

GEO-ENVIRONMENTAL ASSESSMENT (GROUND INVESTIGATION) REPORT

UNITS 1-15 PREMIER ESTATES, SUSSEX STREET, BRISTOL, BS2 ORA

JOMAS ASSOCIATES LTD

Unit 24 Sarum Complex, Salisbury Road, Uxbridge UB8 2RZ <u>www.jomasassociates.com</u> 0333-305-9054 <u>info@jomasassociates.com</u> Jomas Associates Ltd Registered in England and Wales No. 7095350

Report Title:	Geo-environmental Assessment Ground Investigation Report for Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 ORA			
Report Status:	Final v1.0			
Job No:	P4639J2633/JLW			
Date:	11/10/2022			
QUALITY CONT	ROL – REVISIONS			
Version		Date	Issued By	
Prepare	d by: JOMAS ASSOC	IATES LTD For: DOMINVS PRO	IECT COMPANY 23 LIMITED	
Prepa Josephine W (Hon Geotechni	ared by hitehead MSci s), FGS cal Engineer	Reviewed by Tom Elbourne BSc (Hons), CGeol CSci FGS, RoGEP - Professional Senior Geo-environmental Engineer	Approved by James Field BSc (Hons), CGeol, FGS, RoGEP - Professional Associate Director	

Should you have any queries relating to this report, please contact

JOMAS ASSOCIATES LTD

www.jomasassociates.com

0843 289 2187

info@jomasassociates.com

CONTENTS

Page

EXI	ECUTIVE SUMMARY	1
1	INTRODUCTION	
1.1	Terms of Reference	4
1.2	Proposed Development	4
1.3	Objectives	4
1.4	Scope of Works	4
1.5	Supplied Documentation	5
1.6	Limitations	5
2	SITE SETTING	7
2.1	Site Information	7
2.2	Desk Study Overview	7
3	GROUND INVESTIGATION	
3.1	Scope of Works	10
3.2	Laboratory Analysis	10
4	GROUND CONDITIONS ENCOUNTERED	13
4.1	General	13
4.2	Ground Conditions	13
4.3	Groundwater	13
4.4	Physical and Olfactory Evidence of Contamination	14
4.5	Limitations	14
5	RISK ASSESSMENT – ANALYTICAL FRAMEWORK	15
5.1	Context and Objectives	15
5.2	Analytical Framework – Soils	15

5.3	Analytical Framework –Leachate16
6	GENERIC QUANTITATIVE RISK ASSESSMENT
6.1	Screening of Soil Chemical Analysis Results – Human Health Risk Assessment
6.2	Asbestos in Soil
6.3	Volatile Organic Compounds21
6.4	Polychlorinated Biphenyl (PCB) Concentrations21
6.5	Summary of Human Health Generic Quantitative Risk Assessment
6.6	Screening of Soil Chemical Analysis Results – Potential Risks to Plant Growth
6.7	Screening for Water Pipes Materials22
6.8	Assessment of Soil Analytical Data with Respect to Controlled Waters
6.9	Waste Characterisation
7	GENERIC QUANTITATIVE RISK ASSESSMENT - LEACHATE DATA
7.1	Assessment of Leachate Analytical Data with Respect to Controlled Waters
8	SOIL GAS RISK ASSESSMENT
8.1	Soil Gas Results27
8.2	Screening of Results
9	SUMMARY OF RESULTS
9.1	Land Quality Impact Summary
9.2	Review of Pollutant Linkages Following Site Investigation
10	REFERENCES

APPENDICES

APPENDIX 1 – FIGURES

APPENDIX 2 – EXPLORATORY HOLE RECORDS

APPENDIX 3 - CHEMICAL LABORATORY TEST RESULTS

APPENDIX 4 - SOIL GAS MONITORING TEST RESULTS

EXECUTIVE SUMMARY

Dominvs Project Company 23 Limited commissioned Jomas Associates Ltd to undertake a Geoenvironmental ground investigation at the site referred to as Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 0RA.

The principal objectives of the study were as follows:

To determine the nature and where possible, the extent of contaminants potentially present at the site;

To establish the presence of significant pollutant linkages, in accordance with the procedures set out within the Environment Agency (EA) report R&D CLR11 and relevant guidance within the National Planning Policy Framework (NPPF);

To assess whether the site is safe and suitable for the purpose for which it is intended, or can be made so by remedial action.

It should be noted that the table below is an executive summary of the findings of this report and is for briefing purposes only. Reference should be made to the main report for detailed information and analysis.

	Site History and Ground Investigation
Desk Study Overview	A Desk Study report has been produced for the site and issued separately. A brief overview of the desk study findings is presented below. Reference should be made to the full report for detailed information.
	A review of earliest available (1884) historical maps indicates that the site was comprised of four rows of terraced housing with private gardens. Henry Street runs down through the middle of site, and Princess Street runs along the north-west of site. By the map dated 1950, 2No ruins were identified on-site. Few changes occur to the site until the map dated 1964 when the housing to the east of Henry Street has all been demolished, except for 1No in the north of site. A depot has been constructed in this area. Some buildings have been demolished west of Henry Street, with 17No terraced residential houses with private gardens remaining. By 1972, all residential buildings on site have been demolished. Henry Street is no longer present. 1No warehouse type building has been constructed in the west of site, and 3No smaller buildings have been constructed in the south-west of site. The smaller buildings in the south-west of site appear to have been demolished by 1985. Few changes then occur to the site until the present day. Current site uses include commercial/industrial; business operate out of the units on site including "The Invisible Circus" circus training (Unit 15), "Bristol Scrap Metal" (Units 6-11), "Calor Gas" (Units 12 & 13), "Crown Scaffolding" (Unit 1) and "Sovereign Motors" (Units 4-5).
	In the late 19 th century, the land use in the vicinity of site was largely mixed industrial and residential with major railway lines and stations present. During the 1950s and 1960s, much of the surrounding land underwent heavy industrial redevelopments, with the construction of depots and factories and demolition of residential buildings. In the 1970s, many of the surrounding railway lines became disused and business parks were built in these areas. Currently, the site is part of Dramier Business Dark
	built in these areas. Currently, the site is part of Premier Business Park.

	Site History and Ground Investigation
	Information provided by the British Geological Survey indicates that the site is directly underlain by solid deposits of the Redcliffe Sandstone Member.
	No superficial or artificial deposits are reported on site.
	Borehole records from approximately 144m north-east of the site indicated Made Ground to a depth of 3.2mbgl, overlying possible tidal flat deposits to 8.4mbgl, beneath which were deposits of sand, gravel and sandstone to the base of the borehole
	The solid deposits underlying the site are identified as a Secondary A Aquifer.
	A review of the Enviro+Geoinsight Report indicates that there are 2No groundwater abstractions within 2km of the site; the nearest of which is located 65m north-west. There are no potable water abstractions reported within 2km of the site and there are no source protection zones within 500m of the site.
	There are 23No surface water abstractions within 2km of the site; the nearest of which is located 366m south-west.
	There are no surface water features or water networks (OS MasterMap) reported within 250m of the site.
	There are no Environment Agency Zone 2 or 3 floodplains reported within 50m of the site.
	In order to clarify the potential risks associated with the historic coal mining in the area, it was recommended that Consultant's Coal Mining Report is obtained for the site.
	An intrusive investigation was also recommended to confirm the preliminary geo- environmental risks identified. The investigation should assess the thickness of Made Ground and allow samples of made ground and natural soils to be taken for laboratory analysis. Soil gas monitoring should be undertaken due to the presence of a historical landfill site 144m to the east of the site (former Barton Hill Gas Holder Site). This should be undertaken in accordance with CIRIA C665.
Intrusive Investigation	The ground investigation was undertaken on 30 August 2022, and consisted of the following:
	5 No windowless sampling boreholes, drilled to a maximum depth of 2.9m below ground level (bgl), with associated in-situ testing and sampling;
	Laboratory analysis for chemical purposes;
	4No return visits to monitor ground gas concentrations and groundwater levels.
Ground Conditions	The results of the ground investigation revealed a ground profile comprising Made Ground to a maximum depth of 2.7mbgl, overlying sand deposits of the Redcliffe Sandstone Member.
	Groundwater was not reported during the course of the investigation.

	Site History and Ground Investigation
Environmental Considerations	Following generic risk assessments, elevated concentrations of arsenic and lead were detected in soils in excess of generic assessment criteria for the protection of human health within a "residential without plant uptake" end-use scenario.
	No asbestos containing materials or fibres were detected in the Made Ground samples analysed in the laboratory.
	Where the site is to be covered by the building footprint and hard surfacing, no formal remedial measures are considered necessary in terms of human health, as the building and hard surfacing are expected to provide a barrier to potential receptors. In areas of soft landscaping, Made Ground should be encapsulated with a minimum 450mm of imported clean topsoil, placed on a geotextile membrane. Further investigation is recommended to increase the sample density across the site and beneath building footprints. Recommended remedial measures may be revised based on the findings of such works.
	The current soils may not satisfy the requirements of BS:3882 due to elevated concentrations of phytotoxic contaminants.
	The risk to controlled waters from soils is considered low on the basis that the extensive hard cover of the site will severely restrict the potential mobilisation of contaminants within the Made Ground.
	Based on the calculated GSVs, and in consideration of the conceptual site model, the site is classified as Characteristic Situation 1 (CS1) and no formal gas protection measures are considered to be necessary.
	Upgraded potable water supply pipe materials are unlikely to be required. The water supply pipe requirements for this site should be discussed at an early stage with the relevant utility provider.
	A remedial strategy will be required for the proposed development. This should include reference to information from the currently pending petroleum licensing information request. Further investigation is recommended within the vicinity of tanks that may be reported by the petroleum licensing authority (if any – response pending) and within the footprints of the existing building.
	If tanks are identified on site these will require removal along with associated hydrocarbon impacted soils under the supervision of a suitably qualified environmental consultant with appropriate verification works undertaken.
	As with any ground investigation, the presence of further hotspots between sampling points cannot be ruled out. Should any contamination be encountered, a suitably qualified environmental consultant should be informed immediately, so that adequate measures may be recommended.

1 INTRODUCTION

- 1.1 Terms of Reference
- 1.1.1 Dominvs Project Company 23 Limited ("The Client") has commissioned Jomas Associates Ltd, to assess the risk of contamination posed by the ground conditions at a site referred to as Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 ORA, prior to the redevelopment of the site.
- 1.1.2 To this end a Desk Study has been produced for the site and issued separately (Jomas, August 2022), followed by an intrusive investigation (detailed in this report).
- 1.1.3 The previous reports undertaken for the site by Jomas are detailed in Table 1.1:

Table 1.1: Previous Reports - Jomas

Title		Author	Reference	Date
Desk Study/Preliminary Risk Assessment Report for Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 0RA		Jomas Associates Ltd	P4639J2633/JLW	17 August 2022
1.1.4	The intrusive investig 04 August 2022	ation was undertaken in ac	cordance with Jomas	proposal dated

- 1.2 Proposed Development
- 1.2.1 It is understood that proposed development comprises demolition of the existing buildings on site and construction of a new building comprising commercial/retail units at ground level and residential units above. No private gardens or extensive areas of soft landscaping are anticipated.
- 1.2.2 For the purposes of the contamination risk assessment, the proposed development is classified as 'Residential without plant uptake'.
- 1.3 Objectives
- 1.3.1 The objectives of Jomas' investigation were as follows:

To conduct an intrusive investigation, to determine the nature and extent of contaminants potentially present at the site;

To establish the presence of significant pollutant linkages, in accordance with the procedures set out within Part IIA of the Environmental Protection Act 1990, associated statutory guidance and current best practice including the EA report R&D CLR 11.

- 1.4 Scope of Works
- 1.4.1 The following tasks were undertaken to achieve the objectives listed above:

Intrusive ground investigation to determine shallow ground conditions, and potential for contamination at the site;

Undertaking of laboratory chemical testing upon samples obtained;

The compilation of this report, which collects and discusses the above data, and presents an assessment of the site conditions, conclusions and recommendations.

- 1.5 Supplied Documentation
- 1.5.1 A report previously prepared by a third-party was supplied to Jomas Associates at the commencement of this investigation. Table 1.2 details the document supplied:

Title	Author	Reference	Date
Environmental Report for Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 0RA	Argyll Environmental	298881269	25 July 2022

Table 1.2: Supplied Reports

1.6 Limitations

1.6.1 Jomas Associates Ltd has prepared this report for the sole use of Dominvs Project Company 23 Limited, in accordance with the generally accepted consulting practices and for the intended purposes as stated in the agreement under which this work was completed. This report may not be relied upon by any other party without the explicit written agreement of Jomas Associates Limited. No other third party warranty, expressed or implied, is made as to the professional advice included in this report. This report must be used in its entirety.

- 1.6.2 The records search was limited to information available from public sources; this information is changing continually and frequently incomplete. Unless Jomas Associates Limited has actual knowledge to the contrary, information obtained from public sources or provided to Jomas Associates Limited by site personnel and other information sources, have been assumed to be correct. Jomas Associates Limited does not assume any liability for the misinterpretation of information or for items not visible, accessible or present on the subject property at the time of this study.
- 1.6.3 Whilst every effort has been made to ensure the accuracy of the data supplied, and any analysis derived from it, there may be conditions at the site that have not been disclosed by the investigation, and could not therefore be taken into account. As with any site, there may be differences in soil conditions between exploratory hole positions. Furthermore, it should be noted that groundwater conditions may vary due to seasonal and other effects and may at times be significantly different from those measured by the investigation. No liability can be accepted for any such variations in these conditions.
- 1.6.4 Any reports provided to Jomas Associates Limited have been reviewed in good faith. Jomas Associates Limited cannot be held liable for any errors or omissions in these reports, or for any incorrect interpretation contained within them.

- 1.6.5 This investigation and report has been carried out in accordance with the relevant standards and guidance in place at the time of the works. Future changes to these may require a re-assessment of the recommendations made within this report.
- 1.6.6 This report is not an engineering design and the figures and calculations contained in the report should be used by the Structural Engineer, taking note that variations may apply, depending on variations in design loading, in techniques used, and in site conditions. Our recommendations should therefore not supersede the Engineer's design.

2 SITE SETTING

2.1 Site Information

2.1.1 The site location plan is appended to this report in Appendix 1.

Table 2.1: Site Information

Name of Site	-
Address of Site	Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 ORA
Approx. National Grid Ref.	360144 172903
Site Area (Approx)	0.74ha
Site Occupation	Light industrial use
Local Authority	Bristol City Council
Proposed Site Use	Demolition of existing buildings, and construction of a mixed- use building

2.2 Desk Study Overview

- 2.2.1 A Desk Study report has been produced for the site and issued separately. A brief overview of the desk study findings is presented below. Reference should be made to the full report for detailed information.
- 2.2.2 A review of earliest available (1884) historical maps indicates that the site was comprised of four rows of terraced housing with private gardens. Henry Street runs down through the middle of site, and Princess Street runs along the north-west of site. By the map dated 1950, 2No ruins were identified on-site. Few changes occur to the site until the map dated 1964 when the housing to the east of Henry Street has all been demolished, except for 1No in the north of site. A depot has been constructed in this area. Some buildings have been demolished west of Henry Street, with 17No terraced residential houses with private gardens remaining. By 1972, all residential buildings on site have been demolished. Henry Street is no longer present. 1No warehouse type building has been constructed in the west of site, and 3No smaller buildings have been constructed in the south-west of site. The smaller buildings in the south-west of site appear to have been demolished by 1985. Few changes then occur to the site until the present day. Current site uses include commercial/industrial; business operate out of the units on site including "The Invisible Circus" circus training (Unit 15), "Bristol Scrap Metal" (Units 6-11), "Calor Gas" (Units 12 & 13), "Crown Scaffolding" (Unit 1) and "Sovereign Motors" (Units 4-5).
- 2.2.3 In the late 19th century, the land use in the vicinity of site was largely mixed industrial and residential with major railway lines and stations present. During the 1950s and 1960s, much of the surrounding land underwent heavy industrial redevelopments, with the construction of depots and factories and demolition of

residential buildings. In the 1970s, many of the surrounding railway lines became disused and business parks were built in these areas. Currently, the site is part of Premier Business Park.

