

Flood Risk Assessment and Drainage Strategy – Volume 1 of 3 **GROVE FARM, LITTLE BEALINGS**

www.createconsultingengineers.co.uk

GROVE FARM, LITTLE BEALINGS Flood Risk Assessment and Drainage Strategy

Client:	Brown &	Со
Engineer:	Create Co 15 Prince Norwich Norfolk NR3 1AF	onsulting Engineers Limited es Street
	Tel: Email: Web:	01603 877010 <u>enquiries@createconsultingengineers.co.uk</u> <u>www.createconsultingengineers.co.uk</u>
Report By:	Tracey Fr	am, BSc (Hons)
Reviewed By:	Graham S	Sinclair, BSc (Hons), MSc, DIC, C.WEM, MCIWEM
Approved By:	Barrie An	nderson, BEng (Hons)
Reference:	TF/CC/P1	17-1196/04
Date:	May 201	8

Flood Risk Assessment and Drainage Strategy **GROVE FARM, LITTLE BEALINGS**

GROVE FARM, LITTLE BEALINGS Flood Risk Assessment and Drainage Strategy

Contents

- 1.0 Introduction
- 2.0 Sources of Information
- 3.0 Site Setting
- 4.0 Scheme Description
- 5.0 Flood Risk Assessment
- 6.0 Foul and Surface Water Drainage and Flood Risk From the Development
- 7.0 Mitigation
- 8.0 Residual Flood Risks And Impacts to Surrounding Areas
- 9.0 Conclusions and Recommendations
- 10.0 References

Figures

- 5.2 Environment Agency Fluvial/Tidal Flood Map
- 5.2 Surface Water Flood Map

Appendices

- A. Anglian Water Asset Location Search
- B. Environment Agency Product 4 Data Package
- C. Greenfield Runoff Calculations
- D. Micro Drainage Calculations

Plans

15/042/05A	Site Location Plan
15/042/10H	Proposed Site Plan
19116se/01	Topographic Survey Sheet 1 of 4
19116se/02	Topographic Survey Sheet 2 of 4
19116se/03	Topographic Survey Sheet 3 of 4
19116se/04	Topographic Survey Sheet 4 of 4
1196/02/001	Foul and Surface Water Drainage Strategy

Registration of Amendments

Revision	Amendment Details	Revision Prepared By	Revision Approved By

1.0 INTRODUCTION

Brief

1.1 This Flood Risk Assessment and Drainage Strategy has been prepared by Create Consulting Engineers Ltd on behalf of Brown & Co to undertake a Flood Risk Assessment and Foul and Surface Water Drainage Strategy for Land at Grove Farm, Little Bealings.

Project Context

- 1.2 The application site extends to 1.12 hectares (ha). It is generally rectangular in shape and comprises predominantly derelict agricultural buildings.
- 1.3 The site is bounded by agricultural land to the west and north (with the river Flynn to the north) and residential areas to the east and south. The Site is accesses via a private road from The Street which also serves other properties found immediately east of the Site. A public footpath also passes through the site in an east-west orientation.
- 1.4 An indicative architect's layout for the site is provided on Drawing 15/042/10H. The Ordnance Survey grid reference for the Site is 629900E, 247500N and the Site location is shown on Drawing 15/042/05A.

Planning Policy Context

1.5 The potential consequences of inappropriate development in a flood risk area for occupiers, either of the development or elsewhere, pose significant risks in terms of personal safety and damage to property.

National Policy

1.6 The National Planning Policy Framework¹ includes Government policy on development and flood risk stating that:

When determining planning applications, local planning authorities should ensure flood risk is not increased elsewhere and only consider development appropriate in areas at risk of flooding where, informed by a site-specific Flood Risk Assessment following the Sequential Test, and if required the Exception Test, it can be demonstrated that:

• within the Site, the most vulnerable development is located in areas of lowest flood risk unless there are overriding reasons to prefer a different location; and

¹ NPPF accessed online (May 2018) <u>https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/6077/2116950.pdf</u>

- development is appropriately flood resilient and resistant, including safe access and escape routes where required, and that any residual risk can be safely managed, including my emergency planning; and it gives priority to the use of sustainable drainage systems.
- 1.7 The Planning Practice Guidance to the NPPF² requires that at the planning stage, the developer should prepare and submit an appropriate FRA to demonstrate how flood risk from all sources of flooding to the development itself and flood risk to others will be managed now and when taking climate change into account.
- 1.8 To comply with the NPPF a FRA must be submitted for planning applications for developments within flood zones 2 and 3 (medium or high risk of fluvial or tidal flooding) and for all developments of 1 hectare or greater located in Flood Zone 1 (low risk).
- 1.9 A FRA should be appropriate to the scale, nature and location of the development and should identify and assess the risk from all sources of flooding to and from the development and demonstrate how any flood risks will be managed over the lifetime of the development.
- 1.10 An assessment of surface water and drainage is also required as part of the FRA in order to demonstrate how flood risk to others will be managed following development and taking climate change into account.
- 1.11 The Planning Practice Guidance (substantially revised in March 2015 in relation to drainage) requires that sustainable drainage systems should be considered and included where practicable, in line with DEFRA Technical Standards³.
- 1.12 The Technical Standards are therefore a key reference document and should be used in the formulation of the surface water drainage strategy for a scheme of this nature. The standards include the following requirements:

"Flood risk outside the development

S1 Where the drainage system discharges to a surface water body that can accommodate uncontrolled surface water discharges without any impact on flood risk from that surface water body (e.g. the sea or a large estuary) the peak flow control standards (**S2** and **S3** below) and volume control technical standards (**S4** and **S6** below) need not apply.

² PPG accessed online (May 2018) <u>http://planningguidance.planningportal.gov.uk/</u>

³ Technical Standards Accessed Online (May 2018)

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/415773/sustainable-drainage-technical-standards.pdf

Peak flow control

S2 For greenfield developments, the peak runoff rate from the development to any highway drain, sewer or surface water body for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event should never exceed the peak greenfield runoff rate for the same event.

S3 For developments which were previously developed, the peak runoff rate from the development to any drain, sewer or surface water body for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event must be as close as reasonably practicable to the greenfield runoff rate from the development for the same rainfall event, but should never exceed the rate of discharge from the development prior to redevelopment for that event.

Volume control

S4 Where reasonably practicable, for greenfield development, the runoff volume from the development to any highway drain, sewer or surface water body in the 1 in 100 year 6 hour rainfall event should never exceed the greenfield runoff volume for the same event.

S5 Where reasonably practicable, for developments which have been previously developed, the runoff volume from the development to any highway drain, sewer or surface water body in the 1 in 100 year, 6 hour rainfall event must be constrained to a value as close as is reasonably practicable to the greenfield runoff volume for the same event, but should never exceed the runoff volume from the development site prior to redevelopment for that event.

S6 Where it is not reasonably practicable to constrain the volume of runoff to any drain, sewer or surface water body in accordance with **S4** or **S5** above, the runoff volume must be discharged at a rate that does not adversely affect flood risk.

Flood risk within the development

S7 The drainage system must be designed so that, unless an area is designated to hold and/or convey water as part of the design, flooding does not occur on any part of the Site for a 1 in 30 year rainfall event.

S8 The drainage system must be designed so that, unless an area is designated to hold and/or convey water as part of the design, flooding does not occur during a 1 in 100 year rainfall event in any part of: a building (including a basement); or in any utility plant susceptible to water (e.g. pumping station or electricity substation) within the development.

S9 The design of the Site must ensure that, so far as is reasonably practicable, flows resulting from rainfall in excess of a 1 in 100 year rainfall event are managed in exceedance routes that minimise the risks to people and property.

Structural Integrity

\$10 Components must be designed to ensure structural integrity of the drainage system and any adjacent structures or infrastructure under anticipated loading conditions over the design life of the development taking into account the requirements for reasonable levels of maintenance.

S11 The materials, including products, components, fittings or naturally occurring materials, which are specified by the designer must be of a suitable nature and quality for their intended use.

Designing for Maintenance Considerations

S12 Pumping should only be used to facilitate drainage for those parts of the Site where it is not reasonably practicable to drain water by gravity.

Construction

S13 The mode of construction of any communication with an existing sewer or drainage system must be such that the making of the communication would not be prejudicial to the structural integrity and functionality of the sewerage or drainage system.

S14 Damage to the drainage system resulting from associated construction activities must be minimised and must be rectified before the drainage system is considered to be completed."

County Council Policy

- 1.13 Suffolk County Council act as Lead Local Flood Authority (LLFA) for the area and are a statutory consultee for all major developments, which includes the following:
 - The winning and working of minerals or the use of land for mineral-working deposits;
 - Waste development;
 - The provision of dwelling houses where the number of dwelling houses to be provided is 10 or more; or the development is to be carried out on a site having an area of 0.5 hectares or more and it is not known whether the number of dwelling houses to be provided is 10 or more;

- The provision of a building or buildings where the floor space to be created by the development is 1,000 square metres or more;
- Development carried out on a site having an area of one hectare or more and
- Any minor applications in areas at risk of surface water flooding.
- 1.14 The LLFA have produced a local SUDS guidance document⁴, which includes construction standards and provide assistance to developers in creating sustainable drainage systems on their sites as well as the LLFA's consenting policy and various protocols. Suffolk County Council also provide guidance within their Preliminary Flood Risk Assessment (PFRA)⁵ and Flood Risk Management Strategy⁶ on development and flood risk.

Local District Planning Policy

- 1.15 The Local Development Plan for the Suffolk Coastal area is the Suffolk Coastal District Local Plan, Core Strategy and Development Management Policies Development Plan Document (Suffolk Coastal District Council, 2013).
- 1.16 The relevant policies from the Local Plan are as follows:
 - Strategic Policy SP1 Sustainable Development
 - Strategic Policy SP12 Climate Change
 - Development Management Policy DM28 Flood Risk
- 1.17 The relevant policies from these local planning documents have been considered as part of this foul and surface water drainage strategy.
- 1.18 The Strategic Flood Risk Assessment (SFRA) for the Suffolk Coastal area (Scott Wilson, 2009), along with the Preliminary Flood Risk Assessment (PFRA) for Suffolk County (AECOM, 2011) provide a summary of the flood risks for the local area. These documents have been utilised as part of this assessment and are referenced where applicable throughout this report.

Climate Change

1.19 Climate change has important implications for the assessment and management of flood risk. The NPPF requires that climate change is considered when making an assessment of flood risk posed to future development.

⁴ SuDS Adoption Policy (Accessed May 2018)

https://www.suffolk.gov.uk/assets/Roads-and-transport/Flooding-and-drainage/Strategy-Apendicies/2016-04-SuDS-Guidance-Appendix-A-v12.pdf

⁵ Suffolk County Council Preliminary Flood Risk Assessment (Accessed May 2018)

https://www.suffolk.gov.uk/assets/suffolk.gov.uk/Emergency%20and%20Safety/Civil%20Emergencies/SUFFOLKPFRAREPORTFINAL.pdf ⁶ Suffolk County Council Flood Risk Management Strategy (Accessed May 2018)

http://www.greensuffolk.org/assets/Greenest-County/Water--Coast/Suffolk-Flood-Partnership/19431A-Flood-Risk-Management-Strategyv12.pdfications/Documents/Local Flood Risk Management strategy.pdf

- 1.20 Climate change has the potential to affect all identified sources of flooding at the Site. The likely impacts of climate change include increased severity of rainfall events as well as wetter winters leading to higher groundwater levels and increased frequency and severity of surface water flooding.
- 1.21 The influence of climate change on rainfall intensity has been taken into account by the surface water drainage strategy outlined in Chapter 6 as an inclusion of 40% has been made for climate change for all rainfall events up to and including the 1 in 100 year event in accordance with NPPF requirements, and 'Flood Risk Assessments: Climate Change Allowances'⁷.

Objectives

- 1.22 The following specific objectives were set by Create Consulting Engineers Ltd after a review of the available data:
 - To assess the suitability of the scheme in relation to all sources of flooding;
 - To assess the flood risk posed by the scheme once it is complete and operational;
 - To suggest mitigation measures in order to reduce any residual risks to acceptable levels.

Constraints and Limitations

- 1.23 The copyright of this report is vested in Create Consulting Engineers Ltd and the Client, Brown & Co. The Client, or their appointed representatives, may copy the report for purposes in connection with the development described herein. It shall not be copied by any other party or used for any other purposes without the written consent of Create Consulting Engineers Ltd or the Client.
- 1.24 Create Consulting Engineers Ltd accepts no responsibility whatsoever to other parties to whom this report, or any part thereof, is made known. Any such other parties rely upon the report at their own risk.
- 1.25 This Flood Risk Assessment addresses the flood risk posed to and from the proposed development, the extent of which is shown by the Site boundary, as indicated Drawing 15/042/05A.
- 1.26 This report has been undertaken with the assumption that the Site will be developed in accordance with the above proposals without significant change. The conclusions resulting from this study are not necessarily indicative of future conditions or operating practices at or adjacent to the Site.

⁷ Environment Agency (2016) Flood Risk Assessments: Climate Change Allowances.

1.27 Create Consulting Engineers Ltd has endeavoured to assess all information provided to them during this appraisal. The report summarises information from a number of external sources and cannot offer any guarantees or warranties for the completeness or accuracy or information relied upon. Information from third parties has not been verified by Create Consulting Engineers Ltd unless otherwise stated in this report.

2.0 SOURCES OF INFORMATION

2.1 The information contained in this report is based on a review of existing information and consultation with interested parties.

Records Review

2.2 Key reports and websites reviewed as part of this study are listed in Table 2.1 below.

Document/Website	Author/Publisher	Date
Fluvial/Tidal Flood Maps, Groundwater Mapping –	Environment Agency (EA)	Accessed May 2018
environment-agency.gov.uk		
Surface Water and Reservoir Flood Mapping – <u>flood-</u>	GOV.UK	Accessed May 2018
warning-information.service.gov.uk		
BGS GeoIndex – Geology and borehole records -	British Geological Survey	Accessed May 2018
www.bgs.ac.uk/geoindex		
Suffolk County Council Preliminary Flood Risk	AECOM	2011
Assessment		
Suffolk County Council Local Flood Risk Management	Suffolk County Council	2016
Strategy		
Suffolk Coastal and Waveney District Council	Scott Wilson	2009
Strategic Flood Risk Assessment		
Proposed Site Layout Plans (Drawing 15/042/10/H)	Brown and Co.	January 2018
Existing Site Layout (Topographic Survey) Drawing	Survey Solutions	February 2017
1196se/01 to 1196se/04		
Anglian Water Clean and Waste Water Asset Plans	Anglian Water	February 2017
(included as Appendix A)		

Table 2.1: Key Information Sources

Consultation

2.3 The agencies and individuals consulted as part of this exercise to obtain records or seek input to the proposals as part of this FRA are listed in Table 2.2 and key records are included in the appendices.

Consultee	Form of Consultation	Topics Discussed and Actions Agreed
Anglian Water	Online request for	Asset plans received on 22 February 2017 (Appendix A).
Developer Services	Asset Plans on 29	These show no foul assets within or neighbouring the
Team	March 2016.	site. The nearest foul water asset shown on the plans is
		found 450 m to the north west of the site within Sandy
		Lane.
		These also show no potable mains within the site with
		the nearest being a 180 mm potable water main that
		runs within The Street to the site entrance

Consultee	Form of Consultation	Topics Discussed and Actions Agreed
Environment	Email Request for	A response dated 16 March 2017 noted that no
Agency Customers	Product 4 flood levels	modelled flood level data was available for the nearby
and Engagement	data on 22 February	River Flynn so basic mapping was provided (Appendix
Team	2017	B). This is discussed in full in Section 3.

Table 2.2: List of Parties Consulted

Site Walkover and Site Investigation

- 2.4 A site walkover survey was conducted by Create Consulting Engineers on the 2nd of March 2017. A visual examination of the Site as well as an assessment its hydrological context within the surrounding area was carried out.
- 2.5 No site investigation has been carried out for the purposes of this assessment.

3.0 SITE SETTING

Site Location

3.1 The Site is located on The Street in the village Little Bealings 7.5 km north east of Ipswich town centre and lies at grid reference 629900E, 247500N and Postcode IP13 6LT as shown on Site Location Plan 15/042/05A.

Description of Site and Surroundings

- 3.2 The site comprises a parcel of brownfield land bounded by agricultural land to the west and north (with the river Flynn to the north) and residential areas to the east and south. The Site is accessed via a private road from The Street which also serves other properties found immediately east of the Site. A public footpath also passes through the site in an east-west orientation.
- 3.3 The Site itself is formed of nine derelict agricultural buildings (formerly used for the rearing of pigs) as well as ancillary structures, access and concreted muck pads.
- 3.4 The site slopes towards the River Flynn to the north with levels falling from approximately 11.0 mAOD along the southern boundary to 7.5 mAOD along the northern boundary. Full level information for the site can be found on Drawings 19116se-01 19116se-04.

