

North

t: 0151 933 0328

m: info@baseenergy.co.uk

44 Canal Street Bootle Liverpool L20 8QU

1 020 3286 2016

m: info@baseenergy.co.uk

117 Knyvett House, Watermans Business Park, The Causeway, Staines-upon-Thames, TW18 3BA

Surface Water and SuDS Assessment Rev2

613-615 Green Lanes, Palmers Green, London, N13 4EP

30 November 2023

Appendices

- **Appendix A** Site Location Plan and Existing Site Layout Plans
- Appendix B Proposed Site Layout Plans
- Appendix C Greenfield Runoff (Total Site)
- Appendix D British Geological Survey Borehole Records
- Appendix E Micro Drainage Type C Permeable Paving Calculations

Prepared by	Checked by	Date
Carina Hassall BSc (Hons)	Peter Kinsella BSc (Hons)	30 November 2023

This document has been prepared solely as a Surface Water and SuDS Assessment for Redgrave Investments Ltd. Base Energy accepts no responsibility or liability for any use that is made of this document other than by the Client for the purposes for which it was originally commissioned and prepared.

3

1. Introduction

This Surface Water and SuDS Assessment (Rev0) has been prepared to support the planning application for the proposed redevelopment at 613-615 Greens Lane, Palmers Green.

A site location plan is provided in **Appendix A**.

Existing Site

The application site is a mixed-use building in three sections. The front section is two storey with a shallow pitched roof set within the parapet, the middle section is also two storey with a pitched roof and the rear section is a single storey. The front element is purely commercial on the ground and the first floor, the middle section is predominantly residential on the ground and first floor and the rear section is residential with an element of commercial.

The existing site layout is also shown in **Appendix A**.

Development Proposals

Proposals are for the refurbishment, reconfiguration and extension works to an existing part single part two storey mix-use building consisting of part commercial and part residential, with the introduction of an additional floor level to the front building, raised roof ridge level and new dormers to the rear wing of the building and associated external and internal alterations to create a total of 8 x residential units (3 x 3 beds, 2 x 2 beds, 2 x 1 bed, 1x studio), with the retention and creation of 2 x commercial units. The scheme will introduce private amenity areas, a secure and enclosed cycle and a refuse/recycling store.

The proposed site layout is shown in Appendix B.

4

2. Planning Policy- Surface Water Management

The London Plan 2021

Policy SI 13 Sustainable drainage

A Lead Local Flood Authorities should identify – through their Local Flood Risk Management Strategies and Surface Water Management Plans – areas where there are particular surface water management issues and aim to reduce these risks. Increases in surface water run-off outside these areas also need to be identified and addressed.

B Development proposals should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible. There should also be a preference for green over grey features, in line with the following drainage hierarchy:

1) rainwater use as a resource (for example rainwater harvesting, blue roofs for irrigation)

- 2) rainwater infiltration to ground at or close to source
- 3) rainwater attenuation in green infrastructure features for gradual release (for example green roofs, rain gardens)
- 4) rainwater discharge direct to a watercourse (unless not appropriate)
- 5) controlled rainwater discharge to a surface water sewer or drain 6) controlled rainwater discharge to a combined sewer.

C Development proposals for impermeable surfacing should normally be resisted unless they can be shown to be unavoidable, including on small surfaces such as front gardens and driveways.

D Drainage should be designed and implemented in ways that promote multiple benefits including increased water use efficiency, improved water quality, and enhanced biodiversity, urban greening, amenity and recreation.

9.13.1 London is at particular risk from surface water flooding, mainly due to the large extent of impermeable surfaces. Lead Local Flood Authorities have responsibility for managing surface water drainage through the planning system, as well as ensuring that appropriate maintenance arrangements are put in place. Local Flood Risk Management Strategies and Surface Water Management Plans should ensure they address flooding from multiple sources including surface water, groundwater and small watercourses that occurs as a result of heavy rainfall.

5

9.13.2 Development proposals should aim to get as close to greenfield run-off rates as possible depending on site conditions. The well-established drainage hierarchy set out in this policy helps to reduce the rate and volume of surface water run-off. Rainwater should be managed as close to the top of the hierarchy as possible. There should be a preference for green over grey features, and drainage by gravity over pumped systems. A blue roof is an attenuation tank at roof or podium level; the combination of a blue and green roof is particularly beneficial, as the attenuated water is used to irrigate the green roof.

9.13.3 For many sites, it may be appropriate to use more than one form of drainage, for example a proportion of rainwater can be managed by more sustainable methods, with residual rainwater managed lower down the hierarchy. In some cases, direct discharge into the watercourse is an appropriate approach, for example rainwater discharge into the tidal Thames or a dock. This should include suitable pollution prevention filtering measures, ideally by using soft engineering or green infrastructure. In addition, if direct discharge is to a watercourse where the outfall is likely to be affected by tide-locking, suitable storage should be designed into the system. However, in other cases direct discharge will not be appropriate, for example discharge into a small stream at the headwaters of a catchment, which may cause flooding. This will need to be assessed on a case-by-case basis, taking into account the location, scale and quality of the discharge and the receiving watercourse. The maintenance of identified drainage measures should also be considered in development proposals.

9.13.4 The London Sustainable Drainage Action Plan complements this policy. It contains a series of actions to make the drainage system work in a more natural way with a particular emphasis on retrofitting.

Enfield Council

Enfield Council's Development Management Document (Adopted November 2014) provides detailed criteria and standard based policies which support the objectives of the Core Strategy.

DMD 61 - Managing Surface Water

DMD 61 states: A Drainage Strategy will be required for all developments to demonstrate how proposed measures manage surface water as close to its source as possible and follow the drainage hierarchy in the London Plan. All developments must maximise the use of and, where possible, retrofit Sustainable Drainage Systems (SuDS) which meet the following requirements:

6

1. Suitability a. SuDS measure(s) should be appropriate having regard to the proposed use of site, site conditions/context (including proximity to Source Protection Zones and potential for contamination) and geology.

2. Quantity a. All major developments must achieve greenfield run off rates (for 1 in 1 year and 1 in 100 year events). b. All other development should seek to achieve greenfield run off and must maximise the use of SuDS, including at least one 'at source' SuDS measure resulting in a net improvement in water quantity or quality discharging to sewer in-line with any SuDS guidance or requirements.

3. Quality **a**. Major developments must have regard to best practice and where appropriate follow the SuDS management train by providing a number of treatment phases corresponding to their pollution potential and the environmental sensitivities of the locality. **b**. Measures should be incorporated to maximise opportunities for sustainable development, improve water quality, biodiversity, local amenity and recreation value

4. Functionality a. The system must be designed to allow for flows that exceed the design capacity to be stored on site or conveyed off-site with minimum impact. **b**. Clear ownership, management and maintenance arrangements must be established.

5. Other a. Where appropriate, developments must incorporate relevant measures identified in the Surface Water Management Plan.

Non-Statutory Technical Standards for SuDS

The Non-Statutory Technical Standards for SuDS, (and accompanying Local Authority SuDS Officer Organisation (LASOO) Practice Guidance) sets out the details which should be addressed within a SuDS Report, including:

- Flood Risk Outside of the Development
- Peak Flow Control and Volume Control
- Flood Risk Within the Development
- Runoff Destinations
- Structural Integrity
- Designing for Maintenance Considerations
- Construction

7

3. Surface Water Management

The <u>total site</u> comprises approximately 470m².

Surface Water Runoff from the Existing Site

As shown in Appendix A, the existing site is composed entirely of hardstanding areas (roofs, concrete, pavers).

As previously noted, Policy 9.13.2 of the London Plan 2021 states: Development proposals should aim to get as close to greenfield run-off rates as possible depending on site conditions. The well-established drainage hierarchy set out in this policy helps to reduce the rate and volume of surface water run-off. Rainwater should be managed as close to the top of the hierarchy as possible. There should be a preference for green over grey features, and drainage by gravity over pumped systems.

As such, in the first instance the **ICP SuDS** method within Micro Drainage has been used to calculate flow rates from the <u>total</u> site (as detailed in **Appendix C** and shown in **Table 1**.

Return Period	Flow Rate for 470m² (l/s)		
QBAR	0.2		
1 in 30 year	0.5		
1 in 100 year	0.6		

Table 1 – ICP SuDS – Site Greenfield Runoff Rates (I/s)

8

Surface Water Runoff from the Redeveloped Site

Following redevelopment of the site, the areas will be as follows:

- Roof areas ~320m²
- Hardstanding (paved areas)-~100m²
- Landscaped areas ~50m²

The proposals will result in a **decrease** in hardstanding areas which will provide betterment (in terms of surface water runoff) when compared with the existing situation.

The London Plan 2021 Hierarchy

The London Plan 2021 sets out the preferred hierarchy for the disposal of surface water runoff.

1) Rainwater use as a resource (for example rainwater harvesting, blue roofs for irrigation) There is the potential for simple rainwater harvesting. See the following section of this report.

2) Rainwater infiltration to ground at or close to source

At the time of writing, no ground investigation / infiltration testing has been carried out to confirm the suitability of the underlying ground conditions for infiltration.

