

148 Oxford Road, Oxford, OX4 2EA

PR10887

Date: 23/10/2023

Suite L, The Kidlington Centre, High Street, Kidlington, OX5 2DL

www.erscltd.co.uk

Notice

This document has been prepared for the titled project or named part thereof and should not be relied upon or used for any other project without an independent check being carried out as to its suitability and prior written authority of ERS Consultants Ltd being obtained. This document, which may include extracts from or refer to British Standards, is the sole copyright of ERS Consultants Ltd. It shall not be reproduced in whole or in part without written permission of ERS Consultants Ltd. ERS Consultants Ltd accepts no responsibility or liability for the consequences of this document being used for a purpose other than the purposes for which it was commissioned. Any person using or relying on the document for such other purpose agrees, and will by such use or reliance be taken to confirm his agreement to indemnify ERS Consultants Ltd Limited for all loss of damage resulting therefrom.

Document History

Client: Bob Pope

Project: 148 Oxford Road, Oxford, OX4 2EA

Document title: Energy & Sustainability Strategy

ERS reference: PR10887

Revision	Remarks	Author	Checked	Approved	Date
00		Soraya Mohajeri	Riley Dixon	Yes	23/10/2023

Contents

Notice	2
Document History	2
Contents	3
Executive summary	5
Baseline – (CO2 emissions Part L of the Building Regulation)	<i>6</i>
Be Lean – Use less energy	6
Be Clean – Supply energy efficiently	6
Be Green – Use renewable energy	7
Energy & carbon demand summary	8
Introduction	11
Site & proposal	11
Policy context	12
Calculation methodology	12
Be Lean – Use less energy	14
Active design measures	15
Overheating Risk analysis	17
Be Lean CO ₂ emissions & savings	18
Be Clean – Supply energy efficiently	19
Low Carbon Energy Sources	19
Be Green – Use renewable energy	20
Renewable technologies feasibility study	20
Detailed assessment of Photovoltaic Panels	22
Be Green CO ₂ emissions & savings	22
Flood zone risk assessment for planning	23
Study approach	23
Flood vulnerability	23
Conclusion	2/

148 Oxford Road, Oxford, OX4 2EA Energy & Sustainability Strategy

Appendix A - Low or Zero Carbon Energy Sources	25
Biomass As a fuel	25
Geothermal Energy:	25
Ground source earth coupling options	26
Vertical Closed Loop System	26
Horizontal Closed Loop System	27
Vertical Open Boreholes System	27
Air Source Heat Pumps	28
CHP	29
Solar thermal collectors	29
Photovoltaic	30
Wind energy	31
Appendix B-Fuel prices and emission factors	33
Appendix C. D. E. Fand G	35

Executive summary

ERS Consultants Ltd has been appointed to prepare an Energy & Sustainability Statement for the site located at 148 Oxford Road, Oxford, OX4 2EA.

The proposal is for the conversion of a first-floor office to a flat and a new build flat adjacent to this. This report will be focusing on the new-build flat, implementing careful design and implementing sustainability measures.

Proposed schedule of accommodation are as follows:

1x New flat - 1-Bedroom flat - 65.32m²

Total floor area for habitable dwelling: 65.32m²

This energy and sustainability strategy outlines the key measures to be incorporated in the design, in regards to sustainability, carbon emissions, renewable energy and environmental impact of the considered development in accordance and with guidance from the following documents and policies:

- Oxford Local Plan 2036 RE1
- The National Planning Policy Framework (NPPF) July 2021

In line with the Oxford Local Plan 2036 RE1, the development would need to achieve a 40% reduction in regulated CO₂ emissions against a Building Regulations (Part L 2021) compliant scheme.

Elmhurst Design SAP 10.2 has been used as this development will be completed to 2021 Building regulation standards. The site-wide reduction will still need to achieve compliance with the Target Energy Rating (TER) at the Be Green stage.

This energy & sustainability statement will demonstrate how a selection of sustainable energy efficient measures and low-carbon technologies are used in the reduction of the site wide carbon emissions for the development.

A detailed calculation has been undertaken to establish the energy consumption and carbon emissions of the proposed development.

The methodology used to determine the expected operational CO_2 emissions for the development is in accordance with the standard three-step Energy Hierarchy and the CO_2 savings achieved for each step are outlined below:

Baseline – (CO₂ emissions Part L of the Building Regulation)

Initially in the energy assessment, the baseline regulated CO₂ emissions of the development must be established. This is the standard that all subsequent reductions will be gauged. For this development, the baseline regulated CO₂ emissions calculated for the unit is **0.74 Tonnes CO₂/Year.**

Be Lean - Use less energy

The second step addresses, reduction in energy demand through the adoption of passive and active design measures with emphasis on a fabric first approach.

Emphasis will be put on the buildings fabric performance in order to reduce energy consumption, as less heating and cooling will be lost through the high performance fabric hence reducing the demand. Fabric first measures include levels of insulation beyond Building Regulation 2021 requirements which will help in achieving low air tightness levels. A scheme for construction detailing will also be specified in order to minimise heat loss through thermal bridging.

With the addition of the lean fabric improvements the energy regulated CO₂ emissions are shown to reduce by 45.66% to 0.40 TonnesCO₂/Year for the proposed site.

Be Clean - Supply energy efficiently

Once demand for energy has been minimised, all planning applications must demonstrate how their energy systems will exploit local energy resources (such as secondary heat) and supply energy efficiently and cleanly to reduce CO₂ emissions.

When selecting the proposed heating system, it is imperative to consider carbon dioxide emissions, as all combustion processes can emit oxides of Nitrogen (NOx) and, solid or liquid fuelled appliances (such as those using biomass or biodiesel) can also emit Particulate Matter. These pollutants contribute to Enfield's poor air quality and can have negative impacts on the health of local residents and occupiers of the development. It is important that these impacts are taken into account in determining the heating strategy of a development.

The space conditioning and hot water system network in this stage of the development will remain the same as the previous stage, which is an SAP Default Air Source Heat Pump but will have the addition of an mcs certificate.

In this project there will be no direct heating networks or CHP incorporated so therefore, the Be Clean scenario will not further reduce CO₂ emissions on site for the proposed development, therefore meaning there are no changes to be implemented to the development.

At this stage, the main heating system is an SAP Default air source heat pump with mcs certificate. With this addition, the CO_2 emissions are shown to reduce by **53.03% to 0.35 Tonnes CO_2/Year** from the baseline for the proposed site.

Be Green – Use renewable energy

At this stage of the project, various low-zero carbon options were considered to meet the required reduction. In the end, it was decided that the same heating system as the Be Clean stage can be used in addition to 1.00kWp of PV facing South East with an export capable meter.

By implementing that low carbon heating system, the regulated carbon emissions have been reduced by <u>67.33% from the baseline to 0.24 Tonnes CO₂/Year.</u>

This concludes this proposed development using the proposed specification in this report completes the 40% Carbon Emissions Reduction against Part L Building Regulations standards by using the Part L 2021 carbon emission factors.

Energy & carbon demand summary

Table 1 Energy and Carbon Reductions for Site Wide Reduction							
	Fabric energy kWh/year	CO ₂ Emissions Savings (%)					
Baseline	3,974		0.74				
Be Lean	4,257	-7.11%	0.40	45.66%			
Be Clean	3,687	14.34%	0.35	7.38%			
Be Green	Be Green 2,796 22.42% 0.24 14.29%						
Total Reduction 29.65% 67.33%							

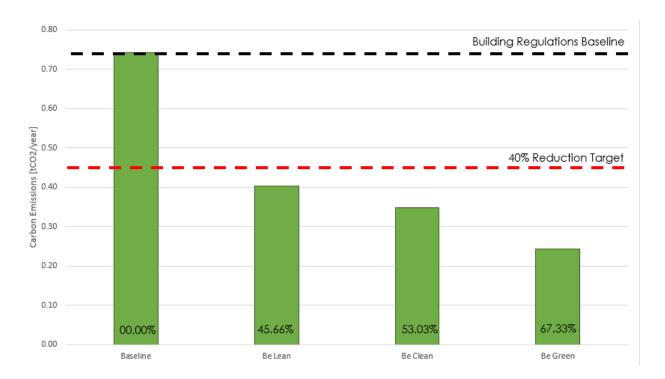


Fig.1 CO₂ Reduction for Site-wide carbon reduction

As shown in Table 1, the provisional baseline annual carbon dioxide emissions of the proposed development have been calculated to achieve 0.74 Tonnes $CO_2/Year$ for the plot and through the design development this has been reduced to achieve the following:

New-build reduction achieved: 67.33% (0.24 Tonnes CO₂/Year).

Table 2: Proposed Fabric Specifications							
Fabric Construction and Insulation							
Element Type U-Value							
Exposed Floor to retail	Exposed Floor - Solid	0.18					
External Walls	Cavity Wall	0.19					
Roof at Joists	Pitched – insulated at joists	0.12					
Windows	Window	Double glazed, argon filled, 16mm unit with low- e coat; G-Value of 63%; 70% Frame Factor	1.20				
Doors	Solid Door	Solid or minimally glazed;	1.20				

	Ta	ble 3:	Propose	ed Syst	em Spec	ifications			
			Spo	асе Не	ating				
Main Heating System		SAP Default Air Source Heat Pump supplying radiators MCS Certified;							
Heating Controls	Time an	d temp	oerature :	zone c	ontrol;				
Secondary Heating	None;								
			Wo	iter He	ating				
Heat source	From	Main H	leating	Cylind	der Size	170 litres	Heat Loss		.63 n/Day
WWHRS Instantaneous System 1		N/A		WWHI Instan Syster	taneous		N,	/A	
Water Use <=125 l/p/d		Yes		Cold Sourc			From	Mains	
Shower(s)	or ur	oinatior nvente ater sys		Flow Rate		l/min			
Bath Count		0		Cylin		ork is fully ins der heating o			sible; Full
Solar Thermal	Not Installed;								
			V	/entilat	ion				
Mechanical Ventilation System	Nuc	aire MR	XBOXAB-	Number of Wetrooms, excluding kitchen					
Cooling system	Not installed;								
Pressure Test Blower Do	or 3.00)m³/hm	n² @ 50 Po	a (Pleas	e note ERS	can provide	Air Leak	age Testing)
Detailing (linear thermal bridging junctions – formerly ACDs)	deviation from this will require an update to the SAP calculations as the psi-values will change; Masonary Cavity Hybrid Insulation 90mm (0.022/mK)								
Lighting	No. Fittings	20	Powe [W]	e r 2	Efficacy [lm/W]	75	C	Capacity [Im]	150
Tariff and Meters	Stando	ard	Electric	Smart ectricity Neter Smart Gas Not prese			esent		
PV/Renewables	1kWp of	PV fac	cing Sout	heast					
Please note: There may be	uparades	compar	ed to your	original s	pecification	to achieve bui	ldina real	ulation appro	val under

Please note: There may be upgrades compared to your original specification to achieve building regulation approval under the relevant Approved Document Part L. Failure to implement these upgrades may result in a Building Regulation Failure at final stage. Please ensure any changes to the specification are made through this office to ensure ongoing compliance.

Introduction

Site & proposal

The site is located at the land of 148 Oxford Road, Oxford, OX4 2EA

Sitewide Gross Internal Area for all dwellings: 141.94 m^2 , New Build flat internal Area; 65.32 m^2 ,

The approximate site location of the proposed development is shown in the site plan Fig.2.