- 2.2.4 Information provided by the British Geological Survey indicates that the site is directly underlain by solid deposits of the Redcliffe Sandstone Member.
- 2.2.5 No superficial or artificial deposits are reported on site.
- 2.2.6 Borehole records from approximately 144m north-east of the site indicated Made Ground to a depth of 3.2mbgl, overlying possible tidal flat deposits to 8.4mbgl, beneath which were deposits of sand, gravel and sandstone to the base of the borehole
- 2.2.7 The solid deposits underlying the site are identified as a Secondary A Aquifer.
- 2.2.8 A review of the Enviro+Geoinsight Report indicates that there are 2No groundwater abstractions within 2km of the site; the nearest of which is located 65m north-west. There are no potable water abstractions reported within 2km of the site and there are no source protection zones within 500m of the site.
- 2.2.9 There are 23No surface water abstractions within 2km of the site; the nearest of which is located 366m south-west.
- 2.2.10 There are no surface water features or water networks (OS MasterMap) reported within 250m of the site.
- 2.2.11 There are no Environment Agency Zone 2 or 3 floodplains reported within 50m of the site.
- 2.2.12 In order to clarify the potential risks associated with the historic coal mining in the area, it was recommended that Consultant's Coal Mining Report is obtained for the site.
- 2.2.13 An intrusive investigation was also recommended to confirm the preliminary geoenvironmental risks identified. The investigation should assess the thickness of Made Ground and allow samples of made ground and natural soils to be taken for laboratory analysis. Soil gas monitoring should be undertaken due to the presence of a historical landfill site 144m to the east of the site (former Barton Hill Gas Holder Site). This should be undertaken in accordance with CIRIA C665.
- 2.2.14 The conceptual site model is reproduced in Table 2.2 overleaf.

JUMAS ENGINEERING ENVIRONMENTAL

Table 2.2: Preliminary Risk Assessment for the Site

Sources	Pathways (P)	Receptors	Consequence of Impact	Probability of Impact	Risk Estimation	Hazard Assessment
Potential for contaminated ground associated with previous and current site use – on site (S1) - Depot (1986) - Fuel distribution and suppliers (current) - Scrap metal merchants (current) - Special purpose machinery and equipment (current) - Electronic equipment (current) Potential for Made Ground associated with previous development operations – on site (S2) Potential buried/above-ground tanks associated with former and current site use, and potential tanks observed during the walkover – on site (S3) Current and previous industrial use – off site (S4) - Railways sidings (immediately N of the site) - Unspecified warehouse 7m SE (1986) - Plastic works and engineering works 60m NE (1972) - Railway land 61m N (1913) - Unspecified works 63m N (1986) - Garage 70m S (1972) - Nursery 71m SE (1921) Historical landfill – off site (S5) - Former Barton Hill Gas Holder Site 144m E (1984-1992)	Ingestion and dermal contact with contaminated soil (P1) Inhalation or contact with potentially contaminated dust and vapours (P2)	Construction workers (R1) Maintenance workers (R2) Neighbouring site users (R3) Future site users (R4) Building foundations and on site buried services (water mains, electricity and sewer) (R5)	Medium	Likely	Moderate	GI – Ground Investigation
	Permeation of water pipes and attack on concrete foundations by aggressive soil conditions (P6)		Severe for Asbestos	Low likelihood	Moderate for Asbestos	
	Accumulation and migration of soil gases (P5)		Severe	Low likelihood	Moderate	
	Leaching through permeable soils, migration within the vadose zone (i.e., unsaturated soil above the water table) and/or lateral migration within surface water, as a result of cracked hardstanding or via service pipe/corridors and surface water runoff (P3) Horizontal and vertical migration of contaminants within groundwater (P4)	Neighbouring site users (R3) Building foundations and on site buried services (water mains, electricity and sewer) (R5) Controlled Waters (R6) - Secondary A aquifer - 2No groundwater abstractions within 2km	Medium	Low likelihood	Moderate	

3 GROUND INVESTIGATION

3.1 Scope of Works

- 3.1.1 The ground investigation was undertaken on 30 August 2022.
- 3.1.2 A summary of the fieldwork carried out at the site, with justifications for exploratory hole positions, is presented in Table 3.1 below.

		•		0
Investigation Type	Number of Exploratory Holes Achieved	Exploratory Hole Designation	Depth Achieved (m BGL)	Justification
				Obtain shallow samples for contamination testing.
				WS1 – located adjacent to known buried tanks on site
Windowless Sampler Boreholes	5	WS1 –WS5	Max. depth 2.9mbal	WS2 – non-targeted to provide site coverage
2010110100			2.7	WS3 – non-targeted to provide site coverage
				WS4 – located in the east of site, closest to the Former Barton Hill Gas Holder Site
				WS5 – non-targeted to provide site coverage
	2	WS1, WS3 and	Max. depth	Combined soil gas and groundwater monitoring wells.
Monitoring Wells	3 WS	WS4	2mbgl	All response zones in Made Ground and Redcliffe Sandstone Member
3.1.3	The ground investigation was undertaken in accordance with British Standard BS5930:2015+A1:2020 "Code of practice for ground investigations", British Standard BS10175:2011+A2:2017 "Investigation of potentially contaminated sites - code of practice" and AGS Guidelines for Good Practice in Site Investigations.			
3.1.4	Exploratory hole positions are shown on the exploratory hole location plan presented in Figure 2, Appendix 1. The exploratory hole records are included in Appendix 2.			
3.1.5	Where monitoring well installations were not installed, the exploratory holes were backfilled with the arisings (in the reverse order in which they were drilled) and the ground surface was reinstated so that no depression was left.			
3.2	Laboratory Analysis			
3.2.1	A programme of che was carried out on se	mical laborator elected samples	y testing, sch s of Made Gro	eduled by Jomas Associates Limited, ound and natural strata.
3.2.2	Chemical testing of soils was undertaken by i2 Analytical Limited, which holds UKAS and MCERTS accreditations for a wide range of determinands.			

Table 3.1: Scope of Intrusive Investigation

3.2.3 The samples were analysed for a wide range of contaminants as shown in Table 3.2 below:

	No. of tests
Test Suite	Made Ground
Basic Suite 3	3
Basic Suite 5	5
Hydrocarbon Suite	5
Total Organic Carbon	4
Asbestos Screen & ID	8
Polychlorinated Biphenyls	2
Leachable Basic Suite 5	3
Leachable Hydrocarbon Suite	3

Table 3.2: Chemical Tests Scheduled

- 3.2.4 The determinands contained in the Basic Suite 3 are as detailed in Table 3.3 overleaf. Basic Suite 5 contains the same determinands but without the hydrocarbon compounds to avoid overlapping with the extended hydrocarbon testing.
- 3.2.5 The Hydrocarbon Suite includes TPHCWG, PAH, phenols and VOCs including BTEX & MTBE.

DETERMINAND	LIMIT OF DETECTION (mg/kg)	UKAS ACCREDITATION	TECHNIQUE
Arsenic	1	Y (MCERTS)	ICPMS
Cadmium	0.2	Y (MCERTS)	ICPMS
Chromium	1	Y (MCERTS)	ICPMS
Chromium (Hexavalent)	4	Y (MCERTS)	Colorimetry
Lead	1	Y (MCERTS)	ICPMS
Mercury	0.3	Y (MCERTS)	ICPMS
Nickel	1	Y (MCERTS)	ICPMS
Selenium	1	Y (MCERTS)	ICPMS
Copper	1	Y (MCERTS)	ICPMS
Zinc	1	Y (MCERTS)	ICPMS
Boron (Water Soluble)	0.2	Y (MCERTS)	ICPMS
pH Value	0.1 units	Y (MCERTS)	Electrometric
Sulphate (Water Soluble)	0.0125g/l	Y (MCERTS)	Ion Chromatography
Total Cyanide	1	Y (MCERTS)	Colorimetry
Speciated/Total PAH	0.05/0.80	Y (MCERTS)	GCFID
Phenols	1	Y (MCERTS)	HPLC
Total Petroleum Hydrocarbons (banded)	-	N Y (MCERTS)	Gas Chromatography

Table 3.3: Basic Suite of Determinands

- 3.2.6 To support the selection of appropriate tier 1 screening values, 4No samples were analysed for total organic carbon.
- 3.2.7 The laboratory test results are included in Appendix 3.

4 GROUND CONDITIONS ENCOUNTERED

4.1 General

- 4.1.1 A factual record of the conditions encountered during the physical investigation of the site is presented in the following section.
- 4.2 Ground Conditions
- 4.2.1 The ground conditions encountered are summarised in Table 4.1 below.

Table 4.1: Ground Conditions Encountered

Stratum and Description	Encountered from (mbgl)	Base of strata (mbgl)	Thickness range (m)
Concrete over black/brown/red/grey clayey sandy gravel with localised medium cobble content. Sand is fine to coarse. Gravel consists of fine to coarse, angular to sub-rounded flint, concrete and brick. Cobbles consist of angular concrete and brick. (MADE GROUND) Encountered in WS1, WS2, WS3 & WS5.	GL	0.5 – 1.5	0.5 – 1.5
(Concrete over) Black/brown/red silty sandy slightly gravelly clay. Sand is fine to coarse. Gravel consists of fine to coarse, angular to rounded flint, concrete and sandstone. (MADE GROUND)	GL – 1.5	1.1 – 2.7	0.4 – 1.5
Medium dense becoming very dense orange/red SAND. Sand is fine to medium. (REDCLIFFE SANDSTONE MEMBER) Encountered in WS1, WS4 & WS5.	1.2 - 2.7	>2.0 – >2.9 [base not proven]	>0.2 – >0.8 [thickness not proven]
Medium dense becoming very dense light brown gravelly SAND. Sand is fine to coarse. Gravel consists of fine to coarse, angular to rounded flint. (REDCLIFFE SANDSTONE MEMBER) Encountered in WS2 & WS3.	1.1 – 1.5	>1.7 – >1.9 [base not proven]	>0.4 – >0.6 [thickness not proven]

** Consistency estimated using semi-empirical correlations with SPT N-values, Plasticity Indices and published literature

- 4.2.2 Made Ground was found to be deepest in the south of the site.
- 4.3 Groundwater
- 4.3.1 Groundwater was not reported during the course of the investigation.
- 4.3.2 It should be noted that changes in groundwater levels can occur for a number of reasons including seasonal effects and variations in drainage. Such fluctuations may only be recorded by the measurement of the groundwater level within a standpipe or piezometer installed within appropriate response zones. Changes in groundwater level can have a direct effect on excavation stability and dewatering requirements, and cohesive soils can soften under rising or high groundwater levels.

- 4.4 Physical and Olfactory Evidence of Contamination
- 4.4.1 With the exception of a black colouration of some of the Made Ground soils, no other visual or olfactory evidence of potential contamination was identified within the investigation positions.
- 4.5 Limitations
- 4.5.1 The boreholes were proposed to be drilled to 5mbgl, however, the drilling equipment refused on the very dense granular deposits of the Redcliffe Sandstone Member and, therefore, the boreholes were terminated at depths ranging from 1.7mbgl to 2.9mbgl.
- 4.5.2 The possible presence of unidentified natural and/or manmade obstructions elsewhere on site cannot be discounted.

5 RISK ASSESSMENT – ANALYTICAL FRAMEWORK

- 5.1 Context and Objectives
- 5.1.1 This section seeks to evaluate the level of chronic risk pertaining to human health and the environment which may result from both the existing use and proposed future use of the site. It makes use of the ground investigation findings, as described in the previous sections, to evaluate further the potential pollutant linkages identified in the desk study. A combination of qualitative and quantitative techniques is used, as described below.
- 5.1.2 The purpose of generic quantitative risk assessment is to compare concentrations of contaminants found on site against generic assessment criteria (GAC) to establish whether there are actual or potential unacceptable risks. It also determines whether further detailed assessment is required. The approaches detailed all broadly fit within a tiered assessment structure in line with the framework set out in the Department of Environment, Food and Rural Affairs (DEFRA), EA and Institute for Environment and Health Publication, Guidelines for Environmental Risk Assessment and Management.
- 5.2 Analytical Framework Soils
- 5.2.1 There is no single methodology that covers all the various aspects of the assessment of potentially contaminated land and groundwater. Therefore, the analytical framework adopted for this investigation is made up of a number of procedures, which are outlined below. All of these are based on a Risk Assessment methodology centred on the identification and analysis of Source – Pathway – Receptor linkages.
- 5.2.2 The soil analytical test results have been compared to Suitable 4 Use Levels (S4UL) published by the Chartered Institute of Environmental Health in order to assess the potential long-term risks to human health posed by contaminants in the soils. S4UL'S have been derived for a range of land uses and Soil Organic Matter contents. They represent the minimal or tolerable risk, above which further assessment of the risks or remedial action may be required.
- 5.2.3 In the absence of a S4UL recommended concentration, other available general assessment criteria (GAC), including the Category 4 Screening Levels (C4SL) published by DEFRA have been used. Site-specific assessments are undertaken wherever possible and/or applicable. All assessments are carried out in accordance with the CLEA protocol.
- 5.2.4 The assessment criteria used for the screening of determinands within soils are identified within Table 5.1.

Substance Group	Determinand(s)	Assessment Criteria Selected
Organic Substances		
Non-halogenated Hydrocarbons	Total Petroleum Hydrocarbons (TPHCWG banded)	S4UL
	Total Phenols	S4UL
Polycyclic Aromatic Hydrocarbons (PAH-16)	Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenzo(a,h)anthracene, Benzo(ghi)perylene	S4UL
Volatile Organic Compounds (VOCs/sVOCs)	Toluene, Ethylbenzene, Benzene, Xylenes	S4UL
Inorganic Substances		
Heavy Metals and Metalloids	Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Selenium, Zinc	S4UL
	Copper, Zinc, Nickel	BS: 3882 (2015)
Cyanides	Free Cyanide	CLEA v1.06

Table 5.1: Selected Assessment Criteria - Contaminants in Soils

- 5.2.5 It is understood that the site is to be converted to provide residential and commercial units, without private gardens. As a result, the site has been assessed with regards to a "residential without plant uptake" end use scenario.
- 5.2.6 GAC have been selected with consideration to the Soil Organic Matter (SOM) content of the soil. From the soils analytical results, the average value for Total Organic Carbon for the Made Ground is 1.13%, which gives an equivalent SOM of 1.94%. Therefore, published GAC have been selected as those derived assuming a SOM of 1%.
- 5.3 Analytical Framework –Leachate
- 5.3.1 The requirement to protect groundwater from pollution is outlined in Groundwater Protection: Principles and Practice (GP3, EA, August 2013, v1.1).
- 5.3.2 Where undertaken, the leachate quality analysis comprises a Level 1 assessment in accordance with the EA Remedial Targets Methodology Document (EA, 2006).

The criteria used by Jomas' in the Level 1 assessment of leachate quality are shown in Table 5.2

5.3.3 Table.

Substance Group	Determinand(s)	Assessment Criteria Selected
Metals	Arsenic, Boron, Cadmium, Chromium, Copper, Cyanide, Lead, Mercury, Nickel,	EQS/DWS
	Zinc	EQS
	Selenium	DWS
PAHs	Sum of Four – benzo(b)fluoranthene, benzo(ghi)perylene, benzo(k)fluoranthene, indeno(1,2,3-c,d)pyrene	DWS
РАН	Anthracene, Naphthalene	EQS
PAHs	Benzo(a)pyrene	EQS/ DWS
PAHs	Remainder	LEC
Total Petroleum Hydrocarbons	Aliphatic C5-C6, Aliphatic >C6-C8, Aliphatic >C8-C10. Aliphatic >C10-C12, Aliphatic >C12-C16, Aliphatic >C16-C21, Aromatic C5-C7, Aromatic >C7-C8, Aromatic >C7-C8, Aromatic >C10-C12, Aromatic >C10-C12, Aromatic >C12-C16, Aromatic >C16-C21, Aromatic >C16-C21, Aromatic >C12-C35	/WHO
Benzene	Benzene	EQS/ DWS
Toluene	Toluene	EQS/ WHO
Ethylbenzene	Ethylbenzene	WHO
Xylene	Xylene	EQS/WHO

Table 5.2: Selected Assessment Criteria - Contaminants in Water

Environmental Quality Standards EQS

Environmental Quality Standards (EQS) have been released by the EA for dangerous substances, as identified by the EC Dangerous Substances Directive. EQS can vary for each substance, for the hardness of the water and can be different for fresh, estuarine or coastal waters.

WHO Health

These screening criteria have been taken from the World Health Organisation Guidelines for Drinking Water Quality (2017). The health value is a guideline value representing the concentration of a contaminant that does not result in any significant risk to the receptor over a lifetime of exposure.

Further criteria have been obtained from 'Petroleum Products in Drinking-water' -Background document for development of WHO Guidelines for Drinking-water Quality (2005).

