Energy and Sustainability Strategy

112 Hollow Way, Oxford, OX4 2NL

PR11113

Date: 30/11/2023

Suite L, The Kidlington Centre, High Street, Kidlington, OX5 2DL

www.erscltd.co.uk

Notice

This document has been prepared for the titled project or named part thereof and should not be relied upon or used for any other project without an independent check being carried out as to its suitability and prior written authority of ERS Consultants Ltd being obtained. This document, which may include extracts from or refer to British Standards, is the sole copyright of ERS Consultants Ltd. It shall not be reproduced in whole or in part without written permission of ERS Consultants Ltd. ERS Consultants Ltd accepts no responsibility or liability for the consequences of this document being used for a purpose other than the purposes for which it was commissioned. Any person using or relying on the document for such other purpose agrees, and will by such use or reliance be taken to confirm his agreement to indemnify ERS Consultants Ltd Limited for all loss of damage resulting therefrom.

Document History

Client: Project 51 Architecture

Project: 112 Hollow Way, Oxford, OX4 2NL Document title: Energy & Sustainability Strategy

ERS reference: PR11113

Revision	Remarks	Author	Checked	Approved	Date	
00		Riley Dixon	SM	Yes	30/11/2023	

Contents

Executive summary	4
Baseline – (CO2 emissions Part L of the Building Regulation)	5
Be Lean – Use less energy	5
Be Clean – Supply energy efficiently	5
Be Green – Use renewable energy	6
Energy & carbon demand summary	7
Introduction	10
Site & proposal	10
Policy context	11
Calculation methodology	11
Be Lean – Use less energy	13
Active design measures	17
Overheating Risk analysis	20
Be Lean CO ₂ emissions & savings	22
Be Clean – Supply energy efficiently	22
Low Carbon Energy Sources	22
Be Green – Use renewable energy	23
Renewable technologies feasibility study	23
Detailed assessment of Photovoltaic Panels	25
Be Green CO ₂ emissions & savings	25
Flood zone risk assessment for planning	26
Study approach	26
Flood vulnerability	26
Biodiversity	27
Conclusion	28
Appendix	29

Executive summary

ERS Consultants Ltd has been appointed to prepare an Energy & Sustainability Statement for the site located at 112 Hollow Way, Oxford, OX4 2NL.

The proposal is for the development of a small dwelling. This report will be focusing on implementing careful design and sustainable measures; so that the project creates an attractive new residential unit which will address current housing need within the development area.

Proposed schedule of accommodation is as follows:

Total Number of Dwellings = 1x No. 2-bedroom house

Total combined floor area for habitable dwellings: 76.28m²

This energy and sustainability strategy outlines the key measures to be incorporated in the design, in regards to sustainability, carbon emissions, renewable energy and environmental impact of the considered development in accordance and with guidance from the following documents and policies:

- Oxford City local plan (Policy RE1)
- The National Planning Policy Framework (NPPF) July 2021

In line with Oxford City Local plan Policy RE1, the development would need to achieve a 40% reduction in regulated CO₂ emissions over a Part L baseline.

This energy & sustainability statement will demonstrate how a selection of sustainable energy efficient measures and low-carbon technologies are used in the reduction of carbon emissions for the development.

A detailed calculation has been undertaken to establish the energy consumption and carbon emissions of the proposed development.

The methodology used to determine the expected operational CO₂ emissions for the development is in accordance with the standard three-step Energy Hierarchy and the CO₂ savings achieved for each step are outlined below:

Baseline – (CO2 emissions Part L of the Building Regulation)

Initially in the energy assessment, it must be established that the regulated CO₂ emissions of the development comply with Part L 2021 standards. This uses the approved compliance software SAP10.2. For this development the baseline regulated CO₂ emissions calculated for the site are **0.95 Tonnes CO₂/Year**.

Be Lean – Use less energy

The second step addresses, reduction in energy demand through the adoption of passive and active design measures.

Emphasis will be put on the buildings fabric performance in order to reduce energy consumption, as less heating and cooling will be lost through the high performance fabric hence reducing the demand. Fabric first measures include levels of insulation beyond Building Regulation 2021 requirements which will help in achieving low air tightness levels, as well as using enhanced construction detailing.

With the addition of the lean fabric improvements the energy regulated CO₂ emissions are shown to reduce by <u>56.62%</u> (0.41 Tonnes CO₂/Year) for the proposed dwelling.

Be Clean - Supply energy efficiently

Once demand for energy has been minimised, all planning applications must demonstrate how their energy systems will exploit local energy resources (such as secondary heat) and supply energy efficiently and cleanly to reduce CO2 emissions.

When selecting the proposed heating system, it is imperative to consider carbon dioxide emissions, as all combustion processes can emit oxides of Nitrogen (NOx) and, solid or liquid fuelled appliances (such as those using biomass or biodiesel) can also emit Particulate Matter. These pollutants contribute to Oxford's poor air quality and can have negative impacts on the health of local residents and occupiers of the development. It is important that these impacts are taken into account in determining the heating strategy of a development.

In this project there will be no direct heating networks or CHP incorporated so therefore, the Be Clean scenario will not further reduce CO2 emissions on site for the proposed development. This means there are no changes to be implemented at the Be Clean stage, as the proposed heating system (SAP default air-source heat pump) will remain as per the previous stage and energy assessment guidance.

As there is no change from the previous stage, the CO2 emissions remain the same as Be Lean at <u>56.62% (0.41 Tonnes CO₂/Year)</u> for the proposed site.

Be Green - Use renewable energy

At this stage of the project, various low-zero carbon options were considered to meet the required reduction. As an air-source heat pump is proposed, the reduction target is exceeded, and the criteria wanting the implementation of low/zero carbon technology has been satisfied. This means that no PV is required for the purposes of this energy statement.

At this stage, to demonstrate savings made by using a more efficient heat pump, a Mitsubishi Ecodan unit has been factored into the calculations.

By implementing this change, the regulated carbon emissions have been reduced to **0.37 Tonnes CO₂/Year, equal to a 60.79% reduction from the baseline.**

This concludes this proposed development using the proposed specification in this report completes the 40% Carbon Emissions Reduction against Part L Building Regulations standards by using the Part L 2021 carbon emission factors.

Energy & carbon demand summary

Table 1 Energy and Carbon Reductions for Site Wide Reduction								
	Primary energy kWh/year Energy Consumption Savings (%)		Total CO ₂ Emissions (Tonnes CO ₂ /Year)	CO ₂ Emissions Savings (%)				
Baseline	4966.91		0.95					
Be Lean	4318.43	13.06%	0.41	56.62%				
Be Clean	4318.43	0.00%	0.41	0.00%				
Be Green	3900.14	8.42%	0.37	4.34%				
Total Reduction		21.48%		60.97%				

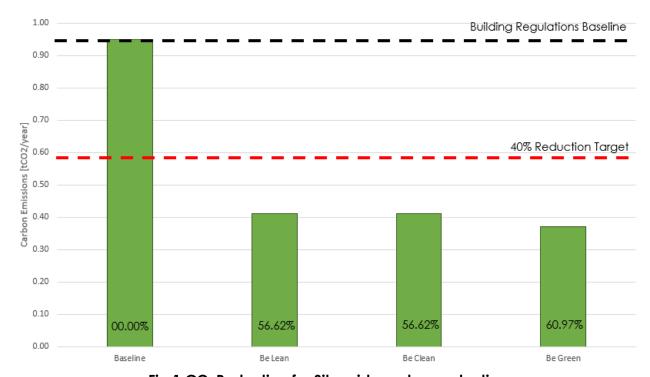


Fig.1 CO₂ Reduction for Site-wide carbon reduction

SAP calculations always refer to 'regulated' energy loads, which are those addressed by building regulations, 'unregulated' loads, for example is energy used by white goods and cooking.

As shown in Table 1, the provisional baseline annual carbon dioxide emissions of the proposed development have been calculated to achieve <u>0.95 Tonnes CO₂/Year</u> for the site. Through the design development this has been reduced by <u>60.97% (0.37 Tonnes CO₂/Year)</u>.

Table 2: Proposed Fabric Specifications							
Fabric Construction and Insulation							
Element Type U-Value							
Heat Loss Floor	Ground Floor - Solid	0.12					
External Walls	Cavity Wall	0.18					
Dormer Walls	Timber Frame	0.18					
Sloped Roof	Pitched – insulated at rafters	ted at 0.14					
Plane Roof	Pitched – insulated at joists O.12						
Dormer Roof	Flat	0.14					
Windows	Window	Double glazed, argon filled, 16mm unit with low-e coat; G-Value of 63%;					
Rooflights	Roof Window	Double glazed, argon filled, 16mm unit with low-e coat; G-Value of 63%;					
Solid Door	Solid Door	Door Half glazed, argon filled, 16mm door unit with low-e coat; G-Value of 63%;					

	To	able 3: P	ropose	d System	Speci	fication	าร				
Space Heating											
Main Heating System	Mitsubishi Electric Ecodan 6.0 kW PUZ-WM60VAA air-source heat pump used supplying radiators and underfloor heating system; Unit should be sized appropriately for as built stage;										
Heating Controls	Time and temperature zone control;										
Secondary Heating	n/a;										
			Wo	ıter Heatin	g						
Heat source	From	Main He	ating	Cylinder	Size	180 lit	res	Heat Loss	k	1.86 Wh/Day	
WWHRS Instantaneous System 1	N/A WWHRS Instantane System 2			eous		N/A					
Water Use <=125 l/p/d		Yes		Cold Water Source			From M			ains	
Shower(s)	Combination boi or unvented ho water system		hot	Flow Rate [I/min]		8 l/m	8 I/min Connected to the Ho Water Cylinder				
Bath Count	1			Cylinder Pipework is fully insulated where possible; Full cylinder heating controls installed;							
Solar Thermal	Not In	ıstalled;									
			٧	entilation							
Mechanical Ventilation System	Inte	Intermittent Extract:				cluding kitchen					
Cooling system Not installed;											
Pressure Test Blower Do	5.00m³/hm² @ 50 Pa Please note ERS can provide Air Leakage Testing										
				Other							
Detailing (linear thermal bridging junctions – formerly ACDs)	Enhanced construction details from the insulation manufacturer have been used where available. The dwelling must be constructed to this standard, and the relevant forms must be completed as building work progresses. Any deviation from this will require an update to the SAP calculations as the psi-values will change; Building Alliance Recognised Constructions Details; Masonry Cavity Wall Full Fill; 150mm/0.32W/mK/0.19W/mK;										
Lighting	No. Fittings	16	Powe [W]	2	[lr	icacy n/W]	75	_	acity m]	150	
Tariff and Meters	I Standard I			rrt Electricity Meter Yes Smart Gas Meter				No			
PV/Renewables	Not required for proposal;										
Please note: There may be	awada	compared	to vour	original coop	ification	la mabiav	والمانيط		•		

Please note: There may be upgrades compared to your original specification to achieve building regulation approval under the relevant Approved Document Part L. Failure to implement these upgrades may result in a Building Regulation Failure at final stage. Please ensure any changes to the specification are made through this office to ensure ongoing compliance.

Introduction

Site & proposal

The site is located at 112 Hollow Way, Oxford, OX4 2NL

Gross Internal Area for the dwelling: 76.28m²

The approximate site location of the proposed development is shown in the site plan Fig.2.

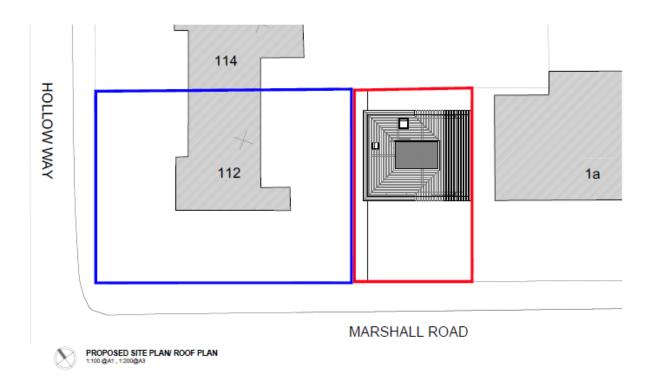


Fig.2 Site Plan

Policy context

This energy and sustainability statement will seek to respond to the energy policies that apply to this development. The most relevant applicable energy policies in the context of the proposed development are presented below.

- Oxford City local plan (Policy RE1)
- The National Planning Policy Framework (NPPF) July 2021

All the aforementioned policies focus on zero carbon targets for residential developments with a minimum 40% on site reduction beyond Part L 2021.

Calculation methodology

The sections below present the methodology followed in determining carbon emissions reduction savings for the proposed scheme.

The methodology employed by the energy and sustainability statement is in line with the GLA's Guidance on preparing energy assessments.

The baseline CO₂ emissions are first established, i.e., the emissions of a scheme that is compliant with Part L 2021 of the Building Regulations.

The approved software used to model and calculates the energy performance and carbon emissions are SAP 10 Online version by Elmhurst Energy Systems Ltd.

To calculate our results for the site-wide development a suitable sample number of units is selected and the results are scaled up as per the proposed development Gross Internal Area.

The TER which is used as the baseline figure for the carbon reductions for each domestic element is multiplied by its floor area to establish the total baseline emissions.

Baseline:

The property baseline uses the same heating system as per the designed counterpart; therefore, in this exercise the baseline models use an Air Source Heat Pump as the main source of heating on the calculations. The full specification of the baseline can be found in Table 1.1 of the Approved Document L Volume, 2021 Edition.

Be Lean: use less energy

The demand for energy is reduced through a range of passive and active energy efficiency measures; as part of this step the dwelling fabric u-values and glazing have been improved to a high standard, in addition to this suitable heating systems are utilised as per the specifications in Table 2 and 3.

Be Clean: supply energy efficiently

As much of the remaining energy demand is supplied as efficiently as possible in the previous stage, we consider the option of communal and network-based heating strategies, but due to high costs and the scale of the development this is not a viable option.

Be Green: use renewable energy

Renewable and low-zero carbon technologies are incorporated to offset part of the carbon emissions of the development. The uptake of renewable technologies is based on feasibility and viability considerations, including their compatibility with the energy system determined in the previous step.

The implementation of the Energy Hierarchy determines the total regulated carbon savings that can be feasibly and viably achieved on site.

The 40% improvement for the development against the baseline emissions is compared to the relevant targets for each element and in case of a shortfall; savings through offsite measures should be achieved.

The Conclusions section summarizes the energy strategy and associated carbon savings for the proposed development.

The carbon emissions factors used in all calculations in this document are those used for Part L of the Building Regulations. The relevant factors are reproduced in Table 4 below.

Table 4 Carbon Emission Factors for selected fuel type							
Fuel Emissions kg CO2e per kWh Primary energy fo							
Mains Gas	0.210	1.130					
Bulk/Bottled LPG	0.241	1.141					
Liquid Fuels	0.024	1.286					
Heating Oil	0.298	1.180					
Wood Pellets	0.053	1.325					
Grid Electricity	0.136	1.501					

^{*} Table extracted from the document SAP Version 10.2 (21-04-2022). Table 12: Fuel prices, emission factors and primary energy factors, Page 189. this can be found in the appendix of the report.

Be Lean – Use less energy

The proposals incorporate a range of passive and active design measures that will reduce the energy demand for space conditioning, hot water, and lighting.

Measures will also be put in place to reduce the risk of overheating, the regulated carbon saving achieved in this step of the Energy Hierarchy is **56.62%** when compared against the baseline level for the development.

Passive design measures

Materials and Waste

A site waste management plan that provides details of waste minimisation, sorting, reuse and recycling procedures is required for all levels in the planning guidance. Sustainable waste management should follow the hierarchy described in *BS 5906*: Waste management in buildings. Code of practice. This outlines the following principles in decreasing order of desirability:

- Reuse land and buildings wherever feasible and consistent with maintaining and enhancing local character and distinctiveness.
- Reuse and recycle materials that arise through demolition and refurbishment, including the reuse of excavated soil and hardcore within the site.
- Prioritise the use of materials and construction techniques that have smaller ecological and carbon footprints, help to sustain or create good air quality, and improve resilience to a changing climate where appropriate.
- Incorporate green roofs and/or walls into the structure of buildings where technically feasible to improve water management in the built environment, provide space for biodiversity and aid resilience and adaptation to climate change.
- Consider the lifecycle of the building and public spaces, including how they
 can be easily adapted and modified to meet changing social and
 economic needs and how materials can be recycled at the end of their
 lifetime.

Space is provided and appropriately designed to foster greater levels of recycling of domestic waste.

Using Recycled/Recyclable Materials and Sourcing them Responsibly

The following measures will be put in place to minimise environmental impact

Regard for reuse & efficient use of materials: Material efficiency will be a priority for the design team and will be one of the key considerations during detailed design. Potential measures for reducing the material demand and for designing out waste will be explored by all key design team disciplines at each design stage, according to the first stages of the Waste Hierarchy.

Regard will be given to reducing the use of virgin materials, such as ensuring a recycled aggregate of content 10-15% in concrete, for example.

Specifically, the following notes have been made on the durability and recycling potential of project materials:

- Brick in the wall finishes has a long usable life and can be reclaimed / re-used in the future. It can also be recycled although it is a more a down-cycle into rubble material for aggregates.
- Window glass, carpeting, and concrete can also be down-cycled.
- The hard landscaping has many timber elements (seats, benches, fences, the acoustic fence) which is a renewable material and is likely to be FSC certified. It can also be recycled or down-cycled into chipboard / crushed timber.
- Off-site construction and Prefabrication; An effective way of managing materials
 efficiency is through off-site construction or 'Prefabrication', meaning that major
 components of buildings are manufactured off-site and assembled on-site. This
 has many benefits, as factory environments help to ensure quality of
 construction, reduce waste because of spoilage on site (e.g., due to poor
 storage practices or inclement weather) and encouraging the re-use of
 materials that otherwise may be wasted. This will be actively explored particularly
 in relation to the houses.
- Similarly, the use of pre-made sections, such as pre-cast floor slabs in the flatted element will reduce waste and maximise material efficiency. A study by the HSE concluded that waste reductions approaching 70% were possible when compared with traditional techniques.
- The design seeks to use prefabrication for some internal spaces and will be used, subject to the availability of skilled labour and resources within a reasonable distance of the site.

The design utilises stacking, repeating floor plans where possible within the site
constraints, making the use of modular construction possible. If this is a viable
option it would reduce transport journeys, reduce site congestion and increase
safety.

Environmentally conscious materials

- Materials with the lowest environmental impact tend to have only minimal
 processing requirements and contain as many naturally occurring constituents as
 possible. The design team will ensure that 'good practice' is implemented in the
 specification of materials, making conscious decisions to specify more natural
 products and wider environmental impact of the materials will be considered
 when choosing between different options. This could include reviewing
 Environmental Product Declarations.
- Furthermore, efforts will be made to use materials with low/zero Global Warming Potential (GWP), low Ozone Depletion Potential (ODP) and low embodied energy.
- Local and responsible sourcing Transport associated with extracting, processing
 and delivering materials can contribute significantly to their carbon and
 environmental footprint. A robust system of responsible materials sourcing will
 ensure that native materials will be used as a matter of preference, before any
 are sourced internationally. It is reasonable to expect as well that deliveries will
 be made using fuel efficient vehicles.
- The responsible sourcing of materials will be a key consideration in the selection of suppliers, and a sustainable procurement strategy will be produced for the development prior to construction.
- Materials from suppliers who participate in responsible sourcing schemes such as the BRE BES 6001:2008 Responsible Sourcing Standard will be prioritised where economically possible.

Where there are suitable opportunities to recycle a proportion of the material recovered from the existing site it should always be done.

Enhanced U-values

The heat loss of different building fabric elements is dependent upon their U-value. A building with low U-Values provide better levels of insulation and reduced heating demand during the cooler months.

The proposed development will incorporate high levels of insulation and high-performance glazing beyond Part L 2021 targets and notional building specifications, to reduce the demand for space conditioning (heating and/or cooling).

Table 5 demonstrates the improved performance of the proposed building fabric beyond the Building Regulations requirements.

Table 5 Proposed fabric U-Values								
Domestic (U-Values in W/m²k)								
Element	Part L 2021 Building Regulation	Proposed						
Wall	0.26	0.18 (External Wall)						
Floor	0.18	0.12 (Ground floor)						
Roof	0.16	0.14 (Sloped Roof) 0.12 (Plane Roof)						
Windows/ Glazed Doors	1.60	1.30						
Rooflights	2.20	1.30						

These u-values are recommended but may change during the construction stage, to meet site constraints, any worsening of the u-values must ensure the required 40% reduction in Carbon is met before completion;

Air tightness improvement

Heat loss may also occur due to air infiltration. Although this cannot be eliminated altogether, good construction detailing and the use of best practice construction techniques can minimise the amount of air infiltration.

The proposed development will aim to improve upon the Part L 2021 minimum standards for air tightness by targeting air permeability rates of **5.00m³/m².h at 50Pa for the unit**, should the air test be below 3.00m³/m².h at 50Pa Mechanical ventilation will be required.

Reducing the need for artificial lighting

The development has been designed to maximize daylight in all habitable spaces as a way of improving the health and wellbeing of its occupants.

Natural light Natural lighting reduces the energy used for artificial lighting and creates a healthier internal environment. Issues to consider include how much of the sky is visible through a window (the more, the better), the dimensions of the interior living/working space and distance from the window, and the proportion of glazed surfaces. The depth of the room is an important factor in determining the amount of natural light received. Naturally dark rooms may be lit naturally through measures such as sun tubes which 'pipe' sunlight from sunny areas to internal areas.

Glare created by natural or artificial light can be uncomfortable for people both inside and outside a building. This can be minimised if considered early in the design process through building layout (e.g., low eaves height) or building design (e.g. blinds, brise soleil screening). If considered together with a lighting strategy this can reduce energy consumption.

All of the habitable areas will benefit from suitable level glazed fenestration to increase the amount of daylight within the internal spaces where possible. This is expected to reduce the need for artificial lighting whilst delivering pleasant, healthy spaces for occupants.

Active design measures

High efficacy & low energy lighting

Where artificial lighting will be needed it will low energy lighting without compensating for luminance, and will accommodate LED.

Water

Policy RE1 requires water efficiency in new development to meet the highest national standard. For residential development, this is defined in the supporting text as the 'optional Building Regulation' for water efficiency in new dwellings, which is 110 litres per day per person, or a tighter standard if one becomes available nationally. If a new, tighter national standard is introduced, this will be adopted automatically by virtue of Policy RE1.

There are presently no other national standards for non-residential developments than those in the Building Regulations. However, the principle of water efficiency in line with the waste hierarchy applies to all developments. As a result, all developments should seek to reduce demand through efficiency measures, and then meet remaining demand from sustainable sources wherever possible.

For all developments, the submitted information should set out an approach to water management that reduces water usage and waste and priorities demand reduction measures over supply measures.

Reducing water use

Development, whether new construction or change of use and refurbishment, can save water by including measures such as:

- systems for greywater reuse
- aerated washbasin/kitchen taps and shower heads,
- tapered and low-capacity baths,
- sensor and low flush toilets, shower timers, and,
- water efficient white goods and appliances such as washing machines and dishwashers.

Water use during construction can be reduced through measures including:

- closed loop wheel washers,
- waterless wheel washing using angled steel grids to remove debris,
- high pressure low volume power hoses, recirculating water where possible,
- limiting the water used for flushing building services by stopping it as soon as the flush water turns clear, and employing a regime for monitoring water use and water waste.

Choosing the best location for a boiler can reduce water consumption and heat loss. By minimising the length of hot water pipes the volume of water that must be drawn off each time a tap or shower is used can be reduced. Positioning hot water pipes above pipes carrying cold water will reduce heat transfer. Further heat loss can be reduced by insulating the piping.

