Cameron Ross

Drainage Impact Assessment

St oneywood Gate, Stoneywood Park

Dyce, A berdeen

Document Issue Record

Revision	Description	Issued by	Checked by	Date
-	Initial Issue	GCO	RAG	12/10/2023
A	Project Title and Description changed	GCO	RAG	$30 / 10 / 2023$

This report has been prepared for the sole benefit, use, and information for the client. The liability of Cameron + Ross with respect to the information contained in the report will not extent to any third party.

Authorisation Record

Author	Signature	Date	
Name:	George-Cristian Olteanu		$12 / 10 / 2023$
Position:	Engineer		

Approver	Signature	Date	
Name:	Russell Gibb		
Position:	Director		$12 / 10 / 2023$

Table of Contents

1. Introduction 4
2. Existing S ite Description 5
3. Ground Conditions 6
4. Existing Drainage Network 7
5. Proposed Development 8
6. Foul Drainage Proposals 9
7. Surface Water Proposals 10
8. Assessment of Flood Risk 13
9. Adoption \& Future Maintenance 13
10. Construction Phase 15

Appendices

Appendix A - Site Location Plan
A ppendix B - Scottish W ater GIS
A ppendix C - Architect Plan
A ppendix D - C + R Drainage Calculations
A ppendix E $-C+R$ Drainage Drawings
A ppendix F - SEPA Flood Map

1. Introduction

Cameron + Ross were appointed by TINTO Architecture on behalf of CoCity to prepare a Drainage Impact Assessment as part of the Planning Application for the proposed development at Stoneywood Gate, Stoneywood Park. This report will consider appropriate drainage proposals in accordance with the following documents.

- The SUDS Manual C753 - Guidance on the planning, design, construction and maintenance of Sustainable Drainage Systems, published by CIRIA, 2015.
- Supplementary Guidance - Supplementary Guidance: Flooding, Drainage \& Water Quality for New Developments, published by Aberdeen City Council.
- Sewers for Scotland - A technical specification for the design and construction of sewerage infrastructure (Version 4.0 - October 2018)

This report will establish the suitability of the site for development and identify the drainage principals in recognition of the aforementioned documents to satisfy source control, conveyance measures, attenuation, treatment and enhanced amenity.

2. Existing S ite Description

The site is located at Grid Reference NJ 8912311572 (389123E, 811572N) and is located on the corner of the A947 Stoneywood Road and Stoneywood Park, in Dyce. The site is situated approximately six miles North- West of Aberdeen City Centre, between Dyce to the North and Stoneywood to the South.

The site extends to approximately 0.7 hectares and is accessed via Stoneywood Park. There is an existing two storey office building surrounded by car parking, hard and soft landscaping. Within the existing facility, there is a network of existing foul and surface water drains which discharge to the Scottish Water public sewers.

The site is bounded to the North by Stoneywood Park road; to the East by other commercial properties; to the West by Stoneywood Road; and to the South by residential properties.

Based on the topographical survey, the site is generally flat with a slight fall towards the site access at S toneywood Park.

Please refer to the Site Location contained within Appendix A of this report.

3. Ground Conditions

No intrusive ground investigations have been undertaken at the site. Details relating infiltration rates, percolation rates, topsoil depth, made ground information or subsoil information at the specific site are not available.

Several historical site investigation records can be referenced by recourse to the British Geological Society website. Borehole records for several sites in and around the development area are available. The recorded information for these appears reasonably consistent and indicate the natural subsoils below consist of firm to stiff silty, sandy clay with some gravel and boulders.

It is anticipated that these ground conditions when proven, will not provide suitable infiltration for the control of surface water run- off and more traditional methods of SuDS drainage systems will be required.

Comprehensive site investigations should be undertaken prior to starting the works on site and the results should be reported back to the Engineer.

4. Existing Drainage Network

According to the Scottish Water GIS records, there are foul and surface water sewers running through the Southern part of the site and through Stoneywood Park road located North from the site. A comprehensive summary of existing Scottish Water drainage assets nearby the site is included below.

- Scottish Water 900 mm C oncrete Surface Water Sewer running through the southern part of the site near the boundary.
- Scottish Water 300 mm VC Foul Water Sewer running through the southern part of the site near the boundary.
- Scottish Water 300 mm VC transitioning into 375 mm Concrete Surface Water Sewer running underneath Stoneywood Park Road.
- Scottish Water 225 mm VC F oul Water Sewer running underneath Stoneywood Park road.