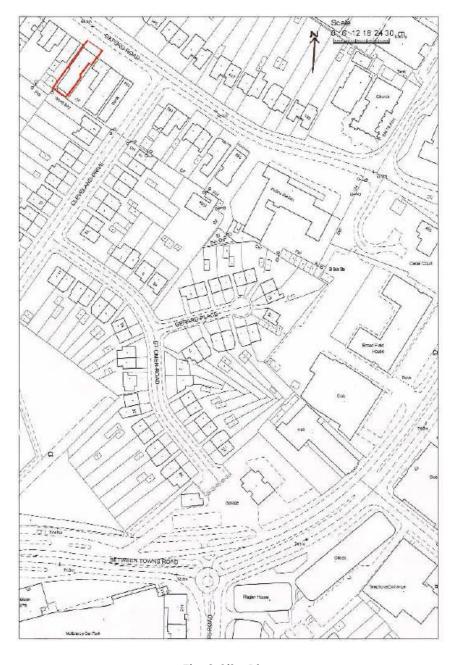


Fig.2 Site Plan

Policy context

This energy and sustainability statement will seek to respond to the energy policies that apply to this development. The most relevant applicable energy policies in the context of the proposed development are presented below.

- Oxford Local Plan 2036 RE1
- The National Planning Policy Framework (NPPF) July 2021

All the aforementioned policies focus on zero carbon targets for residential developments with a minimum 40% on site reduction beyond Part L 2021.

Calculation methodology

The sections below present the methodology followed in determining carbon emissions reduction savings for the proposed scheme.

The methodology employed by the energy and sustainability statement is in line with the GLA's Guidance on preparing energy assessments.

The baseline CO_2 emissions are first established, i.e., the emissions of a scheme that is compliant with Part L 2021 of the Building Regulations.

The approved software used to model and calculates the energy performance and carbon emissions are SAP 2012 version by Elmhurst Energy Systems Ltd.

Baseline:

The buildings baseline uses Mains Gas as the main source of heating on the notional calculations. The full specification of the baseline can be found in Table 1.1 of the Approved Document L Volume, 2021 Edition.

Be Lean: use less energy

The demand for energy is reduced through a range of passive and active energy efficiency measures; as part of this step the dwellings' fabric u-values and glazing have been improved to a high standard, in addition to this suitable heating systems are utilised as per the specifications in Table 2 and 3. The main heating system used are SAP default gas combination boiler.

Be Clean: supply energy efficiently

As much of the remaining energy demand is supplied as efficiently as possible in the previous stage, we consider the option of communal and network-based heating strategies, but due to high costs and the scale of the development this is not a viable option. At this stage, the main heating is to be an SAP Default air source heat pump with mcs certificate and MVHR.

Be Green: use renewable energy

Renewable and low-zero carbon technologies are incorporated to offset part of the carbon emissions of the development. The uptake of low or zero carbon technologies is based on feasibility and viability considerations, including their compatibility with the energy system determined in the previous step.

The implementation of the Energy Hierarchy determines the total regulated carbon savings that can be feasibly and viably achieved on site.

The 40% improvement for the development against the baseline emissions is compared to the relevant targets for each element and in case of a shortfall; savings through offsite measures should be achieved.

The Conclusions section summarises the energy strategy and associated carbon savings for the proposed development.

The carbon emissions factors used in all calculations in this document are those used for Part L of the Building Regulations. The relevant factors are reproduced in Table 4 below.

Table 4 Carbon Emission Factors for selected fuel type						
Fuel	Emissions kg CO2e per kWh	Primary energy factor				
Mains Gas	0.210	1.130				
Bulk/Bottled LPG	0.241	1.141				
Liquid Fuels	0.024	1.286				
Heating Oil	0.298	1.180				
Wood Pellets	0.053	1.325				
Grid Electricity	0.136	1.501				

^{*} Table extracted from the document SAP Version 10.2 (21-04-2022). Table 12: Fuel prices, emission factors and primary energy factors, Page 189. this can be found in the appendix of the report.

Be Lean - Use less energy

The proposals incorporate a range of passive and active design measures that will reduce the energy demand for space conditioning, hot water, and lighting. Measures will also be put in place to reduce the risk of overheating, the regulated carbon saving achieved in this step of the Energy Hierarchy is **45.66%** when compared against the baseline level for the development.

Passive design measures

Enhanced U-values

The heat loss of different building fabric elements is dependent upon their U-value. A building with low U-Values provide better levels of insulation and reduced heating demand during the cooler months.

The proposed development will incorporate high levels of insulation and high-performance glazing beyond Part L 2021 targets and notional building specifications, to reduce the demand for space conditioning (heating and/or cooling).

Table 5 demonstrates the improved performance of the proposed building fabric beyond the Building Regulations requirements.

Table 5 Proposed fabric U-Values					
Domestic (U-Values in W/m²k)					
Part L 2021 Element Building Proposed Regulation					
Wall	0.26	0.19 (External Wall)			
Floor	0.18	0.12 (Exposed Floor to retail)			
Roof	0.16	0.12 (Roof at Joists)			
Windows	1.60	1.20			
Solid Doors	1.60	1.20			

These u-values are recommended but may change during the construction stage, to meet site constraints, any worsening of the u-values must ensure the required 40% reduction in Carbon is met before completion;

Air tightness improvement

Heat loss may also occur due to air infiltration. Although this cannot be eliminated altogether, good construction detailing and the use of best practice construction techniques can minimise the amount of air infiltration.

The proposed development will aim to improve upon the Part L 2021 minimum standards for air tightness by targeting air permeability rates of **3.00m³/m².h at 50Pa**.

Active design measures

High efficacy & low energy lighting

Where artificial lighting will be needed it will be low energy lighting without compensating for luminance, and will accommodate LED.

Water

The National Planning Policy Framework requires water efficiency in new developments to meet the highest national standard. For residential development, this is defined in the supporting text as the 'optional Building Regulation' for water efficiency in new dwellings, which is 110 litres per day per person.

There are presently no other national standards for non-residential developments than those in the Building Regulations. However, the principle of water efficiency in line with the waste hierarchy applies to all developments. As a result, all developments should seek to reduce demand through efficiency measures, and then meet remaining demand from sustainable sources wherever possible.

For all developments, the submitted information should set out an approach to water management that reduces water usage and waste and priorities demand reduction measures over supply measures.

Reducing water use

Development, whether new construction or change of use and refurbishment, can save water by including measures such as:

- systems for greywater reuse
- aerated washbasin/kitchen taps and shower heads,
- sensor and low flush toilets,
- shower timers, and
- water efficient white goods and appliances

Water use during construction can be reduced through measures including:

- closed loop wheel washers,
- waterless wheel washing using angled steel grids to remove debris,
- high pressure low volume power hoses, recirculating water where possible,
- limiting the water used for flushing building services by stopping it as soon as the flush water turns clear, and employing a regime for monitoring water use and water waste.

Choosing the best location for a boiler can reduce water consumption and heat loss. By minimising the length of hot water pipes the volume of water that must be drawn off each time a tap or shower is used can be reduced. Positioning hot water pipes above pipes carrying cold water will reduce heat transfer. Further heat loss can be reduced by insulating the piping.

For all new dwellings, a completed "water efficiency calculator for new dwellings" worksheet that accords with Part G of the building regulations' Approved Documents will be provided prior to occupation. The calculation will demonstrate that the new dwellings will achieve a maximum water usage of 110 litres per person per day.

Controls and Monitoring

Advanced lighting and space conditioning controls will be incorporated, specifically:

- For areas of infrequent use, occupant sensors will be fitted for lighting,
 whereas day lit areas will incorporate daylight sensors where appropriate;
- Heating and cooling systems controls will comprise time and temperature controls, both centrally for the whole building, and locally for each space;
- Smart metering to be installed on all new dwellings for adequate monitoring;

Overheating Risk Analysis

Passive solar gain refers to the process whereby a building is heated by the sun, either directly from sunlight passing through a window and heating the inside of the building, or indirectly as sunlight warms the external fabric of the building and the heat travels to the interior. The level of passive solar gain can significantly impact upon the quality of a building, how it is used and the energy needed for it to be inhabited comfortably. Passive solar gain can reduce the need for mechanical heating, which in turn reduces energy use and carbon emissions.

Key factors that influence passive solar gain include the physical characteristics of the site, immediate surroundings, orientation of buildings, external design, internal layout and the construction materials used.

Whilst passive solar gain can reduce the carbon emissions associated with heating, if used incorrectly it can lead to overheating, which in turn can lead to the installation of mechanical cooling equipment (e.g., air conditioning). Mechanical cooling increases energy consumption and requires maintenance, resulting in costs and carbon emissions. Mechanical cooling units also produce heat that requires dissipation. The need for mechanical cooling can be avoided or lessened by designing-in passive ventilation and passive cooling measures. Developments should not incorporate mechanical cooling unless passive measures have been fully explored and appraised and proposals that include mechanical cooling should clearly demonstrate that passive measures would not be adequate.

The potential overheating for the development is to be assessed in accordance to Part O of the Building Regulation. Utilising the simplified approach is the first protocol to ensure the scheme does not over heat, where the simplified approach fails to meet the required reduction, a dynamic simulation will need to be undertaken. The Part O Analysis will be completed post-planning stage.

The following list includes some of the key considerations in the design of new schemes:

- Rooms that are most frequently occupied should benefit from a southerly aspect, but with appropriate measures to avoid overheating.
- Orientation and layout of habitable rooms, and window size and orientation, should be carefully considered in relation to the path of the sun.
- Rooms that include a concentration of heat generating appliances (e.g., kitchens) or are less frequently occupied (e.g. bathrooms) should be located in the cooler

part of the building, generally the northern side.

- Conservatories and atria can be used to assist natural ventilation in the summer by drawing warm air upward to roof vents, and to collect heat during the spring and autumn.
- Where there is a chance that overheating can occur (e.g. due to large expanses of glazing on roofs and south facing elevations), design measures such as roof overhangs, brise soleil, external shuttering, photochromatic and thermochromic glass and a lighter colour palette can help.
- Zonal heating and ventilation systems and controls can be used allowing areas subject to high solar gain to occupy their own temperature control zone. Dynamic controls reduce energy waste.
- Use of materials to build in thermal mass to absorb excess heat during warmer periods and release it slowly during cooler periods (e.g. day/night, summer/winter).
- Buildings should be designed for passive ventilation:
 - cross ventilation with windows located on opposite walls and/or roof mounted turbines or wind cowls that assist with circulation of air by drawing air through windows or top floor openings and
 - o passive stack ventilation (PSV) that uses pressure differences to draw in fresh air from outside to replace rising warm air which is released from the top of the building. A heat exchanger can be placed where the air escapes the building to reduce heat loss.

Be Lean CO₂ emissions & savings

By means of energy efficiency measures and suitable heating systems, regulated CO₂ emissions for the site are shown to reduce by **45.66%** compared to the baseline.

Be Clean - Supply energy efficiently

By means of installing a SAP default electric powered Air Source Heat Pump and MVHR at this stage the site-wide reduction is shown to be **53.03**% compared to the baseline.

Low Carbon Energy Sources

Combined Heat and Power (CHP)

The presence of a year-round base hot water generation heat load in residential units is favourable to CHP. To date, there are readily available micro gas fired CHP units (such as EC power) on the market. At this stage of the energy hierarchy gas fired CHP should be considered for the development's LZC strategy, however, the carbon reductions due to CHP are extremely sensitive to the system design, unit selection and running time.

CHP (Combined Heat & Power) is a-technology that can offer energy efficiency in use, however the system itself needs to run on a 24-hour basis. The heat generated would be exceeding the demand and needs for this site, and would require to have an outlet area which can profit from this excess; however, this development does not have a space that benefit from this; therefore, this option has considered not feasible for this development.

Heat Networks

All new developments should look connect, or be connection ready, where a heat distribution network already exists. The investigation of opportunities should cover all scales and should not be limited to district heating systems.

Be Green - Use renewable energy

Renewable technologies feasibility study

Methods of generating on-site renewable energy (Green) were assessed, once Lean and Clean measures were considered.

This section provides an overview of the technologies considered, a brief assessment of their feasibility, a proposed mixture of suitable technologies.

The proposed development will benefit from an energy efficient building fabric which will reduce the energy consumption of the proposed development in the first instance.