UK Drinking Water Standards (DWS)

These comprise screening criteria provided by the Drinking Water Inspectorate (DWI) in the Water Supply (Water Quality) Regulations 2018.

6 GENERIC QUANTITATIVE RISK ASSESSMENT

- 6.1 Screening of Soil Chemical Analysis Results Human Health Risk Assessment
- 6.1.1 Laboratory analysis for soils is summarised in Tables 6.1 to 6.4. Raw laboratory data is included in Appendix 3.
- 6.1.2 Results have been screened against generic assessment criteria for a "residential without plant uptake" end-use scenario, assuming 1% soil organic matter.

Determinand	Unit	No. samples tested	Screenin	g Criteria	Min	Max	No. Exceeding
Arsenic	mg/kg	8	S4UL	40	4.8	59	2No exceedances: WS1 – 0.75mbgl WS3 – 0.5mbgl
Cadmium	mg/kg	8	S4UL	85	<0.2	2.1	0
Chromium	mg/kg	8	S4UL	910	4.8	44	0
Lead	mg/kg	8	C4SL	310	15	400	2No exceedances: WS3 – 0.5mbgl WS5 – 1.0mbgl
Mercury	mg/kg	8	S4UL	56	<0.3	0.3	0
Nickel	mg/kg	8	S4UL	180	2.4	41	0
Copper	mg/kg	8	S4UL	7100	2.9	240	0
Zinc	mg/kg	8	S4UL	40000	39	590	0
Total Cyanide ^A	mg/kg	8	CLEA v 1.06	33	<1.0	<1.0	0
Selenium	mg/kg	8	S4UL	430	<1.0	<1.0	0
Boron Water Soluble	mg/kg	8	S4UL	11000	0.2	2.2	0
Phenols	mg/kg	8	S4UL	440	<1.0	<1.0	0

Table 6.1: Soil Laboratory Test Results - Metals, Metalloids, Phenol, Cyanide

Notes: ^A Generic assessment criteria derived for free inorganic cyanide.

Table 6.2: Soil Laboratory Test Results - Polycyclic Aromatic Hydrocarbons (PAHs)

Determinand	Unit	No. Samples Tested	Screening	Criteria	Min	Max	No. Exceeding
Naphthalene	mg/kg	8	S4UL	2.3	<0.05	0.73	0
Acenaphthylene	mg/kg	8	S4UL	2900	< 0.05	< 0.05	0
Acenaphthene	mg/kg	8	S4UL	3000	< 0.05	0.28	0
Fluorene	mg/kg	8	S4UL	2800	< 0.05	< 0.05	0
Phenanthrene	mg/kg	8	S4UL	1300	< 0.05	2	0

SECTION 6 GENERIC QUANTITATIVE RISK ASSESSMENT – SOIL DATA

Determinand	Unit	No. Samples Tested	Screening	Criteria	Min	Max	No. Exceeding
Anthracene	mg/kg	8	S4UL	31000	<0.05	0.33	0
Fluoranthene	mg/kg	8	S4UL	1500	<0.05	3.2	0
Pyrene	mg/kg	8	S4UL	3700	<0.05	2.9	0
Benzo(a)anthracene	mg/kg	8	S4UL	11	<0.05	2.1	0
Chrysene	mg/kg	8	S4UL	30	<0.05	1.7	0
Benzo(b)fluoranthene	mg/kg	8	S4UL	3.9	<0.05	2.5	0
Benzo(k)fluoranthene	mg/kg	8	S4UL	110	<0.05	0.97	0
Benzo(a)pyrene	mg/kg	8	S4UL	3.2	<0.05	1.8	0
Indeno(123-cd)pyrene	mg/kg	8	S4UL	45	<0.05	1.2	0
Dibenzo(ah)anthracene	mg/kg	8	S4UL	0.31	<0.05	0.31	0
Benzo(ghi)perylene	mg/kg	8	S4UL	360	<0.05	1.5	0
Total PAH	mg/kg	8	-	-	<0.80	21.5	-

Table 6.3: Soil Laboratory Test Results - Total Petroleum Hydrocarbons (TPH)

TPH Band	Unit	No. Samples Tested	Screening (Criteria	Min	Max	No. Exceeding
C ₈ -C ₁₀	mg/kg	3	S4UL	27	<0.1	<0.1	0
>C ₁₀ -C ₁₂	mg/kg	3	S4UL	130	<2.0	<2.0	0
>C ₁₂ -C ₁₆	mg/kg	3	S4UL	1100	<4.0	<4.0	0
>C ₁₆ -C ₂₁	mg/kg	3	S4UL	1900	<1.0	9.9	0
>C ₂₁ -C ₃₅	mg/kg	3	S4UL	1900	<10	65	0
Total TPH	mg/kg	3	-	-	<17.1	74.9	-

Note: *The lower value of guidelines for Aromatic/Aliphatics has been selected

Table 6.4: Soil Laboratory Analysis Results - Total Petroleum Hydrocarbons (TPHCWG)

TPH Band	Unit	No. Samples Tested	Screening (Criteria	Min	Max	No. Exceeding
>C5-C6 Aliphatic	mg/kg	5	S4UL	42	<0.001	<0.001	0
>C6-C8 Aliphatic	mg/kg	5	S4UL	100	<0.001	<0.001	0
>C8-C10 Aliphatic	mg/kg	5	S4UL	27	<0.001	<0.001	0
>C10-C12 Aliphatic	mg/kg	5	S4UL	130	<1.0	<1.0	0
>C12-C16 Aliphatic	mg/kg	5	S4UL	1100	<2.0	<2.0	0
>C16-C35 Aliphatic	mg/kg	5	S4UL	65000	<16.0	<16.0	0
>C5-C7 Aromatic	mg/kg	5	S4UL	370	<0.001	<0.001	0

Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 0RA Geo-environmental Ground Investigation P4639J2633 – October 2022

SECTION 6 GENERIC QUANTITATIVE RISK ASSESSMENT – SOIL DATA

TPH Band	Unit	No. Samples Tested	Screening (Criteria	Min	Max	No. Exceeding
>C7-C8 Aromatic	mg/kg	5	S4UL	860	<0.001	<0.001	0
>C8-C10 Aromatic	mg/kg	5	S4UL	47	<0.001	<0.001	0
>C10-C12 Aromatic	mg/kg	5	S4UL	250	<1.0	1.4	0
>C12-C16 Aromatic	mg/kg	5	S4UL	1800	<2.0	2.1	0
>C16-C21 Aromatic	mg/kg	5	S4UL	1900	<10	<10	0
>C21-C35 Aromatic	mg/kg	5	S4UL	1900	<10	13	0
Total TPH (Ali/Aro)	mg/kg	5	-	-	<10	23	-

- 6.2 Asbestos in Soil
- 6.2.1 8No samples of the Made Ground were screened in the laboratory for the presence of asbestos.
- 6.2.2 No asbestos containing materials (ACM) or fibres were reported in samples analysed in the laboratory.
- 6.3 Volatile Organic Compounds
- 6.3.1 In addition to the suites outlined previously, 5No samples were tested for the presence of volatile organic compounds (VOCs) including BTEX compounds (benzene, toluene, ethylbenzene, xylene).
- 6.3.2 No VOCs were reported above the laboratory detection limit within any of the samples tested.
- 6.4 Polychlorinated Biphenyl (PCB) Concentrations
- 6.4.1 In addition to the suites outlined previously, 2No samples from the vicinity of the offsite electrical substation were analysed for the presence of PCBs.
- 6.4.2 No PCBs were reported above the laboratory method detection limit.
- 6.5 Summary of Human Health Generic Quantitative Risk Assessment
- 6.5.1 In summary, concentrations of arsenic and lead in excess of the GAC have been recorded in samples of Made Ground.
- 6.6 Screening of Soil Chemical Analysis Results Potential Risks to Plant Growth
- 6.6.1 Zinc, copper and nickel are phytotoxins and could therefore inhibit plant growth in soft landscaped areas. Concentrations measured in soil for these determinands have been compared with the pH dependent values given in BS:3882 (2015). This does not constitute a full BS:3882 topsoil test.

6.6.2 Table 6.5 shows the soil analytical results compared with the relevant screening values, adopting a pH value of greater than 7, as indicated by the results of the laboratory analysis.

Determinand	Threshold level (mg/kg)	Min (mg/kg)	Max (mg/kg)	No. Exceeding
Nickel	110	2.4	41	0
Copper	200	2.9	240	1No exceedance: WS3 – 0.5mbgl
Zinc	300	39	590	2No exceedances: WS3 – 0.5mbgl WS5 – 1.0mbgl

Table 6.5: Soil Laboratory Analysis Results - Phytotoxic Determinands

- 6.6.3 A number of samples have recorded determinands in excess of threshold levels. The current soils may not satisfy the requirements of BS:3882.
- 6.7 Screening for Water Pipes Materials
- 6.7.1 The results of the analysis have been assessed for potential impact upon water supply pipes. Table 6.6 below summarises the findings of the assessment:

Table 6.6: Screening Guide for Water Pipes

Determinand	No. of	Threshold for Polyethylene	Value for si	te data (mg/kg)	No of Exceedances
	tests	Pipes* (mg/kg)	Min	Max	
Total VOCs	5	0.5	<0.056	<0.056	0
BTEX	5	0.1	<0.005	<0.005	0
MTBE	5	0.1	<0.001	<0.001	0
EC5-EC10	8	1	<0.006	<0.1	0
EC10-EC16	8	10	<6.0	≥3.5 <6.5	0
EC16-EC40	8	500	<11.0	74.9	0
Naphthalene	8	5	<0.05	0.73	0
Phenols	8	2	<1.0	<1.0	0

* UK Water Industry Research (2010) Source Guidance for Selection of Water Supply Pipes to be Used in Brownfield Sites. Report No. 10/WM/03/21.

6.7.2 The above suggests that upgraded pipe work is unlikely to be required.

6.7.3 The water supply pipe requirements for this site should be discussed at an early stage with the relevant utility provider.

- 6.8 Assessment of Soil Analytical Data with Respect to Controlled Waters
- 6.8.1 At the Preliminary Risk Assessment (Desk Study) stage, risks to controlled waters were moderate.
- 6.8.2 The following controlled waters receptors were identified:

Secondary A Aquifer within the Redcliffe Sandstone Member 2No groundwater abstractions, the nearest 65m north-west of the site

- 6.8.3 Pathways for migration of leachable/mobile contamination were considered to be potentially present within the underlying Redcliffe Sandstone Member.
- 6.8.4 The ground conditions encountered are considered to confirm the expected geological succession and confirmed that potential pathways for migration of leachable / mobile contamination are present. Further assessment of these risks is provided in Section 7, with the evaluation of leachate analytical data.
- 6.8.5 Elevated levels of polyaromatic hydrocarbons (PAHs) have been found in the Made Ground. The only PAHs with stated "moderate" or "high" mobility rankings in groundwater (as per CL:AIRE, 2017) are naphthalene, acenaphthylene, and acenaphthene. Of these compounds, only naphthalene has a statutory water quality standard. Naphthalene was detected at a maximum concentration of 0.73mg/kg within a single sample out of the 8No analysed. Considering that no visual or olfactory evidence of potentially mobile contamination has been encountered, the low concentrations of PAHs detected in soils are not considered to pose a risk to controlled waters.
- 6.8.6 The presence of localised impacted soils beneath building footprints or in the vicinity of below ground fuel tanks that may be reported on site (information request to the petroleum licensing authority is pending) cannot be ruled out. Such soils may pose a risk to controlled water if present, and further investigation is recommended once access beneath current building footprints is possible.
- 6.9 Waste Characterisation
- 6.9.1 The classification of materials for waste disposal purposes was outside the scope of this report. Should quantities of material require off-site disposal, waste classification will be required to determine whether soils may be treated as hazardous or non-hazardous.
- 6.9.2 Note that Waste Acceptance Criteria (WAC) analysis may then be required by the landfill operator to determine whether materials can be disposed of at either an inert, stable non-reactive hazardous or hazardous landfill.

7 GENERIC QUANTITATIVE RISK ASSESSMENT – LEACHATE DATA

- 7.1 Assessment of Leachate Analytical Data with Respect to Controlled Waters
- 7.1.1 No groundwater was reported within the monitoring wells during the 4No return monitoring visits, so groundwater samples could not be collected from site. 3No soil samples were scheduled for leachate analysis in their place.
- 7.1.2 The results of the laboratory testing are summarised in Tables 7.1 to 7.3 below and compared to GAC for controlled waters receptors. Analytical laboratory certificates are presented in Appendix 3.

Table 7.1: Leachate Laboratory Analysis Results – Metals, Metalloids, Phenol, Cyanide

Determinand	Unit	No. samples tested	Screening Criteria		Min	Max	No of Exceedances
Arsonic	µg/I	2	10	DWS	<1.0	6.7	0
Arsenic	µg∕I	3	50	EQS	<1.0	6.7	0
Codmium	µg∕I	2 –	5	DWS	<0.08	<0.08	0
Caumum	µg∕I	3	<0.08-0.25	EQS	<0.08	<0.08	0
	µg∕I		50	DWS	<0.4	5.6	0
Chromium	µg/I	3	4.7	EQS	<0.4	5.6	1No exceedance: WS5 – 1.0mbgl
Lead	µg/I	2	10	DWS	<1.0	62	1No exceedance: WS5 – 1.0mbgl
	µg/I	3 -	1.2*	EQS	<1.0	62	1No exceedance: WS5 – 1.0mbgl
Niekol	µg/I	3	20	DWS	<0.3	2.4	0
NICKEI	µg/I		4*	EQS	<0.3	2.4	0
Copper	µg∕I	3	1.0	EQS	2.2	14	1No exceedance: WS5 – 1.0mbgl
			2000	DWS	2.2	14	0
Zinc	µg/I	3	10.9*	EQS	2	41	2No exceedances: WS3 – 0.5mbgl WS5 – 1.0mbgl
Moreury	µg∕I	3	1.0	DWS	<0.5	<0.5	0
ivier cur y	µg/I	3	0.07	EQS	<0.5	<0.5	0
Selenium	µg∕I	3	10	DWS	<4.0	<4.0	0
Boron	µg∕I	3	1000	DWS	10	85	0
DOLOH	µg∕I	J	2000	EQS	10	85	0
Cvanide (Total)	µg∕I	3	50	DWS	<10	<10	0
Cyanide (Total)	µg/I	5	1	EQS	<10	<10	0

SECTION 8 SOIL GAS RISK ASSESSMENT

Determinand	Unit	No. samples tested	Screening Criteria		Screening Criteria Min N		No of Exceedances
Phenols (Total)	µg/I	3	7.7	EQS	<10	<10	0

* bioavailable concentration

**bioavailable concentration + ambient background concentration dissolved for Thames Groundwater (2 µg/L)

Table 7.2: Leachate Laboratory Analysis Results - Polycyclic Aromatic Hydrocarbons (PAHs)

Determinand	Unit	No. samples tested	Screening	Criteria	Min.	Max.	No. of Exceedances
Naphthalene	µg/I	3	2.0	EQS	<0.001	<0.001	0
Acenaphthylene	µg/I	3	-	-	<0.001	<0.001	-
Acenaphthene	µg/I	3	-	-	<0.001	<0.001	-
Fluorene	µg/I	3	-	-	<0.001	<0.001	-
Phenanthrene	µg/I	3	-	-	<0.001	<0.001	-
Anthracene	µg/I	3	0.1	EQS	<0.001	<0.001	0
Fluoranthene	µg/I	3	0.0063	EQS	<0.001	<0.001	0
Pyrene	µg/I	3	-	-	<0.001	<0.001	-
Benzo(a)anthracene	µg/I	3	-	-	<0.001	<0.001	-
Chrysene	µg/I	3	-	-	<0.001	<0.001	-
Benzo(b)fluoranthene	µg/I	3	0.017	EQS	<0.001	<0.001	0
Benzo(k)fluoranthene	µg/I	3	0.017	EQS	<0.001	<0.001	0
	µg/I	3	0.01	DWS	<0.001	<0.001	0
Benzo(a)pyrene	µg/l	3	0.00017	EQS	<0.001	<0.001	0
Indeno(a,h)anthracene	µg/I	3	-	-	<0.001	<0.001	-
Dibenzo(ah)anthracene	µg/I	3	-	-	<0.001	<0.001	-
Benzo(g,h,i)perylene	µg/l	3	0.0082	EQS	<0.001	<0.001	0
Sum of four							
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Indeno(123-cd)pyrene	µg/I	3	0.1	DWS	<0.004	<0.004	0