The British Geological Survey (BGS) Geology Maps show that the site is underlain by London Clay.

BGS also provide borehole records, and there is a record available for the nearby Etheridge Road (see **Appendix D**). This confirms that beneath the made ground there is silty clay.

Given the presence of clay, we would not recommend a SuDS strategy based on full infiltration.

9

However, the areas of parking afford the opportunity for a non-infiltration (Type C) permeable paving to be installed which will provide a level of source control SuDS.

3) Rainwater attenuation in green infrastructure features for gradual release (for example green roofs, rain gardens) As shown on the proposed site plans in **Appendix B**, areas of landscaping are being introduced. These areas can be used to convey surface water across the site.

4) Rainwater discharge direct to a watercourse (unless not appropriate) There are no known watercourses in the immediate vicinity of the site.

5) Controlled rainwater discharge to a surface water sewer or drain It is understood that surface water runoff from the existing site connects into the public sewer system.

It is therefore proposed that surface water runoff from hardstanding areas is released into the public sewer systems at a controlled rate, via Type C 'permeable' paving.

SuDS Option

Based on the proposed site layout and the desktop study of the underlying ground conditions, and in line with the London Plan drainage hierarchy, the following are the preferred options for the management of surface water runoff from hardstanding areas:

- Rainwater recycling (water butt)
- Landscaping
- Non-infiltration permeable paving (Type C)

10

Rainwater Recycling

In order to provide a level of rainwater recycling, a water butt will be provided. Water butts afford the opportunity for future occupants to reuse water collected in the water butt, for example when watering the garden/or washing cars etc. If this supply is used frequently this may also ensure that some additional storage is available during an extreme rainfall event.

The water butt will be connected to a downpipe, and an overflow will be provided. This could be via a perforated hose to allow the tank to empty after a rainfall event thus making capacity for the next event.

It is important to take the following into consideration when planning to install a water butt:

- it should be durable and opaque to sunlight sited in an area that can safely take the weight of the water
- in addition to a tap, an overflow should be provided which would route rainwater away from the sewer system (such as to a garden area)
- a child proof lid should be fitted
- means of detaching the rainwater downpipe to enable cleaning

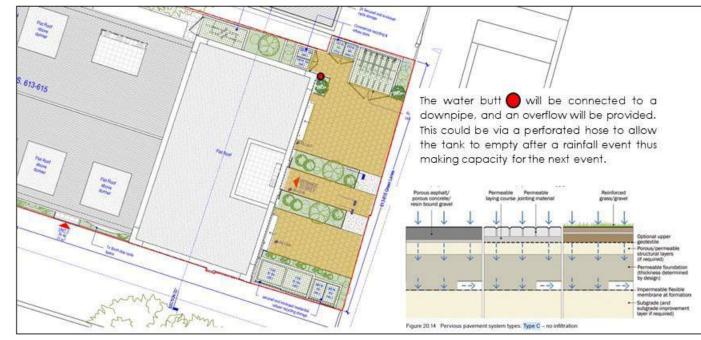
Landscaping

The landscaped areas can provide conveyance of surface water.

Type C Permeable Paving

Type C Permeable Paving should be installed on the front driveway (see overleaf for indicative SuDS layout).

This type of system is suited to ground conditions where the infiltration rate is very low. In a Type C system the water enters the pavement but will exit by means of a restricted outfall pipe (or flow control device) into a storm water sewer system.


11

Micro Drainage has been used to calculate the Type C permeable paving system for surface water runoff from the remaining hardstanding areas (420~m²) in up to the 1 in 100 year plus 40% allowance for climate change.

Flows have been restricted to 0.61/s which is the existing 1 in 100 year greenfield rate of runoff.

A summary of the results is provided in **Appendix E**.

Indicative SuDS Layout

12

Please note:

- Thames Water will be consulted to confirm capacity and agree the flow rates will be undertaken once planning permission has been granted.
- Detailed drainage drawings will be submitted at detailed drainage design stage.
- The SuDS strategy has been put together based on our understanding of the ground conditions and site layout. Building Control will need to be consulted on the siting of the SuDS, and the recommendations and advice of the SuDS manufacturer / installer should always be followed.

13

4. SuDS Maintenance

Operation and maintenance schedules are provided below (taken from Ciria C753 The SuDS Manual): these should be adopted by the management company.

Water Butt

Maintenance Schedule	Required Action	Typical Frequency
Regular Maintenance	The water butt should be routinely checked for litter – leaves can become trapped in the water butt which could lead to blockage of the taps and overflow	Monthly
	Where appropriate, and if safe to do so, the water butt should be cleaned annually to prevent smells associated with stagnant water, and to remove any algae.	Annually

Type C Permeable Pacing

Maintenance Schedule	Required Action	Typical Frequency
Regular Maintenance	Inspect and identify any areas that are not operating correctly. If required, take remedial action	Monthly for 3 months, then annually
	Remove debris from the catchment surface (where is may cause risks to performance)	Monthly
	Remove sediment from pre-treatment structures and/or internal forebays	Annually, or as required
Remedial Actions	Repair/ rehabilitate inlets, outlet, overflow, and vents	As required
Monitoring	Inspect/ check all inlets, outlets, vents and overflows to ensure that they are in good condition and operating as designed	Annually
	Survey inside of tank for sediment build up and remove if necessary	Every five years, or as required

15

5. Conclusions

This Surface Water and SuDS Assessment (Rev0) has been prepared to support the planning application for the proposed redevelopment at 613-615 Greens Lane, Palmers Green, and demonstrates (so far as is practicable) how surface water runoff will be managed over the lifetime of the development in line with the London Plan and local planning policies.

The application site is a mixed-use building in three sections. The front section is two storey with a shallow pitched roof set within the parapet, the middle section is also two storey with a pitched roof and the rear section is a single storey. The front element is purely commercial on the ground and the first floor, the middle section is predominantly residential on the ground and first floor and the rear section is residential with an element of commercial.

Proposals are for the refurbishment, reconfiguration and extension works to an existing part single part two storey mix-use building consisting of part commercial and part residential, with the introduction of an additional floor level to the front building, raised roof ridge level and new dormers to the rear wing of the building and associated external and internal alterations to create a total of 8 x residential units (3 x 3 beds, 2 x 2 beds, 2 x 1 bed, 1x studio), with the retention and creation of 2 x commercial units. The scheme will introduce private amenity areas, a secure and enclosed cycle and a refuse/recycling store.

The proposals will result in a decrease in hardstanding areas which will provide betterment (in terms of surface water runoff) when compared with the existing situation.

Based on the proposed site layout and the desktop study of the underlying ground conditions, and in line with the London Plan drainage hierarchy, the following are the preferred options for the management of surface water runoff from hardstanding areas:

- Rainwater recycling (water butt)
- Landscaping
- Non-infiltration permeable paving (Type C)

16

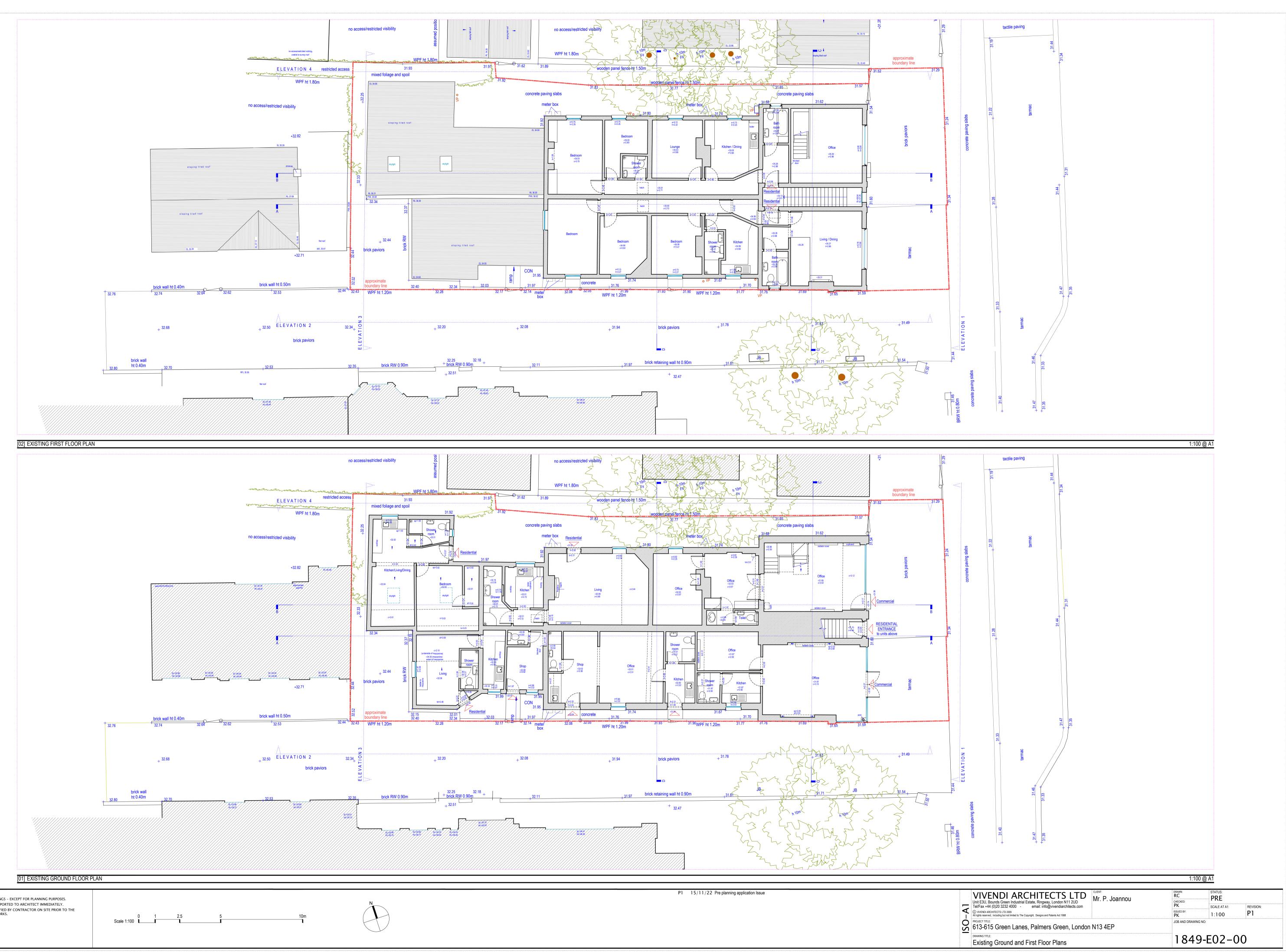
The SuDS strategy has been put together based on our understanding of the ground conditions and site layout. Building Control will need to be consulted on the siting of the SuDS, and the recommendations and advice of the SuDS manufacturer / installer should always be followed.

