Ενοινε

Big Yellow, Staples Corner. Drainage Strategy

Revision C 11/12/2023

www.evolveuk.biz

Prepared by:	Paul White, HND Civil Eng, Civil Engineer
Checked by:	Lance Greenaway, Associate

Revision	Date	Prepared By	Checked By	Purpose
А	27/10/23	PW	LG	Issued for Planning
В	07/12/23	PW	JT	Issued for Planning
С	11/12/23	PW	LG	Revised to latest drawings

This report shall be for the private and confidential use of the commissioning client for whom the report is undertaken and shall not be reproduced in whole or in part or relied upon by third parties for any use whatsoever without the express written authority of Evolve.

Contents

1 Site Location and Setting	2
2 Proposed Development	3
 3 Local Policy Guidance 3.1 The London Plan 2021 3.2 London Borough of Barnet Council Website. 3.3 Barnet's Local Plan (Core Strategy) Development Plan Document - September 2012. 3.4 Remaining Policies of the Unitary Development Plan for Brent Cross and Cricklewood 	4 4 5 6
 4 Hierarchy of Surface Water Disposal 4.1 Rainwater Harvesting 4.2 Discharge to Ground (Infiltration) 4.3 Blue/Green Roofs and Rain Gardens 4.4 Discharge to Surface Water Body 4.5 Discharge to Surface Water Sewer 4.6 Discharge to Combined Sewer 	7 7 7 8 8 8
5 Surface Water Runoff Rates 5.1 Existing Flow – Modified Rational Method 5.2 Existing Flow – Greenfield Runoff Rate 5.3 Proposed Flow 5.4 Climate Change	9 9 9 9 10
6 Inclusion of Sustainable Drainage Systems (SuDS)	11
7 Design of Drainage Infrastructure 7.1 Attenuation Volume	14 14
8 Maintenance for All Drainage Elements	15
9 Foul Drainage	16
10 Conclusion	17
Apendices	

1 Site Location and Setting

Evolve Consulting Engineers Limited has been appointed by .Big Yellow Self Storage Company Limited in respect to the proposed development centred at approximate National Grid Reference TQ 22620 87382 (E 522620, N 187382) What3Words chains.drama.rats Renault/ Dacia, Staples Corner, North Circular Road, Brent Cross, NW2 1LY. Refer to Appendix A – Site Location Plan.

The site is located approximately 1.1 kilometres (km) south-southeast of Hendon train station and 2.23km northeast of Neasden tube station. The area of the site is 8444m² with this being split into 2,411m² of roof area, 5,585m² of hardstanding and 448m² soft landscaping.

According to the London Borough of Barnet Surface Water Management Plan (SWMP) there are 33 Critical Drainage Areas (CDA) within the London Borough of Barnet. Reference to the SWMP shows that the site is not shown to be located in a CDA.

The site is occupied approximately 29.1% by building footprint, 65.1% by hardstanding and 5.8% by soft landscaping.

2 Proposed Development

The proposed development comprises the demolition of the existing building and the construction of a self-storage facility (Use Class B8), with flexible office space (Use Class E(g)(i)) and external storage units (Use Class B8), with associated parking and servicing areas.

3 Local Policy Guidance

3.1 The London Plan 2021

This drainage strategy has been written with reference to The London Plan 2021. This document is the Spatial Development Strategy for Greater London. It sets out a framework for how London will develop over the next 20-25 years and the Mayor's vision for Good Growth.

The Plan is part of the statutory development plan for London, meaning that the policies in the Plan should inform decisions on planning applications across the capital. Borough's Local Plans must be in 'general conformity' with the London Plan, ensuring that the planning system for London operates in a joined-up way and reflects the overall strategy for how London can develop sustainably, which the London Plan sets out. Relevant points have been extracted below:

Policy SI 13 Sustainable Drainage States:

"Development proposals should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible. There should also be a preference for green over grey features, in line with the following drainage hierarchy:

1) rainwater use as a resource (for example rainwater harvesting, blue roofs for irrigation)

- 2) rainwater infiltration to ground at or close to source
- 3) rainwater attenuation in green infrastructure features for gradual release (for example green roofs, rain gardens)
- 4) rainwater discharge direct to a watercourse (unless not appropriate)
- 5) controlled rainwater discharge to a surface water sewer or drain
- 6) controlled rainwater discharge to a combined sewer.

Development proposals for impermeable surfacing should normally be resisted unless they can be shown to be unavoidable, including on small surfaces such as front gardens and driveways.

Drainage should be designed and implemented in ways that promote multiple benefits including increased water use efficiency, improved water quality, and enhanced biodiversity, urban greening, amenity and recreation.

Policy 9.13.1 London is at particular risk from surface water flooding, mainly due to the large extent of impermeable surfaces. Lead Local Flood Authorities have responsibility for managing surface water drainage through the planning system, as well as ensuring that appropriate maintenance arrangements are put in place. Local Flood Risk Management Strategies and Surface Water Management Plans should ensure they address flooding from multiple sources including surface water, groundwater and small watercourses that occurs as a result of heavy rainfall.

Policy 9.13.2 Development proposals should aim to get as close to greenfield run-off rates as possible depending on site conditions. The well-established drainage hierarchy set out in this policy helps to reduce the rate and volume of surface water run-off. Rainwater should be managed as close to the top of the hierarchy as possible. There should be a preference for green over grey features, and drainage by gravity over pumped systems. A blue roof is an attenuation tank at roof or podium level; the combination of a blue and green roof is particularly beneficial, as the attenuated water is used to irrigate the green roof.

Policy 9.13.3 For many sites, it may be appropriate to use more than one form of drainage, for example a proportion of rainwater can be managed by more sustainable methods, with residual rainwater managed lower down the hierarchy. In some cases, direct discharge into the watercourse is an appropriate approach, for example rainwater discharge into the tidal Thames or a dock. This should include suitable pollution prevention filtering measures, ideally by using soft engineering or green infrastructure. In addition, if direct discharge is to a watercourse where the outfall is likely to be affected by tide-locking, suitable storage should be designed into the system. However, in other cases direct discharge will not be appropriate, for example discharge into a small stream at the headwaters of a catchment, which may cause flooding. This will need to be assessed on a case-by-case basis, taking into account the location, scale and quality of the discharge and the receiving watercourse. The maintenance of identified drainage measures should also be considered in development proposals.

3.2 London Borough of Barnet Council Website.

When considering SuDS as part of a planning application, we need to satisfy ourselves that:

Surface water is managed in accordance with the surface water discharge hierarchy for discharge destinations.

ενοινε

The aim of the surface water discharge hierarchy is to ensure that surface water runoff is treated at source and managed in a way which minimises the negative impact of the proposed development on flood risk and the water quality of receiving waters.

Early consideration must be given to the use of rainwater harvesting systems and / or the use of green roofs, to both manage surface water runoff and deliver a source of non-potable water for the proposed development where practical.

A detailed surface water drainage strategy should be submitted which will set out the appropriateness of SuDS to manage surface water runoff and provision of maintenance for the lifetime of the development which they serve. Major applications which do not meet this requirement will not be made valid.

The surface water drainage strategy for the proposed development must have evidence of Adopting Body(ies) accepting responsibility for the safe operation and maintenance of the proposed SuDS.

The surface water drainage strategy should include detailed calculations to demonstrate that post-development surface water discharge rate is limited to greenfield runoff rates, for all return periods up to 1 in 100 year plus climate. This is applicable for both Greenfield and previously developed sites. Greenfield runoff rate is the runoff rate from a site in its natural state, prior to any development.

Proposals for higher discharge rates should be agreed with the LBB ahead of submission of the Planning Application. Clear evidence should be provided with the Planning Application to show why greenfield rates cannot be achieved.

3.3 Barnet's Local Plan (Core Strategy) Development Plan Document - September 2012.

DM04: Environmental considerations for development.

g. Development should demonstrate compliance with the London Plan water hierarchy for run off especially in areas identified as prone to flooding from surface water run off. All new development in areas at risk from fluvial flooding must demonstrate application of the sequential approach set out in the NPPF (paras 100 to 104) and provide information on the known flood risk potential of the application site.

h. Development proposals will wherever possible be expected to naturalise a water course, ensure an adequate buffer zone is created and enable public accessibility. Where appropriate, contributions towards river restoration and de-culverting will be expected.

5.9 Surface water run off and drainage

5.9.1 Reducing or slowing the amount of rainfall (run off) entering the drainage network is important to help reduce flood risk both in Barnet and further downstream. The borough has 14kms of streams and brooks. The North London Strategic Flood Risk Assessment identified fluvial flooding from Dollis Brook, Silk Stream, Pymmes Brook and their associated tributaries as the primary source of flood risk in the borough. Surface water flooding in Barnet presents a low to moderate risk, and sewer flooding as low risk. Groundwater flooding was also found to be a relatively low risk due to the impermeable geology (primarily London Clay) and depth of the groundwater table.

5.9.2 In line with national policy a sequential riskbased approach to determining the suitability of land for development in flood risk areas will be applied. Flood risk assessments will be expected on all applicable sites to inform the sequential approach. Sustainable Urban Drainage techniques such as porous paving should be used where possible to reduce flood risk and the Mayor's drainage hierarchy applied. The principle of the Mayors drainage hierarchy is for a greenfield rate of run off to be maintained. A greenfield run-off rate is one that reflects the natural rate of water runoff from a site before development. Further detail is provided in the Sustainable Design and Construction SPD.

5.9.3 The Surface Water Management Plan (SWMP) for Barnet, Brent and Harrow is designed to fulfil the requirements of the Flood Risk regulations 2009 and to identify areas more at risk from surface water flooding. Proposals which create impact in these areas identified at risk will need to demonstrate through hydrological investigations and modelling how they will reduce that risk. Where they require permission, front garden alterations for parking or basement developments are examples which can impact local run off. Further guidance on basement development is set out in Design Guidance Note 5 – Extensions to Houses which seeks to ensure that such development does not harm the established architectural character of buildings and surrounding areas.

