)
0.100 1.8	1.200	2.4	3.000	3.7	7.000	5.5
0.200 2.0	1.400	2.6	3.500	3.9	7.500	5.6
0.300 2.0 0.400 1.9	1.600 1.800	2.7	4.000 4.500	4.2 4.4	8.000 8.500	5.8 6.0
0.400 1.9	2.000	2.9	4.500 5.000	4.4	9.000	6.0 6.2
0.600 1.8	2.000	3.0	5.000	4.9	9.500	6.2 6.3
0.800 2.0	2.200	3.3	6.000	5.1	2.000	5.5
0.000 / 01	2.600	3.4	6.500	5.3		
1.000 2.2	2.000	I				
	2.000					

Hollingworth Court5918t19 HERTFORD COURT, ENFIELD	
19 HERTFORD COURT, ENFIELD	
4 5PP ATT1-P01	_ Mic
e 17/11/2023 12:07 Designed by KC	
e 5918-ATT1-100Yr+40%-P01 Checked by JEM	Drai
ovyze Source Control 2020.1.3	
Summary of Results for 30 year Return Period (+35%)	
Half Drain Time : 10 minutes.	
Storm Max Max Max Max Max Max	Status
Event Level Depth Infiltration Control Σ Outflow Volume	•
(m) (m) $(1/s)$ $(1/s)$ $(1/s)$ (m^3)	
15 min Summer 98.913 0.413 0.0 2.0 2.0 2.0) ок
15 min Summer 98.913 0.413 0.0 2.0 2.0 2.0 30 min Summer 98.919 0.419 0.0 2.0 2.0 2.0	
S0 min Summer 98.843 0.343 0.0 2.0 2.0 2.0 60 min Summer 98.843 0.343 0.0 2.0 1.6	
120 min Summer 98.749 0.249 0.0 2.0 2.0 1.2	
180 min Summer 98.667 0.167 0.0 1.9 1.9 0.8	
240 min Summer 98.617 0.117 0.0 1.8 1.8 0.6	б ОК
360 min Summer 98.579 0.079 0.0 1.5 1.5 0.4	е ок
480 min Summer 98.564 0.064 0.0 1.2 1.2 0.3	
600 min Summer 98.555 0.055 0.0 1.0 1.0 0.3	
720 min Summer 98.550 0.050 0.0 0.9 0.9 0.2	
960 min Summer 98.543 0.043 0.0 0.7 0.7 0.2	
1440 min Summer 98.535 0.035 0.0 0.5 0.2	
2160 min Summer 98.529 0.029 0.0 0.3 0.1 2880 min Summer 98.525 0.025 0.0 0.3 0.3 0.1	
2880 min Summer 98.525 0.025 0.0 0.3 0.1 4320 min Summer 98.521 0.021 0.0 0.2 0.2 0.1	
4320 min Summer 98.519 0.019 0.0 0.2 0.2 0.1 5760 min Summer 98.519 0.019 0.0 0.2 0.2 0.1	
	. ок
8640 min Summer 98.516 0.016 0.0 0.1 0.1 0.1	
10080 min Summer 98.515 0.015 0.0 0.1 0.1 0.1	. ОК
15 min Winter 98.983 0.483 0.0 2.0 2.0 2.3	3 ОК
Storm Rain Flooded Discharge Time-Peak	
Event (mm/hr) Volume Volume (mins) (m ³) (m ³)	
15 min Summer 121.848 0.0 3.2 14	
30 min Summer 77.658 0.0 4.1 22	
60 min Summer 47.229 0.0 5.0 38	
120 min Summer 30.515 0.0 6.4 70	
180 min Summer 23.072 0.0 7.3 100	
240 min Summer 18.712 0.0 7.9 128	
360 min Summer 13.698 0.0 8.6 186	
480 min Summer 10.855 0.0 9.1 246	
600 min Summer 9.019 0.0 9.5 306	
720 min Summer 7.731 0.0 9.7 366	
960 min Summer 6.040 0.0 10.1 488	
1440 min Summer 4.234 0.0 10.7 716	
2160 min Summer 2.974 0.0 11.2 1068	
2880 min Summar 2.324 0.0 11.7 1400	
2880 min Summer 2.324 0.0 11.7 1428 4320 min Summer 1.659 0.0 12.5 2188	
2880 min Summer2.3240.011.714284320 min Summer1.6590.012.521885760 min Summer1.3190.013.32912	

0.0

0.0

0.0

©1982-2020 Innovyze

8640 min Summer 0.975

15 min Winter 121.848

10080 min Summer 0.876

14.7

15.5

3.6

4336

5000

15

Considine Limited					Page 2
25 Hollingworth Court		5918			
Kent		19 HERTFOR	D COURT,	ENFIELD	
ME14 5PP		ATT1-P01			Micco
Date 17/11/2023 12:07		Designed b	V KC		— Micro
File 5918-ATT1-100Yr+40	I%-₽01	Checked by	-		Drainag
Innovyze		Source Con		1 3	
11110 v y 2 e		Source con	2020	.1.5	
Summary of	Results f	for 30 year	Return P	eriod (+3	5%)
		4			
	lax Max	Max	Max		ax Status
	-	Infiltration			
(m) (m)	(1/s)	(l/s)	(l/s) (m	1 ³)
30 min Winter 98	.979 0.479	0.0	2.0	2.0	2.3 ОК
60 min Winter 98	.851 0.351	0.0	2.0	2.0	1.7 ОК
120 min Winter 98		0.0	2.0	2.0	0.9 O K
180 min Winter 98		0.0	1.8	1.8	0.5 OK
240 min Winter 98		0.0	1.5	1.5	0.4 OK
360 min Winter 98		0.0	1.1	1.1	0.3 OK
480 min Winter 98 600 min Winter 98		0.0	0.9	0.9	0.2 OK
720 min Winter 98		0.0	0.8 0.6	0.8 0.6	0.2 O K 0.2 O K
960 min Winter 98		0.0	0.6	0.6	0.2 O K
1440 min Winter 98		0.0	0.3	0.3	0.1 OK
2160 min Winter 98		0.0	0.3	0.3	0.1 OK
2880 min Winter 98		0.0	0.2	0.2	0.1 ОК
4320 min Winter 98	.518 0.018	0.0	0.1	0.1	0.1 ОК
5760 min Winter 98	.516 0.016	0.0	0.1	0.1	0.1 O K
7200 min Winter 98	.514 0.014	0.0	0.1	0.1	0.1 O K
8640 min Winter 98		0.0	0.1	0.1	0.1 ОК
10080 min Winter 98	.513 0.013	0.0	0.1	0.1	0.1 ОК
Sto		Rain Flooded m/hr) Volume (m³)	-	Time-Peak (mins)	
30 mi	n Winter 7	7.658 0.0	4.6	24	
	n Winter 4				
		0.515 0.0			
		3.072 0.0			
240 mi	n Winter 1	8.712 0.0	8.8	126	
		3.698 0.0			
		0.855 0.0			
		9.019 0.0			
		7.731 0.0			
		6.040 0.0 4.234 0.0			
		4.234 0.0 2.974 0.0			
		2.324 0.0			
		1.659 0.0			
		1.319 0.0			
		1.113 0.0			
8640 mi	n Winter	0.975 0.0	16.5	4320	
10080 mi:	n Winter	0.876 0.0	17.3	5016	

©1982-2020 Innovyze

Considine Limited	- 1	Page 3
25 Hollingworth Court	5918	
Kent	19 HERTFORD COURT, ENFIELD	
ME14 5PP	ATT1-P01	— Micro
Date 17/11/2023 12:07	Designed by KC	
File 5918-ATT1-100Yr+40%-P01	Checked by JEM	Drainag
Innovyze	Source Control 2020.1.3	
R	ainfall Details	
_		
Rainfall Mo Return Period (yea		
FEH Rainfall Vers		
Site Locat	ion GB 531366 193408 TQ 31366 93408	
Data T		
Summer Sto. Winter Sto		
Winter Sto Cv (Summ		
CV (Summe Cv (Winte	,	
Shortest Storm (mi		
Longest Storm (mi		
Climate Chang	e % +35	
T	ime Area Diagram	
То	tal Area (ha) 0.014	
	Time (mins) Area	
E	rom: To: (ha)	
	0 4 0.014	