Table 7.3: Leachate Laboratory Analysis Results - TPHCWG & BTEX

Determinand	Unit	No. Samples tested	Screening Criteria		Min.	Max.	No. of Exceedances
Ponzono	µg∕I	3	1.0	DWS	<1.0	<1.0	0
Delizene	µg∕I	3	10	EQS	<1.0	<1.0	0
Toluene	µg∕I	3	74	EQS	<1.0	<1.0	0
Ethylbenzene	µg∕I	3	300	WHO	<1.0	<1.0	0
Xylenes (total)	µg/I	3	500	WHO	<2.0	<2.0	0

Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 0RA Geo-environmental Ground Investigation P4639J2633 – October 2022

Prepared by Jomas Associates Ltd On behalf of Dominvs Project Company 23 Limited

SECTION 8 SOIL GAS RISK ASSESSMENT

JUMAS ENGINEERING ENVIRONMENTAL

Determinand	Unit	No. Samples tested	Screenin	g Criteria	Min.	Max.	No. of Exceedances
	µg∕I	3	30	EQS	<2.0	<2.0	0
MTBE	µg∕I	3	15	WHO	<10	<10	0
>C5-C6 Aliphatic	µg∕I	3	15000	WHO	<1.0	<1.0	0
>C6-C8 Aliphatic	µg/I	3	15000	WHO	<1.0	<1.0	0
>C8-C10 Aliphatic	µg∕I	3	300	WHO	<1.0	<1.0	0
>C10-C12 Aliphatic	µg∕I	3	300	WHO	<10	<10	0
>C12-C16 Aliphatic	µg∕I	3	300	WHO	<10	<10	0
>C16-C21 Aliphatic	µg/I	3	-	-	<10	<10	-
>C21-C35 Aliphatic	µg/I	3	-	-	<10	<10	-
>C5-C7 Aromatic	µg/I	3	10	WHO	<1.0	<1.0	0
>C7-C8 Aromatic	µg/I	3	700	WHO	<1.0	<1.0	0
>C8-C10 Aromatic	µg/I	3	300	WHO	<1.0	<1.0	0
>C10-C12 Aromatic	µg/I	3	90	WHO	<10	<10	0
>C12-C16 Aromatic	µg/I	3	90	WHO	<10	<10	0
>C16-C21 Aromatic	µg/I	3	90	WHO	<10	<10	0
>C21-C35 Aromatic	µg/I	3	90	WHO	<10	<10	0

- 7.1.3 In addition to the suite outlined above, the 3No leachate samples were also analysed for a suite of volatile organic compounds (VOCs). None of the compounds analysed for were reported above the laboratory method detection limit.
- 7.1.4 A concentration of leachable lead was found to exceed environmental water quality standards and drinking water standards, and concentrations of chromium, lead, copper and zinc were found to exceed drinking water standards.
- 7.1.5 On the basis that the proposed development will comprise extensive hard cover and only limited soft landscaping, the potential for surface water infiltration and migration of contaminants is considered to be significantly reduced. In addition, no point source of lead has been identified and therefore specific remedial measures to address leachable lead concentrations are unlikely to be effective or economically viable.

8 SOIL GAS RISK ASSESSMENT

- 8.1 Soil Gas Results
- 8.1.1 4No return monitoring visits have been undertaken between 12 and 30 September 2022, to monitor wells installed within boreholes at the site for soil gas concentrations and groundwater levels.
- 8.1.2 The results of the monitoring undertaken are summarised in Table 8.1 below, with the monitoring records presented in Appendix 4.

Hole No.	No. of monitoring events	CH4 (%)	CO2 (%)	O2 (%)	VOCs (ppm)	Steady Flow Rate (I/hr)	Peak Flow Rate (I/hr)	Depth to water (mbgl)	Well Response Zone as installed (top/bottom) (mbgl)	Strata targeted by response zone
WS1	4	0.0 - 0.2	0.1 – 2.0	20.3 – 21.0	0.0 – 1.0	0.0-+0.2	0.0-+0.2	Dry	1.0 – 2.0	Made
WS3	4	0.0 - 0.2	0.4 – 2.1	17.7 – 23.2	0.0 – 1.1	0.0 - +0.1	0.0-+0.1	Dry	1.0 – 1.9	Ground and Redcliffe
WS4	4	0.0 - 0.2	0.9 - 4.6	14.2 – 22.7	0.0 – 1.3	0.0	0.0	Dry	1.0 – 2.0	Sandstone Member

Table 8.1: Summary of Gas Monitoring Data

- 8.2 Screening of Results
- 8.2.1 As shown in Table 8.1, methane was detected at a maximum concentration of 0.2%. The concentrations of carbon dioxide ranged from 0.1% to 4.6% v/v. The maximum concentration of Volatile Organic Compounds measured was 1.3ppm. The maximum gas flow rate recorded was 0.2l/hr.
- 8.2.2 In the assessment of risks posed by hazardous ground gases and selection of appropriate mitigation measures, BS8485 (2015) + A1 (2019) identifies four types of development, termed Type A to Type D.
- 8.2.3 Type B buildings are defined as

"private or commercial property with central building management control of any alterations to the building or its uses but limited or no central building management control of the maintenance of the building, including the gas protection measures. Multiple occupancy. Small to medium size rooms with passive ventilation of rooms and other internal spaces throughout ground floor and basement areas. May be conventional building or civil engineering construction. Examples include managed apartments, multiple occupancy offices, some retail premises and parts of some public buildings (such as schools, hospitals, leisure centres) and parts of hotels."

8.2.4 Type B has been adopted as the relevant category for the proposed development.

- 8.2.5 The soil gas assessment method is based on that proposed by Wilson & Card (1999), which was a development of a method proposed in CIRIA publication R149 (CIRIA, 1995). The method uses both gas concentrations and borehole flow rates to define a characteristic situation based on the limiting borehole gas volume flow for methane and carbon dioxide. In both these methods, the limiting borehole gas volume flow is renamed as the Gas Screening Value (GSV).
- 8.2.6 The Gas Screening Value (litres of gas per hour) is calculated by using the following equation

GSV = (Concentration/100) X Flow rate

Where concentration is measured in percent (%) and flow rate is measured in litres per hour (I/hr)

- 8.2.7 In accordance with CIRIA C665, worst case conditions are used in the calculation of GSVs for the site. These have been summarised below in Table 8.2.
- 8.2.8 The Characteristic Situation is then determined from Table 8.5 of CIRIA C665.

Table 8.2: Summary of Gas Monitoring Data and Gas Screening Value

Gas	Concentration (v/v %)	Peak Flow Rate (I/hr)	GSV (l/hr)	Characteristic Situation (after CIRIA C665)
CO ₂	4.6	0.2	0.0092	1
CH_4	0.2	0.2	0.0004	1

- 8.2.9 Based on the calculated GSVs, and in consideration of the conceptual site model, the site is classified as Characteristic Situation 1 (CS1) and no formal gas protection measures are considered to be necessary.
- 8.2.10 BS 8576:2013 has been used to derived threshold levels for carbon monoxide and volatile organic compounds.
- 8.2.11 Given the recorded levels it is not considered that additional protection measures need to be incorporated to protect end users from the recorded carbon monoxide concentrations.
- 8.2.12 PID screening of the monitoring well headspace has revealed maximum concentrations of VOCs of 1.3ppm. No visual or olfactory evidence of potentially mobile contamination was observed during the investigation. It is considered that based on the information obtained to date, the risks to human health receptors via vapour inhalation pathways are generally low.
- 8.2.13 Notwithstanding the above, it is understood that tanks are present on site which could be a potential source of VOCs. A request has been made to the petroleum licensing authority for more information. It is recommended that any tanks identified on site are removed along with surrounding impacted soils under the

supervision by a suitably qualified geo-environmental engineer, with chemical analysis conducted on the soils surrounding the tanks as is considered suitable.

9 SUMMARY OF RESULTS

9.1 Land Quality Impact Summary

It is understood that the proposed development comprises demolition of the existing buildings on site and construction of a new building comprising commercial/retail units at ground level and residential units above. No private gardens or extensive areas of soft landscaping are anticipated.

Following generic risk assessments, elevated concentrations of arsenic and lead were detected in soils in excess of generic assessment criteria for the protection of human health within a "residential without plant uptake" end-use scenario.

No asbestos containing materials or fibres were detected in the Made Ground samples analysed in the laboratory.

Where the site is to be covered by the building footprint and hard surfacing, no formal remedial measures are considered necessary in terms of human health, as the building and hard surfacing are expected to provide a barrier to potential receptors. In areas of soft landscaping, Made Ground should be encapsulated with a minimum 450mm of imported clean topsoil, placed on a geotextile membrane. Further investigation is recommended to increase the sample density across the site and beneath building footprints. Recommended remedial measures may be revised based on the findings of such works.

The current soils may not satisfy the requirements of BS:3882 due to elevated concentrations of phytotoxic contaminants.

The risk to controlled waters from soils is considered low on the basis that the extensive hard cover of the site will severely restrict the potential mobilisation of contaminants within the Made Ground.

Based on the calculated GSVs, and in consideration of the conceptual site model, the site is classified as Characteristic Situation 1 (CS1) and no formal gas protection measures are considered to be necessary.

Upgraded potable water supply pipe materials are unlikely to be required. The water supply pipe requirements for this site should be discussed at an early stage with the relevant utility provider.

A remedial strategy will be required for the proposed development. This should include reference to information from the currently pending petroleum licensing information request. Further investigation is recommended within the vicinity of tanks that may be reported by the petroleum licensing authority (if any – response pending) and within the footprints of the existing building.

If tanks are identified on site these will require removal along with associated hydrocarbon impacted soils under the supervision of a suitably qualified environmental consultant with appropriate verification works undertaken.
As with any ground investigation, the presence of further hotspots between sampling points cannot be ruled out. Should any contamination be encountered, a suitably qualified environmental consultant should be informed immediately, so that adequate measures may be recommended.

- 9.1.1 The above conclusions are made subject to approval by the statutory regulatory bodies.
- 9.2 Review of Pollutant Linkages Following Site Investigation
- 9.2.1 The site CSM has been revised and updated from that suggested in the desk study in view of the ground investigation data, including soil laboratory analysis results. Table 9.1 highlights whether pollutant linkages identified in the original CSM are still relevant following the risk assessment, or whether pollutant linkages, not previously identified, exist.

Table 9.1: Plausible Pollutants Linkages Summary (Pre Remediation)

Potential Source (from desk study)	Pathway	Receptor	Relevant Pollutant Linkage?	Comment
 Potential for contaminated ground associated with previous and current site use – on site (S1) Depot (1986) Fuel distribution and suppliers (current) Scrap metal merchants (current) Special purpose machinery and equipment (current) Electronic equipment (current) Potential for Made Ground associated with previous development operations – on site (S2) Potential buried/above-ground tanks associated with former and current site use, and potential tanks observed during the walkover – on site (S2) 	Ingestion and dermal contact with contaminated soil (P1) Inhalation or contact with potentially contaminated dust and vapours (P2) Permeation of water pipes and attack on concrete foundations by aggressive soil conditions (P6)	Construction workers (R1) Maintenance workers (R2) Neighbouring site users (R3) Future site users (R4) Building foundations and on site buried services (water mains, electricity and sewer) (R5)	Y	See Section 8.1 above for remedial measures. The findings of this report should be included in the construction health and safety file, with adequate measures put in place for the protection of construction and maintenance workers. Contact should be made with relevant utility providers to confirm if upgraded materials are required.
	Accumulation and migration of soil gases (P5)		Ν	Site has been characterised as CS1 and no gas protection measures are deemed necessary.
 Current and previous industrial use – off site (S4) Railways sidings (immediately N of the site) Unspecified warehouse 7m SE (1986) Plastic works and engineering works 60m NE (1972) Railway land 61m N (1913) Unspecified works 63m N (1986) Garage 70m S (1972) Nursery 71m SE (1921) Historical landfill – off site (S5) Former Barton Hill Gas Holder Site 144m E (1984-1992) 	Leaching through permeable soils, migration within the vadose zone (i.e., unsaturated soil above the water table) and/or lateral migration within surface water, as a result of cracked hardstanding or via service pipe/corridors and surface water runoff (P3) Horizontal and vertical migration of contaminants within groundwater (P4)	Neighbouring site users (R3) Building foundations and on site buried services (water mains, electricity and sewer) (R5) Controlled Waters (R6) - Secondary A aquifer - 2No groundwater abstractions within 2km	?	A significant risk of impact to controlled waters has not currently been identified; however, further investigation required in building footprints and in vicinity of fuel tanks that may be reported by the licensing authority.

10 REFERENCES

BRE Report BR211: Radon: Protective measures for new dwellings, 2015

BRE Special Digest 1: Concrete in Aggressive Ground, 2005

British Standards Institution (2007) BS 3882:2007 Specification for topsoil and requirements for use. Milton Keynes: BSI

British Standards Institution (2011) BS 10175:2011 Code of practice for the investigation of potentially contaminated sites. Milton Keynes: BSI

British Standards Institution (2015) BS 5930:2015 Code of practice for site investigations. Milton Keynes: BSI

CIEH & CL:AIRE (2008) Guidance on comparing soil contamination data with a critical concentration. London: Chartered Institute of Environmental Health (CIEH) and CL:AIRE

Environment Agency (2004) Model procedures for the management of land contamination. CLR11. Bristol: Environment Agency

Environment Agency, NHBC & CIEH (2008) Guidance for the safe development of housing on land affected by contamination. R & D Publication 66. London: Environment Agency

Environment Agency (2006) Remedial Targets Methodology: Hydrogeological Risk Assessment for Land Contamination Environment Agency

LQM/CIEH S4ULs. LQM, 2014

Ministry of Housing, Communities & Local Government: National Planning Policy Framework. February 2019.

APPENDICES

APPENDIX 1 – FIGURES

PROJECT NAME	Units 1-15 Premier Estates, Bristol, BS2 ORA	CLIENT	Dominvs Project Company 23 Limited
TITLE	Site Location Plan	PROJECT NO.	P4639J2633
DATE	August 2022	FIGURE	1
N A A A A A A A A A A A A A A A A A A A		+ 12 2m Princ Fautosse Fautosse	Per Bu Per Bu Warehouse Karana a charana a cha

Geotechnical Engineering & Environmental Services across the UK

WE LISTEN, WE PLAN, WE DELIVER

PROJECT NAME	Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 ORA	CLIENT	Dominvs Project Company 23 Limited
TITLE	Site Photo Plan	FIGURE	3
Photo 1: Access to	Units 2-5. Photo taken viewing north-west.	Photo 2: External yard	for Units 2-5, which contains storage containers utilised
		as offices. Photo taker	n viewing north.
			<image/>

WE LISTEN, WE PLAN, WE DELIVER

PROJECT NAME Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 ORA	CLIENT	Dominvs Project Company 23 Limited
TITLE Site Photo Plan	FIGURE	3
Photo 3: External yard for Units 2-5, which contains storage containers utilised	Photo 4: External yard	for Units 2-5, with Units in the rear of the photo. Photo
as offices. Photo taken viewing south-west.	taken viewing west.	
<image/>		

WE LISTEN, WE PLAN, WE DELIVER

PROJECT NAME	Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 ORA	CLIENT	Dominvs Project Company 23 Limited
TITLE	Site Photo Plan	FIGURE	3
Photo 5: Access ga	te to Unit 1 (Crown Scaffolding). Photo taken viewing west.	Photo 6: External yard viewing west.	and buildings for Crown Scaffolding. Photo taken

WE LISTEN, WE PLAN, WE DELIVER

PROJECT NAME	Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 ORA	CLIENT	Dominvs Project Company 23 Limited
TITLE	Site Photo Plan	FIGURE	3
Photo 7: External	yard for Crown Scaffolding. Photo taken viewing north-west.	Photo 8: Access to Uni	its 12 & 13 (Calor Gas). Photo taken viewing west.
			<image/>

PROJECT NAME	Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 ORA	CLIENT	Dominvs Project Company 23 Limited
TITLE	Site Photo Plan	FIGURE	3
Photo 9: External y	ard for Calor Gas. Photo taken viewing south.	Photo 10: External yar west.	d and building for Calor Gas. Photo taken viewing south-

WE LISTEN, WE PLAN, WE DELIVER

PROJECT NAME	Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 ORA	CLIENT	Dominvs Project Company 23 Limited
TITLE	Site Photo Plan	FIGURE	3
Photo 11: External	yard for Calor Gas, containing many gas cansiters. Photo	Photo 12: External yar	d for Calor Gas, containing many gas cansiters. Photo
taken viewing sout	h-west.	taken viewing north.	