For all new dwellings, a completed "water efficiency calculator for new dwellings" worksheet that accords with Part G of the building regulations' Approved Documents should be provided prior to occupation. The calculation must demonstrate that the new dwellings will achieve a maximum water usage of 110 litres per person per day.

Rainwater harvesting

Rainwater harvesting is the collection of rainwater directly from a surface it falls on (e.g., a roof). Once collected and stored it can be used for non-potable purposes such as watering gardens, supplying washing machines and flushing toilets, thereby reducing consumption of potable water. Potable water is produced through a purification process and is pumped over large distances, both of which require energy and result in embodied carbon that is not present in water harvested locally. In a residential development, rainwater can be captured for domestic use using water butts connected to a down pipe. Larger systems can use water stored in underground water tanks.

Schemes should be designed to include space for water storage. In residential developments, down pipes should be carefully placed so that water collection and use is convenient for residents.

Greywater re-use

Water that is recycled from bathrooms and kitchens for non-potable uses is known as greywater. Greywater systems must ensure treatment on a regular basis to prevent a build-up of bacteria, and some systems are powered, which entails an energy cost. As a result, greywater reuse is generally less preferable than water use minimisation measures.

Water recycling systems are better suited to new developments rather than retrofitting in existing buildings because of the excavation required for storage tanks and changes needed to the plumbing system, and they are generally more cost effective for new developments and developments of a larger scale.

Recycling systems should be backed up by a mains supply or a sufficiently large reserve storage system to meet higher demands during dry spells. Storage tanks will need an overflow to allow excess water to be released which should be able to flow into a soakaway.

Controls and Monitoring

Advanced lighting and space conditioning controls will be incorporated, specifically:

- For areas of infrequent use, occupant sensors will be fitted for lighting,
 whereas day lit areas will incorporate daylight sensors where appropriate;
- Heating and cooling systems controls will comprise time and temperature controls, both centrally for the whole building, and locally for each space;
- Smart metering to be installed on all new dwellings for adequate monitoring;

Overheating Risk analysis

Passive solar gain refers to the process whereby a building is heated by the sun, either directly from sunlight passing through a window and heating the inside of the building, or indirectly as sunlight warms the external fabric of the building and the heat travels to the interior. The level of passive solar gain can significantly impact upon the quality of a building, how it is used and the energy needed for it to be inhabited comfortably. Passive solar gain can reduce the need for mechanical heating, which in turn reduces energy use and carbon emissions.

Key factors that influence passive solar gain include the physical characteristics of the site, immediate surroundings, orientation of buildings, external design, internal layout and the construction materials used.

Whilst passive solar gain can reduce the carbon emissions associated with heating, if used incorrectly it can lead to overheating, which in turn can lead to the installation of mechanical cooling equipment (e.g., air conditioning). Mechanical cooling increases energy consumption and requires maintenance, resulting in costs and carbon emissions. Mechanical cooling units also produce heat that requires dissipation. The need for mechanical cooling can be avoided or lessened by designing-in passive ventilation and passive cooling measures. Developments should not incorporate mechanical cooling unless passive measures have been fully explored and appraised and proposals that include mechanical cooling should clearly demonstrate that passive measures would not be adequate.

The potential overheating for the development is to be assessed in accordance to Part O of the Building Regulation at the post-planning stage when the design is confirmed and finalised. Utilising the simplified approach is the first protocol to ensure the scheme does not over heat, where the simplified approach fails to meet the required reduction, a dynamic simulation will need to be undertaken. Overheating analysis will begin after the planning stage.

The following list includes some of the key considerations in the design of new schemes:

- Rooms that are most frequently occupied should benefit from a southerly aspect, but with appropriate measures to avoid overheating.
- Orientation and layout of habitable rooms, and window size and orientation, should be carefully considered in relation to the path of the sun.
- Rooms that include a concentration of heat generating appliances (e.g., kitchens)
 or are less frequently occupied (e.g. bathrooms) should be located in the cooler
 part of the building, generally the northern side.
- Conservatories and atria can be used to assist natural ventilation in the summer by drawing warm air upward to roof vents, and to collect heat during the spring and autumn.
- Deep projections that overshadow windows should be avoided, particularly on south facing elevations. Projections should be sized appropriately so that they provide shading from the sun during the hottest part of the year but allow solar gain in the colder months.
- Where there is a chance that overheating can occur (e.g., due to large expanses of glazing on roofs and south facing elevations), design measures such as roof overhangs, brise soleil, external shuttering, photochromatic and thermochromic glass and a lighter colour palette can help.
- Zonal heating and ventilation systems and controls can be used allowing areas subject to high solar gain to occupy their own temperature control zone. Dynamic controls reduce energy waste.
- Use of materials to build in thermal mass to absorb excess heat during warmer periods and release it slowly during cooler periods (e.g., day/night, summer/winter).
- Buildings should be designed for passive ventilation:
 - cross ventilation with windows located on opposite walls and/or roof mounted turbines or wind cowls that assist with circulation of air by drawing air through windows or top floor openings and
 - o passive stack ventilation (PSV) that uses pressure differences to draw in fresh air from outside to replace rising warm air which is released from the top of the building. A heat exchanger can be placed where the air escapes the building to reduce heat loss.

Be Lean CO₂ emissions & savings

By means of energy efficiency measures and suitable heating systems, regulated CO₂ emissions for the property are shown to reduce by **56.62%** compared to the baseline.

Be Clean - Supply energy efficiently

There are no changes from the previous stage, however research into low carbon energy sources is still completed as a due diligence for the alternative solutions. Carbon Emissions Reduction is shown to remain at **56.62%** compared to the baseline.

Low Carbon Energy Sources

Combined Heat and Power (CHP)

The presence of a year-round base hot water generation heat load in residential units is favourable to CHP. To date, there are readily available micro gas fired CHP units (such as EC power) on the market. At this stage gas fired CHP will be provisionally incorporated into the development's LZC strategy, however, the carbon reductions due to CHP are extremely sensitive to the system design, unit selection and running time.

CHP (Combined Heat & Power) is a great technology to use, however the system itself needs to run on a 24-hour basis. The heat generated would be exceeding the demand and needs for this site, and would require to have an outlet area which can profit from this excess; however, this development does not have a space that benefit from this; therefore, this option has considered not feasible for this development.

Heat Networks

All new developments should look connect, or be connection ready, where a heat distribution network already exists. The investigation of opportunities should cover all scales and should not be limited to district heating systems.

Where such networks exist and developments should propose to connect to them, the energy statement should set out details showing how connection will occur (a connection strategy). Where such networks exist, and developments do not propose to connect to them, the energy statement must set out clear reasons as to why the connection is not feasible, or why an alternative source of energy would be more sustainable.

The development is currently located in a site where local heat networks are present, so therefore it is concluded that connection into a heat network is not feasible.

Be Green - Use renewable energy

Renewable technologies feasibility study

Methods of generating on-site renewable energy (Green) were assessed, once Lean and Clean measures were considered.

This section provides an overview of the technologies considered, a brief assessment of their feasibility, a proposed mixture of suitable technologies.

The proposed development will benefit from an energy efficient building fabric which will reduce the energy consumption of the proposed development in the first instance.

A range of renewable technologies were subsequently considered including:

- Biomass:
- Ground/water source heat pumps;
- Wind energy;
- Photovoltaic panels, and,
- Solar thermal panels.

In determining the appropriate renewable technology for the site, the following factors were considered:

- CO₂ savings achieved;
- Site constraints;
- Financial benefit
- Any potential visual impacts

Demand profiles

The balance of technologies chosen will depend on the development's energy demand patterns.

Keeping in mind that the space heating energy demand changes according to the season. While hot water energy demand will provide a significant base load throughout the year.

Electrical demand is likely to be moderate throughout the year. Lighting loads will be highest during the evening but will continue at reduced levels throughout the night and during the day.

Feasibility

At this early stage in the design, it is possible only to outline the likely feasibility of specific technologies. Further descriptions of the LZC technologies below are included in Appendix A.

	Table 6. Renewable an	d Low Ze	ero Carbon T	echnologie	S	
Renewable Technology	Comments	Lifetime (Years)	Maintenance	External Impact	Site Feasibility	Adopted for Site
BIOMASS	Burning of wood pellets releases high NOx emissions and there are limitations for their storage and delivery within an urban location.	20	High	High	1	
PV	PV panels would generate significant carbon savings, whilst having minimal impact on the appearance of the building. While feasible, these are not required.	25	Low	Med	9	
Solar Thermal	Solar thermal array mounted on the roof may contribute to carbon reductions, but will reduce the amount of available roof space where Photo voltaics are proposed	25	Low	Med	7	
Air/Ground Source Heat Pump	Ground loops requires space, additional time at the beginning of the construction process and very high capital costs, however in terms of the air source heat pump solution is a viable and costeffective solution to meet the required carbon reductions.	20	Med	Low	9	
Wind	Due to insufficient open area for installation of a stand-alone wind turbine and planning issues this option has not considered in this development.	25	Med	High	0	

Detailed assessment of Photovoltaic Panels

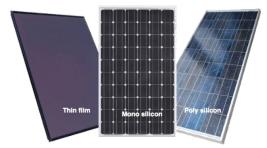


Fig 3. Photovoltaic Panels

Four types of solar cells are available on the market at present and these are monocrystalline, polycrystalline, thin film and hybrid panels as seen in Figure 3. Although mono-crystalline and hybrid cells are the most expensive, they are also the most efficient with an efficiency rate of 12-20%. Poly-crystalline cells are cheaper but they are less efficient (9-15%). Thin film cells are only 5-8% efficient but can be produced as thin and flexible sheets.

Air Source Heat Pumps is considered as a highly efficient low zero carbon technology solution to meet the required carbon reductions for the houses.

Photovoltaic Panel is considered a suitable technology as the development provides an extent of roof space for the installation of PV panels; however, they were not required in order to meet the reduction, which was met using a highly efficient air-source heat pump.

Be Green CO₂ emissions & savings

After the Be Green stage, the incorporation of a highly efficient Mitsubishi heat pump furthers the reduction to 60.97% from the baseline, with overall emissions being <u>0.37</u> Tonnes CO₂/Year.

Flood zone risk assessment for planning

The Environment Agency has developed a flood risk map for planning to identify the relative risk of flooding for proposed development planning locations. Flood zones assume that no defences are present and so where these do exist, they are only indicative of the potential for flooding.

Fig 4. Environment Agency Flood Zone Interactive Map

The whole of the development lies within flood zone 1 of the Environment Agency's flood risk map as seen in fig. 4. Land located within flood zone 1 is at low risk of flooding having an associated annual probability of flooding of less than 1 in 1000 (0.1%).

Study approach

In accordance with Planning Practice Guidance for Flood Risk document, land within flood zone 1 is suitable for all uses. Assessment of this site has been based upon the Environment Agency's flood interactive map, the topographical site survey and the architect's proposed development layout.

Flood vulnerability

Based on the Environment Agencies flood map, the development site is located within Flood Zone 1 and in accordance with Planning Practice Guidance for Flood Risk neither a sequential or exception test is required.

Biodiversity

Biodiversity is globally recognised as a foundation of healthy ecosystems, and biodiversity conservation is increasingly becoming one of the significant aims of environmental management.

Oxford is a city with a rich natural environment; the two rivers and their valleys and areas of real significance in terms of landscape and biodiversity are located in close proximity to large parts of the community.

Green spaces are particularly valuable in a compact city, and will become more important with the population increasing. The Local Plan focuses on ensuring that green spaces are as high-quality and as multi-functional as possible, in addition to this it is to be a key design factor to be considered with each new proposed development. The biodiversity element will aim to provide a network of green spaces connecting wildlife corridors and green accessible routes.

The most important sites and species for biodiversity and geodiversity must be protected and due care must be made to ensure that the proposal does not negatively impact these sensitive locations.

The City Council will require an assessment of the proposals impact on biodiversity, where appropriate, this assessment is not a mandatory requirement for all developments and should be required where needed will demonstrate on-site mitigation measures and then compensation measures to off-set any losses resulted by the proposed development.

Sustainable Urban Drainage Systems (SuDS)

SuDS offer multiple benefits – they can help to manage flood risk, improve water quality, provide opportunities for water efficiency, enhance landscape and visual quality, provide amenity value and offer opportunities for biodiversity. The design of SuDS should explore fully the potential to deliver these benefits.

SuDS limit the volume and rate of surface water entering the public sewer system. They therefore have the potential to play an important role in helping to ensure the sewerage network has the capacity to cater for population growth and is resilient to the effects of climate change.

Conclusion

Following the implementation of the three-step Energy Hierarchy, the regulated CO₂ savings for the site are calculated at **60.97%**, against Part L 2021 SAP 10 performance standards. The baseline annual emissions of the site on this development have been calculated to be **0.95 Tonnes CO₂/Year**. By incorporating on-site renewable/ LZC technologies the total CO₂ emissions will be reduced to **0.37 Tonnes CO₂/Year**.

Overall, the proposed development has been designed to meet energy policies set out by the proposed development local and national planning requirements, which demonstrates the client and the design team's commitment to enhancing sustainability of the scheme.

The new development will be designed with a high level of insulation and low air permeability to reduce heat loss as much as is practically possible, also the use of low energy lighting and A – Rated White goods are essential for the reduction of energy consumption.

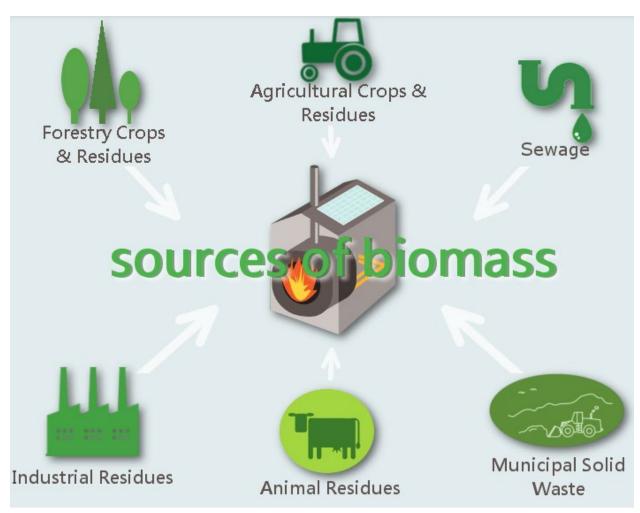
The control strategy throughout the proposed site must be carefully designed to ensure the most economical operation of all equipment.

To achieve the required reduction of carbon emissions, several options were considered, however the best option in regards to site location and the development size, was the installation of an Air Source Heat Pump. Different possible renewable energy options have been identified; bearing in mind that selection is a complex process which requires a more detailed estimation of energy demand patterns; therefore, further analysis will be undertaken as the design progresses.

The proposed development site is not in a close proximity of an existing heat network making this an unviable solution to improve the heating system in the dwelling at time of this application.

The dwelling is to have suitable meter/smart meter management installed on every household, so that the homeowner can benefit from accurate savings to allow for suitable management of energy usage.

Post construction the dwelling is to have suitable testing to be provided to ensure the dwellings satisfy the requirements of this document and building regulation standards at the time of completion. This report is to be provided along with as As-Built SAP worksheets, EPC and Air testing, for all conditioned spaces in the development.



Appendix A - Low or Zero Carbon Energy Sources

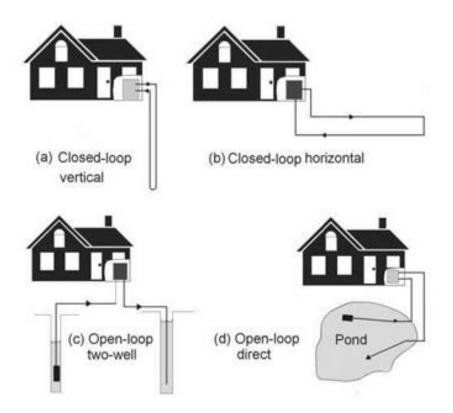
Biomass As a fuel

Biomass is a renewable energy source, generated from burning wood, plants and other organic matter, such as manure or household waste. It releases CO2 when burned, but considerably less than fossil fuels. We consider biomass a renewable energy source, if the plants or other organic materials being burned are replaced.

Biomass is known for its versatility, given it can be used to generate heat, electricity, be used in combined heat and power units and be used as liquid fuel. In domestic settings, it tends to be found in the form of wood-fuelled heating systems.

Geothermal Energy:

Geothermal energy technologies use the heat energy stored in ground; either for direct-use applications: such as using the grounds' heat to defrost a driveway or the indirect use with additional equipment such as a geothermal heat pump. Most commercial installations couple a heat pump with the ground to upgrade the low-



grade heat from the ground or ground water to a higher-grade heat, where it can be used for heating purposes.

The suitability of a ground source system depends heavily on the type of earth coupling heat exchange system used:

Ground source earth coupling options

The right choice of appropriate heat exchanger depends on several factors such as: size of space heating/hot water system, available site area for the heat exchangers, and local ground conditions. Due to the specialist nature of this technology, we recommend that a specialist is employed to size the heat exchangers based on a desktop study of the site's geological conditions – this normally being required in advance of any other contractor appointment.

Vertical Closed Loop System

A frequently used and simple ground source heat exchanger, for a small to medium size project, is a closed loop vertical system. The system comprises of vertically drilled boreholes, usually up to 100 m deep, into which are inserted two polyethylene pipes with a U-shape connector at the base of the hole – effectively providing a flow down to the bottom of the hole and return back up to the surface. All the flow and return loops are connected together across the site - completing the entire heat exchange loop.

Water is pumped around the loop and is then circulated around the heat pump to achieve the required heat exchange. The distance between boreholes is dependent on ground conditions but is typically a minimum of a 6mx6m grid, to prevent overlapping of the heat exchange process between loops.

Horizontal Closed Loop System

Horizontal closed loop heat exchangers are usually applied to small projects such as individual houses, which usually require a relatively low heat output. Consisting of horizontal trenches 1.5-2m deep, with either straight pipes or 'slinky' coiled pipes, these require significant excavation work and significant site area to achieve appreciable outputs as such are not normally suited to medium to large projects.

Vertical Open Boreholes System

A further option is a vertical open borehole system. The system involves the abstraction and discharge of natural ground water using boreholes; into which pumps are inserted, connected to collapsible pipework. Each borehole pump abstracts ground water, circulates it around the heat pump and then discharges the water back to the ground via an absorbing well, some distance from the original abstraction borehole. The system is capable of providing very high rates of heat exchange for a relatively small number of boreholes, which makes it very efficient in terms of site area required. However, this depends greatly on the availability of ground water, which in turn varies according to location. A major downside of this system is that the extraction of water from deep boreholes via pumps consumes a lot of energy, as the water has to be physically lifted to the surface by the pump – this in effect reduces the carbon emissions saved by this system as a whole.

Ground source heat exchange options in summary:

Vertical loop system - closed boreholes

- moderate heat capacity
- relatively low installation cost

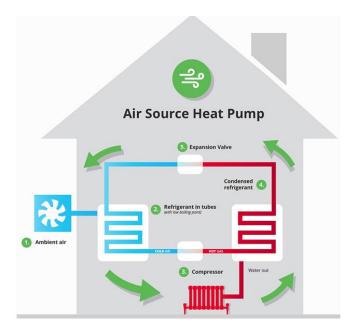
Vertical open system - open boreholes

- high heat capacity
- high running energy
- high installation cost

Horizontal loop system – straight pipes

- low capacity,
- high installation cost
- extensive ground excavation work

Horizontal coiled loop system – 'slinky' pipes

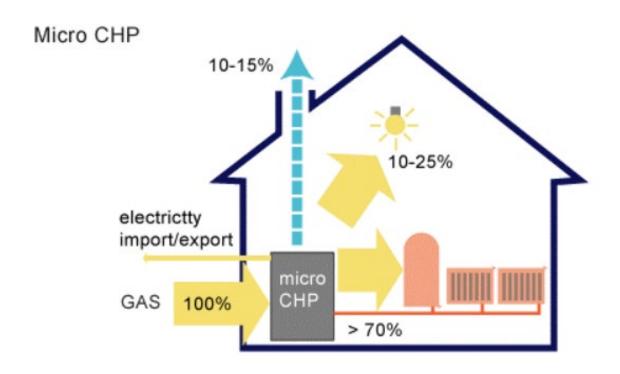

- good capacity
- low installation cost
- extensive ground excavation work

Air Source Heat Pumps

Heat pumps are basically refrigeration units which work in reverse – instead of cooling being produced and heat rejected, the unit produces heat and rejects cooling. Conventional heat pumps use air as the medium to reject this 'coolth' to atmosphere. Ground source units use the ground as a means of improving the unit efficiency because the ground is a constant 11-13 °C at depths of 50m down – this suits the heat pump much better during the coldest weather than the extremes of air temperature. Reversible heat pumps can also be used for cooling, however this is not being considered further for this project.

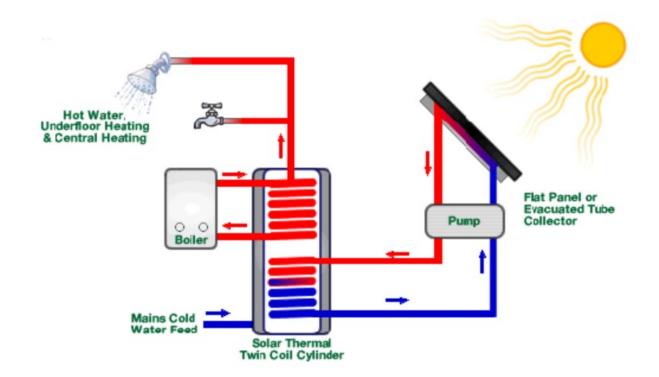
A heat pump consumes electrical power to drive the compressor and other ancillary elements. The ratio between total energy input and heat energy output of the heat pump is a measure of its efficiency – usually referred to as 'Coefficient of Performance' - COP. A ground source heat pump has a higher COP than an air cooled heat pump – this additional energy effectively being the grounds' natural contribution to the system.

The heat produced by a heat pump is usually used to either provide space heating say to underfloor heating or radiators or the heat is used to generate domestic hot water via a storage vessel.



CHP

Combined heat and power (CHP) is a process involving simultaneous generation of heat and electricity, where the heat generated in the process in harnessed via heat recovery equipment. CHP at the large commercial size is now fairly common in premises which have a simultaneous demand for heating and electricity for long periods, such as hospitals, recreational centres and hotels. In addition, small CHP systems are now becoming available for individual houses, group residential units and small non-domestic premises. Compared with using centrally generated electricity supplied via the grid, CHP can offer a more efficient and economic method of supplying energy demand, if installed and operated appropriately, owing to the utilization of heat which is normally rejected to the atmosphere from central generating stations, and by reducing network distribution losses due to local generation and use.


Heat generated will be used for space and water heating, and additional heat storage may be used to lengthen use periods, to assist in warm-up and to improve overall energy efficiency. For overall good energy efficiency, as with all CHP, usage must be heat demand led. Thus, a sophisticated control system is required and users should be made aware of efficient operating practices.

Solar thermal collectors

Solar thermal collectors (flat plate or evacuated tubes) convert solar thermal energy into heat for hot water generation. These are usually located on a roof oriented south facing in an ideal slope of 45 degree. Solar collectors properly sized and designed provide approx 50% of annual hot water demand.

Photovoltaic

Photovoltaic modules convert sunlight directly into DC electricity and can be integrated into buildings. Photovoltaics (PVs) are distinct from other renewable energy technologies since they have no moving parts to be maintained and are silent. PV systems can be incorporated into buildings in various ways: on sloped roofs and fl at roofs, in façades, atria and shading devices. Modules can be mounted using frames or they can be fully incorporated into the actual building fabric;

for example, PV roof tiles are now available which can be fitted in place of standard tiles.