3.4 Remaining Policies of the Unitary Development Plan for Brent Cross and Cricklewood

Sustainable Design

12.3.11 The Brent Reservoir is a Site of Special Scientific Interest (SSSI) and is located adjacent to West Hendon, sharing a 1.5 kilometre section of its boundary with the Regeneration Area. It was formed in 1835 by the damming of the River Brent, and its unusually shallow depth and sloping banks have supported a particularly interesting habitat for breeding wetland birds, waterfowl and a variety of plants. Any development will be required to respect a buffer zone and protect this area of nature conservation interest. In such areas of nature conservation interest, development can also include proposals that contribute to extending and protecting the area's biodiversity and which take opportunities to create new habitats for wildlife colonisation. The nature conservation and amenity value of the Brent River should therefore be enhanced where it is in an open concrete channel (with due regard being given to any advice from the Environment Agency). There must be no building within eight metres of the brink of the River Brent.

12.3.12 Development will only be acceptable in floodplains where issues of flood risk have been addressed, in line with PPG25, and both environmental and ecological mitigation have been agreed with the Environment Agency. These may include providing more flood water storage outside the floodplain. The council would welcome the application of the innovative, sustainable principles of the Millennium Villages.

4 Hierarchy of Surface Water Disposal

When developing or redeveloping a site, the control and dispersion of surface water falling on the site's catchment always must be considered. Wherever possible runoff from developments should be managed on the surface. This enables their performance to be more easily inspected and managed with pollution incidents and potential flood risk being visible. But due to the nature of some developments this is not always possible.

If surface water is to be discharged from the site, The London Plan requires that it should be to discharge surface runoff as high up the following hierarchy of drainage options as reasonably practicable. The proposed development has been developed in accordance with this hierarchy.

1) rainwater use as a resource (for example rainwater harvesting, blue roofs for irrigation)

- 2) rainwater infiltration to ground at or close to source
- 3) rainwater attenuation in green infrastructure features for gradual release (for example green roofs, rain gardens)
- 4) rainwater discharge direct to a watercourse (unless not appropriate)
- 5) controlled rainwater discharge to a surface water sewer or drain
- 6) controlled rainwater discharge to a combined sewer.

It is recommended to manage surface water as close to the source i.e., where the rain falls. The effective use of control and management of surface water runoff will need to be addressed through the application of the above drainage hierarchy.

4.1 Rainwater Harvesting

As the site is proposed to be used as a storage facility the cost and maintenance required for a centralised rainwater harvesting system that will serve less than 5 toilets makes it financially unviable.

4.2 Discharge to Ground (Infiltration)

The BGS's online geology map shows the superficial geology to be Alluvium, this member is formed of clay, silt, sand and gravel. The bedrock geology is shown to be London Clay underlying the Gravel Member as expected. This member comprises blue/grey clay with silt and sandy layers common.

There are two historical borehole records within the site boundary on the BGS website. The closest to the centre of the site shows the following geology.

Ground Type	Elevation (mAOD)	Depth (mbgl)	Thickness (m)	Description
Made Ground	40.17	0.00	3.55	Gravel, ash, broken glass & rubble.
Alluvium	36.62	3.55	1.00	Stiff to Firm slightly fissured silty CLAY.
Gravel	35.62	4.55	0.75	Medium dense to dense, coarse to medium very sandy GRAVEL
London Clay Formation	34.87	5.30	Not Proven	Firm to stiff, brown locally mottled orangish brown slightly silty fissured CLAY

The bedrock geology of London Clay is not suitable for infiltration due to the poor soakage rates.

4.3 Blue/Green Roofs and Rain Gardens

The design of the proposed building and the subsequent pitch of the roofs does not allow for the use of blue roofs on the development. Due to the loading on the structure associated with a green roof, this is not proposed, with the client focusing on drainage measures at ground level. Although not currently shown on the design it may be possible to use rain gardens within adjacent planted areas shown on the plans. These could be considered in detailed design subject to client approval.

4.4 Discharge to Surface Water Body

Reference to OS Mapping shows that the River Brent flows broadly west directly adjacent to the northern boundary of the site. The river discharges into the Brent Reservoir some 500m to the west of the site. The Thames Water surface water network plans show two 225mm diameter surface water sewers draining south from the road under the railway line, which then combine to a 300mm diameter sewer as it enters the North Circular. The eventual outfall from the public surface water sewer downstream from the site has been proved to flow beneath the carriageway of Edgeware Road, before discharging into the River Brent.

It is our intention to discharge the surface water from the redeveloped site to the River Brent using the existing outfall point to the public sewer.

4.5 Discharge to Surface Water Sewer

it is our intention to discharge the surface water from the redeveloped site using the existing outfall point albeit at a restricted and attenuated rate.

4.6 Discharge to Combined Sewer

Not required as discharging to an outfall higher up the hierarchy.

5 Surface Water Runoff Rates

The discharge from the site must not impact the flood risk of the surrounding developments both upstream and downstream of the site.

As stated in the guidance taken from Barnet Council's website, the post-development surface water discharge rate should be limited to greenfield runoff rates, for all return periods up to 1 in 100 year plus climate change. This is applicable for both Greenfield and previously developed sites. Refer to section 6 for details.

The catchment areas for the existing site drainage layout have been taken from the topographical survey drawings and are broken down as follows:

	Area (m²)	Runoff Coefficient	Factored Area (m²)	Total (m²)	Total Factored (m²)
Roof	2,460	0.95	2,337		
Hardstanding	5,496	0.85	4,672	8,444	7,099
Soft Landscaping	488	0.20	89		

5.1 Existing Flow - Modified Rational Method

In order to calculate the existing flow from the site the Modified Rationale Method has been used. Using the FSR rainfall intensities for Brent Cross area the following values have been calculated for the 0.161ha development site catchments. The results of the calculation are shown below:

The Modified Rationale Method Q=2.78CiA									
	mm/hr	Roof	Qroof	Hard	Qhard	Soft	Qsoft	Total (l/s)	
1YR	32.37	0.2337	19.975733	0.4672	35.730753	0.0089	0.2402324	55.95	
30YR	79.46	0.2337	49.042847	0.4672	87.723331	0.0089	0.5897998	137.36	
100YR	103.28	0.2337	63.74706	0.4672	114.02487	0.0089	0.7666358	178.54	

5.2 Existing Flow – Greenfield Runoff Rate

Using IH124 which specifically addresses the runoff from small catchments (Institute of Hydrology, 1994) we have calculated the greenfield runoff rate. The results are as follows:

- Qbar (l/s) = 3.76
- 1:1yr (l/s) = 3.20
- 1:30yr (l/s) = 8.66
- 1:100 yr (l/s) = 12.01

5.3 Proposed Flow

It is proposed to match the existing greenfield runoff rate. Through the use of a complex flow restrictor, it will be possible to provide multiple flow controls that will cover the 1:1yr, 1:30yr and 1:100yr storms.

- 1:1yr 3.2l/s
- 1:30yr 8.7l/s
- 1:100yr 12.0l/s

Having multiple discharge rates will reduce the amount of attenuation storage required whilst still ensuring that the greenfield runoff rate is achieved.

It is also possible to use the QBAR rate of 3.8l/sec for all storm events but this will increase the attenuation volume requirements. For the purposes of this report we are proceeding utilising multiple discharge rates.

5.4 Climate Change

Referencing the gov.uk website we have used table 2 to set our climate change values.

Table 2 peak rainfall intensity allowance in small and urban catchments (use 1961 to 1990 baseline)

Applies across all of England	Total potential change anticipated for the '2020s' (2015 to 2039)	Total potential change anticipated for the '2050s' (2040 to 2069)	Total potential change anticipated for the '2080s' (2070 to 2115)
Upper end	10%	20%	40%
Central	5%	10%	20%

The proposed development is for commercial/business units which is considered to have a lifetime of 50 years. The range of climate change allowances to be considered for the proposed development is 40%.

6 Inclusion of Sustainable Drainage Systems (SuDS)

Sustainable drainage is a departure from the traditional approach to draining sites. There are some key principles that influence the planning and design process enabling SuDS to mimic natural drainage by:

- Storing runoff and releasing it slowly (attenuation)
- Harvesting and using the rain close to where it falls
- Allowing water to soak into the ground (infiltration)
- Slowly transporting (conveying) water on the surface
- Filtering out pollutants
- Allowing sediments to settle out by controlling the flow of the water

To fall in line with the recommendations of The Flood and Water Management Act which requires that "developers are to put SUDS in place in new developments wherever practicable.", we have reviewed the main SuDS components in line with the suitability for the proposed development.

SuDS components are a physical part of the drainage system and can be categorised as follows:

Suds Component	Example	Description	Suitability for Development
Green Roof		A planted soil layer is constructed on the roof of a building to create a living surface. Water is stored in the soil layer and absorbed by vegetation.	Due to design pitch of the roof this is not possible. Not Feasible.
Blue Roof		Storage of water at roof/podium level.	Due to design pitch of the roof this is not possible. Not Feasible.
Rainwater Harvesting		Rainwater is collected from the roof of a building or from other paved surfaces and stored in an over ground or underground tank for treatment and reuse locally. Water could be used for toilet flushing and irrigation.	A centralised rainwater harvesting system that will serve less than 5 toilets makes it financially unviable. Not Feasible.
Soakaway		A soakaway is designed to allow water to quickly soak into permeable layers of soil. Constructed like a dry well, an underground pit is dug filled with gravel or rubble. Water can be piped to a soakaway where it will be stored and allowed to gradually seep into the ground.	Due to underlying strata, infiltration drainage will not be possible. Not Feasible
Filter Drains & Filter Strip		Filter drains are shallow trenches filled with stone, gravel that create temporary subsurface storage for the attenuation, conveyance and filtration of surface water runoff. Filter strips are uniformly graded and gently sloping strips of grass or dense vegetation, designed to treat runoff from adjacent impermeable areas by promoting sedimentation, filtration and infiltration.	Not currently shown. Could be incorporated in the landscaping shown on the plans. Potentially Feasible

