

DAVID SMITH ASSOCIATES LLP
 Consulting Structural & Civil Engineers
 London
 Northampton
 Cheltenham
 Birmingham
 www.dsagroup.co.uk

34 BELGRAVE MEWS SOUTH, LONDON. SW1X 8BT

SURFACE WATER DRAINAGE AND FLOOD RISK ASSESSMENT

Client:	Leconfield Property Group
Prepared By:	David Smith Associates
Date:	1 st December 2023
Reference:	23/54121
Revision:	01

DSA LLP VAT REG : 443 6613 95

Eur Ing **David Smith** BSc(Hons), C.Eng, MICE, FIStructE, CMaPS, MFPWS, FCABE, ACIArb, **Hitesh Jethwa** BSc Eng (Hons), I.Eng, AMIStructE **Steven Ainge** B.Eng (Hons), I.Eng, AMIStructE **Thomas Garrod** B.Eng (Hons), **Ben Mason** BSc (Hons), IEng, MICE

	London	Northampton	Cheltenham	Birmingham
M	16 Upper Woburn Place	8 Duncan Close	Unit 2, 1 The Hayloft	Central Boulevard,
1	London	Moulton Park	Far Peak	Blythe Valley Business Park
	WC1H 0AF	Northampton, NN3 6WL	Northleach, GL54 3AP	Solihull, B90 8AG.
IRM	0203 741 8042	01604 782620	01285 657328	01564 711008
	london@dsagroup.co.uk	northampton@dsagroup.co.uk	cheltenham@dsagroup.co.uk	birmingham@dsagroup.co.uk
		Our Privacy Notice can be viewed	by visiting www.dsagroup.co.uk/priva	cy-policy

CONTENTS

1. Intro	oduction	1
1.1	Purpose of Report	1
1.2	Documents Referred To	1
2. Exis	sting Site and Proposed Development	1
2.1	Site Location	1
2.2	Development Proposals	1
2.3	Ground Conditions	2
3. Floo	od Risk	2
3.1	River or Tidal Flooding	2
3.2	Surface Water Flooding	2
3.3	Reservoir Flooding	2
3.4	Groundwater Flooding	2
3.5	Sewer Flooding	3
4. Dra	inage	3
4.1	Existing Drainage	3
4.2	Proposed Drainage Considerations	3
4.3	Proposed Drainage	4
5. Dra	inage Maintenance	6
5.1	Responsibilities	6
5.2	Maintenance Regime	6
6. Con	nclusion	8
	Drawing 21/44116/50P1 – Surface Water Drainage Strategy	
Appendi		
	Risk Mapping	
	& Tidal Flood Risk	
	ce Water Flood Risk	
	Risk from Reservoirs	
Appendi		
•	f Westminster SuDS Proforma	
Appendi		
	ainage Calculations	
	field Runoff	
	evelopment Flow Rate to Sewer	
	development Flow Rate to Sewer	
Appendi		
	nd Investigation (Selected Pages)	
Appendi		
Draina	age CCTV Survey (Record Plan)	

1. INTRODUCTION

1.1 Purpose of Report

1.1.1 David Smith Associates have been instructed on behalf of Leconfield Property Group to assess flood risk and drainage for a proposed development at 34 Belgrave Mews South, London.

1.2 Documents Referred To

- 1.2.1 The following documents specific to the site have been referred to.
 - Leconfield Property Group suite of existing and proposed drawings.
 - Westminster City Council, 'Basement Development in Westminster' Supplementary Planning Document' (SPD), October 2014
 - London Plan, Policy 5.12 Flood Risk Management, and Policy 5.13 Sustainable Drainage
 - Ground & Water Ground Investigation Report No. GWPR5680/PS/November 2023
 - CCTV Survey Report, Express Solutions Group Ref LE16328. Dec 2023.
 - Gov.uk Long Term Flood Risk Maps

2. EXISTING SITE AND PROPOSED DEVELOPMENT

2.1 Site Location

2.1.1 The site is located at 34 Belgrave Mews South, London. SW1X 8BT The site comprises of an existing dwelling and external paved courtyard. The overall plan area is approximately 90m².

2.2 Development Proposals

2.2.1 It is proposed to construct a new basement beneath the existing dwelling and undertake refurbishment to the ground and upper floors. The external paved area shall be extended in to for additional floor area for the dwelling. Remaining external areas shall be modified to become courtyards at ground level and basement level.

2.3 Ground Conditions

- 2.3.1 Approx 1.3m depth of Made Ground underlain by Kempton Park Gravel Member to approx. 4.1m bgl, then underlain by bedrock of the London Clay Formation.
- 2.3.2 Groundwater was not encountered during initial investigations. The Made Ground and underlying strata may be susceptible to seasonal groundwater.

3. FLOOD RISK

3.1 River or Tidal Flooding

3.1.1 With reference to Gov.uk Long Term Flood Risk Map, and 'Basement Development in Westminster' SPD, the site is located in Flood Zone 1. This is an area that has a VERY LOW chance of flooding from rivers. This means that each year, this area has a chance of flooding of less than 1 in 1000 (0.1%).

3.2 Surface Water Flooding

- 3.2.1 With reference to 'Basement Development in Westminster' SPD, the site is located outside of any Surface Water Flood Risk Hotspot.
- 3.2.2 With reference to Gov.uk Long Term Flood Risk Map, the site is located in an area that has a VERY LOW chance of flooding from surface water. This means that each year, this area has a chance of flooding of less than 1 in 1000 (0.1%).

3.3 Reservoir Flooding

3.3.1 With reference to Gov.uk Long Term Flood Risk Map, the site is situated outside of the area at risk of flooding from reservoirs.

3.4 Groundwater Flooding

- 3.4.1 The proposed basement is situated in the Kempton Park Gravel Member underlain by bedrock of the London Clay Formation. There is a risk of a perched water table which could interact with the proposed basement.
- 3.4.2 The use of specialist construction materials and drainage systems shall mitigate this risk. These are described in more detail in the Structural Report.
- 3.4.3 With reference to 'The Lost Rivers of London', the property is located almost equidistant between the historic courses of the Westbourne River and Tyburn River. There is not considered to be any significant influence to the development from these watercourses.

3.5 Sewer Flooding

- 3.5.1 A Thames Water combined public sewer system is located under Belgrave Mews South. Proposed drainage systems from the property shall connect to the public sewer, as existing.
- 3.5.2 Outfalls from the property shall be fitted with one-way valves to prevent backwash from the public sewer if this is surcharged.
- 3.5.3 The existing combined drainage system within the property is proposed to be replaced with separate foul and surface water systems to reduce the risk of rainwater compromising sanitary appliances within the property.

4. DRAINAGE

4.1 Existing Drainage

4.1.1 Rainwater from the roofs, and wastewater from sanitary appliances, drain to combined systems within the property. These outfall to the Thames Water public sewer under Belgrave Mews South.

4.2 Proposed Drainage Considerations

- 4.2.1 The footprint of the existing buildings and external paved areas is approximately 90m².
- 4.2.2 The property is not located in an area prone to surface water flooding, as identified in 'Basement Development in Westminster' SPD.
- 4.2.3 The drainage hierarchy of London Plan Policy 5.13 is as follows:
 - 1. Store rainwater for later use

Viable to store some roof water in an above ground water butt, and 'rain garden' in ground floor courtyard (with overflow to main property drainage).

2. Use infiltration techniques, such as porous surfaces in non-clay areas

The available external courtyard space is relatively small (approx. 2.7m x 3.4m) and bounded by critical structures. The underlying strata is susceptible to groundwater. It is not considered appropriate to concentrate rainwater from the wider property curtilage to an infiltration system in this area, but a permeable surface with infiltration shall be used for the courtyard.

3. Attenuate rainwater in ponds or open water features for gradual release

Impractical due to space limitations

4. Attenuate rainwater by storing in tanks or sealed water features for gradual release

It is proposed to pump a percentage of rainwater which is conveyed via the basement. The pump shall be specified with a reduced flow rate, and the wet well sized to hold the volume of water held back in the 100 year storm event + 40% additional flow to allow for climate change.

5. Discharge rainwater direct to a watercourse

Impractical due to the distance to the nearest known watercourse.

6. Discharge rainwater to a surface water sewer/drain

Impractical due to the distance to the nearest surface water sewer/drain.

7. Discharge rainwater to the combined sewer.

Practical and reasonable solution, continuing the existing arrangement. Flow rate to be limited b the pump to offer a benefit to the sewer capacity.

4.3 Proposed Drainage

- 4.3.1 The part of the roof with frontage to the street measures approximately 24m² (27% of site area). It is proposed to maintain existing flows to the public sewer from this area as opportunities to control flows are limited or impractical.
- 4.3.2 The rear roofs, terraces and basement courtyard shall drain rainwater to the basement pump. This is then lifted to outfall to the public sewer at a flow rate limited to be less than existing.
- 4.3.3 Part of the rear roof area shall flow through a raised landscape planter, to slow the flow and provide irrigation to the planter. There is an opportunity to provide a water butt at this location if the homeowner finds this advantageous. The opportunities for a rain garden and water butt are not allowed for in the calculations to size the pump wet well, as a conservative approach.

- 4.3.4 The rear courtyard at ground level shall be constructed of permeable materials to allow rainwater falling on this area to infiltrate directly to the underlying strata in the same way as a vegetated area. This area accounts for 11m² (12% of site area). Soil infiltration properties shall be verified by testing prior to construction.
- 4.3.5 The formation level of the small courtyard area at basement level forms part of the structural works of the basement, with no opportunities for infiltration.
- 4.3.6 In summary, rainwater from 27% of the site area outfalls as existing, 12% shall now infiltrate, and the remaining 61% shall have a restricted outfall flow rate controlled by a pump.
- 4.3.7 In the new basement, groundwater shall be collected by a Delta Membrane system and directed to the surface water pump. Foul water shall have a separate pump.
- 4.3.8 The separate foul and surface water systems outfall and combine at the existing manholel chamber in the footway of Belgrave Mews South prior to their outfall to the public sewer. This chamber forms a junction/inspection point and shall be adapted to suit the construction of the basement and have one-way valves fitted.
- 4.3.9 The combined flows from the development then outfall to the Thames Water public sewers under Belgrave Mews South, as existing.
- 4.3.10 Any ceiling fixed drainage in subterranean areas shall be a sealed pipe system fixed in ceiling voids or beneath ceilings. This shall have appropriate fixings and access points to enable full inspection and maintenance.
- 4.3.11 The preliminary drainage strategy is indicated on drawing 23/54141/50P1 in the appendices.
- 4.3.12 With reference the SuDS Manual, CIRIA C753, Table 26.2, the pollution hazard for surface water from domestic roofs and garden areas is very low. Outfall by infiltration and to the combined public sewer reduce the risk of any contamination of watercourses.
- 4.3.13 Measures to re-use water to assist the maintenance of landscaping within the garden area can provide a benefit to biodiversity and amenity.