Currently, a PV system will cost between £1500 and £2500 per kWp, and frequently part of this cost can be offset owing to the displacement of a conventional cladding material. Costs have fallen significantly since the first systems were installed (1980s) and are predicted to fall further still.

While single crystal silicon remains the most efficient flat plate technology (15–16% conversion efficiency); it also has the least potential for cost reduction. PV cells made from poly-crystalline silicon have become popular as they are less expensive to produce, although they have a slightly lower efficiency.

Thin film modules are constructed by depositing extremely thin layers of photosensitive materials on a low-cost backing such as glass, stainless steel or plastic. As much less semiconductor material is required as for crystalline silicon cells, material costs are potentially much lower. Efficiencies are much lower, around 4–5%, although this can be boosted to 8–10% by depositing two or three layers of thin film material. Thin film production also requires less handling as the films are produced as large, complete modules and not as individual cells that have to be mounted in frames and wired together. Hence, there is the potential for significant cost reductions with volume production.

Since PVs generate DC output, an inverter and other equipment is needed to deliver the power to a building or the grid in an acceptable AC form. The cost of the inverter and these 'Balance of System' (BOS) components can approach 30% of the total cost of a PV system. Hence, simplification and cost reductions in these components over the coming years will also be necessary to make PV systems affordable.

Wind energy

Wind power is the most successful and fastest spreading renewable energy technology in the UK with a number of individual and group installations of varying size, capacity and location. Traditionally, turbines are installed in non-urban areas with a strong trend for large offshore wind farms. In parallel with the design and development of ever-bigger machines, which are deemed to be more efficient and cost-effective, it is being increasingly recognized that smaller devices installed at the point of use, i.e. urban

settings, can play an important role in reducing carbon emissions if they become mainstream.

At present there is a wide range of available off-the-shelf wind products, many manufactured in the UK and EU with proven good performance and durability. The dominant type is horizontal axis wind turbines (HAWT), which are typically ground mounted. Vertical axis wind turbines (VAWT) have limited market presence and there is a trade-off between lower efficiency and potentially higher resistance to extreme conditions. Capacity ranges from 500W to more than 1.5MW, but, for practical purposes and in built-up areas in particular, machines of more than 1kW and below 500kW are likely to be considered.

Wind technology is also currently one of the most cost-effective renewable energy technologies, which is attributable to the large scale of installations reducing the unit output cost. Individual building or community wind projects, although smaller, have the advantage of feeding electricity directly into the building's electricity circuit, thus sparing costly distribution network development and avoiding distribution losses. The downside is the still high capital cost per kW installed for smaller turbines, plus location constraints, such as visual intrusion and noise. The wind regime in urban areas is also a concern owing to higher wind turbulence which reduces the potential electricity output.

In most cases, wind turbines are connected to the electricity grid and all generated energy is used regardless of the building demand fluctuations. The output largely depends on the wind speed and the correlation between the two is a cube function. This means that in short periods of above-average wind speeds the generation increases exponentially. As a result, it is difficult to make precise calculations of the annual output of a turbine, but average figures can provide useful guidance to designers and architects. In reasonably windy areas (average wind speed of 6m/s) the expected output from 1kW installed is about 2500kWh annually.

The cost per kW installed varies considerably by manufacturer and size of machine with an indicative bracket of £2,500–£5,000. With a lifespan of more than 20 years, wind turbines can save money if design and planning are carried out in a robust way.

Building-integrated wind turbines are starting to be a reality in the UK, but potential projects may face difficulties with obtaining planning permission. There are a few examples now of permitted development rights for certain rooftop turbines in some local councils. A number of horizontal axis devices specifically designed for building integration are now available commercially, having design and reliability parameters relevant to the urban context. Building-mounted vertical axis devices are under development. At present, turbines installed near buildings, as well as community installations for groups of buildings, should be regarded as the larger wind energy source related to buildings, when they contribute to the carbon emissions from these premises using 'private wire' networks. However, the contribution of several building-integrated turbines in a development is likely to become significant in the next few years.

Appendix B-Fuel prices and emission factors

	Standing	Unit Price	Emission Kg CO2	PE Fuel
Gas fuels:	Charge £	p/kWh	p/kWh	Factor Code
mains gas	92	3.64	0.210	1.130 1
bulk LPG	62	6.74	0.241	1.141 2
bottled LPG (for main heating system)		9.46	0.241	1.141 3
bottled LPG (for secondary heating)		11.20	0.241	1.133 5
LPG subject to Special Condition 11F (a)	92	3.64	0.241	1.163 9
biogas (including anaerobic digestion)	62	6.74	0.024	1.286 7
Liquid fuels:				
heating oil		4.94	0.298	1.180 4
bio-liquid HVO from used cooking oil (a)		6.79 6.79	0.036 0.018	1.180 71 1.180 73
bio-liquid FAME from animal/vegetable oils ^(e) B30K (0		5.49	0.018	1.136 75
bioethanol from any biomass source		47	0.105	1.472 76
		47	0.103	1.4/2 /0
Solid fuels: (g)				
house coal		5.58	0.395	1.064 11
anthracite		4.19	0.395	1.064 15
manufactured smokeless fuel		5.91	0.366	1.261 12
wood logs		5.12	0.028	1.046 20
wood pellets (in bags for secondary heating)		6.91	0.053	1.325 22
wood pellets (bulk supply for main heating)		6.25	0.053	1.325 23
wood chips		3.72	0.023	1.046 21
dual fuel appliance (mineral and wood)		4.77	0.087	1.049 10
Electricity: (a)				
standard tariff	81	16.49	0.136 (s)	1.5010t)
	30			
7-hour tariff (high rate) (h)	7	19.60	0.136 (s)	1.5010t)
7 hour tariff (loverate)	32	9.40	0.127 (a)	1 501 (+)
7-hour tariff (low rate) (h)		9.40 31	0.136 (s)	1.501 (†)
10 hour tariff (high rato) (">	21	20.54	0.127 (a)	1 501 (4)
10-hour tariff (high rate) (">	34	20.54	0.136 (s)	1.501 (†)
10-hour tariff (low rate) fib)	0 1	12.27	0.136 (a)	1.501 (0
10 11001 14 (10 11 14.0)		33	000 (0)	
18-hour tariff (high rate) (">	26	17.41	0.136 (s)	1.501 (0
10 most raim (mg.ma.o/ (38	.,	0.100 (3)	1.001 (0
18-hour tariff (low rate) 00		14.17	0.136 (s)	1.501 (†)
		40		
24-hour heating tariff	26	14.04	0.136 (s)	1.501 0)
	35		. ,	•
electricity sold to grid, PV		5.59 (0	0.136 (s)	0.501 0)
		60		
electricity sold to grid, other		5.59 ()	0.136 (s)	0.501 0)
		36		O+1
electricity, any tariff 0)		N/A	0.136 (s)	1.501 ^{Ot)}
	92 0)	39		
Heat networks: (k)	920)		0.010	1 100
heat from boilers - mains gas		4.44 51	0.210	1.130
heat from boilers - LPG		4.44	0.241	1.141
riedi ilotti bollets - Li O		52	0.241	1.141
heat from boilers - oil (assumes 'gas oil')		4.44	0.335	1.180
2		53	1.100	
heat from boilers that can use mineral oil or biodies	el	4.44	0.335	1.180
		56		
heat from boilers using HVO from used cooking oil		4.44	0.036	1.180

112 Hollow Way, Oxford, OX4 2NL

high grade heat recovered from process (Appendix C4.3)

low grade heat recovered from process (Appendix C4.4)

heat recovered from geothermal or other natural processes

Energy & Sustainability Strategy

heat from CHP

leigy & sosial lability strategy			_	_
				Consultants Ltd
	57			
heat from boilers FAME from animal/vegetable oils (a)	4.44 58	0.018	1.180	
heat from boilers - B30D 0)	4.44 55	0.269	1.090	
heat from boilers - coal	4.44 54	0.375	1.064	
heat from electric heat pump	4.44 41	0.136 (s)	1.501 0)	
heat recovered from waste combustion	4.44 42	0.015 0')	0.063	
heat from boilers - biomass	4.44 43	0.029	1.037	
heat from boilers - biogas (landfill or sewage gas)	4.44 44	0.024	1.286	
heat recovered from power station	3.77	0.015 0')	0.063	

45

47

49

3.77

3.77

3.77

3.77

46

48

0.011

0.136 001)

0.011

as above0D

0.051

0.051

1.501 (001)

as above0D

Appendix C, D, E, F, G and H

This appendix contains the following reports used in producing the content of this Energy and Sustainability Statement.

Appendix C- Flood risk map for planning to show the location of the site with regards to the relevant flood zone areas.

Appendix D- SAP calculation reports for the selected units that were used to base the calculations on for this report. (All hierarchy steps)

Appendix E- PEA Reports showing the draft EPC rating (Be Green Only)

Appendix F- BREL Compliance Report (Be Green Only)

Appendix G- Floor Plans and Elevations used for the SAP Calculations

Appendix H- Sample Water Calculations

Flood map for planning

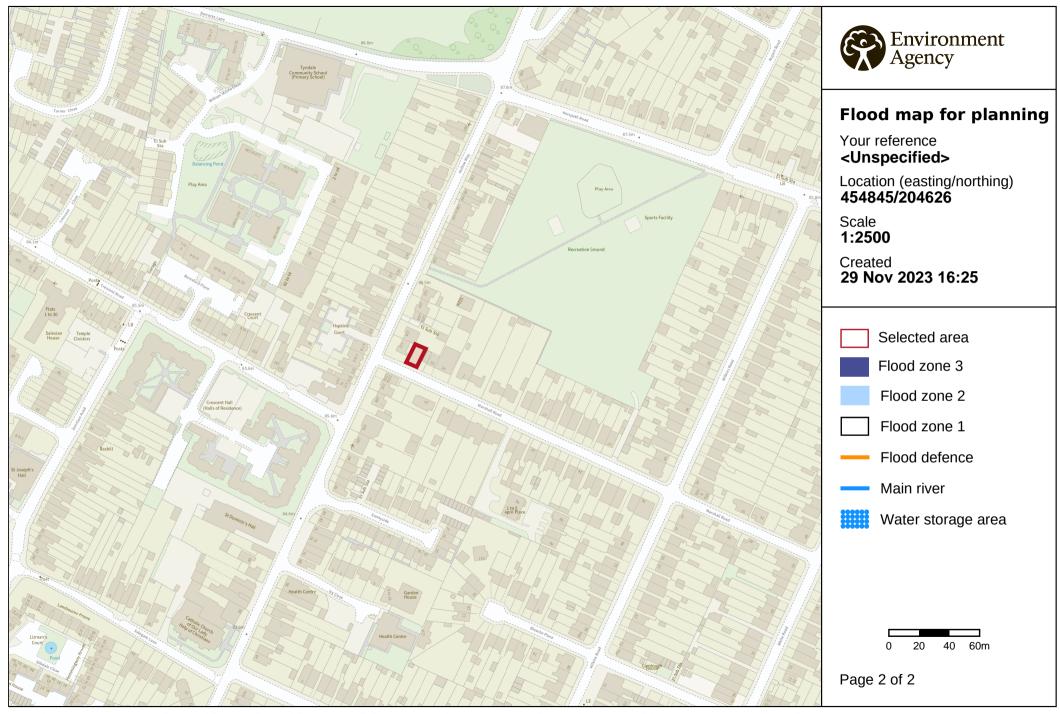
Your reference Location (easting/northing) Created

<Unspecified> 454845/204626 29 Nov 2023 16:25

Your selected location is in flood zone 1, an area with a low probability of flooding.

You will need to do a flood risk assessment if your site is any of the following:

- bigger that 1 hectare (ha)
- In an area with critical drainage problems as notified by the Environment Agency
- identified as being at increased flood risk in future by the local authority's strategic flood risk assessment
- at risk from other sources of flooding (such as surface water or reservoirs) and its development would increase the vulnerability of its use (such as constructing an office on an undeveloped site or converting a shop to a dwelling)


Notes

The flood map for planning shows river and sea flooding data only. It doesn't include other sources of flooding. It is for use in development planning and flood risk assessments.

This information relates to the selected location and is not specific to any property within it. The map is updated regularly and is correct at the time of printing.

Flood risk data is covered by the Open Government Licence **which** sets out the terms and conditions for using government data. https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

Use of the address and mapping data is subject to Ordnance Survey public viewing terms under Crown copyright and database rights 2022 OS 100024198. https://flood-map-for-planning.service.gov.uk/os-terms

© Environment Agency copyright and / or database rights 2022. All rights reserved. © Crown Copyright and database right 2022. Ordnance Survey licence number 100024198.

Property Reference Assessment Refe			111113 - 112 Ho	ollow Way				Prop Type F		ssued on Da		30/11/2023	
Property				Oxford, Oxford	shire, OX4 2NL			71			,		
SAP Rating					79 C		DER	5.	40	TER		12.45	
Environmental					96 A		 % DER < TER		-10			56.63	
CO ₂ Emissions (t/	year)				0.37		DFEE	40).33	TFEE		40.70	
Compliance Chec	ck				See BREL		% DFEE < TFI	EE				0.92	
% DPER < TPER					13.05		DPER	56	3.61	TPER	:	65.11	
Assessor Details		Mr. Riley	Dixon							Asse	ssor ID	AG83-00	01
Client													
SAP 10 WORKSHEET CALCULATION OF I						2022)							
1. Overall dwell	ling chara	cteristics						 Area		ey height		Volume	
Ground floor First floor Total floor area Dwelling volume	a TFA = (1	a)+(1b)+(1c)+(1d)+(1e)	(1n)	7	6.2800		38.1400	(1b) x	2.4000		91.5360	(1b) - (3) (1c) - (3) (4)
2. Ventilation	rate								-		n	n3 per hour	
Number of open of Number of open in Number of chimme Number of flues Number of block Number of intern Number of passiv Number of fluels	flues eys / flue attached attached ed chimney mittent ex ve vents	to solid fu to other he s tract fans	el boiler	ire							0 * 80 = 0 * 20 = 0 * 10 = 0 * 20 = 0 * 35 = 0 * 20 = 3 * 10 = 0 * 10 = 0 * 40 =	0.0000	(6b) (6c) (6d) (6e) (6f) (7a) (7b)
Infiltration due Pressure test Pressure Test Me Measured/design Infiltration rat Number of sides	ethod AP50 te		and fans	= (6a)+(6b)	+ (6c) + (6d) + (6e)+(6f)+((6g) + (7a) + (7b)+(7c) =	=	30.0000	/ (5) =	es per hour 0.1564 Yes 3lower Door 5.0000 0.4064 3	(8)
Shelter factor Infiltration rat	te adjuste	d to includ	e shelter f	actor					(20) = 1 - (21	[0.075 x .) = (18)		0.7750 0.3149	
Wind speed Wind factor Adj infilt rate	Jan 5.1000 1.2750	Feb 5.0000 1.2500	Mar 4.9000 1.2250	Apr 4.4000 1.1000	May 4.3000 1.0750	Jun 3.8000 0.9500	Jul 3.8000 0.9500	Aug 3.7000 0.9250		Oct 4.3000 1.0750	Nov 4.5000 1.1250	Dec 4.7000 1.1750	
Effective ac	0.4016 0.5806	0.3937 0.5775	0.3858 0.5744	0.3464 0.5600	0.3386 0.5573	0.2992 0.5448	0.2992 0.5448	0.2913 0.5424		0.3386 0.5573	0.3543 0.5628	0.3701 0.5685	
3. Heat losses a	and heat 1	oss paramet	er										
Element				Gross	Openings		Area	U-value	Axt		-value	AxK	
Window (Uw = 1.3	30)			m2	m2		m2 6900	W/m2K 1.2357	16.9173	3	kJ/m2K	kJ/K	(27)
Door NW SR Rooflights						0.	9100 4700	1.3000	2.4830 0.5808	3			(26a) (27a)
NE SR Rooflights Ground Floor	5			12 0000	4.4.000	38.	6300 1400	1.2357	0.7785 4.5768	3 7.	5.0000	2860.5000	
External Wall Dormer Wall				13.9900	14.1000	0.	8900 9400	0.1800	17.9802 0.1692	2	0.0000 9.0000	5993.4000 8.4600	(29a)
Sloped Roof Plane Roof				17.6800 26.3100	1.1000	26.	5800 3100	0.1400	2.3212 3.1572	2	9.0000	149.2200 236.7900	(30)
Dormer Roof Total net area of			Aum(A, m2)	2.0400			0400 6000	0.1400	0.2856		9.0000	18.3600	(31)
Fabric heat loss Internal Wall -	s, W/K = S Block							30) + (32)	= 49.2498		5.0000	3985.5000	(33)
Internal Wall - Internal Floor						63.	9100 1400				9.0000 8.0000	575.1900 686.5200	(32c)
Internal Ceiling	g						1400				9.0000	343.2600	
Heat capacity Cn Thermal mass par			FA) in kJ/m	12K				(28)	(30) + (32)	+ (32a).	(32e) =	14857.2000 194.7719	

SAP 10 Online 2.12.4 Page 1 of 7

E3 Sill E4 Jamb E5 Ground E6 Interme R1 Head of R2 Sill of R3 Jamb of E11 Eaves E12 Gable	floor (diate f roof w roof w roof w (insula (i	normal) loor withi indow indow tion at ra tion at ce tion at ra 1) ceiling) d) inverted) flat ceili		g)	ζ)			9 77 19 24 24 2 5 16 4 2 19 2 2	ength .9700 .2600 .6600 .8600 .8600 .6800 .6800 .4800 .1900 .6000 .2400 .8800 .5800 .5800 .4900	Psi-value	Tot 0.18 0.19 0.33 1.51 0.00 0.64 0.66 1.31 0.29 0.15 0.30 0.33 0.33 0.34 0.37 0.47 (36a) = + (36a) =	94 97 97 42 65 49 32 32 32 55 11 14 778 8 55 9 6 8 8 8 8	
Ventilation heat 1	oss cal	culated mo Feb	nthly (38)m Mar	0.33 x	(25) m x (5) May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(38)m 36 Heat transfer coef	.7583 f	36.5601	36.3659	35.4534	35.2827	34.4879	34.4879	34.3407	34.7940	35.2827	35.6280	35.9891	(38)
	.5297	93.3315	93.1373	92.2248	92.0541	91.2593	91.2593	91.1121	91.5654	92.0541	92.3994	92.7605 92.2240	(39)
			Man	7 mm	Mary	Turn	Tu 1	7110	Con	Oat	Nove		
HLP 1	an .2261	Feb 1.2235	Mar 1.2210	Apr 1.2090	May 1.2068	Jun 1.1964	Jul 1.1964	Aug 1.1944	Sep 1.2004	Oct 1.2068	Nov 1.2113	Dec 1.2161	(40)
HLP (average) Days in mont	31	28	31	30	31	30	31	31	30	31	30	1.2090 31	
A Water besting o													
4. Water heating e													
Assumed occupancy Hot water usage fo	r mixer	showers										2.3885	(42)
64 Hot water usage fo	.2668 r baths	63.3010	61.8936	59.2009	57.2137	54.9976	53.7380	55.1347	56.6658	59.0452	61.7958	64.0206	(42a)
	.7601	27.3478	26.7672	25.6967	24.8952	24.0064	23.5263	24.1028	24.7305	25.6816	26.7741	27.6662	(42b)
	.0905	37.6691	36.2476 /day)	34.8261	33.4046	31.9832	31.9832	33.4046	34.8261	36.2476	37.6691	39.0905 120.5266	
J	an	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Daily hot water us		128.3178	124.9084	119.7237	115.5135	110.9872	109.2475	112.6422	116.2224	120.9743	126.2389	130.7773	(44)
Energy conte 207 Energy content (an	.6579		191.9796	163.8958	155.5034	136.4717	132.1254	139.4745	143.3139	164.1610	179.8505 um(45)m =	204.7657 2001.9222	
Distribution loss	(46) m			04 5044	02 2055	00 4700	10 0100	00 0010	01 4071				(46)
Water storage loss	.1487	27.4084	28.7969	24.5844	23.3255	20.4708	19.8188	20.9212	21.4971	24.6242	26.9776	30.7148	
Store volume a) If manufacture Temperature fact Enter (49) or (54) Total storage loss	or from in (55	Table 2b	actor is kn	own (kWh/c	day):							180.0000 1.8600 0.5400 1.0044	(48) (49)
	.1364	28.1232	31.1364	30.1320	31.1364	30.1320	31.1364	31.1364	30.1320	31.1364	30.1320	31.1364	(56)
31	.1364	28.1232 21.0112	31.1364 23.2624	30.1320 22.5120	31.1364 23.2624	30.1320 22.5120	31.1364 23.2624	31.1364 23.2624	30.1320 22.5120	31.1364 23.2624	30.1320 22.5120	31.1364 23.2624	
Combi loss 0	.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	.0567	231.8573	246.3784	216.5398	209.9022								
	.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Output from w/h			246.3784	216.5398			186.5242			218.5598	232 /0/5		
			240.5704	210.3390	209.9022	109.1137	100.3242			Vh/year) = S		2642.4242	(64)
12Total per year (Electric shower(s)												2642	
0	.0000	0.0000	0.0000	0.0000 Tot	0.0000 al Energy u	0.0000 sed by inst	0.0000 antaneous e	0.0000 lectric sho	0.0000 wer(s) (kWh	0.0000 n/year) = Su	0.0000 m(64a)m =	0.0000	
Heat gains from wa			month 107.3523	96.6106	95.2239	87.4920	87.4507	89.8943	89.7671	98.1026	101.9155	111.6036	(65)
5. Internal gains	(see Ta	ble 5 and	5a)										
Metabolic gains (T													
		Feb 119.4245	Mar 119.4245	Apr 119.4245	May 119.4245	Jun 119.4245	Jul 119.4245	Aug 119.4245	Sep 119.4245	Oct 119.4245	Nov 119.4245	Dec 119.4245	(66)
Lighting gains (ca					L9a), also 107.6111			107.6111	111.1981	107.6111	111.1981	107.6111	(67)
Appliances gains (calcula	ted in App	endix L, eq	uation L13	or L13a), a 181.5196	lso see Tab	le 5	156.0254					
Cooking gains (cal	culated	in Append	ix L, equat	ion L15 or	L15a), also	see Table	5		161.5557	173.3292	188.1911	202.1592	
Pumps, fans 3	.9424	34.9424	34.9424 3.0000	34.9424	34.9424 3.0000	34.9424 0.0000	34.9424 0.0000	34.9424 0.0000	34.9424 0.0000	34.9424 3.0000	34.9424	34.9424 3.0000	
Losses e.g. evapor			alues) (Tab -95.5396		-95.5396	-95.5396	-95.5396	-95.5396	-95.5396	-95.5396	-95.5396	-95.5396	
Water heating gain	s (Tabl	e 5)	144.2907	134.1813		121.5167	117.5413	120.8257	124.6765	131.8583	141.5493		
Total internal gai	ns											150.0049	
532	.2266	543.5566	521.8841	503.5883	478.9472	459.0937	442.1997	443.2895	456.2577	474.6260	502.7658	521.6025	(73)
6. Solar gains													
[Jan]			A	rea	Solar flux		g		FF	Acce	ss	Gains	