Refer to Appendix B which contains the Scottish Water GIS Plans for the site.

5. Proposed Development

It is proposed to demolish all existing buildings to facilitate the redevelopment of the site. It is proposed to construct two café/restaur ant units and four starter units, with the associated roads, footpaths and parking infrastructure. An electric vehicle hub will be provided with a total of 22 no. EV charging stations.

Vehicular site access will be maintained off Stoneywood Park road. Pedestrian access will be maintained off Stoneywood Park road, and a new pedestrian route will connect into Stoneywood Road near the South- West corner of the site.

The proposed roads, footpaths and parking areas are proposed to remain private. It is assumed the roads, footpaths, parking areas and roof areas will constitute impermeable areas. The parking bays will be surfaced in im pervious block paving.

The new roads, footpath and roof areas will be drained via private surface water drains and gullies to attenuation storage systems comprising of geocellular crates. Surface water runoff treatment will be provided using a chamber treatment device, such as R idgistorm- X 4 or similar approved to the same specification and same mitigation indices as the aforementioned product.

Provisions will be made for the foul drainage infrastructure required for the café/restaurnt units and the starter units. Refer to the latest Architect S ite Layout Drawing provided in A ppendix C.

6. Foul Drainage Proposals

It is proposed to discharge the foul water from thecafé/restaurant units and the starter units to the existing Scottish Water 300 mm VC Foul Sewer located in the southern part of the site.

Café/restaurant units' foul discharge will receive treatment using grease traps.

The overall foul drainage system will remain private up to the disconnection chamber prior to the connection to the existing public sewer. Please refer to $C+R$ Drainage Drawings provided in Appendix E of this report.

7. Surface W ater Proposals

As previously discussed in Section 3, a surface water discharge to groundwaters has not been considered at the site due to anecdotal knowledge of poor infiltration. The nearest watercourse to the site is River Don located approximately 600 m to the East. The existing Scottish Water Surface Water Sewers located at or nearby the site discharge to River Don. As such, the preferred method of discharge will be to the Scottish Water 900 mm Concrete Surface Water Sewer running through the southern part of the site near the boundary.

The proposed café/restaurant and starter units' pollution hazard indices will provide a low risk of contamination at the site. The proposed roads and car parks will provide a medium risk of contamination to the surface water runoff at the site.

As such, the proposals will be to provide sufficient mitigation for each section of the site. All the SuDS Devices suggested in CIRIA's publication C 753 "SuDS (Sustainable Urban Drainage Systems) Design Manual" Table 1.1 were individually considered filter strips, swales, infiltration basins, wet ponds, detention basins, filter drains, infiltration devices, pervious surfaces, and green roofs.

In accordance with CIRIA document C753, the risk posed by surface water runoff to the receiving environment is a function of the land use, the effectiveness of SuDS treatment components and the sensitivity of the receiving environment.

Determining the hazard posed by the land use activities at a site can be established by using a simple index approach by allocating pollution hazard indices for the proposed land use as outlined in Table 26.2 'Pollution Hazard Indices for different land use classifications' from the CIRIA C 753 SuDS Manual.

To deliver adequate treatment, the selected SuDS components should have a total pollution mitigation index (for each contaminant type) that equates or exceeds the specific pollution hazard index. Typical SuDS features can be used as outlined in

Table 26.3 'Indicative SuDS mitigation indices for discharges to surface waters' from the CIRIA C 753 SuDS Manual.

The proposed café/restaurant and starter units surface water roof runoff will yield a low pollution hazard level. The surface water runoff from the roof areas will be conveyed using private surface water drains, attenuated using geocellular attenuation crates whilst treatment will be provided using a treatment chamber such as Ridgistorm-X4 or similar specification.

The proposed road, footpaths and parking areas runoff will yield a medium pollution hazard level. The surface water runoff from the roads, footpaths and parking areas will be conveyed using gullies and surface water drains to the geocellular attenuation crates. Treatment will be provided via a treatment chamber such as Ridgistorm-X4 or similar specification. Refer to Tables 7.1 and 7.2 below showing the Pollution Hazard and SuDS Mitigation Indices for this section of the site.