onsidine Limited					Page	4
5 Hollingworth Cour	t	5918				
lent		19 HERTF	ORD COU	RT, ENFIELD		
IE14 5PP		ATT1-P01			Mico	
ate 17/11/2023 12:0	7	Designed	bv KC			
ile 5918-ATT1-100Yr		2	-		Drai	Dag
	1408 101.	Source C	-	2020 1 3		
nnovyze		Source c	ONCIOI .	2020.1.3		
		Model Deta	ails			
	Storage is	Online Cover	Level (m)) 100.000		
	Cellu	lar Storage	Struct	ure		
	on Coefficie	evert Level (m ent Base (m/hr ent Side (m/hr) 0.00000) Porosit		
Depth (m) Area	a (m²) Inf.	Area (m²) Dep	oth (m) A	rea (m²) Inf.	Area (m²)	
0.000 0.800	5.0 5.0	0.0	0.801	0.0	0.0	
	Hydro-Brak	e® Optimum	Outflow	Control		
	ŢŢ	nit Reference	MD-SHE-0	070-2000-0800	-2000	
		sign Head (m)	ND DILL 0		0.800	
		gn Flow (l/s)			2.0	
		Flush-Flo™			lated	
		-	Minimis	e upstream st	-	
	-	Application		Su	rface	
		ump Available Diameter (mm)			Yes 70	
		ert Level (m)		9	8.500	
Minimum C		Diameter (mm)		2	100	
	-	Diameter (mm)			1200	
	Control	Points	Head (m)	Flow (l/s)		
D	esian Point	(Calculated)	0.800	2.0		
2.	001911 101110	Flush-Flo™	0.240			
		Kick-Flo®	0.504	1.6		
Me	ean Flow ove	er Head Range	-	1.7		
The hydrological calcu Hydro-Brake® Optimum a Hydro-Brake Optimum® b invalidated	as specified	. Should ano	ther type	of control d	evice other t	
Depth (m) Flow (l/s)	Depth (m) H	Clow (l/s) Dep	oth (m) F	low (l/s) Dep	th (m) Flow (1/s)
0.100 1.8	1.200	2.4	3.000	3.7	7.000	5.5
0.200 2.0	1.400	2.6	3.500	3.9	7.500	5.6
0.300 2.0 0.400 1.9	1.600 1.800	2.7	4.000 4.500	4.2 4.4	8.000 8.500	5.8 6.0
0.400 1.9	2.000	2.9	4.500 5.000	4.4	9.000	6.0 6.2
0.600 1.8	2.000	3.0	5.000	4.9	9.500	6.2 6.3
0.800 2.0	2.200	3.3	6.000	5.1	2.000	5.5
0.000 / 01	2.600	3.4	6.500	5.3		
1.000 2.2	2.000	I				
	2.000					

onsidine I									Page 1
Hollingv	vorth Cour	t		5918					
Kent				19 H	ERTFOR	D COURT,	ENFIEL	C	
14 5PP				ATT1	-P01				Micco
Date 17/11/2023 12:06				Desi	gned b	V KC			- Micro
	ATT1-100Y1		01		ked by	-			Draina
	XIII IOOII	140% 1	01				1 2		
novyze				Sour	ce con	trol 2020	J.1.3		
	Cummo ru	of Pos	ulto	for 10		Return	Poriod	(1208)	
	Summary	OI Kes	uits	IOI I(JU year	Neculii	rerrou	(120%)	_
		I	Half D	rain Ti	.me : 14	minutes.			
	Storm	Max	Max	м	lax	Max	Max	Max	Status
	Event	Level	Depth	Infil	tration	Control S	Outflow	Volume	
		(m)	(m)	(1	/s)	(1/s)	(1/s)	(m³)	
1 5	min Summer	99 021	0 521		0.0	2.0	2.0	2.5	ОК
	min Summer				0.0	2.0	2.0	2.5	
	min Summer				0.0	2.0	2.0	2.0	
	min Summer				0.0	2.0	2.0	1.7	
	min Summer				0.0	2.0	2.0	1.2	
	min Summer				0.0	2.0	2.0		
360	min Summer	98.600	0.100		0.0	1.8	1.8	0.5	ОК
480	min Summer	98.577	0.077		0.0	1.5	1.5	0.4	ОК
600	min Summer	98.565	0.065		0.0	1.2	1.2	0.3	ОК
720	min Summer	98.557	0.057		0.0	1.1	1.1	0.3	ОК
960	min Summer	98.549	0.049		0.0	0.8	0.8	0.2	ОК
1440	min Summer	98.539	0.039		0.0	0.6	0.6	0.2	ΟK
2160	min Summer	98.532	0.032		0.0	0.4	0.4	0.2	ΟK
2880	min Summer	98.527	0.027		0.0	0.3	0.3	0.1	ОК
4320	min Summer	98.523	0.023		0.0	0.2	0.2	0.1	ΟK
5760	min Summer	98.520	0.020		0.0	0.2	0.2	0.1	O K
7200	min Summer	98.518	0.018		0.0	0.1	0.1	0.1	O K
8640	min Summer	98.517	0.017		0.0	0.1	0.1	0.1	ΟK
	min Summer				0.0	0.1	0.1		
15	min Winter	99.103	0.603		0.0	2.0	2.0	2.9	ОК
		Storm		Rain		Discharge			
		Event	(mm/hr)		Volume	(mins))	
					(m³)	(m³)			
	15	ō min Su	mmer 1	42.798	0.0	3.7	7	15	
	30) min Su		91.767	0.0	4.8	3	24	
) min Su		55.977	0.0			40	
) min Su		36.122	0.0			72	
) min Su		27.491	0.0			02	
) min Su		22.423	0.0	9.4	1 1	30	
) min Su		16.538	0.0			86	
) min Su		13.169	0.0			46	
) min Su		10.966	0.0			06	
) min Su		9.407	0.0			66	
) min Su		7.338	0.0			86	
) min Su		5.108	0.0			16	
) min Su		3.538	0.0			.00	
	2880) min Su	mmer	2.728	0.0	13.8	s 14	44	