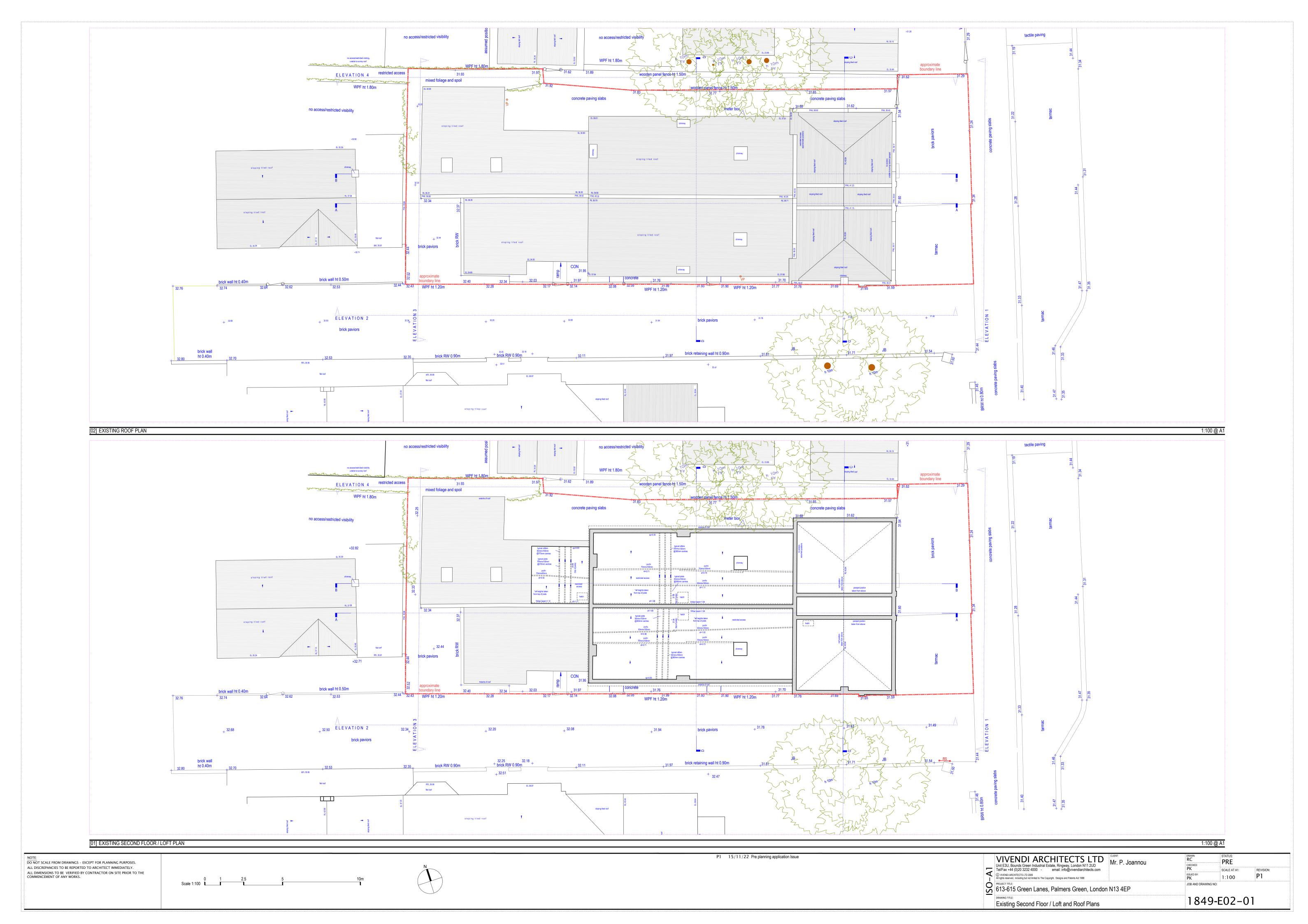
17

<u>Appendices</u>

18

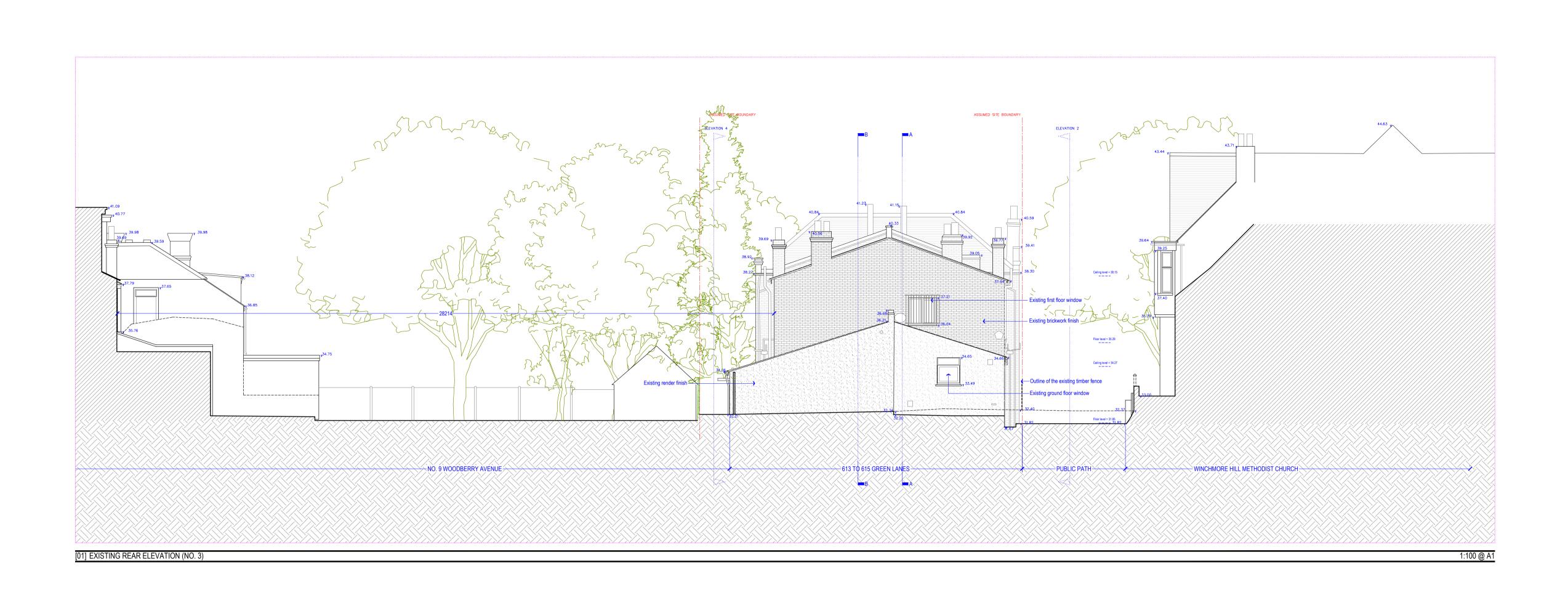
Appendix A - Site Location Plan and Existing Site Layout Plans