Geological/Hydrological Setting

Ground Conditions and Infiltration Capacity

- 3.5 BGS mapping (accessed online at <u>www.bgs.ac.uk/geoindex</u>, May 2018) shows bedrock geology at the site to be comprised of the Thames Group (clay and silt), overlying the Red Crag formation (sands), whilst superficial deposits are made up of Alluvium (clays and silts) associated with the River Flynn to the north.
- 3.6 A local BGS borehole located immediately east of The Street adjacent to the site shows a variety of clays to its maximum depth (25.6 mbgl) with little evidence of Alluvium, potentially suggesting these deposits are more tightly bound to the river corridor than shown by the BGS mapping.

Surface Watercourses

3.7 The nearest surface watercourse to the Site is The River Fynn, located approximately 22.0 m to the north of the site boundary. The River drains agricultural land to the north-west, flowing eastwards to join with The River Deben at Martelsham approximately 5.0 km to the south-east.

Groundwater

- 3.8 The site does not lie within a Groundwater Source Protection Zone, as identified by the online Environment Agency mapping.
- 3.9 This mapping does however show the superficial alluvial deposits are classified as a Secondary A aquifer, and are therefore potentially capable of supplying water at a local, non-strategic scale.
- 3.10 According to the borehole located close to the east of the site groundwater is encountered at a depth of 2.28 mbgl which is deemed reasonable given the presence of the nearby River Flynn.

Artificial Water Bodies

3.11 There are no artificial waterbodies on the site or within its immediate vicinity.

Public Sewers and Water Supply Mains

- 3.12 Anglian Water Asset records (Appendix A) show no public sewers that cross the site boundary. The nearest foul water asset shown on the plans is found 450 m to the north west of the site and comprises of a gravity network draining properties from the northern part of Little Bealings to a small sewage treatment works. There are no other public sewers in the vicinity of the site.
- 3.13 Anglian Water potable water supply records (included in Appendix A) show a 180 mm potable water main that runs along The Street as well as an abandoned main running parallel to it. No other clean water assets are shown in the vicinity of the site, although it is assumed a private supply connects to the site via the access route.

Existing Site Drainage

3.14 It is understood that there is no formal drainage network serving the Site, therefore it is assumed that at present rainfall either infiltrates or runs off overland towards the north.

4.0 SCHEME DESCRIPTION

The Scheme

- 4.1 The Client intends to submit a Planning Application (all matters reserved except access and structural landscaping) for a residential development comprising up to eight dwellings (Use Class C3), vehicular access, public open space, sustainable drainage systems and all other associated hard/soft landscaping and infrastructure.
- 4.2 The proposed scheme is shown on Drawing 15-042-10H appended with this report.

Proposed Land Use Vulnerability Classification

- 4.3 The development is proposed to include residential dwellings which is defined as a 'more vulnerable' use according to the NPPF.
- 4.4 Given the proposed land use classification and the location of the Site within Flood Zone 1 (as noted in Chapter 5 below), the Sequential and Exception Tests will not need to be undertaken for the purposes of the proposed development.

5.0 FLOOD RISK ASSESSMENT

Scope of Work

- 5.1 The scope of this FRA was refined to meet the brief outlined in Chapter 1 of this report and considers the following:
 - Flood risk to the development from all sources;
 - Potential for the design, construction and operation of the Site to increase the risk of flooding to neighbouring properties;
 - Any necessary mitigation measures to mitigate identified potential flood risks;
 - Climate change;
 - Residual flood risks.
- 5.2 The approach is consistent with the NPPF¹ and its associated Technical Guidance² along with the requirements of local planning policy.

Flood Risk to the Proposed Development

Flood Risk from Fluvial/Tidal Sources

- 5.3 The Site is located within the Environment Agency's Flood Zone 1, as shown in Figure 5.1, which is described within the NPPF Technical Guidance as having less than 1 in 1000 (<0.1%) annual probability of flooding from rivers or the sea. This figure is based on mapping provided by the Environment Agency (included in Appendix B)
- 5.4 The boundary of Flood Zones 2 and 3 associated with the River Flynn to the north remain tight to the watercourse, most likely due to the significant change in level between the watercourse and site boundary and also due to the fact the land to the north remains largely at the same level as the bank tops for some distance from the watercourse, allow flood waters to spill north.
- 5.5 The Site is therefore considered to be at a low risk of fluvial/tidal flooding and this source is not considered further in this report.

Flood Risk from Surface Water

- 5.6 The EA Surface Water Flood Maps (Figure 5.1) suggest that the majority of the Site is at a 'very low' risk of surface water flooding from extreme rainfall, which is defined as having a less than 1 in 1000 (0.1%) annual probability of flooding from extreme rainfall.
- 5.7 There is a small area of the Site to the northern boundary, which is at low risk (0.1 to 1%) of surface water flooding, due to local topography.

Flood Risk from Groundwater

- 5.8 The presence of water has been noted a depth of 2.28 mbgl which is deemed reasonable given the presence of the nearby River Flynn. This was recorded in a borehole close to the eastern boundary of the Site. It is anticipated the River Flynn acts as a major control on groundwater and therefore it is unlikely groundwater levels will raise significantly above this level. Perched/shallow groundwater however, remains a residual risk and appropriate mitigation measures are included in Table 7.1.
- 5.9 Strategic scale Flood Risk Assessments prepared by Suffolk Coastal and Waveney District Council (2009) shows no record of groundwater flooding affecting the site or surrounding area.

Flood Risk from Artificial Water bodies

5.10 The Site is not in an area at risk from flooding during a reservoir breach event and therefore flooding from this source will not be considered further in this report.

Flood Risk from Public Sewers

- 5.11 The Suffolk Coastal and Waveney District Council SFRA (2009) shows no records of sewer flooding. No issues have been identified at the Site, and the risk of sewer flooding is considered to be low.
- 5.12 Sewer flooding from blockage of private site and building drainage is, however, a residual risk managed by the design of the Site drainage and regular inspection and maintenance of the public and private sewer network. The flood risk associated with this source may also increase over time due to the effects of climate change. Appropriate mitigation measures are included in Table 7.1 of this report.

Flood Risk from Water Mains

5.13 Flood risk from this source is considered to be a residual risk with the main threat being from internal pipe work during any building works. Flooding from this source poses a residual risk to the proposed development with appropriate mitigation measures discussed in Table 7.1

Flood History

5.14 A review of the SFRA shows no records of flooding within Little Bealings.

Flood Risk Summary

5.15 In summary, the risk of flooding from all sources is generally considered to be low however, a number of mitigation measures are recommended in Table 7.1 to address and manage the residual risks from these forms of flooding.

6.0 FOUL AND SURFACE WATER DRAINAGE AND FLOOD RISK FROM THE DEVELOPMENT

Existing Foul Water Drainage

6.1 There are currently no foul flows from the Site due to its derelict nature.

Proposed Foul Water Drainage Strategy

- 6.2 Foul water from the eight residential dwellings will be designed to drain via gravity to a private treatment plant located within public open space to the west of the proposed dwellings. This will subsequently drain to a positive outfall to the river Flynn to the north (though land within the ownership of the Client).
- 6.3 The positioning of the foul water treatment plant and associated outfall is included on Drawing 1196/02/001.
- 6.4 Any treatment plant will be installed in line with BS EN 12566 for septic tanks and small sewage treatment plants. In addition the plant will be installed in accordance with the governments General Binding Rules⁸.
- 6.5 An appropriate maintenance plan for the plant will be put in place ensuring the tank is desludged and serviced in line with manufacturer requirements.
- 6.6 Based on the Guidance in Flows and Loads 4 (British Water, 2013) the outflow from any treatment plant installed on this site will quite likely be in excess of 2.0 m³/day, therefore a suitable permit application be obtained from the Environment Agency prior to installation.

Existing Surface Water Drainage

6.7 Calculations included in Appendix B estimate the current runoff rates from the greenfield area of the Site as shown in Table 6.1.

Storm Event	Existing Greenfield Runoff Rates (I/s)
1 year	1.00
30 year	2.70
100 year	4.00

Table 6.1. Existing Greenfield Runoff Rates

6.8 Existing brownfield runoff rates for the developed area of the site (0.34 ha) are summarised in Table 3.2 with calculations also shown in Appendix B.

⁸ General Binding Rules on Small Sewage Discharge to the Ground (March 2018) <u>https://www.gov.uk/guidance/general-binding-rules-small-sewage-discharge-to-the-ground</u>

Storm Event	Existing Brownfield Runoff Rates (I/s)
1 year	38.40
30 year	94.75
100 year	120.76

Table 6.2. Existing Brownfield Runoff Rates

6.9 Observations during the site walkover noted the existing buildings appeared to have formal rainwater guttering taking flows below ground. Given the existing geology it is assumed flows are then discharged direct to the River Flynn or to the ditch to the west, although no outfalls were noted.

Proposed Surface Water Drainage Strategy

- 6.10 The following provides a summary of the proposed method of management and disposal of surface water runoff from the Site:
 - Surface water flows will be attenuated using SUDS such that flows are fully retained within the Site boundaries (with an allowance for an increase in rainfall intensity of 40% due to climate change).
 - As part of the initial design process sustainable drainage methods have been included where practicable, to provide the required attenuation in accordance with the SUDS hierarchy (see Table 4.1).
 - Surface water flows will be attenuated using SUDS such that flows from the site are restricted (with an allowance for an increase in rainfall intensity of 40% due to climate change).
 - Infiltration forms of SUDS (i.e. soakaways) are considered unlikely to be viable due to the generally cohesive nature of the soils beneath the site and potential for shallow groundwater.
 - On the basis that infiltration systems are not viable the following forms of SUDS are proposed:
 - All dwellings and adoptable roadways will drain to an attenuation basin, positioned within the western side of the site (Drawing 1196/02/001);
 - A single surface water outfall is proposed using a gravity connection flowing from the western side of the site towards an outfall to the River Flynn, through land under the control of the client;
 - An upstream vortex separator device is proposed to provide treatment in the form of sediment/debris removal before outfall to The River Flynn.
 - Micro Drainage calculations included in Appendix C indicate that a basin with 165.9 m³ of storage is required. The calculations assume a maximum basin depth of approximately 1.3 m (with a maximum water depth of 1.0 m and a 0.3 m allowance for freeboard) with 1 in 3 side slopes, which equates to an approximate surface area of 328.3 m². This allows for drainage from the site to reach the basin with an appropriate cover, whilst a suitable gradient can be achieved for the outfall to the

River Flynn. The area should be considered to be approximate at this stage, calculations undertaken as part of the detailed design will confirm the exact pond area and levels as the design progresses.

- The surface water drainage proposals are included on Drawing 1196/02/001.
- A flow control, Hydro brake or similar, will restrict discharge rates from the Site to 1.0 l/s prior to the discharge offsite. This will restrict flows to this level for all events up to and including the 1 in 100 year plus 40% climate change event.
- The 1.0 l/s restricting flow rate is the design minimum rate at which the proposed outflow control device can operate. The equivalent 1 in 1 year greenfield runoff rate for the calculated 0.35ha impermeable area of the Site is shown by the calculations included in Appendix C.
- The design calculations for the basin are based on an impermeable area of 0.226 ha, this includes the measured new roof and driveway areas of dwellings and garages along with the road area as shown on the attached layout plan (Drawing 15/042/10H);
- The proposed surface water drainage strategy is included in Drawing 1196/02/001 appended to this report.
- 6.11 A summary of the potential SUDS options which led to the above drainage strategy is included in Table 6.3. This drainage strategy however is in compliance with both local and national policy as outlined in Section 1 of this report.

SUDS Option	Suitability/Included in the Scheme?	Comments
Soakaways and	Х	Due to underlying geology soakaways have been deemed
porous paving		to be unviable, therefore this form of drainage cannot be
		utilised.
Porous paving	*	Not included in the client and architect design proposal at
(storage)		present.
Rainwater Harvesting	*	Not included in the client and architect design proposal at
		present.
Swales	*	Not included in the client and architect design proposal at
		present.
Attenuation Ponds	\checkmark	A basin of 165.9 m ³ (328.3 m ²) is included within the
(above ground		scheme.
storage)		
Below ground	*	Not included in the client and architect design proposal at
storage in cellular		present.
systems		
Flow control devices	\checkmark	A flow control device will be used to restrict flows to 1.0
		I/s for all events up to and including the 1 in 100 year plus
		40% climate change storm.
Green Roofs/Brown	*	Not included in the client and architect design proposal at
Roofs/Blue Roofs		present.

Table 6.3: SUDS Options

Key:

- ✓ Suitable for use and included in the scheme
- Possibly suitable for use not included in the client and architect design proposal at present –
 should be considered further as part of the detailed design
- *X* Unlikely to be suitable for use

Exceedance Flow Routes

- 6.12 Given the indicative nature of the attached site layout and the fact this report supports an outline planning application exceedance flow routes cannot be fully confirmed at this stage. These will be developed at the detailed design stage in line with the following principles:
 - Surcharged flows from highways, private drives and roof areas will be retained within kerb lines and channelled towards the attenuation basin;
 - External ground levels will be profiled such that no ponding occurs against buildings, with flows directed as above;
 - All flows in excess of the drainage network design standard (1 in 30 year) will be channelled to the attenuation basins which have been sized to accommodate the 1 in 100 year plus climate change event whilst also allowing a suitable freeboard.

Management and Maintenance of Drainage Assets

- 6.13 Again due to the outline nature of the application it is difficult to confirm the exact management and maintenance procedures. However the following principles will be incorporated as part of the detailed design:
 - The attenuation basin will be managed by a private company (or its successor in title) as part of its duties in managing the various areas of public open space, this will include regular seasonal mowing and debris removal as well as re-profiling as required due to siltation;
 - All surface and foul water drainage assets will, where possible, be offered to Suffolk County Council Highways and Anglian Water for adoption and management;
 - All remaining private drainage within individual property curtilages will be maintained by individual property owners.

Flood Risk from the Development

- 6.14 As the development of the Site will introduce new hard surfacing, the runoff characteristics will be potentially altered. Therefore an assessment of the proposed surface and foul water drainage scheme is required to ensure the scheme does not increase flood risk to the surrounding area.
- 6.15 The following sections provide a drainage assessment of the scheme and appropriate mitigation measures are presented in Table 7.1

Effects on the Public Foul Sewer Network

6.16 As the site will not connect to the public sewer network there will be no impacts.

Effects on Local Watercourses

- 6.17 As the majority of the Site is currently brownfield, it is assumed that under current conditions, any surface water will currently be directed to existing below ground drainage with surrounding scrub areas allowed to pond or runoff overland during extreme rainfall events. Following development, the surface water drainage strategy set out above ensures that sufficient sustainable drainage systems will be included to make sure that there are no significant changes in surface water runoff from the Site compared to the existing situation (for all rainfall events up to the 1 in 100 year plus climate change), whilst there is likely to be an improvement over the existing scenario. Calculations in Appendix C confirm this.
- 6.18 For all events beyond the 1 in 100 year plus climate change rainfall event, the situation will be no worse than existing, as long as a consideration of exceedance flows is made as part of the detailed drainage design, to ensure that any excess surface water runoff would continue to overflow away from the existing and proposed residential properties.

7.0 MITIGATION MEASURES

Flood Risk Mitigation measures are proposed in Table 7.1 in order to both mitigate flood risk posed to the development and to ensure the development poses no risk to the surrounding area. 7.1

Type of Flooding	Issue	Mitigation Measures	Justification	Residual Risk *
Flooding from surface and foul water – sewer blockage/surcharging and intense rainfall	Blockages or surcharges in the site drainage or the private sewer network on the vicinity may result in flooding.	 Ensure an appropriate management regime is put in place for the proposed private foul water treatment plant including routine inspection and maintenance by the site management. Monitor flood risk throughout the life of the development in order to confirm the risk posed to the scheme over time. Consider opportunities for flood resilient design. At the detailed design stage consideration will be given to flood flow routes in the event of a system surcharge/blockage, these will ensure any surcharged water is kept within kerb line and away from properties. 	These measures will ensure flood risk from these sources is minimised.	Low
Flooding from Water mains.	Flooding of the water supply and distribution system may result in flooding of the internal building.	• Routine inspection of the Site and public water supply and distribution system by the Site owner and Anglian Water.	Will ensure the risk of flooding is minimised.	Low
Flooding from surface water runoff – overland flow/ponding	Risk of flooding from rainfall events in exceedance of the drainage design may result in on-site property flooding.	 The detailed design of the development will make an allowance for flow routing from rainfall events in exceedance of the drainage design capacity (i.e. the 100 year plus 40% climate change) in accordance with best practice guidance; External areas will also be profiled so as any runoff will be directed away from dwellings and into the roads; Floor levels of all units will be raised above the surrounding area (as per Building Regulations standards). 	In the event of this extreme rainfall event dwellings will not be inundated whilst flooding of the surrounding area is also prohibited.	Low
Flooding from perched/shallow groundwater	Shallow groundwater may be present which may pose a threat to the scheme	 Where surface and foul water drainage networks are to be placed within any water bearing strata they should be constructed such that water ingress cannot occur. Consider lining of the attenuation basin to ensure the storage volume is not hindered by any standing groundwater. Consider the need for dewatering during construction and the inclusion of waterproofing for various substructures. 	Will ensure the risk of flooding is minimised.	Low
Increased flood risk to surrounding properties as a result of the scheme.	The scheme has potential to change surface water run-off rates and patterns which may increase risk of flooding to neighbouring land or property.	 Inclusion of sustainable drainage to ensure the Site or surrounding area does not flood during the 100 year plus 40% climate change event; A management plan for the maintenance of drainage assets should be prepared and agreed with appropriate authorities as part of the detailed design. This should ensure routine inspection and maintenance of both the foul and surface water drainage systems by the Site management and/or any adopting body and Anglian Water; At the detailed design stage consideration will be given to flood flow routes in the event of a system surcharge/blockage, these will ensure any surcharged water is kept within kerb line and away from properties. 	These measures will ensure the scheme does not increase flood risk elsewhere, in line with local and national policy requirements.	Low

Table 7.1. Mitigation Measures

*Following adoption of the mitigation measures

8.0 RESIDUAL FLOOD RISKS AND IMPACTS TO SURROUNDING AREAS

Residual Risks

- 8.1 A number of residual risks have been identified, associated with private sewers, site drainage, water supply pipes and intense rainfall.
- 8.2 As long as the public sewer networks, site drainage/water supply infrastructure are regularly inspected by maintained by Anglian Water and site management respectively then the residual risks will be minimised.