Permeable Paving	X	Paving which allows water to soak through. Can be in the form of paving blocks with gaps between solid blocks or porous paving where water filters through the block itself. Water can be stored in the sub-base beneath or allowed to infiltrate into ground below.	A tanked permeable paving to be used in all car parking areas. Void volume in subbase to be used as part of the attenuation. Feasible
Bioretention Area		A vegetated area with gravel and sand layers below designed to channel, filter and cleanse water vertically. Water can infiltrate into the ground below or drain to a perforated pipe and be conveyed elsewhere. Bioretention systems can be integrated with tree-pits or gardens	Due to the layout and site constraints, the use of a Bioretention area will not be possible. Not Feasible
Swales		Swales are vegetated shallow depressions designed to convey and filter water. These can be 'wet' where water gathers above the surface, or 'dry' where water gathers in a gravel layer beneath. Can be lined or unlined to allow infiltration	Not currently shown. Could be incorporated in the landscaping shown on the plans. Potentially Feasible
Rills and Channels		Rills and Channels keep runoff on the surface and convey runoff along the surface to downstream SuDS components. They can be incorporated into the design to provide a visually appealing method of conveyance; they also provide effectiveness in pretreatment removal of silt	Due to the layout and site constraints, the use of a Bioretention area will not be possible. Not Feasible
Pond/Basin		Ponds can be used to store and treat water. 'Wet' ponds have a constant body of water and run-off is additional, while 'dry' ponds are empty during periods without rainfall. Ponds can be designed to allow infiltration into the ground or to store water for a period of time before discharge	Due to the layout and site constraints, the use of ponds or basins is not possible. Not Feasible
Wetland		Wetlands are shallow vegetated water bodies with a varying water level. Specially selected plant species are used to filter water. Water flows horizontally and is gradually treated before being discharged. Wetlands can be integrated with a natural or hardscape environment	Due to the layout and site constraints, the use of a Wetland area will not be possible. Not Feasible
Proprietary Treatment System		Proprietary treatment systems are manufactured products that remove specific pollutants from surface water runoff. They are especially useful where site constraints preclude the use of other methods and can be useful in reducing the maintenance requirements of downstream SuDS	Can be used to capture the flow from the service yards. Alternatives solutions should be sought in preference to these. Feasible

Geocellular Systems	Attenuation storage tanks are used to create a below-ground void space for the temporary storage of surface water before infiltration, controlled release or use. The inherent flexibility in size and shape means they can be tailored to suit the specific characteristics and requirements of any site	To be used to provide attenuation volume in addition to the swales (if adopted as part of the detailed design) and permeable paving subbase voids. Feasible.
Natural Aquifer Blocks	A natural product that absorbs water and releases it in a controlled manner. Can be used as part of blue roofs, soakaways, filter strips, rainwater gardens, irrigation areas, swales & attenuation.	Can be used as part of multiple SuDS techniques. Feasible

7 Design of Drainage Infrastructure

The below ground drainage will be designed to ensure:

- No surcharging for the 1:1yr storm
- No flooding for all storms up to and including the critical 1:30yr storm.
- Any flooding experienced for all storms in excess of 1:30yr and up to and including the 1:100yr storm will need to be contained on site posing no risk to the building or affecting safe egress from site.
- The design will be checked for the impact of climate change on the 1:100yr storm.

The catchment areas for the development are broken down as follows:

	Area (m²)	Runoff Coefficient	Factored Area (m²)	Total (m²)	Total Factored (m²)
Roof	3,277	0.95	3,113		
Hardstanding	3,644	0.85	3,097	8,444	6515
Soft Landscaping	1,523	0.20	305		

Following redevelopment, the 0.844ha site will be occupied approximately 36.8% by building footprint, 36.6% by hardstanding and 26.6% by soft landscaping.

7.1 Attenuation Volume

In order to ensure that no flooding occurs:

For the 1:100yr + 40% climate change event with a discharge rate 12.0l/s an attenuation volume of 401m³ must be provided.

For the 1:100yr event with a discharge rate 12.0l/s an attenuation volume of 260m³ must be provided.

For the 1:30yr event with a discharge rate 8.7l/s an attenuation volume of 200m³ must be provided.

For the 1:1yr event with a discharge rate 3.2l/s an attenuation volume of 92m³ must be provided.

Refer to Appendix B for MicroDrainage Calculations and Appendix C for the drainage layout.

8 Maintenance for All Drainage Elements

On the 25th of October 2019, the documentation submitted by Water UK concerning sewerage was approved by Ofwat. It is designed to guide water companies and developers when planning, designing, and constructing foul and surface water drainage systems which are intended for adoption, as per the Section 104 agreement under the Water Industry Act 1991. The documents provide updated guidance for all standards and specifications required when designing new water or drainage infrastructure and aim to accelerate the uptake of sustainable drainage (SuDS), by smoothing out the transfer of ownership, responsibility and ensure the assets are effectively managed and maintained. They will also allow English water and sewerage companies to adopt a wider range of drainage types, including those with sustainable elements.

Practically and in terms of SuDS, the basic criteria that need to be achieved for a surface water drainage system to be "adoptable" or "not adoptable", will mainly require the following.

Adoptable	Non-Adoptable
It is constructed for the drainage of buildings and yards appurtenant to buildings	Watercourses as defined in law (these included rivers, streams and can include some ditches)
It has a channel (a depression between banks or ridges with a definite boundary)	Components build primarily for the drainage of surface water from streets or the drainage of land
It conveys and returns flows to a sewer or to a surface water body or to groundwater	Components built to manage groundwater
It has an effective point of discharge, which must have lawful authority to discharge into a watercourse or other water body or into land. As with conventional piped systems, this right to discharge must be secured by the developer and transferred to the sewerage company on adoption	Components which are part of the structure of a building or yard (e.g., green roof, pervious driveway or guttering and rainwater pipes attached to the building)
	Components which are an integral part of the structure of a street (e.g., a pervious street or channel formed by kerb of a conventional road or channel formed by a depression in the centre of a street

Using the above criteria, it will not be possible to offer any part of the system for adoption as no "adoptable" drainage features are being constructed.

On completion of the construction, an operation and maintenance manual will be written setting out the maintenance regime for the surface water and the foul water drainage system. This will recommend the following:

- The entire drainage system should be monitored monthly by lifting the covers to the manholes and chambers to monitor debris build-up. If required, these are to be cleaned at the earliest opportunity to prevent blockages.
- Every six months, the drainage system should be inspected to identify areas that are not operating as required and any remedial works identified should be carried out at the earliest opportunity.
- The system should be cleaned out at 12 monthly intervals and includes the removal of sediment from all structures that have capacity to accommodate sediment storage.
- Debris removed from the catch pits should be removed by a suitably qualified and accredited contractor and an appropriate waste transfer or waste disposal certificate should be kept as record.

A full CCTV survey of the surface water drainage system should also be carried out at 10 yearly intervals to assess the condition of the drainage system.

9 Foul Drainage

The foul flow from the development will be collected in a below ground gravity drainage system and discharge to the existing outfall from the site. This will be subject to the capacity of the receiving system and whether it can accommodate the additional flows from the proposed development, but this is not expected to be an issue as any increase in foul water flows would be minimal.

10 Conclusion

The post development surface water flow from the site will be restricted to match the greenfield runoff rate for the 1:1yr, 1:30yr and 1:100yr storms. A total of 314m³ of attenuation will be provided.

The post development flow from the site will be discharged to the existing connections to the public sewer currently serving the site.

Permeable paving and propriety treatment systems will be used to improve water quality and remove hydrocarbons and suspended solids from the hard standing runoff.

All relevant policy requirements have been addressed within the proposed drainage strategy.

Appendix A -Site Location

Site Location Plan

Appendix B – MicroDrainage Calculations

- Greenfield Runoff Calculations
- 1yr Attenuation Calculations
- 30yr Attenuation Calculations
- 100yr Attenuation Calculations
 100yr + 40% Attenuation Calculations

hrwallingford

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Dec 11 2023 15:06

Calculated by:	Paul White	Site Deta	ils
Site name:	Staples Corner	Latitude:	51.57202° N
Site location:	Barnet	Longitude:	0.23199° W
This is an estimatio	n of the greenfield runoff rates that a	are used to meet normal best practice Beference	2713447137

Th Reference criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis Date: for setting consents for the drainage of surface water runoff from sites.

Runoff estimation a					
Site characteristics			Notes		
Total site area (ha): ^{.8444}			(1) Is $Q_{2,2,2} < 2.0 \frac{1}{5} / \frac$		
Methodology			(1) IS QBAR < 2.01/ S/11a?		
Q _{BAR} estimation method:	alculate from S	SPR and SAAR	When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.		
SPR estimation method: Ca	alculate from S	SOIL type			
Soil characteristics	Default	Edited	(2) Are flow rates < 5.0 l/s?		
SOIL type:	4	4	Where flow rates are less than 5.0.1/2 series		
HOST class:	N/A	N/A	for discharge is usually set at 5.0 l/s if blockage		
SPR/SPRHOST:	0.47	0.47	from vegetation and other materials is possible. Lower consent flow rates may be set where the		
Hydrological			blockage risk is addressed by using appropriate		
characteristics	Default	Edited	drainage elements.		
SAAR (mm):	654	654			
Hydrological region:	6	6	(3) Is SPR/SPRHOST ≤ 0.3?		
Growth curve factor 1 year:	0.85	0.85	Where groundwater levels are low enough the		
Growth curve factor 30 years:	2.3	2.3	use of soakaways to avoid discharge offsite		
Growth curve factor 100 years:	3.19	3.19	surface water runoff.		
Growth curve factor 200 years:	3.74	3.74			

) _{BAR} (I/s):	3.76	3.76
in 1 year (l/s):	3.2	3.2
in 30 years (l/s):	8.66	8.66
in 100 year (l/s):	12.01	12.01
in 200 years (l/s):	14.08	14.08

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Evolve				
20 Baltic Street	Staples Corner			
London	Storage Sizing			
EC1Y OUL	lyr	Micro		
Date 07/12/2023 10:48	Designed by PW			
File 231207 1yr Storage Sizing.SRCX	Checked by LG	Diamage		
Innovyze	Source Control 2020.1.3			