5. DRAINAGE MAINTENANCE

5.1 Responsibilities

5.1.1 Drainage serving the property shall be the responsibility of the property owner.

5.2 Maintenance Regime

- 5.2.1 6 monthly, when extreme rainfall is forecast, and after significant storm events
 - Clear leaves litter and debris from all areas of the site and from visible surface features of the drainage system. This shall include above ground roof gutters and downpipes, and channel drains (ACO or similar).
 - Inspect all manholes, sumps/outfalls of channel drains, roof gutters, and downpipes. Collect and dispose of any silt and debris present. Monitor the speed of silt and debris build up and increase frequency of maintenance if required.
 - Ensure correct operation of one-way valves. Repair or replace if required.
 - Ensure all access points to sealed drainage systems are accessible and all seals are intact.
 - Monitor the Rain Garden during heavy rain for any issues. Significant issues with water not draining away may require the planter to be dismantled for pipework to be checked and cleansed.

5.2.2 At 5-10 year intervals

- CCTV survey of piped drainage system on site, through to the outfall to the third party system off site. Removal of silt and debris as required. Replace or repair any areas of failure.
- 5.2.3 For pumps, rising mains and groundwater systems a maintenance contract should be entered into with a specialist maintenance contractor. The manufacturer of the units can make recommendations and advise on initial frequency of inspection and maintenance.
- 5.2.4 All manufacturers recommendations should be followed in the maintenance of these units.

5.2.5 Permeable Paving

12 weekly

For the first 12 months following regular use, additional 2-4mm quartzite/gritstone to BS EN 1097-2:1998 to be brushed into joints at 12 week intervals to accommodate the initial settlement of permeable block paving.

12 monthly, when extreme rainfall is forecast, and after significant storm events

Brush silt and organic matter from all joints with stiff brush and vacuum.

Additional 2-4mm quartzite/gritstone to BS EN 1097-2:1998 to be brushed into joints.

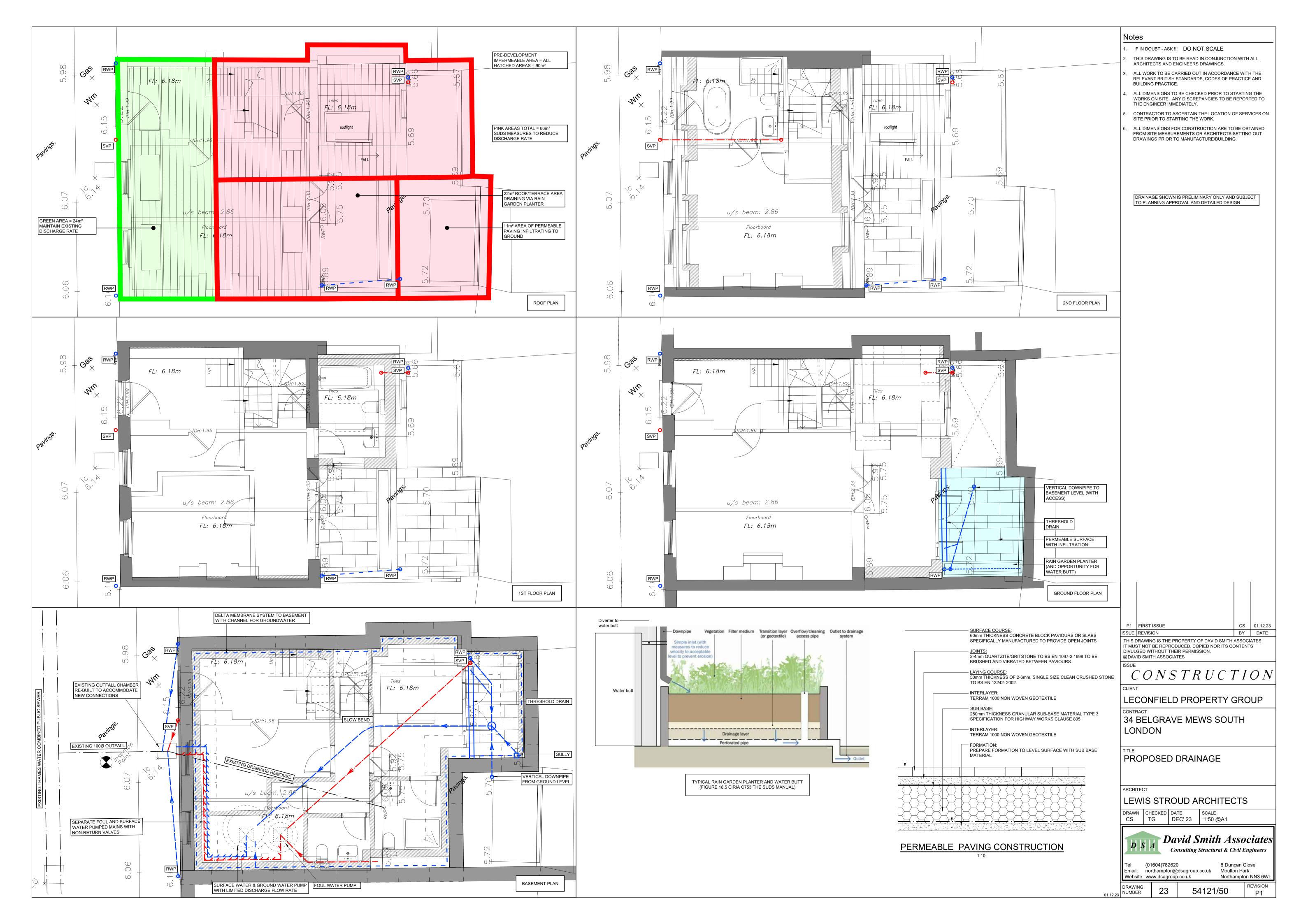
At 5 year intervals (or if drainage issues are observed)

Shallow trial holes to be carried out at a low point of the paving to assess silt and organic matter build up in the joints between paviours and the laying course.

If the silt build up is significant and forms a seal which prevents water flowing into the sub base layers easily, localised areas shall be taken up and the paviours relaid with new laying course and jointing grit.

At 20 year intervals

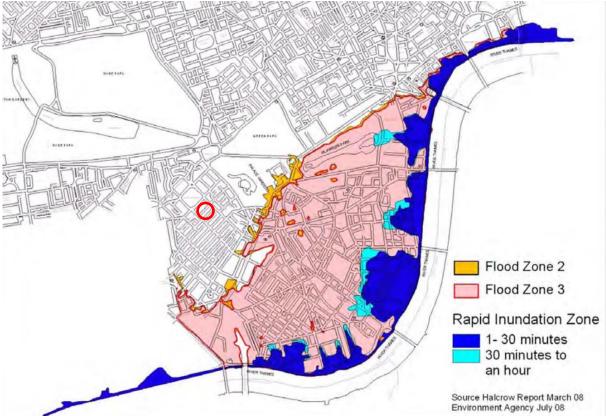
Deep trial holes to be carried out at a low point of the paving to assess silt and organic matter build up in the joints between paviours, the laying course, the sub base and the surfaces of the geotextiles.

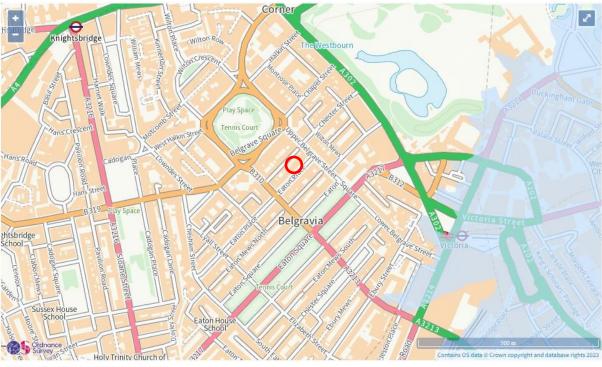

If the silt build up is significant and affects the ability of the system to satisfactorily hold and dispose of surface water, the affected parts shall be taken up and replaced.

6. <u>CONCLUSION</u>

- 6.1.1 Relevant local authority guidance has been used to assess flood risk and drainage aspects of the development.
- 6.1.2 The development is situated in an area with no significant risk of flooding from external sources.
- 6.1.3 Opportunities have been taken to drain rainwater from some areas of the site via infiltration to the Kempton Park Gravel Member.
- 6.1.4 The remaining areas shall continue to drain safely to nearby sewers as per the existing situation, except at reduced flow rates. A new, robust drainage system to modern design standards is proposed which is practical and reasonable for installation, operation, and maintenance. It is unlikely to develop significant operational issues and therefore adds to the sustainability of the development.
- 6.1.5 It is proposed to take the preliminary drainage strategy described in this report forward to detailed design and construction.

APPENDIX A

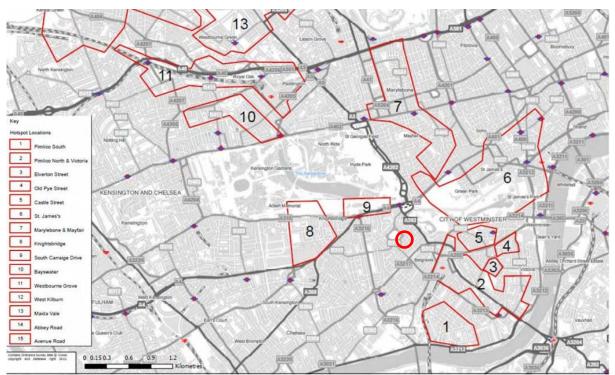

DSA Drawing 21/44116/50P1 – Surface Water Drainage Strategy


APPENDIX B

Flood Risk Mapping

River & Tidal Flood Risk

Source: Westminster City Council, 'Basement Development in Westminster' Supplementary Planning Document' (SPD), October 2014



Extent of flooding from rivers or the sea

● <u>High</u> ● <u>Medium</u> ● <u>Low</u> ● <u>Very low</u> ◆ Location you selected

Source: Gov.uk Long Term Flood Risk Map. Nov 2023

Surface Water Flood Risk

Source: Westminster City Council, 'Basement Development in Westminster' Supplementary Planning Document' (SPD), October 2014

Extent of flooding from surface water

● High ● Medium ● Low ○ Very Low ◆ Location you selected Source: Gov.uk Long Term Flood Risk Map. Nov 2023

Flood Risk from Reservoirs

Maximum extent of flooding from reservoirs:

🔵 when river levels are normal *(*) when there is also flooding from rivers 🔶 Location you selected