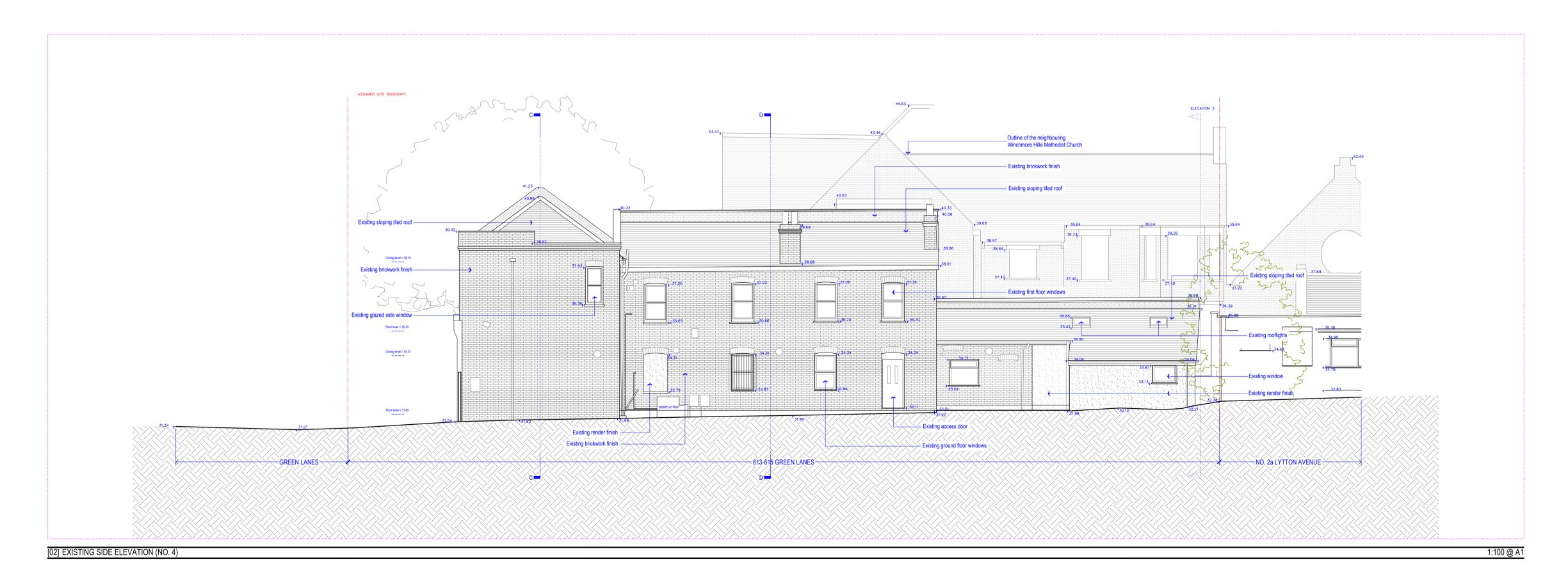

19



DRAWING TITLE: Existing Ground Floor Plan

1849-E01-00



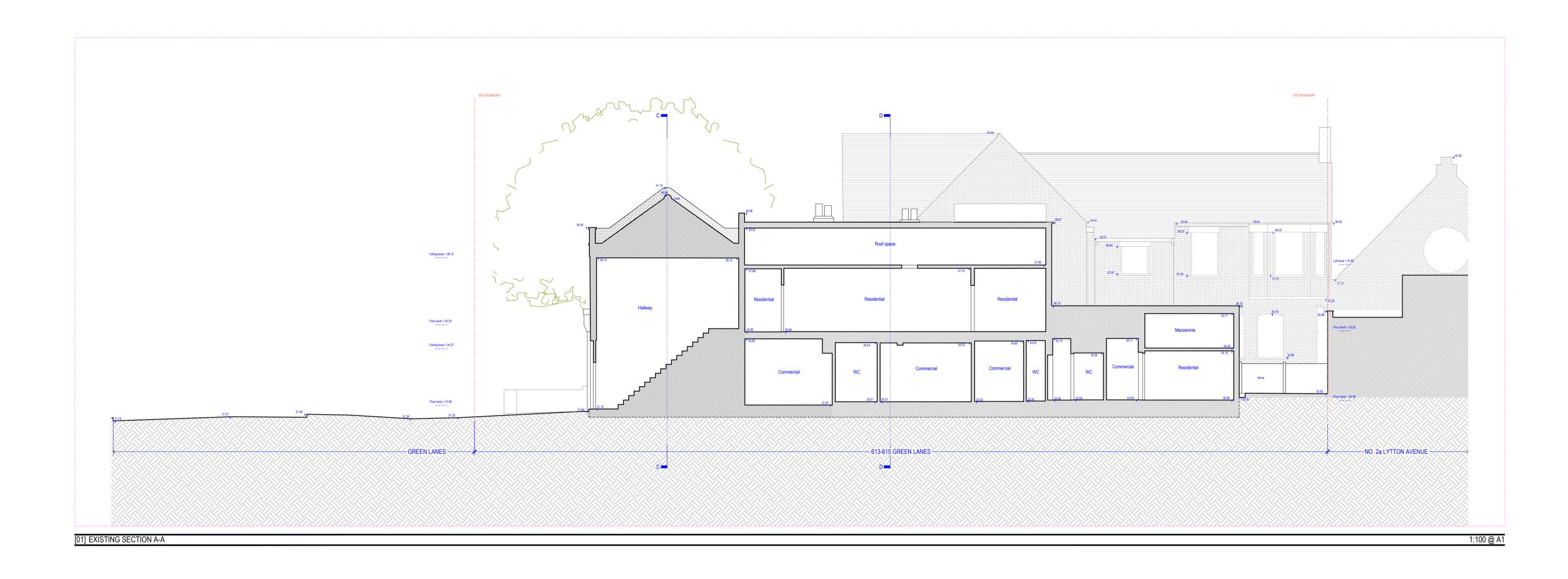

P1 15/11/22 Pre planning application Issue

NOTE: DO NOT SCALE FROM DRAWINGS - EXCEPT FOR PLANNING PURPOSES. ALL DISCREPANCIES TO BE REPORTED TO ARCHITECT IMMEDIATELY. ALL DIMENSIONS TO BE VERIFIED BY CONTRACTOR ON SITE PRIOR TO THE COMMENCEMENT OF ANY WORKS. 0 1 2.5 Scale 1:100

_____10m

	VIVENDI ARCHITECTS LTD Unit E3U, Bounds Green Industrial Estate, Ringway, London N11 2UD	DRAWN: RC CHECKED:	status: PRE	
$\overline{\langle}$	Tel/Fax +44 (0)20 3232 4000 - email: info@vivendiarchitects.com © vivenDI ARCHITECTS LTD 2009 All rights reserved, including but rol limited to The Copyright, Designs and Patents Act 1988	PK ISSUED BY: PK	SCALE AT A1: 1:100	REVISION: P1
	PROJECT TITLE: 613-615 Green Lanes, Palmers Green, London N13 4EP	JOB AND DRAWING NO:		
DRAWING TITLE: Existing Front and Side Elevations (No. 1 & 2)		1849-E03-00		

DO NOT SCALE FROM DRAWINGS – EXCEPT FOR PLANNING PURPOSES. ALL DISCREPANCIES TO BE REPORTED TO ARCHITECT IMMEDIATELY. ALL DIMENSIONS TO BE VERIFIED BY CONTRACTOR ON SITE PRIOR TO THE COMMENCEMENT OF ANY WORKS.