Summary of Results for 1 year Return Period

Event Level Depth Control Volum (m) (m) (1/s) (m ³)	le
(m) (m) (1/s) (m ³)	_
	_
15 min Summer 9 037 0 437 3 2 50	3 0 8
$30 \text{ min Summer } 9.158 \ 0.558 \ 3.2 \ 64$	2 O K
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 OK
$120 \text{ min Summer } 9.358 \ 0.758 \qquad 3.2 \qquad 87$	1 0 K
120 min Summer 9.336 0.736 3.2 0.	1 OK
240 min Summer 9.300 0.700 3.2 90.	0 0 K
$360 \text{ min Summer } 9.381 \ 0.781 \ 3.2 \ 89$	8 O K
480 min Summer 9.363 0.763 3.2 87	7 OK
600 min Summer 9.342 0.742 3.2 85	3 O K
$720 \text{ min Summer } 9.322 \ 0.742 \ 3.2 \ 82$	8 O K
960 min Summer 9 275 0 675 3.2 77	6 O K
1440 min Summer 9 185 0 585 3.2 67	3 O K
2160 min Summer 9 031 0 431 3 2 49	6 O K
2880 min Summer 8 913 0 313 3 2 36	0 0 K
4320 min Summer 8 774 0 174 3 1 20	0 0 K
5760 min Summer 8 715 0 115 2 9 13	3 OK
$7200 \text{ min Summer } 8.696 \ 0.096 \ 2.6 \ 11$	1 OK
8640 min Summer 8,685 0,085 2,3 9.	7 OK
10080 min Summer 8.676 0.076 2.0 8.	8 OK
$15 \text{ min Winter } 9.037 \ 0.437 \ 3.2 \ 50.$	3 ОК
30 min Winter 9.158 0.558 3.2 64.	2 O K
60 min Winter 9.271 0.671 3.2 77.	2 O K
120 min Winter 9.361 0.761 3.2 87.	5 OK
180 min Winter 9.391 0.791 3.2 91.	0 0 K
240 min Winter 9.398 0.798 3.2 91.	7 ОК
360 min Winter 9.380 0.780 3.2 89.	7 ОК
480 min Winter 9.354 0.754 3.2 86.	7 ОК

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	32.914	0.0	53.2	25
30	min	Summer	21.228	0.0	68.7	40
60	min	Summer	13.233	0.0	86.0	68
120	min	Summer	8.073	0.0	104.9	124
180	min	Summer	6.014	0.0	117.3	182
240	min	Summer	4.874	0.0	126.7	226
360	min	Summer	3.603	0.0	140.5	286
480	min	Summer	2.900	0.0	150.8	352
600	min	Summer	2.450	0.0	159.3	420
720	min	Summer	2.134	0.0	166.5	490
960	min	Summer	1.717	0.0	178.6	630
1440	min	Summer	1.264	0.0	197.2	908
2160	min	Summer	0.931	0.0	218.0	1280
2880	min	Summer	0.749	0.0	234.1	1620
4320	min	Summer	0.551	0.0	258.1	2296
5760	min	Summer	0.443	0.0	277.0	2952
7200	min	Summer	0.375	0.0	292.5	3672
8640	min	Summer	0.326	0.0	305.9	4408
10080	min	Summer	0.291	0.0	317.6	5136
15	min	Winter	32.914	0.0	53.2	25
30	min	Winter	21.228	0.0	68.7	39
60	min	Winter	13.233	0.0	86.0	66
120	min	Winter	8.073	0.0	104.9	122
180	min	Winter	6.014	0.0	117.3	178
240	min	Winter	4.874	0.0	126.7	232
360	min	Winter	3.603	0.0	140.5	294
480	min	Winter	2.900	0.0	150.8	370
		0	1982-20	20 Inno	WW70	

Evolve		Page 2
20 Baltic Street	Staples Corner	
London	Storage Sizing	
EC1Y OUL	lyr	Mirco
Date 07/12/2023 10:48	Designed by PW	
File 231207 1yr Storage Sizing.SRCX	Checked by LG	Diamage
Innovyze	Source Control 2020.1.3	

Summary of Results for 1 year Return Period

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m ³)	Status	
600	min	Winter	9.322	0.722	3.2	83.1	ОК
720	min	Winter	9.289	0.689	3.2	79.2	ΟK
960	min	Winter	9.217	0.617	3.2	71.0	ΟK
1440	min	Winter	9.048	0.448	3.2	51.5	ОК
2160	min	Winter	8.853	0.253	3.2	29.1	ΟK
2880	min	Winter	8.749	0.149	3.1	17.1	ОК
4320	min	Winter	8.692	0.092	2.5	10.5	ΟK
5760	min	Winter	8.676	0.076	2.0	8.7	ΟK
7200	min	Winter	8.667	0.067	1.7	7.6	ΟK
8640	min	Winter	8.661	0.061	1.5	7.0	ΟK
10080	min	Winter	8.657	0.057	1.3	6.5	ΟK

s I	Stor Even	m t	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m ³)	Time-Peak (mins)
600	min	Winter	2.450	0.0	159.3	448
720	min	Winter	2.134	0.0	166.5	526
960	min	Winter	1.717	0.0	178.6	678
1440	min	Winter	1.264	0.0	197.2	950
2160	min	Winter	0.931	0.0	218.0	1284
2880	min	Winter	0.749	0.0	234.1	1592
4320	min	Winter	0.551	0.0	258.1	2212
5760	min	Winter	0.443	0.0	277.0	2936
7200	min	Winter	0.375	0.0	292.5	3600
8640	min	Winter	0.326	0.0	305.9	4408
10080	min	Winter	0.291	0.0	317.7	5136

Evolve	Page 3	
20 Baltic Street	Staples Corner	
London	Storage Sizing	
EC1Y OUL	lyr	Micco
Date 07/12/2023 10:48	Designed by PW	
File 231207 1yr Storage Sizing.SRCX	Checked by LG	Dialitacje
Innovyze	Source Control 2020.1.3	

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	1	Cv (Summer)	1.000
Region	England and Wales	Cv (Winter)	1.000
M5-60 (mm)	20.600	Shortest Storm (mins)	15
Ratio R	0.437	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+0

<u>Time Area Diagram</u>

Total Area (ha) 0.651

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.217	4	8	0.217	8	12	0.217

<u>Time Area Diagram</u>

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

0 4 0.000

								Dece	4		
FAOLAE								Page	4		
20 Baltic Street			Staples Co								
London			Storage S:	Storage Sizing							
EC1Y OUL			lyr					Mi			
Date 07/12/2023 10:48			Designed b	by PW				DC			
File 231207 1yr Storag	ge Sizing.SRCX		Checked by	y LG				DIG	anaye		
Innovyze			Source Con	ntrol 2	2020.1.3						
<u>Model Details</u> Storage is Online Cover Level (m) 10.000											
Tank or Pond Structure											
		In	vert Level (1	m) 8.600)						
Depth (m) Area (m²)	Depth (m) Area (m²) I	Depth (m) Are	ea (m²)	Depth (m)	Area (m²)	Depth (m)	Area	(m²)		
0.000 115.0 0.400 115.0	2.400 2.800	0.0	4.800 5.200	0.0	7.200	0.0	9.600 10.000		0.0 0.0		
0.800 115.0	3.600	0.0	6.000	0.0	8.400	0.0					
1.600 0.0	4.000	0.0	6.400	0.0	8.800	0.0					
2.000 0.0	4.400	0.0	6.800	0.0	9.200	0.0					
	<u>Hydro-</u> H	Brake	e® Optimum	Outflo	w Contro	1					
		Un	it Reference	MD-SHE-	-0088-3200	-0800-3200					
		Des	ign Head (m)			0.800					
]	Desig	n Flow (1/s)			3.2					
			Objective	Minimi	ise unstre	am storage					
			Application		100 ap0010	Surface					
		Su	mp Available			Yes					
		D	iameter (mm)			88					
	Minimum Outlot D	Inve inc F	ert Level (m)			8.600					
	Suggested Manho	ole D	Diameter (mm)			1200					
Control Po	oints Head (m) F:	low (l/s)	Conti	rol Points	Head	l (m) Flow	(1/s)			
Design Point (C	alculated) 0.8	00	3.2		Kick	-Flo® 0	.517	2.6			
	Flush-Flo TM 0.2	37	3.2 Mea	an Flow	over Head	Range	-	2.8			
The hydrological calcula specified. Should anoth storage routing calculat	The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated										
Depth (m) Flow (l/s)	Depth (m) Flow (1/	's) D	epth (m) Flo	w (l/s)	Depth (m)	Flow (l/s) Depth (m) Flow	v (l/s)		
0.100 2.7	0.800 3	3.2	2.000	4.9	4.000	6.	8 7.00	0	8.8		

0.100	2.7	0.800	3.2	2.000	4.9	4.000	6.8	7.000	8.8
0.200	3.2	1.000	3.5	2.200	5.1	4.500	7.2	7.500	9.1
0.300	3.2	1.200	3.9	2.400	5.3	5.000	7.5	8.000	9.4
0.400	3.1	1.400	4.1	2.600	5.5	5.500	7.9	8.500	9.7
0.500	2.7	1.600	4.4	3.000	5.9	6.000	8.2	9.000	9.9
0.600	2.8	1.800	4.7	3.500	6.4	6.500	8.5	9.500	10.2
	1		1		I.		I		

Evolve !				
20 Baltic Street	Staples Corner			
London	Storage Sizing			
EC1Y OUL	30yr	Micro		
Date 07/12/2023 10:43	Designed by PW			
File 231207 30yr Storage Sizing.SRCX	Checked by LG	Diamaye		
Innovyze	Source Control 2020.1.3	•		

Summary of Results for 30 year Return Period

	Stor Even	m t	Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Volume (m³)	Status
15	min	Summer	9.082	0.482	8.7	122.9	ОК
30	min	Summer	9.211	0.611	8.7	155.7	ОК
60	min	Summer	9.317	0.717	8.7	182.9	ΟK
120	min	Summer	9.381	0.781	8.7	199.2	ΟK
180	min	Summer	9.384	0.784	8.7	199.8	ΟK
240	min	Summer	9.371	0.771	8.7	196.6	ΟK
360	min	Summer	9.340	0.740	8.7	188.6	ΟK
480	min	Summer	9.306	0.706	8.7	180.0	ΟK
600	min	Summer	9.271	0.671	8.7	171.1	ΟK
720	min	Summer	9.236	0.636	8.7	162.1	ΟK
960	min	Summer	9.163	0.563	8.7	143.6	ΟK
1440	min	Summer	9.022	0.422	8.7	107.5	ΟK
2160	min	Summer	8.874	0.274	8.7	70.0	ΟK
2880	min	Summer	8.790	0.190	8.6	48.5	ΟK
4320	min	Summer	8.733	0.133	7.3	34.0	ΟK
5760	min	Summer	8.712	0.112	5.9	28.6	ΟK
7200	min	Summer	8.699	0.099	5.0	25.4	ΟK
8640	min	Summer	8.691	0.091	4.3	23.1	ΟK
10080	min	Summer	8.684	0.084	3.8	21.4	ΟK
15	min	Winter	9.082	0.482	8.7	123.0	ΟK
30	min	Winter	9.211	0.611	8.7	155.8	ΟK
60	min	Winter	9.318	0.718	8.7	183.1	ΟK
120	min	Winter	9.384	0.784	8.7	199.8	ΟK
180	min	Winter	9.388	0.788	8.7	200.9	ΟK
240	min	Winter	9.370	0.770	8.7	196.3	ΟK
360	min	Winter	9.329	0.729	8.7	185.9	ΟK
480	min	Winter	9.282	0.682	8.7	173.8	ΟK