Source: Gov.uk Long Term Flood Risk Map. Nov 2023

APPENDIX C

City of Westminster SuDS Proforma

GREATER LONDON AUTHORITY

	Project / Site Name (including sub- catchment / stage / phase where appropriate)	34 BELGRAVE MEWS SOUTH		
	Address & post code	34 BELGRAVE MEWS SOUTH, LONDON SW1X 8BT		
	OS Grid ref. (Easting, Northing)	E 528407		
	OS GHUTEL (Easting, Northing)	N 179315		
tails	LPA reference (if applicable)			
1. Project & Site Details	Brief description of proposed work	PROPOSED EXTENSION AND REFURBISHMENT OF DWELLING, INCLUDING NEW BASEMENT		
	Total site Area	90 m ²		
	Total existing impervious area	90 m ²		
	Total proposed impervious area	79 m ²		
	Is the site in a surface water flood risk catchment (ref. local Surface Water Management Plan)?	NO		
	Existing drainage connection type and location	THAMES WATER COMBINED PUBLIC SEWER ON BELGRAVE MEWS SOUTH		
	Designer Name	BOB TURRELL		
	Designer Position	SENIOR ENGINEER		
	Designer Company	DAVID SMITH ASSOCIATES		

	2a. Infiltration Feasibility				
	Superficial geology classification	KEMPTON	N PARK GRAVEL MEMBER		
	Bedrock geology classification	ON CLAY FORM	1ATION		
	Site infiltration rate	5x10-6	m/s		
	Depth to groundwater level	VARIABL	E m belo	w ground level	
	Is infiltration feasible?		Partial		
	2b. Drainage Hierarchy				
ements			Feasible (Y/N)	Proposed (Y/N)	
ang	1 store rainwater for later use		Y	Y	
rge Arr	2 use infiltration techniques, such surfaces in non-clay areas	Y	Y		
2. Proposed Discharge Arrangements	3 attenuate rainwater in ponds or features for gradual release	open water	Ν	Ν	
ropose	4 attenuate rainwater by storing in sealed water features for gradual results.		Y	Y	
7. F	5 discharge rainwater direct to a w	atercourse	Ν	Ν	
	6 discharge rainwater to a surface sewer/drain	water	Ν	Ν	
	7 discharge rainwater to the comb	ined sewer.	Y	Y	
	2c. Proposed Discharge Details				
	Proposed discharge location	ON ii) RE-USE MBINED TW S			
	Has the owner/regulator of the discharge location been consulted?		NO		

GREATER LONDON AUTHORITY

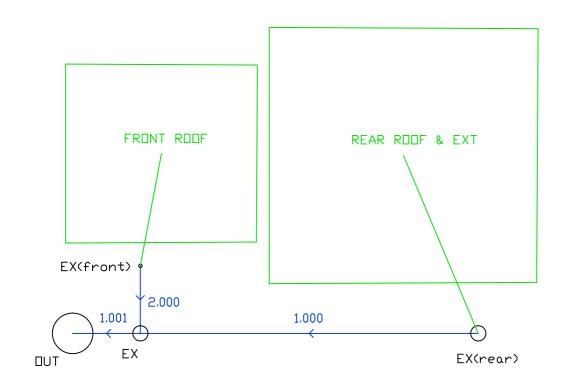
	3a. Discharge Rat	es & Required Ste	orage				
		Greenfield (GF) runoff rate (l/s)	Existing discharge rate (l/s)	Required storage for GF rate (m ³)	Proposed discharge rate (l/s)		
	Qbar	0	\geq	\ge	\ge		
	1 in 1	0	1.2		0.9		
	1 in 30	0	3		2		
	1 in 100	0	3.8		2.3		
	1 in 100 + CC	\geq	\geq		2.8		
	Climate change a	llowance used	40%				
3. Drainage Strategy	3b. Principal Metl Control	nod of Flow	PUMP				
te St	3c. Proposed SuDS Measures						
inag			Catchment	Plan area	Storage		
Dra			area (m²)	(m ²)	vol. (m ³)		
ъ.	Rainwater harves	ting	22	\geq	0.5		
	Infiltration system	าร	0	\geq	0		
	Green roofs		0	0	0		
	Blue roofs		0	0	0		
	Filter strips		0	0	0		
	Filter drains			0	0		
	Bioretention / tre		0	0	0		
	Pervious paveme	nts	11	0	1		
Swales			0	0	0		
	Basins/ponds		0		0		
	Attenuation tanks	5	33		1.5		
	Total		66	0	3		

	A. Discharge & Designers Churche	Deve la stien of device and			
	4a. Discharge & Drainage Strategy	Page/section of drainage report			
	Infiltration feasibility (2a) – geotechnical factual and interpretive reports, including infiltration results	SECTION 2.3			
	Drainage hierarchy (2b)	SECTION 4.2			
u d	Proposed discharge details (2c) – utility plans, correspondence / approval from owner/regulator of discharge location	SECTION 4.2			
ormatic	Discharge rates & storage (3a) – detailed hydrologic and hydraulic calculations	APPENDIX D			
4. Supporting information	Proposed SuDS measures & specifications (3b)	SECTION 4.3			
por	4b. Other Supporting Details	Page/section of drainage report			
dne	Detailed Development Layout	APPENDIX A			
4.	Detailed drainage design drawings, including exceedance flow routes	APPENDIX A			
	Detailed landscaping plans	BY OTHERS			
	Maintenance strategy	SECTION 5			
	Demonstration of how the proposed SuDS measures improve:				
	a) water quality of the runoff?	SECTION 4.3			
	b) biodiversity?	SECTION 4.3			
	c) amenity?	SECTION 4.3			

APPENDIX D

Infodrainage Calculations

Greenfield Runoff


Project: 34 BELGRAVE MEWS SOUTH	Date: 30/11/2023			
LONDON	Designed by:	Checked by:	Approved By:	1 🦲
23/54121	DSA			
Report Title:	David Smith Asso	ociates:		
	8 Duncan Cl	ose		
UK and Ireland Rural Runoff Calculator	Moulton Park	Industrial Estate		
	Northampton	. NN3 6WL		

ICP SUDS / IH 124

Details	
Method	ICP SUDS
Area (ha)	0.009
SAAR (mm)	600.0
Soil	0.3
Region	Region 6
Urban	0
Return Period (years)	0

Results					
Region	QBAR Rural (L/s)	QBAR Urban (L/s)	Q 1 (years) (L/s)	Q 30 (years) (L/s)	Q 100 (years) (L/s)
Region 6	0.0	0.0	0.0	0.0	0.0

Pre-development Flow Rate to Sewer

Project:			Date:							
34 BELGRAVE MEW	S SOUTH		30/11/2023							
LONDON			Designed by:	Cł	hecked by:	Approve	ed By:			
23/54121			DSA						~ 1	
Report Details:			David Smith Associates:							
Type: Junctions			8 Duncan Clos							
Storm Phase: Phase			Moulton Park I Northampton.							
Name	Juncti	on Type	Easting (m)		Northin	g (m)	Cover Leve	l (m)	Dep	th (m)
OUT	Manhole		528426805.	768	17932	9533.233		5.750		0.950
EX	Manhole		528426807.	768	17932	9533.233		5.750		0.850
EX(front)	Manhole		528426807.	768	17932	9535.233		5.750		0.750
EX(rear)	Manhole		528426817.	768	17932	9533.233		5.750		0.750
Name		Invert	: Level (m)		Chamber S	Shape	Diameter (m)			Manhole Locked
OUT			4.800	Circ	ular				1.200	
EX			4.900	Circ	cular				0.450	
EX(front)			5.000	Circ	ular				0.100	
EX(rear)			5.000	Circ	ular				0.450	
Inlets										
Junction		let Name	Incomin	ıg It	cem(s)	Bypass	Destination		apacity	
OUT	Inlet		1.001		(None)		No Re		No Restriction	
EX	Inlet		1.000 2.000			(None)		No Res	Restriction	
EX(front)	Inlet		FRONT ROOF		(None)	No Re:		trictio	on
EX(rear)	Inlet		REAR ROOF	& EX	т ((None)		No Res	trictio	on
Outlets										
Junction			let Name			Connect			let Typ	be
EX EX(front)		tlet tlet		_	001			e Dischar	2	
EX(IIONC) EX(rear)		tlet		_	000			ree Discharge ree Discharge		

Project: 34 BELGRAVE MEWS SC		Date: 30/11/2023						
LONDON		De	esigned by:	Checked by:	Approved	By:		
23/54121	D	SA						
Report Details:		David Smith Associates:						
Type: Connections			Duncan Close					
Storm Phase: Phase	M	loulton Park In	dustrial Estate	Ð				
	N	orthampton. N	IN3 6WL					
Name	From	То	Length (m)	Connection Type	Slope (1:x)	Manning n	's Colebrook- White Roughness (mm)	Diameter / Base Width (mm)
1.000	EX(rear)	EX	10.000	Pipe	100.00		0.6	100
2.000	EX(front)	EX	2.000	Pipe	20.00		0.6	100
1.001	EX	OUT	2.000	Pipe	20.00		0.6	100
Name	Upstream Cover Level (m)	Upstream Invert Level (m)	Downstream Cover Level (m)	Downstream Invert Level (m)	Velocity (m/s)			
1.000	5.750	5.000	5.750	4.900				
2.000	5.750	5.000	5.750	4.900				
1.001	5.750	4.900	5.750	4.800				

Project: 34 BELGRAVE MEWS SOUTH LONDON 23/54121				2023 I by: Chee					
Report Details: Type: Inflow S Storm Phase:			8 Dunc Moulto	^{hith Associates:} an Close n Park Industr mpton. NN3 6					
Inflow Label	Connected To	Flow (L/s)	Runoff Method	Area (ha)	Percentage Impervious (%)	urpan creep	Adjusted Percentage Impervious (%)	Area Analysed (ha)	
FRONT ROOF	EX(front)		Time of Concentratio n	0.003	3 10	0 0	100	0.003	
REAR ROOF & EXT	EX(rear)		Time of Concentratio n	0.006	5 10	0 0	100	0.006	
TOTAL		0.0		0.009	9			0.009	

Project: 34 BELGRAVE MEWS SOUTH	Date: 30/11/2023	30/11/2023					
LONDON	Designed by:	Checked by:	Approved By:				
23/54121	DSA						
Report Title:	David Smith Ass						
	8 Duncan Cl	ose					
Rainfall Analysis Criteria	Moulton Parl	k Industrial Estate					
-	Northamptor	n. NN3 6WL					

Runoff Type	Dynamic
Output Interval	5
(mins)	
Time Step	Default
Urban Creep	Apply Global Value
Urban Creep Global	0
Value (%)	0
Junction Flood Risk	300
Margin (mm)	500
Perform No Discharge	
Analysis	
Rainfall	
FSR	

Region	England and Wales
M5-60 (mm)	20.0
Ratio R	0.400
Summer	✓
Winter	✓

Return Period

	Return F	Period	(year	s)	I	ncrease	Rainfall	(%)	
				1.0					0
				30.0					0
				100.0					0
_									

Storm Durations

Duration (mins)	Run Time (mins)
15	30
30	60
60	120
120	240
180	360
240	480
360	720

Type: FSR

Project: 34 BELGRAVE MEWS SOUTH	Date: 30/11/2023			
LONDON	Designed by:	Checked by:	Approved By:	
23/54121	DSA			
Report Details:	David Smith Asso	ciates:		
Type: Junctions Summary	8 Duncan Clo	ose		
Storm Phase: Phase	Moulton Park	Industrial Estate		
	Northampton	. NN3 6WL		