4320 min Summer

5760 min Summer

7200 min Summer

8640 min Summer

10080 min Summer 0.936

15 min Winter 142.798

1.898

1.476

1.224

1.056

0.0

0.0

0.0

0.0

0.0

0.0

©1982-2020 Innovyze

14.4

14.9

15.4

16.0

16.5

4.2

2192

2848

3608

4344

5008

15

-	Limited			FORT					Page 2
	worth Cour	t		5918					
lent				19 H	ERTFORI	D COURT,	ENFIEL	D	
IE14 5PP				ATT1	-P01				Micro
Date 17/11	/2023 12:0	6		Desi	gned by	y KC			
Tile 5918-1	ATT1-100Yr	+40%-PC)1	Chec	ked by	JEM			Draina
Innovyze						trol 2020) 1 3		
11110 V y 2 C				DOUL		2020			
	Summary	of Resu	lts fo	or 10	0 year	Return 1	Period	(+20%)	-
	Storm	Max	Max	м	ax	Max	Max	Max	Status
	Event	Level	Depth	Infilt	ration	Control E	Outflow	Volume	
		(m)	(m)	(1	/s)	(l/s)	(l/s)	(m³)	
3() min Winter	00 125	0 625		0 0	2.0	2.0	3 0	ОК
) min Winter) min Winter				0.0 0.0	2.0	2.0	3.0 2.5	
) min Winter) min Winter				0.0	2.0	2.0	1.5	
) min Winter) min Winter				0.0	1.9	1.9		
) min Winter) min Winter				0.0	1.9	1.9	0.5	
) min Winter) min Winter				0.0	1.0	1.0	0.3	
) min Winter) min Winter				0.0	1.4	1.4	0.3	
) min Winter) min Winter							0.3	
					0.0	0.9	0.9		
) min Winter				0.0	0.8	0.8	0.2	
) min Winter				0.0	0.6	0.6	0.2	
) min Winter				0.0	0.4	0.4	0.2	
) min Winter				0.0	0.3	0.3	0.1	
) min Winter				0.0	0.2	0.2	0.1	
) min Winter				0.0	0.2	0.2	0.1	
) min Winter				0.0	0.1	0.1	0.1	
7200) min Winter	98.515	0.015		0.0	0.1	0.1	0.1	O K
8640) min Winter	98.514	0.014		0.0	0.1	0.1	0.1	ΟK
10080) min Winter	98.513	0.013		0.0	0.1	0.1	0.1	ΟK
		Storm	R	Rain	Flooded	Discharge	a Time-Pe	ak	
		Event	(m	m/hr)	volume	Volume	(mins)	
		Event	(m	m/hr)	(m³)	Volume (m³)	(mins)	
	30	Event min Win			(m³)	(m³)	·) 25	
			ter 9		(m³)	(m³) 5.4			
	60	min Win	ter 9 ter 5	1.767	(m³) 0.0	(m³) 5.4 6.6		25	
	60 120	min Win min Win	ter 9 ter 5 ter 3	1.767 5.977	(m³) 0.0 0.0	(m³) 5.4 6.6 8.5		25 44	
	60 120 180	<mark>min Win</mark> min Win min Win	ter 9 ter 5 ter 3 ter 2	1.767 5.977 6.122	(m³) 0.0 0.0 0.0	(m³) 5.4 6.6 8.5 9.7	5 6 7 1	25 44 76	
	60 120 180 240	min Win min Win min Win min Win	ter 9 ter 5 ter 3 ter 2 ter 2	1.767 5.977 6.122 7.491	(m ³) 0.0 0.0 0.0	(m³) 5.4 6.6 8.5 9.7 10.5	- 5 7 1 5 1	25 44 76 .04	
	60 120 180 240 360	min Win min Win min Win min Win min Win	ter 9 ter 5 ter 3 ter 2 ter 2 ter 1	1.767 5.977 6.122 7.491 2.423	(m ³) 0.0 0.0 0.0 0.0	(m ³) 5.4 6.6 8.5 9.7 10.5 11.7	· ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	25 44 76 .04 .30	
	60 120 180 240 360 480	min Win min Win min Win min Win min Win min Win	ter 9 ter 5 ter 3 ter 2 ter 2 ter 1 ter 1	1.767 5.977 6.122 7.491 2.423 6.538	(m ³) 0.0 0.0 0.0 0.0 0.0	(m ³) 5.4 6.6 8.5 9.7 10.5 11.7 12.4	, ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	25 44 76 04 30 86	
	60 120 180 240 360 480 600	min Win min Win min Win min Win min Win min Win min Win	ter 9 ter 5 ter 3 ter 2 ter 2 ter 1 ter 1 ter 1	1.767 5.977 6.122 7.491 2.423 6.538 3.169	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(m ³) 5.4 6.6 8.5 9.7 10.5 11.7 12.4 12.9	- 	25 44 76 04 30 86 46	
	60 120 180 240 360 480 600 720	min Win min Win min Win min Win min Win min Win min Win min Win	ter 9 ter 5 ter 3 ter 2 ter 2 ter 1 ter 1 ter 1 ter 1 ter 1	1.767 5.977 6.122 7.491 2.423 6.538 3.169 0.966 9.407	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(m ³) 5.4 6.6 8.5 9.7 10.5 11.7 12.4 12.9 13.3	, ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	25 44 76 04 30 86 246 304 370	
	60 120 180 240 360 480 600 720 960	min Win min Win min Win min Win min Win min Win min Win min Win min Win min Win	ter 9 ter 5 ter 3 ter 2 ter 2 ter 1 ter 1 ter 1 ter 1 ter 5	1.767 5.977 6.122 7.491 2.423 6.538 3.169 0.966 9.407 7.338	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 5.4 6.6 8.5 9.7 10.5 11.7 12.4 12.9 13.3 13.8	- 	25 44 76 04 30 86 246 304 370 84	
	60 120 240 360 480 600 720 960 1440	min Win min Win min Win min Win min Win min Win min Win min Win min Win min Win	ter 9 ter 5 ter 2 ter 2 ter 1 ter 1 ter 1 ter 1 ter 1 ter 1 ter 2	1.767 5.977 6.122 7.491 2.423 6.538 3.169 0.966 9.407 7.338 5.108	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 5.4 6.6 8.5 9.7 10.5 11.7 12.4 12.9 13.3 13.8 14.4	- 	25 44 76 04 30 86 246 304 370 884 222	
	60 120 180 240 360 480 600 720 960 1440 2160	min Win min Win	ter 9 ter 5 ter 2 ter 2 ter 1 ter 1 ter 1 ter 1 ter 1 ter 1 ter 1 ter 2 ter 2	1.767 5.977 6.122 7.491 2.423 6.538 3.169 0.966 9.407 7.338 5.108 3.538	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 5.4 6.6 8.5 9.7 10.5 11.7 12.4 12.9 13.3 13.8 14.4 15.0	- 	25 44 76 04 30 86 246 304 370 884 222 992	
	60 120 180 240 360 480 600 720 960 1440 2160 2880	min Win min Win	ter 9 ter 5 ter 3 ter 2 ter 2 ter 1 ter 1 ter 1 ter 1 ter 1 ter 1 ter 2 ter 1 ter 1	1.767 5.977 6.122 7.491 2.423 6.538 3.169 0.966 9.407 7.338 5.108 3.538 2.728	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 5.4 6.6 8.5 9.7 10.5 11.7 12.4 12.9 13.3 13.8 14.4 15.0 15.4	- 	25 44 76 .04 .30 .86 246 304 370 .884 222 992 .68	
	60 120 180 240 360 480 600 720 960 1440 2160 2880 4320	min Win min Win	ter 9 ter 5 ter 3 ter 2 ter 2 ter 1 ter 1 ter 1 ter 1 ter 1 ter 1 ter 1 ter 2 ter 1 ter 2 ter 2 ter 2 ter 1 ter 1	1.767 5.977 6.122 7.491 2.423 6.538 3.169 0.966 9.407 7.338 5.108 3.538 2.728 1.898	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 5.4 6.6 8.5 9.7 10.5 11.7 12.4 12.9 13.3 13.8 14.4 15.0 15.4 16.1		25 44 76 04 30 86 246 304 370 884 222 992 688 200	
	60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	min Win min Win	ter 9 ter 5 ter 2 ter 2 ter 2 ter 1 ter 1 ter 1 ter 1 ter 1 ter 1 ter 1 ter 2 ter 1 ter 1	1.767 5.977 6.122 7.491 2.423 6.538 3.169 0.966 9.407 7.338 5.108 3.538 2.728 1.898 1.476	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 5.4 6.6 8.5 9.7 10.5 11.7 12.4 12.9 13.3 13.8 14.4 15.0 15.4 16.1 16.7		25 44 76 04 30 86 246 304 370 884 222 992 668 200 884	
	60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200	min Win min Win	ter 9 ter 5 ter 2 ter 2 ter 2 ter 1 ter 2 ter 2 ter 2 ter 2 ter 2 ter 2 ter 2 ter 1 ter 1	1.767 5.977 6.122 7.491 2.423 6.538 3.169 0.966 9.407 7.338 5.108 3.538 2.728 1.898 1.476 1.224	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 5.4 6.6 8.5 9.7 10.5 11.7 12.4 12.9 13.3 13.8 14.4 15.0 15.4 16.1 16.7 17.3	- - - - - - - - - - - - - - - - - - -	25 44 76 04 30 86 246 304 370 884 222 992 868 200 884 528	
	60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640	min Win min Win	ter 9 ter 5 ter 2 ter 2 ter 2 ter 1 ter 2 ter 2 ter 2 ter 1 ter 1	1.767 5.977 6.122 7.491 2.423 6.538 3.169 0.966 9.407 7.338 5.108 3.538 2.728 1.898 1.476	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m ³) 5.4 6.6 8.5 9.7 10.5 11.7 12.4 12.9 13.3 13.8 14.4 15.0 15.4 16.7 17.3 17.9		25 44 76 04 30 86 246 304 370 884 222 992 668 200 884	

©1982-2020 Innovyze

Considine Limited	-	Page 3
25 Hollingworth Court	5918	
Kent	19 HERTFORD COURT, ENFIELD	
ME14 5PP	ATT1-P01	— Micro
Date 17/11/2023 12:06	Designed by KC	
File 5918-ATT1-100Yr+40%-P01	Checked by JEM	Drainag
Innovyze	Source Control 2020.1.3	
R	ainfall Details	
_		
Rainfall Mo Return Period (yea		
FEH Rainfall Vers		
Site Locat	ion GB 531366 193408 TQ 31366 93408	
Data T		
Summer Sto		
Winter Sto		
Cv (Summ Cv (Wint	,	
Shortest Storm (mi	,	
Longest Storm (mi		
Climate Chang		
<u>T</u> :	ime Area Diagram	
То	tal Area (ha) 0.014	
	Time (mins) Area	
F	From: To: (ha)	
	0 4 0.014	