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	80.827	0.0	130.3	25
30	min	Summer	51.838	0.0	167.4	39
60	min	Summer	31.749	0.0	206.1	66
120	min	Summer	18.872	0.0	245.1	124
180	min	Summer	13.779	0.0	268.4	176
240	min	Summer	10.980	0.0	285.2	204
360	min	Summer	7.955	0.0	310.0	268
480	min	Summer	6.327	0.0	328.8	336
600	min	Summer	5.294	0.0	343.9	406
720	min	Summer	4.575	0.0	356.7	474
960	min	Summer	3.633	0.0	377.5	614
1440	min	Summer	2.622	0.0	408.6	858
2160	min	Summer	1.890	0.0	442.5	1196
2880	min	Summer	1.498	0.0	467.4	1532
4320	min	Summer	1.078	0.0	504.3	2208
5760	min	Summer	0.853	0.0	533.0	2936
7200	min	Summer	0.712	0.0	555.5	3672
8640	min	Summer	0.613	0.0	574.4	4400
10080	min	Summer	0.541	0.0	590.5	5136
15	min	Winter	80.827	0.0	130.3	25
30	min	Winter	51.838	0.0	167.4	39
60	min	Winter	31.749	0.0	206.1	66
120	min	Winter	18.872	0.0	245.1	122
180	min	Winter	13.779	0.0	268.4	176
240	min	Winter	10.980	0.0	285.2	224
360	min	Winter	7.955	0.0	310.0	280
480	min	Winter	6.327	0.0	328.8	358
		രി	1982-20	20 Inno	WW70	

Evolve			
20 Baltic Street	Staples Corner		
London	Storage Sizing		
EC1Y OUL	30yr	Micco	
Date 07/12/2023 10:43	Designed by PW		
File 231207 30yr Storage Sizing.SRCX	Checked by LG	Diamage	
Innovyze	Source Control 2020.1.3		

Summary of Results for 30 year Return Period

	Storm Event			Max Depth (m)	Max Control (1/s)	Max Volume (m ³)	Statu	IS
600	min	Winter	9.230	0.630	8.7	160.8	0	K
720	min	Winter	9.176	0.576	8.7	146.8	0	Κ
960	min	Winter	9.056	0.456	8.7	116.3	0	Κ
1440	min	Winter	8.878	0.278	8.7	70.9	0	Κ
2160	min	Winter	8.752	0.152	8.3	38.6	0	Κ
2880	min	Winter	8.724	0.124	6.7	31.5	0	Κ
4320	min	Winter	8.698	0.098	4.9	25.0	0	Κ
5760	min	Winter	8.685	0.085	3.9	21.6	0	Κ
7200	min	Winter	8.676	0.076	3.2	19.4	0	Κ
8640	min	Winter	8.670	0.070	2.8	17.9	0	Κ
10080	min	Winter	8.665	0.065	2.5	16.6	0	Κ

Storm		m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
600	min	Winter	5.294	0.0	343.9	436
720	min	Winter	4.575	0.0	356.7	512
960	min	Winter	3.633	0.0	377.6	638
1440	min	Winter	2.622	0.0	408.6	870
2160	min	Winter	1.890	0.0	442.5	1148
2880	min	Winter	1.498	0.0	467.4	1500
4320	min	Winter	1.078	0.0	504.3	2208
5760	min	Winter	0.853	0.0	533.0	2944
7200	min	Winter	0.712	0.0	555.5	3672
8640	min	Winter	0.613	0.0	574.4	4392
10080	min	Winter	0.541	0.0	590.6	5112

Evolve		Page 3
20 Baltic Street	Staples Corner	
London	Storage Sizing	
EC1Y OUL	30yr	Micco
Date 07/12/2023 10:43	Designed by PW	
File 231207 30yr Storage Sizing.SRCX	Checked by LG	Diamaye
Innovyze	Source Control 2020.1.3	

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	30	Cv (Summer)	1.000
Region	England and Wales	Cv (Winter)	1.000
M5-60 (mm)	20.600	Shortest Storm (mins)	15
Ratio R	0.437	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change 🖇	+0

<u>Time Area Diagram</u>

Total Area (ha) 0.651

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.217	4	8	0.217	8	12	0.217

<u>Time Area Diagram</u>

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

0 4 0.000

Evolve									Page	4		
20 Baltic	Street			Staples C	orner							
London				Storage S	Storage Sizing							
EC1Y OUL				30yr					Mi			
Date 07/12	ate 07/12/2023 10:43 Designed by PW											
File 23120	7 30yr Stor	age Sizinc	g.SRCX	Checked b	y LG				DIC	anaye		
Innovyze Source Control 2020.1.3												
				<u>Model Det</u>	ails							
			Storage is	Online Cover	Level	(m) 10.000						
	Tank or Pond Structure											
Invert Level (m) 8.600												
Depth	(m) Area (m ²) Depth (m)	Area (m²)	Depth (m) Are	ea (m²)	Depth (m)	Area (m²)	Depth (m)	Area	(m²)		
0.	000 255.	0 2.400	0.0	4.800	0.0	7.200	0.0	9.600		0.0		
0.	400 255.	0 2.800	0.0	5.200	0.0	7.600	0.0	10.000		0.0		
0.	800 255.	0 3.200	0.0	5.600	0.0	8.000	0.0					
1.	600 0.	0 4.000	0.0	6.400	0.0	8.800	0.0					
2.	000 0.	0 4.400	0.0	6.800	0.0	9.200	0.0					
		<u>H</u>	<u>ydro-Bra</u>	ke® Optimum	Outflo	w Control	<u>1</u>					
			τ	Jnit Reference	MD-SHE	-0140-8700-	-0800-8700					
			De	esign Head (m)			0.800					
			Desi	ign Flow (l/s)			8.7					
				Flush-Flo™			Calculated					
				Application	Minim	ise upstrea	Surface					
			5	Sump Available			Yes					
				Diameter (mm)			140					
			Inv	vert Level (m)			8.600					
		Suggeste	ed Manhole	Diameter (mm)			1200					
	Control 1	Points	Head (m)	Flow (l/s)	Cont	rol Points	Head	l (m) Flow	(l/s)			
D	esign Point (Calculated)	0.800	8.7	_	Kick	-Flo® 0	.562	7.4			
		Flush-Flo™	0.254	8.7 Mea	an Flow	over Head	Range	-	7.4			
The hydrol specified. storage ro	ogical calcu Should anot uting calcula	lations have ther type of ations will }	been base control de be invalide	d on the Head, evice other th ated	'Dischar nan a Hy	ge relation dro-Brake (nship for † Optimum® be	the Hydro- e utilised	Brake® then	Optimum as these		
Depth (m) Flow (l/s)	Depth (m) F	'low (l/s)	Depth (m) Flo	w (l/s)	Depth (m)	Flow (l/s) Depth (m	n) Flow	w (l/s)		
0.10	0 5.0	0.800	8.7	2.000	13.4	4.000	18.	7 7.00	0	24.4		

0.100	5.0	0.800	8.7	2.000	13.4	4.000	18.7	7.000	24.4
0.200	8.6	1.000	9.7	2.200	14.0	4.500	19.7	7.500	25.2
0.300	8.7	1.200	10.5	2.400	14.6	5.000	20.8	8.000	26.0
0.400	8.4	1.400	11.3	2.600	15.2	5.500	21.7	8.500	26.7
0.500	8.0	1.600	12.1	3.000	16.3	6.000	22.7	9.000	27.5
0.600	7.6	1.800	12.8	3.500	17.5	6.500	23.6	9.500	28.3

Evolve			
20 Baltic Street	Staples Corner		
London	Storage Sizing		
EC1Y OUL	100yr	Micco	
Date 07/12/2023 10:39	Designed by PW		
File 231207 100yr Storage Sizing.SRCX	Checked by LG	Diamage	
Innovyze	Source Control 2020.1.3		

Summary of Results for 100 year Return Period

	Stor Even	m t	Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	9.082	0.482	12.0	159.4	ОК
30	min	Summer	9.215	0.615	12.0	203.5	ΟK
60	min	Summer	9.324	0.724	12.0	239.7	ΟK
120	min	Summer	9.385	0.785	12.0	260.0	ΟK
180	min	Summer	9.383	0.783	12.0	259.3	ΟK
240	min	Summer	9.368	0.768	12.0	254.1	ΟK
360	min	Summer	9.331	0.731	12.0	242.0	ΟK
480	min	Summer	9.293	0.693	12.0	229.3	ΟK
600	min	Summer	9.254	0.654	12.0	216.3	ΟK
720	min	Summer	9.214	0.614	12.0	203.2	ΟK
960	min	Summer	9.129	0.529	12.0	175.0	ΟK
1440	min	Summer	8.988	0.388	12.0	128.6	ΟK
2160	min	Summer	8.850	0.250	12.0	82.6	ΟK
2880	min	Summer	8.780	0.180	11.6	59.4	ΟK
4320	min	Summer	8.737	0.137	9.1	45.3	ΟK
5760	min	Summer	8.717	0.117	7.3	38.7	ΟK
7200	min	Summer	8.704	0.104	6.2	34.5	ΟK
8640	min	Summer	8.695	0.095	5.3	31.5	ΟK
10080	min	Summer	8.688	0.088	4.7	29.2	ΟK
15	min	Winter	9.082	0.482	12.0	159.5	ΟK
30	min	Winter	9.215	0.615	12.0	203.5	ΟK
60	min	Winter	9.325	0.725	12.0	239.9	ΟK
120	min	Winter	9.387	0.787	12.0	260.6	ΟK
180	min	Winter	9.386	0.786	12.0	260.3	ΟK
240	min	Winter	9.363	0.763	12.0	252.6	ΟK
360	min	Winter	9.316	0.716	12.0	237.1	ΟK
480	min	Winter	9.263	0.663	12.0	219.4	ΟK