FSR: 1 years: Increase Rainfall (%): +0: Critical Storm Per Item

Junction	Storm Event	Cover Level (m)	Inver t Level (m)	Max. Level (m)	Max. Depth (m)	Max. Inflow (L/s)	Max. Resident Volume (m³)	Max. Flooded Volume (m³)	Max. Outflow (L/s)	Total Discharge Volume (m³)	Status
OUT	FSR: 1 years: +0 %: 15 mins: Winter	5.750	4.800	4.820	0.020	1.2	0.000	0.000	1.2	0.579	ок
EX	FSR: 1 years: +0 %: 15 mins: Winter	5.750	4.900	4.921	0.021	1.2	0.003	0.000	1.2	0.579	ок
EX(front)	FSR: 1 years: +0 %: 15 mins: Winter	5.750	5.000	5.012	0.012	0.4	0.000	0.000	0.4	0.190	ок
EX(rear)	FSR: 1 years: +0 %: 15 mins: Winter	5.750	5.000	5.026	0.026	0.8	0.004	0.000	0.8	0.390	ок

Project: 34 BELGRAVE MEWS SOUTH	Date: 30/11/2023			
LONDON	Designed by:	Checked by:	Approved By:	
23/54121	DSA			
Report Details:	David Smith Asso	ciates:		
Type: Junctions Summary	8 Duncan Clo	ose		
Storm Phase: Phase	Moulton Park	Industrial Estate		
	Northampton	. NN3 6WL		

FSR: 30 years: Increase Rainfall (%): +0: Critical Storm Per Item

Junction	Storm Event	Cover Level (m)	Inver t Level (m)	Max. Level (m)	Max. Depth (m)	Max. Inflow (L/s)	Max. Resident Volume (m³)	Max. Flooded Volume (m³)	Max. Outflow (L/s)	Total Discharge Volume (m³)	Status
OUT	FSR: 30 years: +0 %: 15 mins: Winter	5.750	4.800	4.831	0.031	3.0	0.000	0.000	3.0	1.432	ок
EX	FSR: 30 years: +0 %: 15 mins: Winter	5.750	4.900	4.936	0.036	3.0	0.006	0.000	3.0	1.432	ок
EX(front)	FSR: 30 years: +0 %: 15 mins: Winter	5.750	5.000	5.019	0.019	1.0	0.000	0.000	1.0	0.478	ок
EX(rear)	FSR: 30 years: +0 %: 15 mins: Winter	5.750	5.000	5.042	0.042	2.1	0.007	0.000	2.0	0.956	ок

Project: 34 BELGRAVE MEWS SOUTH	Date: 30/11/2023			
LONDON	Designed by:	Checked by:	Approved By:	
23/54121	DSA			
Report Details:	David Smith Asso	ociates:		
Type: Junctions Summary	8 Duncan Clo	ose		
Storm Phase: Phase	Moulton Park	Industrial Estate		
	Northampton	. NN3 6WL		

FSR: 100 years: Increase Rainfall (%): +0: Critical Storm Per Item

Junction	Storm Event	Cover Level (m)	Inver t Level (m)	Max. Level (m)	Max. Depth (m)	Max. Inflow (L/s)	Max. Resident Volume (m³)	Max. Flooded Volume (m³)	Max. Outflow (L/s)	Total Discharge Volume (m³)	Status
OUT	FSR: 100 years: +0 %: 15 mins: Winter	5.750	4.800	4.836	0.036	3.8	0.000	0.000	3.8	1.857	ОК
EX	FSR: 100 years: +0 %: 15 mins: Winter	5.750	4.900	4.942	0.042	3.9	0.007	0.000	3.8	1.857	ок
EX(front)	FSR: 100 years: +0 %: 15 mins: Winter	5.750	5.000	5.022	0.022	1.3	0.000	0.000	1.3	0.619	ОК
EX(rear)	FSR: 100 years: +0 %: 15 mins: Winter	5.750	5.000	5.048	0.048	2.7	0.008	0.000	2.6	1.240	ок

Project: 34 BELGRAVE MEWS SOUTH	IEWS SOUTH 30/11/2023						
LONDON	Designed by:	Checked by:					
23/54121	DSA						
Report Details:	David Smith Asso	ciates:					
Type: Connections Summary	8 Duncan Clo	se					
Storm Phase: Phase	Moulton Park	Industrial Estate					
	Northampton.	NN3 6WL					

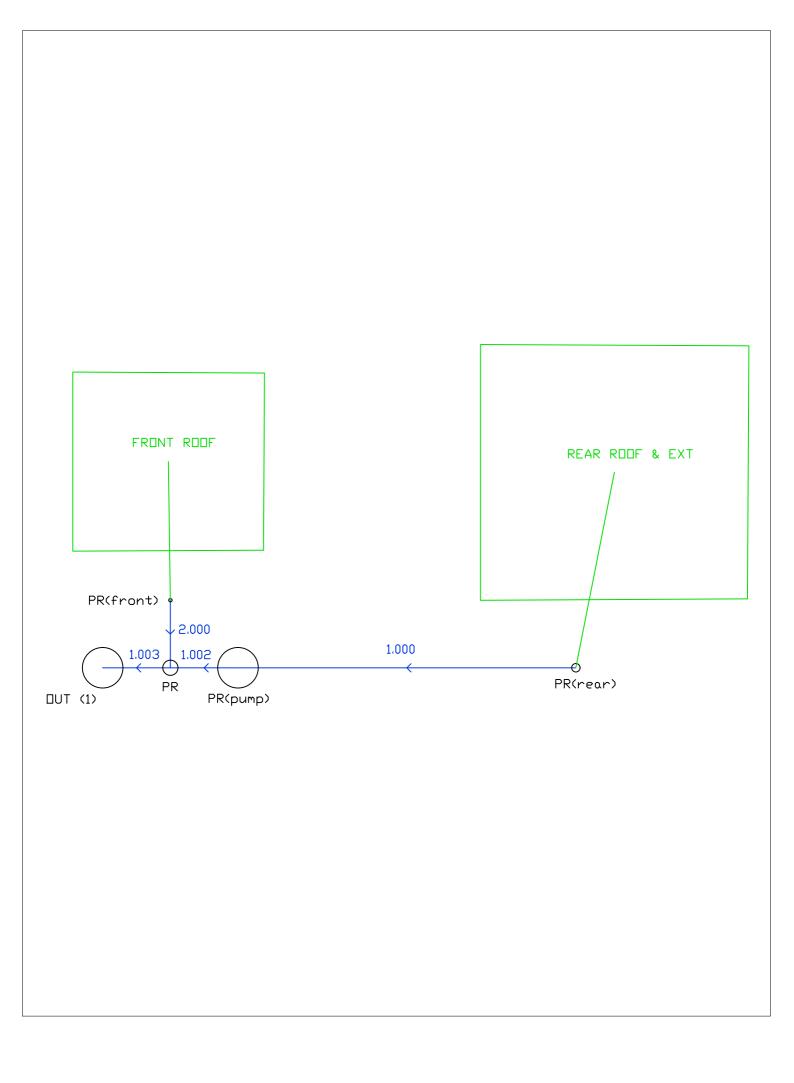
FSR: 1 years: Increase Rainfall (%): +0: Critical Storm Per Item

Connection	Storm Event	Connection Type	From	То	Upstream Cover Level (m)	Max. US Water Level (m)	Max. Flow Depth (m)	Discharge Volume (m³)	Velocit	Flow / Capacity	Max. Flow (L/s)	Status
1.000	FSR: 1 years: +0 %: 15 mins: Winter	Pipe	EX (rear)	EX	5.8	5.026	0.024	0.390	0.6	0.13	0.8	OK
2.000	FSR: 1 years: +0 %: 15 mins: Winter	Pipe	EX (front)	EX	5.8	5.012	0.017	0.190	0.5	0.03	0.4	ок
1.001	FSR: 1 years: +0 %: 15 mins: Winter	Pipe	EX	OUT	5.8	4.921	0.021	0.579	1.0	0.09	1.2	OK

Project: 34 BELGRAVE MEWS SOUTH	Date: 30/11/2023			
LONDON	Designed by:	Checked by:		
23/54121	DSA			
Report Details:	David Smith Asso	ciates:		
Type: Connections Summary	8 Duncan Clo	se		
Storm Phase: Phase	Moulton Park	Industrial Estate		
	Northampton.	NN3 6WL		

FSR: 30 years: Increase Rainfall (%): +0: Critical Storm Per Item

Connection	Storm Event	Connection Type	From	То	Upstream Cover Level (m)	Water	Max. Flow Depth (m)	Discharge Volume (m³)	Max. Velocit y (m/s)	Flow / Capacity	Max. Flow (L/s)	Status
1.000	FSR: 30 years: +0 %: 15 mins: Winter	Pipe	EX (rear)	EX	5.8	5.042	0.039	0.956	0.7	0.33	2.0	ок
2.000	FSR: 30 years: +0 %: 15 mins: Winter	Pipe	EX (front)	EX	5.8	5.019	0.027	0.478	0.6	0.07	1.0	ок
1.001	FSR: 30 years: +0 %: 15 mins: Winter	Pipe	EX	OUT	5.8	4.936	0.034	1.432	1.3	0.22	3.0	ок


Project: 34 BELGRAVE MEWS SOUTH	Date: 30/11/2023			
LONDON	Designed by:	Checked by:		
23/54121	DSA			
Report Details:	David Smith Asso	ciates:		
Type: Connections Summary	8 Duncan Clo	ose		
Storm Phase: Phase	Moulton Park	Industrial Estate		
	Northampton	. NN3 6WL		

FSR: 100 years: Increase Rainfall (%): +0: Critical Storm Per Item

Connection	Storm Event	Connection Type	From	То	Upstream Cover Level (m)	Max. US Water Level (m)	Max. Flow Depth (m)	Discharge Volume (m³)	Velocit	Flow / Capacity	Max. Flow (L/s)	Status
1.000	FSR: 100 years: +0 %: 15 mins: Winter	Pipe	EX (rear)	EX	5.8	5.048	0.045	1.240	0.8	0.43	2.6	ок
2.000	FSR: 100 years: +0 %: 15 mins: Winter	Pipe	EX (front)	EX	5.8	5.022	0.032	0.619	0.6	0.1	1.3	ок
1.001	FSR: 100 years: +0 %: 15 mins: Winter	Pipe	EX	OUT	5.8	4.942	0.039	1.857	1.4	0.28	3.8	OK