SAP 10 Online 2.12.4 Page 2 of 7

				m2	Table 6a	Specif or 1	fic data	Specific	data	fact		W	
										Table			
Northeast Southwest			7.5	400 500	36.7938		0.6300	0	.7000	0.77	00	19.4479 84.8973	(79)
Northwest Northeast				000 300	36.7938 11.2829 26.0000		0.6300 0.6300	0	.7000 .7000	1.00		1.7241 6.5012	
Northwest				700	26.0000		0.6300	0	.7000	1.00	00	4.8501	(82)
Solar gains	117.4207	211.2836	317.4222	438.1680	529.8355	542.6734	516.2955	445.6947	359.0650	241.3085	142.7347	99.1129	(83)
Total gains	649.6472	754.8402	839.3062	941.7563	1008.7827	1001.7672	958.4952	888.9843	815.3228	715.9345	645.5006	620.7154	(84)
7. Mean inter													
Temperature d												21.0000	(85)
Utilisation f		ains for li		nil,m (see	Table 9a)	Jun	Jul	Aug	Sep	Oct	Nov	Dec	, ,
tau alpha	44.1250	44.2187 3.9479	44.3109 3.9541	44.7494	44.8323	45.2228 4.0149	45.2228 4.0149	45.2958 4.0197	45.0716 4.0048	44.8323	44.6648	44.4909 3.9661	
util living a		0.9660	0.9362	0.8609	0.7292	0.5532	0.4114	0.4590	0.6878	0.8966	0.9667	0.9842	(86)
MIT	19.7607	19.9499	20.2119	20.5378	20.7707	20.8853	20.9140	20.9092	20.8332	20.5248	20.0904		
Th 2 util rest of	19.8991	19.9012	19.9032	19.9128	19.9146	19.9229	19.9229	19.9244	19.9197	19.9146	19.9110	19.9072	
MTT 2	0.9767 18.4700	0.9578 18.7091	0.9207 19.0358	0.8283 19.4323	0.6716 19.6880	0.4709 19.8014	0.3142 19.8209	0.3573 19.8203	0.6068 19.7589	0.8645 19.4293	0.9572 18.8965		
Living area f	raction	18.9887	19.3008	19.6814	19.9320	20.0457	20.0672	20.0657	fLA =	Living are	a / (4) =	0.2254	(91)
Temperature a adjusted MIT	djustment	18.9887	19.3008	19.6814	19.9320	20.0457	20.0672	20.0657	20.0010	19.6762		0.0000	
aajaocca 1111	10.,003	10.3007	13.3000	13.0011	13.3320	20.0107	20.0072	20.0007	20.0010	13.0702	13.1000	10.7202	(33)
8. Space heat													
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation Useful gains	0.9703	0.9491	0.9104 764.0744	0.8204		0.4806	0.3275 313.9317	0.3711	0.6134	0.8561 612.9319	0.9487	0.9745	
Ext temp. Heat loss rat	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	
	1352.5212	1314.9216	1192.2362	994.3145	757.7858	496.9680	316.4175	333.9889	540.3287	835.4979	1114.8476	1347.6402	(97)
Space heating	537.2747		318.5523		58.9571	0.0000	0.0000	0.0000	0.0000	165.5891	361.7602	552.5925 2556.5121	(98a)
Solar heating		0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(98b)
Solar heating Space heating	contribution					******						0.0000	(,
Space heating	537.2747		318.5523 ar contribu			0.0000 (kWh/vear)	0.0000	0.0000	0.0000	165.5891	361.7602	552.5925 2556.5121	(98c)
Space heating					1 1 2 1 1	, ,,,,,,,				(98c) / (4) =		(99)
9a. Energy re	quirements -												
Fraction of s	pace heat fi	om seconda	ry/suppleme									0.0000	
Fraction of s Efficiency of	main space	heating sy	stem 1 (in	%)								1.0000 219.3000	
Efficiency of Efficiency of												0.0000	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating	537.2747	402.1827	318.5523		58.9571	0.0000	0.0000	0.0000	0.0000	165.5891	361.7602	552.5925	(98)
Space heating	219.3000	219.3000	219.3000		219.3000	0.0000	0.0000	0.0000	0.0000	219.3000	219.3000	219.3000	(210)
Space heating	244.9953	183.3939	145.2587	72.7786	26.8842	0.0000	0.0000	0.0000	0.0000	75.5080	164.9613	251.9802	(211)
Space heating	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(212)
Space heating	0.0000	0.0000	stem 2) 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(213)
Space heating	fuel (secor 0.0000	ndary) 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating													
Water heating		231.8573	246.3784	216.5398	209.9022	189.1157	186.5242	193.8733	195.9579	218.5598	232.4945	259.1645	
Efficiency of (217)m	water heate 190.4000		190.4000	190.4000	190.4000	190.4000	190.4000	190.4000	190.4000	190.4000	190.4000	190.4000 190.4000	
Fuel for wate			129.4004	113.7289	110.2428	99.3255	97.9644	101.8242	102.9191	114.7898	122.1084	136.1158	(219)
Space cooling (221)m	fuel requir 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(221)
Pumps and Fa Lighting	0.0000 29.8221	0.0000 23.9244	0.0000 21.5412	0.0000 15.7820	0.0000 12.1905	0.0000 9.9597	0.0000 11.1206	0.0000 14.4550	0.0000 18.7756	0.0000 24.6345	0.0000 27.8247	0.0000 30.6509	
Electricity g (233a)m	enerated by 0.0000	PVs (Appen 0.0000	dix M) (neg	ative quant 0.0000	ity) 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(233a)
Electricity g (234a)m	enerated by 0.0000	wind turbi 0.0000	nes (Append 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		(234a)
Electricity g (235a)m							ity) 0.0000	0.0000	0.0000	0.0000	0.0000		(235a)
Electricity u (235c)m									0.0000	0.0000	0.0000		(235c)
Electricity g (233b)m						0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		(233b)
Electricity g							0.0000	0.0000	0.0000	0.0000	0.0000		(234b)
Electricity g (235b)m								0.0000	0.0000	0.0000	0.0000		(235b)
Electricity u (235d)m									0.0000	0.0000	0.0000		(235d)
Annual totals													/

SAP 10 Online 2.12.4 Page 3 of 7

Space heating fuel - secondary Efficiency of water heater Water heating fuel used Space cooling fuel								1165.7602 0.0000 0.0000 190.4000 1387.8279 0.0000	(213) (215) (219)	
Electricity for pumps and fans: Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L)								0.0000 240.6812		
Energy saving/generation technologies (Appendices M ,N a PV generation Wind generation Hydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N)	nd Q)							0.0000 0.0000 0.0000 0.0000	(234) (235a))
Appendix Q - special features Energy saved or generated Energy used Total delivered energy for all uses								-0.0000 0.0000 2794.2692	(237)	
12a. Carbon dioxide emissions - Individual heating syste										
Tat. Carbon drowade Chirologic Individual Indicing System				Energy kWh/year				Emissions g CO2/year		
Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel)			1	165.7602 387.8279		0.1559		181.7089 0.0000 195.5220	(261) (373)	
Space and water heating Pumps, fans and electric keep-hot				0.0000		0.0000		377.2309 0.0000	(265) (267)	
Energy for lighting Total CO2, kg/year EPC Dwelling Carbon Dioxide Emission Rate (DER)				240.6812		0.1443		34.7377 411.9687 5.4000	(272)	
13a. Primary energy - Individual heating systems includi	ng micro-CHP				Primary energy	factor	Prim	arv energy		
Space heating - main system 1 Total CO2 associated with community systems			1		kg			kWh/year 1838.4726 0.0000	(275)	
Water heating (other fuel) Space and water heating			1	387.8279		1.5209		2110.7964 3949.2689	(278) (279)	
Pumps, fans and electric keep-hot Energy for lighting Total Primary energy kWh/year				0.0000 240.6812		0.0000 1.5338		0.0000 369.1649 4318.4338	(282) (286)	
Dwelling Primary energy Rate (DPER)								56.6100	(287)	
SAP 10 WORKSHEET FOR New Build (As Designed) (Version	10.2. Februar	ry 2022)								
CALCULATION OF TARGET EMISSIONS										
1. Overall dwelling characteristics				Area (m2)		height (m)		Volume (m3)		
CALCULATION OF TARGET EMISSIONS		76.2800		 Area	(1b) x					
1. Overall dwelling characteristics Ground floor First floor				Area (m2) 38.1400 38.1400	(1b) x	(m) 2.6300 2.4000	(2c) =	(m3) 100.3082	(1c) ·	
CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor First floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) Dwelling volume				Area (m2) 38.1400 38.1400	(1b) x (1c) x	(m) 2.6300 2.4000	(2c) =	(m3) 100.3082 91.5360	(1c) ·	
CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor First floor Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)(1n)				Area (m2) 38.1400 38.1400	(1b) x (1c) x	(m) 2.6300 2.4000	(2c) =(3n) =	(m3) 100.3082 91.5360	(1c) (4) (5)	
CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor First floor Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)(1n) Dwelling volume 2. Ventilation rate Number of open chimneys				Area (m2) 38.1400 38.1400	(1b) x (1c) x	(m) 2.6300 2.4000	(2c) =(3n) =	(m3) 100.3082 91.5360 191.8442	(1c) (4) (5)	
CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor First floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) Dwelling volume 2. Ventilation rate Number of open chimneys Number of open flues Number of chimneys / flues attached to closed fire Number of flues attached to solid fuel boiler				Area (m2) 38.1400 38.1400	(1b) x (1c) x	(m) 2.6300 2.4000	(2c) =(3n) = m 0 * 80 = 0 * 20 = 0 * 10 = 0 * 20 * 2	(m3) 100.3082 91.5360 191.8442 3 per hour 0.0000 0.0000 0.0000 0.0000	(6a) (6b) (6c) (6d)	
CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor First floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) Dwelling volume 2. Ventilation rate Number of open chimneys Number of open flues Number of flues attached to solid fuel boiler Number of flues attached to other heater Number of flues attached to other heater Number of intermittent extract fans				Area (m2) 38.1400 38.1400	(1b) x (1c) x	(m) 2.6300 2.4000	(2c) =(3n) = m 0 * 80 = 0 * 20 = 0 * 10 = 0 * 20 = 0 * 35 = 0 * 20 = 0 * 35 = 3 * 10 =	(m3) 100.3082 91.5360 191.8442 3 per hour 0.0000 0.0000 0.0000 0.0000 0.0000 30.0000	(6a) (6b) (6c) (6d) (6e) (6f) (7a)	
CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor First floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) Dwelling volume Number of open chimneys Number of open flues Number of chimneys / flues attached to closed fire Number of flues attached to solid fuel boiler Number of flues attached to other heater Number of blocked chimneys				Area (m2) 38.1400 38.1400	(1b) x (1c) x	(m) 2.6300 2.4000	(2c) =(3n) = m 0 * 80 = 0 * 20 = 0 * 10 = 0 * 20 = 0 * 20 = 0 * 20 = 0 * 35 = 0 * 20 = 0 * 10 = 0 * 40 =	(m3) 100.3082 91.5360 191.8442 3 per hour 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	(6a) (6b) (6c) (6d) (6e) (6f) (7a) (7b)	
CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor First floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) Dwelling volume 2. Ventilation rate Number of open chimneys Number of open flues Number of chimneys / flues attached to closed fire Number of flues attached to solid fuel boiler Number of flues attached to other heater Number of blocked chimneys Number of intermittent extract fans Number of passive vents		76.2800		Area (m2) 38.1400 (3	(1b) x (1c) x (3a)+(3b)+(3c)+((m) 2.6300 2.4000 3d)+(3e)	(2c) =(3n) = m 0 * 80 = 0 * 20 = 0 * 10 = 0 * 20 = 0 * 35 = 0 * 20 = 3 * 10 = 0	(m3) 100.3082 91.5360 191.8442 3 per hour 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	(6a) (6b) (6c) (6d) (6e) (6f) (7a) (7b) (7c)	
CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor First floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) Dwelling volume 2. Ventilation rate Number of open chimneys Number of chimneys / flues attached to closed fire Number of flues attached to solid fuel boiler Number of flues attached to other heater Number of blocked chimneys Number of intermittent extract fans Number of passive vents Number of flueless gas fires Infiltration due to chimneys, flues and fans = (6a)+(6		76.2800		Area (m2) 38.1400 (3	(1b) x (1c) x (3a)+(3b)+(3c)+((m) 2.6300 2.4000 3d)+(3e)	(2c) =(3n) = (3n) = m 0 * 80 = 0 * 20 = 0 * 10 = 0 * 20 = 0 * 35 = 0 * 20 = 0 * 10 = 0 * 40 = Air change / (5) =	(m3) 100.3082 91.5360 191.8442 3 per hour 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 s per hour 0.1564 Yes lower Door 5.0000 0.4064	(6a) (6b) (6c) (6d) (6e) (7a) (7b) (7c) (8)	
CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor First floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) Dwelling volume 2. Ventilation rate Number of open chimneys Number of chimneys / flues attached to closed fire Number of flues attached to solid fuel boiler Number of flues attached to other heater Number of flues attached to other heater Number of passive vents Number of passive vents Number of flueless gas fires Infiltration due to chimneys, flues and fans = (6a)+(6 Pressure Test Method Measured/design AP50 Infiltration rate		76.2800		Area (m2) 38.1400 (3	(1b) x (1c) x (3a) + (3b) + (3c) + ((m) 2.6300 2.4000 3d)+(3e) 30.0000	(2c) =(3n) = m 0 * 80 = 0 * 20 = 0 * 10 = 0 * 20 = 0 * 20 = 0 * 20 = 0 * 10 = 0 * 40 = 0 * 40 = Air change / (5) = B	(m3) 100.3082 91.5360 191.8442 3 per hour 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 s per hour 0.1564 Yes lower Door 5.0000 0.4064	(6a) (6b) (6c) (6d) (7c) (7c) (8) (17) (19) (20)	
CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor First floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) Dwelling volume Number of open chimneys Number of open flues Number of chimneys / flues attached to closed fire Number of flues attached to solid fuel boiler Number of flues attached to other heater Number of flues attached to other heater Number of flues attached to other heater Number of passive vents Number of passive vents Number of flueless gas fires Infiltration due to chimneys, flues and fans = (6a)+(6 Pressure test Pressure Test Method Measured/design AP50 Infiltration rate Number of sides sheltered Shelter factor	May 4.3000	76.2800		Area (m2) 38.1400 (3	(1b) x (1c) x (3a) + (3b) + (3c) + ((m) 2.6300 2.4000 3d)+(3e) 30.0000	(2c) =(3n) = 0 * 80 = 0 * 20 = 0 * 10 = 0 * 20 = 0 * 20 = 0 * 35 = 0 * 10 = 0 * 20 = 3 * 10 = 0 * 40 = Air change / (5) = B	(m3) 100.3082 91.5360 191.8442 3 per hour 0.0000	(1c) (4) (5) (6a) (6b) (6c) (6d) (6e) (7a) (7c) (7c) (8) (17) (21) (21)	

SAP 10 Online 2.12.4 Page 4 of 7

Effective ac 0.5806 0.5775 0.5744 0.5600 0.5573 0.5448 0.5448 0.5424 0.5496 0.5573 0.5628 0.5685 (25)

3. Heat losses and l	heat loss	paramet	er										
Element				Gross	Openings	s Ne	tArea	U-value	Αx		-value	AxK	
TER Semi-glazed doo:	r			m2	m2		m2 .9100	W/m2K 1.0000	W 1.91		kJ/m2K	kJ/K	(26a
TER Opening Type (U						13	.6900	1.1450	15.67	56			(27)
NW SR Rooflights NE SR Rooflights							.4700 .6300	1.5918 1.5918	0.74				(27a
Ground Floor						38	.1400	0.1300	4.95	82			(28a
External Wall Dormer Wall			-	113.9900 2.4400	14.1000		.8900 .9400	0.1800 0.1800	17.98 0.16				(29a (29a
Sloped Roof				17.6800	1.1000	16	.5800	0.1100	1.82	38			(30)
Plane Roof Dormer Roof				26.3100 2.0400			.3100	0.1100 0.1100	2.89 0.22				(30)
Total net area of ex Fabric heat loss, W.			Aum(A, m2)	2.0400			.6000	30) + (32)					(31)
Thermal mass paramet		= Cm / T	FA) in kJ/r	n2K								194.7719	(35)
List of Thermal Brio K1 Element	ages							L	ength	Psi-value	Tot	al	
E2 Other lin	ntels (ind	cluding	other stee:	l lintels)					.9700	0.0500	0.49		
E3 Sill E4 Jamb									.2600 .6600	0.0500	0.36		
E5 Ground f								24	.8600	0.1600	3.97	776	
E6 Intermed: R1 Head of :			a dwelling	9					.8600 .6800	0.0000	0.00		
R2 Sill of									.6800	0.0600	0.16		
R3 Jamb of :			:+o= lorrol)						.4800	0.0800	0.43		
E11 Eaves (: E12 Gable (:									.1900 .6000	0.0600	0.64 0.27		
E13 Gable (n at raf	ter level)						.2400	0.0800	0.17		
E16 Corner R4 Ridge (va		iling)							.8800 .5800	0.0900	1.78		
R5 Ridge (in	nverted)								.5800	0.0400	0.10		
R7 Flat cei: R9 Roof to			ia)						.4900	0.0400	0.05		
Thermal bridges (Sur	m(L x Psi)			Appendix K)			_				9.9565	
Point Thermal bridge Total fabric heat lo									(33) + (36)	(36a) = + (36a) =	0.0000 57.3429	
Ventilation heat los		ated mon Feb	thly (38)m Mar	= 0.33 x (25)m x (5) May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(38)m 36. Heat transfer coeff		5.5601	36.3659	35.4534	35.2827	34.4879	34.4879	34.3407	34.7940	35.2827	35.6280	35.9891	(38)
94.: Average = Sum(39)m		3.9030	93.7088	92.7963	92.6256	91.8308	91.8308	91.6836	92.1369	92.6256	92.9709	93.3320 92.7955	
Jai		Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
HLP (average)	2336 1	1.2310	1.2285	1.2165	1.2143	1.2039	1.2039	1.2019	1.2079	1.2143	1.2188	1.2235	
Days in mont	31	28	31	30	31	30	31	31	30	31	30	31	
4. Water heating end	ergy requi	irements	(kWh/year)										
Assumed occupancy Hot water usage for	mixer sho	owers										2.3885	(42)
	2668 63	3.3010	61.8936	59.2009	57.2137	54.9976	53.7380	55.1347	56.6658	59.0452	61.7958	64.0206	(42a
Hot water usage for	other use	7.3478 es	26.7672	25.6967	24.8952	24.0064	23.5263	24.1028	24.7305	25.6816	26.7741	27.6662	
39.0 Average daily hot wa		7.6691 (litres/	36.2476 day)	34.8261	33.4046	31.9832	31.9832	33.4046	34.8261	36.2476	37.6691	39.0905 120.5266	
Ja: Daily hot water use		Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Energy conte 207.0 Energy content (ann			124.9084 191.9796	119.7237 163.8958		110.9872 136.4717	109.2475 132.1254	112.6422 139.4745	116.2224 143.3139	120.9743 164.1610 Total = S	126.2389 179.8505 um(45)m =	130.7773 204.7657 2001.9222	(45)
		.15 x (4 7.4084		24.5844	23.3255	20.4708	19.8188	20.9212	21.4971	24.6242	26.9776	30.7148	(46)
Water storage loss: Store volume												180.0000	(47)
a) If manufacturer			ctor is kno	own (kWh/d	ay):							1.5520	(48)
Temperature factor Enter (49) or (54)		ole 2b										0.5400 0.8381	
Total storage loss	9803 23	3.4661	25.9803	25.1422	25.9803	25.1422	25.9803	25.9803	25.1422	25.9803	25.1422	25.9803	
25. If cylinder contains				23.1422	20.9803	23.1422	20.3003	20.7803	23.1422	20.7803	23.1422	23.9803	(00)
25.	9803 23	3.4661	25.9803	25.1422	25.9803	25.1422	25.9803	25.9803	25.1422	25.9803	25.1422	25.9803	
		0.0112	23.2624	22.5120 0.0000	23.2624	22.5120 0.0000	23.2624	23.2624	22.5120 0.0000	23.2624	22.5120 0.0000	23.2624	
Total heat required	for water	r heatin	g calculate	ed for each	month								
256.9 WWHRS -29.3		7.2001 5.9840	241.2223 -27.2089	211.5500 -22.5301	204.7461 -20.9972	184.1259 -17.9675	181.3680 -16.8416	188.7172 -17.9094	190.9681 -18.5898	213.4037 -21.9154	227.5047 -24.8275	254.0083 -28.8360	
PV diverter -0.0	0000 -0	0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	(63b
		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Output from w/h													
227.	5205 201	1.2161	214.0133	189.0199	183.7489	166.1584	164.5264		172.3782			225.1723	
12Total per year (ki	Wh/year)							rotal p	er year (kW	11/year) = S	um(64)m =	2308.7274 2309	(64)
Electric shower(s)			0 00										
0.0	0000	0.000	0.0000	0.0000 Tot	0.0000 al Energy us	0.0000 sed by inst	0.0000 antaneous e	0.0000 electric sho	0.0000 wer(s) (kWh	0.0000 /vear) = Su	0.0000 m(64a)m =	0.0000	
Heat gains from wate													
	4404 96	3.3372	103.2274	92.6187	91.0990	83.5002	83.3258	85.7694	85.7752	93.9777	97.9236	107.4787	(65)