Land Use	Pollution Hazard Level	Total Suspended Solids (TSS)	Metals	Hydrocarbons
Proposed café/ restaurant and starter unit roofs	Low	0.3	0.2	0.05
Proposed road, footpath and parking areas	M edium	0.7	0.6	0.7
Pollution Hazard Index	Medium	$\mathbf{0 . 7}$	$\mathbf{0 . 6}$	$\mathbf{0 . 7}$

Table 7.1: Pollution Hazard Indices for the development site (based on Table 26.2 in the SuDS Manual - C 753 by CIRIA)

Type of SuDS Component	Total Suspended Solids (TSS)	Metals	Hydrocarbons
Proprietary Treatment System - Treatment Chamber Ridgistorm-X4	0.8	0.8	0.8
Total Pollution SuDS Mitigation Index	$\mathbf{0 . 8}$	$\mathbf{0 . 8}$	$\mathbf{0 . 8}$

Table 7.2: SuDS Mitigation Indices for the proposed road, footpath and parking areas (based on Table 26.3 in the SuDS Manual - C 753 by CIRIA)

The provided total SuDS Mitigation Index exceeds the Pollution Hazard Index. Therefore, based on the above considerations, it is considered that all proposals are in line with best practice guidance available.

Alltreated surface water runoff will be discharged to the existing Scottish Water 900 mm Concrete Surface Water Sewer running through the southern part of the site near the boundary. The discharge to the sewer will be controlled to the predevelopment greenfield runoff rate using a series of control chamber with orif ice plates. The attenuation system and drains have been designed for the 1 in 200 Year Storm Event, including 30\% C limate Change.

For details relating the hydrology, attenuation storage and treatment proposals, please refer to the $C+R$ Calculations provided in Appendix D and to the $C+R$ Drawings provided in Appendix E of this report.

8. Assessment of F lood R isk

The SEPA Flood Maps have been reviewed to assess potential flood risk at the proposed site. Based on the SEPA Flood maps, the site is not at fluvial or coastal flood risk. There is a low likelihood of surface water flooding at the site, corresponding with a 0.1% change of surface water flooding each year.

It is considered this low surface water flood risk is correlated with existing surface water drainage systems present at the site which may have been historically under designed. As discussed in Section 7 , the proposed surface water drainage systems have been designed to cater for the 1 in 200 Year Storm Event, including 30\% C limate Change to mitigate any potential surface water flood risk at the site.

Please refer to Appendix F for the SEPA Flood Map at the site.

9. Adoption \& Future Maintenance

All proposed foul and surface water drains, gullies, chambers, attenuation system, and treatment chambers will remain private.

It is recommended that the drainage systems are inspected a minimum of twice per year, or, as per the manufacturer's guidelines, with the systems also being inspected after any major storm event. Significant sediment deposition is likely in areas used for storage, so a post clean- up operation may be required including the removal of litter, vegetation, sewerage debris and larger objects.

The CIRIA C753 Document provides guidance on the maintenance requirements for SuDS features. Please refer to Tables $9.1 \& 9.2$ below for maintenance details of the pr oposed attenuation and treatment systems.

Table 9.1- Extract from 'CIRIA C 753 - The SuDS Manual' for maintenance of a proprietary treatment system (Ref. Table 14.2)

TABLE
21.3

Table 9.2 - Extract from 'CIRIA C753-The SuDS Manual' for maintenance of at tenuation storage tanks (Ref. Table 21.3)

10. Construction Phase

The measures for controlling surface water run- off will be continually reviewed in line with each stage of construction by the groundwork's contractor and any influencing factors which should generally consider the following measures:

- Control:The contractor should give consideration, in the main, to surface water runoff during and after topsoil strip, as well as after re-grading of the land during site construction. Stripping of topsoil and vegetation is to be limited wherever possible and undertaken just prior to the construction in that area. This is to be provide a means of reducing runoff and to remove silts/fines from the water and aid natural absorption into the soils.
- Inter ception: Any existing land drains may be uncovered within currently undeveloped areas of the site. These may not be disturbed by the proposals; however, it should be noted that through development of the site any groundwater discharge will be reduce as surface water is collected via roofs and hardstanding areas and directed into the new surface water drainage network with attenuation provided before controlled discharge to the Scottish Water sewers.
- Prevention: The installation of the drains, SuDS measures and roadways will follow the earthworks operation continually improving the overall site drainage. SuDS facilities will be installed at the outset of the sewer works and will be utilised as temporary sediment control. It is therefore essential these are reinstated or reconstructed at the end of construction works and before adoption by the local authority.