	Stor	m	Rain	Flooded	Flooded Discharge	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	105.122	0.0	169.1	25
30	min	Summer	67.935	0.0	219.0	39
60	min	Summer	41.754	0.0	270.9	66
120	min	Summer	24.792	0.0	321.8	122
180	min	Summer	18.043	0.0	351.4	170
240	min	Summer	14.324	0.0	371.9	198
360	min	Summer	10.321	0.0	402.1	262
480	min	Summer	8.179	0.0	424.9	332
600	min	Summer	6.825	0.0	443.1	402
720	min	Summer	5.884	0.0	458.4	470
960	min	Summer	4.653	0.0	483.3	600
1440	min	Summer	3.338	0.0	519.9	844
2160	min	Summer	2.391	0.0	559.7	1180
2880	min	Summer	1.885	0.0	588.3	1504
4320	min	Summer	1.347	0.0	630.1	2208
5760	min	Summer	1.061	0.0	662.6	2944
7200	min	Summer	0.881	0.0	687.6	3672
8640	min	Summer	0.756	0.0	708.4	4408
10080	min	Summer	0.665	0.0	725.9	5136
15	min	Winter	105.122	0.0	169.1	25
30	min	Winter	67.935	0.0	219.0	39
60	min	Winter	41.754	0.0	270.9	66
120	min	Winter	24.792	0.0	321.8	120
180	min	Winter	18.043	0.0	351.4	174
240	min	Winter	14.324	0.0	371.9	206
360	min	Winter	10.321	0.0	402.1	278
480	min	Winter	8.179	0.0	424.9	356
		©.	1982-20	20 Inno	WWZA	

Evolve			
20 Baltic Street	Staples Corner		
London	Storage Sizing		
EC1Y OUL	100yr	Micro	
Date 07/12/2023 10:39	Designed by PW		
File 231207 100yr Storage Sizing.SRCX	Checked by LG	Diamage	
Innovyze	Source Control 2020.1.3		

Summary of Results for 100 year Return Period

	Storm Event			Max Depth (m)	Max Control (1/s)	Max Volume (m ³)	Status	;
600	min	Winter	9.205	0.605	12.0	200.2	ΟK	ζ
720	min	Winter	9.138	0.538	12.0	178.1	ΟK	ζ
960	min	Winter	9.020	0.420	12.0	139.0	ΟK	ζ
1440	min	Winter	8.849	0.249	12.0	82.5	ΟK	ζ
2160	min	Winter	8.755	0.155	10.5	51.3	ΟK	ζ
2880	min	Winter	8.729	0.129	8.5	42.7	ΟK	ζ
4320	min	Winter	8.704	0.104	6.1	34.3	ΟK	ζ
5760	min	Winter	8.690	0.090	4.8	29.8	ΟK	(
7200	min	Winter	8.681	0.081	4.0	26.7	ΟK	(
8640	min	Winter	8.674	0.074	3.5	24.5	ΟK	ζ
10080	min	Winter	8.669	0.069	3.1	22.8	ΟK	ζ

	Storm			Flooded	Flooded Discharge Tim				
	Even	t	(mm/hr)	Volume	Volume	(mins)			
				(m³)	(m³)				
600	min	Winter	6.825	0.0	443.1	432			
720	min	Winter	5.884	0.0	458.5	500			
960	min	Winter	4.653	0.0	483.4	626			
1440	min	Winter	3.338	0.0	519.9	846			
2160	min	Winter	2.391	0.0	559.7	1148			
2880	min	Winter	1.885	0.0	588.3	1500			
4320	min	Winter	1.347	0.0	630.1	2208			
5760	min	Winter	1.061	0.0	662.6	2944			
7200	min	Winter	0.881	0.0	687.6	3672			
8640	min	Winter	0.756	0.0	708.4	4376			
10080	min	Winter	0.665	0.0	726.0	5136			

Evolve		Page 3
20 Baltic Street	Staples Corner	
London	Storage Sizing	
EC1Y OUL	100yr	Micro
Date 07/12/2023 10:39	Designed by PW	
File 231207 100yr Storage Sizing.SRCX	Checked by LG	Dialitage
Innovyze	Source Control 2020.1.3	•

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	1.000
Region	England and Wales	Cv (Winter)	1.000
M5-60 (mm)	20.600	Shortest Storm (mins)	15
Ratio R	0.437	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+0

<u>Time Area Diagram</u>

Total Area (ha) 0.651

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.217	4	8	0.217	8	12	0.217

<u>Time Area Diagram</u>

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

0 4 0.000

Evolve							Page	4
20 Baltic Street		Staples C	Corner					
London		Storage S	Storage Sizing					
EC1Y OUL		100yr					Mi	
Date 07/12/2023 10:39	Date 07/12/2023 10:39 Designed by PW							
File 231207 100yr Storage Sizir	ng.SRCX	Checked b	by LG				DI	anaye
Innovyze		Source Co	ontrol 2	2020.1.3				
		<u>Model Det</u>	<u>tails</u>					
	Storage is (Doline Cove	r Level	(m) 10 000				
	Storage is C	JIIIIle Cove.	r rever ((10) 10.000				
	Tank	or Pond	Structu	re				
	Inv	vert Level	(m) 8.600)				
Depth (m) Area (m²) Depth (m)	Area (m²) D	epth (m) Ar	ea (m²)	Depth (m)	Area (m²)	Depth (m)	Area	(m²)
0 000 331 0 2 400	0 0	4 800		7 200	0 0	9 600		0 0
0.400 331.0 2.800	0.0	5.200	0.0	7.600	0.0	10.000		0.0
0.800 331.0 3.200	0.0	5.600	0.0	8.000	0.0			
0.801 0.0 3.600	0.0	6.000	0.0	8.400	0.0			
1.600 0.0 4.000	0.0	6.400	0.0	8.800	0.0			
2.000 0.0 4.400	0.0	6.800	0.0	9.200	0.0			
н	lvdro-Brake	® Optimum	Outflo	w Contro	1			
-	<u>*</u> · · · · · ·	<u>-</u>						
	Uni	it Reference	e MD-SHE-	0161-1200	-0800-1200			
	Desi	ign Head (m))		0.800			
	Desigr	n Flow (l/s))		12.0			
		Flush-Flor	n Minimi	an unatro	Calculated			
		Application	- MITITIUT 2	se upstre	Surface			
	Sun	nppricacion np Available	<i>.</i> .		Yes			
	Di	Lameter (mm))		161			
	Inver	rt Level (m))		8.600			
Minimum Ou	utlet Pipe Di	iameter (mm))		225			
Suggeste	ed Manhole Di	iameter (mm))		1200			
Control Points	Head (m) Fl	ow (1/s)	Contr	ol Points	Head	l (m) Flow	(1/s)	
							· · · ·	
Design Point (Calculated) Elush-Elo™	0.800	12.0 12.0 Me	an Flow	Kick over Head	-Flo® (Bange	.579	10.3	
Fiush-Fi0	0.272	12.0 Me	all FIOW	over neau	Ralige		10.1	
The hydrological calculations have	been based	on the Head	/Discharg	ge relatio	nship for	the Hydro-	Brake®	Optimum as
specified. Should another type of	control dev	ice other t	han a Hyo	dro-Brake	Optimum® b	e utilised	then	these
storage routing calculations will 3	be invalidat	ed						
Depth (m) Flow (1/s) Depth (m) F	Clow (l/s) De	epth (m) Flo	ow (1/s)	Depth (m)	Flow (l/s) Depth (n	1) Flo	w (l/s)

spen (i	.,	(1/3)	Depen (m)	110# (1/3)	Depen (m)	1100 (1/3)	Depen (m)	110# (1/3)	Depen (m)	110# (1/3)
0.10	00	5.8	0.800	12.0	2.000	18.5	4.000	25.8	7.000	33.8
0.20	00	11.8	1.000	13.3	2.200	19.4	4.500	27.3	7.500	34.9
0.30	0	12.0	1.200	14.5	2.400	20.2	5.000	28.7	8.000	36.1
0.40	0	11.7	1.400	15.6	2.600	21.0	5.500	30.1	8.500	37.0
0.50	0	11.2	1.600	16.6	3.000	22.5	6.000	31.4	9.000	38.1
0.60	00	10.5	1.800	17.6	3.500	24.2	6.500	32.6	9.500	39.1
			1		1		1		1	

Evolve		Page 1
20 Baltic Street	Staples Corner	
London	Storage Sizing	
EC1Y OUL	100yr + 40%	Micro
Date 07/12/2023 10:34	Designed by PW	
File 231207 100yr + 40% Storage Sizi	Checked by LG	Diamage
Innovyze	Source Control 2020.1.3	

Summary of Results for 100 year Return Period (+40%)

	Stor	m	Max	Max	Max	Max	Status
	Even	t	rever	Depth	Control	Volume	
			(m)	(m)	(l/s)	(m³)	
15	min	Summer	9.054	0.454	12.0	227.7	ОК
30	min	Summer	9.182	0.582	12.0	291.8	ОК
60	min	Summer	9.296	0.696	12.0	348.6	0 K
120	min	Summer	9.377	0.777	12.0	389.1	ОК
180	min	Summer	9.397	0.797	12.0	399.2	ОК
240	min	Summer	9.393	0.793	12.0	397.1	0 K
360	min	Summer	9.370	0.770	12.0	385.7	ОК
480	min	Summer	9.346	0.746	12.0	373.6	ОК
600	min	Summer	9.320	0.720	12.0	360.9	ОК
720	min	Summer	9.294	0.694	12.0	347.8	ОК
960	min	Summer	9.241	0.641	12.0	321.2	ОК
1440	min	Summer	9.129	0.529	12.0	264.9	ОК
2160	min	Summer	8.988	0.388	12.0	194.5	ОК
2880	min	Summer	8.887	0.287	12.0	143.7	ОК
4320	min	Summer	8.779	0.179	11.6	89.9	ОК
5760	min	Summer	8.747	0.147	9.9	73.5	ОК
7200	min	Summer	8.729	0.129	8.5	64.6	ОК
8640	min	Summer	8.717	0.117	7.3	58.6	ОК
10080	min	Summer	8.708	0.108	6.5	54.1	ОК
15	min	Winter	9.055	0.455	12.0	227.8	ОК
30	min	Winter	9.183	0.583	12.0	291.9	ОК
60	min	Winter	9.296	0.696	12.0	348.6	ОК
120	min	Winter	9.378	0.778	12.0	389.7	ОК
180	min	Winter	9.399	0.799	12.0	400.4	ОК
240	min	Winter	9.396	0.796	12.0	399.0	ОК
360	min	Winter	9.366	0.766	12.0	383.6	ОК
480	min	Winter	9.336	0.736	12.0	368.6	ОК