5. Internal gains (see Table 5 and 5a)

SAP 10 Online 2.12.4 Page 5 of 7

Metabolic gair	Jan	Feb	Mar				Jul	Aug	Sep	Oct	Nov	Dec	
(66)m Lighting gains	s (calculate	ed in Append	dix L, equat	ion L9 or	L9a), also			119.4245	119.4245	119.4245	119.4245	119.4245	(66)
Appliances gas	ins (calcula	ated in Appe	endix L, equ	ation L13	or L13a), a		le 5	107.6111	111.1981	107.6111	111.1981	107.6111	
Cooking gains		d in Appendi	208.1549 x L, equati	on L15 or	L15a), also	see Table	158.2200 5		161.5557	173.3292	188.1911	202.1592	(68)
Pumps, fans	34.9424 3.0000	3.0000	34.9424 3.0000	3.0000	34.9424 3.0000	34.9424 0.0000	34.9424 0.0000	34.9424 0.0000	34.9424 0.0000	34.9424 3.0000	34.9424	34.9424 3.0000	
Losses e.g. e	-95.5396	-95.5396	lues) (Tabl -95.5396		-95.5396	-95.5396	-95.5396	-95.5396	-95.5396	-95.5396	-95.5396	-95.5396	(71)
Water heating	145.7532	Le 5) 143.3589	138.7464	128.6371	122.4449	115.9725	111.9971	115.2815	119.1323	126.3141	136.0051	144.4606	(72)
Total internal		538.0124	516.3398	498.0441	473.4030	453.5495	436.6555	437.7453	450.7135	469.0817	497.2216	516.0582	(73)
6. Solar gains													
[Jan]				ea	Solar flux		g		FF	Acces		Gains	
				m2	Table 6a W/m2	Speci:	ric data Table 6b	or Tab	data le 6c	facto Table		W	
Northeast				00	11.2829		0.6300	0	.7000	0.770 0.770 0.770 1.000	00	19.4479 84.8973	
Southwest Northwest Northeast			0.50 0.63	100	36.7938 11.2829		0.6300	0	.7000	0.770	00	1.7241 6.5012	(81)
Northwest			0.47	00	26.0000		0.6300	ö	.7000	1.000	00	4.8501	
Solar gains									359 0650	241 3085	142 7347	99.1129	(83)
Total gains	644.1030	749.2960	833.7620	936.2120	1003.2384	996.2230	952.9510	883.4401	809.7785	710.3902	639.9564	615.1712	
7. Mean intern													
Temperature du												21.0000	(85)
Utilisation fa		Feb	Mar			Jun	Jul	Aug	Sep	Oct	Nov	Dec	
tau alpha	43.8570 3.9238	43.9496 3.9300	44.0407 3.9360	44.4738 3.9649	44.5557 3.9704	44.9413 3.9961	44.9413 3.9961	45.0135 4.0009	44.7920 3.9861	44.5557 3.9704	44.3902 3.9593	44.2185 3.9479	
util living a		0.9670	0.9379	0.8640	0.7339	0.5583	0.4160	0.4641	0.6933	0.8995	0.9678	0.9847	(86)
MIT	19.4301	19.6831	20.0347	20.4732	20.7899	20.9470	20.9871	20.9803	20.8751	20.4556	19.8713	19.3879	
Th 2 util rest of h	19.8932 nouse	19.8953	19.8973	19.9068	19.9086	19.9169	19.9169	19.9185	19.9137	19.9086	19.9050	19.9012	(88)
MIT 2	0.9774 18.0960	0.9590 18.4152	0.9227 18.8532	0.8318 19.3843	0.6763 19.7322	0.4752 19.8849	0.3173 19.9122	0.3610 19.9105	0.6121 19.8274	0.8680 19.3795	0.9585 18.6630	0.9809 18.0479	(90)
Living area for MIT	18.3966	18.7009	19.1194	19.6297	19.9706	20.1242	20.1544	20.1516		Living area 19.6220			
Temperature ac adjusted MIT		18.7009	19.1194	19.6297	19.9706	20.1242	20.1544	20.1516	20.0635	19.6220	18.9353	0.0000 18.3499	(93)
8. Space heat:													
Utilisation	Jan	Feb 0.9475	Mar	Apr	May	Jun 0.4918	Jul 0.3394	Aug	Sep 0.6242	Oct 0.8580	Nov 0.9475	Dec 0.9732	(04)
Useful gains Ext temp.													(95)
Heat loss rate				995.6739	766.0650	507.2959	326.4071	343.9610	549.4567		1100.3367		
Space heating	kWh		315.7561		62.5422	0.0000	0.0000	0.0000	0.0000	168.2638	355.6696	537.1255	
Space heating Solar heating	requirement											2518.2909	(****)
Solar heating	0.0000	0.0000 on - total p	0.0000 per year (kW	0.0000 Mh/year)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(98b)
Space heating	kWh		315.7561		62.5422	0.0000	0.0000	0.0000	0.0000	168.2638	355.6696	537.1255	(98c)
Space heating Space heating		after sola	ar contribut	ion - tota	l per year	(kWh/year)				(98c)	/ (4) =	2518.2909 33.0138	(99)
9a. Energy red													
Fraction of sp Fraction of sp	pace heat fr	com main sys	stem(s)		m (Table 11	.)						0.0000 1.0000	(202)
Efficiency of Efficiency of	main space	heating sys	stem 2 (in %	;)								92.3000	(207)
Efficiency of						T	71	2	0	0-4	N	0.0000	(208)
Space heating			Mar 315 7561	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	(00)
Space heating	efficiency	(main heati		.)	62.5422	0.0000	0.0000	0.0000	0.0000	168.2638	355.6696	537.1255	
Space heating				92.3000	92.3000	0.0000	0.0000	0.0000	0.0000	92.3000	92.3000	92.3000	
Space heating	efficiency	(main heati	342.0977 ing system 2 0.0000	!)	67.7597	0.0000	0.0000	0.0000	0.0000	182.3010	385.3408	581.9345	
Space heating			stem 2)	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Space heating	0.0000 fuel (secon 0.0000	0.0000 ndary) 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Water heating	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(213)
Water heating			214.0133	189 0100	183.7489	166.1584	164.5264	170.8078	172.3782	191 4003	202.6772	225.1723	(64)
Efficiency of			211.0100	100.0100	100.7409	100.1004	101.0204	1.0.0070	1.2.0/02	1,1.7003	202.0112	79.8000	

SAP 10 Online 2.12.4 Page 6 of 7

Fuel for water heating, kWh/month	79.8000 79.8000	79.8000	83.7711	85.3076	85.9371	
264.9813 235.2371 251.9865 225.7682 224.3355 208.2186 20 Space cooling fuel requirement	06.1734 214.0449	216.0128	228.5852	237.5841	262.0200	(219)
(221)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 7.3041 7.3041	0.0000 7.0685	0.0000 7.3041	0.0000 7.0685	0.0000 7.3041	
Lighting 22.3595 17.9376 16.1508 11.8328 9.1400 7.4674	8.3378 10.8378		18.4701	20.8619	22.9809	
Electricity generated by PVs (Appendix M) (negative quantity) (233a)m -35.6400 -50.2256 -72.1743 -81.1360 -87.4873 -81.6640 -8	80.6509 -76.1325	-68.1673	-57.4149	-39.1729	-30.8149	(233a)
Electricity generated by wind turbines (Appendix M) (negative quantity) (234a)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	(234a)
Electricity generated by hydro-electric generators (Appendix M) (negative quantity) (235a)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	(235a)
Electricity used or net electricity generated by micro-CHP (Appendix N) (negative i		0.0000	0.0000	0.0000	0.0000	
Electricity generated by PVs (Appendix M) (negative quantity) (233b)m -20.2045 -42.4944 -84.4434 -126.8044 -167.6443 -168.4326 -16			-60.7687	-26.9755	-15.9783	
Electricity generated by wind turbines (Appendix M) (negative quantity)						
Electricity generated by hydro-electric generators (Appendix M) (negative quantity)		0.0000	0.0000	0.0000	0.0000	
(235b)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Electricity used or net electricity generated by micro-CHP (Appendix N) (negative i	0.0000 0.0000 f net generation)	0.0000	0.0000	0.0000	0.0000	(235b)
(235d)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Annual totals kWh/year	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	(235d)
Space heating fuel - main system 1 Space heating fuel - main system 2 Space heating fuel - secondary Efficiency of water heater Water heating fuel used Space cooling fuel					2728.3759 0.0000 0.0000 79.8000 2774.9474 0.0000	(213) (215) (219)
Electricity for pumps and fans: Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L)					86.0000 180.4537	
Energy saving/generation technologies (Appendices M ,N and Q) PV generation Wind generation Hydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N) Appendix Q - special features					-1885.1651 0.0000 0.0000 0.0000	(234) (235a)
Energy saved or generated					-0.0000	(236)
Energy used Total delivered energy for all uses					0.0000 3884.6119	(237)
Energy used		Emiss	ion factor		0.0000	(237)
Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP			ion factor kg CO2/kWh 0.2100	k	0.0000 3884.6119	(237) (238)
Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems	Energy kWh/year		kg CO2/kWh	k	0.0000 3884.6119 Emissions g CO2/year 572.9589 0.0000	(237) (238) (261) (373)
Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating	Energy kWh/year 2728.3759 2774.9474	:	0.2100	k	0.0000 3884.6119 Emissions g CO2/year 572.9589 0.0000 582.7390 1155.6979	(237) (238) (261) (373) (264) (265)
Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel)	Energy kWh/year 2728.3759	:	0.2100	k	0.0000 3884.6119 Emissions g CO2/year 572.9589 0.0000 582.7390	(237) (238) (261) (373) (264) (265) (267)
Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year	Energy kWh/year 2728.3759 2774.9474	:	0.2100 0.2100 0.1387	k	0.0000 3884.6119 Emissions g C02/year 572.9589 0.0000 582.7390 1155.6979 11.9293 26.0450 -102.3804 -141.5742 -243.9546 949.7176	(261) (373) (261) (373) (264) (265) (267) (268)
Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total	Energy kWh/year 2728.3759 2774.9474 86.0000 180.4537	:	0.2100 0.2100 0.2100 0.1387 0.1443	k	0.0000 3884.6119 Emissions g CO2/year 572.9589 0.0000 582.7390 1155.6979 11.9293 26.0450	(261) (373) (261) (373) (264) (265) (267) (268)
Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year	Energy kWh/year 2728.3759 2774.9474 86.0000 180.4537	:	0.2100 0.2100 0.2100 0.1387 0.1443	k	0.0000 3884.6119 Emissions g C02/year 572.9589 0.0000 582.7390 1155.6979 11.9293 26.0450 -102.3804 -141.5742 -243.9546 949.7176	(261) (373) (261) (373) (264) (265) (267) (268)
Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER)	Energy kWh/year 2728.3759 2774.9474 86.0000 180.4537 -760.6805 -1124.4846		CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1346 0.1259	k	0.0000 3884.6119 Emissions g CO2/year 572.9589 0.0000 582.7390 1155.6979 11.9293 26.0450 -102.3804 -141.5742 -243.9546 949.7176 12.4500	(261) (373) (264) (264) (265) (267) (268) (269) (272) (273)
Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER)	Energy kWh/year 2728.3759 2774.9474 86.0000 180.4537 -760.6805 -1124.4846	Primary ene	CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1346 0.1259	k	0.0000 3884.6119 Emissions g C02/year 572.9589 0.0000 582.7390 1155.6979 11.9293 26.0450 -102.3804 -141.5742 -243.9546 949.7176	(261) (373) (264) (265) (267) (268) (269) (272) (273)
Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER)	Energy kWh/year 2728.3759 2774.9474 86.0000 180.4537 -760.6805 -1124.4846	Primary ene	CG CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1346 0.1259 crgy factor cg CO2/kWh	k	0.0000 3884.6119 Emissions g CO2/year 572.9589 0.0000 582.7390 1155.6979 11.9293 26.0450 -102.3804 -141.5742 -243.9546 949.7176 12.4500 ary energy kWh/year	(261) (373) (261) (373) (264) (265) (267) (268) (272) (273)
Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating	Energy kWh/year 2728.3759 2774.9474 86.0000 180.4537 -760.6805 -1124.4846	Primary ene	cg CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1346 0.1259 crgy factor cg CO2/kWh 1.1300 1.1300	Prim	0.0000 3884.6119 Emissions g CO2/year 572.9589 0.0000 582.7390 1155.6979 11.9293 26.0450 -102.3804 -141.5742 -243.9546 949.7176 12.4500 ary energy kWh/year 3083.0647 0.0000 3135.6906 6218.7553	(261) (373) (261) (373) (264) (265) (267) (268) (272) (273) (273) (273)
Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel)	Energy kWh/year 2728.3759 2774.9474 86.0000 180.4537 -760.6805 -1124.4846 Energy kWh/year 2728.3759	Primary ene	CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1346 0.1259 crgy factor kg CO2/kWh 1.1300	k	0.0000 3884.6119 Emissions g CO2/year 572.9589 0.0000 582.7390 1155.6979 11.9293 26.0450 -102.3804 -141.5742 -243.9546 949.7176 12.4500 ary energy kWh/year 3083.0647 0.0000 3135.6906	(261) (373) (264) (265) (267) (268) (269) (272) (273) (273)
Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies	Energy kWh/year 2728.3759 2774.9474 86.0000 180.4537 -760.6805 -1124.4846 Energy kWh/year 2728.3759 2774.9474 86.0000 180.4537	Primary ene	CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1346 0.1259 crgy factor (cg CO2/kWh 1.1300 1.5128 1.5338	Prim	0.0000 3884.6119 Emissions g CO2/year 572.9589 0.0000 582.7390 1155.6979 11.9293 26.0450 -102.3804 -141.5742 -243.9546 949.7176 12.4500 ary energy kWh/year 3083.0647 0.0000 0.135.6906 6218.7553 130.11008 276.7858	(261) (373) (264) (265) (267) (268) (269) (272) (273) (273)
Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP 12a. Carbon dioxide emissions - Individual heating systems water heating (other fuel) 12a. Space heating - main system 1 12a. Primary energy - Individual heating 12a. Primary energy - Individual heating systems including micro-CHP 12a. Primary energy - Individual heating systems including micro-CHP 12a. Primary energy - Individual heating systems including micro-CHP 12a. Primary energy - Individual heating systems including micro-CHP 12a. Primary energy - Individual heating systems including micro-CHP 12a. Primary energy - Individual heating systems including micro-CHP 12a. Primary energy - Individual heating systems including micro-CHP 12a. Primary energy - Individual heating systems including micro-CHP 12a. Primary energy - Individual heating systems including micro-CHP 12a. Primary energy - Individual heating systems including micro-CHP 12a. Primary energy - Individual heating systems including micro-CHP 12a. Primary energy - Individual heating systems including micro-CHP 12a. Primary energy - Individual heating systems including micro-CHP 12a. Primary energy - Individual heating systems including micro-CHP 12b. Primary energy - Individual heating systems including micro-CHP 12b. Primary energy - Individual heating systems including micro-CHP 12b. Primary energy - Individual heating systems including micro-CHP 12b. Primary energy - Individual heating systems including micro-CHP 12b. Primary energy - Individual heating systems including micro-CHP 12b. Primary energy - Individual heating systems including micro-CHP 12b. Primary energy - Individual heating systems including micro-CHP 12b. Primary energy - Individual heating systems including micro-CHP 12c. Primary energy - Individual heating systems including micro-CHP 12c. Primary energy - Individual heating systems including mic	Energy kWh/year 2728.3759 2774.9474 86.0000 180.4537 -760.6805 -1124.4846 Energy kWh/year 2728.3759 2774.9474 86.0000	Primary ene	cg CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1346 0.1259 cgy factor cg CO2/kWh 1.1300 1.5128	Prim	0.0000 3884.6119 Emissions g CO2/year 572.9589 0.0000 582.7390 1155.6979 11.9293 26.0450 -102.3804 -141.5742 -243.9546 949.7176 12.4500 ary energy kWh/year 3083.0647 0.0000 3135.6906 6218.7553 130.1008 276.7858	(261) (373) (264) (265) (267) (268) (272) (273) (273) (273)
Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling Energy saving/generation technologies PV Unit electricity used in dwelling	Energy kWh/year 2728.3759 2774.9474 86.0000 180.4537 -760.6805 -1124.4846 Energy kWh/year 2728.3759 2774.9474 86.0000 180.4537 -760.6805	Primary ene	cg CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1346 0.1259 cgy factor cg CO2/kWh 1.1300 1.5128 1.5338 1.4974	Prim	0.0000 3884.6119 Emissions g CO2/year 572.9589 0.0000 582.7390 1155.6979 11.9293 26.0450 -102.3804 -141.5742 -243.9546 949.7176 12.4500 ary energy kWh/year 3083.0647 0.0000 3135.6906 6218.7553 130.1008 276.7858	(261) (373) (261) (373) (264) (265) (267) (268) (272) (273) (273) (273) (273) (273) (279) (281) (282)

SAP 10 Online 2.12.4 Page 7 of 7

Property Reference	ce	PF	11113 - 112 H	Hollow Way						Issued on Da	ate	30/11/2023	
Assessment Refe	rence	00	3-Be Green					Prop Type R	Ref 1	12 Hollow Wa	у		
Property		11:	2, Hollow Way	y, Oxford, Oxford	dshire, OX4 2NL								
SAP Rating					80 C		DER	4.8	36	TER		12.45	
Environmental					96 A		% DER < TER					60.96	
CO ₂ Emissions (t/					0.34		DFEE		.33	TFEE		40.70	
Compliance Chec	:k				See BREL		% DFEE < TFE		10	TPER	,	0.92	
% DPER < IPER					21.47		DPEK	51	.13	IPEN		65.11	
Assessor Details Client		Mr. Riley	Dixon							Asse	ssor ID	AG83-00	01
SAP 10 WORKSHEET CALCULATION OF I	DWELLING EM	teristics	R REGULATI	(Version 10	ICE	2022)		Area (m2) 38.1400	(1b) x		(2b) =	Volume (m3) 100.3082 91.5360	(1b) - (3
Number of open of Number of open of Number of chimme Number of flues Number of flues Number of blocke Number of intern Number of passiv Number of fluele	chimneys flues eys / flues attached to attached to ed chimneys mittent ext:	o solid fu o other he ract fans	el boiler	fire					3a)+(3b)+(3c)	+ (3d) + (3e)	0 * 80 = 0 * 20 = 0 * 10 = 0 * 20 = 0 * 20 = 0 * 35 = 0 * 20 = 3 * 10 = 0 * 10 = 0 * 40 =	n3 per hour 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 30.0000 0.0000	(6a) (6b) (6c) (6d) (6e) (6f) (7a) (7b) (7c)
Infiltration due Pressure test Pressure Test Me Measured/design Infiltration rat Number of sides	ethod AP50 te	ys, flues	and fans	= (6a)+(6b)	+(6c)+(6d)+(6e)+(6f)+((6g) + (7a) + ([*]	7b)+(7c) =		30.0000	/ (5) =	0.1564 Yes Blower Door 5.0000 0.4064	(8)
Shelter factor Infiltration rat	te adjusted	to includ	e shelter	factor					(20) = 1 - (2	[0.075 x 1) = (18)		0.7750 0.3149	
Wind speed	Jan 5.1000	Feb 5.0000	Mar 4.9000	Apr 4.4000	May 4.3000	Jun 3.8000	Jul 3.8000	Aug 3.7000		Oct 4.3000	Nov 4.5000		
Wind factor Adj infilt rate Effective ac	1.2750 0.4016 0.5806	1.2500 0.3937 0.5775	1.2250 0.3858 0.5744	1.1000 0.3464 0.5600	1.0750 0.3386 0.5573	0.9500 0.2992 0.5448	0.9500 0.2992 0.5448	0.9250 0.2913 0.5424	0.3149	1.0750 0.3386 0.5573		0.3701	(22b)
3. Heat losses a	and heat lo	ss paramet	er	Gross	Openings	Net	 :Area	U-value	Ах		-value	АхК	
Window (Uw = 1.3 Door NW SR Rooflights NE SR Rooflights Ground Floor External Wall Dormer Wall Sloped Roof Plane Roof Dormer Roof Total net area of Fabric heat loss Internal Wall - Internal Wall - Internal Floor Internal Ceiling	of external s, W/K = Sum Block Timber			m2 113.9900 2.4400 17.6800 26.3100 2.0400	14.1000 1.5000 1.1000	13. 1. 0. 38. 99. 16. 26. 2. 200.	m2 6900 9100 4700 6300 1400 8900 9400 5800 3100 0400 6000 (26)(3	W/m2K 1.2357 1.3000 1.2357 0.1200 0.1800 0.1800 0.1400 0.1200 0.1400 0.1400 30) + (32)	W/ 16.917 2.483 0.580 0.778 4.576 17.980 0.169 2.321 3.157 0.285	3 0 8 5 8 7 2 2 2 2 2 6 8 7 7	\$J/m2K 5.0000 9.0000 9.0000 9.0000 9.0000 5.0000 9.0000 8.0000 9.0000	2860.5000 5993.4000 8.4600 149.2200 236.7900 18.3600 3985.5000 575.1900 686.5200 343.2600	(27) (26a) (27a) (27a) (28a) (29a) (29a) (30) (30) (30) (31) (33) (32c) (32c) (32d)
Heat capacity Cm Thermal mass par			FA) in kJ/	m2K				(28)	(30) + (32) + (32a).	(32e) =	14857.2000 194.7719	

SAP 10 Online 2.12.4 Page 1 of 7

List of Thermal Bridges K1 Element E2 Other lintels (included to the content of	thin a dwelling rafter level) ceiling level; rafter level) ag)	ing L)	()			9 77 19 24 24 2 2 5 16 4 2 19 2 2	ength .9700 .2600 .6600 .8600 .8800 .6800 .6800 .6800 .2400 .2400 .2400 .5800 .5800 .4900	Psi-value 0.0190 0.0220 0.0170 0.0610 0.0010 0.2400 0.2400 0.0180 0.0430 0.0430 0.0420 0.1200 0.1200 0.3200	Tot 0.18 0.15 0.33 1.51 0.02 0.64 0.64 1.31 0.29 0.19 0.09 0.83 0.30 0.17 0.47 (36a) =	94 97 42 65 49 32 32 55 14 78 63 50 96 88	
Total fabric heat loss							((33) + (36)		56.7714	
Ventilation heat loss calculated Jan Feb (38)m 36.7583 36.56	Mar	n = 0.33 x (Apr 35.4534	(25) m x (5) May 35.2827	Jun 34.4879	Jul 34.4879	Aug 34.3407	Sep 34.7940	Oct 35.2827	Nov 35.6280	Dec 35.9891	(38)
Heat transfer coeff 93.5297 93.33	93.1373	92.2248	92.0541	91.2593	91.2593	91.1121	91.5654	92.0541	92.3994	92.7605	(39)
Average = Sum(39)m / 12 = Jan Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	92.2240 Dec	
HLP 1.2261 1.22 HLP (average)		1.2090	1.2068	1.1964	1.1964	1.1944	1.2004	1.2068	1.2113	1.2161 1.2090	
Days in mont 31	28 31	30	31	30	31	31	30	31	30	31	
4. Water heating energy requirer										2 222=	(40)
Assumed occupancy Hot water usage for mixer shower 64.2668 63.30		59.2009	57.2137	54.9976	53.7380	55.1347	56.6658	59.0452	61.7958	2.3885	
Hot water usage for baths 27.7601 27.34		25.6967	24.8952	24.0064	23.5263	24.1028	24.7305	25.6816	26.7741	27.6662	
Hot water usage for other uses 39.0905 37.66	36.2476	34.8261		31.9832	31.9832	33.4046	34.8261	36.2476	37.6691	39.0905	(42c)
Average daily hot water use (lit			.,	-	- 1					120.5266	(43)
Jan Feb Daily hot water use 131.1174 128.33	Mar 178 124.9084	Apr 119.7237	May 115.5135	Jun 110.9872	Jul 109.2475	Aug 112.6422	Sep 116.2224	Oct 120.9743	Nov 126.2389	Dec 130.7773	(44)
Energy conte 207.6579 182.72 Energy content (annual)	191.9796	163.8958	155.5034	136.4717	132.1254	139.4745	143.3139	164.1610	179.8505 um(45)m =	204.7657 2001.9222	(45)
Distribution loss (46)m = 0.15 31.1487 27.40 Water storage loss:		24.5844	23.3255	20.4708	19.8188	20.9212	21.4971	24.6242	26.9776	30.7148	(46)
Store volume a) If manufacturer declared los Temperature factor from Table Enter (49) or (54) in (55)		nown (kWh/c	day):							180.0000 1.8600 0.5400 1.0044	(48) (49)
Total storage loss 31.1364 28.12		30.1320	31.1364	30.1320	31.1364	31.1364	30.1320	31.1364	30.1320	31.1364	(56)
If cylinder contains dedicated s 31.1364 28.12 Primary loss 23.2624 21.03	232 31.1364 112 23.2624	30.1320 22.5120	31.1364 23.2624	30.1320 22.5120	31.1364 23.2624	31.1364 23.2624	30.1320 22.5120	31.1364 23.2624	30.1320 22.5120	31.1364 23.2624	(59)
Combi loss 0.0000 0.00 Total heat required for water he 262.0567 231.85	eating calculat 573 246.3784	216.5398	209.9022	0.0000 189.1157		0.0000	0.0000 195.9579		0.0000	0.0000 259.1645	(62)
WMHRS 0.0000 0.00 PV diverter 0.0000 0.00 Solar input 0.0000 0.00 FGHRS 0.0000 0.00	0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	(63b) (63c)
Output from w/h 262.0567 231.85	246.3784	216.5398	209.9022	189.1157	186.5242			218.5598 Wh/year) = S			
12Total per year (kWh/year) Electric shower(s)										2642	(64)
0.0000 0.00		0.0000 Tot	0.0000 al Energy u	0.0000 sed by inst	0.0000 antaneous e	0.0000 lectric sho	0.0000 wer(s) (kWh		0.0000 m(64a)m =	0.0000	
Heat gains from water heating, 1 112.5653 100.00		96.6106	95.2239	87.4920	87.4507	89.8943	89.7671	98.1026	101.9155	111.6036	(65)
5. Internal gains (see Table 5 a Metabolic gains (Table 5), Watts Jan Feb	and 5a) 						Sep	Oct	Nov	Dec	
(66)m 119.4245 119.42 Lighting gains (calculated in Ag	245 119.4245 ppendix L, equa	119.4245 ation L9 or	119.4245 L9a), also	119.4245 see Table 5	119.4245	119.4245	119.4245	119.4245	119.4245	119.4245	(66)
107.6111 119.14 Appliances gains (calculated in	Appendix L, ed	quation L13	or L13a), a	lso see Tab	ole 5	107.6111	111.1981	107.6111	111.1981	107.6111	
211.4907 213.68 Cooking gains (calculated in App 34.9424 34.94	endix L, equat	ion L15 or	L15a), also	see Table		156.0254 34.9424	161.5557 34.9424	173.3292 34.9424	188.1911 34.9424	202.1592 34.9424	
Pumps, fans 0.0000 0.00 Losses e.g. evaporation (negative	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
-95.5396 -95.53 Water heating gains (Table 5)	-95.5396	-95.5396		-95.5396	-95.5396	-95.5396		-95.5396	-95.5396	-95.5396	
151.2974 148.90 Total internal gains		134.1813	127.9891	121.5167	117.5413	120.8257	124.6765	131.8583	141.5493	150.0049	
529.2266 540.55	518.8841	500.5883	475.9472	459.0937	442.1997	443.2895	456.2577	471.6260	499./658	518.6025	(/3)
6. Solar gains											
[Jan]		\rea	Solar flux		g		FF	Acce	ss	Gains	