Impact on Flood Risk of Surrounding Areas

8.3 Given the low flood risk present on site and the drainage strategy proposed, it is considered that the development of the Site will not increase the risk of flooding in other areas, surrounding the Site, assuming the measures proposed in Table 7.1 are implemented.

9.0 CONCLUSIONS AND RECOMMENDATIONS

- 9.1 Based on our understanding of the Site setting and the development proposals, it is considered that the risk of flooding from all sources is generally low, and the development can be operated safely and without significantly increasing flood risk elsewhere. However a number of residual risks have been identified, associated with private sewers, site drainage and water supply pipes and intense rainfall. Appropriate mitigation measures have been provided in Table 7.1 to address and manage the residual risk from these forms of flooding.
- 9.2 We recommend that the assessment of residual risks should be reviewed by site owners as new flood risk information becomes available, and the flood risk associated with adjacent sewers may also increase over time in the area due to climate change.

10.0 REFERENCES

- i. British Geological Survey GeoIndex. Available at: www.bgs.ac.uk/geoindex (Accessed online March 2018). BGS, Wallingford.
- ii. British Water (2013) *Flows and Loads 4*. British water, London.
- iii. Environment Agency Fluvial Flood Maps, Surface Water Flood Maps, Groundwater Maps and Reservoir Flood Maps Available at: http://maps.environmentagency.gov.uk/wiyby/wiybyController?x=514500.0&y=188500.0&topic=floodmap&ep=map &scale=8&location=Harrow,%20Harrow&lang=_e&layerGroups=default&textonly=off (Accessed May 2018).
- iv. Suffolk Coastal and Waveney District Councils (2009) *Suffolk Coastal and Waveney District Strategic Flood Risk Assessment, Main Report.* Scott Wilson, London.
- v. Suffolk County Council (2011) *Preliminary Flood Risk Assessment*. AECOM, London.
- vi. Suffolk Coastal District Council (2013) *Suffolk Coastal District Local Plan Core Strategy and Development Management Policies Development Plan document*. Suffolk Coastal District Council.
- vii. Water UK/WRc plc (2012) Sewers for Adoption 7th Edition. WRc plc, Swindon.
- viii. Woods-Ballard., et al. (2015) *The SUDS Manual*. Report C753. CIRIA, London.

FIGURES

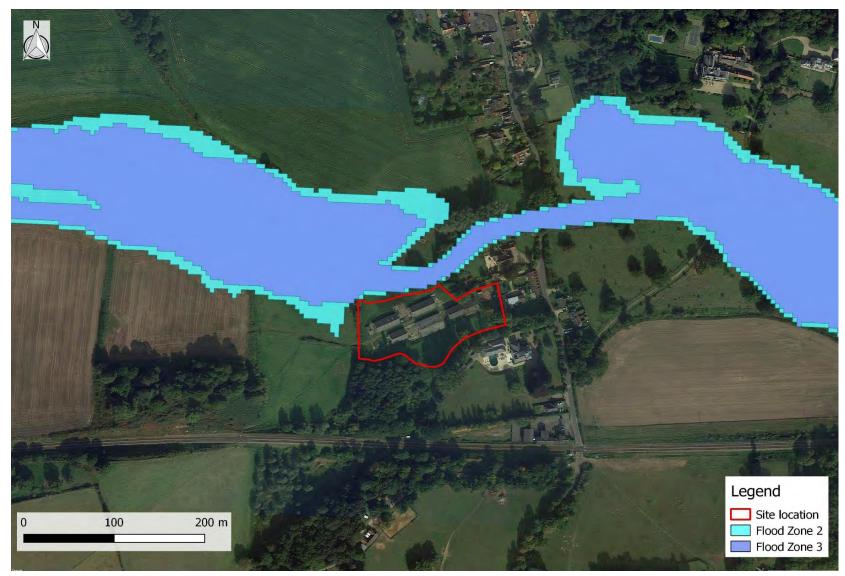


Figure 5.1: Fluvial/Tidal Flood Map

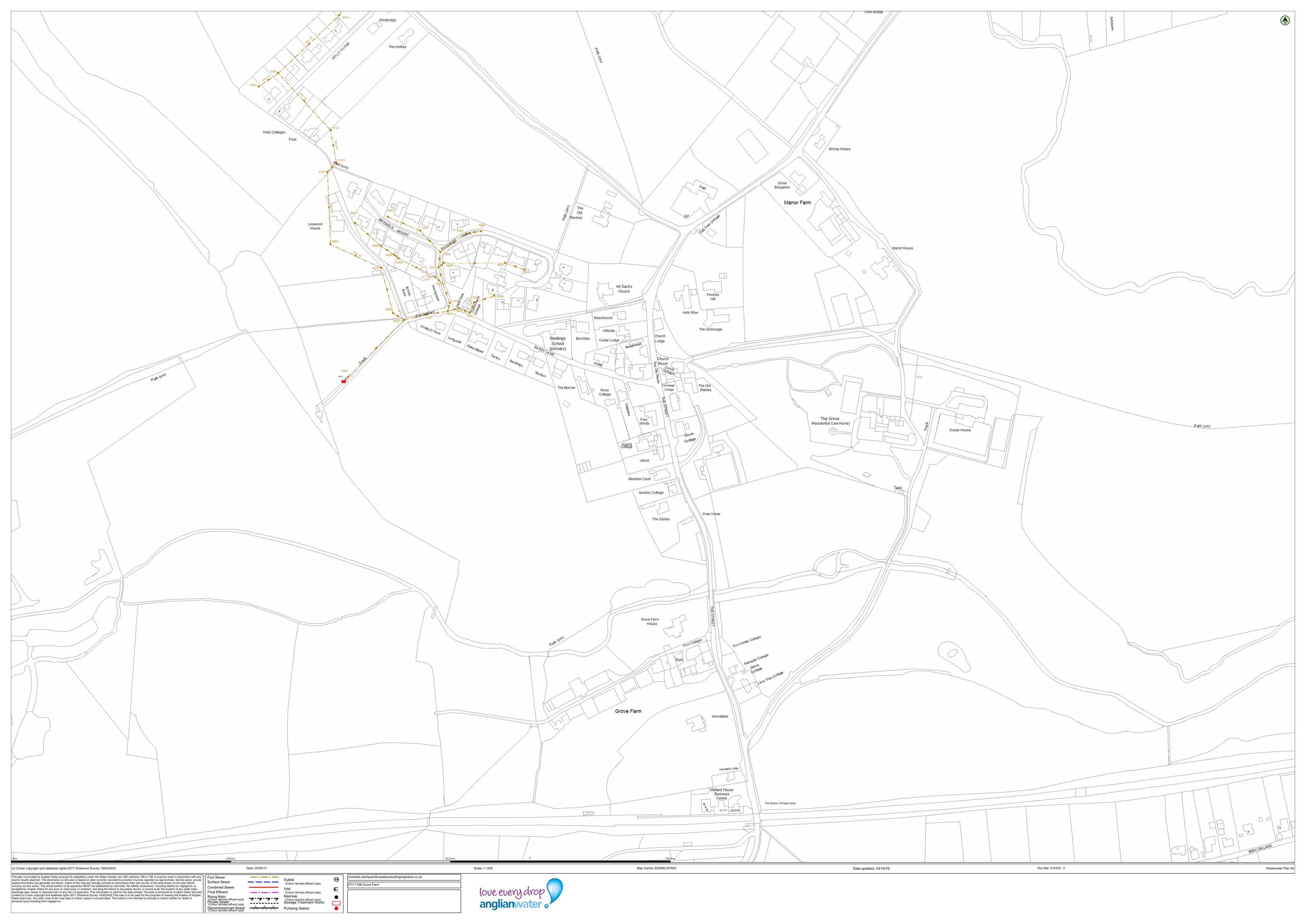
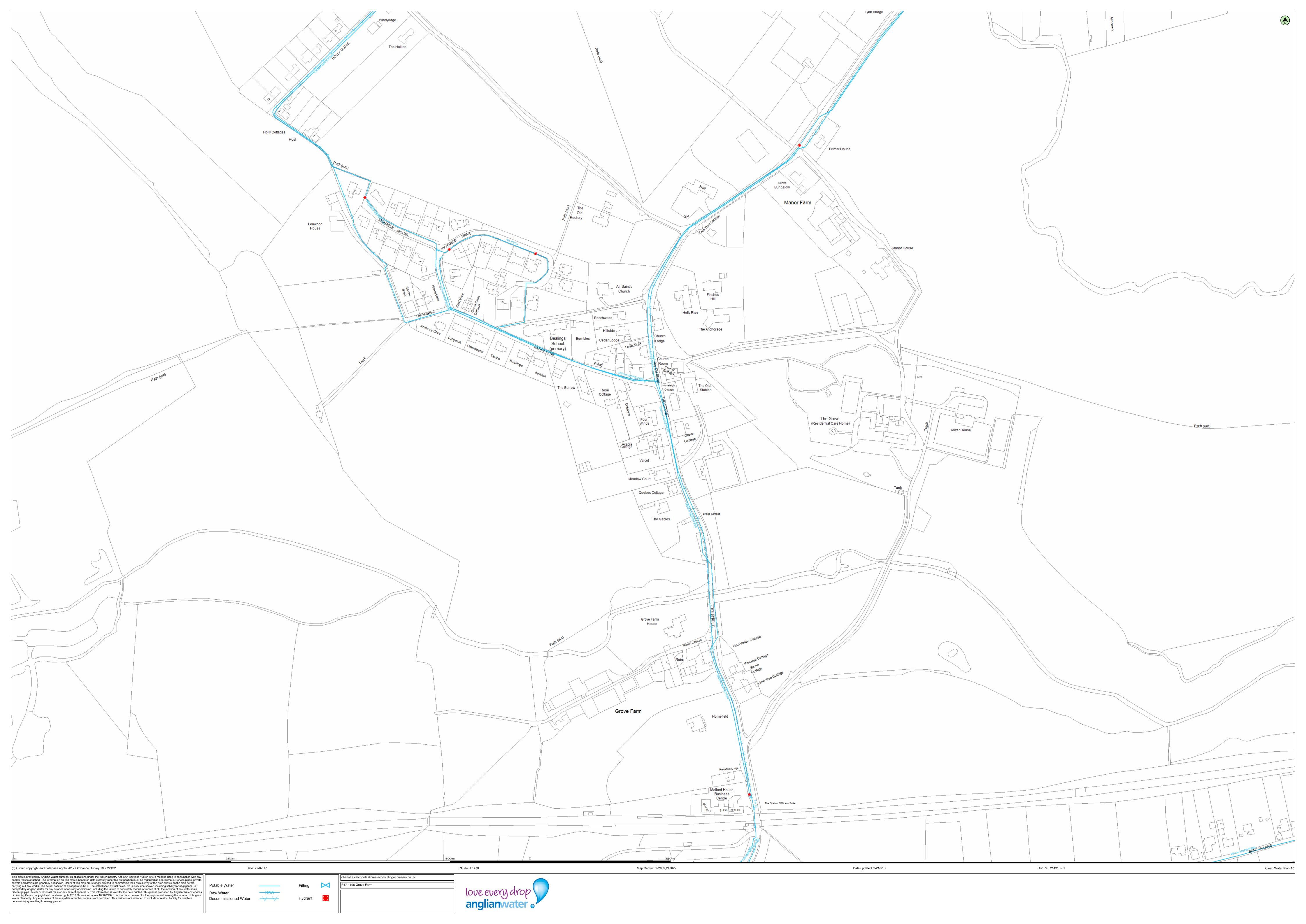

Source: Environment Agency data (Appendix B) and Google mapping 2018

Figure 5.2: Surface Water Flood Map Source: Data.Gov Website (<u>www.environment-agency.gov.uk</u>)