A range of renewable technologies were subsequently considered including:

- Biomass:
- Ground/water source heat pumps;
- Wind energy;
- Photovoltaic panels, and,
- Solar thermal panels.

In determining the appropriate renewable technology for the site, the following factors were considered:

- CO₂ savings achieved;
- Site constraints:
- Financial benefit
- Any potential visual impacts

Demand profiles

The balance of technologies chosen will depend on the development's energy demand patterns.

Keeping in mind that the space heating energy demand changes according to the season. While hot water energy demand will provide a significant base load throughout the year.

At this early stage in the design, it is possible only to outline the likely feasibility of specific technologies. Further descriptions of the LZC technologies below are included in Appendix A.

	Table 6. Renewable an	d Low Ze	ero Carbon T	echnologie	S	
Renewable Technology	Comments	Lifetime (Years)	Maintenance	External Impact	Site Feasibility	Adopted for Site
BIOMASS	Burning of wood pellets releases high NOx emissions and there are limitations for their storage and delivery within an urban location.	20	High	High	1	
PV	PV panels would generate significant carbon savings, whilst having minimal impact on the appearance of the building and no adverse impact on the amenity of neighbouring buildings.	25	Low	Med	10	\boxtimes
Solar Thermal	Solar thermal array mounted on the roof may contribute to carbon reductions, but will reduce the amount of available roof space where Photovoltaics are proposed	25	Low	Med	6	
Air Source Heat Pump	Ground loops require space and additional time at the beginning of the construction process and very high capital costs; however, the air source heat pump is a viable and cost-effective solution to meet the required carbon reductions.	20	Med	Low	10	X
Wind	Due to insufficient open area for installation of a stand-alone wind turbine and planning issues this option has not considered in this development.	25	Med	High	0	

Detailed assessment of Photovoltaic Panels

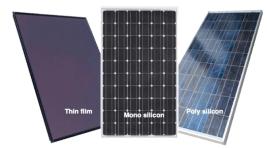


Fig 3. Photovoltaic Panels

Four types of solar cells are available on the market at present and these are monocrystalline, polycrystalline, thin film and hybrid panels as seen in Figure 3. Although mono-crystalline and hybrid cells are the most expensive, they are also the most efficient with an efficiency rate of 12-20%. Poly-crystalline cells are cheaper but they are less efficient (9-15%). Thin film cells are only 5-8% efficient but can be produced as thin and flexible sheets.

Air Source Heat Pumps is considered as a highly efficient low zero carbon technology solution to meet the required carbon reductions for the houses. This typology does not require any photovoltaic panels to meet the required carbon reduction.

The PV shall comprise **1.00kWp for new build flat** to be mounted on the sloped roof facing the rear of the dwelling; Table 7 summarizes the technical data for the proposed PV array. In total, the PV installation would produce a further regulated CO₂ savings of **14.29%** for the **development**.

Table 7. Proposed PV Specifications					
Photovoltaic Panels					
Module Efficiency	15%				
Panel Orientation	South East				
Tilt	To roof angle				
Power to be installed (per flat)	1.00kWp/flats in Block A				
Energy Generation	891.08kWh/yr/				
CO ₂ savings (site-wide)	0.11tCO ₂ /yr				

Be Green CO₂ emissions & savings

The incorporation of low or zero carbon technologies, such as highly efficient Air Source Heat Pumps and PV will further reduce CO₂ emissions of the site by a further **67.33**% compared to the baseline.

Flood zone risk assessment for planning

The Environment Agency has developed a flood risk map for planning to identify the relative risk of flooding for proposed development planning locations. Flood zones assume that no defences are present and so where these do exist, they are only indicative of the potential for flooding.

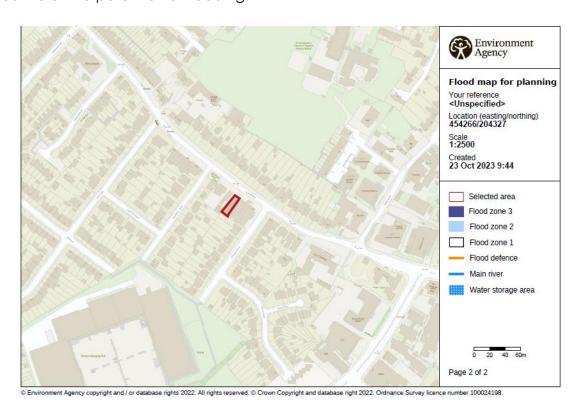


Fig 4. Environment Agency Flood Zone Interactive Map

The whole of the development lies within flood zone 1 of the Environment Agency's flood risk map as seen in fig. 4. Land located within flood zone 1 is at low risk of flooding having an associated annual probability of flooding of less than 1 in 1000 (0.1%).

Study approach

In accordance with Planning Practice Guidance for Flood Risk document, land within flood zone 1 is suitable for all uses. Assessment of this site has been based upon the Environment Agency's flood interactive map, the topographical site survey and the architect's proposed development layout.

Flood vulnerability

Based on the Environment Agencies flood map, the development site is located within Flood Zone 1 and in accordance with Planning Practice Guidance for Flood Risk neither a sequential or exception test is required.

Conclusion

Following the implementation of the three-step Energy Hierarchy, the proposed development has been designed to meet energy policies set out by the proposed development local and national planning requirements, which demonstrates the client and the design team's commitment to enhancing sustainability of the scheme.

Based on the results and outline figures, the proposed development on the Land adjacent to **148 Oxford Road**, **Oxford**, **OX4 2EA** will satisfy the relevant policies for sustainable design and construction requirements of energy consumption and carbon emissions.

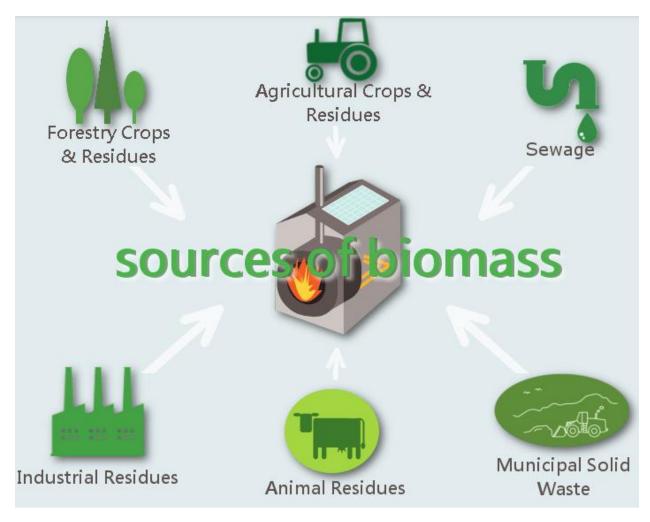
The new development will be designed with a high level of insulation and low air permeability to reduce heat loss as much as is practically possible, also the use of low energy lighting and A – Rated White goods are essential for the reduction of energy consumption. The control strategy throughout the proposed site must be carefully designed to ensure the most economical operation of all equipment.

To achieve the required reduction of carbon emissions, several options were considered, however the best option in regards to site location and development size, was the implementation of an Air Source Heat Pump with MCS Certificate and PV Panels. Different possible renewable energy options have been identified; bearing in mind that selection is a complex process which requires a more detailed estimation of energy demand patterns; therefore, further analysis will be undertaken as the design progresses.

All buildings are to have suitable meter/smart meter management installed on every household, so that the homeowner can benefit from accurate savings to allow for suitable management of energy usage.

The baseline annual energy consumption of the site on this development have been calculated to be <u>0.74 Tonnes CO₂/Year</u> of CO₂ emissions. By incorporating on-site renewable/ LZC technologies the total CO₂ emissions will be reduced to <u>0.24 Tonnes CO₂/Year</u>, equivalent to 67.33% reduction over Part L 2021 requirements.

Post construction each building/dwelling is to have suitable testing to be provided to ensure the dwellings satisfy the requirements of this document and building regulation standards at the time of completion. These reports are to be provided as As-Built SAP worksheets, EPC and Air testing, for all conditioned spaces in the development.



Appendix A - Low or Zero Carbon Energy Sources

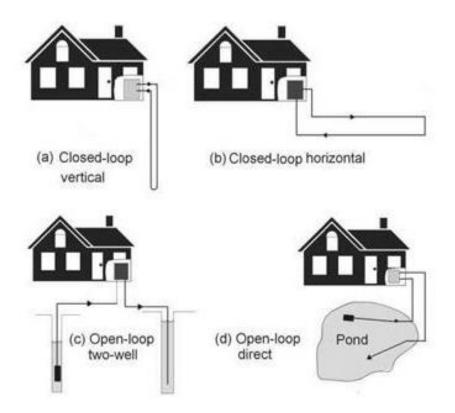
Biomass As a fuel

Biomass is a renewable energy source, generated from burning wood, plants and other organic matter, such as manure or household waste. It releases CO₂ when burned, but considerably less than fossil fuels. We consider biomass a renewable energy source, if the plants or other organic materials being burned are replaced.

Biomass is known for its versatility, given it can be used to generate heat, electricity, be used in combined heat and power units and be used as liquid fuel. In domestic settings, it tends to be found in the form of wood-fuelled heating systems.

Geothermal Energy:

Geothermal energy technologies use the heat energy stored in ground; either for direct-use applications: such as using the grounds' heat to defrost a driveway or the indirect use with additional equipment such as a geothermal heat pump. Most commercial installations couple a heat pump with the ground to upgrade the low-



grade heat from the ground or ground water to a higher-grade heat, where it can be used for heating purposes.

The suitability of a ground source system depends heavily on the type of earth coupling heat exchange system used:

Ground source earth coupling options

The right choice of appropriate heat exchanger depends on several factors such as: size of space heating/hot water system, available site area for the heat exchangers, and local ground conditions. Due to the specialist nature of this technology, we recommend that a specialist is employed to size the heat exchangers based on a desktop study of the site's geological conditions – this normally being required in advance of any other contractor appointment.

Vertical Closed Loop System

A frequently used and simple ground source heat exchanger, for a small to medium size project, is a closed loop vertical system. The system comprises of vertically drilled boreholes, usually up to 100 m deep, into which are inserted two polyethylene pipes with a U-shape connector at the base of the hole – effectively providing a flow down to the bottom of the hole and return back up to the surface. All the flow and return loops are connected together across the site - completing the entire heat exchange loop.

Water is pumped around the loop and is then circulated around the heat pump to achieve the required heat exchange. The distance between boreholes is dependent on ground conditions but is typically a minimum of a 6mx6m grid, to prevent overlapping of the heat exchange process between loops.

Horizontal Closed Loop System

Horizontal closed loop heat exchangers are usually applied to small projects such as individual houses, which usually require a relatively low heat output. Consisting of horizontal trenches 1.5-2m deep, with either straight pipes or 'slinky' coiled pipes, these require significant excavation work and significant site area to achieve appreciable outputs as such are not normally suited to medium to large projects.

Vertical Open Boreholes System

A further option is a vertical open borehole system. The system involves the abstraction and discharge of natural ground water using boreholes; into which pumps are inserted, connected to collapsible pipework. Each borehole pump abstracts ground water, circulates it around the heat pump and then discharges the water back to the ground via an absorbing well, some distance from the original abstraction borehole. The system is capable of providing very high rates of heat exchange for a relatively small number of boreholes, which makes it very efficient in terms of site area required. However, this depends greatly on the availability of ground water, which in turn varies according to location. A major downside of this system is that the extraction of water from deep boreholes via pumps consumes a lot of energy, as the water has to be physically lifted to the surface by the pump – this in effect reduces the carbon emissions saved by this system as a whole.