SAP 10 Online 2.12.4 Page 2 of 7

				m2	Table 6a	Speci	fic data Table 6b	Specific	data	facto		W	
No or the contract				400			Table 6b 0.6300		le 6c .7000	Table 6		10 4470	(75)
Northeast Southwest Northwest Northeast Northwest			7.5 0.5 0.6 0.4	500 000 300 700	36.7938 11.2829 26.0000 26.0000		0.6300 0.6300 0.6300 0.6300	0 0 0	.7000	0.770 0.770 1.000 1.000)0)0)0	19.4479 84.8973 1.7241 6.5012 4.8501	(79) (81) (82)
Solar gains Total gains	117.4207 646.6472	211.2836 751.8402	317.4222 836.3062			542.6734 1001.7672		445.6947 888.9843		241.3085 712.9345	142.7347 642.5006	99.1129 617.7154	
7. Mean inter													
Temperature de Utilisation fa	uring heatin	ng periods i	in the livi	ng area fro	m Table 9,							21.0000	(85)
tau	Jan 44.1250	Feb 44.2187	Mar 44.3109	Apr 44.7494	May 44.8323	Jun 45.2228	Jul 45.2228	Aug 45.2958	Sep 45.0716	Oct 44.8323	Nov 44.6648	Dec 44.4909	
alpha util living a	3.9417 rea 0.9816	3.9479 0.9664	3.9541 0.9369	3.9833 0.8619	3.9888 0.7306	4.0149 0.5532	4.0149 0.4114	4.0197 0.4590	4.0048 0.6878	3.9888 0.8977	3.9777 0.9672	3.9661 0.9845	(06)
Living	19.7573	19.9467	20.2091	20.5358	20.7696	20.8853	20.9140	20.9092	20.8332	20.5224	20.0871	19.7261	(86)
	18.4656	18.7051	19.0324	19.4301	19.6870	19.8014	19.8209	19.8203	19.7589	19.4266	18.8925	18.4324	
24 / 9 16 / 9	3 28	0	0	0	0	0	0	0	0	0	0	0 10	
MIT Th 2	20.3643 19.8991	19.9467 19.9012	20.2091 19.9032	20.5358 19.9128	20.7696 19.9146	20.8853 19.9229	20.9140 19.9229	20.9092 19.9244	20.8332 19.9197	20.5224 19.9146	20.0871 19.9110	19.9043 19.9072	
util rest of MIT 2	0.9771 19.3277	0.9583 18.7051	0.9215 19.0324	0.8295 19.4301	0.6730 19.6870	0.4709 19.8014	0.3142 19.8209	0.3573 19.8203	0.6068	0.8659 19.4266	0.9578 18.8925	0.9806 18.6981	
Living area f	raction	18.9849	19.2976	19.6792	19.9310	20.0457	20.0672	20.0657		Living area		0.2254	(91)
Temperature acadjusted MIT	djustment	18.9849	19.2976	19.6792	19.9310	20.0457	20.0672	20.0657	20.0010	19.6736	19.1617	0.0000 18.9700	(93)
8. Space heat:													
Utilisation	Jan 0.9754	Feb 0.9497	Mar 0.9111	Apr 0.8216	May 0.6740	Jun 0.4806	Jul 0.3275	Aug 0.3711	Sep 0.6134	Oct 0.8574	Nov 0.9494	Dec 0.9762	(94)
	4.3000	714.0033 4.9000	761.9969 6.5000	771.2369 8.9000	677.8832 11.7000	481.4971 14.6000	313.9317 16.6000	329.8841 16.4000	500.1137 14.1000	611.2834 10.6000	609.9767 7.1000	603.0333 4.2000	
Heat loss rate	1427.3816	1314.5627	1191.9293	994.1120	757.6949	496.9680	316.4175	333.9889	540.3287	835.2583	1114.4921	1370.0691	(97)
Space heating Space heating	592.7115	403.5759			59.3799	0.0000	0.0000	0.0000	0.0000	166.6374	363.2511	570.6746 2636.5702	(98a)
Solar heating	kWh 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(98b)
Solar heating Space heating	kWh				E0 2700	0.0000	0.0000	0.0000	0.0000	166 6274	262 2511	0.0000	(00-)
Space heating Space heating	requirement	403.5759 after sola			59.3799 l per year	0.0000 (kWh/year)	0.0000	0.0000	0.0000	166.6374	363.2511	570.6746 2636.5702 34.5644	
space nearing	per mz									(300)	/ (4) -	34.3044	(33)
9a. Energy rec												0.0000	(201)
Fraction of sp Efficiency of	pace heat fr	om main sys	stem(s)		m (labie ii	,						1.0000 293.5107	(202)
Efficiency of Efficiency of	main space	heating sys	stem 2 (in	%)								0.0000	(207)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating	592.7115	403.5759			59.3799	0.0000	0.0000	0.0000	0.0000	166.6374	363.2511	570.6746	(98)
Space heating Space heating	293.5107	293.5107	293.5107	293.5107	293.5107	0.0000	0.0000	0.0000	0.0000	293.5107	293.5107	293.5107	(210)
Space heating	201.9386	137.4995	108.9806		20.2309	0.0000	0.0000	0.0000	0.0000	56.7739	123.7608	194.4306	(211)
Space heating			stem 2)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Space heating		ndary)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Water heating	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating	requirement	231.8573	246.3784	216.5398	209.9022	189.1157	186.5242	193.8733	195.9579	218.5598	232.4945	259.1645	(64)
Efficiency of (217) m	water heate	er		190.1343	190.1343	190.1343	190.1343	190.1343	190.1343	190.1343	190.1343	190.1343 190.1343	(216)
Fuel for wate:	137.8271	121.9440	129.5812	113.8878	110.3968	99.4643	98.1013	101.9665	103.0629	114.9502	122.2791	136.3060	(219)
Space cooling (221)m	0.0000	0.0000	0.0000	0.0000			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Pumps and Fa Lighting Electricity go	29.8221	0.0000 23.9244 PVs (Append	0.0000 21.5412	0.0000 15.7820	0.0000 12.1905	0.0000 9.9597	0.0000 11.1206	0.0000 14.4550	0.0000 18.7756	0.0000 24.6345	0.0000 27.8247	0.0000 30.6509	
(233a)m Electricity ge	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 tv)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(233a)
(234a)m Electricity ge	0.0000 enerated by	0.0000 hydro-elect	0.0000 cric genera	0.0000 tors (Appen	0.0000 dix M) (neg	0.0000 ative quant		0.0000	0.0000	0.0000	0.0000	0.0000	
Electricity u									0.0000	0.0000	0.0000	0.0000	
(235c)m Electricity ge (233b)m		0.0000 PVs (Append 0.0000	0.0000 dix M) (neg 0.0000		0.0000 ity) 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Electricity g		wind turbir		ix M) (nega	tive quanti		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
													/

SAP 10 Online 2.12.4 Page 3 of 7

Electricity generated by hydro-electric generators (Appendix M) (negative quantity) (235b)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000			000	0.0000	0.0	000	0.0000	(235b)	
Electricity used or net electricity generated by micro-CHP (Appendix N) (negative if net ge (235d)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Annual totals kWh/year			000	0.0000	0.0	000	0.0000	(235d)	
Space heating fuel - main system 1 Space heating fuel - main system 2							898.2875 0.0000	(213)	
Space heating fuel - secondary Efficiency of water heater Water heating fuel used							0.0000 190.1343 1389.7672		
Space cooling fuel							0.0000		
Electricity for pumps and fans: Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L)							0.0000 240.6812		
Energy saving/generation technologies (Appendices M ,N and Q)									
PV generation Wind generation Hydro-electric generation (Appendix N)							0.0000 0.0000 0.0000	(234)	
Electricity generated - Micro CHP (Appendix N) Appendix Q - special features							0.0000	(235)	
Energy saved or generated Energy used Total delivered energy for all uses							-0.0000 0.0000 2528.7359	(237)	
								(===)	
12a. Carbon dioxide emissions - Individual heating systems including micro-CHP									
	Energy	, E		factor			Emissions		
Space heating - main system 1 Total CO2 associated with community systems	kWh/year 898.2875			0.1561		κç	g CO2/year 140.1799 0.0000	(261)	
Space and water heating	0.0000			0.1409			195.7952 335.9752	(265)	
Pumps, fans and electric keep-hot Energy for lighting Total CO2, kg/year	240.6812			0.1443			0.0000 34.7377 370.7129	(268)	
EPC Dwelling Carbon Dioxide Emission Rate (DER)							4.8600	(273)	
13a. Primary energy - Individual heating systems including micro-CHP			enerav	factor		Prima	ary energy		
Space heating - main system 1	kWh/year 898.2875		kg				kWh/year 1417.2302	(275)	
Total CO2 associated with community systems Water heating (other fuel) Space and water heating	1389.7672			1.5209			0.0000 2113.7460 3530.9762	(278)	
Pumps, fans and electric keep-hot Energy for lighting	0.0000 240.6812			0.0000 1.5338			0.0000 369.1649	(281) (282)	
Total Primary energy kWh/year Dwelling Primary energy Rate (DPER)							3900.1411 51.1300		
SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS									
CALCULATION OF TARGET EMISSIONS									
1. Overall dwelling characteristics									
	Area (m2)		Storey	height (m)			Volume (m3)		
Ground floor First floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) 76.2800	38.1400 38.1400		x x	2.6300 2.4000	(2b) (2c)	=	100.3082 91.5360		
Dwelling volume 76.2000	(3a)+(3b)	+(3c)+(3d)+(3e)	(3n)	=	191.8442		
2. Ventilation rate									
						m.i	3 per hour		
Number of open chimneys Number of open flues					0 * 80	=	0.0000	(6b)	
Number of chimneys / flues attached to closed fire Number of flues attached to solid fuel boiler Number of flues attached to other heater					0 * 10 0 * 20 0 * 35	=	0.0000 0.0000 0.0000	(6d)	
Number of blocked chimneys Number of intermittent extract fans					0 * 20 3 * 10	=	0.0000	(6f)	
Number of passive vents Number of flueless gas fires					0 * 10 0 * 40		0.0000		
Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(6c)+(6d)+(6e)+(6f)+(6g)+(7a)+(7a)+(7a)+(7a)+(7a)+(7a)+(7a)+(7a$	b)+(7c) =			30.0000	Air ch		s per hour 0.1564		
Pressure test Pressure Test Method Measured/design AP50						В	Yes lower Door 5.0000		
Measured/design AF50 Infiltration rate Number of sides sheltered							0.4064		
Shelter factor Infiltration rate adjusted to include shelter factor		(20) =		[0.075 z = (18)			0.7750 0.3149	(20)	
initionación face adjusced co include sheller iductor			(∠⊥)	- (18)	A (∠U)	-	0.3149	(∠⊥)	

SAP 10 Online 2.12.4 Page 4 of 7

Wind speed Wind factor Adj infilt rate	Jan 5.1000 1.2750	Feb 5.0000 1.2500	Mar 4.9000 1.2250	Apr 4.4000 1.1000	May 4.3000 1.0750	Jun 3.8000 0.9500	Jul 3.8000 0.9500	Aug 3.7000 0.9250	Sep 4.0000 1.0000	Oct 4.3000 1.0750	Nov 4.5000 1.1250	Dec 4.7000 1.1750	
Effective ac	0.4016 0.5806	0.3937 0.5775	0.3858 0.5744	0.3464 0.5600		0.2992 0.5448	0.2992 0.5448	0.2913 0.5424	0.3149 0.5496			0.3701 0.5685	
3. Heat losses a						No			2	11 4	ralue	7 P	
TER Semi-glazed TER Opening Type NW SR Rooflights NE SR Rooflights Ground Floor External Wall Dormer Wall Sloped Roof Plane Roof Dormer Roof Total net area of Fabric heat loss	e (Uw = 1.2	L elements		Gross m2 13.9900 2.4400 17.6800 26.3100 2.0400	Openings m2 14.1000 1.5000 1.1000	1 13 0 0 38 99 0 166 26	.6000	U-value W/m2K 1.0000 1.1450 1.5918 0.1300 0.1800 0.1800 0.1100 0.1100 0.1100 30) + (32) =		K 0 6 1 8 2 2 2 2 8 1 4	−value kJ/m2K	A x K kJ/K	
Thermal mass par List of Thermal		MP = Cm / 1	FFA) in kJ/m	n2K								194.7719	(35)
K1 Eleme E2 Other E3 Sill E4 Jamb E5 Grour E6 Inter R1 Head R2 Sill R3 Jamb E11 Eave E12 Gabl E13 Gabl E16 Corr R4 Ridge R7 Flat	ent Intels I	normal) Loor withir indow indow indow ition at raf ition at raf (1) ceiling) i) inverted)		r				9. 7. 19. 24. 24. 2. 5. 16. 4. 2. 19. 2. 11.	9700 2600 6600 8600 8600 6800 6800 4800 1900 6000	si-value 0.0500 0.05500 0.05500 0.0500 0.16600 0.0000 0.0800 0.0400 0.0600 0.0800 0.0900 0.0800 0.0900 0.0800 0.0400 0.0400 0.0400 0.0400	Tot. 0.49; 0.36 0.98. 3.97; 0.00 0.21: 0.16 0.43; 0.64; 0.27; 0.17; 1.78; 0.20 0.100 0.05	85 30 30 76 00 44 40 88 84 47 66 99 99 99 99 96	(36)
Point Thermal br Total fabric hea	ridges	,	,	11.					(3	3) + (36)	(36a) = + (36a) =	0.0000 57.3429	
Ventilation heat	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(38)m Heat transfer co Average = Sum(39	94.1012	36.5601 93.9030	36.3659 93.7088	35.4534 92.7963	35.2827 92.6256	34.4879 91.8308	34.4879 91.8308	34.3407 91.6836	34.7940 92.1369	35.2827 92.6256	35.6280 92.9709	35.9891 93.3320 92.7955	
HLP	Jan 1.2336	Feb 1.2310	Mar 1.2285	Apr 1.2165	May 1.2143	Jun 1.2039	Jul 1.2039	Aug 1.2019	Sep 1.2079	Oct 1.2143	Nov 1.2188	Dec 1.2235	(40)
HLP (average) Days in mont	31	28	31	30	31	30	31	31	30	31	30	1.2165 31	
			s (kWh/year)										
Assumed occupand Hot water usage			61.8936	59.2009	57.2137	54.9976	53.7380	55.1347	56.6658	59.0452	61.7958	2.3885 64.0206	
Hot water usage	27.7601	27.3478	26.7672	25.6967	24.8952	24.0064	23.5263	24.1028	24.7305	25.6816	26.7741	27.6662	(42b)
Hot water usage Average daily ho	39.0905	37.6691	36.2476 (day)	34.8261	33.4046	31.9832	31.9832	33.4046	34.8261	36.2476	37.6691	39.0905 120.5266	
Daily hot water	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Energy conte 2 Energy content	131.1174 207.6579 (annual)	182.7229	191.9796	119.7237 163.8958	115.5135 155.5034	110.9872 136.4717	109.2475 132.1254	112.6422 139.4745	116.2224 143.3139		126.2389 179.8505 um(45)m =	130.7773 204.7657 2001.9222	
Distribution los Water storage lo	31.1487	= 0.15 x (4 27.4084	28.7969	24.5844	23.3255	20.4708	19.8188	20.9212	21.4971	24.6242	26.9776	30.7148	(46)
Store volume a) If manufactu Temperature fa Enter (49) or (5	arer declar actor from 54) in (55)	Table 2b	actor is kno	own (kWh/da	ay):							180.0000 1.5520 0.5400 0.8381	(48) (49)
Total storage lo	25.9803	23.4661 cated solar	25.9803 r storage	25.1422	25.9803	25.1422	25.9803	25.9803	25.1422	25.9803	25.1422	25.9803	(56)
Primary loss Combi loss	25.9803 23.2624 0.0000	23.4661 21.0112 0.0000	25.9803 23.2624 0.0000	25.1422 22.5120 0.0000	25.9803 23.2624 0.0000	25.1422 22.5120 0.0000	25.9803 23.2624 0.0000	25.9803 23.2624 0.0000	25.1422 22.5120 0.0000	25.9803 23.2624 0.0000	25.1422 22.5120 0.0000	25.9803 23.2624 0.0000	(59)
WWHRS -	256.9006 -29.3801 -0.0000 0.0000 0.0000		241.2223 -27.2089 -0.0000 0.0000		204.7461 -20.9972	184.1259 -17.9675 -0.0000 0.0000 0.0000	181.3680 -16.8416 -0.0000 0.0000 0.0000	188.7172 -17.9094 -0.0000 0.0000 0.0000	-0.0000	213.4037 -21.9154 -0.0000 0.0000 0.0000	227.5047 -24.8275 -0.0000 0.0000 0.0000	254.0083 -28.8360 -0.0000 0.0000	(63a) (63b) (63c)
12Total per year	227.5205 c (kWh/year		214.0133	189.0199	183.7489	166.1584	164.5264	170.8078 Total pe	172.3782 r year (kWh			225.1723 2308.7274 2309	
Electric shower		0.0000	0.0000	0.0000 Tota	0.0000 al Energy use	0.0000 ed by insta	0.0000 antaneous e	0.0000 lectric show	0.0000 er(s) (kWh/	0.0000 year) = Su	0.0000 m(64a)m =	0.0000	(64a)
Heat gains from	water heat 108.4404		nonth 103.2274	92.6187	91.0990	83.5002	83.3258	85.7694	85.7752	93.9777	97.9236	107.4787	(65)

SAP 10 Online 2.12.4 Page 5 of 7

5. Internal ga													
(66) m	Jan	Feb	Mar 119 4245	Apr 119 4245	May 119 4245	Jun 119.4245	Jul 119 4245	Aug 119 4245	Sep 119.4245	Oct 119.4245	Nov 119.4245	Dec 119.4245	(66)
Lighting gains	(calculate	ed in Appen	dix L, equa	tion L9 or	L9a), also				111.1981	107.6111	111.1981	107.6111	
Appliances gai	211.4907	213.6853	208.1549	196.3815	181.5196	167.5515	158.2200	156.0254	161.5557	173.3292	188.1911	202.1592	(68)
Cooking gains Pumps, fans	34.9424 3.0000		1x L, equat 34.9424 3.0000		34.9424 3.0000		34.9424 0.0000	34.9424 0.0000	34.9424	34.9424 3.0000	34.9424 3.0000	34.9424 3.0000	
Losses e.g. ev	aporation	(negative v		le 5)			-95.5396	-95.5396	-95.5396	-95.5396	-95.5396		
Water heating	gains (Tab	le 5)	138.7464			115.9725	111.9971	115.2815	119.1323	126.3141	136.0051		
Total internal		538.0124	516.3398	498.0441	473.4030	453.5495	436.6555	437.7453	450.7135	469.0817	497.2216	516.0582	(73)
6. Solar gains													
[Jan]					Solar flux		g		FF	Acce		Gains	
				m2	Table 6a W/m2	Speci:	fic data Table 6b		data le 6c	fact Table	or	W	
Northeast Southwest			5.6 7.5	400 500	11.2829 36.7938		0.6300	0	.7000	0.77 0.77	00	19.4479 84.8973	(79)
Northwest Northeast Northwest			0.5 0.6 0.4	300 700 	26.0000 26.0000		0.6300 0.6300	0 0 0	.7000 .7000 .7000	0.77 1.00 1.00	00	1.7241 6.5012 4.8501	(82)
Solar gains Total gains						542.6734 996.2230				241.3085 710.3902			
7. Mean intern	al tempera	ture (heati	ng season)										
Temperature du Utilisation fa	ring heati	ng periods	in the livi	ng area fro	m Table 9,							21.0000	(85)
tau alpha	Jan 43.8570 3.9238	Feb 43.9496 3.9300	Mar 44.0407 3.9360	Apr 44.4738 3.9649	May 44.5557 3.9704	Jun 44.9413 3.9961	Jul 44.9413 3.9961	Aug 45.0135 4.0009	Sep 44.7920 3.9861	Oct 44.5557 3.9704	Nov 44.3902 3.9593	Dec 44.2185 3.9479	
util living ar	0.9820	0.9670	0.9379	0.8640	0.7339	0.5583	0.4160	0.4641	0.6933	0.8995	0.9678	0.9847	(86)
MIT Th 2	19.4301 19.8932	19.6831 19.8953	20.0347 19.8973	20.4732 19.9068	20.7899 19.9086	20.9470 19.9169	20.9871 19.9169	20.9803 19.9185	20.8751 19.9137	20.4556 19.9086	19.8713 19.9050	19.3879 19.9012	
util rest of h	0.9774	0.9590	0.9227	0.8318	0.6763	0.4752	0.3173	0.3610	0.6121	0.8680	0.9585	0.9809	
MIT 2 Living area fr MIT	18.0960 action 18.3966	18.4152 18.7009	18.8532 19.1194	19.3843	19.7322	19.8849	19.9122	19.9105 20.1516	19.8274 fLA = 20.0635	19.3795 Living are 19.6220			(91)
Temperature ad adjusted MIT	ljustment	18.7009	19.1194	19.6297	19.9706	20.1242	20.1544	20.1516	20.0635	19.6220		0.0000	
8. Space heati	ng require	ment											
			Mar				Jul		Con	Oat	Morr	Dog	
	4.3000	Feb 0.9475 709.9511 4.9000	0.9093 758.1496 6.5000	Apr 0.8224 769.9382 8.9000	May 0.6798 682.0029 11.7000	Jun 0.4918 489.9144 14.6000	0.3394 323.4267 16.6000	Aug 0.3838 339.0950 16.4000	Sep 0.6242 505.4506 14.1000	Oct 0.8580 609.5048 10.6000	Nov 0.9475 606.3512 7.1000		(95)
	1326.5102	1295.9459	1182.5530	995.6739	766.0650	507.2959	326.4071	343.9610	549.4567	835.6658	1100.3367	1320.6381	(97)
Space heating Space heating Solar heating	522.6154 requirement		315.7561 er year (kW		62.5422	0.0000	0.0000	0.0000	0.0000	168.2638	355.6696	537.1255 2518.2909	
Solar heating Space heating	0.0000 contribution	0.0000 on - total	0.0000 per year (k	0.0000 Wh/year)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Space heating Space heating	522.6154 requirement		315.7561 ar contribu		62.5422 1 per year	0.0000 (kWh/year)	0.0000	0.0000	0.0000	168.2638 (98c	355.6696) / (4) =	537.1255 2518.2909 33.0138	
0													
9a. Energy rec												0.0000	(201)
Fraction of sp Efficiency of Efficiency of Efficiency of	ace heat for main space main space	rom main sy heating sy heating sy	stem(s) stem 1 (in stem 2 (in	%) %)	m (labic li	,						1.0000 92.3000 0.0000 0.0000	(202) (206) (207)
0	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating Space heating	522.6154	393.7885	315.7561		62.5422	0.0000	0.0000	0.0000	0.0000	168.2638	355.6696	537.1255	(98)
Space heating	92.3000	92.3000	92.3000		92.3000	0.0000	0.0000	0.0000	0.0000	92.3000	92.3000	92.3000	(210)
Space heating	566.2138 efficiency	426.6398 (main heat	342.0977 ing system	2)	67.7597	0.0000	0.0000	0.0000	0.0000	182.3010	385.3408	581.9345	
Space heating				0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Space heating	0.0000 fuel (secon 0.0000	0.0000 ndary) 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	0.0000	0.0000	0.0000	3.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	5.0000	(217)