APPENDIXA
Location P Ian

Scottish Water GIS

Existing tree to
be retained
New tree planting
Existing tree to
be removed

Site Boundary

Electric Hub

Building Areas:
Cafe / Restaurant Unit 1
2400sq. ft
Cafe / Restaurant Unit 2 : 2400sq. ft
222 m 2
Starter Unit A
$1033 s q$.
96 m 2
Starter Unit B:
1033sq. ft
96 m 2
Starter Unit C
1033 sq
96 m 2
Starter Unit D:
1033 sq . ft
$96 m 2$

Car Parking Requirement (outer city) Cafe / Restaurant Units:
1 space per 10 m 2
Total area $=444 \mathrm{~m} 2$
$444 / 10=45 \mathrm{no}$. space
tarter Units:
1 space per 50 m 2
Total area $=400 \mathrm{~m} 2$
Tot $/ 50=8$ no. spaces
Total car parking spaces required $=53$ no.
total car parking spaces proposed:
53no. car parking spaces
including-
paces (4\%)

+ EV Charging Hub:
22no. EV Charging Space

APPENDIXD

$C+R$ - Drainage Calculations

Cameron+Ross	Contract	Alba Gate, Stoneywood Park	CALCULATION	
			Sheet No :	-
	Part of Structure	Attenuation Trench 1 (Red) Post Development Runoff	Cont. No:	A/230736-00C
			Date:	03-Oct-2023
			Designer:	GCO

Pre-development Site Run-off Calculation

Equivalent 1, 30, 100 and 200 year throttle rates applicable for hydrological growth curve 1 for North Scotland

1 year factor	0.85
10 year factor	1.45
30 year factor	1.90
100 year factor	2.45
200 year factor	2.80

Greenfield Pre-Development Run-off:

1 year factor	1.89	I/sec/ha	1.27	$\mathrm{l} / \mathrm{sec}$
10 year factor	3.23	I/sec/ha	2.17	$\mathrm{I} / \mathrm{sec}$
30 year factor	4.23	I/sec/ha	2.84	$\mathrm{I} / \mathrm{sec}$
100 year factor	5.45	I/sec/ha	3.66	$\mathrm{l} / \mathrm{sec}$
200 year factor	6.23	I/sec/ha	4.18	$\mathrm{l} / \mathrm{sec}$

Allowable Post-Development Run-off:

Total Impermeable Area $=$
$1783 \mathrm{~m}^{2}$

1 year factor	0.3	$\mathrm{I} / \mathrm{sec}$ for this site
10 year factor	0.6	$\mathrm{I} / \mathrm{sec}$ for this site
30 year factor	0.8	$\mathrm{I} / \mathrm{sec}$ for this site
100 year factor	1.0	$\mathrm{I} / \mathrm{sec}$ for this site
200 year factor	1.1	$\mathrm{I} / \mathrm{sec}$ for this site

Sheet No.	1
Contract No.	$230736-000$
Date	12-Oct-2023
Designer	GCO

$\mathrm{Q}=\mathrm{Cd} \times \mathrm{A} o \times \operatorname{Sqrt}(2 \times \mathrm{g} \times \mathrm{H})$

1.100	$1 / \mathrm{s}$
0.500	H
0.620	Cd
9.810	g

Flow rate (I/s)
Head of Water (m)
Discharge coefficient dependent upon the orifice shape (typical 0.62)
Acceleration due to gravity ($\mathrm{m} / \mathrm{s}^{2}$)

Provide orifice plate dia. $d=$

27 mm

Sheet No.	-
Contract No.	$230736-000$
Date	$03 / 10 / 2023$
Designer	GCO

Design Rainfall
Additional flow multiplier 30\%

From Wallingford Procedure, Volume 3 - Maps
Rainfall Depths (M5-60minutes)
$\begin{aligned} \text { M5_60 } & =16 \mathrm{~mm} \\ \text { rainfall ratio } r & =0.250 \\ P & =200 \text { years }\end{aligned}$