onsidine Limited					Pag	re 4
5 Hollingworth Court	t	5918				
lent		19 HERTF	ORD COU	RT, ENFIELD		
IE14 5PP		ATT1-P01			N.45	
ate 17/11/2023 12:00	6	Designed				cio
lile 5918-ATT1-100Yr		-	-			ainag
	+40%-P01.		-	0000 1 0		J
nnovyze		Source C	ontrol	2020.1.3		
		Model Det	ails			
	Storage is	Online Cover	Level (m) 100.000		
	Cell	ular Storage	e Struct	ure		
	on Coeffici	nvert Level (m ent Base (m/hr ent Side (m/hr) 0.0000) Porosit		
Depth (m) Area	(m²) Inf.	Area (m²) Der	oth (m) A	rea (m²) Inf.	Area (m²)	
0.000 0.800	5.0 5.0	0.0	0.801	0.0	0.0	
F	Hydro-Bra	ke® Optimum	Outflow	Control		
-					2000	
		Jnit Reference esign Head (m)	мр-зне-0		-2000	
		Ign Flow (1/s)			2.0	
		Flush-Flo™		Calcu	lated	
		Objective	Minimis	e upstream st	orage	
		Application		Su	rface	
	2	Sump Available			Yes	
	Tes	Diameter (mm)		0	70 8.500	
Minimum O		vert Level (m) Diameter (mm)		9	100	
	-	Diameter (mm)			1200	
	Control	Points	Head (m)	Flow (l/s)		
De	esian Point	(Calculated)	0.800	2.0		
		Flush-Flo™	0.240			
		Kick-Flo®	0.504	1.6		
Me	an Flow ov	er Head Range	-	1.7		
The hydrological calcu Hydro-Brake® Optimum a Hydro-Brake Optimum® b invalidated	s specified	d. Should ano	ther type	e of control d	evice other	than a
Depth (m) Flow (l/s)	Depth (m)	Flow (l/s) Der	oth (m) F	low (l/s) Dep	th (m) Flow	(1/s)
0.100 1.8	1.200	2.4	3.000	3.7	7.000	5.5
0.200 2.0	1.400	2.6	3.500	3.9	7.500	5.6
0.300 2.0	1.600	2.7	4.000	4.2	8.000	5.8
0.400 1.9 0.500 1.6	1.800 2.000	2.9 3.0	4.500 5.000	4.4 4.7	8.500 9.000	6.0 6.2
0.600 1.8	2.000	3.2	5.500	4.9	9.500	6.3
	2.200	3.3	6.000	5.1		5.0
0.800 2.0				5.3		
0.800 2.0 1.000 2.2	2.600	3.4	6.500	0.01		
	2.600	3.4	6.500			

nsidine I										Page 1
Hollingv	orth	Court	t		5918	3				
nt					19 H	ERTFOR	D COURT,	ENFIELD)	
L4 5PP					ΑͲͲ1	-P01				Micco
te 17/11/	(2023	12.01	5			gned by	V KC			- Micro
				501		-	-			Draina
le 5918-A	7.1.1.1 – T	00Yr-	+40%-	-POI		ked by				
novyze					Sour	ce Con	trol 2020	0.1.3		
	Summ	ary d	of Re	esults	for 10)0 year	Return	Period	(+40응)	
				Half	Drain Ti	.me : 17	minutes.			
	Storm		Max	Max	e N	lax	Max	Max	Max	Status
	Event						Control E			
	lvenc		(m)	(m)		./s)	(1/s)	(1/s)	(m ³)	
			(/	、 ,	· · · ·	, -,	(_/ _/	(_/ -/	(/	
	min Sı					0.0	2.0	2.0	3.0	
	min Sı					0.0	2.0	2.0	3.2	
	min Su					0.0	2.0		2.9	
	min Su					0.0	2.0	2.0	2.5	
	min Su					0.0	2.0	2.0	1.8	
	min Sı					0.0	2.0	2.0		
	min Sı					0.0	1.9	1.9		
	min Su					0.0	1.7	1.7	0.4	
	min Su					0.0	1.4	1.4		
	min Su					0.0	1.2	1.2		
	min Su					0.0	1.0	1.0	0.3	
	min Su					0.0	0.7	0.7	0.2	
	min Su					0.0	0.5	0.5	0.2	
	min Su					0.0	0.4	0.4	0.1	
	min Sı min Sı					0.0	0.3 0.2	0.3 0.2	0.1	
	min Su					0.0	0.2	0.2	0.1	
	min Su					0.0	0.1	0.2		
	min Su					0.0	0.1	0.1		
	min Wi					0.0	2.0	2.0	3.5	
			Storm	L	Rain	Flooded	Discharge	e Time-Pea	ak	
			Event		(mm/hr)	Volume	Volume	(mins)		
						(m³)	(m³)			
					166.597	0.0			15	
					107.061	0.0			24	
				Summer	65.307	0.0			42	
					42.142	0.0			76	
				Summer	32.072	0.0			06	
				Summer	26.161	0.0			34	
				Summer	19.294	0.0			90	
		180	min S	Summer	15.364	0.0			46	
				~	10			1 31	06	
		600		Summer	12.793	0.0				
		600 720	min S	Summer	10.975	0.0	13.8	3 3	66	
		600 720 960	min S min S	Summer Summer	10.975 8.561	0.0	13.8 14.4	3 3 4 4	66 84	
		600 720 960 1440	min s min s min s	Summer	10.975	0.0	13.8 14.4 15.0	3 3 4 4 0 7	66 84 24	