Ground source heat exchange options in summary:

Vertical loop system - closed boreholes

- moderate heat capacity
- relatively low installation cost

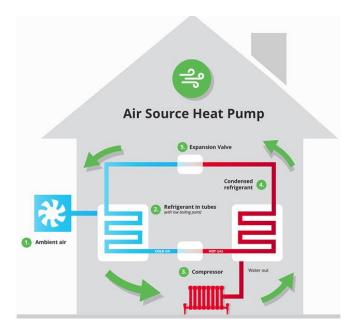
Vertical open system - open boreholes

- high heat capacity
- high running energy
- high installation cost

Horizontal loop system – straight pipes

- low capacity,
- high installation cost
- extensive ground excavation work

Horizontal coiled loop system – 'slinky' pipes

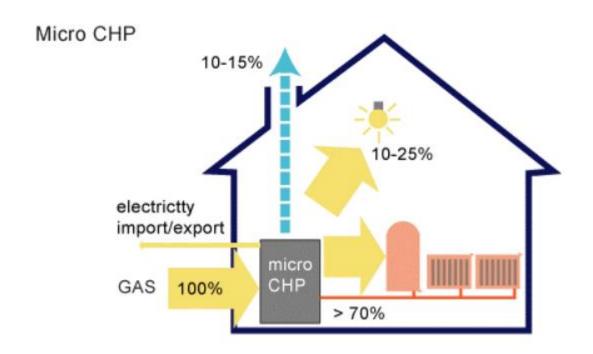

- good capacity
- low installation cost
- extensive ground excavation work

Air Source Heat Pumps

Heat pumps are basically refrigeration units which work in reverse – instead of cooling being produced and heat rejected, the unit produces heat and rejects cooling. Conventional heat pumps use air as the medium to reject this 'coolth' to atmosphere. Ground source units use the ground as a means of improving the unit efficiency because the ground is a constant 11-13 °C at depths of 50m down – this suits the heat pump much better during the coldest weather than the extremes of air temperature. Reversible heat pumps can also be used for cooling, however this is not being considered further for this project.

A heat pump consumes electrical power to drive the compressor and other ancillary elements. The ratio between total energy input and heat energy output of the heat pump is a measure of its efficiency – usually referred to as 'Coefficient of Performance' - COP. A ground source heat pump has a higher COP than an air cooled heat pump – this additional energy effectively being the grounds' natural contribution to the system.

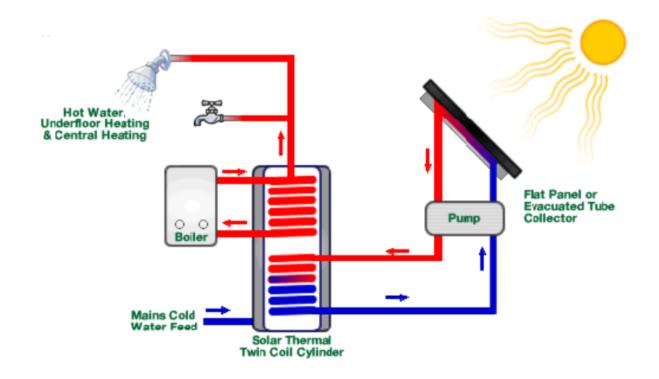
The heat produced by a heat pump is usually used to either provide space heating say to underfloor heating or radiators or the heat is used to generate domestic hot water via a storage vessel.



CHP

Combined heat and power (CHP) is a process involving simultaneous generation of heat and electricity, where the heat generated in the process in harnessed via heat recovery equipment. CHP at the large commercial size is now fairly common in premises which have a simultaneous demand for heating and electricity for long periods, such as hospitals, recreational centres and hotels. In addition, small CHP systems are now becoming available for individual houses, group residential units and small non-domestic premises. Compared with using centrally generated electricity supplied via the grid, CHP can offer a more efficient and economic method of supplying energy demand, if installed and operated appropriately, owing to the utilization of heat which is normally rejected to the atmosphere from central generating stations, and by reducing network distribution losses due to local generation and use.

Heat generated will be used for space and water heating, and additional heat storage may be used to lengthen use periods, to assist in warm-up and to improve overall energy efficiency. For overall good energy efficiency, as with all CHP, usage must be heat demand led. Thus, a sophisticated control system is required and users should be made aware of efficient operating practices.



Solar thermal collectors

Solar thermal collectors (flat plate or evacuated tubes) convert solar thermal energy into heat for hot water generation. These are usually located on a roof oriented south

facing in an ideal slope of 45 degree. Solar collectors properly sized and designed provide approx 50% of annual hot water demand.

Photovoltaic

Photovoltaic modules convert sunlight directly into DC electricity and can be integrated into buildings. Photovoltaics (PVs) are distinct from other renewable energy technologies since they have no moving parts to be maintained and are silent. PV systems can be incorporated into buildings in various ways: on sloped roofs and fl at roofs, in façades, atria and shading devices. Modules can be mounted using frames or they can be fully incorporated into the actual building fabric;

for example, PV roof tiles are now available which can be fitted in place of standard tiles.

Currently, a PV system will cost between £1500 and £2500 per kWp, and frequently part of this cost can be offset owing to the displacement of a conventional cladding material. Costs have fallen significantly since the first systems were installed (1980s) and are predicted to fall further still.

While single crystal silicon remains the most efficient flat plate technology (15–16% conversion efficiency); it also has the least potential for cost reduction. PV cells made from poly-crystalline silicon have become popular as they are less expensive to produce, although they have a slightly lower efficiency.

Thin film modules are constructed by depositing extremely thin layers of photosensitive materials on a low-cost backing such as glass, stainless steel or plastic. As much less semiconductor material is required as for crystalline silicon cells, material costs are potentially much lower. Efficiencies are much lower, around 4–5%, although this can be boosted to 8–10% by depositing two or three layers of thin film material. Thin film production also requires less handling as the films are produced as large, complete modules and not as individual cells that have to be mounted in frames and wired together. Hence, there is the potential for significant cost reductions with volume production.

Since PVs generate DC output, an inverter and other equipment is needed to deliver the power to a building or the grid in an acceptable AC form. The cost of the inverter and these 'Balance of System' (BOS) components can approach 30% of the total cost of a PV system. Hence, simplification and cost reductions in these components over the coming years will also be necessary to make PV systems affordable.

Wind energy

Wind power is the most successful and fastest spreading renewable energy technology in the UK with a number of individual and group installations of varying size, capacity and location. Traditionally, turbines are installed in non-urban areas with a strong trend for large offshore wind farms. In parallel with the design and development of ever-bigger machines, which are deemed to be more efficient and cost-effective, it is being increasingly recognized that smaller devices installed at the point of use, i.e. urban

settings, can play an important role in reducing carbon emissions if they become mainstream.

At present there is a wide range of available off-the-shelf wind products, many manufactured in the UK and EU with proven good performance and durability. The dominant type is horizontal axis wind turbines (HAWT), which are typically ground mounted. Vertical axis wind turbines (VAWT) have limited market presence and there is a trade-off between lower efficiency and potentially higher resistance to extreme conditions. Capacity ranges from 500W to more than 1.5MW, but, for practical purposes and in built-up areas in particular, machines of more than 1kW and below 500kW are likely to be considered.

Wind technology is also currently one of the most cost-effective renewable energy technologies, which is attributable to the large scale of installations reducing the unit output cost. Individual building or community wind projects, although smaller, have the advantage of feeding electricity directly into the building's electricity circuit, thus sparing costly distribution network development and avoiding distribution losses. The downside is the still high capital cost per kW installed for smaller turbines, plus location constraints, such as visual intrusion and noise. The wind regime in urban areas is also a concern owing to higher wind turbulence which reduces the potential electricity output.

In most cases, wind turbines are connected to the electricity grid and all generated energy is used regardless of the building demand fluctuations. The output largely depends on the wind speed and the correlation between the two is a cube function. This means that in short periods of above-average wind speeds the generation increases exponentially. As a result, it is difficult to make precise calculations of the annual output of a turbine, but average figures can provide useful guidance to designers and architects. In reasonably windy areas (average wind speed of 6m/s) the expected output from 1kW installed is about 2500kWh annually. The cost per kW installed varies considerably by manufacturer and size of machine with an indicative bracket of £2,500–£5,000. With a lifespan of more than 20 years, wind turbines can save money if design and planning are carried out in a robust way.

Building-integrated wind turbines are starting to be a reality in the UK, but potential projects may face difficulties with obtaining planning permission. There are a few examples now of permitted development rights for certain rooftop turbines in some local councils. A number of horizontal axis devices specifically designed for building integration are now available commercially, having design and reliability parameters relevant to the urban context. Building-mounted vertical axis devices are under development. At present, turbines installed near buildings, as well as community installations for groups of buildings, should be regarded as the larger wind energy source related to buildings, when they contribute to the carbon emissions from these premises using 'private wire' networks. However, the contribution of several building-integrated turbines in a development is likely to become significant in the next few years.

Appendix B-Fuel prices and emission factors

	Standing	Unit Price	Emission Kg CO2	PE Fuel
Gas fuels:	Charge £	p/kWh	p/kWh	Factor Code
mains gas	92	3.64	0.210	1.130 1
bulk LPG	62	6.74	0.241	1.141 2
bottled LPG (for main heating system)		9.46	0.241	1.141 3
bottled LPG (for secondary heating)		11.20	0.241	1.133 5
LPG subject to Special Condition 11F (a)	92	3.64	0.241	1.163 9
biogas (including anaerobic digestion)	62	6.74	0.024	1.286 7
Liquid fuels:				
heating oil		4.94	0.298	1.180 4
bio-liquid HVO from used cooking oil (d)		6.79	0.036	1.180 71
bio-liquid FAME from animal/vegetable oils ^(e)		6.79	0.018	1.180 73
B30K (0		5.49	0.214	1.136 75
bioethanol from any biomass source		47	0.105	1.472 76
Solid fuels: (g)				
house coal		5.58	0.395	1.064 11
anthracite		4.19	0.395	1.064 15
manufactured smokeless fuel		5.91	0.366	1.261 12
wood logs		5.12	0.028	1.046 20
wood pellets (in bags for secondary heating)		6.91	0.053	1.325 22
wood pellets (bulk supply for main heating)		6.25	0.053	1.325 23
wood chips		3.72	0.023	1.046 21
dual fuel appliance (mineral and wood)		4.77	0.087	1.049 10
Electricity: (a)				
standard tariff	81	16.49	0.136 (s)	1.5010t)
	30			
7-hour tariff (high rate) (h)	7	19.60	0.136 (s)	1.5010t)
	32			
7-hour tariff (low rate) (h)		9.40 31	0.136 (s)	1.501 (†)
10.1	0.1			
10-hour tariff (high rate) (">	21 34	20.54	0.136 (s)	1.501 (†)
10-hour tariff (low rate) fib)	54	12.27	0.136 (a)	1.501 (0
10-11001 Idilli (10W Idie) IIb)		33	0.130 (d)	1.501 (0
18-hour tariff (high rate) (">	26	17.41	0.136 (s)	1.501 (0
10-11001 family (night rate) (>	38	17.41	0.136 (5)	1.301 (0
18-hour tariff (low rate) 00	00	14.17	0.136 (s)	1.501 (†)
(6.7.5.7)		40		
24-hour heating tariff	26	14.04	0.136 (s)	1.501 0)
3 •	35		000 (0)	
electricity sold to grid, PV		5.59 (0	0.136 (s)	0.501 0)
		60		
electricity sold to grid, other		5.59 ()	0.136 (s)	0.501 0)
		36		011
electricity, any tariff 0)		N/A	0.136 (s)	1.501 ^{Ot)}
	00.01	39		
Heat networks: (k)	92 0)			
heat from boilers - mains gas		4.44	0.210	1.130
la a sub-five year la a il a va II D.C.		51	0.041	1 1 4 1
heat from boilers - LPG		4.44 52	0.241	1.141
heat from boilers - oil (assumes 'gas oil')		4.44	0.335	1.180
Tisat north bollots on tasserties gas on t		53	0.000	1.100
heat from boilers that can use mineral oil or biodies	el	4.44	0.335	1.180
		56		
heat from boilers using HVO from used cooking oil		4.44	0.036	1.180

148 Oxford Road, Oxford, OX4 2EA

Energy & Sustainability Strategy

	57		
heat from boilers FAME from animal/vegetable oils (a)	4.44 58	0.018	1.180
heat from boilers - B30D 0)	4.44 55	0.269	1.090
heat from boilers - coal	4.44 54	0.375	1.064
heat from electric heat pump	4.44 41	0.136 (s)	1.501 0)
heat recovered from waste combustion	4.44 42	0.015 0')	0.063
heat from boilers - biomass	4.44 43	0.029	1.037
heat from boilers - biogas (landfill or sewage gas)	4.44 44	0.024	1.286
heat recovered from power station	3.77 45	0.015 0')	0.063
high grade heat recovered from process (Appendix C4.3)	3.77 47	0.011	0.051
low grade heat recovered from process (Appendix C4.4)	3.77 49	0.136 001)	1.501 (001)
heat recovered from geothermal or other natural processes	3.77 46	0.011	0.051
heat from CHP	3.77 48	as above0D	as above0D

Appendix C, D, E, F and G

This appendix contains the following reports used in producing the content of this Energy and Sustainability Statement.