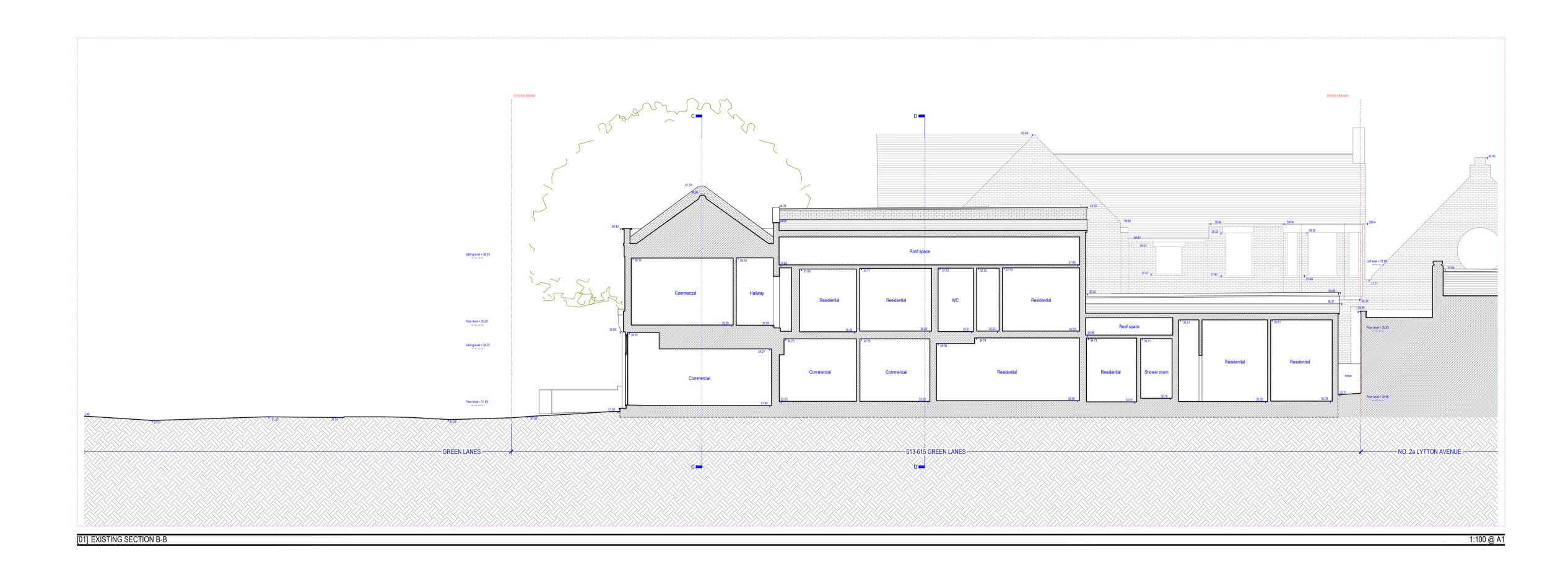

NOT

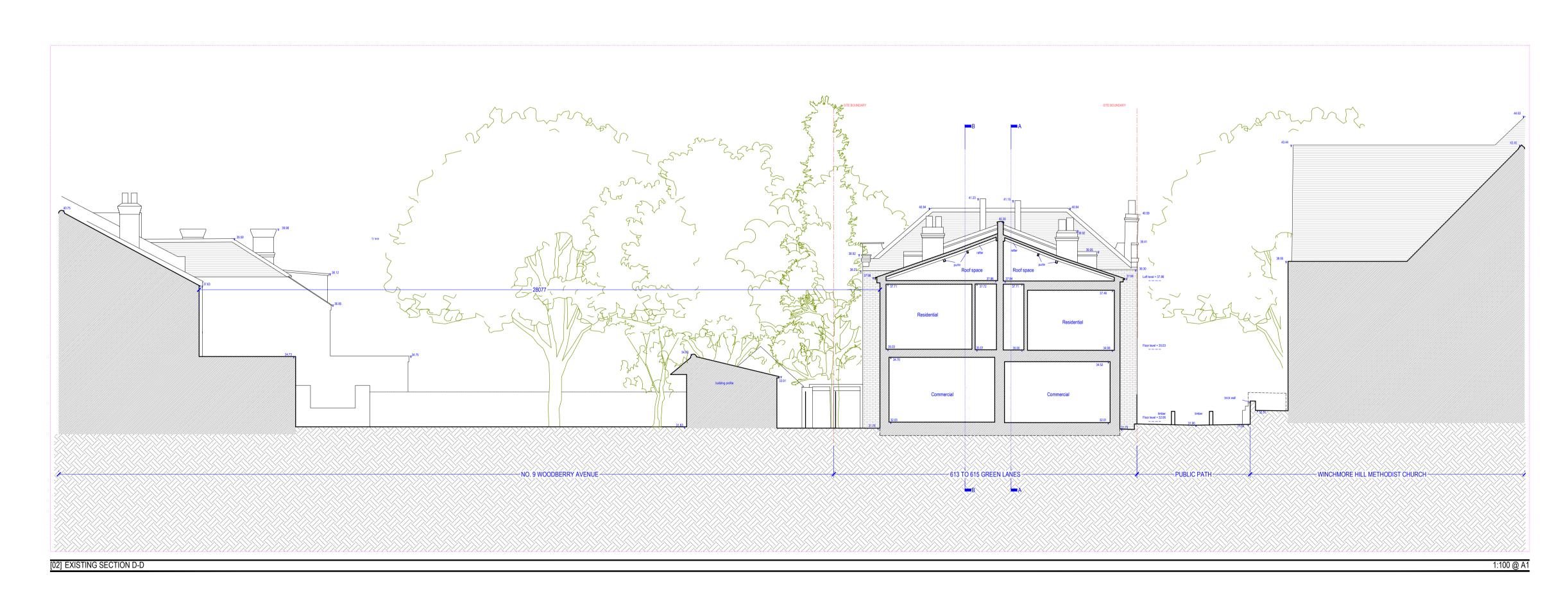
Scale 1:100 0 1 2.5

10m

P1 15/11/22 Pre planning application Issue

	VIVENDI ARCHITECTS LTD Mr. P. Joannou	DRAWN: RC CHECKED:	STATUS: PRE	
4	Unit E3U, Bounds Green Industrial Estate, Ringway, London N11 20D Tel/Fax +44 (0)20 3232 4000 - email: info@vivendiarchitects.com	РК	SCALE AT A1:	REVISION:
~	© VIVENDI ARCHITECTS LTD 2009 All rights reserved, including but not limited to The Copyright, Designs and Patents Act 1988	ISSUED BY: PK	1:100	P1
ISO	613-615 Green Lanes, Palmers Green, London N13 4EP	JOB AND DRAWIN	G NO:	
DRAWING TITLE: Existing Rear and Side Elevations (No. 3 & 4)		1849	9-ЕОЗ-О	1





P1 15/11/22 Pre planning application Issue

NOTE: DO NOT SCALE FROM DRAWINGS – EXCEPT FOR PLANNING PURPOSES. ALL DISCREPANCIES TO BE REPORTED TO ARCHITECT IMMEDIATELY. ALL DIMENSIONS TO BE VERIFIED BY CONTRACTOR ON SITE PRIOR TO THE COMMENCEMENT OF ANY WORKS.

	VIVENDI ARCHITECTS LTD Unit E3U, Bounds Green Industrial Estate, Ringway, London N11 2UD	DRAWN: RC CHECKED:	status: PRE	
	Tel/Fax +44 (0)20 3232 4000 - email: info@vivendiarchitects.com	PK ISSUED BY:	SCALE AT A1:	REVISION:
Ì	All rights reserved, including but not limited to The Copyright, Designs and Patents Act 1988	PK	1:100	PI
ISO	613-615 Green Lanes, Palmers Green, London N13 4EP	JOB AND DRAWING	NO:	
	DRAWING TITLE: Existing Sections (A-A and C-C)	1849	9-E04-C	0

P1 15/11/22 Pre planning application Issue

NOTE: DO NOT SCALE FROM DRAWINGS – EXCEPT FOR PLANNING PURPOSES. ALL DISCREPANCIES TO BE REPORTED TO ARCHITECT IMMEDIATELY. ALL DIMENSIONS TO BE VERIFIED BY CONTRACTOR ON SITE PRIOR TO THE COMMENCEMENT OF ANY WORKS.

Scale 1:100 0 1 2.5 10m

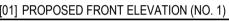
CLENT: Unit E3U, Bounds Green Industrial Estate, Ringway, London N11 2UD Tel/Fax +44 (0)20 3232 4000 - email: info@vivendiarchitects.com © VIVENDI ARCHITECTS LTD 2009 Alights reserved, including but not limited to The Copyright, Designs and Patents Act 1988 STATUS: PRE RC CHECKED: PK ISSUED BY: PK REVISION: SCALE AT A1: 1:100 613-615 Green Lanes, Palmers Green, London N13 4EP JOB AND DRAWING NO: DRAWING TITLE: Existing Sections B-B and D-D 1849-E04-01

Appendix B - Proposed Site Layout Plans

20

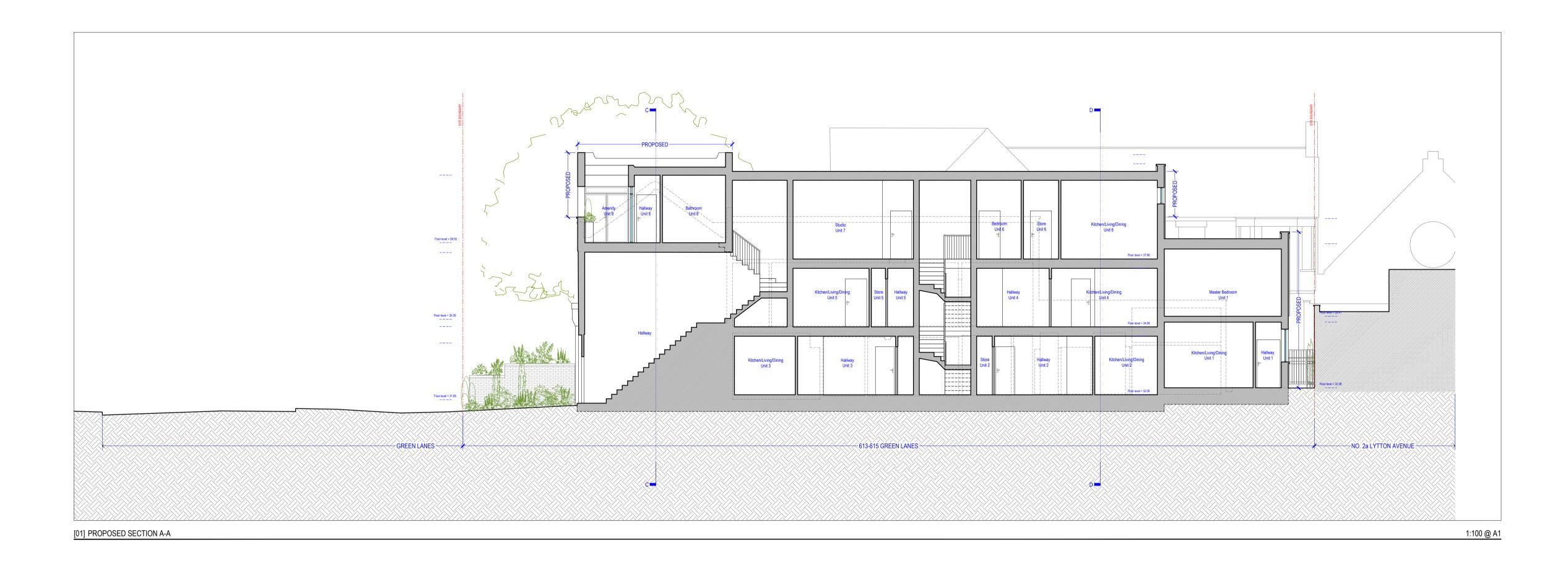
orawing title: Proposed Topographical survey