4320 min Summer

5760 min Summer

7200 min Summer

8640 min Summer

10080 min Summer 1.092

15 min Winter 166.597

2.215

1.722

1.428

1.232

0.0

0.0

0.0

0.0

0.0

0.0

©1982-2020 Innovyze

16.7

17.4

18.0

18.6

19.3

4.9

2200

2904

3616

4400 5056

16

2 HOLLINGWO	rth Cour	+	591	8				_
ent	L CII COUL	0				ייידייואים	۔	
					O COURT,	ENFIELI)	
E14 5PP				1-P01				_ Micro
ate 17/11/2	023 12:0	5	Des	igned by	Y KC			Drain
ile 5918-AT	T1-100Yr	+40%-P01	Che	cked by	JEM			Digiti
nnovyze			Sou	rce Cont	crol 2020	.1.3		
(Summary	of Resul	ts for 1	.00 year	Return 1	Period	(+40%)	<u> </u>
St	torm	Max	Max	Max	Max	Max	Max	Status
E	vent		-		Control E			
		(m)	(m) (1/s)	(1/s)	(1/s)	(m³)	
30 m	in Winter	99.273 0	.773	0.0	2.0	2.0	3.7	ΟK
60 m	nin Winter	99.179 0	.679	0.0	2.0	2.0	3.2	O K
120 m	nin Winter	99.012 0	.512	0.0	2.0	2.0	2.4	ОК
180 m	in Winter	98.786 0	.286	0.0	2.0	2.0	1.4	ОК
240 m	in Winter	98.661 0	.161	0.0	1.9	1.9	0.8	ОК
360 m	nin Winter	98.583 0	.083	0.0	1.6	1.6	0.4	ОК
480 m	nin Winter	98.566 0	.066	0.0	1.3	1.3	0.3	ОК
600 m	nin Winter	98.557 0	.057	0.0	1.1	1.1	0.3	ОК
720 m	nin Winter	98.551 0	.051	0.0	0.9	0.9	0.2	
	nin Winter			0.0	0.7	0.7	0.2	
	in Winter			0.0	0.5	0.5	0.2	
	in Winter			0.0	0.3	0.3	0.1	
	in Winter			0.0	0.3	0.3	0.1	
	in Winter			0.0	0.2	0.2	0.1	
	in Winter			0.0	0.1	0.1		
	in Winter			0.0	0.1	0.1	0.1	
	iin Winter			0.0	0.1	0.1		
	lin Winter Nin Winter			0.0	0.1	0.1		
		Storm Event	Rain (mm/hr)	Flooded) Volume (m³)	Discharge Volume (m³)	Time-Pe (mins)		
	20	min Witch	om 107 0C	1 0 0			25	
			er 107.06		6.3		25	
	60	min Wint	er 65.30'	7 0.0	6.3 7.7		44	
	60 120	min Wint min Wint	er 65.30 [°] er 42.142	7 0.0 2 0.0	6.3 7.7 9.9		44 82	
	60 120 180	min Wint min Wint min Wint	er 65.30 [°] er 42.14 [°] er 32.07 [°]	7 0.0 2 0.0 2 0.0 2 0.0	6.3 7.7 9.9 11.3	1	44 82 08	
	60 120 180 240	min Wint min Wint min Wint min Wint	er 65.30 [°] er 42.142 er 32.072 er 26.163	7 0.0 2 0.0 2 0.0 1 0.0	6.3 7.7 9.9 11.3 12.3	1	44 82 08 34	
	60 120 180 240 360	min Wint min Wint min Wint min Wint min Wint	er 65.30 [°] er 42.142 er 32.072 er 26.162 er 19.29	7 0.0 2 0.0 2 0.0 1 0.0 4 0.0	6.3 7.7 9.9 11.3 12.3 13.6	1 1 1	44 82 08 34 86	
	60 120 180 240 360 480	min Wint min Wint min Wint min Wint min Wint min Wint	er 65.30 ⁷ er 42.142 er 32.072 er 26.163 er 19.29 er 15.36	7 0.0 2 0.0 2 0.0 1 0.0 4 0.0 4 0.0	6.3 7.7 9.9 11.3 12.3 13.6 14.5	1 1 1 2	44 82 08 34 86 46	
	60 120 180 240 360 480 600	min Wint min Wint min Wint min Wint min Wint min Wint min Wint	er 65.30 ⁷ er 42.142 er 32.072 er 26.163 er 19.29 er 15.36 er 12.793	7 0.0 2 0.0 2 0.0 1 0.0 4 0.0 4 0.0 3 0.0	6.3 7.7 9.9 11.3 12.3 13.6 14.5 15.0	1 1 1 2 3	44 82 08 34 86 46 10	
	60 120 180 240 360 480 600 720	min Wint min Wint min Wint min Wint min Wint min Wint min Wint min Wint	er 65.30 ⁷ er 42.142 er 32.072 er 26.163 er 19.29 er 15.366 er 12.793 er 10.973	7 0.0 2 0.0 2 0.0 1 0.0 4 0.0 3 0.0 5 0.0	6.3 7.7 9.9 11.3 12.3 13.6 14.5 15.0 15.5	1 1 2 3 3 3	44 82 08 34 86 46 10 62	
	60 120 180 240 360 480 600 720 960	min Wint min Wint min Wint min Wint min Wint min Wint min Wint min Wint min Wint	er 65.30 ⁷ er 42.14 ² er 32.07 ² er 26.16 ³ er 19.29 ⁴ er 15.36 ⁴ er 12.79 ³ er 10.97 ³ er 8.56 ³	7 0.0 2 0.0 2 0.0 1 0.0 4 0.0 3 0.0 5 0.0 1 0.0	6.3 7.7 9.9 11.3 12.3 13.6 14.5 15.0 15.5 16.1	1 1 2 3 3 4	44 82 08 34 86 46 10 62 84	
	60 120 240 360 480 600 720 960 1440	min Wint min Wint min Wint min Wint min Wint min Wint min Wint min Wint min Wint	er 65.30 ⁷ er 42.14 ² er 26.16 ³ er 26.16 ³ er 19.29 ⁴ er 15.36 ⁴ er 12.79 ³ er 10.97 ³ er 8.56 ³ er 5.96 ⁶	7 0.0 2 0.0 2 0.0 1 0.0 4 0.0 3 0.0 5 0.0 1 0.0 0 0.0	6.3 7.7 9.9 11.3 12.3 13.6 14.5 15.0 15.5 16.1 16.8	1 1 2 3 3 4 7	44 82 08 34 86 46 10 62 84 20	
	60 120 240 360 480 600 720 960 1440 2160	min Wint min Wint	er 65.30 ⁷ er 42.14 ² er 26.16 ³ er 26.16 ³ er 19.29 ⁴ er 15.36 ⁴ er 12.79 ³ er 10.97 ³ er 8.56 ³ er 5.96 ⁴ er 4.12 ³	7 0.0 2 0.0 2 0.0 1 0.0 4 0.0 3 0.0 5 0.0 1 0.0 2 0.0 3 0.0 5 0.0 0 0.0 0 0.0 0 0.0	6.3 7.7 9.9 11.3 12.3 13.6 14.5 15.0 15.5 16.1 16.8 17.5	1 1 2 3 3 4 7 10	44 82 08 34 86 46 10 62 84 20 92	
	60 120 240 360 480 600 720 960 1440 2160	min Wint min Wint min Wint min Wint min Wint min Wint min Wint min Wint min Wint	er 65.30 ⁷ er 42.14 ² er 26.16 ³ er 26.16 ³ er 19.29 ⁴ er 15.36 ⁴ er 12.79 ³ er 10.97 ³ er 8.56 ³ er 5.96 ⁴ er 4.12 ⁴	7 0.0 2 0.0 2 0.0 1 0.0 4 0.0 3 0.0 5 0.0 1 0.0 2 0.0 3 0.0 5 0.0 0 0.0 0 0.0 0 0.0	6.3 7.7 9.9 11.3 12.3 13.6 14.5 15.0 15.5 16.1 16.8	1 1 2 3 3 4 7 10	44 82 08 34 86 46 10 62 84 20	
	60 120 240 360 480 600 720 960 1440 2160 2880	min Wint min Wint	er 65.30 ⁷ er 42.142 er 32.073 er 26.163 er 19.29 er 15.366 er 12.793 er 8.563 er 5.966 er 4.123 er 3.18	7 0.0 2 0.0 2 0.0 1 0.0 4 0.0 3 0.0 5 0.0 1 0.0 2 0.0 3 0.0 5 0.0 0 0.0 0 0.0 3 0.0	6.3 7.7 9.9 11.3 12.3 13.6 14.5 15.0 15.5 16.1 16.8 17.5	1 1 2 3 3 4 7 10 14	44 82 08 34 86 46 10 62 84 20 92	
	60 120 180 240 360 480 600 720 960 1440 2160 2880 4320	min Wint min Wint min Wint min Wint min Wint min Wint min Wint min Wint min Wint min Wint	er 65.30 ⁷ er 42.142 er 32.073 er 26.163 er 19.29 er 15.366 er 12.793 er 8.563 er 5.966 er 4.123 er 3.183 er 2.213	7 0.0 2 0.0 2 0.0 1 0.0 4 0.0 3 0.0 5 0.0 1 0.0 2 0.0 3 0.0 5 0.0 0 0.0 8 0.0 3 0.0 5 0.0	6.3 7.7 9.9 11.3 12.3 13.6 14.5 15.0 15.5 16.1 16.8 17.5 18.0	1 1 2 3 3 4 7 10 14 21	44 82 08 34 86 46 10 62 84 20 92 92	
	60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	min Wint min Wint	er 65.30 [°] er 42.142 er 32.073 er 26.163 er 19.29 er 15.366 er 12.793 er 8.563 er 5.966 er 4.123 er 3.183 er 2.213 er 1.723	7 0.0 2 0.0 2 0.0 1 0.0 4 0.0 3 0.0 5 0.0 1 0.0 2 0.0 3 0.0 5 0.0 1 0.0 2 0.0 3 0.0 3 0.0 3 0.0 2 0.0	6.3 7.7 9.9 11.3 12.3 13.6 14.5 15.0 15.5 16.1 16.8 17.5 18.0 18.8	1 1 2 3 3 4 7 10 14 21 29	44 82 08 34 86 46 10 62 84 20 92 92 96	
	60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200	min Wint min Wint	er 65.30 [°] er 42.142 er 32.073 er 26.163 er 19.29 er 15.366 er 12.793 er 8.563 er 5.966 er 4.123 er 3.183 er 2.213 er 1.722 er 1.423	7 0.0 2 0.0 2 0.0 1 0.0 4 0.0 3 0.0 5 0.0 1 0.0 0 0.0 5 0.0 0 0.0 8 0.0 5 0.0 3 0.0 3 0.0 3 0.0 3 0.0 5 0.0 2 0.0 8 0.0	6.3 7.7 9.9 11.3 12.3 13.6 14.5 15.0 15.5 16.1 16.8 17.5 18.0 18.8 19.4 20.1	1 1 2 3 3 4 7 10 14 21 29 35	44 82 08 34 86 46 10 62 84 20 92 92 92 96 28	
	60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640	min Wint min Wint	er 65.30' er 42.14' er 32.07' er 26.16' er 19.29' er 15.36' er 10.97' er 5.96' er 5.96' er 3.18' er 2.21' er 1.72' er 1.42' er 1.23'	7 0.0 2 0.0 2 0.0 1 0.0 4 0.0 3 0.0 5 0.0 1 0.0 5 0.0 1 0.0 5 0.0 6 0.0 7 0.0 8 0.0 2 0.0 8 0.0 2 0.0 2 0.0	6.3 7.7 9.9 11.3 12.3 13.6 14.5 15.0 15.5 16.1 16.8 17.5 18.0 18.8 19.4 20.1 20.9	1 1 2 3 3 4 7 10 14 21 29 35 44	44 82 08 34 86 46 10 62 84 20 92 92 92 92 92 84	
	60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640	min Wint min Wint	er 65.30 ⁷ er 42.142 er 32.073 er 26.163 er 19.29 er 15.366 er 12.793 er 8.563 er 5.966 er 4.123 er 3.183 er 2.213 er 1.723 er 1.423	7 0.0 2 0.0 2 0.0 1 0.0 4 0.0 3 0.0 5 0.0 1 0.0 5 0.0 1 0.0 5 0.0 6 0.0 7 0.0 8 0.0 2 0.0 8 0.0 2 0.0 2 0.0	6.3 7.7 9.9 11.3 12.3 13.6 14.5 15.0 15.5 16.1 16.8 17.5 18.0 18.8 19.4 20.1 20.9	1 1 2 3 3 4 7 10 14 21 29 35 44	44 82 08 34 86 46 10 62 84 20 92 92 92 92 92 84 40	