APPENDICES

APPENDIX A

	Manhole Reference	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Invert
5201622543248236F31.61129.5292.082520262250024820F30.22129.4890.7326001622600248014F24.4421.862.586002622607248072F6003622677248072F6004622679248025F6005622674248039F6006622630248039F6007622602248134F9.8466101622602248174F30.68428.4742.216301622612248302F640162262247890F690162262247890F6901622673247955F7002622721248030F7003622731248050F700462273224805F700562273424805F700562273424805F700562273424805F700462273024796F					<u> </u>		
6001622660248014F24.4421.862.586002622602248017F23.64922.5521.0976003622667248072F6004622674248029F6005622674248029F6006622659248039F600762263024805F6101622602248171F30.68428.4742.216301622612248302F32.84231.191.6526801622622247950F6901622630247955F9.93618.8061.13700162273248019F70026227124803F70036227324805F70046227324805F70056227324805F70066227324805F70076227324805F70046227324805F70056227324805F70046227324805F79016227624796F- <td>5201</td> <td>622543</td> <td>248236</td> <td>F</td> <td>31.611</td> <td>29.529</td> <td>2.082</td>	5201	622543	248236	F	31.611	29.529	2.082
6002622602248014F23.64922.5521.097600362267248072F6004622679248029F6005622674248029F6006622659248039F6007622600248065F6101622602248174F30.68428.4742.216301622612248302F32.84231.191.6526801622620248174F32.84231.191.652680162263247950F690162263247950F19.93618.8061.137001622757248013F7002622731248019F7003622731248019F7004622773248050F7005622757248050F7006622738247961F7901622738247961F7903622738247963F7904622730247964F7905622748247965F7904<							
6004622679248025F6005622674248029F6006622659248039F6007622630248065F6101622609248134F29.8466102622602248171F30.68428.4742.216301622612248302F32.84231.191.6526801622622247890F6901622686247955F6902622673248015F7004622725248015F70056227124803F700462272724803F70056227124805F70066227124805F700762270424805F70076227124805F70076227324805F70066227324805F700762270424805F79036227324796F79046227324796 </td <td>6002</td> <td>622602</td> <td>248041</td> <td>F</td> <td></td> <td></td> <td></td>	6002	622602	248041	F			
6005622674248029F6006622659248039F6007622600248050F6101622602248174F29.8466102622602248171F30.68428.4742.216301622612248302F32.84231.191.652680162262247950F6901622633247952F99.3618.8061.137001622732248015F70026227124803F700362272724803F700462272724803F700562273124805F700662271324805F700762270424805F700462271324805F70056227324805F700762270424796F700762270424796F790362273024796F790462273024796F79056227624796F <td< td=""><td>6003</td><td>622667</td><td>248072</td><td>F</td><td>-</td><td>-</td><td>-</td></td<>	6003	622667	248072	F	-	-	-
6006622659248039F6007622630248065F6101622609248134F29.8466102622602248171F30.68428.4742.216301622612248302F32.84231.191.652680162262247890F690162262247950F6902622673247962F19.93618.8061.137004622725248015F700562277124803F700462277224803F7005622773248056F7007622704248056F7007622704248056F7007622704248056F7007622704248056F7007622704248056F7901622704248056F7905622761247965F7904622704248056F7905622761247965F7904622704247965F- <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
6101622609248134F29.8466102622602248171F30.68428.4742.216301622612248302F32.84231.191.652680162262247890F6901622686247955F6902622673247962F19.93618.8061.137001622725248015F70026227124803F70036227324803F70046227724803F700562273248056F700662273248056F7007622704248056F700762273248056F700762273248056F70076227324965F790362273247961F790462273247963F790562273247963F790462273247963F7905622761247963F7906622761247963F <t< td=""><td>6006</td><td>622659</td><td>248039</td><td>F</td><td>-</td><td>-</td><td></td></t<>	6006	622659	248039	F	-	-	
6102622602248171F30.68428.4742.216301622612248302F32.84231.191.652680162262247890F6901622686247955F6902622673247962F19.93618.8061.137001622725248015F700262273124803F700362273124803F70046227724803F7005622731248056F7006622732248056F7007622704248056F7007622730247961F7903622738247964F7904622730247963F7905622784247964F7904622730247963F7905622761247963F7906622763247963F7906622764247963F790662276324795F7906622764247963F<	6007		248065				
6301622612248302F32.84231.191.6526801622622247950F6901622686247955F6902622673247962F19.93618.8061.137001622725248015F700262271248030F703622731248019F704622757248032F705622737248053F70662273248054F707622704248054F70762273248054F7091622734247964F7903622734247964F7904622730247964F7905622748247964F7905622748247964F790662276124795F790762276424795F790662276424795F790762276424795F790862278824795F <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
6901622686247955F6902622673247962F19.93618.8061.137001622725248015F70026227124803F7003622731248019F7004622727248032F7005622737248053F7006622737248053F7007622704248056F7007622711247961F7001622736247965F7002622736247964F7003622738247964F7004622730247963F7005622738247974F7004622730247963F7005622748247963F7005622748247963F7005622761247963F7005622765247975F7005622765247975F7006622765247982F <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>							
6902622673247962F19.93618.8061.137001622725248015F7002622721248033F7003622731248019F7004622727248032F7005622757248053F7006622730248056F7007622704248056F7007622704248056F7007622736247961F7901622736247965F7903622738247964F7905622748247963F7905622761247963F7907622765247975F7907622788247982F7908622788247982F7908622788247982F7908622788247982F7908622788248019F					-	-	-
7001622725248015F7002622721248003F7003622731248019F7004622727248032F7005622757248053F7006622703248056F7007622704248056F7007622711247961F7901622736247965F7903622738247964F7904622704247963F7905622748247963F7906622761247963F7907622763247975F7908622761247975F7908622788247982F7908622788247982F7908622800248019F7908622800248019F					- 19.936	- 18.806	- 1.13
7003622731248019F7004622727248032F7005622757248053F7006622773248056F7007622704248056F7007622711247961F7901622736247965F7902622738247974F7903622730247968F7905622748247963F7906622761247953F7907622765247975F7908622788247982F7908622800248019F							
7004622727248032F7005622757248053F7006622773248056F7007622704248056F7901622711247961F7902622736247965F7903622738247974F7904622748247963F7905622761247963F7906622765247975F7907622788247982F7908622788247982F7908622800248019F					-	-	-
7005622757248053F7006622773248056F7007622704248056F7901622711247961F7902622736247965F7903622738247974F7904622730247968F7905622748247963F7906622761247975F7907622788247982F7908622788247982F8001622800248019F							
7006622773248056F7007622704248056F7901622711247961F7902622736247965F7903622738247974F7904622730247966F7905622748247968F7906622761247963F7907622765247975F7908622788247982F8001622800248019F							
7901622711247961F7902622736247965F7903622738247974F7904622730247996F7905622748247963F7906622761247963F7907622765247975F7908622788247982F8001622800248019F	7006	622773	248056		-	-	-
7902622736247965F7903622738247974F7904622730247996F7905622748247968F7906622761247963F7907622765247975F7908622788247982F8001622800248019F							
7903622738247974F7904622730247996F7905622748247963F7906622761247963F7907622765247975F7908622788247982F8001622800248019F							
7905 622748 247968 F - - - 7906 622761 247963 F - - - - 7907 622765 247975 F - - - - 7908 622788 247982 F - - - - 8001 622800 248019 F - - - -							
7906 622761 247963 F - - - 7907 622765 247975 F - - - 7908 622788 247982 F - - - 8001 622800 248019 F - - -					-	-	-
7907 622765 247975 F - - - - 7908 622788 247982 F - - - - 8001 622800 248019 F - - - -							-
7908 622788 247982 F - - - - 8001 622800 248019 F - - - -					-		-
	7908		247982	F	-	-	-
					-	-	-
	8002	622823	248012	F	-	-	-
Norm							
NoteNot							
NNN <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>							
Note							
NAMENA							
ImageI							
Note <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
Image <thimage< th="">ImageImageImageI</thimage<>							
Image <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
NameN							
NameNa							
NN<							
NNN </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
NameNa							
IndepIndepIndepIndepIndep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<In							
NNN<							
Image </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Normal Image: space sp							
Image: space s							
II							
Image: state interpresentImage: state interpresent							
Image: space s							
NNNNNNNII							
Image <tdi< td=""><td></td><td></td><td></td><td></td><td> </td><td></td><td> </td></tdi<>							
Image <thimage< th="">ImageImageImageI</thimage<>							
Image: space s							
III							
Image: sector of the sector							
Image: sector of the sector							
Image: state interpretain state into the state int							
Image: state intermediate in							
Image							
Image: space s							
Image: sector of the sector							
Image: sector of the sector							
Image: sector of the sector							
Image: sector of the sector							
Image: set of the							
Image: sector of the sector							
Image: set of the							
Image: series of the series							
Image: set of the							
Image: sector of the sector							
Interpretation							
Image: state in the state in							
Image: state of the state of							
IndexInd							
Image: Problem intermediateImage: Problem intermediateImage							
Image: set of the							
Image: sector of the sector					1	[
Image: series of the series							
Image: selection of the							
Image: set of the							
Image: second							
Image: selection of the							
Image: Constraint of the second se							
Image:							
Image: Constraint of the second sec							


Manhole Reference	Easting	Northing	Liquid Type	Cover Level

امنيما السمييميا امييما	Danth to house
evel Invert Level	Depth to Invert
1	

;e	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Invert
_						
_						
_						
_						
_						
_						
_						

Manhole Reference	Fasting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Invert	1	Manhole Reference	Fasting	Northing	Liquid Type	CoverLevel	Invert Level	Depth to Inve
		Northing												
							_							
							-							
							-							
							_							
							_							
							-							
							_							
							-							
							-							
							-							
							_							
							-							
							-							
							-							
							_							
							-							
							-							
							-							
							-							
							-							
							-							
							_							
							-							
							-							
							_							
							_							
							-							
							_							
							-							
							-							
							-							
							-							
							_							
							-							
							-							
							-							
							-							
							-							
							_							
							-							
							-							
							_							
							-							
							_							
							-							
							_							
							_							
							-							
							-							
							_							
							_							
							_							
							_							
							_							
							-							
							_							
							_							
							-							
							-							
													Our	Ref: 214318

Our Ref: 214318 - 2

APPENDIX B

Reference:	EAn/2017/38921
Site Address:	Little Bealings IP13 6LT
Date:	06/03/2017

Included:

• Flood Map

Important information to note with your Product:

Flood Risk Assessments (FRAs)

If you are obtaining this information for use within a Flood Risk Assessment (FRA) required for a planning application, please include our unaltered Product 4 data within an appendix of your FRA.

Flood Zones

Please see the attached map showing the Flood Zones (outlines) for the area of the site. Our maps show the site is located in fluvial Flood Zone 3.

JFLOW

The Flood Zone maps in this area are formed of national generalised modelling, which was used in 2004 to create fluvial floodplain maps on a national scale. This modelling is not a detailed local assessment, it is used to give an indication of areas at risk from flooding.

JFLOW outputs are not suitable for detailed decision making, however, you can still request this data if necessary. JFLOW is not to be used in a Flood Risk Assessment (FRA) and normally, in these circumstances, a FRA will instead need to undertake a modelling exercise in order to derive flood levels and extents, both with and without allowances for climate change, for the watercourse, in order to inform the design for the site. Without this information, the risk to the development from fluvial flooding associated with the main watercourse is unknown.

For any further guidance with regards to Flood Risk Assessments and JFLOW, please contact the Sustainable Places Team on <u>planning.ipswich@environment-agency.gov.uk</u>

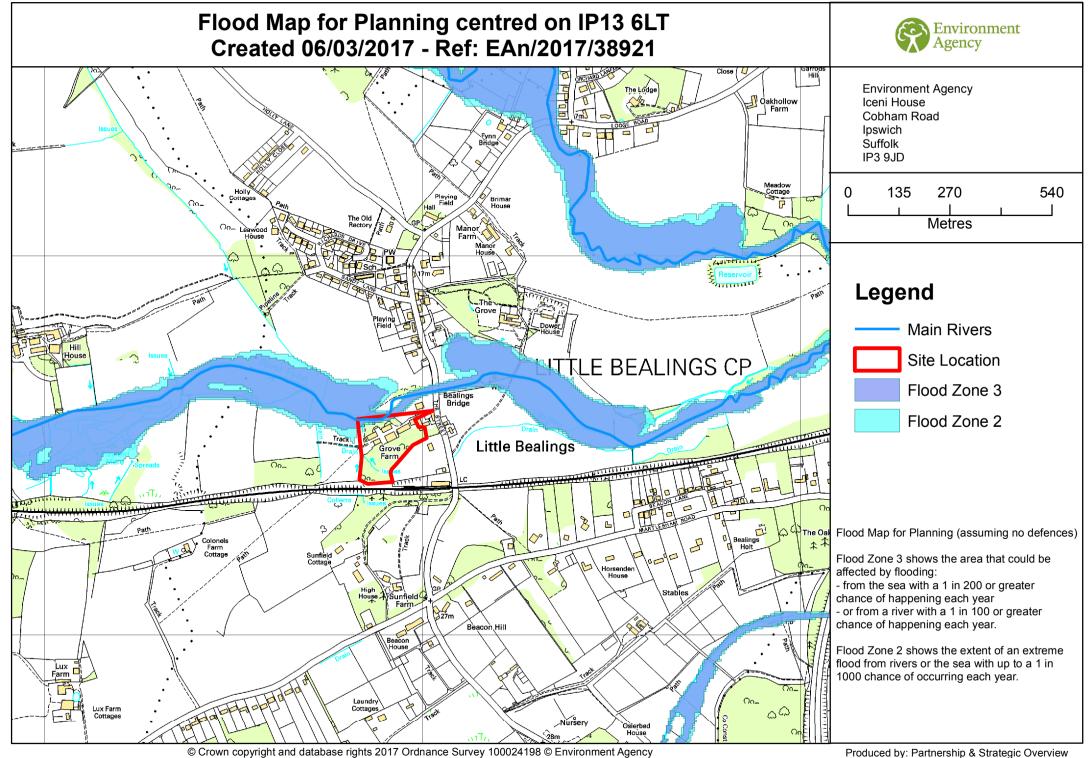
Historic Flood Events

We have checked our historic flooding database and have found no record of flooding in this area. This does not mean that the site has never flooded, only that no flooding has been reported to us in this location.

Surface Water

Please be aware that in recent years, there has been an increase in flood damage caused by surface water flooding or drainage systems that have been overwhelmed. We have worked with Lead local Flood Authorities (LLFAs) to develop a map which incorporates the best local and national scale information on surface water flood risk. These maps can be viewed on our website at the following:-

http://maps.environment-


agency.gov.uk/wiyby/wiybyController?ep=maptopics&lang=_e

Reservoir Flooding

You can obtain a map which shows the extent of flooding if a reservoir was to fail and release the water that it holds. The map shows the worst case scenario. These maps can be viewed on our website at the following:-

http://maps.environment-

agency.gov.uk/wiyby/wiybyController?ep=maptopics&lang=_e

Contact Us: National Customer Contact Centre, PO Box 544, Rotherham, S60 1BY. Tel: 03708 506 506 (Mon-Fri 8-6). Email: enquiries@environment-agency.gov.uk

Produced by: Partnership & Strategic Overview East Anglia: Essex, Norfolk & Suffolk

APPENDIX C

Location : Grove Farm, Little Bealings

M5-60 : 20 mm 0.4 r:

Wallingford Method - maps

burditor, 0 2.1 Fail a Mission 21 x Mission 1.5 min 0.63 Minitary Fail a Mission 21 x Mission 1.6 <th co<="" th=""><th>or different dura</th><th></th><th>From Table 1</th><th></th><th></th><th>Table 1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th>	<th>or different dura</th> <th></th> <th>From Table 1</th> <th></th> <th></th> <th>Table 1</th> <th></th>	or different dura		From Table 1			Table 1										
30 min 0.81 M5-30; Z1 x M5-60 16.20 mm r 5 10 15 30 1 2 4 6 10 60 min 1 M5-30; Z1 x M5-60 32.00 mm 0.12 0.22 0.34 0.45 0.67 1.00 1.48 2.17 2.75 3.70 or different return intervals, from Table 2* 5 0.21 0.22 0.34 0.45 0.67 1.00 1.48 2.17 2.75 3.70 0.15 0.25 0.38 0.27 0.41 0.51 0.71 100 1.35 1.85 2.02 2.46 3.17 2.12 2.62 0.15 0.21 0.22 0.34 0.31 0.46 0.56 0.75 100 1.30 1.77 2.12 2.62 0.24 0.33 0.35 0.51 0.62 0.77 1.00 1.2 1.48 2.4 0.83 0.51 0.61 0.78 1.00 1.23 1.31 1.72	Duration, D	Z1							Rainfall Dura	ation D							
60 min 1 M5-60; Z1 x M5-60 20.00 mm 61r 1.6 M5-360; Z1 x M5-60 32.00 mm 0.12 0.22 0.34 0.45 0.67 1.00 1.48 2.17 2.75 3.70 or different return Intervals. 0.15 0.22 0.34 0.45 0.67 1.00 1.48 2.17 2.75 3.70 or different return Intervals. 0.15 0.22 0.34 0.45 0.67 1.00 1.48 2.17 2.75 3.70 from Table 2* 0.21 0.22 0.43 0.46 0.56 0.75 1.00 1.30 1.77 2.12 2.62 Duration, D. 662 1.53 2.000 0.33 0.34 0.49 0.59 0.77 1.00 1.25 1.57 1.78 2.12 0.01 0.64 1.53 2.000 0.33 0.35 0.50 0.61 0.78 1.00 1.23 1.53 1.73 2.04 0.32 0.33 0	15 min	0.63	M5-15:	Z1 x M5-60	12.60 mm	Minutes					Hours						
6hr 1.6 M5-360; 21 x M5-60 32.00 mm 0.12 0.22 0.34 0.45 0.67 1.00 1.48 2.17 2.75 3.70 or different return intervals. From Table 2* 0.15 0.25 0.38 0.44 0.67 1.00 1.48 2.17 2.25 2.86 Duration, D M1 M30 M100 0.21 0.29 0.43 0.54 0.75 1.00 1.36 1.86 2.25 2.86 Duration, D M1 M30 M100 0.62 1.53 1.00 0.34 0.48 0.58 0.76 1.00 1.27 1.64 1.88 2.44 30 min 0.62 1.53 2.00 0.30 0.34 0.49 0.59 0.77 1.00 1.23 1.53 1.73 2.04 60 min 0.64 1.60 1.62 0.79 1.00 1.22 1.48 1.67 1.74 verge point intensity, API = I/(D/60) M MPI	30 min	0.81	M5-30:	Z1 x M5-60	16.20 mm	r	5	10	15	30	1	2	4	6	10	24	
normalization 0.15 0.25 0.38 0.48 0.69 1.00 1.42 2.02 2.46 3.32 from Table 2* 0.18 0.29 0.41 0.51 0.71 1.00 1.36 1.66 2.25 2.86 Duration, D M1 M30 M100 0.21 0.29 0.43 0.54 0.73 1.00 1.33 1.77 2.12 2.62 Duration, D M1 M30 M100 0.62 1.53 0.29 0.43 0.46 0.56 0.75 1.00 1.30 1.77 2.12 2.62 0.30 0.44 0.49 0.59 0.77 1.00 1.25 1.57 1.78 2.12 0.30 0.34 0.49 0.59 0.77 1.00 1.25 1.57 1.78 2.12 0.40 0.62 1.59 0.33 0.34 0.51 0.62 0.79 1.00 1.23 1.51 1.64 1.62 1.82	60 min	1	M5-60:	Z1 x M5-60	20.00 mm												
or different return intervals. From Table 2* 0.18 0.27 0.41 0.51 0.71 1.00 1.36 1.86 2.25 2.86 Duration, 0 M1 M30 M100	6hr	1.6	M5-360:	Z1 x M5-60	32.00 mm	0.12	0.22	0.34	0.45	0.67	1.00	1.48	2.17	2.75	3.70	6.00	
Iron Table 2* 22 23 0.43 0.44 0.46 0.55 0.05 1.00 1.23 1.53 1.73 2.12 2.43 1.64 1.88 2.24 0 min 0.64 1.54 2.03 0.36 0.36 0.51 0.62 0.79 1.00 1.23 1.53 1.73 1.04 1.64 1.62 1.82 1.64 1.62 1.62 1.62 0.62 0.61 0.61 0.79 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.15</td> <td>0.25</td> <td>0.38</td> <td>0.48</td> <td>0.69</td> <td>1.00</td> <td>1.42</td> <td>2.02</td> <td>2.46</td> <td>3.32</td> <td>4.90</td>						0.15	0.25	0.38	0.48	0.69	1.00	1.42	2.02	2.46	3.32	4.90	
VI ZZ V 0.24 0.31 0.46 0.56 0.75 1.00 1.30 1.71 2.00 2.00 Duration, D M1 M30 M100 0.62 1.53 1.99 0.33 0.48 0.58 0.76 1.00 1.27 1.64 1.88 2.24 30 min 0.62 1.53 2.00 0.33 0.35 0.50 0.61 0.78 1.00 1.23 1.53 1.73 2.04 6 hr 0.68 1.50 1.95 1.95 1.95 1.74 2.06 0.36 0.51 0.62 0.79 1.00 1.22 1.48 1.67 1.89 1.50 1.57 1.74 0.45 0.39 0.54 0.65 0.82 1.00 1.22 1.48 1.67 1.74 2.04 0.38 0.53 0.64 0.81 1.00 1.54 1.57 1.74 2.04 0.38 0.54 0.65 0.82 1.00 1.24 1.46	or different retu	<u>rn intervals,</u>				0.18	0.27	0.41	0.51	0.71	1.00	1.36	1.86		2.86	4.30	
Duration, D M1 M30 M100 15 min 0.62 1.53 1.95 0.30 0.34 0.49 0.59 0.76 1.00 1.27 1.64 1.88 2.24 15 min 0.62 1.53 2.00 0.33 0.35 0.50 0.61 0.78 1.00 1.23 1.55 1.57 1.74 1.64 1.58 1.57 1.74 1.64 1.58 1.57 1.74 1.55 1.57 <	From Table 2*							0.43					1.77		2.62	3.60	
15 min 0.62 1.53 1.95 30 min 0.62 1.53 2.00 30 min 0.62 1.53 2.00 60 min 0.64 1.54 2.03 6 hr 0.68 1.50 1.95 0.33 0.35 0.50 0.61 0.78 1.00 1.23 1.53 1.73 2.04 6 hr 0.68 1.50 1.95 1.95 1.95 1.67 1.90 1.22 1.48 1.67 1.90 everage point intensity. API = J/(D/60) I Imm API 0.45 0.39 0.53 0.64 0.81 1.00 1.22 1.48 1.67 1.51 M 1.30 30 M5-15*22(M1) 7.81 31.25 Growth Factor Z2 1.00 1.19 1.36 1.56 1.79 M 1.30 30 M5-30*22(M1) 12.04 2.064 0.79 0.89 0.97 1.02 1.91 3.66 1.79 M 1.30 30																3.35	
30 min 0.62 1.53 2.00 60 min 0.64 1.54 2.03 6 hr 0.68 1.50 1.93 0.36 0.36 0.51 0.62 0.79 1.00 1.22 1.48 1.67 1.93 verage point intensity. API = 1/(D/60) D Calculation n onthe mem/hr M1-15 15 M5-15*22(M1) 7.81 31.25 0.42 0.39 0.37 0.52 0.63 0.64 0.81 1.00 1.22 1.44 1.57 1.74 M1-15 15 M5-15*22(M1) 7.81 31.25 0.45 0.39 0.54 0.65 0.82 1.00 1.38 1.51 1.68 M1-30 30 M5-36*22(M1) 7.81 31.25 M5 rainfall M2 M2 M3 M4 M2 M10 M20 M50 M100 M30 M30-30 M5-36*22(M1) 21.76 3.63 5.00 <t< td=""><td>,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.10</td></t<>	,															3.10	
60 min 0.64 1.54 2.03 61 m 0.68 1.50 1.50 1.50 0.36 0.36 0.51 0.62 0.79 1.00 1.22 1.48 1.67 1.90 61 m 0.68 1.50 1.50 1.50 0.39 0.37 0.52 0.63 0.80 1.00 1.22 1.48 1.62 1.82 verage point intensity. API = I/(D/60)							0.34		0.59	0.77	1.00				2.12	2.84	
6 hr 0.68 1.50 1.95 derage point intensity, API = I/(D/60) 0.39 0.37 0.52 0.63 0.80 1.00 1.21 1.46 1.62 1.82 min Calculation I M 0.42 0.38 0.53 0.64 0.81 1.00 1.20 1.42 1.57 1.74 Mino M M M 0.65 0.82 1.00 1.20 1.42 1.51 1.55 1.55 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.50 1.50 0.62 0.79 0.89 0.97 1.02 1.19 1.36 1.56 1.79 M 30-05 360 M5-30*22(M30) 24.77 49.57 1.500 0.62 0.79 0.90 0.97 1.03 1.24 1.44 1.70 1.99 1.51																2.60	
b 0.42 0.38 0.53 0.64 0.81 1.00 1.20 1.42 1.57 1.74 werage point intensity, API = I/(D/60) I I M <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2.42</td></td<>																2.42	
nerage point intensity. API = 1/(D/60) 0.45 0.45 0.39 0.54 0.65 0.82 1.00 1.19 1.38 1.51 1.68 n n nm nm/nr	6 hr	0.68	1.50	1.95					0.63	0.80	1.00				1.82	2.28	
D Calculation I API mm M1-15 15 M5-15*22(M1) 7.81 31.25 M1-30 30 M5-36*22(M1) 10.04 20.09 M1-60 30 M5-36*22(M1) 12.80 25.60 M1-30 30 M5-36*22(M1) 12.80 25.60 M1-30 30 M5-36*22(M1) 21.76 3.60 M30-15 15 M5-15*22(M30) 19.27.6 3.60 M30-60 60 M5-36*22(M30) 24.79 49.57 M30-60 60 M5-36*22(M30) 30.80 30.80 M100-15 15 M5-15*22(M100) 24.57 98.28 M100-15 15 M5-15*22(M100) 24.57 98.28 M100-60 60 M5-60*22(M100) 24.57 98.28 M100-60 60 M5-60*22(M100) 24.57 98.28 M100-60 60 M5-60*22(M100) 24.67 98.28 M100-60 60 M5-60*22(M100) 24.60								0.53	0.64	0.81	1.00	1.20	1.42		1.74	2.16	
min mm mm/hr Table 2 - England Wales M 1-15 15 M5-15*22(M1) 7.81 31.25 M 1-30 30 M5-30*22(M1) 10.04 20.09 M 1-60 30 M5-30*22(M1) 12.80 25.60 M 30-15 15 M5-15*22(M3) 12.8 25.60 M 30-30 360 M5-30*22(M1) 21.76 3.63 M 30-30 360 M5-30*22(M3) 19.28 77.11 M 30-30 30 M5-30*22(M3) 24.79 49.57 M 30-60 60 M5-60*22(M30) 24.79 49.57 M 30-60 60 M5-60*22(M30) 30.80 20.00 0.64 0.81 0.90 0.97 1.03 1.24 1.40 1.70 1.99 M 100-15 15 M5-15*22(M30) 24.57 98.28 30.00 0.66 0.82 0.91 0.97 1.03 1.24 1.70 1.97 M 100-50 60 M5-60*22(M30) 24.80 64	verage point int	ensity, API = I/(D/60))			0.45	0.39	0.54	0.65	0.82	1.00	1.19	1.38	1.51	1.68	2.03	
min mm mm/hr Table 2 - England Wales M 1-15 15 M5-15*22(M1) 7.81 31.25 M 1-30 30 M5-30*22(M1) 10.04 20.09 M 1-60 30 M5-30*22(M1) 12.80 25.60 M 30-15 15 M5-15*22(M30) 21.92 77.11 M 30-30 30 M5-30*22(M1) 21.76 3.83 M 30-30 30 M5-30*22(M3) 24.79 49.57 M 30-30 30 M5-60*22(M3) 24.79 49.57 M 30-60 60 M5-60*22(M3) 24.79 49.57 M 30-30 360 M5-60*22(M3) 30.80 20.00 0.64 0.81 0.90 0.97 1.03 1.24 1.40 1.70 1.99 M 30-60 60 M5-60*22(M30) 48.00 8.00 25.00 0.66 0.82 0.91 0.97 1.03 1.24 1.40 1.70 1.97 M 100-30 360 M5-30*22(M30) 48.00																	
M 1-15 15 M5-15*22(M1) 7.81 31.25 M 1-30 30 M5-30*22(M1) 10.04 20.09 M 1-60 30 M5-30*22(M1) 12.80 25.60 M1-360 360 M5-30*22(M1) 21.76 3.63 M1-300 300 M5-15*22(M30) 19.28 77.11 10.00 0.61 0.79 0.90 0.97 1.02 1.19 1.36 1.56 1.79 M 30-15 15 M5-15*22(M30) 19.28 77.11 10.00 0.61 0.79 0.90 0.97 1.03 1.22 1.41 1.65 1.91 M 30-30 30 M5-30*22(M30) 24.79 49.57 15.00 0.62 0.80 0.90 0.97 1.03 1.24 1.44 1.72 2.03 M 30-360 360 M5-30*22(M30) 24.80 8.00 25.00 0.66 0.82 0.91 0.97 1.03 1.24 1.44 1.72 2.01 M 100-30			-														
M 1-30 30 M5-30*22(M1) 10.04 20.09 M 1-60 30 M5-360*22(M1) 12.80 25.60 M1-360 360 M5-360*22(M1) 21.76 3.63 M 1-300 360 M5-360*22(M1) 21.76 3.63 M 30-15 15 M5-15*22(M30) 19.28 77.11 10.00 0.61 0.79 0.90 0.97 1.03 1.22 1.41 1.65 1.91 M 30-30 30 M5-30*22(M30) 24.79 49.57 15.00 0.62 0.80 0.90 0.97 1.03 1.24 1.44 1.70 1.99 M 30-30 360 M5-30*22(M30) 24.79 49.57 15.00 0.64 0.81 0.90 0.97 1.03 1.24 1.44 1.72 2.03 M 30-360 360 M5-30*22(M100) 24.57 98.28 30.00 0.68 0.83 0.91 0.97 1.03 1.24 1.44 1.72 2.01 M 100-30 30 M5-30*22(M100) 24.57 98.28 30.00 0.68		D	Calculation	I													
M 1-60 30 M5-360*22(M1) 12.80 25.60 M1-360 360 M5-360*22(M1) 21.76 3.63 M 30-15 15 M5-15*22(M30) 19.28 77.11 10.00 0.61 0.79 0.89 0.97 1.02 1.19 1.36 1.56 1.79 M 30-15 15 M5-15*22(M30) 19.28 77.11 10.00 0.61 0.79 0.90 0.97 1.03 1.22 1.41 1.65 1.91 M 30-30 30 M5-30*22(M30) 24.79 49.57 15.00 0.62 0.80 0.90 0.97 1.03 1.24 1.44 1.70 1.99 M 30-60 60 M5-60*22(M30) 30.80 30.80 20.00 0.64 0.81 0.90 0.97 1.03 1.24 1.44 1.72 2.03 M 30-360 360 M5-30*22(M30) 24.57 98.28 30.00 0.68 0.83 0.91 0.97 1.03 1.22 1.42 1.70 1.97 M 100-30 30 M5-30*22(M100) 24.45		min	Calculation		mm/hr	Table 2 - Engla											
M1-360 360 M5-360*22(M1) 21.76 3.63 5.00 0.62 0.79 0.89 0.97 1.02 1.19 1.36 1.56 1.79 M 30-15 15 M5-15*22(M30) 19.28 77.11 10.00 0.61 0.79 0.90 0.97 1.03 1.22 1.41 1.65 1.91 M 30-30 30 M5-30*22(M30) 24.79 49.57 15.00 0.62 0.80 0.90 0.97 1.03 1.24 1.44 1.70 1.99 M 30-60 60 M5-60*22(M30) 30.80 30.80 20.00 0.64 0.81 0.90 0.97 1.03 1.24 1.44 1.70 1.99 M 30-360 360 M5-36*22(M30) 48.00 8.00 25.00 0.66 0.82 0.91 0.97 1.03 1.24 1.44 1.72 2.03 M 100-15 15 M5-15*22(M100) 24.57 98.28 30.00 0.68 0.83 0.91 0.97 1.03 1.22 1.44 1.70 1.97 M 100-30 <t< td=""><td>M 1-15</td><td>min</td><td></td><td></td><td>mm/hr</td><td>Table 2 - Engla</td><td></td><td>Growth Factor Z2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	M 1-15	min			mm/hr	Table 2 - Engla		Growth Factor Z2									
M 30-1515M5-15*Z2(M30)19.2877.1110.000.610.790.900.971.031.221.411.651.91M 30-3030M5-30*Z2(M30)24.7949.5715.000.620.800.900.971.031.241.441.701.99M 30-6060M5-60*Z2(M30)30.8030.8020.000.640.810.900.971.031.241.441.722.03M 30-360360M5-360*Z2(M30)48.008.0025.000.660.820.910.971.031.241.441.722.01M 100-1515M5-15*Z2(M100)24.5798.2830.000.680.830.910.971.031.221.421.701.97M 100-3030M5-30*Z2(M100)32.4064.8040.000.700.840.920.971.021.191.381.641.89M 100-6060M5-60*Z2(M100)40.6040.6050.000.720.850.930.981.021.171.341.581.81M 100-360360M5-360*Z2(M100)62.4010.4075.000.760.870.930.981.021.141.281.471.64M 100-360360M5-360*Z2(M100)62.4010.4075.000.780.880.940.981.011.121.211.331.45Park Munoff150.000.78 <td< td=""><td></td><td>min 15</td><td>M5-15*Z2(M1)</td><td>7.81</td><td>mm/hr 31.25</td><td>-</td><td></td><td></td><td></td><td>M4</td><td>M5</td><td>M10</td><td>M20</td><td>M50</td><td>M100</td><td>M30 interpola</td></td<>		min 15	M5-15*Z2(M1)	7.81	mm/hr 31.25	-				M4	M5	M10	M20	M50	M100	M30 interpola	