WE LISTEN, WE PLAN, WE DELIVER

PROJECT NAME	Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 ORA	CLIENT	Dominvs Project Company 23 Limited
TITLE	Site Photo Plan	FIGURE	3
Photo 13: 2No plas	tic pipes coming out of the concrete in the north of the	Photo 14: Access to Ur	nits 14 & 15 (telecommunications company and The
Calor Gas yard, wh	ich could be vent pipes.	Invisible Circus. Photo	taken viewing south-west.
			<image/>

WE LISTEN, WE PLAN, WE DELIVER

PROJECT NAME	Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 ORA	CLIENT	Dominvs Project Company 23 Limited
TITLE	Site Photo Plan	FIGURE	3
Photo 15: 3No manhole covers identified in the north of the site.		Photo 16: External yar	d for Units 14 & 15. Photo taken viewing north.
			<image/>

PROJECT NAME	Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 ORA	CLIENT	Dominvs Project Company 23 Limited
TITLE	Site Photo Plan	FIGURE	3
Photo 17: External north-west.	yard and building for Units 14 & 15. Photo taken viewing	Photo 18: Roller door	to Unit 14. Photo taken viewing south-west.
	<image/>		

WE LISTEN, WE PLAN, WE DELIVER

PROJECT NAME	Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 ORA	CLIENT	Dominvs Project Company 23 Limited
TITLE	Site Photo Plan	FIGURE	3
Photo 19: Access to) Units 6-11 (Bristol Scrap Metal). Photo taken viewing west.	Photo 20: External yar viewing south.	d and buildings for Bristol Scrap Metal. Photo taken
			<image/>

WE LISTEN, WE PLAN, WE DELIVER

PROJECT NAME	Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 ORA	CLIENT	Dominvs Project Company 23 Limited
TITLE	Site Photo Plan	FIGURE	3
Photo 21: Inside 1N west.	No unit occupied by Bristol Scrap Metal. Photo taken viewing	Photo 22: External yar east.	d for Bristol Scrap Metal. Photo taken viewing north-
	<image/>		<image/>

WE LISTEN, WE PLAN, WE DELIVER

PROJECT NAME	Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 ORA	CLIENT	Dominvs Project Company 23 Limited
TITLE	Site Photo Plan	FIGURE	3
Photo 23: 2No ma	nhole covers located within the Bristol Scrap Metal yard.	Photo 24: External yar	d for Bristol Scrap Metal. Photo taken viewing north.

PROJECT NAME	Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 ORA	CLIENT	Dominvs Project Company 23 Limited
TITLE	Site Photo Plan	FIGURE	3
Photo 25: Western	boundary of the site viewed from off-site. Land to the north	Photo 26: View of the	northern boundary of site from off-site, showing the
noted to slope upw	vards to the north. Photo taken viewing north.	retaining wall located	along this boundary. Photo taken viewing east.

APPENDIX 2 – EXPLORATORY HOLE RECORDS

					I	0		1				W Explorat	INDOW/WINDOW	VLESS SA	MPLING BO	WS1	CORD	
Cite Alle					Der		tax 2		·	latel DCC CD :		Durt	Ne			D4/ 00 10 / 00		
Site Address:			Uni	ts 1-15	Premi	er Esta	tes, Su	issex S	treet, B	ristol, BS2 ORA		Project	No:			P4639J2633		
Client:			Dor	ninvs F	roject	Compa	iny 23	Limited	3			Ground	Levei:			12.065		
Logged By:			JRC									Date Co	mmenced:			30/08/2022		
Checked By:			JLW									Date Co	mpleted:			30/08/2022		
Type and diame	ter of equipn	nent:	Win	dowles	s Sam	pler Ri	9					Sheet N	0:			1 Of 1		
Water levels re	ecorded dur	ring bo	oring,	m														
Date:																		
Hole depth:																		
Casing depth:																		
Level water on s	strike:																	
Water Level after	er 20mins:																	
Remarks																		
1: No groundwa	ater strike re	corded																
2: Borehole terr	minated at 2	mbgl d	lue to e	equipm	ent ref	usal.												
3:																		
4:																		
		Sampl	e or T	ests							Strata							
	Dopth				Poculi	+					Dopth	Water	St.	rata Dos	cription		Instal	lation
Туре	(mbal)				Resul					Legend	(mbal)	Strikes	30	i ata Des	cription		linsta	ation
	(mbgi)	75	75	75	75	75	75	N	1		(mogi)	(mbgl)						
									0.00 -	******			Concrete (MADE C	SROUND)				F
														01100110)				
FC	0.05										0.20		Brown grey sandy	aravel S	and is fine to	coarse	듣극	EE
ES	0.25												Gravel consists of t	fine to co	arse, angula	r to	F==1	
													sub-angular flint a	ind concre	ete. (MADE G	ROUND)	F==1	
									0.50 -		0.50		Brown silty slightly	aravolla	clay Gravel	consists of	담려	[===]
													fine to coarse, ang	gular to ro	unded flint,	concrete	F==1	
50	0.75												and sandstone. (M.	IADE GRO	UND)		F==1	
ES	0.75																F==1	
																	도크	
SPT	1.00	2	3	3	2	3	3	11	1.00 -								1.1.1	[===]
											1.20							
													SAND Sand is fine	coming ve	ry dense ora	nge red FFF		
													SANDSTONE MEME	BER)				
FS	1 50								1 50 -									
20	1.00																	
										7::::::::::								
CDT	0.00		10					50	0.00	7::::::::::	2.00							
5P1	2.00	9	13	10	34			50	2.00 -									
	50 DIOWS TOP	130m	in iola	pene	ration.	•												
									0.50									
									2.50 -									
									3.00 -	_								
										-								
										1								
										1								
										-								
									3.50 -	-								
										-								
										-								
										-								
										-								
									4.00 -	-								
										_								
										_								
										-								
										_								
									4.50 -	_								
										4								
										4								
										4								
										4								
									5.00 -	_								
			1	1	1	I	1			1			1				1	
		9	Samplii	ng Cod	e: U- L	Jndistu	rbed	B - Lar	ge Distu	rbed D - Sma	all Disturbed	W - Water	(U*) Non recovery	y of Samp	le			
					Jon	nas Ass	sociates	SLtd -	Lakeside	e House, 1 Furz	eground Way	, Stockley Pa	ark, UB11 1BD					
						1: 084	13 289	218/E	⊥: INTO@	omasassociate	S.COM W: WW	w.jumasasso	ciates.com					

					J	0		1	5			Explora	/INDOW/WINE	OWLESS S	SAMPLING BO	WS2	CORD
Site Address			Unit	0 1 15	Dromi	or Ecto	ton Ci		Stroot Br	istal RS2 ODA		Droject	No			D442012422	
Client:			Don	.S 1-15	Premi	er Esta	tes, su	lissex a	лиеет, во	ISTOI, BSZ ORA		Cround				12 241	
Loggod Py:				IIIIVS F	гојест	compa	119 23	Linned	1			Date Ce	mmoncod:			20/09/2022	
Checked By:			JKO	,								Date Co	mnleted:			30/08/2022	
Type and diame	ter of equipr	nent:	Win	dowles	s Sam	oler Rid	1					Sheet N				1 Of 1	
Water levels r	ecorded du	rina bo	prina.	m	o oum		9					onoot n				1011	
Date:							1										
Hole depth:																	
Casing depth:																	
Level water on a	strike:																
Water Level after	er 20mins:																
Remarks																	
1: No groundwa	ater strike re	corded															
2: Borehole ter	minated at 1	.7mbgl	due to	o equip	ment r	efusal.											
3:																	
4:													1				
	1	Sample	e or Te	ests							Strata		_				
	Depth				Result						Depth	Water		Strata De	escription		Installation
Туре	(mbgl)									Legend	(mbgl)	(mbal)					
		75	75	75	75	75	75	N				(mbgi)					
									0.00 -	××××××			Concrete. (MA	DE GROUNE)		××××××
									· ·		0.20						
ES	0.25												Brown grey sli	ghtly clayey	/ sandy gravel	. Sand is	
													fine to coarse.	Gravel con:	sists of fine to	coarse,	
									0.50		0.50		GROUND)	-angular mi	ni and concret	C. (MADE	
									0.50 -				Brown black si	Ity slightly o	gravelly clay.	Gravel	
													(MADE GROUN	irse, anguia ID)	r fiint and san	astone.	
														,			
ES	1.00								1 00 -								
SPT	1.00	2	4	2	1	1	2	14	1.00		1.10						
511		2	4	5	-	4	5	14					Medium dense	becoming v	very dense lig	nt brown	
									.				consists of fine	e to coarse,	angular to sul	o-rounded	
									.	0			flint. (REDCLIF	FE SANDST	ONE MEMBER)	
FS	1 50								1 50 -								
23	1.50								1.50								
SPT	1.70	12	17	31	19			50		00.	1.70						
	50 blows for	90mm	total	penetr	ation.					_							
										_							
									2.00 -	_							
										_							
										_							
										_							
									.	-							
									2.50 -	_							
										-							
										-							
										-							
										-							
									3.00 -	-							
									.	-							
									.	-							
									•	-							
										-							
									3.50 -	-							
									•	-							
									•	-							
									•	-							
									.	-							
									4.00 -	-							
									· ·	-							
									·	-							
									·	-							
									·	-							
									4.50 -								
									·	-							
									.								
									· ·	-							
									· ·								
									5.00 -	1							
		C	Samplir	ng Cord	e: U- I	Indistu	rbed	B-Lar	ge Distu	bed D - Sma	III Disturbed	W - Water	(U*) Non reco	very of San	nple		
				5 000	Jon	nas Ass	ociates	s Ltd -	Lakeside	House, 1 Furz	eground Way	, Stockley Pa	ark, UB11 1BD	s. san	···-		
						T: 084	3 289	2187 E	E: info@j	omasassociates	s.com W: ww	w.jomasasso	ociates.com				

					J	O)			5			Explorat	INDOW/WINDOWLESS	SAMPLING BO	WS3	CORD	
			-														
Site Address:			Uni	ts 1-15	Premi	er Esta	tes, Su	issex S	Street, Br	istol, BS2 OR	A	Project I	No:		P4639J2633		
Client:			Dor	ninvs F	roject	Compa	ny 23	Limited	b			Ground	Level:		12.610		
Logged By:			JRO)								Date Co	mmenced:		30/08/2022		
Checked By:			JLW	/								Date Co	mpleted:		30/08/2022		
Type and diame	ter of equipn	nent:	Win	dowles	s Sam	pler Rig	9					Sheet N	0:		1 Of 1		
Water levels r	ecorded dur	ing bo	oring,	m			_								1		
Date:																	
Hole depth:																	
Casing depth:																	
Level water on s	strike:																
Water Level after	er 20mins:																
Remarks																	
1: No groundwa		Coraea	است. من														
2: Borenole ter	minated at 1	.9mbg	due to	o equip	ment r	erusai.											
3. 4·																	
4.		Sampl	e or T	ests							Strata						
			0.01.1	0010					1			Water	1				
Type	Depth				Result	t				Legend	Depth	Strikes	Strata I	Description		Instal	lation
51	(ingi)	75	75	75	75	75	75	N	1	Ű	(ingain)	(mbgl)					
									0.00 -	××××××	×		Concrete (MADE GROUI	(D)			F
											0.10		Light brown mottled dar	k brown clavey	sandv	표리	EE
EC	0.25										X		gravel. Sand is fine to co	arse. Gravel co	nsists of	E크레	臣王
ES	0.20												fine to coarse, angular c	oncrete. (MADE	GROUND)	E크레	EE
									·		X <u>0.30</u>		Brown black mottled red	clavev sandy o	ravel with	논리	EE
ES	0.50								0.50 -		X		medium cobble content.	Sand is fine to	coarse.	논리	EE
											8		Gravel consists of fine to	coarse, angula	r to	EEE]	E-E
									· ·		8		angular concrete and bri	ck. (MADE GRO	UND)	논크	12-24
											8						
											×					드러	12-2-
SPT	1.00	2	3	3	3	4	4	14	1.00 -		1 10						
											8 1.10		Black brown slightly grave	velly clay. Grave	el consists of		
FS	1 25										8		medium to coarse, angu	lar concrete and	l sandstone.		
20	1120										×		(MADE GROUND)				
											1 50						
									1.50 -	00	• 1.50		Very dense light brown	gravelly SAND.	Sand is fine		
											-0		to coarse. Gravel consist	s of fine to coar	se,		
FS	1.75									.d 0			SANDSTONE MEMBER	flint. (REDCLIFF	E		
											1 90		Shirdborone memberty				
CDT	0.00	10	10	07				50									<u> </u>
SPI	2.00	140m	12	27	23			50	2.00 -								
	50 510W3 101	14011		perie	attorn.												
									2.50 -								
										_							
										_							
										_							
									3.00 -	_							
										_							
										4							
										4							
									[.	4							
									3.50 -	-							
										-							
										-							
										-							
										-							
									4.00 -	_							
										-							
										_							
										-							
										-							
									4.50 -	-							
									·	-							
										-							
									· ·	-							
										1							
									5.00 -	1							
		9	Samplii	ng Cod	e: U- L	Jndistu	rbed	B - Lar	ge Distu	rbed D - Sr	nall Disturbed	W - Water	(U*) Non recovery of Sa	Imple			
					Jon	nas Ass	ociate	s Ltd -	Lakeside	House, 1 Fu	rzeground Way	/, Stockley Pa	ark, UB11 1BD				
						1: 084	3 289	2187 E	_: into@j	omasassocia	es.com W: ww	w.jomasasso	ciates.com				

					J.	•]	ΞĒ,					Explora	WS4					
Site Address:			Unit	s 1-15	Premie	er Esta	tes, Su	issex S	street, Br	istol, BS2 ORA		Project	No:			P4639J2633		
Client:			Dom	ninvs P	roject	Compa	ny 23 l	imited	ł			Ground	Level:			12.316		
Logged By:			JRO									Date Co	mmenced:			30/08/2022		
Checked By:			JLW									Date Co	mpleted:			30/08/2022		
Type and diamete	er of equipm	nent:	Wine	dowles	s Samı	oler Rig	9					Sheet N	0:			1 Of 1		
Date:		ing bo	i irig, i	111			1											
Hole depth:																		
Casing depth:																		
Level water on str	rike:																	
Water Level after	20mins:																	
1: No groundwat	er strike rec	orded.																
2: Borehole term	inated at 2r	nbgl du	ue to e	quipm	ent ref	usal.												
3:																		
4:											Ctrata							
Туре	Depth	sample		2515	Result	:				Legend	Depth	Water Strikes	-	Strata D	escription		Instal	lation
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(mbgl)	75	75	75	75	75	75	N	0.00 -		(mbgl)	(mbgl)	0					
											0.00		Concrete. (MA	DE GROUNI	(ח		臣马	
ES	0.25								· ·		0.20		Red brown mo	ttled black	silty slightly gr	avelly clay.	물러	
													Gravel consists	s of fine to	coarse, angula	r sandstone	물금	
									0.50 -						,		E=33	E-34
																	크리	
																	E==1	===
																	들크	===
FS	1.00								1.00 -								프리	<u></u>
SPT	1.00	2	3	3	5	4	5	17										
									1 50		1.50							
									1.50 -				Very dense ora	ange red SA	AND. Sand is fi	ne to BER)		
50	1 75													SETTE SA		DERY		
ES	1.75																	
CDT	2.00		14	22	20			FO			2.00							
511	50 blows for	110mr	n tota	penet	ration.			50	2.00	_								
										-								
										-								
									2 50 -									
									2.00	_								
										_								
									3 00 -									
										_								
									.	-								
									·	-								
									3,50 -]								
										-								
									.	-								
									·	-								
									4 00 -									
									4.00	_								
										-								
										-								
									4.50 -									
										-								
										-								
										-								
									5.00 -									
									5.00 -									
		S	amplir	ng Code	e: U- U Jom	Indistur nas Ass T: 084	rbed I ociates 3 289	B - Lar s Ltd - 2187 E	ge Distur Lakeside E: info@j	bed D - Sm House, 1 Furz omasassociate	all Disturbed eground Way s.com W: ww	W - Water , Stockley Pa w.jomasasso	(U*) Non reco ark, UB11 1BD ociates.com	very of Sar	nple		<u> </u>	