SAP 10 Online 2.12.4 Page 6 of 7

Water heating						
Water heating requirement 227.5205 201.2161 214.0133 189.0199 183.7489 166.1584 164.	.5264 170.8078	172.3782	191.4883	202.6772	225.1723	(64)
	.8000 79.8000	79.8000	83.7711	85.3076	79.8000 85.9371	
	.1734 214.0449	216.0128	228.5852	237.5841	262.0200	(219)
	.0000 0.0000	0.0000	0.0000	0.0000	0.0000	
Lighting 22.3595 17.9376 16.1508 11.8328 9.1400 7.4674 8.	.3041 7.3041 .3378 10.8378	7.0685 14.0772	7.3041 18.4701	7.0685 20.8619	7.3041 22.9809	
Electricity generated by PVs (Appendix M) (negative quantity) (233a)m -35.6400 -50.2256 -72.1743 -81.1360 -87.4873 -81.6640 -80.	.6509 -76.1325	-68.1673	-57.4149	-39.1729	-30.8149	(233a)
	.0000 0.0000	0.0000	0.0000	0.0000	0.0000	(234a)
	.0000 0.0000	0.0000	0.0000	0.0000	0.0000	(235a)
	.0000 0.0000	0.0000	0.0000	0.0000	0.0000	(235c)
Electricity generated by PVs (Appendix M) (negative quantity) (233b)m -20.2045 -42.4944 -84.4434 -126.8044 -167.6443 -168.4326 -166.	.4539 -140.9520	-103.3325	-60.7687	-26.9755	-15.9783	(233b)
	.0000 0.0000	0.0000	0.0000	0.0000	0.0000	(234b)
	.0000 0.0000	0.0000	0.0000	0.0000	0.0000	(235b)
	.0000 0.0000	0.0000	0.0000	0.0000	0.0000	(235d)
Annual totals kWh/year Space heating fuel - main system 1 Space heating fuel - main system 2					2728.3759	
Space heating fuel - main System 2 Space heating fuel - secondary Efficiency of water heater					0.0000	
Water heating fuel used Space cooling fuel					2774.9474	
Electricity for pumps and fans:					0.0000	(221)
Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L)					86.0000 180.4537	,
Energy saving/generation technologies (Appendices M , N and Q)					100.1007	(202)
PV generation Wind generation					-1885.1651 0.0000	
Hydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N)					0.0000	(235a)
Appendix Q - special features						,
					-0.0000	(236)
Energy saved or generated Energy used					-0.0000 0.0000 3884.6119	(237)
Energy saved or generated						(237)
Energy saved or generated Energy used Total delivered energy for all uses					0.0000	(237)
Energy saved or generated Energy used Total delivered energy for all uses					0.0000 3884.6119	(237)
Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP	Energy kWh/year		ion factor kg CO2/kWh		0.0000 3884.6119 Emissions g CO2/year	(237) (238)
Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems	Energy kWh/year 2728.3759		0.2100		0.0000 3884.6119 Emissions g CO2/year 572.9589 0.0000	(237) (238) (261) (373)
Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating	Energy kWh/year 2728.3759		0.2100	k	0.0000 3884.6119 Emissions g CO2/year 572.9589 0.0000 582.7390 1155.6979	(237) (238) (261) (373) (264) (265)
Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel)	Energy kWh/year 2728.3759		0.2100	k	0.0000 3884.6119 Emissions g CO2/year 572.9589 0.0000 582.7390	(237) (238) (261) (373) (264) (265) (267)
Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies	Energy kWh/year 2728.3759 2774.9474 86.0000 180.4537		cg CO2/kWh 0.2100 0.2100 0.1387 0.1443	k	0.0000 3884.6119 Emissions g CO2/year 572.9589 0.0000 582.7390 1155.6979 11.9293 26.0450	(237) (238) (261) (373) (264) (265) (267)
Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported	Energy kWh/year 2728.3759 2774.9474 86.0000		0.2100 0.1387	k	0.0000 3884.6119 Emissions G CO2/year 572.9589 0.0000 582.7390 1155.6979 11.9293 26.0450	(237) (238) (261) (373) (264) (265) (267) (268)
Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year	Energy kWh/year 2728.3759 2774.9474 86.0000 180.4537		cg CO2/kWh 0.2100 0.2100 0.1387 0.1443	k	0.0000 3884.6119 Emissions g CO2/year 572.9589 0.0000 582.7390 1155.6979 11.9293 26.0450 -102.3804 -141.5742 -243.9546 949.7176	(261) (373) (264) (265) (267) (268) (269) (272)
Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total	Energy kWh/year 2728.3759 2774.9474 86.0000 180.4537		cg CO2/kWh 0.2100 0.2100 0.1387 0.1443	k	0.0000 3884.6119 Emissions 3 CO2/year 572.9589 0.0000 582.7390 1155.6979 11.9293 26.0450	(261) (373) (264) (265) (267) (268) (269) (272)
Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER)	Energy kWh/year 2728.3759 2774.9474 86.0000 180.4537 -760.6805 -1124.4846		cg CO2/kWh 0.2100 0.2100 0.1387 0.1443	k	0.0000 3884.6119 Emissions g CO2/year 572.9589 0.0000 582.7390 1155.6979 11.9293 26.0450 -102.3804 -141.5742 -243.9546 949.7176	(261) (373) (264) (265) (267) (268) (269) (272)
Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year	Energy kWh/year 2728.3759 2774.9474 86.0000 180.4537 -760.6805 -1124.4846		cg CO2/kWh 0.2100 0.2100 0.1387 0.1443	k	0.0000 3884.6119 Emissions g CO2/year 572.9589 0.0000 582.7390 1155.6979 11.9293 26.0450 -102.3804 -141.5742 -243.9546 949.7176	(261) (373) (264) (265) (267) (268) (269) (272)
Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER)	Energy kWh/year 2728.3759 2774.9474 86.0000 180.4537 -760.6805 -1124.4846	Primary ene	CQ CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1346 0.1259	k:	0.0000 3884.6119 Emissions g CO2/year 572.9589 0.0000 582.7390 1155.6979 11.9293 26.0450 -102.3804 -141.5742 -243.9546 949.7176 12.4500	(261) (373) (264) (265) (267) (268) (269) (272)
Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) 13a. Primary energy - Individual heating systems including micro-CHP Space heating - main system 1	Energy kWh/year 2728.3759 2774.9474 86.0000 180.4537 -760.6805 -1124.4846	Primary ene:	CQ CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1346 0.1259	k: Prim.	0.0000 3884.6119 Emissions g CO2/year 572.9589 0.0000 582.7390 1155.6979 11.9293 26.0450 -102.3804 -141.5742 -243.9546 949.7176 12.4500 ary energy kWh/year 3083.0647	(261) (373) (264) (265) (267) (268) (269) (272) (273)
Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel)	Energy kWh/year 2728.3759 2774.9474 86.0000 180.4537 -760.6805 -1124.4846	Primary ene:	CG CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1346 0.1259 CGgy factor	k: Prim	0.0000 3884.6119 Emissions 3 CO2/year 572.9589 0.0000 582.7390 1155.6979 11.9293 26.0450 -102.3804 -141.5742 -243.9546 949.7176 12.4500 ary energy kWh/year 3083.0647 0.0000 3135.6906	(261) (373) (261) (373) (264) (265) (267) (268) (272) (273) (273)
Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot	Energy kWh/year 2728.3759 2774.9474 86.0000 180.4537 -760.6805 -1124.4846 Energy kWh/year 2728.3759 2774.9474 86.0000	Primary ene:	CG CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1346 0.1259 CG CO2/kWh 1.1300 1.1300 1.5128	k: Prim	0.0000 3884.6119 Emissions g CO2/year 572.9589 0.0000 582.7390 1155.6979 11.9293 26.0450 -102.3804 -141.5742 -243.9546 949.7176 12.4500 ary energy kWh/year 3083.0647 0.0000 3135.6906 6218.7553 130.1008	(261) (373) (264) (265) (267) (268) (269) (272) (273) (273)
Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting	Energy kWh/year 2728.3759 2774.9474 86.0000 180.4537 -760.6805 -1124.4846 Energy kWh/year 2728.3759 2774.9474	Primary ene:	cg CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1346 0.1259 crgy factor cg CO2/kWh 1.1300 1.1300	k: Prim	0.0000 3884.6119 Emissions g CO2/year 572.9589 0.0000 582.7390 1155.6979 11.9293 26.0450 -102.3804 -141.5742 -243.954.46 949.7176 12.4500 ary energy kWh/year 3083.0647 0.0000 3135.6906 6218.7553	(261) (373) (264) (265) (267) (268) (269) (272) (273) (273)
Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling Energy saving/generation technologies PV Unit electricity used in dwelling	Energy kWh/year 2728.3759 2774.9474 86.0000 180.4537 2728.3759 2774.9474 86.0000 180.4537 -760.6805 -1124.9474 86.0000 180.4537 -760.6805	Primary ene:	cg CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1346 0.1259 cgy factor cg CO2/kWh 1.1300 1.5128 1.5338 1.4974	k: Prim.	0.0000 3884.6119 Emissions g CO2/year 572.9589 0.0000 582.7390 1155.6979 11.9293 26.0450 -102.3804 -141.5742 -243.9546 949.7176 12.4500 ary energy kWh/year 3083.0647 0.0000 3135.6906 6218.7553 130.1008	(261) (373) (264) (265) (267) (268) (269) (272) (273) (273)
Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies	Energy kWh/year 2728.3759 2774.9474 86.0000 180.4537 -760.6805 -1124.4846 Energy kWh/year 2728.3759 2774.9474 86.0000 180.4537	Primary ene:	cg CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1346 0.1259 crgy factor cg CO2/kWh 1.1300 1.5128 1.5338	k: Prim.	0.0000 3884.6119 Emissions g CO2/year 572.9589 0.0000 582.7390 1155.6979 11.9293 26.0450 -102.3804 -141.5742 -243.954 6949.7176 12.4500 ary energy kWh/year 3083.0647 0.0000 3135.6906 6218.7553 130.1008 276.7858	(261) (373) (264) (265) (267) (268) (272) (273) (273) (275) (473) (278) (278) (278) (278) (279) (281)

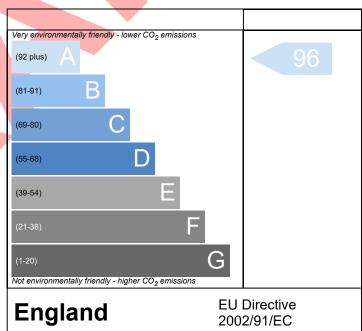
SAP 10 Online 2.12.4 Page 7 of 7

Predicted Energy Assessment

112, Hollow Way, Oxford, Oxfordshire, OX4 2NL

Dwelling type:
Date of assessment:
Produced by:
Total floor area:
DRRN:

House, Detached 30/11/2023 Riley Dixon 76.28 m²


This document is a Predicted Energy Assessment for properties marketed when they are incomplete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, this rating will be updated and an official Energy Performance Certificate will be created for the property. This will include more detailed information about the energy performance of the completed property.

The energy performance has been assessed using the Government approved SAP 10 methodology and is rated in terms of the energy use per square meter of floor area; the energy efficiency is based on fuel costs and the environmental impact is based on carbon dioxide (CO2) emissions.

Very energy efficient - lower running costs (92 plus) A (81-91) B (69-80) C (55-68) (1-20) F Not energy efficient - higher running costs England Eu Directive 2002/91/EC

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

Environmental Impact (CO₂) Rating

The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO₂) emissions. The higher the rating the less impact it has on the environment.

SAP 10 Online 2.12.4 Page 1 of 1

Building Regulations England Part L (BREL) Compliance Report

Approved Document L1 2021 Edition, England assessed by Array SAP 10 program, Array

Date: Thu 30 Nov 2023 09:04:31

Project Information			
Assessed By	Riley Dixon	Building Type	House, Detached
OCDEA Registration	EES/026759	Assessment Date	2023-11-30

Dwelling Details			
Assessment Type	As designed	Total Floor Area	76 m ²
Site Reference	PR11113 - 112 Hollow Way	Plot Reference	003-Be Green
Address	112 Hollow Way, Oxford, OX4	2NL	

Client Details	
Name	Mr Hugh Charles
Company	•
Address	2 Marshall Road, Oxford, OX4 2NR

This report covers items included within the SAP calculations. It is not a complete report of regulations compliance.

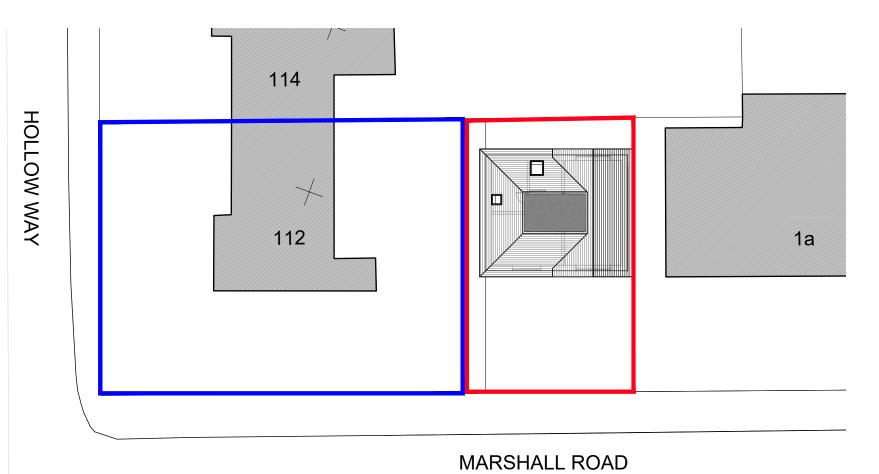
1a Target emission rate and dwelling emission	rate	
Fuel for main heating system	Electricity	
Target carbon dioxide emission rate	12.45 kgCO ₂ /m ²	
Dwelling carbon dioxide emission rate	4.86 kgCO ₂ /m ²	ОК
1b Target primary energy rate and dwelling pri	mary energy	,
Target primary energy	65.11 kWh _{PE} /m ²	
Dwelling primary energy	51.13 kWh _{PE} /m ²	ОК
1c Target fabric energy efficiency and dwelling	g fabric energy efficiency	
Target fabric energy efficiency	40.7 kWh/m ²	
Dwelling fabric energy efficiency	40.3 kWh/m ²	ОК

2a Fabric U-values							
Element	Maximum permitted average U-Value [W/m²K]	Dwelling average U-Value [W/m²K]	Element with highest individual U-Value				
External walls	0.26	0.18	Walls (1) (0.18)	OK			
Party walls	0.2	N/A	N/A	N/A			
Curtain walls	1.6	N/A	N/A	N/A			
Floors	0.18	0.12	Ground Floor (0.12)	OK			
Roofs	0.16	0.13	Roof (1) (0.14)	OK			
Windows, doors,	1.6	1.3	SW EW Windows (1.3)	ОК			
and roof windows							
Rooflights	2.2	N/A	N/A	N/A			

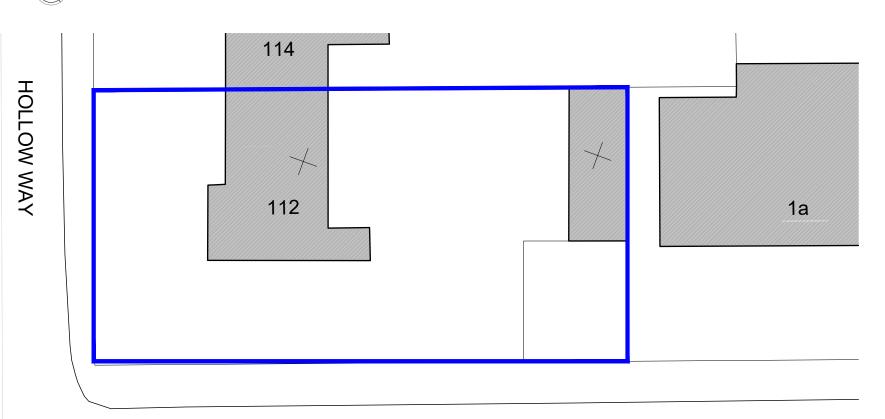
2b Envelope elements (better than typically expected values are flagged with a subsequent (!))						
Name	Net area [m ²]	U-Value [W/m ² K]				
Exposed wall: Walls (1)	99.881	0.18				
Exposed wall: Walls (2)	0.94	0.18				
Ground floor: Ground Floor, Ground Floor	38.14	0.12				
Exposed roof: Roof (1)	16.5812	0.14				
Exposed roof: Roof (2)	26.31	0.12				
Exposed roof: Roof (3)	2.04	0.14				

2c Openings (better than typically expected values are flagged with a subsequent (!))							
Name	Area [m ²]	Orientation	Frame factor	U-Value [W/m ² K]			
SW EW Windows, Window	1.89	South West	0.7	1.3			
SW EW Windows, Window	2.304	South West	0.7	1.3			
SW EW Windows, Window	1.86	South West	0.7	1.3			
SW DW Windows, Window	1.5	South West	0.7	1.3			
NW EW Windows, Window	0.504	North West	0.7	1.3			
NW EW Door, Door	1.911	North West	N/A	1.3			
NW SR Rooflights, Rooflights	0.468	North West	0.7	1.3			
NE EW Windows, Window	3.78	North East	0.7	1.3			
NE EW Windows, Window	1.86	North East	0.7	1.3			
NE SR Rooflights, Rooflights	0.6308	North East	0.7	1.3			

2d Thermal brid	2d Thermal bridging (better than typically expected values are flagged with a subsequent (!))							
Building part 1 -	Main Dwelling: Thermal bridging ca	alculated from linear thermal transm	nittances for eac	h junction				
Main element	Junction detail	Source	Psi value	Drawing /				
			[W/mK]	reference				
External wall	E2: Other lintels (including other steel lintels)	Government-approved scheme	0.019 (!)	MFF-150-E2-01				
External wall	E3: Sill	Government-approved scheme	0.022 (!)	MFF-150-E3-01				
External wall	E4: Jamb	Government-approved scheme	0.017 (!)	MFF-150-E4-01				
External wall	E5: Ground floor (normal)	Government-approved scheme	0.061	MFF-150-E5-04				
External wall	E6: Intermediate floor within a dwelling	Government-approved scheme	0.001 (!)	MFF-150-E6-01				
Roof	R1: Head of roof window	SAP table default	0.24					
Roof	R2: Sill of roof window	SAP table default	0.24					
Roof	R3: Jamb of roof window	SAP table default	0.24					
External wall	E11: Eaves (insulation at rafter level)	Government-approved scheme	0.018 (!)	MFF-150-E11-0				
External wall	E12: Gable (insulation at ceiling level)	Government-approved scheme	0.043	MFF-150-E12-0				
External wall	E13: Gable (insulation at rafter level)	Government-approved scheme	0.043	MFF-150-E13-0 1				
External wall	E16: Corner (normal)	Government-approved scheme	0.042	MFF-150-E16-0 1				
Roof	R4: Ridge (vaulted ceiling)	SAP table default	0.12					
Roof	R5: Ridge (inverted)	SAP table default	0.12					
Roof	R7: Flat ceiling (inverted)	SAP table default	0.12					
Roof	R9: Roof to wall (flat ceiling)	SAP table default	0.32					

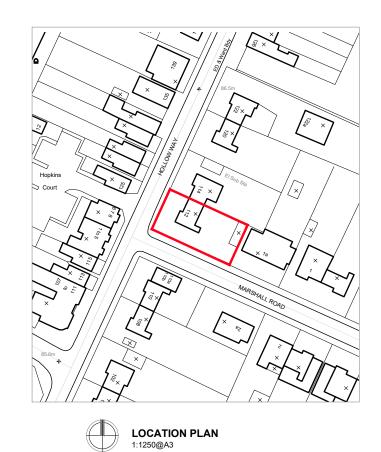

3 Air permeability (better than typically expected values are flagged with a subsequent (!))									
Maximum permitted air permeability at 50Pa	8 m ³ /hm ²								
Dwelling air permeability at 50Pa	5 m ³ /hm ² , Design value	OK							
Air permeability test certificate reference									

4 Space heating							
Main heating system 1: Heat pump with radiators or underfloor heating - Electricity							
Efficiency	293.5%						
Emitter type	Both radiators and underfloor						
Flow temperature	45°C						
System type Heat Pump							
Manufacturer	Mitsubishi Electric Europe B.V.						
Model	Ecodan 6.0 kW						
Commissioning							
Secondary heating system: N/A							
Fuel	N/A						
Efficiency	N/A						
Commissioning							

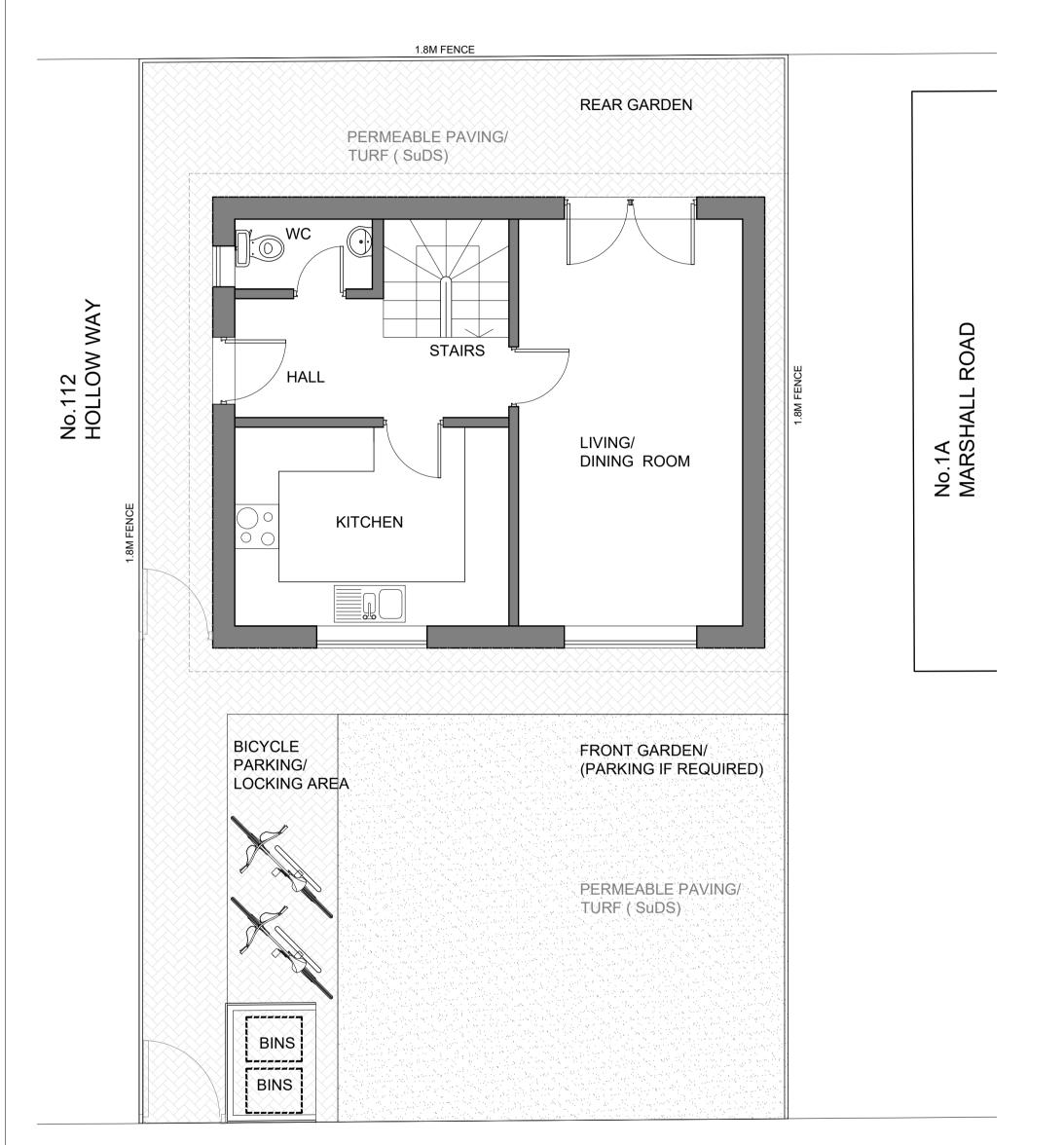

5 Hot water							
Cylinder/store - type: Cylinder							
Capacity	180 litres						
Declared heat loss	1.86 kWh/day						
Primary pipework insulated	Yes						
Manufacturer							
Model							
Commissioning							
Waste water heat recovery system 1 - type: N/A							
Efficiency							
Manufacturer							
Model							