Appendix C - Flood risk map for planning to show the location of the site with regards to the relevant flood zone greas.

Appendix D - Floor plans and elevations used to produce SAP calculations for this development.

Appendix E – SAP calculation reports for the selected units that were used to base the calculations on for this report. The reports are for the final stage of the energy hierarchy (Be Green). The reports demonstrate how reduction has been achieved over the baseline figures.

Appendix F – Sample water efficiency calculations to demonstrate how the required target suggested could be achieved.

Appendix G – Sample calculated psi values.

Flood map for planning

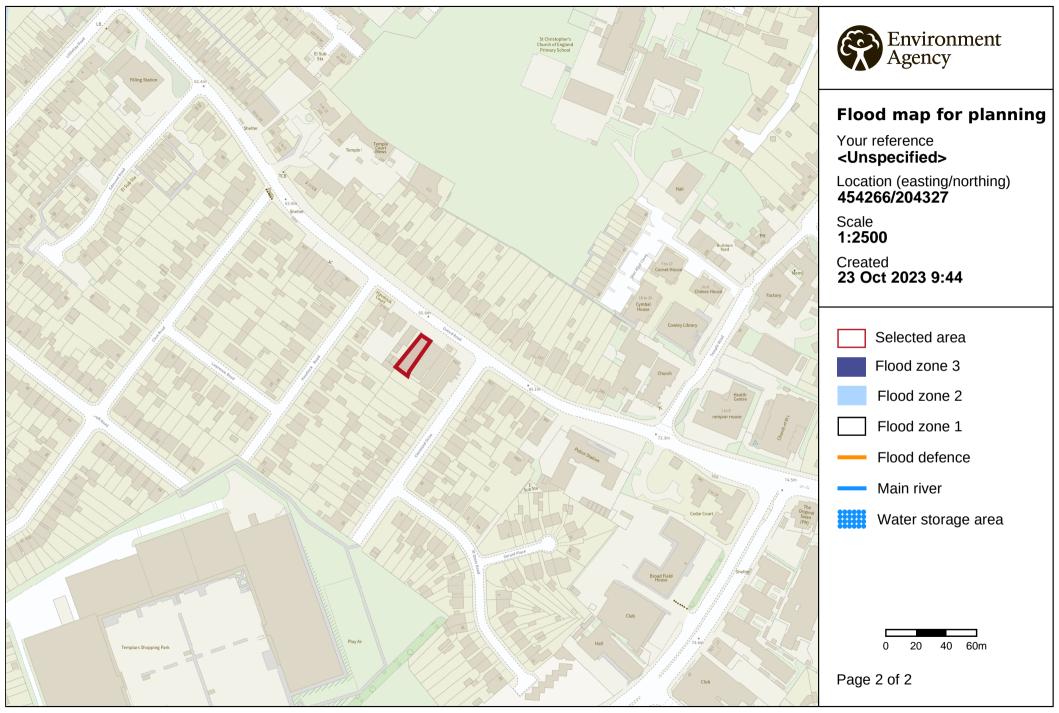
Your reference Location (easting/northing) Created

<Unspecified> 454266/204327 23 Oct 2023 9:44

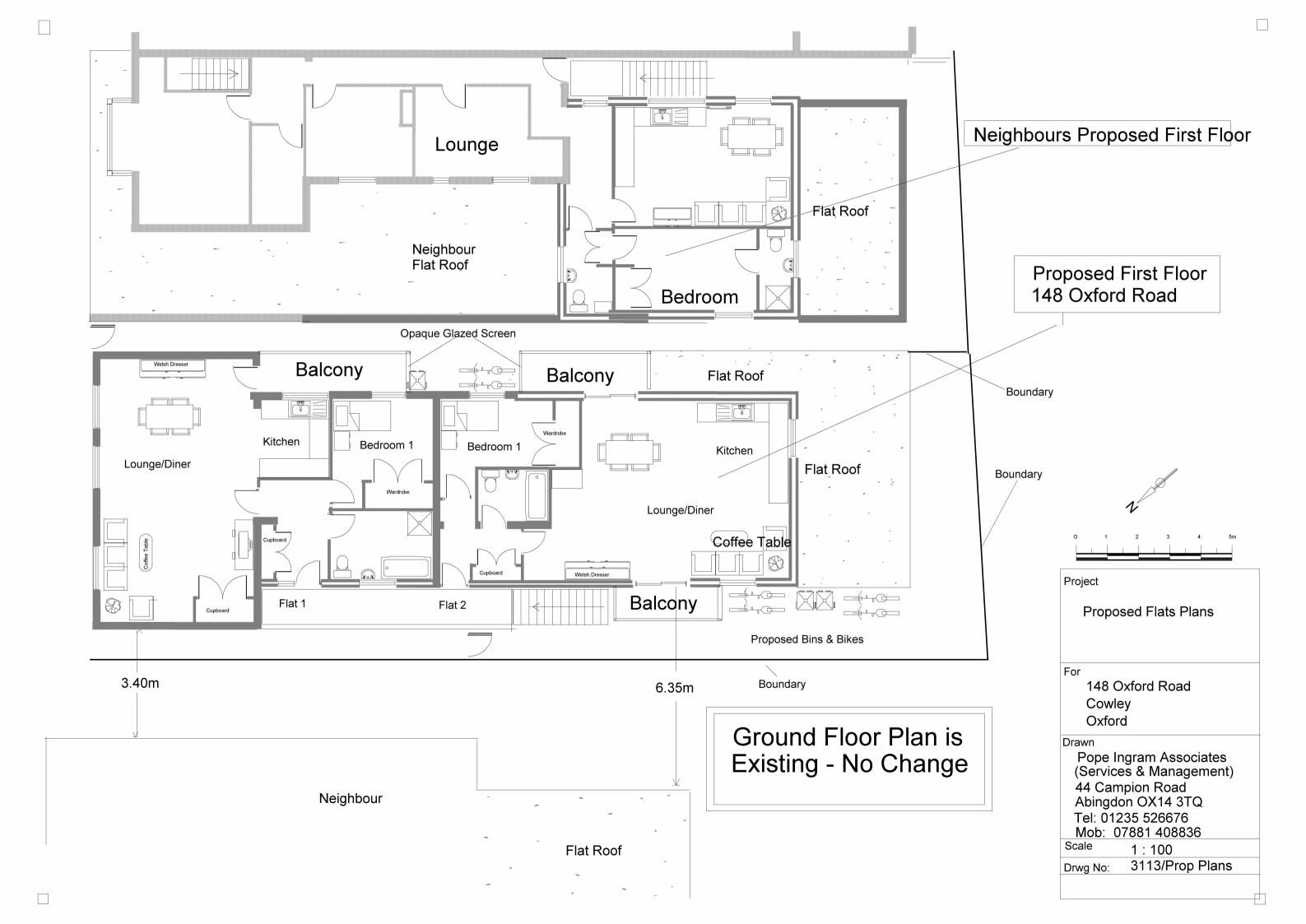
Your selected location is in flood zone 1, an area with a low probability of flooding.

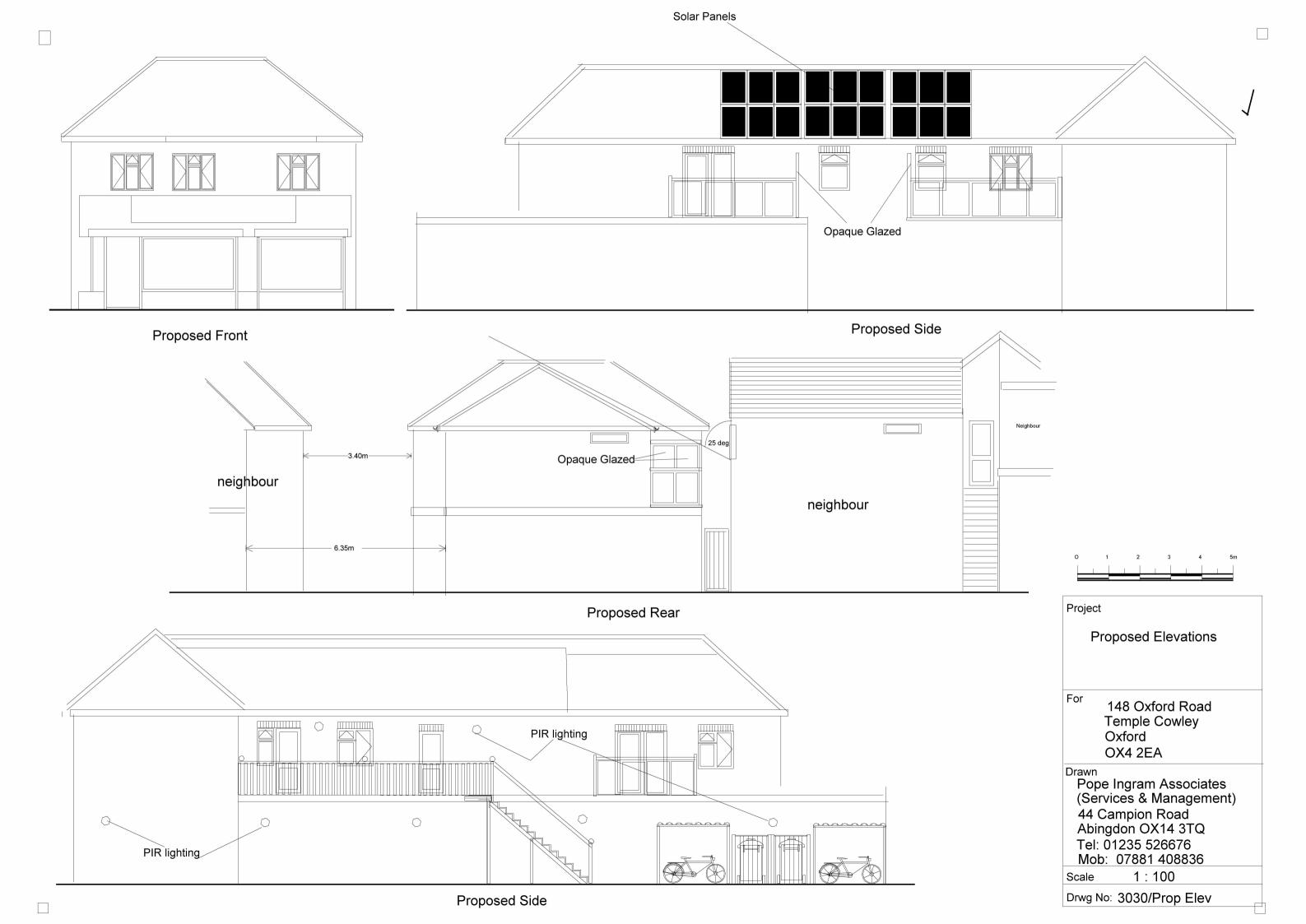
You will need to do a flood risk assessment if your site is any of the following:

- bigger that 1 hectare (ha)
- In an area with critical drainage problems as notified by the Environment Agency
- identified as being at increased flood risk in future by the local authority's strategic flood risk assessment
- at risk from other sources of flooding (such as surface water or reservoirs) and its development would increase the vulnerability of its use (such as constructing an office on an undeveloped site or converting a shop to a dwelling)


Notes

The flood map for planning shows river and sea flooding data only. It doesn't include other sources of flooding. It is for use in development planning and flood risk assessments.