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	147.171	0.0	234.9	26
30	min	Summer	95.108	0.0	304.4	40
60	min	Summer	58.456	0.0	378.2	68
120	min	Summer	34.709	0.0	449.5	126
180	min	Summer	25.261	0.0	490.8	182
240	min	Summer	20.053	0.0	519.6	240
360	min	Summer	14.450	0.0	561.7	296
480	min	Summer	11.451	0.0	593.5	358
600	min	Summer	9.554	0.0	619.1	426
720	min	Summer	8.237	0.0	640.4	496
960	min	Summer	6.514	0.0	675.2	634
1440	min	Summer	4.673	0.0	726.3	898
2160	min	Summer	3.347	0.0	782.9	1260
2880	min	Summer	2.639	0.0	822.9	1596
4320	min	Summer	1.886	0.0	880.8	2252
5760	min	Summer	1.485	0.0	927.2	2944
7200	min	Summer	1.233	0.0	962.1	3680
8640	min	Summer	1.059	0.0	991.0	4408
10080	min	Summer	0.931	0.0	1015.1	5144
15	min	Winter	147.171	0.0	234.9	25
30	min	Winter	95.108	0.0	304.4	39
60	min	Winter	58.456	0.0	378.2	68
120	min	Winter	34.709	0.0	449.5	124
180	min	Winter	25.261	0.0	490.8	180
240	min	Winter	20.053	0.0	519.6	234
360	min	Winter	14.450	0.0	561.7	306
480	min	Winter	11.451	0.0	593.6	376
		0	1982-20	20 Tnno	11170	

©1982-2020 Innovyze

Evolve		Page 2
20 Baltic Street	Staples Corner	
London	Storage Sizing	
EC1Y OUL	100yr + 40%	Micro
Date 07/12/2023 10:34	Designed by PW	Desinado
File 231207 100yr + 40% Storage Sizi	Checked by LG	Diamage
Innovyze	Source Control 2020.1.3	

Summary of Results for 100 year Return Period (+40%)

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m ³)	Statu	s	
600	min	Winter	9.302	0.702	12.0	351.5	0	K
720	min	Winter	9.265	0.665	12.0	333.1	0	K
960	min	Winter	9.186	0.586	12.0	293.4	0	Κ
1440	min	Winter	9.021	0.421	12.0	210.9	0	K
2160	min	Winter	8.850	0.250	12.0	125.3	0	Κ
2880	min	Winter	8.769	0.169	11.5	84.5	0	K
4320	min	Winter	8.729	0.129	8.5	64.6	0	K
5760	min	Winter	8.710	0.110	6.7	55.2	0	K
7200	min	Winter	8.698	0.098	5.6	49.2	0	Κ
8640	min	Winter	8.690	0.090	4.8	45.0	0	Κ
10080	min	Winter	8.683	0.083	4.2	41.8	0	Κ

	Stor Even	m t	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m ³)	Time-Peak (mins)
600	min	Winter	9.554	0.0	619.1	452
720	min	Winter	8.237	0.0	640.5	530
960	min	Winter	6.514	0.0	675.2	684
1440	min	Winter	4.673	0.0	726.4	938
2160	min	Winter	3.347	0.0	782.9	1268
2880	min	Winter	2.639	0.0	823.0	1536
4320	min	Winter	1.886	0.0	881.0	2252
5760	min	Winter	1.485	0.0	927.2	2944
7200	min	Winter	1.233	0.0	962.2	3680
8640	min	Winter	1.059	0.0	991.1	4408
10080	min	Winter	0.931	0.0	1015.3	5144

Evolve		Page 3
20 Baltic Street	Staples Corner	
London	Storage Sizing	
EC1Y OUL	100yr + 40%	Micco
Date 07/12/2023 10:34	Designed by PW	Desinado
File 231207 100yr + 40% Storage Sizi	Checked by LG	Diamaye
Innovyze	Source Control 2020.1.3	

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	1.000
Region	England and Wales	Cv (Winter)	1.000
M5-60 (mm)	20.600	Shortest Storm (mins)	15
Ratio R	0.437	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change 🖇	+40

<u>Time Area Diagram</u>

Total Area (ha) 0.651

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.217	4	8	0.217	8	12	0.217

<u>Time Area Diagram</u>

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

0 4 0.000

Evolve			Page 4
20 Baltic Street	Staples Corner		
London	Storage Sizing		
EC1Y OUL	100yr + 40%		Micco
Date 07/12/2023 10:34	Designed by PW		
File 231207 100yr + 40% Storage Sizi	Checked by LG		Digitigh
Innovyze	Source Control 20	020.1.3	
	<u>Model Details</u>		
Storage is	Online Cover Level (m	0 10 000	
		., 10.000	
Tank	or Pond Structure	<u>e</u>	
In	vert Level (m) 8.600		
Depth (m) Area (m²) Depth (m) Area (m²) D	Depth (m) Area (m²) De	epth (m) Area (m²) Depth	(m) Area (m²)
0.000 501.0 2.400 0.0	4.800 0.0	7.200 0.0 9.	600 0.0
0.400 501.0 2.800 0.0	5.200 0.0	7.600 0.0 10.	000 0.0
0.800 501.0 3.200 0.0	5.600 0.0	8.000 0.0	
0.801 0.0 3.600 0.0	6.000 0.0	8.400 0.0	
2.000 0.0 4.000 0.0	6.400 0.0 6.800 0.0	9.200 0.0	
<u>Hydro-Brake</u>	e® Optimum Outflow	Control	
Un	it Poforonco MD-SUE-0	161-1200-0800-1200	
Des	ign Head (m)	0.800	
Desig	n Flow (l/s)	12.0	
-	Flush-Flo™	Calculated	
	Objective Minimis	e upstream storage	
	Application	Surface	
su מ	mp Avallable jameter (mm)	161	
Inve	rt Level (m)	8,600	
Minimum Outlet Pipe D	iameter (mm)	225	
Suggested Manhole D	iameter (mm)	1200	
Control Points Head (m) Fl	.ow (l/s) Contro	l Points Head (m) F	low (l/s)
Design Point (Calculated) 0.800	12.0	Kick-Flo® 0.579	10.3
Flush-Flo™ 0.272	12.0 Mean Flow ov	ver Head Range -	10.1
The hydrological calculations have been based specified. Should another type of control dev storage routing calculations will be invalidat Depth (m) Flow (1/s) Depth (m) Flow (1/s) De	on the Head/Discharge rice other than a Hydr ed epth (m) Flow (1/s)	e relationship for the Hyd co-Brake Optimum® be utili Depth (m) Flow (1/s) Deptl	dro-Brake® Optimum as .sed then these h (m) Flow (1/s)

Depth (m)	Flow (l/s)								
0.100	5.8	0.800	12.0	2.000	18.5	4.000	25.8	7.000	33.8
0.200	11.8	1.000	13.3	2.200	19.4	4.500	27.3	7.500	34.9
0.300	12.0	1.200	14.5	2.400	20.2	5.000	28.7	8.000	36.1
0.400	11.7	1.400	15.6	2.600	21.0	5.500	30.1	8.500	37.0
0.500	11.2	1.600	16.6	3.000	22.5	6.000	31.4	9.000	38.1
0.600	10.5	1.800	17.6	3.500	24.2	6.500	32.6	9.500	39.1

Appendix C – Drainage Layout

Appendix D – Barnet SuDS Proforma

GREATER **LONDON** AUTHORITY

	Project / Site Name (including sub- catchment / stage / phase where appropriate)	- Big Yellow, Staples Corner.			
	Address & post code	Renault/ Dacia, Staples Corner, North Circular Road, Brent Cross, NW2 1LY			
	OS Crid rof (Easting Northing)	E 522620			
	OS GHUTEL (Easting, Northing)	N 187382			
tails	LPA reference (if applicable)				
1. Project & Site Deta	Brief description of proposed work	Demolition of the existing building and the construction of a self-storage facility (Use Class B8), with flexible office space (Use Class E(g)(i)) and external storage units (Use Class B8), with associated parking and servicing areas.			
•••	Total site Area	8444 m ²			
	Total existing impervious area	7956 m ²			
	Total proposed impervious area	6921 m ²			
	Is the site in a surface water flood risk catchment (ref. local Surface Water Management Plan)?	No			
	Existing drainage connection type and location	Gravity to public sewer.			
	Designer Name	Paul White			
	Designer Position	Civil Engineer			
	Designer Company	Evolve Consulting Engineers			

	2a. Infiltration Feasibility				
	Superficial geology classification	assification		Alluvium	
	Bedrock geology classification		London Clay		
	Site infiltration rate		m/s		
	Depth to groundwater level	m below		w ground level	
	Is infiltration feasible?		No		
	2b. Drainage Hierarchy				
2. Proposed Discharge Arrangements			Feasible (Y/N)	Proposed (Y/N)	
	1 store rainwater for later use		Ν	Ν	
	2 use infiltration techniques, such as porous surfaces in non-clay areas		Ν	Ν	
	3 attenuate rainwater in ponds or open water features for gradual release		Y	N	
	4 attenuate rainwater by storing in tanks or sealed water features for gradual release		Y	Y	
	5 discharge rainwater direct to a watercourse		Y	Ν	
	6 discharge rainwater to a surface water sewer/drain		Y	Y	
	7 discharge rainwater to the combined sewer.		Ν	Ν	
	2c. Proposed Discharge Details				
	Proposed discharge location	ing connection with public surface water s			
	Has the owner/regulator of the discharge location been consulted?	No			