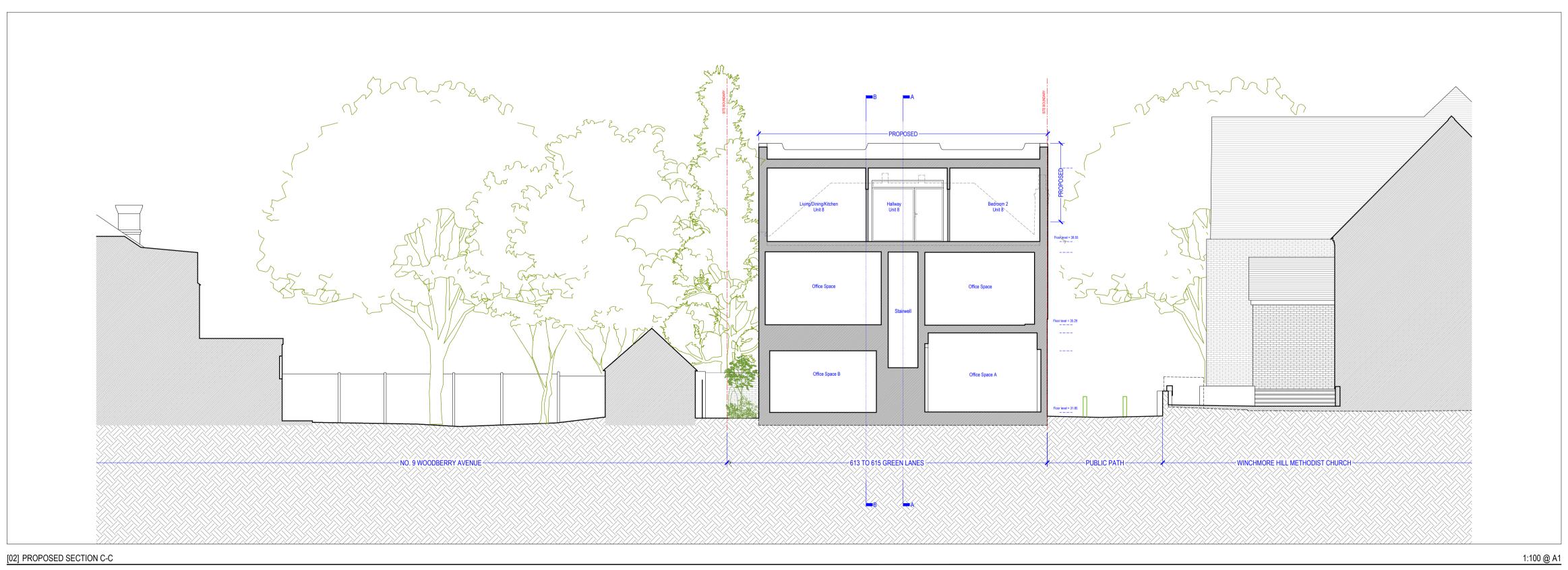
¹⁸⁴⁹⁻P01-00


Proposed Ground and First Floor Plans

1849-P02-00

Proposed Second and Roof Plan	
FTOPOSEU SECONU anu ROOI FTAIT	

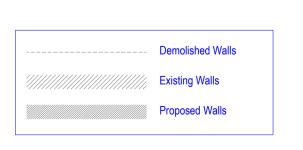



DO NOT SCALE FROM DRAWINGS – EXCEPT FOR PLANNING PURPOSES. ALL DISCREPANCIES TO BE REPORTED TO ARCHITECT IMMEDIATELY. ALL DIMENSIONS TO BE VERIFIED BY CONTRACTOR ON SITE PRIOR TO THE COMMENCEMENT OF ANY WORKS.

NOT

0 1 2.5 Scale 1:100 10m P1 15/11/22 Pre planning application Issue P2 xx/xx/23 Full Planning Application Issue Demolished Walls

CLENT: Unit E3U, Bounds Green Industrial Estate, Ringway, London N11 2UD Tel/Fax +44 (0)20 3232 4000 - email: info@vivendiarchitects.com © VIVENDI ARCHITECTS LTD 2009 All rights reserved, including but not limited to The Copyright, Designs and Patents Act 1988 STATUS: PLA SM CHECKED: PK SCALE AT A1: REVISION: ISSUED BY: PK P2 1:100 613-615 Green Lanes, Palmers Green, London N13 4EP JOB AND DRAWING NO: 1849-P03-00 Proposed Front and Side Elevations (No. 1 & 2)



NOTE: DO NOT SCALE FROM DRAWINGS – EXCEPT FOR PLANNING PURPOSES. ALL DISCREPANCIES TO BE REPORTED TO ARCHITECT IMMEDIATELY. ALL DIMENSIONS TO BE VERIFIED BY CONTRACTOR ON SITE PRIOR TO THE COMMENCEMENT OF ANY WORKS.

10m
 0
 1
 2.5

 Scale 1:100

P1 15/11/22 Pre planning application Issue P2 xx/xx/23 Full Planning Application Issue

VIVENDI ARCHITECTS LTD	DRAWN: SM	status: PLA		
Unit E3U, Bounds Green Industrial Estate, Ringway, London N11 2UD Tel/Fax +44 (0)20 3232 4000 - email: info@vivendiarchitects.com © ViVENDI ARCHITECTS LTD 2009 All rights reserved, including but not limited to The Copyright, Designs and Patents Act 1988	CHECKED: PK ISSUED BY: PK	SCALE AT A1: 1:100	REVISION: P2	
613-615 Green Lanes, Palmers Green, London N13 4EP	JOB AND DRAWING NO:	JOB AND DRAWING NO:		
DRAWING TITLE: Proposed Sections A-A and C-C	1849-	P04-0	00	

[01] EXISTING BUILDING VISUAL 1

[03] EXISTING BUILDING VISUAL 2

DO NOT SCALE FROM DRAWINGS – EXCEPT FOR PLANNING PURPOSES. ALL DISCREPANCIES TO BE REPORTED TO ARCHITECT IMMEDIATELY. ALL DIMENSIONS TO BE VERIFIED BY CONTRACTOR ON SITE PRIOR TO THE COMMENCEMENT OF ANY WORKS.