This information relates to the selected location and is not specific to any property within it. The map is updated regularly and is correct at the time of printing.


Flood risk data is covered by the Open Government Licence **which** sets out the terms and conditions for using government data. https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

Use of the address and mapping data is subject to Ordnance Survey public viewing terms under Crown copyright and database rights 2022 OS 100024198. https://flood-map-for-planning.service.gov.uk/os-terms

© Environment Agency copyright and / or database rights 2022. All rights reserved. © Crown Copyright and database right 2022. Ordnance Survey licence number 100024198.

Building Regulations England Part L (BREL) Compliance Report

Approved Document L1 2021 Edition, England assessed by Array SAP 10 program, Array

Date: Mon 23 Oct 2023 13:56:43

Project Information			
Assessed By	Iraj Maghounaki	Building Type	Flat, Semi-detached
OCDEA Registration	EES/015723	Assessment Date	2023-10-23

Dwelling Details			
Assessment Type	As designed	Total Floor Area	65 m ²
Site Reference	148 Oxford Road	Plot Reference	003-Be Green
Address	148 Oxford Road, Oxford, OX4 2EA		

Client Details	
Name	148 Oxford Road
Company	Bob Pope
Address	148 Oxford Road, Temple Cowley, Oxford, OX4 2EA

This report covers items included within the SAP calculations. It is not a complete report of regulations compliance.

1a Target emission rate and dwelling emission ra	10	
Fuel for main heating system	Electricity	
Target carbon dioxide emission rate	11.37 kgCO ₂ /m ²	
Dwelling carbon dioxide emission rate	3.71 kgCO ₂ /m ²	OK
1b Target primary energy rate and dwelling primary energy		
Target primary energy	60.85 kWh _{PE} /m ²	
Dwelling primary energy	42.81 kWh _{PE} /m ²	OK
1c Target fabric energy efficiency and dwelling fabric energy efficiency		
Target fabric energy efficiency	45.5 kWh/m²	
Dwelling fabric energy efficiency	43.2 kWh/m ²	OK

2a Fabric U-values				
Element	Maximum permitted average U-Value [W/m²K]	Dwelling average U-Value [W/m²K]	Element with highest individual U-Value	
External walls	0.26	0.19	Walls (1) (0.19)	OK
Party walls	0.2	0	Party Wall (1) (0)	N/A
Curtain walls	1.6	0	N/A	N/A
Floors	0.18	0.18	Exposed to Retail (0.18)	OK
Roofs	0.16	0.12	Roof (1) (0.12)	OK
Windows, doors,	1.6	1.2	NW (1.2)	OK
and roof windows				
Rooflights	2.2	N/A	N/A	N/A

2b Envelope elements (better than typically expected values are flagged with a subsequent (!))			
Name	Net area [m ²]	U-Value [W/m ² K]	
Exposed wall: Walls (1)	57.4346	0.19	
Party wall: Party Wall (1)	14.31	0 (!)	
Upper floor: Exposed to Retail, Exposed to Retail	65.32	0.18	
Exposed roof: Roof (1)	65.32	0.12	

2c Openings (better than typically expected values are flagged with a subsequent (!))				
Name	Area [m ²]	Orientation	Frame factor	U-Value [W/m ² K]
NW, Solid Door	1.6849	North West	N/A	1.2
NW, Glazing	3.5496	North West	0.7	1.2
NW, Glazing	1.3447	North West	0.7	1.2
SE, Glazing	3.4155	South East	0.7	1.2
SE, Glazing	1.1781	South East	0.7	1.2
SW, Glazing	0.4026	South West	0.7	1.2

2d Thermal bridging (better than typically expected values are flagged with a subsequent (!))				
Building part 1 -	Main Dwelling: Thermal bridging ca	Iculated from linear thermal transmit	tances for each ju	nction
Main element	Main element			Drawing /
			[W/mK]	reference
External wall	E2: Other lintels (including other	Calculated by person with suitable	0.018 (!)	MHF-100-E2-01
	steel lintels)	expertise		

Main element	Junction detail	Source	Psi value [W/mK]	Drawing / reference
External wall	E3: Sill	Calculated by person with suitable expertise	0.02 (!)	MHF-100-E3-01
External wall	E4: Jamb	Calculated by person with suitable expertise	0.015 (!)	MHF-100-E4-01
External wall	E20: Exposed floor (normal)	Calculated by person with suitable expertise	0.053	MHF-100-E20-0 1
External wall	E10: Eaves (insulation at ceiling level)	Calculated by person with suitable expertise	0.059	MHF-100-E10-0 1
External wall	E12: Gable (insulation at ceiling level)	Calculated by person with suitable expertise	0.043	MHF-100-E12-0 1
External wall	E16: Corner (normal)	Calculated by person with suitable expertise	0.041	MHF-100-E16-0 1
External wall	E18: Party wall between dwellings	Calculated by person with suitable expertise	0.055	MHF-100-E18-0 3
Party wall	P7: Exposed floor (normal)	SAP table default	0.48	
Party wall	P4: Roof (insulation at ceiling level)	Calculated by person with suitable expertise	0.04	MPW-P4-01

3 Air permeability (better than typically expected values are flagged with a subsequent (!))		
Maximum permitted air permeability at 50Pa	8 m ³ /hm ²	
Dwelling air permeability at 50Pa	3 m ³ /hm ² , Design value (!)	OK
Air permeability test certificate reference		

4 Space heating			
Main heating system 1: Heat pump with	Main heating system 1: Heat pump with radiators or underfloor heating - Electricity		
Efficiency	219.3%		
Emitter type	Radiators		
Flow temperature	45°C		
System type	Air source heat pump		
Manufacturer			
Model			
Commissioning			
Secondary heating system: N/A	Secondary heating system: N/A		
Fuel	N/A		
Efficiency	N/A		
Commissioning			

5 Hot water		
Cylinder/store - type: Cylinder		
Capacity	170 litres	
Declared heat loss	1.63 kWh/day	
Primary pipework insulated	Yes	
Manufacturer		
Model		
Commissioning		
Waste water heat recovery system 1 - type: N/A		
Efficiency		
Manufacturer		
Model		

6 Controls										
Main heating 1 - type: Time and temperature zone control by arrangement of plumbing and electrical services										
Function										
Ecodesign class										
Manufacturer										
Model										
Water heating - type: Cylinder thermosta	at and HW separately timed									
Manufacturer										
Model										

7 Lighting		
Minimum permitted light source efficacy	75 lm/W	
Lowest light source efficacy	75 lm/W	OK
External lights control	N/A	

8 Mechanical ventilation			
System type: Balanced whole-house ma	echanical ventilation v	with heat recovery	
Maximum permitted specific fan power	1.5 W/(I/s)	-	
Specific fan power	0.47 W/(I/s)		OK
Minimum permitted heat recovery	73%		
efficiency			
Heat recovery efficiency	91%		OK
Manufacturer/Model	MRXBOX-ECO3		
Commissioning			
9 Local generation	(4)		
Technology type: Photovoltaic system			
Peak power	1 kWp		
Orientation Pitch	South East 30°		
1 11011			
Overshading	None or very little		
Manufacturer			
MCS certificate			
10 Heat networks			
N/A			
11 Supporting documentary evidence			
N/A			
12 Declarations			
a. Assessor Declaration			
-		intents of this BREL Compliance Report	
		nformation submitted for this dwelling for	
		and that the supporting documentary	
evidence (SAP Conventions, Append			
documentary evidence required) has	been reviewed in the	course of preparing this BREL	
Compliance Report.			
Signed:		Assessor ID:	
Name:		Date:	

N/A

b. Client Declaration

Property Reference	20	1/	18 Oxford Road	4						Issued on Da	ato.	23/10/2023	
Assessment Refe			3-Be Green					Prop Type F	Ref	PR10887		23/10/2023	
Property				d, Oxford, OX4	2EA					1110007			
0155 (
SAP Rating Environmental					97 A		DER	3.	71	TER		11.37	
CO ₂ Emissions (t/	ivear)				0.21		% DER < TEF		3.21	TFEE		67.37 45.54	
Compliance Chec					See BREL		% DFEE < TF		5.21	11.55		5.12	
% DPER < TPER	···				29.65		DPER		2.81	TPER		60.85	
Assessor Details Client			Maghounaki 37, 148 Oxford	Dand						Asse	ssor ID	V571-000	01
SAP 10 WORKSHEE: CALCULATION OF I				(Version 10									
1. Overall dwell									-			77-1	
Ground floor								Area (m2) 65.3200		rey height (m)		Volume (m3)	(1b) (2)
Total floor area Dwelling volume	a TFA = (1	a) + (1b) + (1d	c)+(1d)+(1e)(1n)	6	5.3200) (1b) x (3a)+(3b)+(3c)			158.7276	(4)
Difference of the contract of								·	(54) (52) (50)	, , (54) , (55)	(5)	100.7270	(3)
2. Ventilation	rate								-				
									-		,	m3 per hour	
Number of open of Number of open of Number of chimne Number of flues Number of flues Number of blocke Number of inter Number of passiv Number of flues	flues eys / flues attached attached ed chimneys mittent ex ye vents	to solid fu to other he s tract fans	uel boiler	fire							0 * 80 = 0 * 20 = 0 * 10 = 0 * 20 = 0 * 35 = 0 * 20 = 0 * 10 = 0 * 10 = 0 * 40 =		(6b) (6c) (6d) (6e) (6f) (7a) (7b)
T-6:1		61		(6-) (6-)	\	C-11/CE11	(6-) (7-)	77-11/7-1		0 0000		es per hour 0.0000	(0)
Infiltration due Pressure test Pressure Test Me		eys, flues	and rans	= (6a)+(6b))+(60)+(60)+(6e)+(6I)+	(og)+(/a)+((/D)+(/C) =	=	0.0000	/ (5) =	Yes	
pressure test me Measured/design Infiltration rat	AP50											Blower Door 3.0000	(17)
Number of sides												0.1500 2	(19)
Shelter factor				ć .					(20) = 1			0.8500	
Infiltration rat	ie adjuste	a to includ	de sneiter	Iactor					(,	21) = (18)	x (20) =	0.1275	(21)
Wind speed Wind factor	Jan 5.1000 1.2750	Feb 5.0000 1.2500	Mar 4.9000 1.2250	Apr 4.4000 1.1000	May 4.3000 1.0750	Jun 3.8000 0.9500	Jul 3.8000 0.9500	Aug 3.7000 0.9250		Oct 4.3000 1.0750	Nov 4.5000 1.1250		
Adj infilt rate	0.1626	0.1594	0.1562	0.1403	0.1371	0.1211	0.1211	0.1179	0.1275	0.1371	0.1434	0.1498	(22b)
Balanced mechan If mechanical ve			th heat rec	overy								0.5000	(23a)
If exhaust air h If balanced with									23a)			0.5000 81.9000	
Effective ac	0.2531	0.2499	0.2467	0.2307	0.2276	0.2116	0.2116	0.2084	0.2180	0.2276	0.2339	0.2403	(25)
													•
3. Heat losses a									-				
Element				Gross	Openings		:Area	U-value		U K	-value	Α×Κ	
Glazing (Uw = 1. Solid Door Exposed to Retain External Wall Roof at Plane				m2 69.0100 65.3200	m2 11.5600	9. 1. 65. 57.	m2 .8800 .6800 .3200 .4500	W/m2K 1.1450 1.2000 0.1800 0.1900 0.1200	11.313 2.016 11.75 10.915	30 60 76 55 11	kJ/m2K 0.0000 9.0000	kJ/K 6319.5000 587.8800	(27) (26) (28b) (29a)
Roof at Plane Total net area o Fabric heat loss			Aum(A, m2)	JJ.J200			.6500	(30) + (32)				507.0000	(31) (33)
Party Wall Internal Wall 1	-,, 51	(A A U)					.3100 .8600	0.0000	0.000	00 7	0.000 9.0000	1001.7000 871.7400	(32)
Heat capacity Cr Thermal mass par			FFA) in kJ/	m2K				(28)	(30) + (32	2) + (32a).	(32e) =	8780.8200 134.4277	
List of Thermal K1 Eleme	Bridges								Length 1	Psi-value	Ψo	tal	•
		(including	other stee	l lintels)					7.5600	0.0180	0.1		