					J	0		1				Explorat	ory Hole No:	SAMPLING BO	WS5	CORD
Site Address			Unit	ts 1-15	Premi	er Esta	ites. Si	ISSex 9	Street. Bri	stol, BS2 ORA		Project	No:		P4639.12633	
Client:			Don	ninvs E		Comps	nes, 30	Limitor	ч ч	SIOI, B32 ORA		Ground			12 731	
Logged By:			IRO		Toject	compa	119 23	Linnee				Date Co	mmenced:		30/08/2022	
Chockod By:			JKO	,								Date Co	mpleted:		20/08/2022	
Type and diame	ter of equipp	nent	Win	dowles	s Sam	nlor Di	a					Sheet N	nipieteu.		1 Of 1	
Water levels r	ecorded dur	ring bo	ring	m	JS Sum		9					Sheet N			1011	
Date:		ing bo	, ing,									1			1	
Hole depth:																
Casing depth:																
Level water on s	strike															
Water Level after	er 20mins:															
Remarks	201111101		_				_									
1: No groundwa	ater strike re	corded														
2: Borehole ter	minated at 2	.9mbal	due to	o equip	ment r	efusal										
3:																
4:																
		Sample	e or Te	ests							Strata					
												Water				
Туре	Depth (mbal)				Resul	t				Legend	Depth (mbgl)	Strikes	Strata	Description		Installation
	(Inbgi)	75	75	75	75	75	75	N			(mbgi)	(mbgl)				
									0.00 —	******	0.10		Concrete, (MADE GROU	ND)		******
									-		0.10		Grev mottled brown san	dv gravel. Sand	is fine to	
									-				coarse. Gravel consists	of fine to coarse	, angular to	
									-				sub-rounded concrete a	nd flint. (MADE (GROUND)	
									-							
ES	0.50								0.50 —		0.40					
										******	0.60		Black mottled red claves	sandy gravel	Sand is fine	
									-				to coarse. Gravel consis	ts of fine to coar	se, angular	
									-				to sub-angular concrete	, brick and flint.	(MADE	
													GROUND)			
ES	1.00								1.00 —							
SPT		1	2	2	3	2	3	10	-							
									-							
									-							
									-							
									1.50 —		1.50		Prown sandy slightly gr	wolly clay Sand	Lis fino to	
									-				coarse. Gravel consists	of medium to co	arse,	
50									-				angular to sub-angular	andstone and fl	int. (MADE	
ES	1.75												GROUND)			
									-							
SPT	2.00	3	4	5	6	6	5	22	2.00 —							
									-							
									-							
									-							
									2.50 —							
									-							
									-	******	2.70		Very dense orange red 9	SAND Sand is fi	ne to	
D	2.80								-		2.00		medium. (REDCLIFFE S/	ANDSTONE MEM	BER)	
SPT		6	7	13	37			50	-		2.90					XXXXXXXXX
	50 blows for	100m	m tota	pene	ration				3.00 —	-						
									-							
									-							
									-							
									-	1						
									3.50 —							
									-	1						
									-							
									-	1						
									-							
									4.00 -							
									-							
									-	1						
									-	-						
									-	1						
									4.50 -	1						
									-	1						
									-	1						
									-	1						
										1						
									5.00 -	1						
				L		L	L									
		S	amplir	ng Cod	e: U- l	Jndistu	rbed	B - Lar	ge Distur	bed D - Sma	II Disturbed	W - Water	(U*) Non recovery of Sa	ample		
					Jon	nas Ass	sociates	s Ltd -	Lakeside	House, 1 Furz	eground Way	, Stockley Pa	irk, UB11 1BD			
						T: 084	13 289	2187 E	_: info@jo	masassociates	s.com W: ww	w.jomasasso	ciates.com			

APPENDIX 3 – CHEMICAL LABORATORY TEST RESULTS

JLW Jomas Associates Ltd Lakeside House 1 Furzeground Way Stockley Park UB11 1BD

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

- t: 01923 225404
- f: 01923 237404
- e: reception@i2analytical.com

e: Jomas Associates -

Analytical Report Number : 22-82240

Project / Site name:	Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 ORA	Samples received on:	02/09/2022
Your job number:	JJ2633	Samples instructed on/ Analysis started on:	02/09/2022
Your order number:	P4639JJ2633.6	Analysis completed by:	12/09/2022
Report Issue Number:	1	Report issued on:	12/09/2022
Samples Analysed:	8 soil samples		

Izabela Wojcik Signed:

Izabela Wójcik Reporting Specialist For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Project / Site name: Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 ORA Your Order No: P4639JJ2633.6

Lab Sample Number				2414150	2414151	2414152	2414153	2414154
Sample Reference				WS1	WS1	WS2	WS2	WS3
Sample Number				None Supplied				
Depth (m)				0.25	0.75	0.25	1.00	0.50
Date Sampled				30/08/2022	30/08/2022	30/08/2022	30/08/2022	30/08/2022
Time Taken				None Supplied				
Applytical Decemptor								
(Soil Analysis)								
()		1						
		1						
Stone Content	%	0.1	NONE	49	< 0.1	25	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	2.3	16	4.9	9.9	12
Total mass of sample received	kg	0.001	NONE	1.2	1.2	1.2	1.2	1.2
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	ASE	ASE	ASE	ASE	ASE
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	10.9	8.3	9.2	8.2	9.4
Total Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Sulphate as SO4	mg/kg	50	MCERTS	540	540	1200	350	4300
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	g/I	0.00125	MCERTS	0.038	0.023	0.048	0.012	0.99
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/kg	2.5	MCERTS	76	46	97	24	2000
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/l	1.25	MCERTS	38	22.9	48.4	12.2	992
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	-	1.3	-	-	1.6
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	0.54	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	0.53	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.52	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	0.43	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.44	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.18	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.48	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.24	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.27	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH	0		MOSDES					
Speciated Total EPA-16 PAHs	mg/kg	0.8	MUERIS	3.63	< 0.80	< 0.80	< 0.80	< 0.80

Project / Site name: Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 0RA Your Order No: P4639JJ2633.6

1001 01001 100.1 4037352033.0

Lab Sample Number				2414150	2414151	2414152	2414153	2414154
Sample Reference				WS1	WS1	WS2	WS2	WS3
Sample Number				None Supplied				
Depth (m)				0.25	0.75	0.25	1.00	0.50
Date Sampled				30/08/2022	30/08/2022	30/08/2022	30/08/2022	30/08/2022
Time Taken				None Supplied				
			1	None Supplied				
		1						
Analytical Parameter	1.1	1	1.1					
(Soil Analysis)	1	1						
			1					
		1.1						
Heavy Metals / Metalloids	-							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	9.9	46	7.4	39	59
Boron (water soluble)	mg/kg	0.2	MCERTS	0.6	1.5	0.2	0.7	1.4
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.6	< 0.2	0.5	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	8.3	44	5.7	33	16
Copper (aqua regia extractable)	mg/kg	1	MCERTS	8.6	38	12	19	240
Lead (aqua regia extractable)	mg/kg	1	MCERTS	24	140	39	78	400
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	4.6	41	4.5	30	21
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	46	160	68	94	590
Monoaromatics & Oxygenates								
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Petroleum Hydrocarbons								
Petroleum Range Organics (C6 - C10) HS_1D_TOTAL	mg/kg	0.1	MCERTS	-	-	< 0.1	-	-
TPH-CWG - Aliphatic >EC5 - EC6 HS 1D AL	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8 HS 10 Al	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10 us 10 Al	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12 FH CH 1D AL	mg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16 FH CU 1D AL	mg/kg	2	MCERTS	< 2.0	< 2.0	-	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21 EH CU 1D AL	mg/kg	8	MCERTS	< 8.0	< 8.0	-	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35 EL CLI 1D AL	mg/kg	8	MCERTS	< 8.0	< 8.0	-	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35) EH CU+HS 1D AL	mg/kg	10	MCERTS	< 10	< 10	-	< 10	< 10
		1						
TPH-CWG - Aromatic >EC5 - EC7 us an	mg/ka	0.001	MCERTS	< 0.001	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8 up to to	ma/ka	0.001	MCERTS	< 0.001	< 0.001		< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	ma/ka	0.001	MCERTS	< 0.001	< 0.001	<u> </u>	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	ma/ka	1	MCERTS	1 /	< 1.0		< 1.0	< 1.0
TPH_CWG - Aromatic >EC12 EC16	ma/ka	2	MCERTS	2.1	< 2.0	-	< 2.0	< 1.0
TPH-CWG - Aromatic >EC16 - EC21 - u_{em}	ma/ka	10	MCERTS	< 10	< 10		< 10	< 10
TPH_CWG - Aromatic $>EC21 = EC21 = EL_{CU_{1D}AR}$	ma/ka	10	MCERTS	12	< 10		< 10	< 10
TPH-CWG - Aromatic (FC5 - FC35) and an area and a	ma/ka	10	MCERTS	13	< 10	-	< 10	< 10
End financi (200 2000) EH_CU+HS_TU_AR	.99		1	23	< 10	-	< 10	< 10
TPH (C10 C12)	ma/ka	2	MCERTS			- 20		
TPU (C12 C14) EH_CU_1D_TOTAL	mg/kg	2 A	MCEDTS		-	< 2.0	-	-
TPH (U12 - U10) EH_CU_1D_TOTAL	mg/kg	1	MCEDTS		-	< 4.0	-	-
TPH (C10 - C21) $_{\text{EH}=\text{CU}=1\text{D}=\text{TOTAL}}$	ma/ka	10	MCERTS			< 1.0	-	-
TTTT (C21 - C40) EH_CU_1D_TOTAL	iiig/kg	10	MOLNIJ	-	-	< 10	-	-
NOCO								
Chloromothana	ua/ka	1	150 17025	. 1 0	. 1 0		. 1 0	. 1 0
chioromethane	µ9/∿9		100 17020	< 1.0	< 1.0	-	< 1.0	< 1.0

Chloromethane	µg/kg	1	ISO 17025	< 1.0	< 1.0	-	< 1.0	< 1.0
Chloroethane	µg/kg	1	NONE	< 1.0	< 1.0	-	< 1.0	< 1.0
Bromomethane	µg/kg	1	ISO 17025	< 1.0	< 1.0	-	< 1.0	< 1.0
Vinyl Chloride	µg/kg	1	NONE	< 1.0	< 1.0	-	< 1.0	< 1.0
Trichlorofluoromethane	µg/kg	1	NONE	< 1.0	< 1.0	-	< 1.0	< 1.0

Project / Site name: Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 0RA Your Order No: P4639JJ2633.6

I ah Sampla Numhar				0414150	0414151	0414150	0414150	0414154
				2414150	2414151	2414152	2414153	2414154
				WSI	WSI	WS2	WS2	WS3
				None Supplied				
Depth (m)				0.25	0.75	0.25	1.00	0.50
Date Sampled				30/08/2022	30/08/2022	30/08/2022	30/08/2022	30/08/2022
Time Taken			None Supplied					
		1						
An ale that Danama atom								
Analytical Parameter (Soil Apalysis)	1	1						
		1.1						
1 1-Dichloroethene	µq/kq	1	NONE	< 1.0	< 1.0	_	< 1.0	< 1.0
1 1 2-Trichloro 1 2 2-Trifluoroethane	ua/ka	1	ISO 17025	< 1.0	< 1.0	_	< 1.0	< 1.0
Cis-1 2-dichloroethene	ua/ka	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
MTRF (Methyl Tertiary Butyl Ether)	ua/ka	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
1.1 Dichloroethane	ua/ka	1	MCERTS	< 1.0	< 1.0		< 1.0	< 1.0
2.2 Dichloropropago	ua/ka	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
	ug/kg	1	MCEDTS	< 1.0	< 1.0	-	< 1.0	< 1.0
	µg/kg	1	MCEDTS	< 1.0	< 1.0	-	< 1.0	< 1.0
	Pg/Ng	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
1,2-Dichioloethane	P9/N9	1	MCEDTO	< 1.0	< 1.0	-	< 1.0	< 1.0
	µg/kg	1	WICER IS	< 1.0	< 1.0	-	< 1.0	< 1.0
I rans-1,2-dichloroethene	µg/kg	1	MODINE	< 1.0	< 1.0	-	< 1.0	< 1.0
Benzene	µд/кд	1	MOERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
letrachloromethane	µg/кд	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
1,2-Dichloropropane	µg/кд		MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Trichloroethene	µg/кд	-	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Dibromomethane	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Bromodichloromethane	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Cis-1,3-dichloropropene	µg/kg	1	ISO 17025	< 1.0	< 1.0	-	< 1.0	< 1.0
Trans-1,3-dichloropropene	µg/kg	1	ISO 17025	< 1.0	< 1.0	-	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
1,1,2-Trichloroethane	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
1,3-Dichloropropane	µg/kg	1	ISO 17025	< 1.0	< 1.0	-	< 1.0	< 1.0
Dibromochloromethane	µg/kg	1	ISO 17025	< 1.0	< 1.0	-	< 1.0	< 1.0
Tetrachloroethene	µg/kg	1	NONE	< 1.0	< 1.0	-	< 1.0	< 1.0
1,2-Dibromoethane	µg/kg	1	ISO 17025	< 1.0	< 1.0	-	< 1.0	< 1.0
Chlorobenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
p & m-Xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Styrene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Tribromomethane	µg/kg	1	NONE	< 1.0	< 1.0	-	< 1.0	< 1.0
o-Xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Isopropylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Bromobenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
n-Propylbenzene	µg/kg	1	ISO 17025	< 1.0	< 1.0	-	< 1.0	< 1.0
2-Chlorotoluene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
4-Chlorotoluene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
1.3.5-Trimethylbenzene	µg/kg	1	ISO 17025	< 1.0	< 1.0	-	< 1.0	< 1.0
tert-Butylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
1,2,4-Trimethylbenzene	µg/kg	1	ISO 17025	< 1.0	< 1.0	-	< 1.0	< 1.0
sec-Butvlbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	_	< 1.0	< 1.0
1.3-Dichlorobenzene	µq/ka	1	ISO 17025	< 1.0	< 1.0		< 1.0	< 1.0
p-Isopropyltoluene	µq/ka	1	ISO 17025	< 1.0	< 1.0	_	< 1.0	< 1.0
1 2-Dichlorobenzene	µg/ka	1	MCERTS	< 1.0	< 1.0		< 1.0	< 1.0
1 4-Dichlorobenzene	ua/ka	1	MCERTS	< 1.0	< 1.0		< 1.0	< 1.0
Rutylhenzene	ug/ka	1	MCERTS	< 1.0	< 1.0		< 1.0	< 1.0
1 2-Dibromo-3-chloropropage	ug/ka	1	ISO 17025	< 1.0	< 1.0	-	< 1.0	< 1.0
1.2 Josefine-Schloropropane	La/ka	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
	P9/19	1	MCEPTS	< 1.0	< 1.0	-	< 1.0	< 1.0
	µg/ka	1	ISO 17025	< 1.0	< 1.0	-	< 1.0	< 1.0
1,2,3 THORIDO ODCHZCHC	109			< 1.U	< 1.U	-	< 1.U	< 1.U

Project / Site name: Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 0RA Your Order No: P4639JJ2633.6

-								
Lab Sample Number				2414150	2414151	2414152	2414153	2414154
Sample Reference				WS1	WS1	WS2	WS2	WS3
Sample Number				None Supplied				
Depth (m)	0.25	0.75	0.25	1.00	0.50			
Date Sampled	30/08/2022	30/08/2022	30/08/2022	30/08/2022	30/08/2022			
Time Taken	None Supplied							
Analytical Parameter (Soil Analysis)								
PCBs by GC-MS			8	8				
PCB Congener 28	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
PCB Congener 52	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
PCB Congener 101	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
PCB Congener 118	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
PCB Congener 138	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
PCB Congener 153	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
PCB Congener 180	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
Total PCBs by GC-MS								
Total PCBs	mg/kg	0.007	MCERTS	-	-	-	-	< 0.007

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 ORA Your Order No: P4639JJ2633.6

Lab Sample Number				2414155	2414156	2414157
Sample Reference				WS4	WS5	WS5
Sample Number	None Supplied	None Supplied	None Supplied			
Depth (m)	1.00	0.50	1.00			
Date Sampled	30/08/2022	30/08/2022	30/08/2022			
Time Taken	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)						
Stone Content	%	0.1	NONE	< 0.1	38	< 0.1
Moisture Content	%	0.01	NONE	14	1.1	10
Total mass of sample received	kg	0.001	NONE	1.2	1.2	1.2
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	ASE	ASE	ASE

General	Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.4	9.1	11.1
Total Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Total Sulphate as SO4	mg/kg	50	MCERTS	240	320	5200
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	g/I	0.00125	MCERTS	0.021	0.012	1.1
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/kg	2.5	MCERTS	42	24	2300
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/l	1.25	MCERTS	21	11.8	1140
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	0.2	-	1.4