M 30-3030M5-30*Z2(M30)24.7949.5715.000.620.800.900.971.031.241.441.701.99M 30-6060M5-60*Z2(M30)30.8030.8030.8020.000.640.810.900.971.031.241.441.701.99M 30-360360M5-30*Z2(M30)48.008.0020.000.660.820.910.971.031.241.441.722.03M 100-1515M5-15*Z2(M100)24.5798.2830.000.660.820.910.971.031.221.421.701.97M 100-3030M5-30*Z2(M100)24.5798.2830.000.680.830.910.971.031.221.421.701.97M 100-3030M5-30*Z2(M100)24.5798.2830.000.680.830.910.971.031.221.421.701.97M 100-3030M5-30*Z2(M100)32.4064.8040.000.700.840.920.971.021.191.381.641.89M 100-6060M5-60*Z2(M100)62.4010.4075.000.760.870.930.981.021.141.281.471.64M 100-360360M5-360*Z2(M100)62.4010.4075.000.780.880.940.981.011.121.211.331.45	M 1-30	min 15 30	M5-15*Z2(M1) M5-30*Z2(M1)	7.81 10.04	mm/hr 31.25 20.09	-				M4	M5	M10	M20	M50	M100	M30 interpola	
M 30-6060M 5-60*22(M30)30.8030.8020.000.640.810.900.971.031.241.451.732.03M 30-360360M 5-360*22(M30)48.008.0025.000.660.820.910.971.031.241.441.722.01M 100-1515M 5-15*22(M100)24.5798.2830.000.680.830.910.971.031.221.421.701.97M 100-3030M 5-30*22(M100)32.4064.8040.000.700.840.920.971.021.191.381.641.89M 100-6060M 5-360*22(M100)40.6040.6050.000.720.850.930.981.021.141.281.471.64M 100-360360M 5-360*22(M100)62.4010.4075.000.760.870.930.981.021.141.281.471.64M 100-360360M 5-360*22(M100)62.4010.4075.000.760.870.930.981.021.141.281.471.64M 100-360360M 5-360*22(M100)62.4010.4075.000.780.880.940.981.011.121.211.331.45M 100-360360M 5-360*22(M100)62.4010.4075.000.780.880.940.981.011.121.211.331.45	M 1-30 M 1-60	min 15 30 30	M5-15*Z2(M1) M5-30*Z2(M1) M5-360*Z2(M1)	7.81 10.04 12.80	mm/hr 31.25 20.09 25.60 3.63	M5 rainfall	M1	M2	M3							M30 interpola 1.25	
M30-360360M5-360*22(M30)48.008.0025.000.660.820.910.971.031.241.441.722.01M 100-1515M5-15*22(M100)24.5798.2830.000.680.830.910.971.031.221.421.701.97M 100-3030M5-30*22(M100)32.4064.8040.000.700.840.920.971.021.191.381.641.89M 100-6060M5-60*22(M100)40.6040.6050.000.720.850.930.981.021.171.341.581.81M 100-360360M5-360*22(M100)62.4010.4075.000.760.870.930.981.021.141.281.471.64Eak Runoff150.000.780.880.940.981.011.121.211.331.45	M 1-30 M 1-60 M1-360	min 15 30 30 360	M5-15*Z2(M1) M5-30*Z2(M1) M5-360*Z2(M1) M5-360*Z2(M1)	7.81 10.04 12.80 21.76	mm/hr 31.25 20.09 25.60 3.63	M5 rainfall 5.00	M1 0.62	M2 0.79	M3 0.89	0.97	1.02	1.19	1.36	1.56	1.79		
M 100-1515M5-15*Z2(M100)24.5798.2830.000.680.830.910.971.031.221.421.701.97M 100-3030M5-30*Z2(M100)32.4064.8040.000.700.840.920.971.021.191.381.641.89M 100-6060M5-60*Z2(M100)40.6040.6050.000.720.850.930.981.021.171.341.581.81M 100-360360M5-360*Z2(M100)62.4010.4075.000.760.870.930.981.021.141.281.471.64teak Runoff150.000.780.880.940.981.011.121.211.331.45	M 1-30 M 1-60 M1-360 M 30-15	min 15 30 30 360 15	M5-15*Z2(M1) M5-30*Z2(M1) M5-360*Z2(M1) M5-360*Z2(M1) M5-15*Z2(M30)	7.81 10.04 12.80 21.76 19.28	mm/hr 31.25 20.09 25.60 3.63 77.11	M5 rainfall 5.00 10.00	M1 0.62 0.61	M2 0.79 0.79	M3 0.89 0.90	0.97 0.97	1.02 1.03	1.19 1.22	1.36 1.41	1.56 1.65	1.79 1.91	1.25	
M 100-30 30 M5-30*Z2(M100) 32.40 64.80 M100-60 60 M5-60*Z2(M100) 40.60 40.60 50.00 0.72 0.84 0.92 0.97 1.02 1.19 1.38 1.64 1.89 M100-60 60 M5-60*Z2(M100) 40.60 40.60 50.00 0.72 0.85 0.93 0.98 1.02 1.17 1.34 1.58 1.81 M100-360 360 M5-360*Z2(M100) 62.40 10.40 75.00 0.76 0.87 0.93 0.98 1.02 1.14 1.28 1.47 1.64 100.00 0.78 0.88 0.94 0.98 1.02 1.13 1.25 1.40 1.54 150.00 0.78 0.88 0.94 0.98 1.01 1.12 1.33 1.45	M 1-30 M 1-60 M1-360 M 30-15 M 30-30	min 15 30 30 360 15 30	M5-15*Z2(M1) M5-30*Z2(M1) M5-360*Z2(M1) M5-360*Z2(M1) M5-15*Z2(M30) M5-30*Z2(M30)	7.81 10.04 12.80 21.76 19.28 24.79	mm/hr 31.25 20.09 25.60 3.63 77.11 49.57	M5 rainfall 5.00 10.00 15.00	M1 0.62 0.61 0.62	M2 0.79 0.79 0.80	M3 0.89 0.90 0.90	0.97 0.97 0.97	1.02 1.03 1.03	1.19 1.22 1.24	1.36 1.41 1.44	1.56 1.65 1.70	1.79 1.91 1.99	1.25 1.49	
M100-60 60 M5-60*Z2(M100) 40.60 40.60 50.00 0.72 0.85 0.93 0.98 1.02 1.17 1.34 1.58 1.81 M100-360 360 M5-360*Z2(M100) 62.40 10.40 75.00 0.76 0.87 0.93 0.98 1.02 1.14 1.28 1.47 1.64 Manual Ma	M 1-30 M 1-60 M1-360 M 30-15 M 30-30 M 30-60	min 15 30 30 360 15 30 60	M5-15*Z2(M1) M5-30*Z2(M1) M5-360*Z2(M1) M5-360*Z2(M1) M5-15*Z2(M30) M5-30*Z2(M30) M5-60*Z2(M30)	7.81 10.04 12.80 21.76 19.28 24.79 30.80	mm/hr 31.25 20.09 25.60 3.63 77.11 49.57 30.80	M5 rainfall 5.00 10.00 15.00 20.00	M1 0.62 0.61 0.62 0.64	M2 0.79 0.79 0.80 0.81	M3 0.89 0.90 0.90 0.90	0.97 0.97 0.97 0.97	1.02 1.03 1.03 1.03	1.19 1.22 1.24 1.24	1.36 1.41 1.44 1.45	1.56 1.65 1.70 1.73	1.79 1.91 1.99 2.03	1.25 1.49 1.53	
M100-360 360 M5-360*Z2(M100) 62.40 10.40 75.00 0.76 0.87 0.93 0.98 1.02 1.14 1.28 1.47 1.64 100.00 0.78 0.88 0.94 0.98 1.02 1.13 1.25 1.40 1.54 eak Runoff 150.00 0.78 0.88 0.94 0.98 1.01 1.12 1.21 1.33 1.45	M 1-30 M 1-60 M1-360 M 30-15 M 30-30 M 30-60 M30-360	min 15 30 30 360 15 30 60 360	M5-15*Z2(M1) M5-30*Z2(M1) M5-360*Z2(M1) M5-360*Z2(M1) M5-15*Z2(M30) M5-30*Z2(M30) M5-60*Z2(M30) M5-360*Z2(M30)	7.81 10.04 12.80 21.76 19.28 24.79 30.80 48.00	mm/hr 31.25 20.09 25.60 3.63 77.11 49.57 30.80 8.00	M5 rainfall 5.00 10.00 15.00 20.00 25.00	M1 0.62 0.61 0.62 0.64 0.66	M2 0.79 0.79 0.80 0.81 0.82	M3 0.89 0.90 0.90 0.90 0.91	0.97 0.97 0.97 0.97 0.97	1.02 1.03 1.03 1.03 1.03	1.19 1.22 1.24 1.24 1.24	1.36 1.41 1.44 1.45 1.44	1.56 1.65 1.70 1.73 1.72	1.79 1.91 1.99 2.03 2.01	1.25 1.49 1.53 1.54	
100.00 0.78 0.88 0.94 0.98 1.02 1.13 1.25 1.40 1.54 eak Runoff 150.00 0.78 0.88 0.94 0.98 1.01 1.12 1.21 1.33 1.45	M 1-30 M 1-60 M1-360 M 30-15 M 30-30 M 30-60 M30-360 M 100-15	min 15 30 30 360 15 30 60 360 15	M5-15*Z2(M1) M5-30*Z2(M1) M5-360*Z2(M1) M5-360*Z2(M1) M5-15*Z2(M30) M5-30*Z2(M30) M5-60*Z2(M30) M5-360*Z2(M30) M5-15*Z2(M100)	7.81 10.04 12.80 21.76 19.28 24.79 30.80 48.00 24.57	mm/hr 31.25 20.09 25.60 3.63 77.11 49.57 30.80 8.00 98.28	M5 rainfall 5.00 10.00 15.00 20.00 25.00 30.00	M1 0.62 0.61 0.62 0.64 0.66 0.68	M2 0.79 0.79 0.80 0.81 0.82 0.83	M3 0.89 0.90 0.90 0.90 0.91 0.91	0.97 0.97 0.97 0.97 0.97 0.97	1.02 1.03 1.03 1.03 1.03 1.03	1.19 1.22 1.24 1.24 1.24 1.24 1.22	1.36 1.41 1.44 1.45 1.44 1.42	1.56 1.65 1.70 1.73 1.72 1.70	1.79 1.91 1.99 2.03 2.01 1.97	1.25 1.49 1.53 1.54 1.53	
nak Runoff 0.78 0.88 0.94 0.98 1.01 1.12 1.21 1.33 1.45	M 1-30 M 1-60 M1-360 M 30-15 M 30-30 M 30-60 M30-360 M 100-15 M 100-30	min 15 30 30 360 15 30 60 360 15 30	M5-15*Z2(M1) M5-30*Z2(M1) M5-360*Z2(M1) M5-360*Z2(M1) M5-15*Z2(M30) M5-30*Z2(M30) M5-60*Z2(M30) M5-360*Z2(M30) M5-15*Z2(M100) M5-30*Z2(M100)	7.81 10.04 12.80 21.76 19.28 24.79 30.80 48.00 24.57 32.40	mm/hr 31.25 20.09 25.60 3.63 77.11 49.57 30.80 8.00 98.28 64.80	M5 rainfall 5.00 10.00 15.00 20.00 25.00 30.00 40.00	M1 0.62 0.61 0.62 0.64 0.66 0.68 0.70	M2 0.79 0.79 0.80 0.81 0.82 0.83 0.84	M3 0.89 0.90 0.90 0.90 0.91 0.91 0.92	0.97 0.97 0.97 0.97 0.97 0.97 0.97	1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.02	1.19 1.22 1.24 1.24 1.24 1.22 1.19	1.36 1.41 1.44 1.45 1.44 1.42 1.38	1.56 1.65 1.70 1.73 1.72 1.70 1.64	1.79 1.91 1.99 2.03 2.01 1.97 1.89	1.25 1.49 1.53 1.54 1.53 1.51	
<u>eak Runoff</u> 150.00 0.78 0.88 0.94 0.98 1.01 1.12 1.21 1.33 1.45	M 1-30 M 1-60 M1-360 M 30-15 M 30-30 M 30-60 M30-360 M 100-15 M 100-30 M100-60	min 15 30 30 30 30 360 15 30 60 360 15 30 60 360 15 30 60 30 60	M5-15*Z2(M1) M5-30*Z2(M1) M5-360*Z2(M1) M5-360*Z2(M1) M5-15*Z2(M30) M5-30*Z2(M30) M5-60*Z2(M30) M5-60*Z2(M30) M5-15*Z2(M100) M5-30*Z2(M100) M5-60*Z2(M100)	7.81 10.04 12.80 21.76 19.28 24.79 30.80 48.00 24.57 32.40 40.60	mm/hr 31.25 20.09 25.60 3.63 77.11 49.57 30.80 8.00 98.28 64.80 40.60	M5 rainfall 5.00 10.00 15.00 20.00 25.00 30.00 40.00 50.00	M1 0.62 0.61 0.62 0.64 0.66 0.68 0.70 0.72	M2 0.79 0.79 0.80 0.81 0.82 0.83 0.83 0.84 0.85	M3 0.89 0.90 0.90 0.90 0.91 0.91 0.92 0.93	0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.98	1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.02 1.02	1.19 1.22 1.24 1.24 1.24 1.22 1.19 1.17	1.36 1.41 1.44 1.45 1.44 1.42 1.38 1.34	1.56 1.65 1.70 1.73 1.72 1.70 1.64 1.58	1.79 1.91 1.99 2.03 2.01 1.97 1.89 1.81	1.25 1.49 1.53 1.54 1.53 1.51 1.47	
	M 1-30 M 1-60 M1-360 M 30-15 M 30-30 M 30-60 M30-360 M 100-15 M 100-30 M100-60	min 15 30 30 30 30 360 15 30 60 360 15 30 60 360 15 30 60 30 60	M5-15*Z2(M1) M5-30*Z2(M1) M5-360*Z2(M1) M5-360*Z2(M1) M5-15*Z2(M30) M5-30*Z2(M30) M5-60*Z2(M30) M5-60*Z2(M30) M5-15*Z2(M100) M5-30*Z2(M100) M5-60*Z2(M100)	7.81 10.04 12.80 21.76 19.28 24.79 30.80 48.00 24.57 32.40 40.60	mm/hr 31.25 20.09 25.60 3.63 77.11 49.57 30.80 8.00 98.28 64.80 40.60	M5 rainfall 5.00 10.00 15.00 20.00 25.00 30.00 40.00 50.00 75.00	M1 0.62 0.61 0.62 0.64 0.66 0.68 0.70 0.72 0.76	M2 0.79 0.79 0.80 0.81 0.82 0.83 0.84 0.85 0.87	M3 0.89 0.90 0.90 0.90 0.91 0.91 0.92 0.93 0.93	0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98	1.02 1.03 1.03 1.03 1.03 1.03 1.02 1.02 1.02	1.19 1.22 1.24 1.24 1.24 1.22 1.19 1.17 1.14	1.36 1.41 1.44 1.45 1.44 1.42 1.38 1.34 1.28	1.56 1.65 1.70 1.73 1.72 1.70 1.64 1.58 1.47	1.79 1.91 1.99 2.03 2.01 1.97 1.89 1.81 1.64	1.49 1.53 1.54 1.53 1.51 1.47 1.42	
	M 1-30 M 1-60 M1-360 M 30-15 M 30-30 M 30-60 M30-360 M 100-15 M 100-30 M100-60 M100-360	min 15 30 30 30 30 360 15 30 60 360 15 30 60 360 15 30 60 30 60	M5-15*Z2(M1) M5-30*Z2(M1) M5-360*Z2(M1) M5-360*Z2(M1) M5-15*Z2(M30) M5-30*Z2(M30) M5-60*Z2(M30) M5-60*Z2(M30) M5-15*Z2(M100) M5-30*Z2(M100) M5-60*Z2(M100)	7.81 10.04 12.80 21.76 19.28 24.79 30.80 48.00 24.57 32.40 40.60	mm/hr 31.25 20.09 25.60 3.63 77.11 49.57 30.80 8.00 98.28 64.80 40.60	M5 rainfall 5.00 10.00 15.00 20.00 25.00 30.00 40.00 50.00 75.00 100.00	M1 0.62 0.61 0.62 0.64 0.66 0.68 0.70 0.72 0.76 0.78	M2 0.79 0.80 0.81 0.82 0.83 0.84 0.85 0.87 0.88	M3 0.89 0.90 0.90 0.90 0.91 0.91 0.92 0.93 0.93 0.94	0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98	1.02 1.03 1.03 1.03 1.03 1.03 1.02 1.02 1.02 1.02 1.02	1.19 1.22 1.24 1.24 1.24 1.22 1.19 1.17 1.14 1.13	1.36 1.41 1.44 1.45 1.44 1.42 1.38 1.34 1.28 1.25	1.56 1.65 1.70 1.73 1.72 1.70 1.64 1.58 1.47 1.40	1.79 1.91 1.99 2.03 2.01 1.97 1.89 1.81 1.64 1.54	1.25 1.49 1.53 1.54 1.53 1.51 1.47 1.42 1.34	
	M 1-30 M 1-60 M 1-360 M 30-15 M 30-30 M 30-60 M 30-360 M 100-15 M 100-30 M 100-360 ak Runoff	min 15 30 30 30 30 360 15 30 60 360 15 30 60 360 15 30 60 360 30 60 30 60 360	M5-15*Z2(M1) M5-30*Z2(M1) M5-360*Z2(M1) M5-360*Z2(M1) M5-15*Z2(M30) M5-30*Z2(M30) M5-60*Z2(M30) M5-60*Z2(M30) M5-15*Z2(M100) M5-30*Z2(M100) M5-60*Z2(M100)	7.81 10.04 12.80 21.76 19.28 24.79 30.80 48.00 24.57 32.40 40.60 62.40	mm/hr 31.25 20.09 25.60 3.63 77.11 49.57 30.80 8.00 98.28 64.80 40.60	M5 rainfall 5.00 10.00 15.00 20.00 25.00 30.00 40.00 50.00 75.00 100.00 150.00	M1 0.62 0.61 0.62 0.64 0.66 0.68 0.70 0.72 0.76 0.78 0.78	M2 0.79 0.79 0.80 0.81 0.82 0.83 0.84 0.85 0.87 0.88 0.88	M3 0.89 0.90 0.90 0.91 0.91 0.91 0.92 0.93 0.93 0.94 0.94	0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98	1.02 1.03 1.03 1.03 1.03 1.03 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02	1.19 1.22 1.24 1.24 1.24 1.22 1.19 1.17 1.14 1.13 1.12	$1.36 \\ 1.41 \\ 1.44 \\ 1.45 \\ 1.44 \\ 1.42 \\ 1.38 \\ 1.34 \\ 1.28 \\ 1.25 \\ 1.21$	1.56 1.65 1.70 1.73 1.72 1.70 1.64 1.58 1.47 1.40 1.33	1.79 1.91 1.99 2.03 2.01 1.97 1.89 1.81 1.64 1.54 1.45	1.25 1.49 1.53 1.54 1.53 1.51 1.47 1.42 1.34 1.30	