6 Controls							
Main heating 1 - type: Time and temperature zone control by arrangement of plumbing and electrical services							
Function							
Ecodesign class							
Manufacturer							
Model							

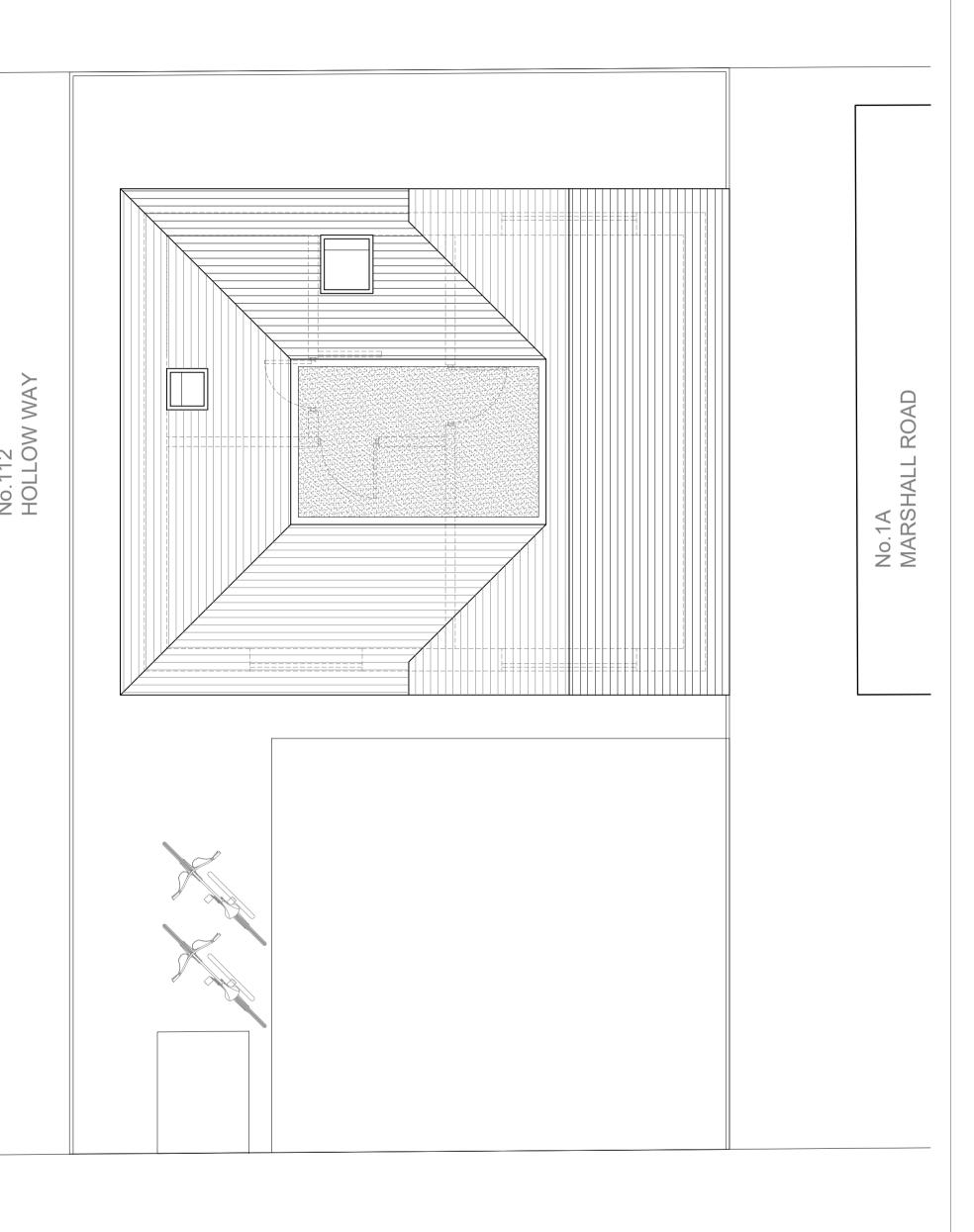
Water heating - type: Cylinder thermosta	at and HW separately	timed						
Manufacturer								
Model								
7 Lighting								
Minimum permitted light source efficacy	75 lm/W							
Lowest light source efficacy	75 lm/W		ОК					
External lights control	N/A							
8 Mechanical ventilation								
	N/A							
Specific fan power	N/A		N/A					
Minimum permitted heat recovery	N/A							
efficiency								
Heat recovery efficiency	N/A		N/A					
Manufacturer/Model								
Commissioning								
9 Local generation								
N/A								
40 Heat waterwarks								
11 Supporting documentary evidence								
N/A								
12 Declarations								
a. Assessor Declaration								
This declaration by the assessor is co	onfirmation that the co	entents of this BREL Compliance Report						
are a true and accurate reflection bas	ed upon the design ir	nformation submitted for this dwelling for						
the purpose of carrying out the "As de	g permitted light source efficacy 75 lm/W OK pht source efficacy N/A printited specific fan power N/A an power N/A N/A permitted specific fan power N/A permitted heat recovery N/A very efficiency N/A N/A permitted heat recovery N/A very efficiency N/A N/A permitted heat recovery N/A very efficiency N/A permitted heat recovery N/A very efficiency N/A permitted heat recovery N/A very efficiency N/A permitted specific fan power N/A permitted specific speci							
evidence (SAP Conventions, Append	urce efficacy 75 lm/W OK control N/A rentilation W/A iitted specific fan power N/A wer N/A wer N/A ifficiency N/A lodel rks documentary evidence s **Peclaration** tition by the assessor is confirmation that the contents of this BREL Compliance Report accurate reflection based upon the design information submitted for this dwelling for of carrying out the "As designed" assessment, and that the supporting documentary AP Conventions, Appendix 1 (documentary evidence) schedules the minimum ye evidence required) has been reviewed in the course of preparing this BREL Assessor ID: Date:							
documentary evidence required) has	been reviewed in the	course of preparing this BREL						
Compliance Report.								
Signed:		Assessor ID:						
Name		Deter						
iname:		Date:						
Lowest light source efficacy 75 lm/W OK External lights control N/A 8 Mechanical ventilation System type: N/A Maximum permitted specific fan power N/A Specific fan power N/A Minimum permitted heat recovery N/A Minimum permitted heat recovery N/A Minimum permitted heat recovery N/A Manufacturer/Model Commissioning 9 Local generation N/A 11 Supporting documentary evidence N/A 12 Declarations a. Assessor Declaration This declaration by the assessor is confirmation that the contents of this BREL Compliance Report are a true and accurate reflection based upon the design information submitted for this dwelling for the purpose of carrying out the "As designed" assessment, and that the supporting documentary evidence (SAP Conventions, Appendix 1 (documentary evidence) schedules the minimum documentary evidence required) has been reviewed in the course of preparing this BREL Compliance Report. Signed: Assessor ID:								
are a true and accurate reflection based upon the design information submitted for this dwelling for the purpose of carrying out the "As designed" assessment, and that the supporting documentary evidence (SAP Conventions, Appendix 1 (documentary evidence) schedules the minimum documentary evidence required) has been reviewed in the course of preparing this BREL Compliance Report. Signed: Assessor ID: Name: Date:								


PROPOSED SITE PLAN/ ROOF PLAN 1:100 @A1 , 1:200@A3

MARSHALL ROAD



1:1250@A3

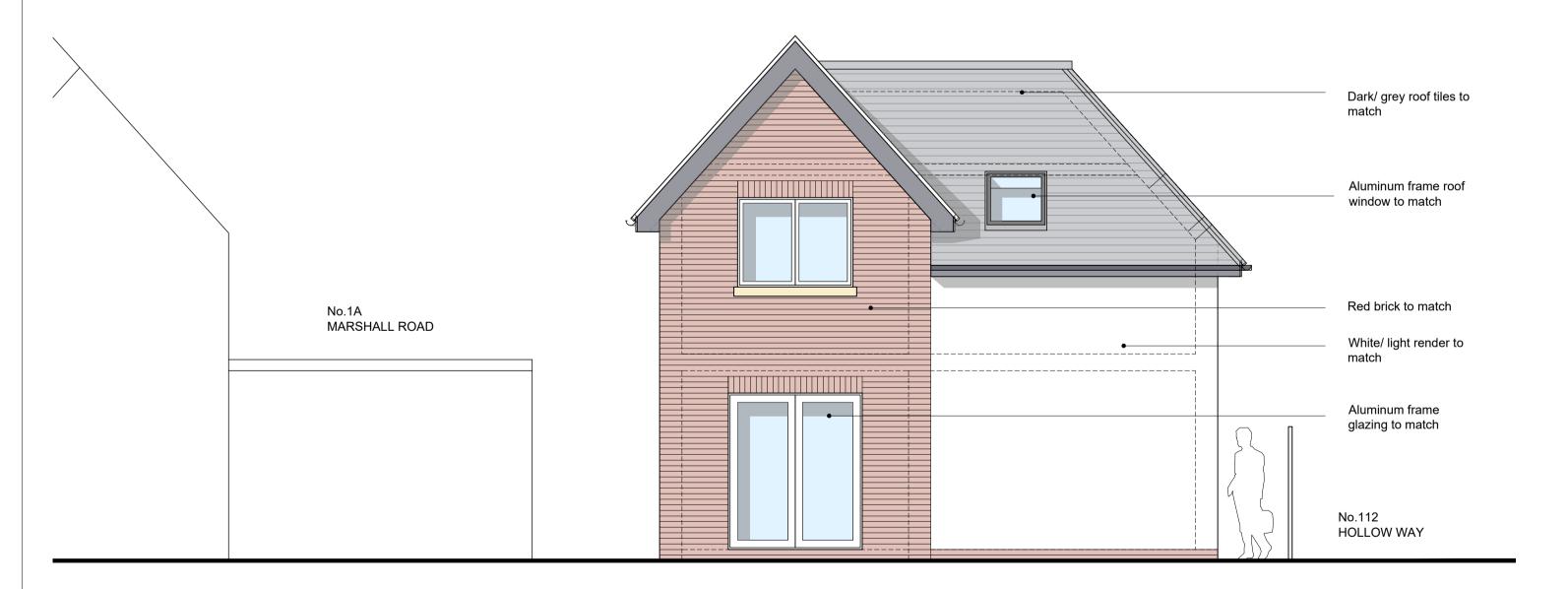

0 10m 20m 30m 50m 75m

LANDING BEDROOM 1 BEDROÓM 2

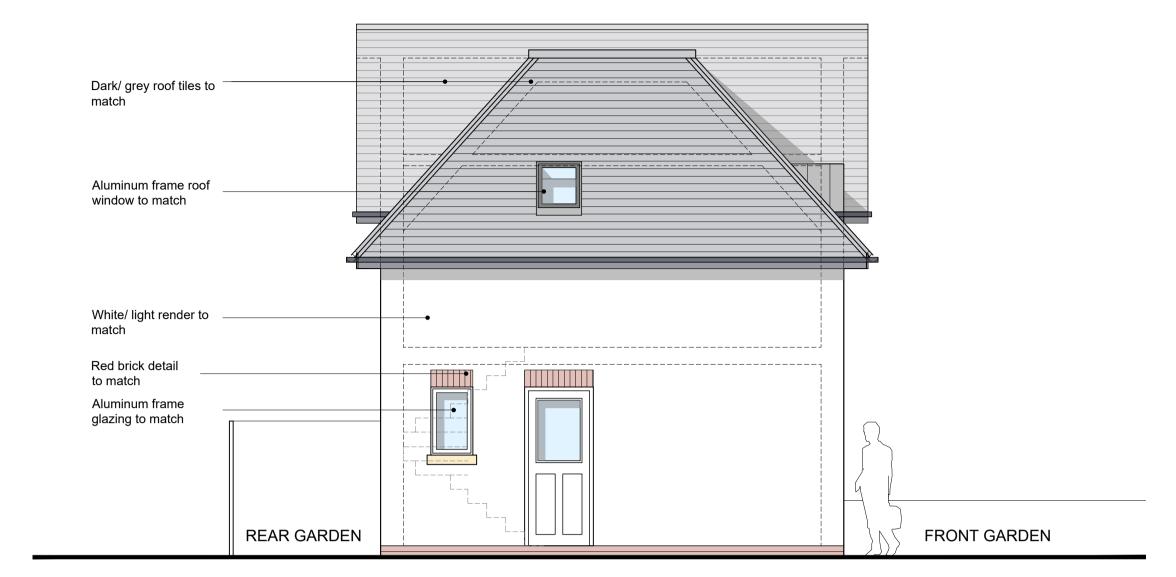
EXISTING PAVEMENT/ DROPPED KERB

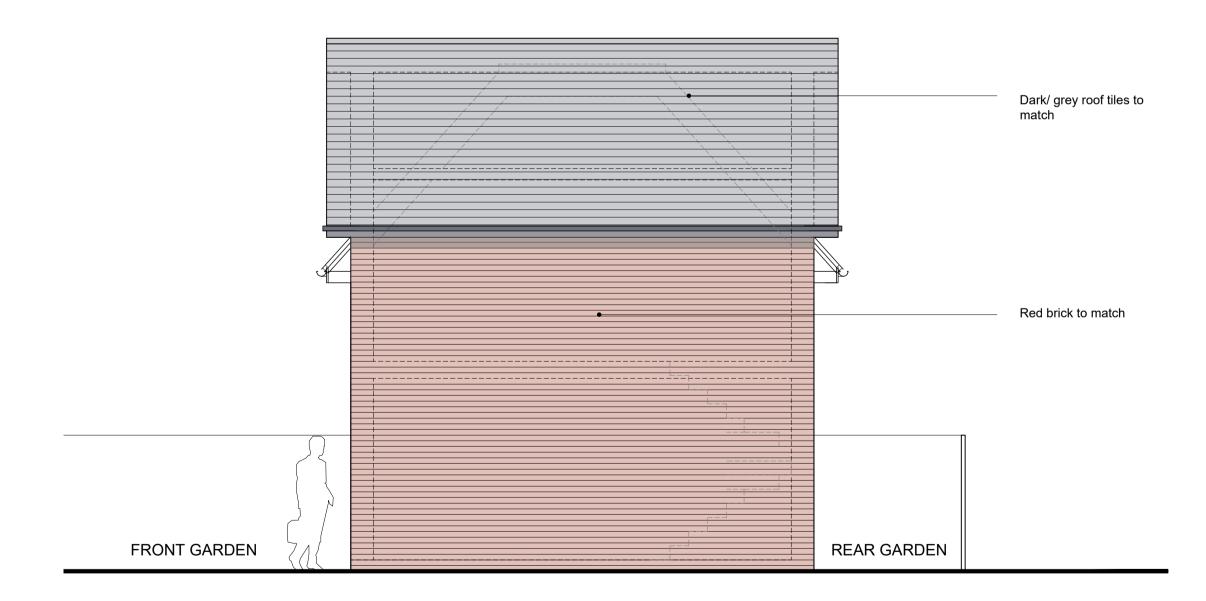
MARSHALL ROAD **NEW DWELLING** PROPOSED FIRST FLOOR 1:50@A1, 1:100@A3

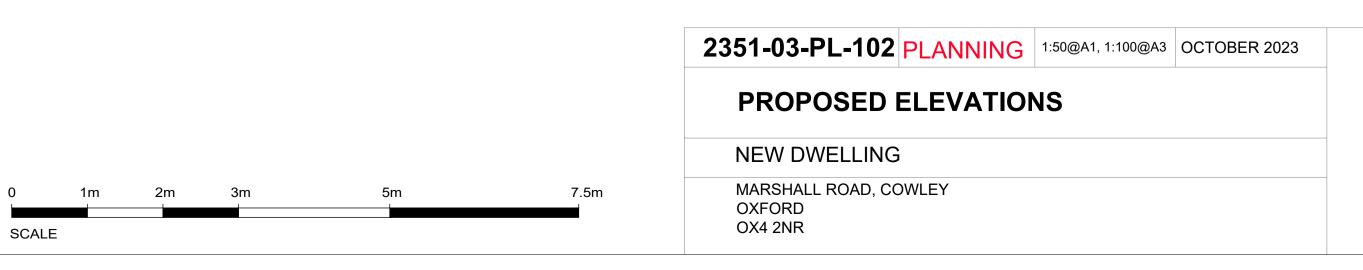
NEW DWELLING ROOF PLAN 1:50@A1, 1:100@A3


2351-03-PL-101 PLANNING 1:50@A1, 1:100@A3 OCTOBER 2023 PROPOSED GROUND FLOOR, FIRST FLOOR, & ROOF PLANS **NEW DWELLING** MARSHALL ROAD, COWLEY OXFORD OX4 2NR

3 Kings Meadow Osney mead Oxford OX2 0DP T: 01865 818197 project51architecture.co.uk office@project51architecture.co.uk PROJECT ARCHITECTURE


SCALE


PROPOSED FRONT ELEVATION (SOUTH) 1:50@A1, 1:100@A3


PROPOSED REAR ELEVATION (NORTH) 1:50@A1, 1:100@A3

PROPOSED SIDE ELEVATION (EAST) 1:50@A1, 1:100@A3

PROPOSED SIDE ELEVATION (WEST) 1:50@A1, 1:100@A3

Job no: Date: Assessor name: PR11113 30/11/2023 Iraj Maghounaki

Registration no:

BRE400012

Development name:

112 Hollow Way - SAMPLE

BRE Global 2008. BRE Certification is a registered trademark owned by BRE Global and may not be used without BRE Global's written permission.

Permission is given for this tool to be copied without infringement of copyright for use only on projects where a Code for Sustainable Homes assessment is carried out. Whilst every care is taken in preparing the Wat 1 assessment tool, BREG cannot accept responsibility for any inaccuracies or for consequential loss incurred as a result of such inaccuracies arising through the use of the Wat 1 tool.

PRINTING: before printing please make sure that in "Page Setup" you have selected the page to be as "Landscape" and that the Scale has been set up to 70% (maximum)

WATER EFFICIENCY CALCULATOR FOR NEW DWELLINGS - (BASIC CALCULATOR)																				
House Type:	Тур	e 1	Тур	e 2	Type 3		Type 4 Type 5		Type 6		Type 7		Type 8		Type 9		Type 10			
Description:	SAM	IPLE																		
Unit of measure	Capacity/ flow rate	Litres/ person/ day	Capacity/ flow rate	Litres/ person/ day	Capacity/ flow rate	Litres/ person/ day	Capacity/ flow rate	Litres/ person/ day	Capacity/ flow rate	Litres/ person/ day	Capacity/ flow rate	Litres/ person/ day	Capacity/ flow rate	Litres/ person/ day	Capacity/ flow rate	Litres/ person/ day	Capacity/ flow rate	Litres/ person/ day	Capacity/ flow rate	Litres/ person/ day
h WC specified?	Du	ıal																		
Full flush volume	6	8.76		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Part flush volume	3	8.88		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Flow rate (litres / minute)	6	11.06		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Shower Present?	Bath &	Shower															,		,	
Capacity to overflow	150	16.50		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Flow rate (litres / minute)	8	34.96		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
minute) `	5	12.56		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
ng machine been specified?	N																			
Litres / kg	7			0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
	N	0																		
setting	0.9	4.50		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
sposal unit been specified?	No	0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
day .		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
																				0.0
																				0.91
	-	104.1 Level 3/4		-		-		-		-		-		-		-		-		-
		5.0		5.0		5.0		5.0		5.0		5.0		5.0		5.0		5.0		5.0
	•	109.1		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0
	House Type: Description: Unit of measure h WC specified? Full flush volume Part flush volume Part flush volume Flow rate (litres / minute) Capacity to yoverflow Flow rate (litres / minute) g machine been specified? Litres / place setting sposal unit been specified? Litres / person / day Calcul Normalisat: Total Consun Mandatory External u Total Consun	House Type: Description: SAM Unit of Capacity/flow rate h WC specified? Full flush volume Part flush volume Capacity to boverflow Flow rate (litres / minute) No Sposal unit been specified? Litres / person /	Description: Capacity/ flow rate Now rate (litres / minute) Capacity flow rate (litres / minute) Capacity flow rate (litres / minute) Capacity flow rate (litres / minute) Capacity to boverflow Capacity to boverflow Capacity to flow rate (litres / minute) Capacity flow rate (litres / minute) Toward (litres / minute) Capacity flow rate (litres / minute) Toward (litres / minute) Augustianute flow rate (litres / minute) Capacity flow rate (litres / minute) Toward (litres / minute) Augustianute flow rate (litres / minute) Capacity flow rate (litres / minute) Toward (litres / minute) Augustianute flow rate (litres / minut	Description: Capacity/ flow rate Now rate Capacity/ flow rate Litres/ person/ day Capacity/ flow rate Dual Full flush volume 8 8.76 Part flush volume 3 8.88 Flow rate (litres / minute) Capacity to boverflow Flow rate (litres / minute) Capacity to boverflow Flow rate (litres / minute) Shower Present? Bath & Shower Capacity to boverflow Flow rate (litres / minute) Bath & Shower Capacity to been \$\frac{16.50}{9} Flow rate (litres / minute) Flow rate (litres / minute) Bath & Shower Capacity to been Flow rate (litres / minute) Bath & Shower Capacity/ flow rate 15.0 Total Consumption 104.1 Level 3/4 External use 5.0 Total Consumption 109.1	No	No	House Type: Type 1 Type 2 Type 3	House Type: Type 1 Type 2 Type 3 Type	House Type: Type 1 Type 2 Type 3 Type 4	House Type: Type 1 Type 2 Type 3 Type 4 Type	House Type Type 1 Type 2 Type 3 Type 4 Type 5	House Type: Type 1 Type 2 Type 3 Type 4 Type 5 Type	Note Type Type	Note	Mouse Type Type	Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type	Mouse Type: Type Type	Mouse Type: Type Type	Mouse Types Mouse Type Mouse Type Type Type Type Type Type Type Typ	Type Type

(BASIC CALC.)