Post development Flow Rate to Sewer

34 BELGRAVE MEW	S SOUTH	Date: 30/11/2023								
LONDON 23/54121		Designed by: DSA	Checked by:	Approve	ed By:					
Report Details: Type: Junctions Storm Phase: Phase		David Smith Associa 8 Duncan Clos Moulton Park II	David Smith Associates: 8 Duncan Close Moulton Park Industrial Estate Northampton. NN3 6WL							
Name	Junction	Type Easting (m)	Northir	ng (m)	Cover Level (n	n) Dept	:h (m)			
PR(rear)	Manhole	528426819.		29543.291	5.	750	0.750			
PR(front)	Manhole	528426807.	768 17932	29545.291	5.	750	0.750			
PR	Manhole	528426807.		29543.291		750	1.600			
OUT (1)	Manhole	528426805.	768 17932	29543.291	5.	750	1.700			
PR (pump)	Manhole	528426809.	768 17932	29543.291	5.	750	1.500			
Name		Invert Level (m)	Chamber	Shape	Diamete	r (m)	Manhole Locked			
PR(rear)		5.000	Circular			0.250				
PR(front)		5.000	Circular			0.100				
PR		4.150	Circular			0.450				
OUT (1)		4.050	Circular			1.200				
PR(pump)		4.250 (Circular			1.200				
Inlets Junction	Inlet	Name Incomin	q Item(s)	Bypass	Destination	Capacity				
PR(rear)	Inlet		5 11		DCDCTHACTON		Type			
PR(front)	111200	REAR ROOF A	EXT	(None)	N					
	Inlet	REAR ROOF &	¥ EXT	(None)		o Restrictic	n			
	Inlet		¥ EXT	(None) (None) (None)	N		n n			
PR		FRONT ROOF	EXT	(None)	N	o Restrictic	n n			
	Inlet	FRONT ROOF	È EXT	(None)	N N N	o Restrictic o Restrictic o Restrictic	n n n n			
PR	Inlet Inlet (1)	FRONT ROOF 1.002 2.000		(None) (None) (None)	N N N N	o Restrictio o Restrictio o Restrictio o Restrictio	n n n n n			
PR OUT (1)	Inlet Inlet (1) Inlet	FRONT ROOF 1.002 2.000 1.003		(None) (None) (None) (None)	N N N N	o Restrictic o Restrictic o Restrictic o Restrictic o Restrictic	n n n n n			
PR OUT (1) PR (pump)	Inlet Inlet (1) Inlet Inlet	FRONT ROOF 1.002 2.000 1.003 1.000 Outlet Name		(None) (None) (None) (None)	N N N N	o Restrictic o Restrictic o Restrictic o Restrictic o Restrictic	n n n n n			
PR OUT (1) PR (pump) Outlets Junction PR (rear) PR (front)	Inlet Inlet (1) Inlet Inlet Outlet Outlet	FRONT ROOF 1.002 2.000 1.003 1.000 Outlet Name	Outgoin 1.000 2.000	(None) (None) (None) (None) (None)	on Free Di	o Restrictic o Restrictic o Restrictic o Restrictic o Restrictic o Restrictic o Restrictic o Utlet Typ scharge scharge	n n n n n			
PR OUT (1) PR (pump) Outlets Junction PR (rear)	Inlet Inlet (1) Inlet Inlet Outlet Outlet Outlet	FRONT ROOF 1.002 2.000 1.003 1.000	Outgoin 1.000 2.000 1.003	(None) (None) (None) (None) (None)	on Free Di Free Di Free Di	o Restrictic o Restrictic o Restrictic o Restrictic o Restrictic o Restrictic o Restrictic o Utlet Typ scharge	n n n n n			
PR OUT (1) PR (pump) Outlets Junction PR (rear) PR (front)	Inlet Inlet (1) Inlet Inlet Outlet Outlet Outlet Outlet	FRONT ROOF 1.002 2.000 1.003 1.000	Outgoin 1.000 2.000	(None) (None) (None) (None) (None) g Connecti	on Free Di	o Restrictic o Restrictic o Restrictic o Restrictic o Restrictic o Restrictic o Restrictic o Utlet Typ scharge scharge	n n n n n			

	Project: 34 BELGRAVE MEWS SOUTH LONDON				Date: 30/11/2023 Designed by: Checked by: Approved By:							
23/54121			SA	Checked by.	Jy.							
Report Details:			David Smith Associates:									
Type: Connections		8	Duncan Close	9								
Storm Phase: Phase		M	oulton Park In	dustrial Estate	е							
		N	orthampton. N	IN3 6WL								
Name	From	То	Length (m)	Connection Type	Slope (1:x)	Manning's n	Colebrook- White Roughness (mm)	Diameter / Base Width (mm)				
1.000	PR(rear)	PR(pump)	10.000	Pipe	13.333		0.6	100				
1.002	PR(pump)	PR	2.000	Pipe	20.000		0.6	100				
2.000	PR(front)	PR	2.000	Pipe	2.353		0.6	100				
1.003	PR	OUT (1)	2.000	Pipe	20.000		0.6	100				
Name	Upstream Cover Level (m)	Upstream Invert Level (m)	Downstream Cover Level (m)	Downstream Invert Level (m)	Flow Restrictio n (L/s)	Velocity (m/s)						
1.000	5.750	5.000	5.750	4.250								
1.002	5.750	4.250	5.750	4.150	1.0]					
2.000	5.750	5.000	5.750	4.150								
1.003	5.750	4.150	5.750	4.050			1					

				2023 I by: Che hith Associates: an Close n Park Industr				
Inflow Label	Connected To	Flow (L/s)	Runoff Method	mpton. NN3 6 Area (ha)	WL Percentage Impervious (%)	Urban Creep (%)	Adjusted Percentage Impervious (%)	Area Analysed (ha)
FRONT ROOF	PR(front)		Time of Concentratio n	0.003	3 10	0 0	100	0.003
REAR ROOF & EXT	PR(rear)		Time of Concentratio n	0.000	5 10	0 0	100	0.006
TOTAL		0.0		0.009)			0.009

Project: 34 BELGRAVE MEWS SOUTH	Date: 30/11/2023						
LONDON	Designed by:	Checked by:					
23/54121	DSA						
Report Title:	David Smith Asso	ociates:	·				
	8 Duncan Cl	8 Duncan Close					
Rainfall Analysis Criteria	Moulton Park	Moulton Park Industrial Estate					
-	Northampton	. NN3 6WL					

Runoff Type	Dynamic
Output Interval (mins)	5
Time Step	Shortest
Urban Creep	Apply Global Value
Urban Creep Global Value (%)	0
Junction Flood Risk Margin (mm)	300
Perform No Discharge Analysis	
Rainfall	
FSR	

Region	England and Wales
M5-60 (mm)	20.0
Ratio R	0.400
Summer	✓
Winter	✓

Return Period

Return Perio	od (years)	Increase	Rainfall	(%)	
	1.0				0
	30.0				0
	100.0				40

Storm Durations

Duration (mins)	Run Time (mins)
15	30
30	60
60	120
120	240
180	360
240	480
360	720

Type: FSR

Project: 34 BELGRAVE MEWS SOUTH	Date: 30/11/2023			
LONDON	Designed by:	Checked by:		
23/54121	DSA			
Report Details:	David Smith Asso	ciates:		
Type: Junctions Summary	8 Duncan Clo	ose		
Storm Phase: Phase	Moulton Park	Industrial Estate		
	Northampton	. NN3 6WL		

FSR: 1 years: Increase Rainfall (%): +0: Critical Storm Per Item

Junction	Storm Event	Cover Level (m)	Inver t Level (m)	Max. Level (m)	Max. Depth (m)	Max. Inflow (L/s)	Max. Resident Volume (m³)	Max. Flooded Volume (m³)	Max. Outflow (L/s)	Total Discharge Volume (m³)	Status
PR(rear)	FSR: 1 years: +0 %: 15 mins: Winter	5.750	5.000	5.015	0.015	0.8	0.001	0.000	0.8	0.392	ОК
PR(front)	FSR: 1 years: +0 %: 15 mins: Winter	5.750	5.000	5.007	0.007	0.4	0.000	0.000	0.4	0.192	ок
PR	FSR: 1 years: +0 %: 15 mins: Winter	5.750	4.150	4.169	0.019	0.9	0.003	0.000	0.9	0.581	ОК
OUT (1)	FSR: 1 years: +0 %: 15 mins: Winter	5.750	4.050	4.067	0.017	0.9	0.000	0.000	0.9	0.581	ок
PR(pump)	FSR: 1 years: +0 %: 15 mins: Winter	5.750	4.250	4.303	0.053	0.8	0.060	0.000	0.5	0.391	ок

Project: 34 BELGRAVE MEWS SOUTH	Date: 30/11/2023			
LONDON	Designed by:	Checked by:	Approved By:	
23/54121	DSA			
Report Details:	David Smith Asso	ciates:		
Type: Junctions Summary	8 Duncan Clo	se		
Storm Phase: Phase	Moulton Park	Industrial Estate		
	Northampton	. NN3 6WL		

FSR: 30 years: Increase Rainfall (%): +0: Critical Storm Per Item

Junction	Storm Event	Cover Level (m)	Inver t Level (m)	Max. Level (m)	Max. Depth (m)	Max. Inflow (L/s)	Max. Resident Volume (m³)	Max. Flooded Volume (m³)	Max. Outflow (L/s)	Total Discharge Volume (m³)	Status
PR(rear)	FSR: 30 years: +0 %: 15 mins: Winter	5.750	5.000	5.023	0.023	2.1	0.001	0.000	2.0	0.959	ОК
PR(front)	FSR: 30 years: +0 %: 15 mins: Winter	5.750	5.000	5.011	0.011	1.0	0.000	0.000	1.0	0.480	ок
PR	FSR: 30 years: +0 %: 15 mins: Winter	5.750	4.150	4.179	0.029	2.0	0.005	0.000	2.0	1.435	ок
OUT (1)	FSR: 30 years: +0 %: 15 mins: Winter	5.750	4.050	4.076	0.026	2.0	0.000	0.000	2.0	1.435	ок
PR(pump)	FSR: 30 years: +0 %: 15 mins: Winter	5.750	4.250	4.486	0.236	2.0	0.267	0.000	1.0	0.959	Surcharged

Project: 34 BELGRAVE MEWS SOUTH	Date: 30/11/2023			
LONDON	Designed by:	Checked by:	Approved By:	1 🦲
23/54121	DSA			
Report Details:	David Smith Asso	ciates:		
Type: Junctions Summary	8 Duncan Clo	ose		
Storm Phase: Phase	Moulton Park	Industrial Estate		
	Northampton	. NN3 6WL		