©1982-2020 Innovyze

Considine Limited	1	Page 3
25 Hollingworth Court	5918	
Kent	19 HERTFORD COURT, ENFIELD	
ME14 5PP	ATT1-P01	— Micro
Date 17/11/2023 12:05	Designed by KC	
File 5918-ATT1-100Yr+40%-P01	Checked by JEM	Drainag
Innovyze	Source Control 2020.1.3	
R	ainfall Details	
_		
Rainfall Mo Return Period (yea		
FEH Rainfall Vers		
Site Locat	ion GB 531366 193408 TQ 31366 93408	
Data T		
Summer Sto		
Winter Sto		
Cv (Summ Cv (Wint	,	
Shortest Storm (mi	,	
Longest Storm (mi		
Climate Chang		
T	ime Area Diagram	
То	tal Area (ha) 0.014	
	Time (mins) Area	
E	From: To: (ha)	
	0 4 0.014	

onsidine Limited					Page 4
5 Hollingworth Cour	t	5918			
lent		19 HERTF	ORD COU	RT, ENFIELD	
IE14 5PP		ATT1-P01			Micco
ate 17/11/2023 12:0	5	Designed	bv KC		— Micro
ile 5918-ATT1-100Yr		2	-		Draina
nnovyze	1408 101.	Source C	=	2020 1 3	
1110vy2e		Source c	UNCIOL .	2020.1.5	
		Model Deta	ails		
	Storage is	Online Cover	Level (m)) 100.000	
	Cellı	ular Storage	e Struct	ure	
	on Coefficie	nvert Level (m ent Base (m/hr ent Side (m/hr) 0.00000) Porosit	
Depth (m) Area	a (m²) Inf.	Area (m²) Dep	oth (m) A	rea (m²) Inf.	Area (m²)
0.000 0.800	5.0 5.0	0.0	0.801	0.0	0.0
]	Hydro-Bral	ke® Optimum	Outflow	Control	
	υ	Unit Reference	MD-SHE-0	070-2000-0800-	-2000
		esign Head (m)			0.800
	Desi	gn Flow (l/s)			2.0
		Flush-Flo™		Calcul	
		-		e upstream sto	-
	c	Application Sump Available		Su	rface Yes
		Diameter (mm)			70
	Inv	vert Level (m)		98	3.500
Minimum O	utlet Pipe	Diameter (mm)			100
Suggest	ed Manhole	Diameter (mm)			1200
	Control	Points	Head (m)	Flow (l/s)	
De	esign Point	(Calculated)	0.800	2.0	
	-	Flush-Flo™	0.240	2.0	
		Kick-Flo®	0.504		
Me	ean Flow ove	er Head Range	-	1.7	
The hydrological calcu Hydro-Brake® Optimum a Hydro-Brake Optimum® b invalidated	s specified	d. Should ano	ther type	of control de	evice other than
Depth (m) Flow (l/s)	Depth (m)	Flow (l/s) Dep	oth (m) F	low (l/s) Dept	ch (m) Flow (l/s
0.100 1.8	1.200	2.4	3.000	3.7	7.000 5.
0.200 2.0	1.400	2.6	3.500	3.9	7.500 5.
0.300 2.0	1.600	2.7	4.000	4.2	8.000 5.
0.400 1.9 0.500 1.6	1.800 2.000	2.9 3.0	4.500 5.000	4.4	8.500 6. 9.000 6.
0.JOO T.0	2.000	3.2	5.500	4.9	9.500 6.
0.600 1.8	2.400	3.3	6.000	5.1	
0.600 1.8 0.800 2.0		1			
	2.600	3.4	6.500	5.3	
0.800 2.0		3.4	6.500	5.3	

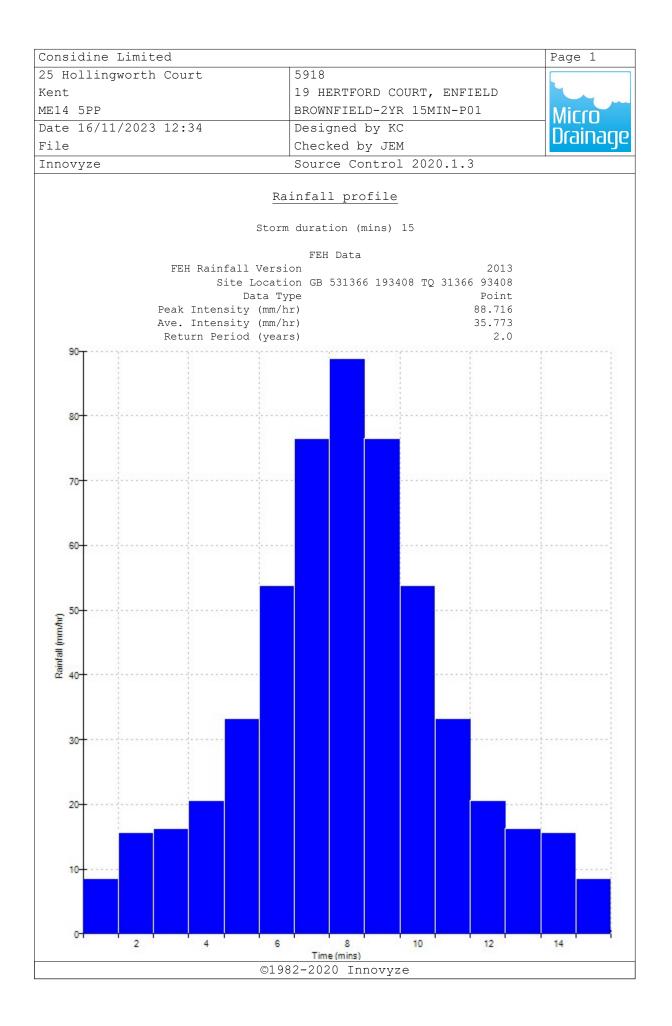
Appendix 6 – Greenfield Runoff Rates

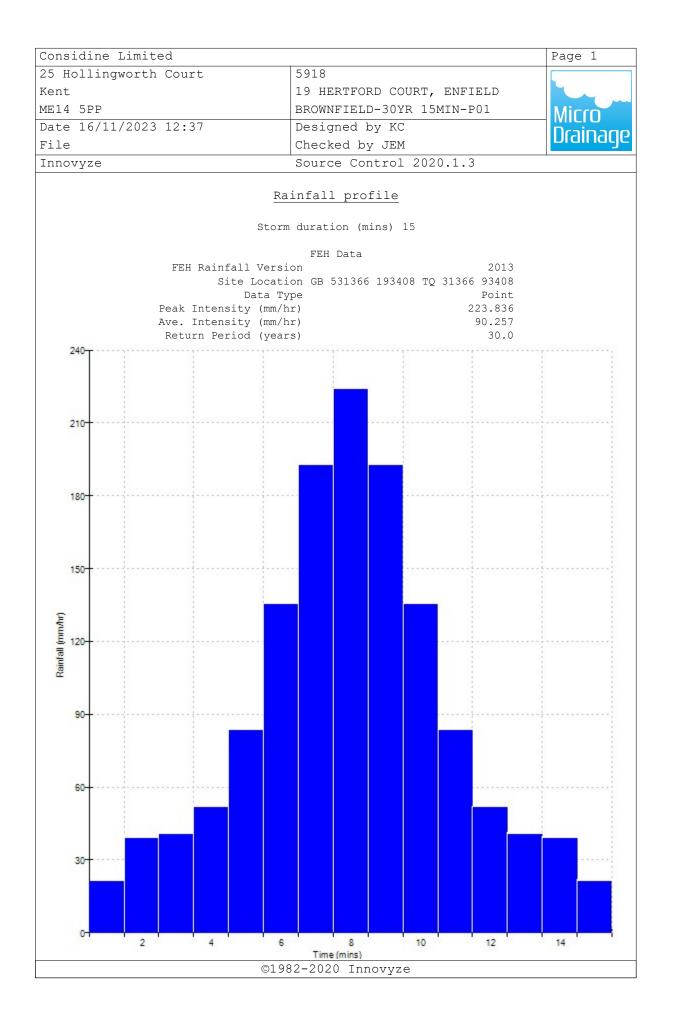
Considine Limited			Page 1
25 Hollingworth Co	ourt	5918	
Kent		19 HERTFORD COURT, ENFIELD	
ME14 5PP		GREENFIELD-DRAINED AREAS-P01	Micro
Date 17/11/2023 12		Designed by KC	– Micro Drainage
File		Checked by JEM	brainacje
Innovyze		Source Control 2020.1.3	
	TCP SUDS	5 Mean Annual Flood	
	101 0000		
		Input	
R		rs) 100 Soil 0.450 ha) 0.140 Urban 0.000 mm) 664 Region Number Region 6	
		Results 1/s	
		QBAR Rural 0.6 QBAR Urban 0.6	
	ς	2100 years 1.8	
		Q1 year 0.5	
		Q30 years 1.3	
	Ç	2100 years 1.8	
	Area used is	10 times greater than drained areas.	
	Results divide	ed by 10 to obtain results.	
	©198	2-2020 Innovyze	