D mins	M5_D	Z2	R = MP_D	
5	4.7 mm	2.574	12.0 mm	$144 \mathrm{~mm} / \mathrm{hr}$
10	7.0 mm	2.643	18.6 mm	$111 \mathrm{~mm} / \mathrm{hr}$
15	8.7 mm	2.698	23.4 mm	$94 \mathrm{~mm} / \mathrm{hr}$
30	12.0 mm	2.752	32.9 mm	$66 \mathrm{~mm} / \mathrm{hr}$
60	16.0 mm	2.747	44.0 mm	$44 \mathrm{~mm} / \mathrm{hr}$
120	21.0 mm	2.672	56.1 mm	$28 \mathrm{~mm} / \mathrm{hr}$
240	27.3 mm	2.595	70.8 mm	$18 \mathrm{~mm} / \mathrm{hr}$
360	31.7 mm	2.539	80.5 mm	$13 \mathrm{~mm} / \mathrm{hr}$
600	38.3 mm	2.461	94.2 mm	$9 \mathrm{~mm} / \mathrm{hr}$
1440	52.7 mm	2.346	123.7 mm	$5 \mathrm{~mm} / \mathrm{hr}$
2880	67.8 mm	2.255	153.0 mm	$3 \mathrm{~mm} / \mathrm{hr}$

Width
Depth
Fixed Lgth (optional)

0.00E+00	m / s
1783	m^{2}
12.00	m
0.80	m
15	m

Gravel Pit or Trench Soakaway
Gravel, free volume $\quad \square$
Insert 100\% for Net Storage Chamber Volume

D	Length	Inflow	Outflow	Storage Req	$\mathrm{t}_{\text {s50 }}$ (hrs)	Storage Prov	Overflow
5	15	21.4	0.3	21.0	0.00	136.8	
10	15	33.1	0.7	32.4	0.00	136.8	
15	15	41.7	1.0	40.7	0.00	136.8	
30	15	58.7	2.0	56.8	0.00	136.8	
60	15	78.4	4.0	74.4	0.00	136.8	
120	15	100.0	7.9	92.1	0.34	136.8	
240	15	126.2	15.8	110.4	7.26	136.8	
360	15	143.6	23.8	119.8	10.83	136.8	
600	15	167.9	39.6	128.3	14.06	136.8	136.8
1440	15	220.5	95.0	125.4	12.97	136.8	
2880	15	272.7	190.1	82.7	0.00		

Time until system can cope with additional influx of 50% design storage volume < 24 hrs \sim OK

Provide storage pit, $15 m \times 12 m \times 0.8 m$ deep

Minimum Free Volume $=95 \%$
Total Pit Volume $=144 \mathrm{~m}^{\wedge} 3$

Cameron+Ross	Contract	Alba Gate, Stoneywood Park	CALCULATION	
			Sheet No :	-
	Part of Structure	Attenuation Trench 2 (Cyan) Post Development Runoff	Cont. No:	A/230736-00C
			Date:	03-Oct-2023
			Designer:	GCO

Pre-development Site Run-off Calculation

Equivalent 1, 30, 100 and 200 year throttle rates applicable for hydrological growth curve 1 for North Scotland

1 year factor	0.85
10 year factor	1.45
30 year factor	1.90
100 year factor	2.45
200 year factor	2.80

Greenfield Pre-Development Run-off:

1 year factor	1.89	I/sec/ha	1.27	$\mathrm{l} / \mathrm{sec}$
10 year factor	3.23	I/sec/ha	2.17	$\mathrm{I} / \mathrm{sec}$
30 year factor	4.23	I/sec/ha	2.84	$\mathrm{I} / \mathrm{sec}$
100 year factor	5.45	I/sec/ha	3.66	$\mathrm{l} / \mathrm{sec}$
200 year factor	6.23	I/sec/ha	4.18	$\mathrm{l} / \mathrm{sec}$

Allowable Post-Development Run-off:

Total Impermeable Area $=\quad 2772 \mathrm{~m}^{2}$

1 year factor	0.5	$\mathrm{I} / \mathrm{sec}$ for this site
10 year factor	0.9	$\mathrm{I} / \mathrm{sec}$ for this site
30 year factor	1.2	$\mathrm{I} / \mathrm{sec}$ for this site
100 year factor	1.5	$\mathrm{I} / \mathrm{sec}$ for this site
200 year factor	1.7	$\mathrm{I} / \mathrm{sec}$ for this site