FSR: 100 years: Increase Rainfall (%): +40: Critical Storm Per Item

Junction	Storm Event	Cover Level (m)	Inver t Level (m)	Max. Level (m)	Max. Depth (m)	Max. Inflow (L/s)	Max. Resident Volume (m³)	Max. Flooded Volume (m³)	Max. Outflow (L/s)	Total Discharge Volume (m³)	Status
PR(rear)	FSR: 100 years: +40 %: 30 mins: Winter	5.750	5.000	5.032	0.032	2.5	0.002	0.000	2.5	2.285	ОК
PR(front)	FSR: 100 years: +40 %: 15 mins: Winter	5.750	5.000	5.014	0.014	1.9	0.000	0.000	1.9	0.873	ок
PR	FSR: 100 years: +40 %: 15 mins: Winter	5.750	4.150	4.185	0.035	2.9	0.006	0.000	2.8	2.374	ок
OUT (1)	FSR: 100 years: +40 %: 15 mins: Winter	5.750	4.050	4.081	0.031	2.8	0.000	0.000	2.8	2.374	ок
PR(pump)	FSR: 100 years: +40 %: 30 mins: Winter	5.750	4.250	5.028	0.778	2.5	0.880	0.000	1.0	2.288	Surcharged

Project: 34 BELGRAVE MEWS SOUTH	Date: 30/11/2023			
LONDON	Designed by:	Checked by:	Approved By:	
23/54121	DSA			
Report Details:	David Smith Asso	ciates:		
Type: Connections Summary	8 Duncan Clo	ose		
Storm Phase: Phase	Moulton Park	Industrial Estate		
	Northampton	. NN3 6WL		

FSR: 1 years: Increase Rainfall (%): +0: Critical Storm Per Item

Connection	Storm Event	Connection Type	From	То	Upstream Cover Level (m)	Max. US Water Level (m)	Max. Flow Depth (m)	Discharge Volume (m³)	Max. Velocit y (m/s)	Flow / Capacity	Max. Flow (L/s)	Status
1.000	FSR: 1 years: +0 %: 15 mins: Winter	Pipe	PR (rear)	PR(pump)	5.8	5.015	0.034	0.392	0.5	0.05	0.8	OK
1.002	FSR: 1 years: +0 %: 15 mins: Winter	Pipe	PR (pump)	PR	5.8	4.303	0.016	0.391	0.0	0.04	0.5	OK
2.000	FSR: 1 years: +0 %: 15 mins: Winter	Pipe	PR (front)	PR	5.8	5.007	0.013	0.192	0.7	0.01	0.4	OK
1.003	FSR: 1 years: +0 %: 15 mins: Winter	Pipe	PR	OUT (1)	5.8	4.169	0.018	0.581	0.9	0.07	0.9	ок

Project: 34 BELGRAVE MEWS SOUTH	Date: 30/11/2023			
LONDON	Designed by:	Checked by:	Approved By:	
23/54121	DSA			
Report Details:	David Smith Asso	ciates:		
Type: Connections Summary	8 Duncan Clo	ose		
Storm Phase: Phase	Moulton Park	Industrial Estate		
	Northampton	. NN3 6WL		

FSR: 30 years: Increase Rainfall (%): +0: Critical Storm Per Item

Connection	Storm Event	Connection Type	From	То	Upstream Cover Level (m)	Water	Max. Flow Depth (m)	Discharge Volume (m³)	Max. Velocit y (m/s)	Flow / Capacity	Max. Flow (L/s)	Status
1.000	FSR: 30 years: +0 %: 15 mins: Winter	Pipe	PR (rear)	PR(pump)	5.8	5.023	0.100	0.959	0.5	0.12	2.0	OK
1.002	FSR: 30 years: +0 %: 15 mins: Summer	Pipe	PR (pump)	PR	5.8	4.437	0.022	0.854	0.0	0.07	1.0	Surcharged
2.000	FSR: 30 years: +0 %: 15 mins: Winter	Pipe	PR (front)	PR	5.8	5.011	0.020	0.480	0.9	0.03	1.0	OK
1.003	FSR: 30 years: +0 %: 15 mins: Winter	Pipe	PR	OUT (1)	5.8	4.179	0.027	1.435	1.2	0.15	2.0	ок

Project: 34 BELGRAVE MEWS SOUTH	Date: 30/11/2023			
LONDON	Designed by:	Checked by:	Approved By:	1
23/54121	DSA			
Report Details:	David Smith Asso	ciates:		
Type: Connections Summary	8 Duncan Clo	se		
Storm Phase: Phase	Moulton Park	Industrial Estate		
	Northampton	NN3 6WL		

FSR: 100 years: Increase Rainfall (%): +40: Critical Storm Per Item

Connection	Storm Event	Connection Type	From	То	Upstream Cover Level (m)	Max. US Water Level (m)	Max. Flow Depth (m)	Discharge Volume (m³)	Max. Velocit y (m/s)	Flow / Capacity	Max. Flow (L/s)	Status
1.000	FSR: 100 years: +40 %: 15 mins: Winter	Pipe	PR (rear)	PR(pump)	5.8	5.032	0.100	1.741	0.5	0.22	3.7	OK
1.002	FSR: 100 years: +40 %: 15 mins: Summer	Pipe	PR (pump)	PR	5.8	4.913	0.022	1.473	0.0	0.07	1.0	Surcharged
2.000	FSR: 100 years: +40 %: 15 mins: Winter	Pipe	PR (front)	PR	5.8	5.014	0.025	0.873	1.2	0.05	1.9	OK
1.003	FSR: 100 years: +40 %: 15 mins: Winter	Pipe	PR	OUT (1)	5.8	4.185	0.033	2.374	1.3	0.21	2.8	ок

<u>APPENDIX E</u>

Ground Investigation (Selected Pages)