therefore ,

Cr = 1.3 C = 1.3

constant value for design purposes

Q=2.78CiA

(2) i = API, defined above

(3) A = areas measured for subcatchments

Contributing Impermeable Area На Site Per hectare i mm/hr 0.34 1 M 1-15 31.25 38.40 112.93 M 1-30 20.09 24.68 72.60 M 1-60 25.60 31.46 72.60 M1-360 4.46 13.11 3.63 M 30-15 77.11 94.75 278.68 M 30-30 49.57 60.91 179.15

		Contributing I	mpermeable Area
			На
	i	Site	Per hectare
	mm/hr	0.34	1
M 30-60	30.80	37.85	179.15
M30-360	8.00	9.83	28.91
M 100-15	98.28	120.76	355.18
M 100-30	64.80	79.62	234.19
M 100-60	40.60	49.89	234.19
M100-360	10.40	12.78	37.59

2.78*C=

3.614

** Cv varies between 0.6 (rapidly draining soils) and 0.9 (heavy clay) with an average of 0.75 taken if ground conditions not known.

IoH 124 Calculation of Greenfield Runoff Rate

 Date:
 07-Mar-17

 By:
 GS

OS Location	629900E 247500)N
SAAR	<mark>587</mark> mm	See Wallingford Map
Site area =	50 ha	Always assume 50ha and prorata for specific site
	0.5 km ²	
Soil WRA Class	3	See Wallingford Map
Soil Type SPR Value	0.4	Conversion to SPR

 $Qbar_{rural} = 0.00108 \text{ x} (AREA)^{0.89} \text{ X} (SAAR)^{1.17} \text{ X} (SOIL)^{2.17}$

Qbar-50ha = $0.138 \text{ m}^3/\text{s}$

From Regional Growth Curve Factor

Region: 5

Return period	1	2	5	10	25	30	50	100	500
Growth Factor	0.85	0.89	1.29	1.65	2.25	2.37	2.83	3.56	5.02
		2.							
Q ₁ 50ha =	0.118 r	n³/s	=	117.68	l/s	=	2.354	l/s/ha	
Q ₂ 50ha =	0.123 r	n ³ /s	=	123.22	l/s	=	2.464	l/s/ha	
Q ₅ 50ha =	0.179 r	n ³ /s	=	178.60	l/s	=	3.572	l/s/ha	
Q ₁₀ 50ha =	0.228 r	n³/s	=	228.44	l/s	=	4.569	l/s/ha	
Q ₂₅ 50ha =	0.312 r	n³/s	=	311.51	l/s	=	6.230	l/s/ha	
Q ₃₀ 50ha =	0.328 r	n³/s	=	328.12	l/s	=	6.562	l/s/ha	
Q ₅₀ 50ha =	0.392 r	m³/s	=	391.81	l/s	=	7.836	l/s/ha	
Q ₁₀₀ 50ha =	0.493 r	m³/s	=	492.87	l/s	=	9.857	l/s/ha	
Q ₅₀₀ 50ha =	0.695 r	m³/s	=	695.00	l/s	=	13.900	l/s/ha	

Factored for Development Impermeable Area

Site area =	<mark>0.1954</mark> ha	Impermea	ible area		
Q _{bar} site =	0.001 m ³ /s	=	0.5 l/s	=	2.8 l/s/ha
Q ₁ site =	0.000 m ³ /s	=	0.5 l/s	=	2.4 l/s/ha
Q ₂ site =	0.000 m³/s	=	0.5 l/s	=	2.5 l/s/ha
Q ₅ site =	0.001 m³/s	=	0.7 l/s	=	3.6 l/s/ha
Q ₁₀ site =	0.001 m³/s	=	0.9 l/s	=	4.6 l/s/ha
Q ₂₅ site =	0.001 m³/s	=	1.2 l/s	=	6.2 l/s/ha
Q ₃₀ site =	0.001 m³/s	=	1.3 l/s	=	6.6 l/s/ha
Q ₅₀ site =	0.002 m ³ /s	=	1.5 l/s	=	7.8 l/s/ha
Q ₁₀₀ site =	0.002 m³/s	=	1.9 l/s	=	9.9 l/s/ha
Q ₅₀₀ site =	0.003 m³/s	=	2.7 l/s	=	13.9 l/s/ha

Note: For greenfield site, the critical duration is generally not relevant and the prediction of the peak rate of runoff using IH124 does not require consideration of storm duration.

IoH 124 Calculation of Greenfield Runoff Rate

 Date:
 07-Mar-17

 By:
 GS

OS Location	629900E 247500)N
SAAR	<mark>587</mark> mm	See Wallingford Map
Site area =	50 ha	Always assume 50ha and prorata for specific site
	0.5 km ²	
Soil WRA Class	3	See Wallingford Map
Soil Type SPR Value	0.4	Conversion to SPR

 $Qbar_{rural} = 0.00108 \text{ x} (AREA)^{0.89} \text{ X} (SAAR)^{1.17} \text{ X} (SOIL)^{2.17}$

Qbar-50ha = $0.138 \text{ m}^3/\text{s}$

From Regional Growth Curve Factor

Region: 5

Return period	1	2	5	10	25	30	50	100	500
Growth Factor	0.85	0.89	1.29	1.65	2.25	2.37	2.83	3.56	5.02
	2								
Q ₁ 50ha =	0.118 m ³ /s	5	=	117.68	/s	=	2.354	l/s/ha	
Q ₂ 50ha =	0.123 m ³ /s	5	=	123.22	/s	=	2.464	l/s/ha	
Q ₅ 50ha =	0.179 m ³ /s	5	=	178.60	/s	=	3.572	l/s/ha	
Q ₁₀ 50ha =	0.228 m ³ /s	5	=	228.44	/s	=	4.569	l/s/ha	
Q ₂₅ 50ha =	0.312 m ³ /s	5	=	311.51	/s	=	6.230	l/s/ha	
Q ₃₀ 50ha =	0.328 m ³ /s	5	=	328.12	/s	=	6.562	l/s/ha	
Q ₅₀ 50ha =	0.392 m ³ /s	5	=	391.81	/s	=	7.836	l/s/ha	
Q ₁₀₀ 50ha =	0.493 m ³ /s	5	=	492.87	/s	=	9.857	l/s/ha	
Q ₅₀₀ 50ha =	0.695 m ³ /s	5	=	695.00	/s	=	13.900	l/s/ha	

Factored for Development Impermeable Area

Site area =	<mark>0.41</mark> ha				
	2				
Q _{bar} site =	0.001 m³/s	=	1.1 l/s	=	2.8 l/s/ha
Q ₁ site =	0.001 m ³ /s	=	1.0 l/s	=	2.4 l/s/ha
Q ₂ site =	0.001 m ³ /s	=	1.0 l/s	=	2.5 l/s/ha
Q ₅ site =	0.001 m ³ /s	=	1.5 l/s	=	3.6 l/s/ha
Q ₁₀ site =	0.002 m³/s	=	1.9 l/s	=	4.6 l/s/ha
Q ₂₅ site =	0.003 m³/s	=	2.6 l/s	=	6.2 l/s/ha
Q ₃₀ site =	0.003 m ³ /s	=	2.7 l/s	=	6.6 l/s/ha
Q ₅₀ site =	0.003 m ³ /s	=	3.2 l/s	=	7.8 l/s/ha
Q ₁₀₀ site =	0.004 m ³ /s	=	4.0 l/s	=	9.9 l/s/ha
Q ₅₀₀ site =	0.006 m³/s	=	5.7 l/s	=	13.9 l/s/ha

Note: For greenfield site, the critical duration is generally not relevant and the prediction of the peak rate of runoff using IH124 does not require consideration of storm duration.

APPENDIX D

Create Consulting Engineers Ltd						Page 1
15 Princes Street	Grov	ve Farm,	Litt	le Be	alings	
Norwich		nuation			-	\
Norfolk NR3 1AF		10 + 408			1/s	
Date 02/02/2018		gned by		±•0		— Micro
						Draina
File ATTENUATION BASIN.SRCX		ked by				
XP Solutions	Sour	ce Cont	rol 2	2017.1	.2	
	C 1/	0.0	Del	D.		
Summary of Results	IOT I	JU year	Retu	rn Per	100 (+40%)	-
Storm	Max	Max	Max	Max	Status	
Event	Level	Depth Co	ntrol	Volume		
	(m)	(m) (1/s)	(m³)		
15 min Summer	6.163	0.463	0.8	61.3	ОК	
30 min Summer				79.9	ОК	
60 min Summer	6.365	0.665	0.8	98.4	O K	
120 min Summer			0.9		ОК	
180 min Summer	6.490	0.790	0.9	125.0	ОК	
240 min Summer	6.514	0.814	0.9	130.4	ОК	
360 min Summer	6.545	0.845	0.9	137.5	ОК	
480 min Summer	6.561	0.861	0.9	141.3	ОК	
600 min Summer	6.569	0.869	0.9	143.2	0 K	
720 min Summer	6.572	0.872	0.9	144.0	0 K	
960 min Summer	6.569	0.869	0.9	143.2	0 K	
1440 min Summer	6.547	0.847	0.9	138.1	O K	
2160 min Summer	6.514	0.814	0.9	130.4	O K	
2880 min Summer	6.483	0.783	0.9	123.5	O K	
4320 min Summer	6.427	0.727	0.9	111.3	O K	
5760 min Summer				100.3		
7200 min Summer				90.3		
8640 min Summer			0.8			
10080 min Summer	6.226	0.526	0.8	72.3	ОК	
				_		
Storm	Rain			-	ime-Peak	
Storm Event		Volume	Volu	ume	ime-Peak (mins)	
Event	(mm/hr)	Volume (m³)	Volu (m ³	1me 3)		
Event 15 min Summer	(mm/hr)	Volume (m³) 0.0	Volu (m ³	ume 3) 60.0	(mins) 19	
Event 15 min Summer 30 min Summer	(mm/hr) 146.239 95.739	Volume (m ³) 0.0 0.0	Volu (m ³	ume 3) 60.0 65.5	(mins) 19 34	
Event 15 min Summer 30 min Summer 60 min Summer	(mm/hr) 146.239 95.739 59.609	Volume (m ³) 0.0 0.0 0.0	Volu (m ³	3) 60.0 65.5 00.5	(mins) 19 34 64	
Event 15 min Summer 30 min Summer 60 min Summer 120 min Summer	(mm/hr) 146.239 95.739 59.609 35.790	Volume (m ³) 0.0 0.0 0.0 0.0	Volu (m ³ 1	(0.0) 60.0 65.5 00.5 20.2	(mins) 19 34 64 124	
Event 15 min Summer 30 min Summer 60 min Summer 120 min Summer 180 min Summer	(mm/hr) 146.239 95.739 59.609 35.790 26.173	Volume (m ³) 0.0 0.0 0.0 0.0 0.0	Volu (m ³ 1 1	(0.0) (60.0) (65.5) (00.5) (20.2) (30.8)	(mins) 19 34 64 124 184	
Event 15 min Summer 30 min Summer 60 min Summer 120 min Summer 180 min Summer 240 min Summer	(mm/hr) 146.239 95.739 59.609 35.790 26.173 20.847	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0	Volu (m ³) 1 1 1	<pre>ime 3) 60.0 65.5 00.5 20.2 30.8 35.9</pre>	(mins) 19 34 64 124 184 242	
Event 15 min Summer 30 min Summer 60 min Summer 120 min Summer 180 min Summer 240 min Summer 360 min Summer	(mm/hr) 146.239 95.739 59.609 35.790 26.173 20.847 15.148	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volu (m ³) 1 1 1 1	(0.0) (65.5) (00.5) (20.2) (30.8) (35.9) (37.8)	(mins) 19 34 64 124 184 242 362	
Event 15 min Summer 30 min Summer 60 min Summer 120 min Summer 180 min Summer 240 min Summer 360 min Summer 480 min Summer	(mm/hr) 146.239 95.739 59.609 35.790 26.173 20.847 15.148 12.059	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volu (m ³) 1 1 1 1 1 1 1	ame 3) 60.0 65.5 00.5 20.2 30.8 35.9 37.8 38.1	(mins) 19 34 64 124 184 242 362 482	
Event 15 min Summer 30 min Summer 60 min Summer 120 min Summer 180 min Summer 240 min Summer 360 min Summer 480 min Summer	(mm/hr) 146.239 95.739 59.609 35.790 26.173 20.847 15.148 12.059 10.096	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volu (m ³ 1 1 1 1 1 1 1 1	ame 3) 60.0 65.5 00.5 20.2 30.8 35.9 37.8 38.1 38.1	(mins) 19 34 64 124 184 242 362 482 602	
Event 15 min Summer 30 min Summer 60 min Summer 120 min Summer 180 min Summer 240 min Summer 360 min Summer 480 min Summer 720 min Summer	(mm/hr) 146.239 95.739 59.609 35.790 26.173 20.847 15.148 12.059 10.096 8.728	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m ³) 1 1 1 1 1 1 1 1 1 1	(1000) (1000)	(mins) 19 34 64 124 184 242 362 482 602 722	
Event 15 min Summer 30 min Summer 60 min Summer 120 min Summer 180 min Summer 240 min Summer 360 min Summer 480 min Summer 720 min Summer 960 min Summer	(mm/hr) 146.239 95.739 59.609 35.790 26.173 20.847 15.148 12.059 10.096 8.728 6.931	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m ⁴) 1 1 1 1 1 1 1 1 1 1 1 1	(1000) (1000)	(mins) 19 34 64 124 184 242 362 482 602 722 960	
Event 15 min Summer 30 min Summer 60 min Summer 120 min Summer 180 min Summer 240 min Summer 360 min Summer 480 min Summer 720 min Summer 960 min Summer 1440 min Summer	<pre>(mm/hr) 146.239 95.739 59.609 35.790 26.173 20.847 15.148 12.059 10.096 8.728 6.931 5.001</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m*) 1 1 1 1 1 1 1 1 1 1 1 1 1	(1000) (1000)	(mins) 19 34 64 124 184 242 362 482 602 722 960 1240	
Event 15 min Summer 30 min Summer 60 min Summer 120 min Summer 120 min Summer 180 min Summer 240 min Summer 360 min Summer 480 min Summer 720 min Summer 960 min Summer 1440 min Summer 2160 min Summer	<pre>(mm/hr) 146.239 95.739 59.609 35.790 26.173 20.847 15.148 12.059 10.096 8.728 6.931 5.001 3.602</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m*) 1 1 1 1 1 1 1 1 1 1 1 1 1 2	(10.0) (65.5) (00.5) (20.2) (30.8) (35.9) (37.8) (38.1) (38.1) (38.1) (38.1) (38.1) (38.2) (38.2) (38.2) (38.2) (19.4)	(mins) 19 34 64 124 184 242 362 482 602 722 960 1240 1620	
Event 15 min Summer 30 min Summer 60 min Summer 120 min Summer 120 min Summer 180 min Summer 240 min Summer 360 min Summer 480 min Summer 720 min Summer 960 min Summer 1440 min Summer 2480 min Summer	<pre>(mm/hr) 146.239 95.739 59.609 35.790 26.173 20.847 15.148 12.059 10.096 8.728 6.931 5.001 3.602 2.851</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m*) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2	ame 3) 60.0 65.5 00.5 20.2 30.8 35.9 37.8 38.1 38.1 38.1 38.1 38.1 38.2 38.2 19.4 31.3	(mins) 19 34 64 124 184 242 362 482 602 722 960 1240 1620 2016	
Event 15 min Summer 30 min Summer 60 min Summer 120 min Summer 120 min Summer 180 min Summer 240 min Summer 360 min Summer 480 min Summer 720 min Summer 960 min Summer 1440 min Summer 2160 min Summer 2880 min Summer	<pre>(mm/hr) 146.239 95.739 59.609 35.790 26.173 20.847 15.148 12.059 10.096 8.728 6.931 5.001 3.602 2.851 2.048</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m*) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2	<pre>me 3) 60.0 65.5 00.5 20.2 30.8 35.9 37.8 38.1 38.1 38.1 38.1 38.2 38.2 19.4 31.3 37.6</pre>	(mins) 19 34 64 124 184 242 362 482 602 722 960 1240 1620 2016 2852	
Event15minSummer30minSummer60minSummer120minSummer180minSummer240minSummer360minSummer480minSummer600minSummer720minSummer960minSummer1440minSummer2160minSummer2880minSummer4320minSummer5760minSummer	<pre>(mm/hr) 146.239 95.739 59.609 35.790 26.173 20.847 15.148 12.059 10.096 8.728 6.931 5.001 3.602 2.851 2.048 1.618</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m*) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2	<pre>me 3) 60.0 65.5 00.5 20.2 30.8 35.9 37.8 38.1 38.1 38.1 38.1 38.2 38.2 19.4 31.3 37.6 63.2</pre>	(mins) 19 34 64 124 184 242 362 482 602 722 960 1240 1620 2016 2852 3680	
Event 15 min Summer 30 min Summer 60 min Summer 120 min Summer 120 min Summer 180 min Summer 240 min Summer 360 min Summer 360 min Summer 480 min Summer 960 min Summer 960 min Summer 1440 min Summer 2880 min Summer 4320 min Summer 5760 min Summer	<pre>(mm/hr) 146.239 95.739 59.609 35.790 26.173 20.847 15.148 12.059 10.096 8.728 6.931 5.001 3.602 2.851 2.048 1.618 1.347</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m*) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2	<pre>60.0 65.5 00.5 20.2 30.8 35.9 37.8 38.1 38.1 38.1 38.1 38.2 38.2 19.4 31.3 37.6 63.2 73.9</pre>	(mins) 19 34 64 124 184 242 362 482 602 722 960 1240 1620 2016 2852 3680 4472	
Event15minSummer30minSummer60minSummer120minSummer180minSummer240minSummer360minSummer480minSummer600minSummer720minSummer960minSummer1440minSummer2160minSummer2880minSummer4320minSummer5760minSummer	<pre>(mm/hr) 146.239 95.739 59.609 35.790 26.173 20.847 15.148 12.059 10.096 8.728 6.931 5.001 3.602 2.851 2.048 1.618</pre>	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m ³) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<pre>me 3) 60.0 65.5 00.5 20.2 30.8 35.9 37.8 38.1 38.1 38.1 38.1 38.2 38.2 19.4 31.3 37.6 63.2</pre>	(mins) 19 34 64 124 184 242 362 482 602 722 960 1240 1620 2016 2852 3680	