Sheet No.	1
Contract No.	$230736-000$
Date	12-Oct-2023
Designer	GCO

$\mathrm{Q}=\mathrm{Cd} \times \mathrm{A} O \times \operatorname{Sqrt}(2 \times \mathrm{g} \times \mathrm{H})$

1.700	$1 / \mathrm{s}$
0.500	H
0.620	Cd
9.810	g

Flow rate (I/s)
Head of Water (m)
Discharge coefficient dependent upon the orifice shape (typical 0.62)
Acceleration due to gravity ($\mathrm{m} / \mathrm{s}^{2}$)

Provide orifice plate dia. $d=$

34 mm

Sheet No.	-
Contract No.	$230736-000$
Date	$03 / 10 / 2023$
Designer	GCO

Design Rainfall
Additional flow multiplier 30\%

From Wallingford Procedure, Volume 3 - Maps
Rainfall Depths (M5-60minutes)
$\begin{aligned} M 5 _60 & =16 \mathrm{~mm} \\ \text { rainfall ratio } r & =0.250 \\ P & =200 \text { years }\end{aligned}$
Storm Return Period,

$M 5 _60$	$=16 \mathrm{~mm}$
rainfall ratio r	$=0.250$
P	$=200$ years

mins	M5_D	Z2	R = MP_D	Rainfall Intensity	(e) Scotland and Nth Ireland
5	4.7 mm	2.574	12.0 mm	$144 \mathrm{~mm} / \mathrm{hr}$	
10	7.0 mm	2.643	18.6 mm	$111 \mathrm{~mm} / \mathrm{hr}$	C England and Wales
15	8.7 mm	2.698	23.4 mm	$94 \mathrm{~mm} / \mathrm{hr}$	
30	12.0 mm	2.752	32.9 mm	$66 \mathrm{~mm} / \mathrm{hr}$	
60	16.0 mm	2.747	44.0 mm	$44 \mathrm{~mm} / \mathrm{hr}$	
120	21.0 mm	2.672	56.1 mm	$28 \mathrm{~mm} / \mathrm{hr}$	Measured Infiltration Rate
240	27.3 mm	2.595	70.8 mm	$18 \mathrm{~mm} / \mathrm{hr}$	0.00E+00
360	31.7 mm	2.539	80.5 mm	$13 \mathrm{~mm} / \mathrm{hr}$	
600	38.3 mm	2.461	94.2 mm	$9 \mathrm{~mm} / \mathrm{hr}$	
1440	52.7 mm	2.346	123.7 mm	$5 \mathrm{~mm} / \mathrm{hr}$	
2880	67.8 mm	2.255	153.0 mm	$3 \mathrm{~mm} / \mathrm{hr}$	

Width

Depth
Fixed Lgth (optional)

10.00	m
	m
	m

OR Outlet Flow Rate

Gravel Pit or Trench Soakaway
Gravel, free volume $\quad \square 5 \%$
Insert 100\% for Net Storage Chamber Volume

D	Length	Inflow	Outflow	Storage Req	$\mathrm{t}_{\text {s50 }}$ (hrs)	Storage Prov	Overflow
5	18	33.2	0.5	32.7	0.00	199.5	
10	18	51.5	1.0	50.4	0.00	199.5	
15	18	64.9	1.5	63.3	0.00	199.5	
30	18	91.3	3.1	88.2	0.00	199.5	
60	18	121.8	6.1	115.7	0.00	199.5	
120	18	155.5	12.2	143.3	2.52	199.5	
240	18	196.2	24.5	171.7	9.49	199.5	
360	18	223.2	36.7	186.5	13.11	199.5	199.5
600	18	261.1	61.2	199.9	16.39	199.5	
1440	18	342.8	146.9	195.9	15.42	0.00	199.5
2880	18	424.0	293.8	130.3			

Time until system can cope with additional influx of 50% design storage volume < 24 hrs ~ OK

Provide storage pit, $17.5 \mathrm{~m} \times 10 \mathrm{~m} \times 1.2 \mathrm{~m}$ deep

Minimum Free Volume $=95 \%$

Total Pit Volume $=210 \mathrm{~m}^{\wedge} 3$

APPENDIXE $C+R$ - Drainage Drawings

Page left blank intentionally.

Civil+Structural

Engineering

Expertise