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

	PRELIMINARY SUMMARY					
CLIENT	Leconfield Property Group					
SITE ADDRESS	34 Belgrave Mews South London SW1X 8BT					
REPORT REFERENCE	GWPR5680/PS/November 2023					
	Conditions and limitations of this preliminary summary c	an be viewed w	vithin Appendi	x A.		
ENGINEER	Aubyn Shortland, Ground and Water Limited					
INVESTIGATION	Site works were undertaken between the $7^{th} - 8^{th}$ Nover	mber 2023 and	comprised the	e drilling of 1No		
LOCATIONS AND	modular windowless sampler trial hole (WS01) to a dept		•	•		
SCOPE OF WORKS	, , .	•	•	•		
SCOPE OF WORKS	was conducted at 1.00m intervals. A super heavy dynamic probe (DP01) was then undertaken through the base to a final depth of 10.00m bgl. A groundwater monitoring well was installed within WS01 to a					
	the base to a final depth of 10.00m bgl. A groundwater monitoring well was installed within WS01 to a depth of 4.50m bgl. Site works also included the excavation of 4No. trial pits (TP/FE01 – TP/FE02 and					
	TP01 – TP02) to depths of between $0.80m - 1.40m$ bgl.					
	1901 - 1902) to depths of between 0.80m - 1.40m bg.					
	A trial hale location plan is provided in Figure 1. found					
	A trial hole location plan is provided in Figure 1, foundation	ation exposure	diagrams are o	displayed within		
	Figure 2 – Figure 5.					
	A selection of soil samples was taken for laboratory		•	• •		
	completion of the site works all trial holes and/or trial p	its were backfill	led and made	good/reinstated		
	in relation to the surrounding area.					
GROUND CONDITIONS	A summary of the ground conditions encountered within	all trial holes c	an be viewed l	below. Trial hole		
GROUND CONDITIONS	A summary of the ground conditions encountered within logs can be viewed within Appendix B.	all trial holes c	an be viewed l	below. Trial hole		
	logs can be viewed within Appendix B.			below. Trial hole		
		/FE01 – TP/FE02 -	&TP01 – TP02)			
	logs can be viewed within Appendix B.	/FE01 – TP/FE02 - Top Depth	&TP01 – TP02) Base Depth	Thickness		
	logs can be viewed within Appendix B. Summary of Strata Encountered (BH01; TP/ Strata	/FE01 – TP/FE02 -	&TP01 – TP02)			
	logs can be viewed within Appendix B. Summary of Strata Encountered (BH01; TP/ Strata MADE GROUND: Pale grey very gravelly fine to coarse	/FE01 – TP/FE02 - Top Depth (m bgl)	&TP01 – TP02) Base Depth (m bgl)	Thickness (m)		
	logs can be viewed within Appendix B. Summary of Strata Encountered (BH01; TP/ Strata MADE GROUND: Pale grey very gravelly fine to coarse SAND. Gravel is fine to coarse angular to sub-rounded flint	/FE01 – TP/FE02 - Top Depth	&TP01 – TP02) Base Depth	Thickness		
	logs can be viewed within Appendix B. Summary of Strata Encountered (BH01; TP/ Strata MADE GROUND: Pale grey very gravelly fine to coarse SAND. Gravel is fine to coarse angular to sub-rounded flint (30% - 70%), concrete (20% - 60%) and brick (10%).	/FE01 – TP/FE02 - Top Depth (m bgl)	&TP01 – TP02) Base Depth (m bgl)	Thickness (m)		
	logs can be viewed within Appendix B. Summary of Strata Encountered (BH01; TP/ Strata MADE GROUND: Pale grey very gravelly fine to coarse SAND. Gravel is fine to coarse angular to sub-rounded flint	/FE01 – TP/FE02 - Top Depth (m bgl)	&TP01 – TP02) Base Depth (m bgl)	Thickness (m)		
	logs can be viewed within Appendix B. Summary of Strata Encountered (BH01; TP/ Strata MADE GROUND: Pale grey very gravelly fine to coarse SAND. Gravel is fine to coarse angular to sub-rounded flint (30% - 70%), concrete (20% - 60%) and brick (10%). MADE GROUND: Orangish brown very gravelly fine to	(FE01 – TP/FE02 (Top Depth (m bgl) GL	&TP01 – TP02) Base Depth (m bgl) 0.30	Thickness (m) 0.30		
	logs can be viewed within Appendix B. Summary of Strata Encountered (BH01; TP/ Strata MADE GROUND: Pale grey very gravelly fine to coarse SAND. Gravel is fine to coarse angular to sub-rounded flint (30% - 70%), concrete (20% - 60%) and brick (10%). MADE GROUND: Orangish brown very gravelly fine to coarse SAND. Gravel is fine to coarse angular to subrounded	(FE01 – TP/FE02 (Top Depth (m bgl) GL	&TP01 – TP02) Base Depth (m bgl) 0.30	Thickness (m) 0.30		
	logs can be viewed within Appendix B. Summary of Strata Encountered (BH01; TP/ Strata MADE GROUND: Pale grey very gravelly fine to coarse SAND. Gravel is fine to coarse angular to sub-rounded flint (30% - 70%), concrete (20% - 60%) and brick (10%). MADE GROUND: Orangish brown very gravelly fine to coarse SAND. Gravel is fine to coarse angular to subrounded flint (50%) and concrete (50%).	(FE01 – TP/FE02 Top Depth (m bgl) GL GL	&TP01 – TP02) Base Depth (m bgl) 0.30 0.90	Thickness (m) 0.30 0.90		
	logs can be viewed within Appendix B. Summary of Strata Encountered (BH01; TP/ Strata MADE GROUND: Pale grey very gravelly fine to coarse SAND. Gravel is fine to coarse angular to sub-rounded flint (30% - 70%), concrete (20% - 60%) and brick (10%). MADE GROUND: Orangish brown very gravelly fine to coarse SAND. Gravel is fine to coarse angular to subrounded flint (50%) and concrete (50%). MADE GROUND: Dark brown gravelly very sandy CLAY. Gravel is fine to coarse sub-angular to subrounded. Sand is fine to coarse flint (50% - 60%), concrete (30%), brick (20% -	(FE01 – TP/FE02 (Top Depth (m bgl) GL	&TP01 – TP02) Base Depth (m bgl) 0.30	Thickness (m) 0.30		
	logs can be viewed within Appendix B. Summary of Strata Encountered (BH01; TP/ Strata MADE GROUND: Pale grey very gravelly fine to coarse SAND. Gravel is fine to coarse angular to sub-rounded flint (30% - 70%), concrete (20% - 60%) and brick (10%). MADE GROUND: Orangish brown very gravelly fine to coarse SAND. Gravel is fine to coarse angular to subrounded flint (50%) and concrete (50%). MADE GROUND: Dark brown gravelly very sandy CLAY. Gravel is fine to coarse sub-angular to subrounded. Sand is fine to coarse flint (50% - 60%), concrete (30%), brick (20% - 30%) and calcareous material (10%).	(FE01 – TP/FE02 Top Depth (m bgl) GL GL	&TP01 – TP02) Base Depth (m bgl) 0.30 0.90	Thickness (m) 0.30 0.90		
	logs can be viewed within Appendix B. Summary of Strata Encountered (BH01; TP/ Strata MADE GROUND: Pale grey very gravelly fine to coarse SAND. Gravel is fine to coarse angular to sub-rounded flint (30% - 70%), concrete (20% - 60%) and brick (10%). MADE GROUND: Orangish brown very gravelly fine to coarse SAND. Gravel is fine to coarse angular to subrounded flint (50%) and concrete (50%). MADE GROUND: Dark brown gravelly very sandy CLAY. Gravel is fine to coarse sub-angular to subrounded. Sand is fine to coarse flint (50% - 60%), concrete (30%), brick (20% - 30%) and calcareous material (10%). MADE GROUND: Dark reddish brown sandy fine to coarse	(FE01 – TP/FE02 (Top Depth (m bgl) GL GL 0.30	&TP01 – TP02) Base Depth (m bgl) 0.30 0.90 0.70	Thickness (m) 0.30 0.90 0.40		
	logs can be viewed within Appendix B. Summary of Strata Encountered (BH01; TP/ Strata MADE GROUND: Pale grey very gravelly fine to coarse SAND. Gravel is fine to coarse angular to sub-rounded flint (30% - 70%), concrete (20% - 60%) and brick (10%). MADE GROUND: Orangish brown very gravelly fine to coarse SAND. Gravel is fine to coarse angular to subrounded flint (50%) and concrete (50%). MADE GROUND: Dark brown gravelly very sandy CLAY. Gravel is fine to coarse sub-angular to subrounded. Sand is fine to coarse flint (50% - 60%), concrete (30%), brick (20% - 30%) and calcareous material (10%). MADE GROUND: Dark reddish brown sandy fine to coarse sub-rounded GRAVEL of brick (100%). Sand is fine to coarse.	(FE01 – TP/FE02 Top Depth (m bgl) GL GL	&TP01 – TP02) Base Depth (m bgl) 0.30 0.90	Thickness (m) 0.30 0.90		
	logs can be viewed within Appendix B. Summary of Strata Encountered (BH01; TP/ Strata MADE GROUND: Pale grey very gravelly fine to coarse SAND. Gravel is fine to coarse angular to sub-rounded flint (30% - 70%), concrete (20% - 60%) and brick (10%). MADE GROUND: Orangish brown very gravelly fine to coarse SAND. Gravel is fine to coarse angular to subrounded flint (50%) and concrete (50%). MADE GROUND: Dark brown gravelly very sandy CLAY. Gravel is fine to coarse sub-angular to subrounded. Sand is fine to coarse flint (50% - 60%), concrete (30%), brick (20% - 30%) and calcareous material (10%). MADE GROUND: Dark reddish brown sandy fine to coarse sub-rounded GRAVEL of brick (100%). Sand is fine to coarse. KEMPTON PARK GRAVEL MEMBER: Dark orangish brown	(FE01 – TP/FE02 - Top Depth (m bgl) GL GL 0.30	&TP01 – TP02) Base Depth (m bgl) 0.30 0.90 0.70	Thickness (m) 0.30 0.90 0.40		
	logs can be viewed within Appendix B. Summary of Strata Encountered (BH01; TP/ Strata MADE GROUND: Pale grey very gravelly fine to coarse SAND. Gravel is fine to coarse angular to sub-rounded flint (30% - 70%), concrete (20% - 60%) and brick (10%). MADE GROUND: Orangish brown very gravelly fine to coarse SAND. Gravel is fine to coarse angular to subrounded flint (50%) and concrete (50%). MADE GROUND: Dark brown gravelly very sandy CLAY. Gravel is fine to coarse sub-angular to subrounded. Sand is fine to coarse flint (50% - 60%), concrete (30%), brick (20% - 30%) and calcareous material (10%). MADE GROUND: Dark reddish brown sandy fine to coarse sub-rounded GRAVEL of brick (100%). Sand is fine to coarse. KEMPTON PARK GRAVEL MEMBER: Dark orangish brown sandy gravelly CLAY. Sand is fine to coarse. Gravel is fine to	(FE01 – TP/FE02 (Top Depth (m bgl) GL GL 0.30	Base Depth (m bgl) 0.30 0.90 0.70	Thickness (m) 0.30 0.90 0.40		
	logs can be viewed within Appendix B. Summary of Strata Encountered (BH01; TP/ Strata MADE GROUND: Pale grey very gravelly fine to coarse SAND. Gravel is fine to coarse angular to sub-rounded flint (30% - 70%), concrete (20% - 60%) and brick (10%). MADE GROUND: Orangish brown very gravelly fine to coarse SAND. Gravel is fine to coarse angular to subrounded flint (50%) and concrete (50%). MADE GROUND: Dark brown gravelly very sandy CLAY. Gravel is fine to coarse sub-angular to subrounded. Sand is fine to coarse flint (50% - 60%), concrete (30%), brick (20% - 30%) and calcareous material (10%). MADE GROUND: Dark reddish brown sandy fine to coarse sub-rounded GRAVEL of brick (100%). Sand is fine to coarse. KEMPTON PARK GRAVEL MEMBER: Dark orangish brown sandy gravelly CLAY. Sand is fine to coarse. Gravel is fine to coarse sub-angular to sub rounded of flint.	(FE01 – TP/FE02 - Top Depth (m bgl) GL GL 0.30	& TP01 - TP02) Base Depth (m bgl) 0.30 0.90 0.70 0.70 >0.80 -	Thickness (m) 0.30 0.90 0.40		
	logs can be viewed within Appendix B. Summary of Strata Encountered (BH01; TP/ Strata MADE GROUND: Pale grey very gravelly fine to coarse SAND. Gravel is fine to coarse angular to sub-rounded flint (30% - 70%), concrete (20% - 60%) and brick (10%). MADE GROUND: Orangish brown very gravelly fine to coarse SAND. Gravel is fine to coarse angular to subrounded flint (50%) and concrete (50%). MADE GROUND: Dark brown gravelly very sandy CLAY. Gravel is fine to coarse sub-angular to subrounded. Sand is fine to coarse flint (50% - 60%), concrete (30%), brick (20% - 30%) and calcareous material (10%). MADE GROUND: Dark reddish brown sandy fine to coarse sub-rounded GRAVEL of brick (100%). Sand is fine to coarse. KEMPTON PARK GRAVEL MEMBER: Dark orangish brown sandy gravelly CLAY. Sand is fine to coarse. Gravel is fine to coarse sub-angular to sub rounded of flint. KEMPTON PARK GRAVEL MEMBER: Dark orangish brown	(FE01 – TP/FE02 - Top Depth (m bgl) GL GL 0.30	& TP01 - TP02) Base Depth (m bgl) 0.30 0.90 0.70 0.70 >0.80 -	Thickness (m) 0.30 0.90 0.40		
	logs can be viewed within Appendix B. Summary of Strata Encountered (BH01; TP/ Strata MADE GROUND: Pale grey very gravelly fine to coarse SAND. Gravel is fine to coarse angular to sub-rounded flint (30% - 70%), concrete (20% - 60%) and brick (10%). MADE GROUND: Orangish brown very gravelly fine to coarse SAND. Gravel is fine to coarse angular to subrounded flint (50%) and concrete (50%). MADE GROUND: Dark brown gravelly very sandy CLAY. Gravel is fine to coarse sub-angular to subrounded. Sand is fine to coarse flint (50% - 60%), concrete (30%), brick (20% - 30%) and calcareous material (10%). MADE GROUND: Dark reddish brown sandy fine to coarse sub-rounded GRAVEL of brick (100%). Sand is fine to coarse. KEMPTON PARK GRAVEL MEMBER: Dark orangish brown sandy gravelly CLAY. Sand is fine to coarse. Gravel is fine to coarse sub-angular to sub rounded of flint. KEMPTON PARK GRAVEL MEMBER: Dark orangish brown very gravelly fine to coarse SAND. Gravel is fine to coarse	(FE01 – TP/FE02 - Top Depth (m bgl) GL GL 0.30	& TP01 - TP02) Base Depth (m bgl) 0.30 0.90 0.70 0.70 >0.80 -	Thickness (m) 0.30 0.90 0.40		
	logs can be viewed within Appendix B. Summary of Strata Encountered (BH01; TP/ Strata MADE GROUND: Pale grey very gravelly fine to coarse SAND. Gravel is fine to coarse angular to sub-rounded flint (30% - 70%), concrete (20% - 60%) and brick (10%). MADE GROUND: Orangish brown very gravelly fine to coarse SAND. Gravel is fine to coarse angular to subrounded flint (50%) and concrete (50%). MADE GROUND: Dark brown gravelly very sandy CLAY. Gravel is fine to coarse sub-angular to subrounded. Sand is fine to coarse flint (50% - 60%), concrete (30%), brick (20% - 30%) and calcareous material (10%). MADE GROUND: Dark reddish brown sandy fine to coarse sub-rounded GRAVEL of brick (100%). Sand is fine to coarse. KEMPTON PARK GRAVEL MEMBER: Dark orangish brown sandy gravelly CLAY. Sand is fine to coarse. Gravel is fine to coarse sub-angular to sub rounded of flint. KEMPTON PARK GRAVEL MEMBER: Dark orangish brown	<pre>/FE01 - TP/FE02 - Top Depth (m bgl) GL GL 0.30 0.30 0.30 0.30 - 0.90</pre>	&TP01 - TP02) Base Depth (m bgl) 0.30 0.90 0.70 0.70 >0.80 - >1.40	Thickness (m) 0.30 0.90 0.40 0.40 >0.30 - >0.50		
	logs can be viewed within Appendix B. Summary of Strata Encountered (BH01; TP/ Strata MADE GROUND: Pale grey very gravelly fine to coarse SAND. Gravel is fine to coarse angular to sub-rounded flint (30% - 70%), concrete (20% - 60%) and brick (10%). MADE GROUND: Orangish brown very gravelly fine to coarse SAND. Gravel is fine to coarse angular to subrounded flint (50%) and concrete (50%). MADE GROUND: Dark brown gravelly very sandy CLAY. Gravel is fine to coarse sub-angular to subrounded. Sand is fine to coarse flint (50% - 60%), concrete (30%), brick (20% - 30%) and calcareous material (10%). MADE GROUND: Dark reddish brown sandy fine to coarse sub-rounded GRAVEL of brick (100%). Sand is fine to coarse. KEMPTON PARK GRAVEL MEMBER: Dark orangish brown sandy gravelly CLAY. Sand is fine to coarse. Gravel is fine to coarse sub-angular to sub rounded of flint. KEMPTON PARK GRAVEL MEMBER: Dark orangish brown very gravelly fine to coarse SAND. Gravel is fine to coarse	<pre>/FE01 - TP/FE02 - Top Depth (m bgl) GL GL 0.30 0.30 0.30 0.30 - 0.90</pre>	&TP01 - TP02) Base Depth (m bgl) 0.30 0.90 0.70 0.70 >0.80 - >1.40	Thickness (m) 0.30 0.90 0.40 0.40 >0.30 - >0.50		