	Ltd				
15 Princes Street		ve Farm	n, Lit	tle Be	alings
Norwich		enuatic			2
Norfolk NR3 1AF		00 + 40			1/9
Date 02/02/2018		igned k		1.0	1/0
		-	-		
File ATTENUATION BASIN.SRCX		cked by			
XP Solutions	Sou	rce Cor	ntrol :	2017.1	.2
Summary of Rest	ults for 1	.00 yea	r Retu	ırn Pei	ciod (+40
Storm	Max	Max	Max	Max	Status
Event	Level (m)	Depth C (m)	ontrol (1/s)	Volume (m ³)	
	inter 6.206 inter 6.320		0.8		OK
	inter 6.423			89.6 110.5	
	inter 6.515		0.9		
	inter 6.559		0.9		
	inter 6.586			147.4	
360 min W:	inter 6.621	0.921		155.9	
480 min W	inter 6.641	0.941	1.0	160.9	O K
	inter 6.652			163.7	
	inter 6.658			165.3	
	inter 6.660			165.9	
	inter 6.644 inter 6.605			161.7 152.0	ОК
	inter 6.568			143.0	
	inter 6.493			125.8	
5760 min W:	inter 6.420	0.720		109.7	
7200 min W:	inter 6.347	0.647	0.8	94.9	ОК
8640 min Wi	inter 6.275	0.575	0.8	81.2	O K
10080 min W	inter 6.202	0.502	0.8	68.0	0 K
Storm	Rain			-	ime-Peak
		Floode) Volume (m³)	e Vol	narge T. ume ³)	ime-Peak (mins)
Storm Event	(mm/hr) Volume (m³)	∍ Vol (m	ume ³)	(mins)
Storm Event 15 min Wir	(mm/hr nter 146.23) Volume (m ³) 9 0.	≥ Vol (m	ume 1 ³)	(mins) 19
Storm Event	(mm/hr nter 146.23 nter 95.73) Volume (m ³) 9 0. 9 0.	vol (m	ume ³) 64.7 65.2	(mins)
Storm Event 15 min Wir 30 min Wir	(mm/hr nter 146.23 nter 95.73 nter 59.60) Volume (m ³) 9 0. 9 0. 9 0.	vol (m 0 0	ume 1 ³)	(mins) 19 34
Storm Event 15 min Wir 30 min Wir 60 min Wir	(mm/hr nter 146.23 nter 95.73 nter 59.60 nter 35.79	Volume (m ³) 9 0. 9 0. 9 0. 9 0. 0 0.	Vol (m (m 0 0 1 0 1 0 1	ume ³) 64.7 65.2 112.4	(mins) 19 34 64
Storm Event 15 min Wir 30 min Wir 60 min Wir 120 min Wir	(mm/hr nter 146.23 nter 95.73 nter 59.60 nter 35.79 nter 26.17	Volume (m ³) 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 0 0. 3 0.	Vol (m (m 0 0 0 1 0 1 0 1 1 1	ume (3) 64.7 65.2 112.4 133.1	(mins) 19 34 64 122
Storm Event 15 min Wir 30 min Wir 60 min Wir 120 min Wir 180 min Wir 240 min Wir 360 min Wir	(mm/hr hter 146.23 hter 95.73 hter 59.60 hter 35.79 hter 26.17 hter 20.84 hter 15.14	Volume (m³) 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 0 0. 3 0. 7 0. 8 0.	Vol (m (m 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1	ume 64.7 65.2 112.4 133.1 138.5 139.4 140.5	(mins) 19 34 64 122 180 240 356
Storm Event 15 min Wir 30 min Wir 60 min Wir 120 min Wir 180 min Wir 240 min Wir 360 min Wir 480 min Wir	(mm/hr hter 146.23 hter 95.73 hter 59.60 hter 35.79 hter 26.17 hter 20.84 hter 15.14 hter 12.05	Volume (m ³) 9 0. 9 0. 9 0. 9 0. 0 0. 3 0. 7 0. 8 0. 9 0.	Vol (m (m 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	ume 64.7 65.2 112.4 133.1 138.5 139.4 140.5 141.4	(mins) 19 34 64 122 180 240 356 474
Storm Event 15 min Wir 30 min Wir 60 min Wir 120 min Wir 180 min Wir 240 min Wir 360 min Wir 480 min Wir 600 min Wir	(mm/hr hter 146.23 hter 95.73 hter 59.60 hter 35.79 hter 26.17 hter 20.84 hter 15.14 hter 12.05 hter 10.09	Volume (m³) 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0.	Vol (m (m	(14.7) 64.7 65.2 112.4 133.1 138.5 139.4 140.5 141.4 142.4	(mins) 19 34 64 122 180 240 356 474 590
Storm Event 15 min Wir 30 min Wir 60 min Wir 120 min Wir 180 min Wir 240 min Wir 360 min Wir 480 min Wir 600 min Wir 720 min Wir	(mm/hr atter 146.23 atter 95.73 atter 59.60 atter 35.79 atter 26.17 atter 20.84 atter 15.14 atter 12.05 atter 10.09 atter 8.72	Volume (m³) 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 10 0. 10 0. 11 0. 12 0. 13 0. 14 0. 15 0. 16 0. 16 0.	Vol (m (m	(14.7) 64.7 65.2 112.4 133.1 138.5 139.4 140.5 141.4 142.4 143.5	(mins) 19 34 64 122 180 240 356 474 590 702
Storm Event 15 min Wir 30 min Wir 60 min Wir 120 min Wir 180 min Wir 240 min Wir 360 min Wir 480 min Wir 600 min Wir 720 min Wir	(mm/hr atter 146.23 atter 95.73 atter 59.60 atter 35.79 atter 26.17 atter 20.84 atter 15.14 atter 12.05 atter 10.09 atter 8.72 atter 6.93	Volume (m³) 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 1 0.	Vol 0 (m) 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2	(14.7) 64.7 65.2 112.4 133.1 138.5 139.4 140.5 141.4 142.4 143.5 144.9	(mins) 19 34 64 122 180 240 356 474 590 702 930
Storm Event 15 min Wir 30 min Wir 30 min Wir 120 min Wir 120 min Wir 180 min Wir 360 min Wir 480 min Wir 600 min Wir 720 min Wir 960 min Wir 1440 min Wir	(mm/hr anter 146.23 anter 95.73 anter 59.60 anter 26.17 anter 20.84 anter 15.14 anter 12.05 anter 10.09 anter 8.72 anter 6.93 anter 5.00	Volume (m³) 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 1 0.	Vol 0 (m) 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	(14.7) 64.7 65.2 112.4 133.1 138.5 139.4 140.5 141.4 142.4 142.4 143.5 144.9 144.4	(mins) 19 34 64 122 180 240 356 474 590 702 930 1356
Storm Event 15 min Wir 30 min Wir 30 min Wir 60 min Wir 120 min Wir 180 min Wir 240 min Wir 360 min Wir 480 min Wir 720 min Wir 960 min Wir 1440 min Wir 2160 min Wir	(mm/hr anter 146.23 anter 95.73 anter 59.60 anter 35.79 anter 26.17 anter 20.84 anter 15.14 anter 12.05 anter 10.09 anter 8.72 anter 6.93 anter 5.00 anter 3.60	Volume (m³) 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 10 0. 2 0.	Vol 0 (m) 0 1	(14.7) 64.7 65.2 112.4 133.1 138.5 139.4 140.5 141.4 142.4 143.5 144.9 144.4 245.5	(mins) 19 34 64 122 180 240 356 474 590 702 930 1356 1708
Storm Event 15 min Wir 30 min Wir 30 min Wir 60 min Wir 120 min Wir 180 min Wir 240 min Wir 360 min Wir 480 min Wir 720 min Wir 720 min Wir 1440 min Wir 2160 min Wir 2880 min Wir	(mm/hr anter 146.23 anter 95.73 anter 59.60 anter 35.79 anter 26.17 anter 20.84 anter 15.14 anter 12.05 anter 10.09 anter 8.72 anter 6.93 anter 5.00 anter 3.60 anter 2.85	Volume (m³) 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 10 0. 11 0. 12 0. 1 0.	Vol 0 (m) 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 2 0 2 0 2	64.7 65.2 112.4 133.1 138.5 139.4 140.5 141.4 142.4 143.5 144.9 144.4 245.5 258.2	(mins) 19 34 64 122 180 240 356 474 590 702 930 1356 1708 2164
Storm Event 15 min Wir 30 min Wir 30 min Wir 120 min Wir 120 min Wir 180 min Wir 240 min Wir 360 min Wir 480 min Wir 720 min Wir 960 min Wir 1440 min Wir 2160 min Wir	(mm/hr anter 146.23 anter 95.73 anter 59.60 anter 35.79 anter 26.17 anter 20.84 anter 15.14 anter 12.05 anter 10.09 anter 8.72 anter 6.93 anter 5.00 anter 3.60 anter 2.85 anter 2.04	Volume (m³) 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 10 0. 11 0. 12 0. 13 0. 14 0. 15 0. 16 0. 17 0. 18 0.	Vol 0 (m) 0 1	(14.7) 64.7 65.2 112.4 133.1 138.5 139.4 140.5 141.4 142.4 143.5 144.9 144.4 245.5	(mins) 19 34 64 122 180 240 356 474 590 702 930 1356 1708
Storm Event 15 min Wir 30 min Wir 30 min Wir 60 min Wir 120 min Wir 180 min Wir 240 min Wir 360 min Wir 480 min Wir 720 min Wir 960 min Wir 1440 min Wir 2160 min Wir 2880 min Wir	(mm/hr anter 146.23 anter 95.73 anter 59.60 anter 26.17 anter 20.84 anter 15.14 anter 12.05 anter 10.09 anter 8.72 anter 6.93 anter 5.00 anter 3.60 anter 2.85 anter 2.04 anter 1.61	Volume (m³) 9 0. 9 0. 9 0. 9 0. 9 0. 0 0. 3 0. 7 0. 8 0. 1 0. 2 0. 1 0. 2 0. 8 0. 8 0.	Vol 0 (m) 0 1	(1) (64.7) (65.2) (12.4) (133.1) (138.5) (139.4) (140.5) (141.4) (142.4) (142.4) (142.4) (143.5) (144.9) (144.4) (144.4) (144.4) (144.4) (144.5) ((mins) 19 34 64 122 180 240 356 474 590 702 930 1356 1708 2164 3072
Storm Event 15 min Win 30 min Win 30 min Win 60 min Win 120 min Win 120 min Win 180 min Win 240 min Win 360 min Win 360 min Win 480 min Win 720 min Win 960 min Win 1440 min Win 2880 min Win 4320 min Win 4320 min Win	(mm/hr anter 146.23 anter 95.73 anter 59.60 anter 35.79 anter 26.17 anter 20.84 anter 15.14 anter 12.05 anter 10.09 anter 8.72 anter 5.00 anter 3.60 anter 2.85 anter 2.04 anter 1.34	Volume (m³) 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 10 0. 11 0. 12 0. 13 0. 14 0. 15 0. 16 0. 17 0. 18 0. 19 0. 10 0. 11 0. 12 0. 13 0. 14 0. 15 0. 16 0.	Vol 0 (m) 0 1	64.7 65.2 112.4 133.1 138.5 139.4 140.5 141.4 142.4 143.5 144.9 144.4 245.5 258.2 248.7 294.8	(mins) 19 34 64 122 180 240 356 474 590 702 930 1356 1708 2164 3072 3976

Create Consulting Engineers Ltd		Page 3
15 Princes Street	Grove Farm, Little Bealings	
Norwich	Attenuation Basin	L.
Norfolk NR3 1AF	1:100 + 40% CC - 1.0 l/s	Micco
Date 02/02/2018	Designed by GS	
File ATTENUATION BASIN.SRCX	Checked by BWA	Drainage
XP Solutions	Source Control 2017.1.2	
<u>Ra</u>	infall Details	
Rainfall Model	FSR Winter Storms Yes	5
Return Period (years)	100 Cv (Summer) 0.750	
5 5	and and Wales Cv (Winter) 0.840	
	21.000 Shortest Storm (mins) 15	
	0.404 Longest Storm (mins) 1008	
Summer Storms	Yes Climate Change % +40	J

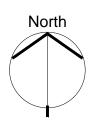
<u>Time Area Diagram</u>

Total Area (ha) 0.226

Time	(mins)	Area
From:	To:	(ha)

0 4 0.226

©1982-2017 XP Solutions


Create Consu	lting Eng	ineers	s Lt	.d							Page 4
15 Princes S	treet			(Grove	Farm, L	ittl	e Beal	ings		
Norwich Attenuation Basin						4					
Norfolk NR3	1AF				1:100	+ 40% C	C -	1.0 1/	S		Micco
Date 02/02/2	018			1	Desig	ned by G	S				
File ATTENUA	TION BASI	N.SRCX	ζ	(Checke	ed by BW	A				Drainago
XP Solutions						e Contro		17.1.2			
				Mo	odel I	Details					
		Stora	age i	is Oni	line C	over Leve	l (m)	7.000			
			Τa	ank o	r Pon	d Struc	ture				
				Inver	t Leve	l (m) 5.7	00				
		Depth	ı (m)	Area	a (m²)	Depth (m) Are	a (m²)			
		C	0.000)	100.9	1.30	0	328.3			
		<u>Hydro</u>	-Bra	ake®	Optim	um Outfi	low	Control	<u>-</u>		
						nce MD-SH	IE-00	47-1000-			
				-	Head				1.00		
			Des	-	low (l lush-F			~		. 0	
						lom ive Mini	mise		alculate m storad		
					plicat			- <u>1</u>	Surfa	-	
				-	Availa				Υe		
			Tm		eter (5.70	17	
	Minimum (Dutlet			Level eter (. ,				75	
	Suggest		-						120		
Control	Points	Head	(m)	Flow	(1/s)	Cor	trol	Points	He	ad (m)	Flow (1/s)
Design Point	(Calculated) Flush-Flo ¹) 1. m 0.	.000 .205		1.0 0.8		w ove		-Flo® Range		
The hydrolog Hydro-Brake®											
Hydro-Brake	-	-									
Depth (m)	Flow (l/s)			Flow	(1/s)	Depth (m) Fla	ow (l/s)	Depth	(m) Fl	ow (1/s)
0.100	0.8		.200		1.1	3.00		1.6		000	2.4
0.200 0.300	0.8 0.8		.400 .600		1.2 1.2	3.50 4.00		1.8	7.5	500	2.5 2.6
0.300	0.8		. 800		1.2	4.00		1.9 2.0	8.5		2.6
0.500	0.7		.000		1.4	5.00		2.0		000	2.7
0.600	0.8		200		1.4	5.50		2.2	9.5		2.8
0.800	0.9	2.	400		1.5	6.00		2.3			
1.000	1.0	2.	.600		1.5	6.50	0	2.3			
			1	$\alpha \alpha \gamma = \gamma$	י דו∩כ	KP Solut	inno				

PLANS

Map data shown may contain Ordnance Survey ® products supplied by Pear Technology Services Ltd; © Crown Copyright and database rights from date shown above Ordnance Survey ® licence number 100005264

0	revision		
A	Boundaries revised	DMW	23.3.18

Issue Status: Planning Application 10m 0 10 20 30 40 50 60 ' 1:1250 R & P Baker 😻 projec Residential Development Grove Farm, Little Bealings Woodbridge 🏟 drawing

Site Location Plan

0	date	Jan' 18
0	drawn	DMW

15

scale 1:1250 @ A3 Checked by STL

05

А

BROW ٦O

ARCHITECTURE + PLANNING

Brown & Co. The Atrium, St George's Street, Norwich. NR3 1AB. Brown & Co Registered Office: Granta Hall, Finkin Street, Grantham, Lincolnshire, NG31 6Q2. Registration no: 0C302092. Registered in England & Wales. T: 01603 620326.

042

This drawing is copyright. Only figured dimensions to be worked to.
 revision A Turning head added to plan as per highways comments B Road widened to 4m as per highways comments. C Turning head and entrance widths revised as per highway consultant recommendation. D Road widened to 5m as per highways comments. E Plot boundaries revised DMW 31-01-18 F Site boundaries revised DMW 05-02-18 G Site layout revised DMW 21-02-18 H Site layout revised
North
10m 0 10 20 30 1:500 Client R & P Baker Residential Development Grove Farm, Little Bealings Woodbridge
 drawing Propsoed Site Plan date Jan' 18 drawn DMW checked by STL