GREATER **LONDON** AUTHORITY

	3a. Discharge Ra	e Rates & Required Storage					
		Greenfield (GF) runoff rate (l/s)	Existing discharge rate (I/s)	Required storage for GF rate (m ³)	Proposed discharge rate (l/s)		
rainage Strategy	Qbar	3.76	\ge	\ge	\geq		
	1 in 1	3.2	55.95	92	3.2		
	1 in 30	8.66	137.36	200	8.7		
	1 in 100	12.01	178.54	260	12		
	1 in 100 + CC		\geq	401	12		
	Climate change allowance used		40%				
	3b. Principal Method of Flow Control		Complex flow restrictor.				
	3c. Proposed SuDS Measures						
			Catchment	Plan area	Storage		
raiı			area (m²)	(m ²)	vol. (m ³)		
3. Draii	Rainwater harves	sting	area (m²) 0	(m ²)	<i>vol. (m</i> ³)		
3. Draii	Rainwater harves	sting	area (m ²) 0 0	(m ²)	<i>vol. (m</i> ³) 0		
3. Draii	Rainwater harves Infiltration syster Green roofs	sting ns	area (m ²) 0 0 0	(m ²)	<i>vol.</i> (m ³) 0 0		
3. Draii	Rainwater harves Infiltration syster Green roofs Blue roofs	ns	area (m²) 0 0 0 0	(m ²) 0 0	vol. (m ³) 0 0 0		
3. Draii	Rainwater harves Infiltration syster Green roofs Blue roofs Filter strips	sting ns	area (m ²) 0 0 0 0	(m ²) 0 0 0	vol. (m ³) 0 0 0 0		
3. Draii	Rainwater harves Infiltration syster Green roofs Blue roofs Filter strips Filter drains	ns	area (m ²) 0 0 0 0 0 0	(m ²) 0 0 0 0	vol. (m ³) 0 0 0 0 0 0		
3. Draii	Rainwater harves Infiltration syster Green roofs Blue roofs Filter strips Filter drains Bioretention / tree	ee pits	area (m ²) 0 0 0 0 0 0 0	(m ²) 0 0 0 0 0	vol. (m ³) 0 0 0 0 0 0 0		
3. Drai	Rainwater harves Infiltration syster Green roofs Blue roofs Filter strips Filter drains Bioretention / tre Pervious paveme	ee pits	area (m ²) 0 0 0 0 0 0 0 0	(m ²) 0 0 0 0 0 0 0	vol. (m ³) 0 0 0 0 0 0 0 276		
3. Drai	Rainwater harves Infiltration syster Green roofs Blue roofs Filter strips Filter drains Bioretention / tree Pervious paveme Swales	ee pits nts	area (m ²) 0 0 0 0 0 0 0 0 0 0	(m ²) 0 0 0 0 0 0 0 0 0	vol. (m ³) 0 0 0 0 0 0 276 0		
3. Drai	Rainwater harves Infiltration syster Green roofs Blue roofs Filter strips Filter drains Bioretention / tre Pervious paveme Swales Basins/ponds	ee pits nts	area (m ²) 0 0 0 0 0 0 0 0 0 0 0 0	(m ²) 0 0 0 0 0 0 0 0 0 0 0 0	vol. (m ³) 0 0 0 0 0 0 0 276 0 0		
3. Draii	Rainwater harves Infiltration syster Green roofs Blue roofs Filter strips Filter drains Bioretention / tree Pervious paveme Swales Basins/ponds Attenuation tank	ee pits nts	area (m ²) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(m ²) 0 0 0 0 0 0 0 0 0	vol. (m ³) 0 0 0 0 0 0 276 0 0 276 0 0 275		

Infiltration feasibility (2a) – geotechnical 3727-EVE-XX-XX-T-C-0002 - Sctn 4.2 Infiltration results 3727-EVE-XX-XX-T-C-0002 - Sctn 4.2 Drainage hierarchy (2b) 3727-EVE-XX-XX-T-C-0002 - Sctn 4.2 Proposed discharge details (2c) – utility plans, correspondence / approval from owner/regulator of discharge location Discharge rates & storage (3a) – detailed hydrologic and hydraulic calculations 3727-EVE-XX-XX-T-C-0002 - Sctn 7 Proposed SuDS measures & specifications (3b) 3727-EVE-XX-XX-T-C-0002 - Sctn 7 Detailed drainage design drawings, including exceedance flow routes 3727-EVE-XX-XX-T-C-0002 - Sctn 8 Detailed drainage design drawings, including exceedance flow routes 3727-EVE-XX-XX-T-C-0002 - Sctn 8 Detailed drainage design drawings, including exceedance flow routes 3727-EVE-XX-XX-T-C-0002 - Sctn 8 Detailed drainage design drawings, including exceedance flow routes 3727-EVE-XX-XX-T-C-0002 - Sctn 8 Detailed landscaping plans Maintenance strategy 3727-EVE-XX-XX-T-C-0002 - Sctn 8 SuDS measures improve: a) water quality of the runoff? b) biodiversity? c) amenity?		4a. Discharge & Drainage Strategy	Page/section of drainage report
Drainage hierarchy (2b) 3727-EVE-XX-XX-T-C-0002 - Sctn 4 Proposed discharge details (2c) – utility plans, correspondence / approval from owner/regulator of discharge location 3727-EVE-XX-XX-T-C-0002 - Sctn 7 Discharge rates & storage (3a) – detailed hydrologic and hydraulic calculations 3727-EVE-XX-XX-T-C-0002 - Sctn 7 Proposed SuDS measures & specifications (3b) 3727-EVE-XX-XX-T-C-0002 - Sctn 6 4b. Other Supporting Details Page/section of drainage report Detailed Development Layout Detailed drainage design drawings, including exceedance flow routes Detailed landscaping plans 3727-EVE-XX-XX-T-C-0002 - Sctn 8 Maintenance strategy 3727-EVE-XX-XX-T-C-0002 - Sctn 8 SuDS measures improve: a) water quality of the runoff? a) water quality of the runoff? including exceeding? b) biodiversity? including exceeding?		Infiltration feasibility (2a) – geotechnical factual and interpretive reports, including infiltration results	3727-EVE-XX-XX-T-C-0002 - Sctn 4.2
Proposed discharge details (2c) – utility Proposed discharge details (2c) – utility plans, correspondence / approval from owner/regulator of discharge location Discharge rates & storage (3a) – detailed 3727-EVE-XX-XX-T-C-0002 - Sctn 7 hydrologic and hydraulic calculations 3727-EVE-XX-XX-T-C-0002 - Sctn 7 Proposed SuDS measures & specifications 3727-EVE-XX-XX-T-C-0002 - Sctn 6 4b. Other Supporting Details Page/section of drainage report Detailed Development Layout Detailed drainage design drawings, including exceedance flow routes Detailed landscaping plans 3727-EVE-XX-XX-T-C-0002 - Sctn 8 Maintenance strategy 3727-EVE-XX-XX-T-C-0002 - Sctn 8 a) water quality of the proposed SuDS measures improve: a) water quality of the runoff? b) biodiversity? c) amenity?		Drainage hierarchy (2b)	3727-EVE-XX-XX-T-C-0002 - Sctn 4
Discharge rates & storage (3a) – detailed hydrologic and hydraulic calculations3727-EVE-XX-XX-T-C-0002 - Sctn 7Proposed SuDS measures & specifications (3b)3727-EVE-XX-XX-T-C-0002 - Sctn 6 4b. Other Supporting Details Page/section of drainage reportDetailed Development LayoutDetailed drainage design drawings, including exceedance flow routesDetailed landscaping plans3727-EVE-XX-XX-T-C-0002 - Sctn 8Maintenance strategy3727-EVE-XX-XX-T-C-0002 - Sctn 8a) water quality of the runoff?including exceedance flow routesb) biodiversity?including exceedance flow routes		Proposed discharge details (2c) – utility plans, correspondence / approval from owner/regulator of discharge location	
Proposed SuDS measures & specifications (3b) 3727-EVE-XX-XX-T-C-0002 - Sctn 6 4b. Other Supporting Details Page/section of drainage report Detailed Development Layout Detailed drainage design drawings, including exceedance flow routes Detailed landscaping plans Maintenance strategy Maintenance strategy 3727-EVE-XX-XX-T-C-0002 - Sctn 8 Demonstration of how the proposed SuDS measures improve: a) water quality of the runoff? b) biodiversity?		Discharge rates & storage (3a) – detailed hydrologic and hydraulic calculations	3727-EVE-XX-XX-T-C-0002 - Sctn 7
4b. Other Supporting Details Page/section of drainage report Detailed Development Layout		Proposed SuDS measures & specifications (3b)	3727-EVE-XX-XX-T-C-0002 - Sctn 6
Detailed Development Layout Detailed drainage design drawings, including exceedance flow routes Detailed landscaping plans Detailed landscaping plans Maintenance strategy 3727-EVE-XX-XX-T-C-0002 - Sctn 8 Demonstration of how the proposed SuDS measures improve: a) water quality of the runoff? b) biodiversity? c) amenity?		4b. Other Supporting Details	Page/section of drainage report
Jetailed drainage design drawings, including exceedance flow routes Detailed landscaping plans Maintenance strategy 3727-EVE-XX-XX-T-C-0002 - Sctn 8 Demonstration of how the proposed SuDS measures improve: a) water quality of the runoff? b) biodiversity? c) amenity?	Inc	Detailed Development Layout	
Detailed landscaping plans Image: Strategy of the proposed SuDS measures improve: a) water quality of the runoff? Image: Strategy of the proposed SuDS measures improve: b) biodiversity? Image: Strategy of the proposed SuDS measures improve:	4.	Detailed drainage design drawings, including exceedance flow routes	
Maintenance strategy 3727-EVE-XX-XX-T-C-0002 - Sctn 8 Demonstration of how the proposed SuDS measures improve: a) water quality of the runoff? b) biodiversity? c) amenity?		Detailed landscaping plans	
Demonstration of how the proposed SuDS measures improve: a) water quality of the runoff? b) biodiversity? c) amenity?		Maintenance strategy	3727-EVE-XX-XX-T-C-0002 - Sctn 8
a) water quality of the runoff? b) biodiversity? c) amenity?		Demonstration of how the proposed SuDS measures improve:	
b) biodiversity? c) amenity?		a) water quality of the runoff?	
c) amenity?		b) biodiversity?	
		c) amenity?	