NOT

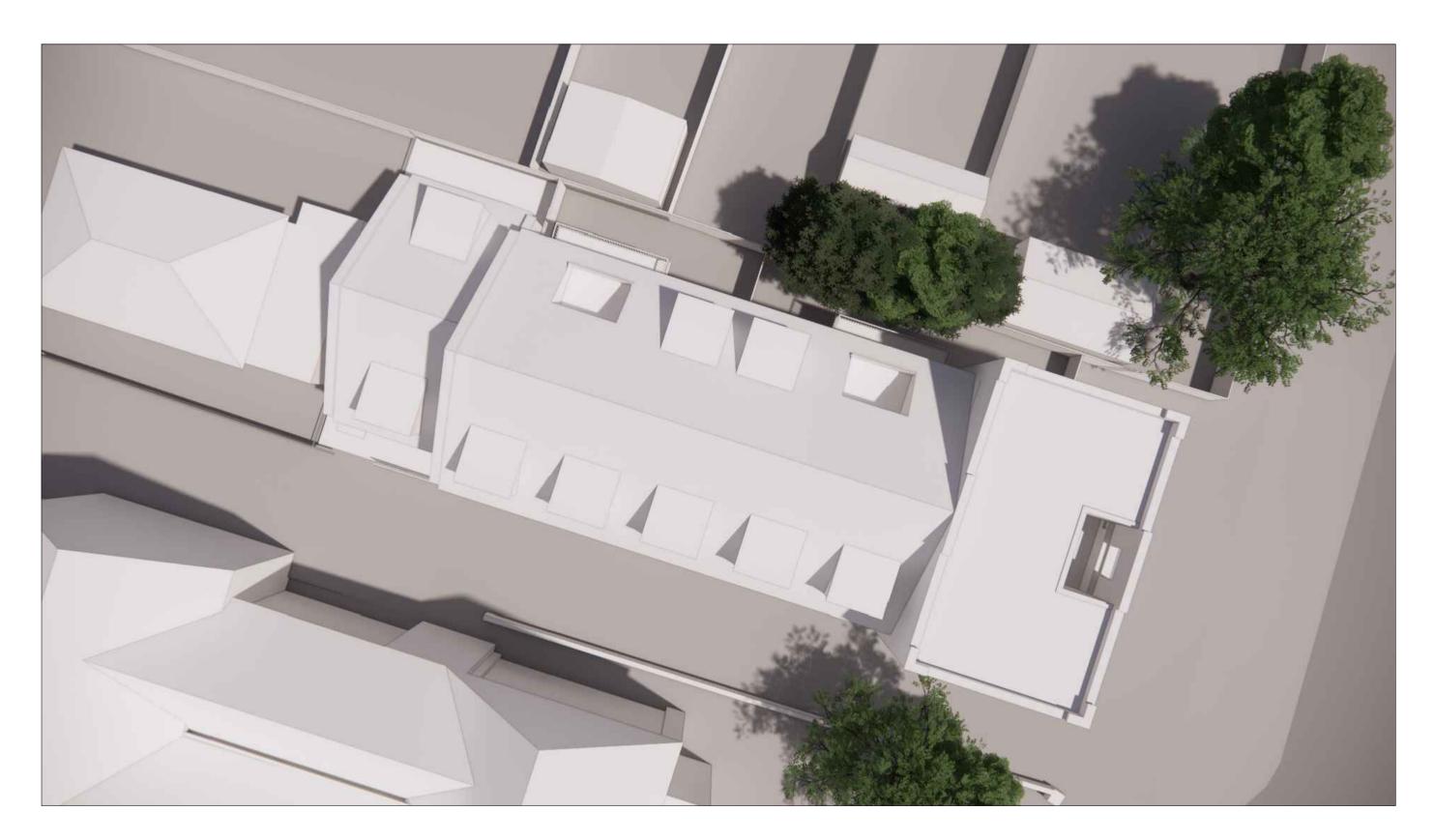

```
[02] PROPOSED BUILDING VISUAL 1
```


[04] PROPOSED BUILDING VISUAL 2

P1 15/11/22 Pre planning application Issue P2 xx/xx/23 Full Planning Application Issue

VIVENDI ARCHITECTS LTD Unit E3U, Bounds Green Industrial Estate, Ringway, London N11 2UD	DRAWN: SM CHECKED:	status: PLA	
Tel/Fax +44 (0)20 3232 4000 - email: info@vivendiarchitects.com © ViveNDI ARCHITECTS LTD 2009 All rights reserved, including but not limited to The Copyright, Designs and Patents Act 1988	SM ISSUED BY: PK	SCALE AT A1:	revision: P2
613-615 Green Lanes, Palmers Green, London N13 4EP	JOB AND DRAWING N	NO:	i
DRAWING TITLE: Existing and Proposed 3D Visuals	1849	-VS-01	

[01] EXISTING BUILDING VISUAL 3



[03] EXISTING BUILDING VISUAL 4

NOTE: DO NOT SCALE FROM DRAWINGS - EXCEPT FOR PLANNING PURPOSES. ALL DISCREPANCIES TO BE REPORTED TO ARCHITECT IMMEDIATELY. ALL DIMENSIONS TO BE VERIFIED BY CONTRACTOR ON SITE PRIOR TO THE COMMENCEMENT OF ANY WORKS.

[02] PROPOSED BUILDING VISUAL 3

[04] PROPOSED BUILDING VISUAL 4

P115/11/22Pre planning application IssueP2xx/xx/23Full Planning Application Issue

	VIVENDI ARCHITECTS LTD Unit E3U, Bounds Green Industrial Estate, Ringway, London N11 2UD	DRAWN: SM CHECKED:	STATUS: PLA		
4	Tel/Fax +44 (0)20 3232 4000 - email: info@vivendiarchitects.com ⊘ vivenDI ARCHITECTS LTD 2009 Ul rights reserved, including but not limited to The Copyright. Designs and Patents Act 1988	PK ISSUED BY: PK	SCALE AT A1: N/A	с л	
613-615 Green Lanes, Palmers Green, London N13 4EP		JOB AND DRAWIN	G NO:		
	Existing and Proposed 3D Visuals	1849	9-VS-02	<u>)</u>	

Appendix C - Greenfield Runoff (Total Site)

21

Base Energy Services Limited		Page 1
44 Canal Street	Greens Lane	
Bootle	Greenfield	
Liverpool L20 8QU	Total Site	Micro
Date 20/11/2023	Designed by CH	Desinado
File	Checked by PK	Diamaye
Micro Drainage	Source Control 2020.1.3	

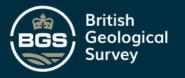
ICP SUDS Mean Annual Flood

Input

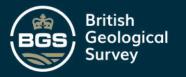
Return Period (ye	ears)	100		Soil	0.45	50
Area	(ha)	0.050		Urban	0.00	00
SAAR	(mm)	652	Region	Number	Region	6

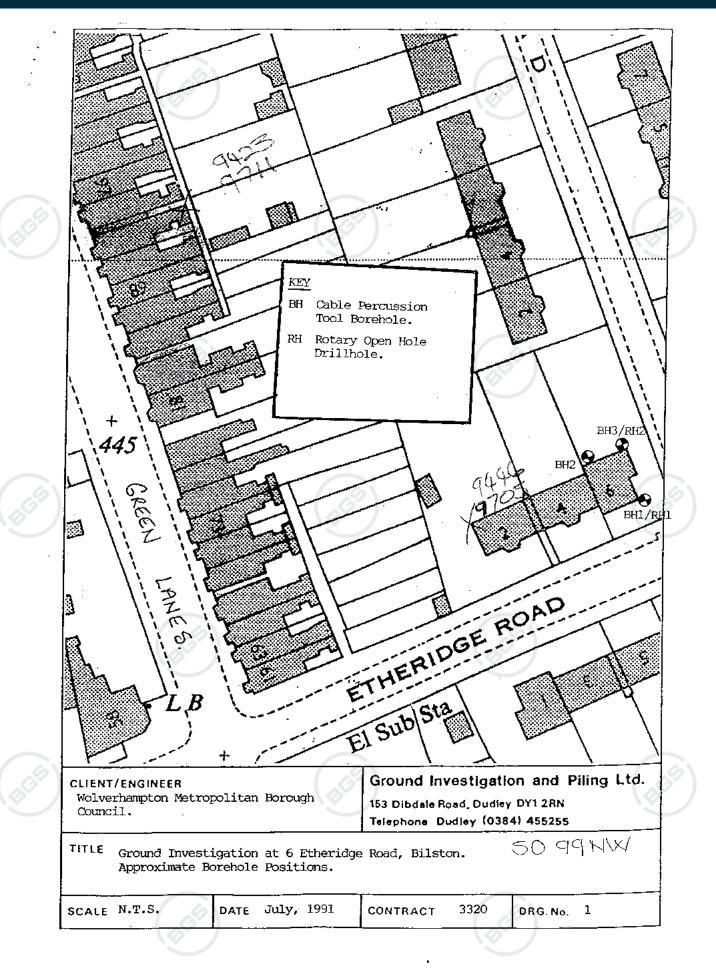
Results 1/s

QBAR Rural 0.2 QBAR Urban 0.2 Q100 years 0.6 Q1 year 0.2 Q30 years 0.5 Q100 years 0.6


Appendix D- British Geological Survey Borehole Records

22




Dat Mat	hod of BoringCable Percussion Clien	tion ⁶	Ether Ber ^{Wo}	lverhamp	ton Mét	ton.Z	3,737 Fan Borou	għ Cound	cit.
	DESCRIPTION OF STRATA	Legend	Depth b.g.l. (m)	Reduced Level (mA O D.)	Waler Levels (m)	Sample Type	s/Tests Depth (m)	(U100 61c N	TC.R.1
)	MADE GROUND - Recovered as light to dark grey sand to gravel sized fragments of very weak weathered mudstone in a silty clayey matrix.					В	0.00		
	becoming at 1.20m firm and in parts stiff to very stiff, light to dark grey very friable silty clay with many sand to gravel sized fragments of very					S/B	1.20	12	-
	weak weathered mudstone.					\$/B	2.30	14	
	stiff from 3.25m and stiff to very stiff from 4.35m, in parts variably cohesive and granular with many mudstone fragments in a silty clay matrix [COLLIERY SPOIL].					S/B	3.25	16	-
						S/B	4.35	35	
-			6.30		Ţ	s/B	5,90	25	-
	Stiff red brown and occasionally light grey silty sandy CLAY with some fine to coarse gravel and in upper parts firm		6.90 7.00		⊻	B	6.90 7.00		-
	dark brown silty very sandy clay [GLACIAL TILL].		8.00		L	B	7.55 8.00	31	
						S∕B	9 . 15	31	(