SAP 10 Online 2.10.12 Page 1 of 12

E10 Eav E12 Gab E16 Cor E18 Par P7 Part	oosed floor es (insula- ele (insula- ner (norma- ty wall be- y Wall - E	tion at ce tion at ce 1) tween dwel xposed floo oof (insula	or (normal) ation at ce) iling level				17. 22. 22. 5. 4. 4.	3400 7000 8800 5500 8700 8600 8600 8700 8700	0.0200 0.0150 0.0530 0.0590 0.0430 0.0410 0.0550 0.4800 0.0400	0.06 0.26 1.21 1.33 0.25 0.19 0.26 2.81 0.23	55 26 04 24 93 73 76	(36)
Point Thermal b Total fabric he	ridges at loss								(:	33) + (36)	(36a) = + (36a) =	0.0000 50.6233	(37)
Ventilation hea (38)m	Jan 13.2554	culated mo: Feb 13.0885	nthly (38)m Mar 12.9215	= 0.33 x (Apr 12.0867	25)m x (5) May 11.9197	Jun 11.0849	Jul 11.0849	Aug 10.9180	Sep 11.4189	Oct 11.9197	Nov 12.2537	Dec 12.5876	(38)
Heat transfer c Average = Sum(3	63.8788	63.7118	63.5448	62.7100	62.5431	61.7083	61.7083	61.5413	62.0422	62.5431	62.8770	63.2109 62.6683	(39)
HLP	Jan 0.9779	Feb 0.9754	Mar 0.9728	Apr 0.9600	May 0.9575	Jun 0.9447	Jul 0.9447	Aug 0.9422	Sep 0.9498	Oct 0.9575	Nov 0.9626	Dec 0.9677	(40)
HLP (average) Days in mont	31	28	31	30	31	30	31	31	30	31	30	0.9594	(10)
4. Water heatin	g energy re	equirement:	s (kWh/year)									
Assumed occupan Hot water usage	cy for mixer	showers										2.1274	
Hot water usage	67.3750 for baths 25.8774	66.3625 25.4931	64.8871 24.9519	62.0641 23.9540	59.9808	57.6575 22.3783	56.3370 21.9308	57.8013 22.4682	59.4064	61.9008	64.7845 24.9583	67.1169 25.7899	
Hot water usage			33.7681	32.4439	31.1196	29.7954	29.7954	31.1196	32.4439	33.7681	35.0923	36.4166	(42c)
Average daily h	ot water u	se (litres Feb	/day) Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	119.2159 Dec	(43)
Daily hot water	use	126.9479	123.6070	118.4620	114.3072	109.8312	108.0632	111.3891	114.9036	119.6088	124.8351	129.3234	(44)
Energy conte Energy content Distribution lo	(annual)	180.7721 = 0.15 x (189.9794 45)m	162.1685	153.8795	135.0503	130.6930	137.9229	141.6876	162.3080 Total = S	177.8505 um(45)m =	202.4891 1980.1651	(45)
Water storage 1	30.8046	27.1158	28.4969	24.3253	23.0819	20.2575	19.6040	20.6884	21.2531	24.3462	26.6776	30.3734	
Store volume a) If manufact Temperature f Enter (49) or (Total storage 1	actor from 54) in (55	Table 2b	actor is kn	own (kWh/d	lay):							170.0000 1.6300 0.5400 0.8802	(48) (49)
If cylinder con	27.2862 tains dedi			26.4060	27.2862	26.4060	27.2862	27.2862	26.4060	27.2862	26.4060	27.2862	
Primary loss Combi loss	27.2862 23.2624 0.0000	24.6456 21.0112 0.0000	27.2862 23.2624 0.0000	26.4060 22.5120 0.0000	27.2862 23.2624 0.0000	26.4060 22.5120 0.0000	27.2862 23.2624 0.0000	27.2862 23.2624 0.0000	26.4060 22.5120 0.0000	27.2862 23.2624 0.0000	26.4060 22.5120 0.0000	27.2862 23.2624 0.0000	(59)
Total heat requ						183.9683	181.2416 0.0000	188.4715 0.0000	190.6056	212.8566	226.7685	253.0377	(62)
PV diverter Solar input	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000	(63b) (63c)
FGHRS Output from w/h	0.0000 255.9126	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 188.4715	0.0000	0.0000	0.0000	0.0000 253.0377	
12Total per yea		r)						Total pe	er year (kWl	n/year) = S	um(64)m =	2575.3341 2575	
Electric shower	0.0000	0.0000	0.0000		0.0000 al Energy us							0.0000	
Heat gains from					91.6038								(65)
5. Internal gai	ns (see Tal	ble 5 and	5a)										
	Jan	Feb	Mar 106.3693	Apr 106.3693	May 106.3693	Jun 106.3693	Jul 106.3693	Aug 106.3693	Sep 106.3693	Oct 106.3693	Nov 106.3693	Dec 106.3693	(66)
Lighting gains	(calculate 99.0731	d in Appen 109.6881	dix L, equa 99.0731	tion L9 or 102.3755	L9a), also s 99.0731	see Table 5 102.3755	99.0731					99.0731	
Appliances gain Cooking gains (186.1380	188.0695	183.2021	172.8400	159.7597	147.4661	139.2532	137.3217	142.1891	152.5512	165.6315	177.9251	(68)
	33.6369	33.6369	33.6369	33.6369	33.6369	33.6369	33.6369					33.6369 3.0000	
Losses e.g. eva	poration (1 -85.0955	negative v -85.0955	alues) (Tab	le 5)	-85.0955								
	146.1323		139.2568	129.2437	123.1234	116.7203	112.7612	115.9923	119.7854	126.8902	136.4857	144.8475	(72)
Total internal		499.4663	479.4428	462.3700	439.8671	421.4728	405.9983	407.2979	419.2609	436.4253	462.4035	479.7565	(73)
6. Solar gains													
[Jan]			A	rea m2	Solar flux Table 6a W/m2	Special or 5	g fic data Table 6b	Specific or Tabl	FF data Le 6c	Acce fact Table	ss or 6d	Gains W	
Southeast Southwest Northwest			4.5 0.4 4.8	900 000 900	36.7938 36.7938 11.2829		0.6300 0.6300 0.6300	0. 0. 0.	.7000 .7000 .7000	0.77 0.77 0.77	00 00 00	51.6131 4.4979 16.8618	(79)
Solar gains									216.9512	147.5786	88.4244	61.7894	(83)

SAP 10 Online 2.10.12 Page 2 of 12

Total gains	562.2269	629.3666	672.0548	725.9612	757.8713	747.1888	715.8570	675.0314	636.2120	584.0039	550.8279	541.5459	(84)
7. Mean inter	nal tempera	ture (heati	ng season)										
Temperature d Utilisation f	actor for ga	ains for li	ving area,	nil,m (see T	able 9a)							21.0000	(85)
tau alpha	Jan 38.1835 3.5456	Feb 38.2836 3.5522	Mar 38.3842 3.5589	Apr 38.8952 3.5930	May 38.9990 3.5999	Jun 39.5266 3.6351	Jul 39.5266 3.6351	Aug 39.6338 3.6423	Sep 39.3138 3.6209	Oct 38.9990 3.5999	Nov 38.7919 3.5861	Dec 38.5870 3.5725	
util living a	rea 0.9484	0.9236	0.8846	0.7992	0.6697	0.5027	0.3723	0.4089	0.6104	0.8227	0.9197	0.9537	(86)
MIT Th 2 util rest of	19.5483 20.1018	19.7898 20.1039	20.1092 20.1060	20.5115 20.1168	20.7972 20.1189	20.9468 20.1297	20.9862 20.1297	20.9806 20.1318	20.8910 20.1254	20.5346 20.1189	19.9958 20.1146	19.5113 20.1103	
MIT 2	0.9402 18.4232	0.9119 18.7248	0.8670 19.1202	0.7698 19.6093	0.6244 19.9317	0.4419	0.3015 20.1226	0.3358 20.1212	0.5489 20.0388	0.7901 19.6484	0.9056 18.9940	0.9463 18.3830	
Living area f		19.4340	19.7788	20.2101	20.5080	20.6609	20.6977	20.6935		Living area 20.2386		0.6660 19.1344	(91)
Temperature a adjusted MIT		19.4340	19.7788	20.2101	20.5080	20.6609	20.6977	20.6935	20.6063	20.2386	19.6612	0.0000 19.1344	(93)
8. Space heat	ing require	ment											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation Useful gains Ext temp.	0.9300 522.8734 4.3000	0.9018 567.5686 4.9000	0.8598 577.8019 6.5000	0.7731 561.2285 8.9000	0.6451 488.8664 11.7000	0.4795 358.2746 14.6000	0.3480 249.1098 16.6000	0.3835 258.8792 16.4000	0.5836 371.2989 14.1000	0.7948 464.1917 10.6000	0.8972 494.2112 7.1000	0.9364 507.1239 4.2000	(95)
Heat loss rat	950.0365	925.9869	843.8019	709.2581	550.8817	374.0059	252.8619	264.2279	403.6659	602.8255	789.8085	944.0173	(97)
Space heating Space heating	317.8093 requirement		197.9040 er year (kW	106.5814 Mh/year)	46.1394	0.0000	0.0000	0.0000	0.0000	103.1436	212.8301	325.0486 1550.3135	(98a)
Solar heating	0.0000 contribution	0.0000 on - total p	0.0000 per year (k	0.0000 Wh/year)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(98b)
Space heating Space heating Space heating	317.8093 requirement	240.8571 t after sol			46.1394 per year	0.0000 (kWh/year)	0.0000	0.0000	0.0000	103.1436 (98c)	212.8301	325.0486 1550.3135 23.7341	
9a. Energy re	quirements -	- Individua	l heating s		uding micr	O-CHP							
Fraction of s Fraction of s Efficiency of Efficiency of Efficiency of	pace heat for pace heat for main space main space	rom seconda rom main sy heating sy heating sy	ry/suppleme stem(s) stem 1 (in stem 2 (in	entary system %) %)								0.0000 1.0000 219.3000 0.0000 0.0000	(202) (206) (207)
-	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating	317.8093	240.8571	197.9040	106.5814	46.1394	0.0000	0.0000	0.0000	0.0000	103.1436	212.8301	325.0486	(98)
Space heating Space heating	219.3000	219.3000	219.3000		219.3000	0.0000	0.0000	0.0000	0.0000	219.3000	219.3000	219.3000	(210)
Space heating	144.9199	109.8300	90.2435	48.6007	21.0394	0.0000	0.0000	0.0000	0.0000	47.0331	97.0498	148.2210	(211)
Space heating	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(212)
Space heating	fuel (secon				0.0000		0.0000	0.0000	0.0000		0.0000		
Water heating	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating	requiremen	t 226.4289	240.5280	211.0865	204.4281	183.9683	181.2416	188.4715	190.6056	212.8566	226.7685	253.0377	(64)
Efficiency of (217)m	water heat		190.4000	190.4000	190.4000	190.4000	190.4000	190.4000	190.4000	190.4000	190.4000	190.4000	(216)
Fuel for wate	134.4079	118.9228	126.3277	110.8648	107.3677	96.6220	95.1899	98.9872	100.1080	111.7945	119.1011	132.8980	(219)
Space cooling (221)m Pumps and Fa	0.0000	0.0000	0.0000	0.0000 9.3508	0.0000	0.0000 9.3508	0.0000 9.6625	0.0000	0.0000	0.0000	0.0000	0.0000	
Lighting Electricity g	9.6625 27.7740	8.7274 22.2813	9.6625 20.0619 div M) (peo	14.6982	9.6625 11.3533	9.2757	10.3569	9.6625 13.4622	9.3508 17.4861	9.6625 22.9427	9.3508 25.9137	9.6625 28.5459	
(233a)m Electricity g	-18.0400	-28.4063	-45.5423	-56.0346	-63.9508	-60.1450	-59.3029	-53.9281	-44.6716	-34.0975	-20.6851	-15.2338	(233a)
(234a)m Electricity g	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 ity)	0.0000	0.0000	0.0000	0.0000	0.0000	(234a)
(235a)m Electricity u						N) (negati			0.0000	0.0000	0.0000	0.0000	
(235c)m Electricity g							0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
(233b)m Electricity g		wind turbi		lix M) (negat	ive quanti	ty)	-52.6402	-42.8606	-29.4390	-14.8547	-5.6669	-3.0641	
(234b)m Electricity g (235b)m	0.0000 enerated by 0.0000	0.0000 hydro-elec 0.0000	0.0000 tric genera 0.0000	0.0000 tors (Append 0.0000	0.0000 lix M) (nec 0.0000	0.0000 gative quant: 0.0000	0.0000 ity) 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Electricity u (235d)m				by micro-CHP		N) (negati			0.0000	0.0000	0.0000	0.0000	
Annual totals Space heating	kWh/year											706.9373	
Space heating Space heating	fuel - main	n system 2 ondary										0.0000	(213)
Efficiency of Water heating Space cooling	fuel used	er										190.4000 1352.5914 0.0000	
Electricity f	or pumps and												
	ventilation	n fans (SFP	= 0.	e factor = 1 5875)	2500, SFE	? = 0.5875)						113.7680 113.7680	