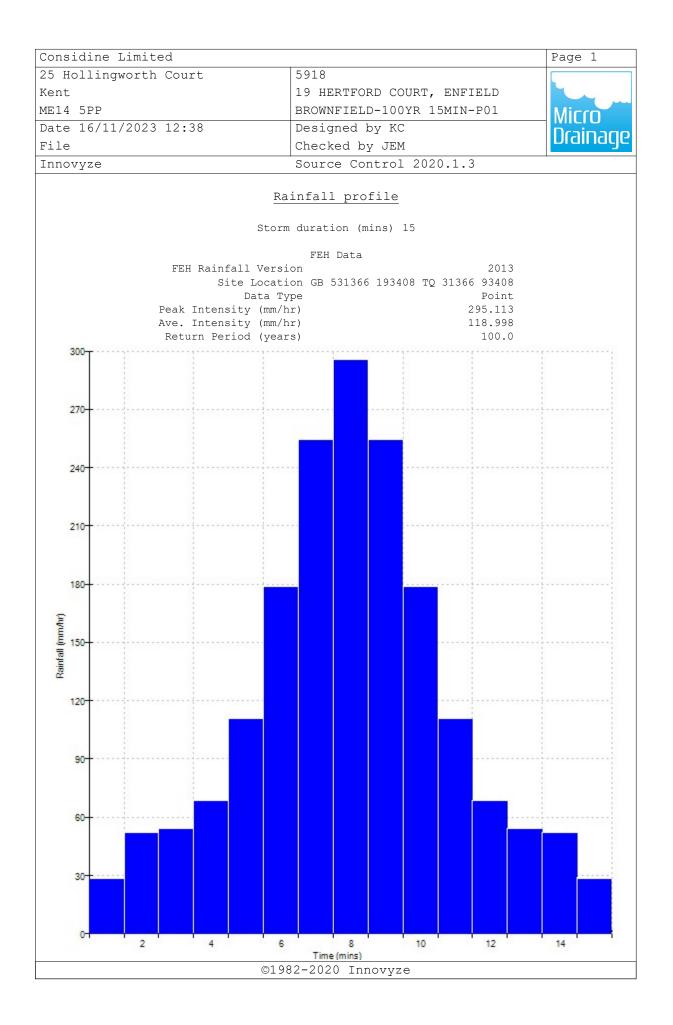
Considine Limited		Page 1
25 Hollingworth Court	5918	
Kent	19 HERTFORD COURT, ENFIELD	
ME14 5PP	GREENFIELD-WHOLE SITE-P01	Micro
Date 16/11/2023 11:30	Designed by KC	Drainage
File	Checked by JEM	Diamage
Innovyze	Source Control 2020.1.3	

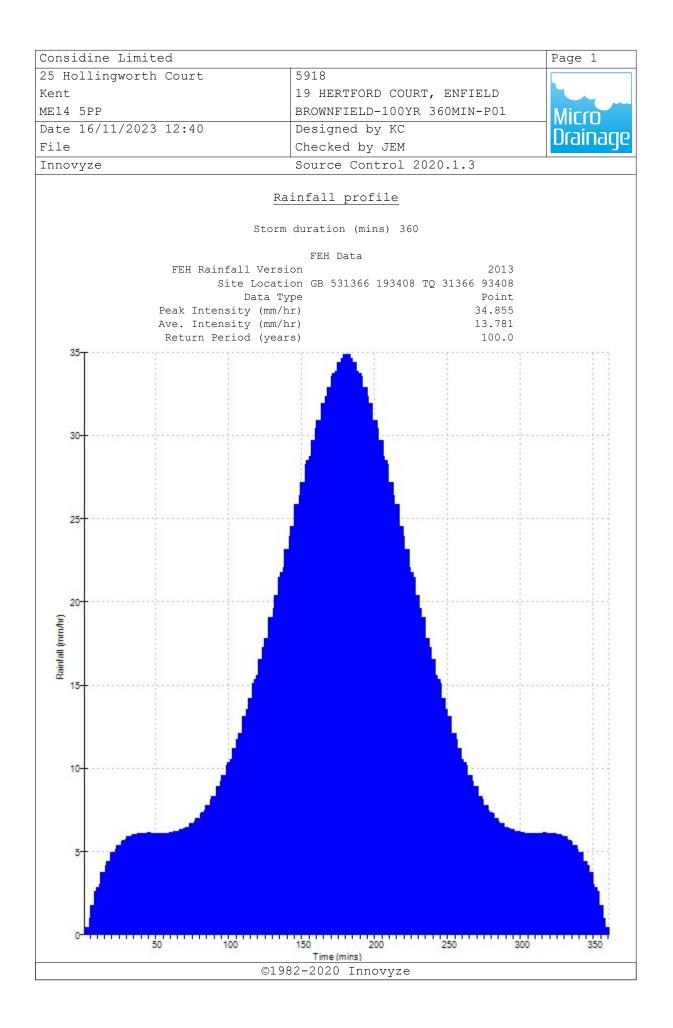
ICP SUDS Mean Annual Flood

Input


Return Period (years)	100	Soil	0.450
Area (ha)	0.020	Urban	0.000
SAAR (mm)	664	Region Number	Region 6


Results 1/s


QBAR Rural 0.1 QBAR Urban 0.1 Q100 years 0.3 Q1 year 0.1 Q30 years 0.2 Q100 years 0.3



Appendix 7 – Brownfield Runoff Rates

Civil + Structural Engineers

Title	19 Hertford Court, Enfield			5918	
Decription	•			КС	
	Peak Run-Off Rate and Volu	ume	Date:	16/11/2023	
			Sheet No:	1	
<u>Clima</u>	e Change Allowance	40%			
Existir	ng Site_				
Pre-De	veloped Site: Estimate Surface Wa	ater Run-Off Using the Mo	dified Rational Met	hod	
Site A	rea =	198 m ²			
		2			
Existir	ng Impermeable Area =	105 m ²			
Avera	ge Rate of Rainfall (Obtained fr	om MicroDrainage usin	<u>g FEH data)</u>		
2 Voq	15 Minute Event (M2-15D) =	35.773 mm/hr (i) + 40%	50.082 mm/hr (i)	
2 100	13 Minute Event (MZ-13D) -	55.775 1111/111 (1) + 40%	30.082 mm/m (I)	
30 Yea	ar 15 Minute Event (M30-15D)	= 90.257 mm/hr (i) + 40%	126.36 mm/hr (i)	
100 Y	ear 15 Minute Event (M100-15	D) = 118.998 mm/hr (i) + 40%	166.6 mm/hr (i)	
	ainfall data source: n 2013 FEH Data Set, Site: GB	531366 193408 (Point)			
<u>Peak I</u>	Rate of Run-Off (Q _P)				
Q _p = 0	A_{P} . i Where C = C _V . C _R				
·					
v	.75 (Volumetric Co-efficient)				
C _R = 1	.3 (Routing Co-efficient)				
Q _{P2} =	1.017 l/s		+ 40% 1	.4242 I/s	
Q _{P30} =	2.567 l/s		+ 40% 3	.5934 I/s	
Q _{P100} -	= 3.384 l/s		+ 40% 4	.7376 l/s	
∽P100	3.304 1/5				

Considine Limited • 25 Hollingworth Court • Turkey Mill • Ashford Road • Maidstone • Kent ME14 5PP

t: 01622 919918 e: info@considine.co.uk www.considine.co.uk

Company Registered in England and Wales. Registered Number 6895573

Consulting Civil + Structural Engineers

Title	19 Hertford Court, Enfield	Job No:	5918
Decription :	Estimate of Existing and Proposed	By:	КС
	Peak Run-Off Rate and Volume	Date:	16/11/2023
		Sheet No:	2

roposed Development			
otal Impermeable Area = 151	m ²		
djust Average Rainfall for Climate Change or the upper end of the epoch that the de			ning Policy,
12 - 15D + 40% = 50.082 mm/	'hr (i)		
130 - 15D + 40% = 126.360 mm/	'hr (i)		
1100 - 15D + 40% = 166.597 mm/	'hr (i)		
roposed Peak Rate of Run-Off (Q _P)			
0 _{P2} = 1.463 l/s		+ 40% 2	2.0482 I/s
A _{P30} = 3.691 l/s		+ 40%	5.1676 I/s
A _{P100} = 4.867 l/s		+ 40% 6	5.8131 I/s
eak Volume Run-Off			
his is calculated using the 100 Year return	n period, 360 minu	ite storm event	
verage rainfall (M100-360D) =	13.781 mm/hr	+ 40%	19.293 mm/hr
verage depth of rainfall =	82.686 mm (i _d)		115.76 mm (i _d)
xisting Volume Run-Off			
v = C . A _p . i V =	8.46 m ³	+ 40%	11.85 m ³
xisting Volume Run-Off		+ 40%	

Considine Limited • South Suite, 1st Floor • 1 James Whatman Court • Turkey Mill • Ashford Road • Maidstone • Kent ME14 5PP