Total Phenols

Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0

Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.73
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.28
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	2
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.33
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	3.2
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	2.9
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	2.1
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.7
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	2.5
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.97
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.8
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.2
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.31
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.5

TOLAT PAR						
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	21.5

Project / Site name: Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 ORA Your Order No: P4639JJ2633.6

Lab Sample Number				2414155	2414156	2414157
Sample Reference				WS4	W\$5	W\$5
Sample Number				None Supplied	None Supplied	None Supplied
Denth (m)				1.00	0.50	1.00
Date Sampled				30/08/2022	30/08/2022	30/08/2022
Time Taken				None Supplied	None Supplied	None Supplied
		1		Nono ouppriou	Nono ouppriou	Nono ouppilou
		1	1			
Analytical Parameter	1.1					
(Soil Analysis)	-					
			1			
Heavy Metals / Metalloids						
	ma/ka	1	MCERTS	10	1.9	27
Risenic (aqua regia extractable)	mg/kg	0.2	MCERTS	17	4.8	27
Cadmium (agua ragia extractable)	ma/ka	0.2	MCERTS	< 0.2	0.5	0.7
	ma/ka	1.8	MCERTS	< 1.8	< 1.9	2.1
Chromium (aqua regia extractable)	ma/ka	1	MCERTS	20	4.8	26
Copper (aqua regia extractable)	ma/ka	1	MCERTS	11	2.9	62
Lead (aqua regia extractable)	mg/ka	1	MCERTS	25	15	370
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	20	2.4	19
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Zinc (agua regia extractable)	mg/kg	1	MCERTS	62	39	470
, ,						
Monoaromatics & Oxygenates						
Benzene	µg/kg	1	MCERTS	-	< 1.0	-
Toluene	µg/kg	1	MCERTS	-	< 1.0	-
Ethylbenzene	µg/kg	1	MCERTS	-	< 1.0	-
p & m-xylene	µg/kg	1	MCERTS	-	< 1.0	-
o-xylene	µg/kg	1	MCERTS	-	< 1.0	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	< 1.0	-
Petroleum Hydrocarbons						
Petroleum Range Organics (C6 - C10) _{HS_1D_TOTAL}	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1
TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.001	MCERTS	-	< 0.001	-
IPH-CWG - Aliphatic >EC6 - EC8 _{HS_1D_AL}	mg/kg	0.001	MCERTS	-	< 0.001	-
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	MCERTS	-	< 0.001	-
TPH-CWG - Aliphatic >EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	1	MCEDIS	-	< 1.0	-
TPH-CWG - Aliphatic >ECT2 - ECT6 EH_CU_1D_AL	mg/kg	2	MCEDITS	-	< 2.0	-
TPH-CWG - Aliphatic > EC21 EC25	mg/kg	0	MCEDTS	-	< 8.0	-
TPH-CWG - Aliphatic (EC5 - EC35) and an and a second	ma/ka	10	MCERTS	-	< 8.0	-
EH_CU+HS_1D_AL				-	< 10	-
TPH-CWG - Aromatic >EC5 - EC7	ma/ka	0,001	MCERTS	_	< 0.001	_
TPH-CWG - Aromatic >EC7 - $EC8_{HS}$ - D_{AR}	ma/ka	0.001	MCERTS		< 0.001	
TPH-CWG - Aromatic >EC8 - EC10 $\mu_{S_1D_AR}$	ma/ka	0.001	MCERTS		< 0.001	-
TPH-CWG - Aromatic >EC10 - FC12 rule to the	mg/ka	1	MCERTS		< 1.0	-
TPH-CWG - Aromatic >EC12 - FC16 cu cu to Ap	mg/kg	2	MCERTS	-	< 2.0	-
TPH-CWG - Aromatic >EC16 - EC21 EN CU 10 AR	mg/kq	10	MCERTS	-	< 10	-
TPH-CWG - Aromatic >EC21 - EC35 FH CU 10 AP	mg/kg	10	MCERTS	-	< 10	-
TPH-CWG - Aromatic (EC5 - EC35) EH_CU+HS 1D AR	mg/kg	10	MCERTS	-	< 10	-
TPH (C10 - C12) _{EH_CU_1D_TOTAL}	mg/kg	2	MCERTS	< 2.0	-	< 2.0
TPH (C12 - C16) EH CIL 1D TOTAL	mg/kg	4	MCERTS	< 4.0	-	< 4.0

TPH (C10 - C12) EH_CU_1D_TOTAL	mg/kg	2	MCERTS	< 2.0	-	< 2.0
TPH (C12 - C16) EH_CU_1D_TOTAL	mg/kg	4	MCERTS	< 4.0	-	< 4.0
TPH (C16 - C21) EH_CU_1D_TOTAL	mg/kg	1	MCERTS	< 1.0	-	9.9
TPH (C21 - C40) _{EH_CU_1D_TOTAL}	mg/kg	10	MCERTS	< 10	-	65

VOCs						
Chloromethane	µg/kg	1	ISO 17025	-	< 1.0	-
Chloroethane	µg/kg	1	NONE	-	< 1.0	-
Bromomethane	µg/kg	1	ISO 17025	-	< 1.0	-
Vinyl Chloride	µg/kg	1	NONE	-	< 1.0	-
Trichlorofluoromethane	µg/kg	1	NONE	-	< 1.0	-

Project / Site name: Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 ORA Your Order No: P4639JJ2633.6

Lab Sample Number	2414155	2414156	2414157			
Sample Reference	WS4	WS5	WS5			
Sample Number	None Supplied	None Supplied	None Supplied			
Depth (m)	1.00	0.50	1.00			
Date Sampled	30/08/2022	30/08/2022	30/08/2022			
Time Taken				None Supplied	None Supplied	None Supplied
		1	1.1			
Analytical Parameter						
(Soli Analysis)		1				
1 1-Dichloroethene	ua/ka	1	NONE	_	< 10	_
1.1.2-Trichloro 1.2.2-Trifluoroethane	ua/ka	1	ISO 17025	-	< 1.0	
Cis-1 2-dichloroethene	µg/kg	1	MCERTS	_	< 1.0	-
MTRF (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	< 1.0	-
1 1-Dichloroethane	µa/ka	1	MCERTS	-	< 1.0	-
2 2-Dichloropropane	µg/kg	1	MCERTS	_	< 1.0	-
	ua/ka	1	MCERTS	-	< 1.0	-
1.1.1-Trichloroethane	µg/kg	1	MCERTS	-	< 1.0	-
1.2-Dichloroethane	µg/kg	1	MCERTS	-	< 1.0	-
1.1-Dichloropropene	µq/kq	1	MCERTS	-	< 1.0	-
Trans-1.2-dichloroethene	µg/kg	1	NONE	-	< 1.0	-
Benzene	µg/kg	1	MCERTS	-	< 1.0	-
Tetrachloromethane	µq/kq	1	MCERTS	-	< 1.0	-
1.2-Dichloropropane	µg/kg	1	MCERTS	-	< 1.0	-
Trichloroethene	µg/kg	1	MCERTS	-	< 1.0	-
Dibromomethane	µg/kg	1	MCERTS	-	< 1.0	-
Bromodichloromethane	µg/kg	1	MCERTS	-	< 1.0	_
Cis-1,3-dichloropropene	µg/kg	1	ISO 17025	-	< 1.0	-
Trans-1.3-dichloropropene	µg/kg	1	ISO 17025	-	< 1.0	-
Toluene	µg/kg	1	MCERTS	-	< 1.0	-
1.1.2-Trichloroethane	µg/kg	1	MCERTS	-	< 1.0	-
1.3-Dichloropropane	µg/kg	1	ISO 17025		< 1.0	-
Dibromochloromethane	µg/kg	1	ISO 17025	-	< 1.0	-
Tetrachloroethene	µg/kg	1	NONE	-	< 1.0	-
1,2-Dibromoethane	µg/kg	1	ISO 17025	-	< 1.0	-
Chlorobenzene	µg/kg	1	MCERTS	-	< 1.0	-
1,1,1,2-Tetrachloroethane	µg/kg	1	MCERTS	-	< 1.0	-
Ethylbenzene	µg/kg	1	MCERTS	-	< 1.0	-
p & m-Xylene	µg/kg	1	MCERTS	-	< 1.0	-
Styrene	µg/kg	1	MCERTS	-	< 1.0	-
Tribromomethane	µg/kg	1	NONE	-	< 1.0	-
o-Xylene	µg/kg	1	MCERTS	-	< 1.0	-
1,1,2,2-Tetrachloroethane	µg/kg	1	MCERTS	-	< 1.0	-
Isopropylbenzene	µg/kg	1	MCERTS	-	< 1.0	-
Bromobenzene	µg/kg	1	MCERTS	-	< 1.0	-
n-Propylbenzene	µg/kg	1	ISO 17025	-	< 1.0	-
2-Chlorotoluene	µg/kg	1	MCERTS	-	< 1.0	-
4-Chlorotoluene	µg/kg	1	MCERTS	-	< 1.0	-
1,3,5-Trimethylbenzene	µg/kg	1	ISO 17025	-	< 1.0	-
tert-Butylbenzene	µg/kg	1	MCERTS	-	< 1.0	-
1,2,4-Trimethylbenzene	µg/kg	1	ISO 17025	-	< 1.0	-
sec-Butylbenzene	µg/kg	1	MCERTS	-	< 1.0	-
1,3-Dichlorobenzene	µg/kg	1	ISO 17025		< 1.0	-
p-Isopropyltoluene	µg/kg	1	ISO 17025	-	< 1.0	-
1,2-Dichlorobenzene	µg/kg	1	MCERTS	-	< 1.0	-
1,4-Dichlorobenzene	µg/kg	1	MCERTS		< 1.0	-
Butylbenzene	µg/kg	1	MCERTS	-	< 1.0	-
1,2-Dibromo-3-chloropropane	µg/kg	1	ISO 17025	-	< 1.0	-
1,2,4-Trichlorobenzene	µg/kg	1	MCERTS	-	< 1.0	-
Hexachlorobutadiene	µg/kg	1	MCERTS	-	< 1.0	-
1,2,3-Trichlorobenzene	µg/kg	1	ISO 17025	-	< 1.0	-

Project / Site name: Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 ORA Your Order No: P4639JJ2633.6

Lab Sample Number	2414155	2414156	2414157			
Sample Reference	WS4	WS5	WS5			
Sample Number	None Supplied	None Supplied	None Supplied			
Depth (m)	1.00	0.50	1.00			
Date Sampled	30/08/2022	30/08/2022	30/08/2022			
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)						
PCBs by GC-MS						
PCB Congener 28	mg/kg	0.001	MCERTS	-	< 0.001	-
PCB Congener 52	mg/kg	0.001	MCERTS	-	< 0.001	-
PCB Congener 101	mg/kg	0.001	MCERTS	-	< 0.001	-
PCB Congener 118	mg/kg	0.001	MCERTS	-	< 0.001	-
PCB Congener 138	mg/kg	0.001	MCERTS	-	< 0.001	-
PCB Congener 153	mg/kg	0.001	MCERTS	-	< 0.001	-
PCB Congener 180	mg/kg	0.001	MCERTS	-	< 0.001	-

Total FCD3 by CC-WD						
Total PCBs	mg/kg	0.007	MCERTS	-	< 0.007	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 ORA

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2414150	WS1	None Supplied	0.25	Brown sand with concrete and stones.
2414151	WS1	None Supplied	0.75	Brown clay and sand.
2414152	WS2	None Supplied	0.25	Brown gravelly loam with chalk and stones.
2414153	WS2	None Supplied	1	Brown clay and sand with concrete.
2414154	WS3	None Supplied	0.5	Brown loam and clay with gravel and brick.
2414155	WS4	None Supplied	1	Brown sandy clay.
2414156	WS5	None Supplied	0.5	Light brown sand with concrete and stones.
2414157	WS5	None Supplied	1	Brown loam and sand with concrete and brick.

Project / Site name: Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 ORA

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soll.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
PRO (Soil)	Determination of hydrocarbons C6-C10 by headspace GC MS.	In-house method based on USEPA8260	L088-PL	W	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCI followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soll by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS

Project / Site name: Units 1-15 Premier Estates, Sussex Street, Bristol, BS2 ORA

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soll by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Sulphate, water soluble, in soil (1hr extraction)	Sulphate, water soluble, in soil (1hr extraction)	In-house method	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

4041

Clare Prosser Jomas Associates Ltd Lakeside House 1 Furzeground Way Stockley Park UB11 1BD Environmental Science

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: Jomas Associates -

Analytical Report Number : 22-83851

Project / Site name:	Units 1 15 Premier Estates Sussex Street Bristol BS2 0RA	Samples received on:	02/09/2022
Your job number:	JJ2633	Samples instructed on/ Analysis started on:	12/09/2022
Your order number:	P4639JJ2633 7	Analysis completed by:	19/09/2022
Report Issue Number:	1	Report issued on:	19/09/2022
Samples Analysed:	3 leachate samples		

Dominika Warjan Junior Reporting Specialist For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	-	4	weeks from reporting
leachates	-	2	weeks from reporting
waters	-	2	weeks from reporting
asbestos	-	6	months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Project / Site name: Units 1 15 Premier Estates Sussex Street Bristol BS2 ORA

Your Order No: P4639JJ2633 7

Lab Sample Number	2423233	2423234	2423235			
Sample Reference	WS1	WS3	WS5			
Sample Number	None Supplied	None Supplied	None Supplied			
Depth (m)	0.75	0.50	1.00			
Date Sampled	Deviating	Deviating	Deviating			
Time Taken	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Leachate Analysis)						

General Inorganics

pH (automated)	pH Units	N/A	ISO 17025	7.7	7.7	8.7
Total Cyanide	µg/I	10	ISO 17025	< 10	< 10	< 10
Sulphate as SO ₄	µg/I	100	ISO 17025	7910	92800	11100

Total Phenols						
Total Phenols (monohydric)	µg/I	10	ISO 17025	< 10	< 10	< 10

Speciated PAHs

Naphthalene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Acenaphthylene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Acenaphthene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Fluorene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Phenanthrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Pyrene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Chrysene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	NONE	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	NONE	< 0.01	< 0.01	< 0.01
Benzo(ahi)pervlene	µg/l	0.01	NONE	< 0.01	< 0.01	< 0.01

Total PAH

Total EPA-16 PAHs	µg∕I	0.2	NONE	< 0.2	< 0.2	< 0.2

Heavy Metals / Metalloids

Arsenic (dissolved)	µg/I	1	ISO 17025	< 1.0	6.7	6.6
Boron (dissolved)	µg/l	10	ISO 17025	30	85	10
Cadmium (dissolved)	µg/l	0.08	ISO 17025	< 0.08	< 0.08	< 0.08
Chromium (hexavalent)	µg/I	5	ISO 17025	< 5.0	< 5.0	< 5.0
Chromium (dissolved)	µg/I	0.4	ISO 17025	< 0.4	0.7	5.6
Copper (dissolved)	µg/I	0.7	ISO 17025	2.2	5.3	14
Lead (dissolved)	µg/I	1	ISO 17025	< 1.0	< 1.0	62
Mercury (dissolved)	µg/I	0.5	ISO 17025	< 0.5	< 0.5	< 0.5
Nickel (dissolved)	µg/I	0.3	ISO 17025	< 0.3	0.5	2.4
Selenium (dissolved)	µg/I	4	ISO 17025	< 4.0	< 4.0	< 4.0
Zinc (dissolved)	µg/l	0.4	ISO 17025	2	11	41

Monoaromatics & Oxygenates

Benzene	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0
Toluene	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0
o-xylene	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	10	NONE	< 10	< 10	< 10

Analytical Report Number: 22-83851 Project / Site name: Units 1 15 Premier Estates Sussex Street Bristol BS2 0RA

Your Order No: P4639JJ2633 7

Lab Sample Number	2423233	2423234	2423235			
Sample Reference	WS1	WS3	WS5			
Sample Number	None Supplied	None Supplied	None Supplied			
Depth (m)				0.75	0.50	1.00
Date Sampled				Deviating	Deviating	Deviating
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Leachate Analysis)						
Petroleum Hydrocarbons						
TPH-CWG - Aliphatic >C5 - C6 HS 1D AL	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8 HS 1D AL	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10 HS_1D_AL	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12 EH_1D_AL_#1_#2_MS	µg/I	10	NONE	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16 EH_1D_AL_#1_#2_MS	µg/I	10	NONE	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21 _{EH_1D_AL_#1_#2_MS}	µg/I	10	NONE	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35 _{EH_1D_AL_#1_#2_MS}	µg/I	10	NONE	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35) HS+EH_1D_AL_#1_#2_MS	µg/l	10	NONE	< 10	< 10	< 10
		1				
TPH-CWG - Aromatic >C5 - C7 _{HS_1D_AR}	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8 _{HS_1D_AR}	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10 _{HS_1D_AR}	µg/I	1	ISO 17025	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12 _{EH_1D_AR_#1_#2_MS}	µg/I	10	NONE	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16 _{EH_1D_AR_#1_#2_MS}	µg/I	10	NONE	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21 _{EH_1D_AR_#1_#2_MS}	µg/I	10	NONE	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35 _{EH_1D_AR_#1_#2_MS}	µg/l	10	NONE	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35) HS+EH 1D AR #1 #2 MS	µg/l	10	NONE	< 10	< 10	< 10