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

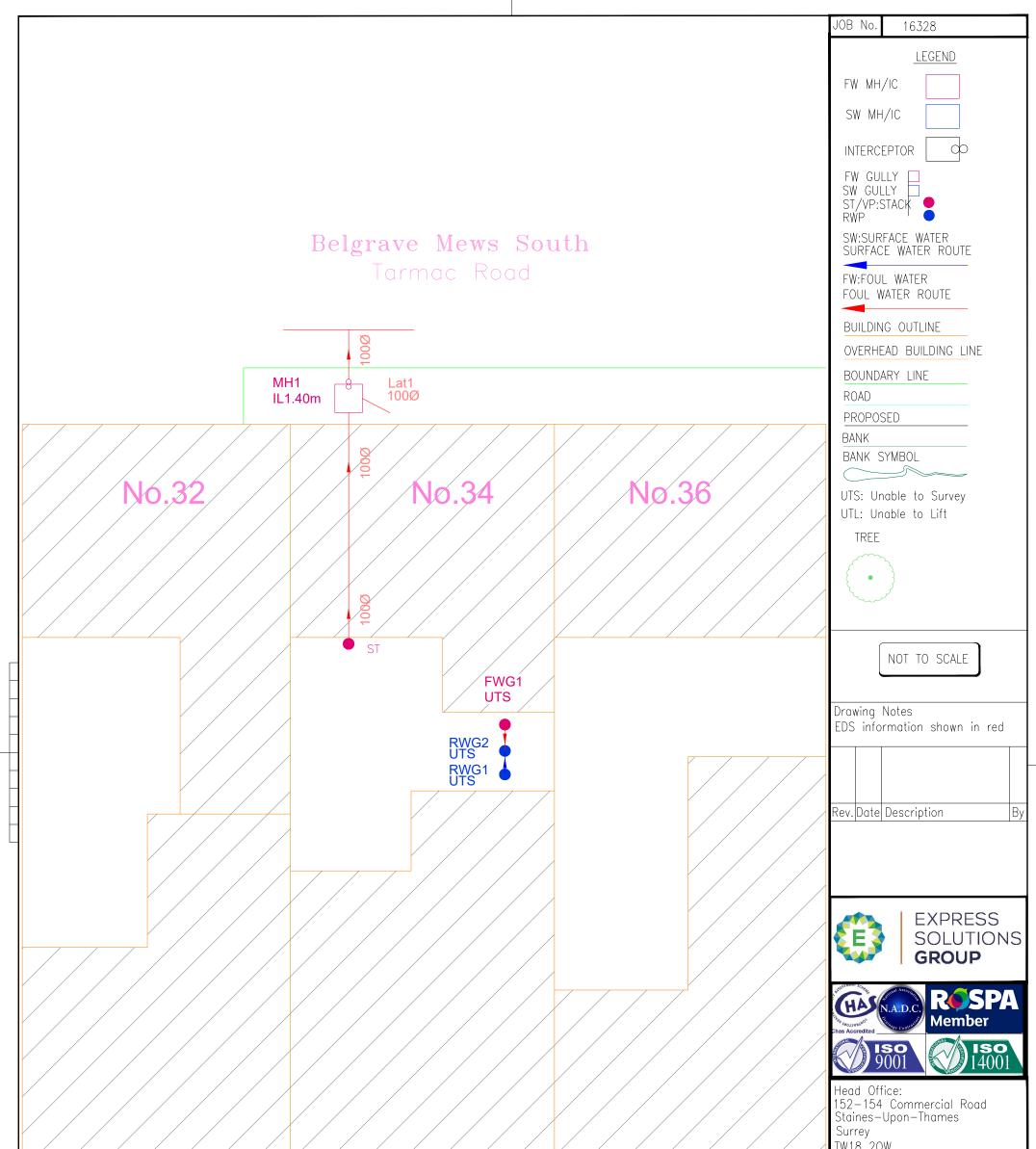
		PRELIN	MINARY SUMMAI	RY		
IN-SITU STRENGTH TESTING	An interpretat	on of the in-situ	u geotechnical testing	g results for	BH01 are g	iven in the table below.
(SPTs)		Inte	erpretation of In-situ G	eotechnical T	Testing Resu	lts
	Strata	SPT "N" Blow Counts	Equivalent Undrained Shear Strength (Cu) (kPa)	Granular (Density)	Cohesive Soil Type (Cu)	Trial Hole/s
	Kempton Park Gravel	20	-	Medium Dense	-	WS01/1.20m – 1.65m bgl
	Member	50	-	Very Dense	-	WS01/2.00m – 3.45m bgl
	London Clay	16	80	-	High	WS01/5.00m – 5.45m bgl
	Formation	30	150	-	Very High	WS01/4.00m – 4.45m bgl
	Assumed London Clay Formation	~7 - ~17	~35 - ~85	-	Low – High	DP01/~6.00m - ~10.00m bgl
	*It should be underlying soil		iperheavy dynamic	probing ma	ay underes	timate the strength of the
ROOTS	the remaining It should be no	trial holes. ted that roots n	nay be found to great	er depths a	t other loca	resh roots were noted within tions on the site, particularly nd its close environs.
GROUNDWATER	Groundwater silty/sandy/gra during/after w Changes in gro in drainage. Th to be at/appro	however may ivelly bands ar inter months. undwater level he investigation aching their and	e noted, especially occur for a number o was undertaken in N nual maximum (highe	he Made after perior of reasons i lovember 2 st elevatior	ds of inten ncluding se 023 when a ı). Exact gro	d underlying strata where use or prolonged rainfall or asonal effects and variations groundwater levels are likely undwater levels may only be
ANTICIPATED VOLUME CHANGE POTENTIAL	The following	volume change	• •	ated based	on a physic	alled on-site. al and visual appraisal of the cal classification testing:
	in acc • Kemp	ordance with N ton Park Grave	HBC Standards Chapt	er 4.2 and I Likely to h	BRE240. nave no to l	um volume change potential ow volume change potential

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

	PRELIMINARY SUMMARY
	• London Clay Formation Likely to have high volume change potential in accordance with NHBC Standards Chapter 4.2 and BRE240.
GENERAL FOUNDATION RECOMMENDATION	At the time of reporting, November 2023, the proposed development was understood to comprise the construction of a full footprint basement level to a depth of 2.70m bgl.
	• Made Ground was noted from ground level to a maximum depth of 0.90m bgl.
	As a result of the inherent variability Made Ground, these materials are usually unpredictable in terms of bearing capacity and settlement characteristics. Foundations should, therefore, be taken through any Made Ground and either into, or onto a suitable underlying natural stratum of adequate bearing characteristics.
	• Granular superficial soils of the Kempton Park Gravel Member were likely to have no/low volume change potential whilst the cohesive strata was likely to have medium, in accordance with NHBC Standards Chapter 4.2 and BRE240. The London Clay Formation was likely to have high volume change potential.
	Foundations should be designed in accordance with the volume change potential classification, confirmed from geotechnical testing.
	• The superficial Kempton Park Gravel Member were classified as medium dense to very dense granular soils. The London Clay Formation was classified as high to very high undrained shear strengths.
	The loads of proposed foundations should not exceed the bearing capacity of the soils they are founding upon, nor should >25mm of load-induced settlement occur.
	• Fresh roots were noted to a proven depth of 0.80m bgl within WS01. No fresh roots were noted within the remaining trial holes.
	Foundations must not be placed within root penetrated and/or desiccated soils with volume change potential. It is recommended that foundations are taken at least 300mm into non- root penetrated strata if soils have volume change potential, or into soils of no volume change potential. The influence of trees on or surrounding the site will need to be taken into account in final design (NHBC Standards Chapter 4. 2) (tree rings).
	• No groundwater strikes were noted within the trial holes.
	Any groundwater or surface water ingress must be prevented from entering excavations. Excavations must be kept dry and either concreted or blinded as soon after excavation as possible. If water were allowed to accumulate on the formation for even a short time not only would an increase in heave occur resulting from the soil increasing in volume by taking up water, but also the shear strength and hence the bearing capacity would also be reduced,

0333 600 1221 enquiries@groundandwater.co.uk


groundandwater.co.uk

	PRELIMINARY SUMMARY
	and this could result in increased settlements. Perched water may be recorded within excavations, especially after a period of prolonged rainfall. Instability issues may arise within the foundation trenches, in case of perched water being present.
	Foundations constructed on the superficial granular Kempton Park Gravel at a depth of 2.70m bgl can be designed based on a presumed allowable bearing capacity of 250kN/m ² .
	This is based on trial hole records, the results of in-situ testing, inspection of samples recovered, and referral to BS 8004:2015, Code of Practice for Foundations, and based on a 5m long by 1m wide foundation and a maximum settlement of 25mm. Settlement is likely to be low.
Figure 1	Trial Hole Location Plan
Figure 2	Trial Pit Foundation Exposure 01
Figure 3	Trial Pit Foundation Exposure 01
Figure 4	Trial Pit Foundation Exposure 02
Figure 5	Trial Pit Foundation Exposure 02
Appendix A	Conditions and Limitations
	Trial Hole Logs

preliminary information.

<u>APPENDIX F</u>

Drainage CCTV Survey (Record Plan)

Tw18 2QW Tel 020 8979 5444 VAT 851970604 Company No 04935559	
Client	DSA Group
Site Address	34 Belgrave Mews South London
	SW1X 8BT
Drawing title	SITE PLAN
Scales	NOT TO SCALE
Surveyor	LM
Drawn By	EA
Date	01.12.2023
JOB No.	16328