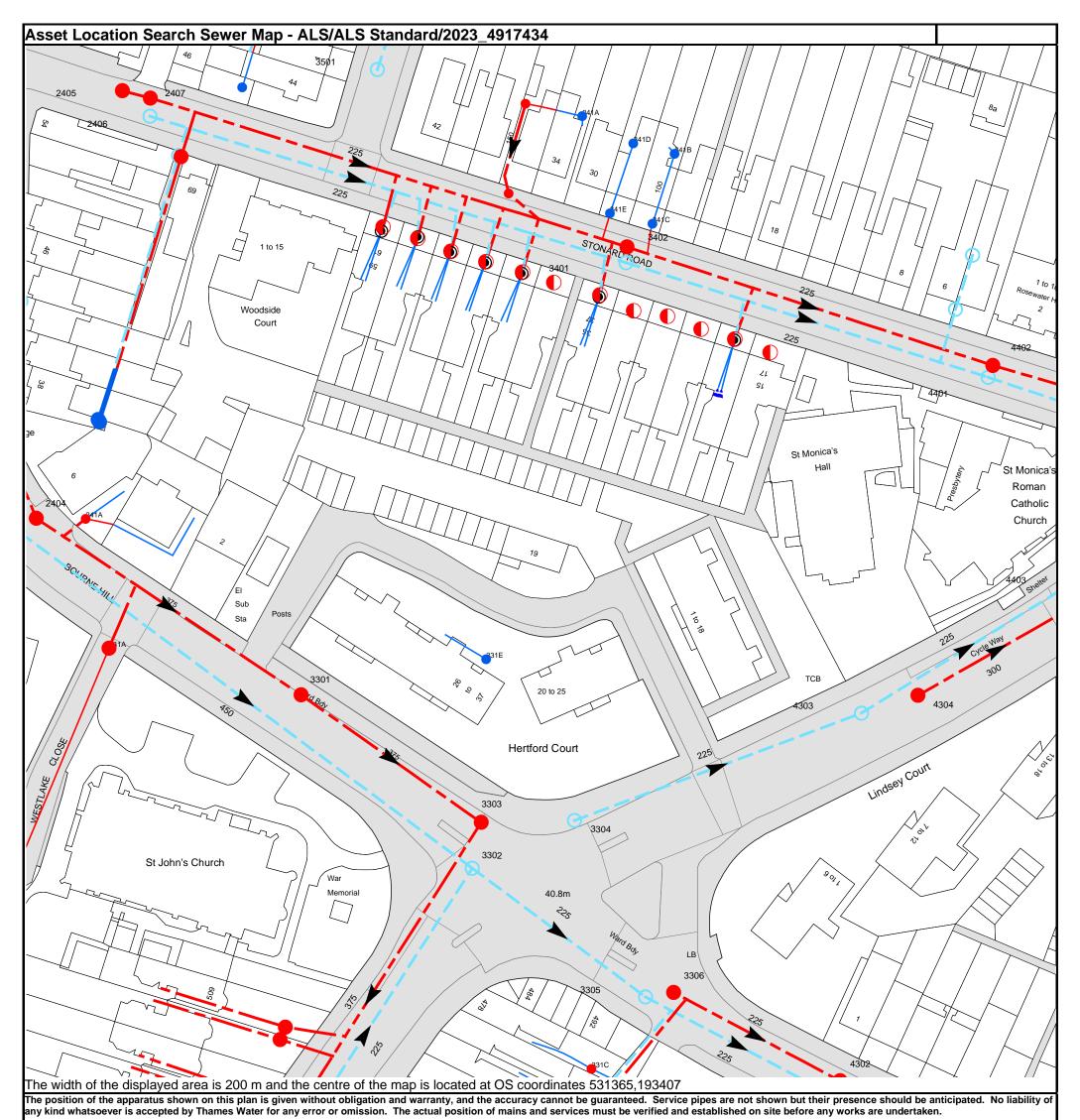
t: 01622 919918 e: info@considine.co.uk www.considine.co.uk

Company Registered in England and Wales. Registered Number 6895573

Consulting Civil + Structural Engineers

Title	19 Hertford Court, Enfield	Job No:	5918
Decription :	Estimate of Existing and Proposed	By:	КС
	Peak Run-Off Rate and Volume	Date:	16/11/2023
		Sheet No:	3

Proposed Volume Run-Off	
Allowance for Climate Change = 40%	
Average Rainfall (M100-360D) + 40% = 19.293 mm/hr	
Average Depth of Rainfall = 115.760 mm(i _d)	
Proposed Volume Run-Off	
$V = C \cdot AP \cdot i = 12.17 \text{ m}^3$ $+ 40\% = 17.04 \text{ m}^3$	
Additonal Volume_	
V _{add} = V(Proposed) - V(Existing)	
$V_{add} = 3.71 m^3$	


Considine Limited • South Suite, 1st Floor • 1 James Whatman Court • Turkey Mill • Ashford Road • Maidstone • Kent ME14 5PP

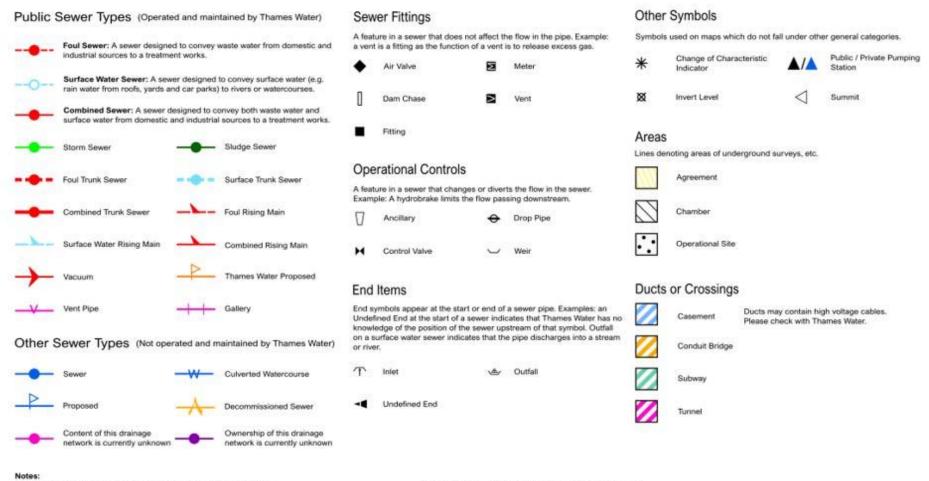
t: 01622 919918 e: info@considine.co.uk www.considine.co.uk

Company Registered in England and Wales. Registered Number 6895573

Appendix 8 – Sewer Records

ed on the Ordnance Survey Map (2020) with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4W, T 0800 009 4540 E <u>searches@thameswater.co.uk</u> I <u>www.thameswater-propertysearches.co.uk</u>


Manhole Reference	Manhole Cover Level	Manhole Invert Level
4304	38.93	36.88
44BA	n/a	n/a
14BB	n/a	n/a
1401	39.06	36.28
402	39.08	36.36
31C	n/a	n/a
3305	39.44	37.42
306	38.7	36.1
302	41.13	37.74
3303	40.91	36.72
304	40.38	37.23
303	39.25	36.51
301	41.52	36.81
31E	n/a	n/a
405	n/a	n/a
404	n/a	n/a
410	n/a	n/a
409	n/a	n/a
3408	n/a	n/a
407	n/a	n/a
3419	n/a	n/a
418	n/a	n/a
401	41.2	38.02
417	n/a	n/a
3417 3416	n/a	n/a
3402	41.2	38.93
9402 9415		
3415 3414	n/a	n/a
41C	n/a	n/a
	n/a	n/a
41E	n/a	n/a
3403	n/a	n/a
41B	n/a	n/a
41D	n/a	n/a
41A	n/a	n/a
405	n/a	n/a
309	n/a	n/a
310	n/a	n/a
404	43.82	37.01
41A	n/a	n/a
4BC	n/a	n/a
4AI	n/a	n/a
31A	n/a	n/a
405	43.52	41.52
406	43.46	40.26
407	n/a	n/a
4BE	n/a	n/a
24BA	n/a	n/a
34AD	n/a	n/a
3501	42.25	40.04

NB. Levels quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates that no survey information is available

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Asset Location Search - Sewer Key

- 1) All levels associated with the plans are to Ordnance Datum Newlyn.
- 2) All measurements on the plan are metric.
- 3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate the direction of flow.
- 4) Most private pipes are not shown on our plans, as in the past, this information has not been recorded.

5) 'na' or '0' on a manhole indicates that data is unavailable.

6) The text appearing alongside a server line indicates the internal diameter of the pipe in millimeters. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology, please contact Property Searches on 0800 009 4540.