Analytical Report Number: 22-83851 Project / Site name: Units 1 15 Premier Estates Sussex Street Bristol BS2 0RA

Your Order No: P4639JJ2633 7						
Lab Sample Number				2423233	2423234	2423235
Sample Reference	WS1	WS3	WS5			
Sample Number	None Supplied	None Supplied	None Supplied			
Depth (m)				0.75	0.50	1.00
Date Sampled				Deviating	Deviating	Deviating
Time Taken				Nono Supplied	Nono Supplied	Nono Supplied
	1		1	None Supplied	None Supplied	None Supplied
			1			
Analytical Parameter	-		1.1			
(Leachate Analysis)	-	1				
(,		1				
VOCs	•			•		
Chloromethane	µg/l	1	NONE	< 1.0	< 1.0	< 1.0
Chloroethane	µg/l	1	NONE	< 1.0	< 1.0	< 1.0
Bromomethane	µg/l	1	NONE	< 1.0	< 1.0	< 1.0
Vinvl Chloride	µg/l	1	NONE	< 1.0	< 1.0	< 1.0
1.1-dichloroethene	µg/l	1	NONE	< 1.0	< 1.0	< 1.0
1.1.2-Trichloro 1.2.2-Trifluoroethane	µg/l	1	NONE	< 1.0	< 1.0	< 1.0
Cis-1.2-dichloroethene	µg/l	1	NONE	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	NONE	< 1.0	< 1.0	< 1.0
1.1-dichloroethane	µq/l	1	NONE	< 1.0	< 1.0	< 1.0
2.2-Dichloropropane	µg/l	1	NONE	< 1.0	< 1.0	< 1.0
Trichloromethane	µg/l	1	NONE	< 1.0	< 1.0	< 1.0
1 1 1-Trichloroethane	µq/l	1	NONE	< 1.0	< 1.0	< 1.0
1 2-dichloroethane	µq/l	1	NONE	< 1.0	< 1.0	< 1.0
1 1-Dichloropropene	µq/l	1	NONE	< 1.0	< 1.0	< 1.0
Trans-1 2-dichloroethene	µa/l	1	NONE	< 1.0	< 1.0	< 1.0
Benzene	µa/l	1	ISO 17025	< 1.0	< 1.0	< 1.0
Tetrachloromethane	µa/l	1	NONE	< 1.0	< 1.0	< 1.0
1 2-dichloronropane	µg/l	1	NONE	< 1.0	< 1.0	< 1.0
	ua/l	1	NONE	< 1.0	< 1.0	< 1.0
Dibromomothano	µg/l	1	NONE	< 1.0	< 1.0	< 1.0
Promodichloromothano	µg/1	1	NONE	< 1.0	< 1.0	< 1.0
	µg/1	1	NONE	< 1.0	< 1.0	< 1.0
Trans_1 3-dichloropropene	µg/1	1	NONE	< 1.0	< 1.0	< 1.0
	µg/1	1	150 17025	< 1.0	< 1.0	< 1.0
1.1.2 Trichloroothano	-5 ^{,1}	1	NONE	< 1.0	< 1.0	< 1.0
1.2 Dichloropropapo	µg/1	1	NONE	< 1.0	< 1.0	< 1.0
Dibromochloromothano	-5 ^{,1}	1	NONE	< 1.0	< 1.0	< 1.0
Totrachloroothono	µg/1	1	NONE	< 1.0	< 1.0	< 1.0
	µg/1	1	NONE	< 1.0	< 1.0	< 1.0
	µg/1	1	NONE	< 1.0	< 1.0	< 1.0
	µg/1	1	NONE	< 1.0	< 1.0	< 1.0
T, T, T, Z- Tetracitior Detriane	µg/1	1	150 17025	< 1.0	< 1.0	< 1.0
	µg/1	1	ISO 17025	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/1	1	NONE	< 1.0	< 1.0	< 1.0
Tribromomothana	µg/1	1	NONE	< 1.0	< 1.0	< 1.0
	µg/1	1	150 17025	< 1.0	< 1.0	< 1.0
1 1 2 2 Totrachloroothano	µg/1	1	NONE	< 1.0	< 1.0	< 1.0
	µg/1	1	NONE	< 1.0	< 1.0	< 1.0
Promohonzono	µg/1	1	NONE	< 1.0	< 1.0	< 1.0
p Propulhonzono	µg/1	1	NONE	< 1.0	< 1.0	< 1.0
	µg/1	1	NONE	< 1.0	< 1.0	< 1.0
	µg/1	1	NONE	< 1.0	< 1.0	< 1.0
	µg/1	1	NONE	< 1.0	< 1.0	< 1.0
tar Putulhanzana	μg/1	1	NONE	< 1.0	< 1.0	< 1.0
	µg/1	1	NONE	< 1.0	< 1.0	< 1.0
	Hg/1	1	NONE	< 1.0	< 1.0	< 1.0
Sec-BulyIDenzene	µg/1	1	NONE	< 1.0	< 1.0	< 1.0
	µg/1	1	NONE	< 1.0	< 1.0	< 1.0
P-isopropyitoluene	µg/1	1	NONE	< 1.0	< 1.0	< 1.0
	µg/1	1	NONE	< 1.0	< 1.0	< 1.0
	µg/1	1	NONE	< 1.0	< 1.0	< 1.0
	μg/1	1	NONE	< 1.0	< 1.0	< 1.0

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Iss No 22-83851-1 Units 1 15 Premier Estates Sussex Street Bristol BS2 0RA JJ2633 Page 4 of 8

Project / Site name: Units 1 15 Premier Estates Sussex Street Bristol BS2 ORA

Your Order No: P4639JJ2633 7

Lab Sample Number	2423233	2423234	2423235			
Sample Reference	WS1	WS3	WS5			
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				0.75	0.50	1.00
Date Sampled				Deviating	Deviating	Deviating
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Leachate Analysis)						
1,2,4-Trichlorobenzene	µg/I	1	NONE	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	µg/l	0.1	NONE	< 0.1	< 0.1	< 0.1
1,2,3-Trichlorobenzene	µg/l	1	NONE	< 1.0	< 1.0	< 1.0

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Units 1 15 Premier Estates Sussex Street Bristol BS2 ORA

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
NRA Leachate Prep	10:1 extract with de-ionised water shaken for 24 hours then filtered.	In-house method based on National Rivers Authority	L020-PL	W	NONE
Metals by ICP-OES in leachate	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Boron in leachate	Determination of boron in leachate. Sample acidified and followed by ICP-OES.	In-house method based on MEWAM	L039-PL	W	ISO 17025
Hexavalent chromium in leachate	Determination of hexavalent chromium in leachate by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	w	ISO 17025
Monohydric phenols in leachate	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	ISO 17025
Speciated EPA-16 PAHs in leachate	Determination of PAH compounds in leachate by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
pH at 20oC in leachate (automated)	Determination of pH in leachate by electrometric measurement.	In house method.	L099B	W	ISO 17025
Sulphate in leachates	Determination of sulphate in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
TPHCWG (Leachates)	Determination of dichloromethane extractable hydrocarbons in leachate by GC-MS.	In-house method	L070-PL	W	ISO 17025
Total cyanide in leachate	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Volatile organic compounds in leachate	Determination of volatile organic compounds in leachate by headspace GC-MS	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
BTEX and MTBE in leachates (Monoaromatics)	Determination of BTEX and MTBE in leachates by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

Analytical Report Number : 22-83851 Project / Site name: Units 1 15 Premier Estates Sussex Street Bristol BS2 ORA

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status		
	List of HWOL A	cronyms and Operators	-	-			
Acronym	Descriptions						
HS	Headspace Analysis						
MS	Mass spectrometry						
FID	Flame Ionisation Detector						
GC	Gas Chromatography						
EH	Extractable Hydrocarbons (i.e. everythin	g extracted by the solvent(s))					
CU	Clean-up - e.g. by Florisil®, silica gel						
1D	GC - Single coil/column gas chromatogra	phy					
2D	GC-GC - Double coil/column gas chromat	ography					
Total	Aliphatics & Aromatics						
AL	Aliphatics						
AR	Aromatics						
#1	EH_2D_Total but with humics mathematically subtracted						
#2	EH_2D_Total but with fatty acids mather	matically subtracted					
_	Operator - understore to separate acron	yms (exception for +)					
+	Operator to indicate cumulative e.g. EH+	HS_Total or EH_CU+HS_Total					

Analytical Report Number : 22-83851 Project / Site name: Units 1 15 Premier Estates Sussex Street Bristol BS2 0RA

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis.Please note that the associated result(s) may be unreliable and should be interpreted with care.

Sample I D	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
WS1	None Supplied	L	2423233	а	None Supplied	None Supplied	None Supplied
WS3	None Supplied	L	2423234	а	None Supplied	None Supplied	None Supplied
WS5	None Supplied	L	2423235	а	None Supplied	None Supplied	None Supplied
WS5	None Supplied	S	2423232	а	None Supplied	None Supplied	None Supplied

APPENDIX 4 – SOIL GAS MONITORING TEST RESULTS

	GAS AND GROUNDWATER MONITORING BOREHOLE RECORD SHEET											
Site: Unit 1-15 Premier Estates, Bristol	Round: 1	Page: 1										
MONITORING EQUIPMENT												
Instrument Type Instrument Make Serial No. Date Last Calibrated												
Analox	GA5000		G505801		01/10/2021							
PID	Phocheck tiger		T-106448		01/03/2021							
Dip Meter	GeoTech											
		MONITORING CON	DITIONS									
Weather Conditions: Sunny	Grou	Id Conditions: Dry	Те		Temperature: 21°C							
Barometric Pressure (mbar): 100	netric Pressure Trend (24hr)	hr): Rising Ambient Concentration: 0.0%CH4, 0.2%CO2			, 0.2%CO ₂ , 20.6%O ₂							

	MONITORING RESULTS													
Monitoring	F	low	Atmospheric					voc	(ppm)			Depth to	Depth to	Depth to
Point Location	Peak	Steady	Pressure (mbar)	CH₄ %	LEL	CO ₂ %	O ₂ %	Peak	Steady	H₂S (ppm)	(ppm)	product (mbgl)	water (mbgl)	base of well (mbgl)
WS1	+0.2	+0.2	1010	0.0	-	0.1	20.3	1.0	0.4	0	0	-	Dry	1.85
WS3	+0.1	+0.1	1010	0.0	-	0.8	19.0	1.1	0.8	0	0	-	Dry	1.68
WS4	+0.0	+0.0	1009	0.0	-	4.6	14.2	1.3	0.4	0	0	-	Dry	1.89

	GAS AND GROUNDWATER MONITORING BOREHOLE RECORD SHEET											
Site: Unit 1-15 Premier Estates, Bristol	Operative(s): HAH	Date: 16/09/2022	Time: 10:30am		Round: 2	Page: 1						
MONITORING EQUIPMENT												
Instrument Type Instrument Make Serial No. Date Last Calibrated												
Analox	GA5000		G505801		01/10/2021							
PID	Multirae PID		T-106448		01/03/2021							
Dip Meter	GeoTech											
			DITIONS									
Weather Conditions: Sunny	Grou	nd Conditions: Dry	Temŗ		Temperature: 18°C							
Barometric Pressure (mbar): 101	8 Baro	ometric Pressure Trend (24hr): Rising			Ambient Concentration: 0.2%CH ₄ , 0.1%CO ₂ , 21.1%O ₂							

	MONITORING RESULTS													
Monitoring	F	low	Atmospheric					voc	(ppm)			Depth to	Depth to	Depth to
Point Location	Peak	Steady	Pressure (mbar)	CH₄ %	LEL	CO2 %	O2 %	Peak	Steady	H25 (ppm)	CO (ppm)	product (mbgl)	water (mbgl)	of well (mbgl)
WS1	+0.0	+0.0	1018	0.2	-	0.3	20.8	0.0	0.0	0	0	-	Dry	1.84
WS3	-0.0	-0.0	1018	0.2	-	0.4	20.6	0.0	0.0	0	0	-	Dry	1.67
WS4	+0.0	+0.0	1018	0.1	-	3.3	17.3	0.0	0.0	0	0	-	Dry	1.90

	GAS AND GROUNDWATER MONITORING BOREHOLE RECORD SHEET											
Site: Unit 1-15 Premier Estates, Bristol	Site: Unit 1-15 Premier Estates, BristolOperative(s): RAYDate: 23/09/2022Time: 10:45AMRound: 3Page: 1											
MONITORING EQUIPMENT												
Instrument Type Instrument Make Serial No. Date Last Calibrated												
Analox	GA5000		G505801		01/10/2021							
PID	Multirae PID		T-106448		01/03/2021							
Dip Meter	GeoTech											
		MONITORING CON	DITIONS									
Weather Conditions: Sunny with a	clouds Grc	Jund Conditions: Dry		Temper	ature: 17°C							
Barometric Pressure (mbar): 101	5 Bar	ometric Pressure Trend (24hr)	Ambient Concentration: 0.0%CH4, 0.1%CO2			0.1%CO ₂ , 23.7%O ₂						

MONITORING RESULTS														
Monitoring Point Location	Flow		Atmospheric					VOC (ppm)				Depth to	Depth to	Depth to
	Peak	Steady	Pressure (mbar)	CH₄ %	LEL	CO₂ %	O ₂ %	Peak	Steady	п ₂ 5 (ppm)	(ppm)	product (mbgl)	water (mbgl)	of well (mbgl)
WS1	+0.2	+0.2	1016	0.0	-	2.0	20.3	0.7	0.5	0	0	-	Dry	1.84
WS3	+0.1	+0.1	1015	0.0	-	0.4	23.2	0.6	0.3	0	0	-	Dry	1.65
WS4	+0.0	+0.0	1016	0.0	-	0.9	22.7	0.6	0.4	0	0	-	Dry	1.88

GAS AND GROUNDWATER MONITORING BOREHOLE RECORD SHEET											
Site: Unit 1-15 Premier Estates, Bristol	Operative(s): SEJ	Date: 30/09/2022	2 Time: 10:30AM		Round: 4	Page: 1					
MONITORING EQUIPMENT											
Instrument Type	Instrument Make		Serial No.		Date Last Calibrated						
Analox	GA5000		G505801		01/10/2021						
PID	Multirae PID		T-106448		01/03/2021						
Dip Meter	GeoTech										
MONITORING CONDITIONS											
Weather Conditions: Overcast	Grou	Ground Conditions: Dry		Temperature: 12°C							
Barometric Pressure (mbar): 100	15 Barc	Barometric Pressure Trend (24hr): Rising		Ambient Concentration: 0.2%CH ₄ , 0.1%CO ₂ , 21.3%O ₂							

MONITORING RESULTS														
Monitoring Point Location	Flow		Atmospheric					VOC (ppm)				Depth to	Depth to	Depth to
	Peak	Steady	Pressure (mbar)	CH₄ %	LEL	CO₂ %	O ₂ %	Peak	Steady	п₂5 (ppm)	(ppm)	product (mbgl)	water (mbgl)	of well (mbgl)
WS1	+0.1	+0.0	1006	0.1	-	0.1	21.0	0	0	0	0	-	Dry	1.84
WS3	+0.1	+0.1	1006	0.1	-	2.1	17.7	0	0	0	0	-	Dry	1.67
WS4	+0.0	+0.0	1005	0.2	-	1.5	18.4	0	0	0	0	-	Dry	1.90

JCMAS ENGINEERING ENVIRONMENTAL

WE LISTEN, WE PLAN, WE DELIVER

Geotechnical Engineering and Environmental Services across the UK.

JOMAS ASSOCIATES LTD

Unit 24 Sarum Complex Salisbury Road Uxbridge UB8 2RZ

CONTACT US

Website: www.jomasassociates.com Tel: 0333 305 9054 Email: info@jomasassociates.com