British Geological Survey

	DESCRIPTION OF STRATA	Legend	Depth b.g.f.	Reduced Level	Water Levels	Sample Type	r/Tasis Depih	(U100 b)a	T.C.R.S
		 	(m)	(mA.O.D.)	(m)	'YD.	(m.)		(R.Q.D.%)
	As from 6.90m on sheet 1. {GLACIAL TILL].		11.00			S	10.55	38	(2
	Borehole complete.		11.00						-
						69		2	-
							y .		-
									-
)		500							(2
						(-
-						69			-
, - - - -									-
)		691							C

Appendix E - Micro Drainage Type C Permeable Paving Calculations

23

	Services	LIMIT	.ea						Page
Canal St	reet			Gree	ens Lan	е			
otle				Type	e C PP				
verpool	L20 8QU			Stor	age Vo	lume			Mic
e 20/11/	2023			Desi	gned b	у СН			
le E - St	orage.SRC	Х		Chec	ked by	PK			Drai
cro Drain	-					trol 202	0.1.3		
	Summary				-		Period	(+40%))
						o minutes.			
	Storm	Max	Max		ax	Max	Max	Max	Status
	Event	Level (m)	(m)			Control Σ (1/s)	(1/s)	(m ³)	
			• •		-				
	i min Summer				0.0	0.4	0.4		
) min Summer				0.0	0.5	0.5		
) min Summer				0.0	0.5	0.5		
) min Summer				0.0	0.5	0.5		
) min Summer				0.0	0.5	0.5		
) min Summer) min Summer				0.0	0.5	0.5		
					0.0	0.5 0.5	0.5		
) min Summer) min Summer				0.0		0.5		
) min Summer) min Summer				0.0	0.5 0.5	0.5		
) min Summer) min Summer				0.0	0.5	0.5		
) min Summer				0.0	0.5	0.5		
) min Summer) min Summer				0.0	0.5	0.5		
) min Summer) min Summer				0.0	0.4	0.4		
) min Summer				0.0	0.4	0.4		
) min Summer				0.0	0.4		2.2	
) min Summer				0.0	0.4		1.5	
) min Summer				0.0	0.3	0.3		
) min Summer				0.0	0.3		1.1	
	min Winter				0.0	0.4	0.4		
		Storm		Rain	Flooded	l Discharg	e Time-P	eak	
		Event		(mm/hr)	Volume	Volume	(min:	5)	
					(m³)	(m³)			
	1.5	min Su	mmer	143.954	0.0	10.	9	26	
		min Su		92.629				40	
		min Su						68	
		min Su		33.583				126	
		min Su		24.424	0.0			182	
		min Su		19.389				240	
		min Su		13.924				302	
		min Su		11.018				364	
		min Su		9.182				430	
		min Su		7.908				500	
		min Su		6.245				638	
		min Su		4.471				914	
		min Su		3.197				320	
		min Su		2.518				728	
								344	
	4.320	min Su	mmer	1.796	0.0		0 /	344	

0.0

0.0

0.0

0.0

0.0

©1982-2020 Innovyze

1.413

41.3

42.7

43.8

44.6

12.3

3008

3680

4408

5136

26

5760 min Summer

7200 min Summer 1.172

8640 min Summer 1.006

15 min Winter 143.954

10080 min Summer 0.884

Base Energy	Services	Limited						Page 2	
44 Canal St	reet		Gree	ens Lar	ie				
Bootle			Type	e C PP				- Contraction	
Liverpool	L20 8QU		Stor	rage Vo	lume			Micco	1
Date 20/11/				igned k				- Micro	
File E - St	orage.SRC	X		cked by	-			Draina	ge
Micro Drain						020.1.3			
	Summary o	of Result:	s for 1	00 year	<u>Retur</u>	n Period	(+40%))	
	_			_					
	Storm	Max Ma		ax	Max	Max	Max	Status	
	Event	Level Dep (m) (m)		tration /s)	(1/s)	Σ Outflow (1/s)	Volume (m ³)		
		(111) (111)	, (1	/5/	(1/5)	(1/5)	(111)		
30	min Winter	0.623 0.63	23	0.0	0.5	0.5	15.1	ОК	
	min Winter			0.0	0.5	0.5			
	min Winter			0.0	0.6	0.6			
	min Winter			0.0	0.6	0.6			
	min Winter			0.0	0.6	0.6			
	min Winter min Winter			0.0	0.6	0.6			
	min Winter min Winter			0.0	0.5 0.5	0.5			
	min Winter min Winter			0.0	0.5	0.5			
	min Winter			0.0	0.5	0.5			
	min Winter			0.0	0.5	0.5	13.8		
2160	min Winter	0.415 0.4	15	0.0	0.4	0.4	10.1	O K	
2880	min Winter	0.248 0.2	48	0.0	0.4	0.4	6.0	ΟK	
4320	min Winter	0.087 0.0	87	0.0	0.4	0.4	2.1	O K	
	min Winter			0.0	0.3				
	min Winter			0.0	0.3				
	min Winter min Winter			0.0 0.0	0.2				
10080	min wincer	0.032 0.0	52	0.0	0.2	0.2	0.0	ОК	
		Storm	Rain			rge Time-P	eak		
		Event	(mm/hr)	Volume		-	5)		
				(m³)	(m³)				
	30	min Winter	92.629	0.	0 1	5.9	40		
	60	min Winter	56.713	0.	0 1	9.6	68		
	120	min Winter	33.583	0.	0 2	3.3	124		
		min Winter					180		
		min Winter					236		
		min Winter					340		
		min Winter					384		
		min Winter min Winter					460 536		
		min Winter min Winter					536 690		
		min Winter					984		
		min Winter					412		
		min Winter					764		
	4320	min Winter			0 4	4.5 2	340		
		min Winter		0.	0 4	6.5 2	944		
		min Winter					680		
		min Winter					392		
	10080	min Winter	0.884	0.	U 5	0.3 5	120		

©1982-2020 Innovyze

Base Energy Services Limited		Page 3
44 Canal Street	Greens Lane	
Bootle	Type C PP	
Liverpool L20 8QU	Storage Volume	Micro
Date 20/11/2023	Designed by CH	Dcainago
File E - Storage.SRCX	Checked by PK	Diamage
Micro Drainage	Source Control 2020.1.3	1

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	100	Cv (Summer) (0.750
Region	England and Wales	Cv (Winter) (0.840
M5-60 (mm)	20.000	Shortest Storm (mins)	15
Ratio R	0.450	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+40

<u>Time Area Diagram</u>

Total Area (ha) 0.042

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.014	4	8	0.014	8	12	0.014

ase Energy Service	es Limited				Pa	lge 4
4 Canal Street		Greens 1	Lane			
ootle		Type C 1	PP			
iverpool L20 8QU		Storage	Volume		N	licro
ate 20/11/2023		Designed	d by CH			
ile E - Storage.SF	RCX	Checked	by PK			rainag
icro Drainage		Source (Control 20	20.1.3		
		Model Det	ails			
	Storage is	Online Cove	r Level (m)	1.500		
	Porou	s Car Park	Structur	<u>e</u>		
Infiltration (Coefficient Ba	se (m/hr) 0.	00000	Wi	dth (m) 9.	. 0
Membra	ane Percolatio		1000		gth (m) 9.	
	Max Percolat	ion (l/s) ty Factor			e (1:X) 0.	.0 5
	Sale	Porosity		vaporation (1		3
	Invert	Level (m)		Membrane De	- ·	0
	<u>Hydro-Brake</u>	e® Optimum				
	-	it Reference			-6000	
		ign Head (m)			1.000	
	Desig	n Flow (l/s)			0.6	
		Flush-Flo ^m		Calcu		
				upstream st		
	Su	Applicatior mp Available		Su	rface Yes	
		iameter (mm)			36	
	Inve	rt Level (m)			000.0	
	Outlet Pipe D				75	
Sugge	sted Manhole D				1200	
		Points				
	Design Point	(Calculated) Flush-Flo™		0.6 0.4		
		Kick-Flo®		0.4		
	Mean Flow over			0.5		
The hydrological cal Hydro-Brake® Optimum Hydro-Brake Optimum® invalidated	as specified.	Should and	other type c	of control de	evice othe	er than a
Depth (m) Flow (1/s		Low (l/s) De	pth (m) Flo	w (l/s) Dep	th (m) Flo	ow (l/s)
0.100 0.		0.6	3.000	1.0	7.000	1.4
0.200 0. 0.300 0.		0.7	3.500 4.000	1.0	7.500 8.000	1.5 1.5
0.400 0.		0.8	4.000	1.2	8.500	1.5
0.500 0.		0.8	5.000	1.2	9.000	1.6
0.600 0.		0.9	5.500	1.3	9.500	1.7
0.800 0.		0.9	6.000	1.3		
	6 2.600	0.9	6.500	1.4		
1.000 0.	i					