SAP 10 Online 2.10.12 Page 3 of 12

Electricity for lighting (calculated in Appendix L)				(000)
Francy assing/garantian technologies (Amendian M. N. and O)			224.1519	(232)
Energy saving/generation technologies (Appendices M ,N and Q) PV generation Wind generation Hydro-electric generation (Appendix N)			-823.3494 0.0000 0.0000	(234)
Electricity generated - Micro CHP (Appendix N) Appendix Q - special features			0.0000	
Energy saved or generated Energy used Total delivered energy for all uses			-0.0000 0.0000 1574.0993	(237)
				(===)
12a. Carbon dioxide emissions - Individual heating systems including micro-CHP				
	Energy kWh/year			
Space heating - main system 1 Total CO2 associated with community systems	706.9373	0.1555	109.9401	(261) (373)
Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot	1352.5914		300.5417	(265)
Energy for lighting	224.1519	0.1443	32.3520	
Energy saving/generation technologies PV Unit electricity used in dwelling	-500.0380 -323.3113			
PV Unit electricity exported Total Total CO2, kg/year	-323.3113	0.1227	-39.6606 -106.1023 242.5726	(269)
EPC Dwelling Carbon Dioxide Emission Rate (DER)			3.7100	
13a. Primary energy - Individual heating systems including micro-CHP		Drimowy	P	
Space heating - main system 1		Primary energy factor kg CO2/kWh 1.5757	kWh/year	
Total CO2 associated with community systems Water heating (other fuel)	1352.5914	1.5211	0.0000 2057.3683	(473) (278)
Space and water heating Pumps, fans and electric keep-hot Energy for lighting	113.7680 224.1519		3171.3233 172.1082 343.8116	(281)
Energy saving/generation technologies				
PV Unit electricity used in dwelling PV Unit electricity exported Total	-500.0380 -323.3113			
Total Primary energy kWh/year Dwelling Primary energy Rate (DPER)			2796.1663 42.8100	(286)
SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022)				
SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS				
SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS				
SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS		Storey height	Volume	
SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor		(m)	(m3)	(1b) - (3b)
SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics	Area (m2) 65.3200	(m)	(2b) = 158.7276	(1b) - (3b)
SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) 65.3200	Area (m2) 65.3200	(1b) x 2.4300	(2b) = 158.7276	(1b) - (3b)
SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) 65.3200 Dwelling volume	Area (m2) 65.3200	(1b) x 2.4300	(2b) = 158.7276	(1b) - (3b)
SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) 65.3200 Dwelling volume	Area (m2) 65.3200	(1b) x 2.4300	(2b) = 158.7276	(1b) - (3b) (4) (5)
SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) 65.3200 Dwelling volume 2. Ventilation rate Number of open chimneys	Area (m2) 65.3200	(1b) x 2.4300	(2b) = (m3) 158.7276 (3n) = 158.7276 m3 per hour 0 * 80 = 0.0000	(1b) - (3b) (4) (5)
SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) 65.3200 Dwelling volume 2. Ventilation rate	Area (m2) 65.3200	(1b) x 2.4300	(2b) = (m3) (2b) = 158.7276)(3n) = 158.7276 m3 per hour	(1b) - (3b) (4) (5) (6a) (6b) (6c)
SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Total floor Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)(1n) 65.3200 Dwelling volume 8. Ventilation rate 2. Ventilation rate Number of open chimneys Number of chimneys / flues attached to closed fire Number of flues attached to solid fuel boiler Number of flues attached to other heater Number of blocked chimneys	Area (m2) 65.3200	(1b) x 2.4300	(m3) (2b) = (m3) 158.7276 (3n) = 158.7276 m3 per hour 0 * 80 = 0.0000 0 * 20 = 0.0000 0 * 10 = 0.0000 0 * 20 = 0.0000 0 * 35 = 0.0000 0 * 35 = 0.0000 0 * 20 = 0.0000	(1b) - (3b) (4) (5) (6a) (6b) (6c) (6c) (6d) (6e) (6f)
SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) 65.3200 Dwelling volume Number of open chimneys Number of chimneys / flues attached to closed fire Number of flues attached to solid fuel boiler Number of flues attached to other heater Number of flues attached to other heater Number of blocked chimneys Number of intermittent extract fans Number of passive vents	Area (m2) 65.3200	(1b) x 2.4300	(m3) (2b) = 158.7276 (3n) = 158.7276 m3 per hour 0 * 80 = 0.0000 0 * 20 = 0.0000 0 * 10 = 0.0000 0 * 20 = 0.0000 0 * 35 = 0.0000 0 * 20 = 0.0000 0 * 20 = 0.0000 0 * 20 = 0.0000 0 * 20 = 0.0000 0 * 35 = 0.0000 0 * 35 = 0.0000 0 * 30 = 0.0000 0 * 10 = 0.0000 0 * 10 = 0.0000	(1b) - (3b) (4) (5) (6a) (6b) (6c) (6d) (6e) (6f) (7a) (7b)
SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)(1n) 65.3200 Dwelling volume Number of open chimneys Number of open flues Number of chimneys / flues attached to closed fire Number of flues attached to solid fuel boiler Number of flues attached to other heater Number of passive vents Number of passive vents Number of passive vents Number of flueless gas fires	Area (m2) 65.3200 (3	(1b) x 2.4300 (3a)+(3b)+(3c)+(3d)+(3e)	(m3) (2b) = 158.7276 (3n) = 158.7276 (3n) = 158.7276 m3 per hour 0 * 80 = 0.0000 0 * 20 = 0.0000 0 * 10 = 0.0000 0 * 20 = 0.0000 0 * 35 = 0.0000 0 * 35 = 0.0000 0 * 20 = 0.0000 0 * 20 = 0.0000 0 * 40 = 0.0000 0 * 40 = 0.0000 Air changes per hour	(1b) - (3b) (4) (5) (6a) (6b) (6c) (6d) (6e) (6f) (7a) (7b) (7c)
SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) 65.3200 Dwelling volume Number of open chimneys Number of chimneys / flues attached to closed fire Number of flues attached to solid fuel boiler Number of flues attached to other heater Number of flues attached to tother heater Number of passive vents Number of passive vents Number of flueless gas fires Infiltration due to chimneys, flues and fans = (6a)+(6b)+(6c)+(6d)+(6e)+(6f)+(6g)+(7a) Pressure test	Area (m2) 65.3200 (3	(1b) x 2.4300 (3a)+(3b)+(3c)+(3d)+(3e)	(m3) (2b) = 158.7276 (3n) = 158.7276 (3n) = 158.7276 m3 per hour 0 * 80 = 0.0000 0 * 20 = 0.0000 0 * 10 = 0.0000 0 * 20 = 0.0000 0 * 20 = 0.0000 2 * 10 = 0.0000 2 * 10 = 0.0000 0 * 40 = 0.0000 Air changes per hour	(1b) - (3b) (4) (5) (6a) (6b) (6c) (6d) (6e) (6f) (7a) (7b) (7c)
SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) 65.3200 Dwelling volume 2. Ventilation rate Number of open chimneys Number of chimneys / flues attached to closed fire Number of flues attached to solid fuel boiler Number of flues attached to other heater Number of blocked chimneys Number of intermittent extract fans Number of passive vents Number of flueless gas fires Infiltration due to chimneys, flues and fans = (6a)+(6b)+(6c)+(6d)+(6e)+(6f)+(6g)+(7a)	Area (m2) 65.3200 (3	(1b) x 2.4300 (3a)+(3b)+(3c)+(3d)+(3e)	(m3) (2b) = 158.7276 (3n) = 158.7276 (3n) = 158.7276 (3n) = 0.0000 0 * 80 = 0.0000 0 * 20 = 0.0000 0 * 20 = 0.0000 0 * 20 = 0.0000 0 * 35 = 0.0000 0 * 35 = 0.0000 2 * 10 = 0.0000 0 * 10 = 0.0000 0 * 40 = 0.0000 Air changes per hour 0 / (5) = 0.1260	(6a) (6b) (6c) (6d) (6c) (6d) (6e) (7a) (7b) (7c) (8)
SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics 1. Overall dwelling characteristics Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) 65.3200 Dwelling volume Number of open chimneys Number of open flues Number of open flues Number of flues attached to solid fuel boiler Number of flues attached to other heater Number of blocked chimneys Number of passive vents Number of passive vents Number of flueless gas fires Infiltration due to chimneys, flues and fans = (6a)+(6b)+(6c)+(6d)+(6e)+(6f)+(6g)+(7a) Pressure test Pressure Test Method Measured/design AF50 Infiltration rate Number of sides sheltered	Area (m2) 65.3200 (3	(1b) x 2.4300 Sa)+(3b)+(3c)+(3d)+(3e)	(m3) (2b) = 158.7276 158.7276 (3n) = 158.7276 (3n) = 158.7276 (3n) = 0.0000 0 * 80 = 0.0000 0 * 20 = 0.0000 0 * 10 = 0.0000 0 * 20 = 0.0000 2 * 10 = 0.0000 2 * 10 = 0.0000 0 * 40 = 0.0000 Air changes per hour 1 / (5) = 0.1260 Yes Blower Door 5.0000 0.3760 2	(1b) - (3b) (4) (5) (6a) (6b) (6c) (6d) (6e) (6f) (7b) (7c) (8)
SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics 1. Overall dwelling characteristics Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) 65.3200 Dwelling volume Number of open chimneys Number of open flues Number of flues attached to closed fire Number of flues attached to solid fuel boiler Number of flues attached to other heater Number of blocked chimneys Number of intermittent extract fans Number of passive vents Number of flueless gas fires Infiltration due to chimneys, flues and fans = (6a)+(6b)+(6c)+(6d)+(6e)+(6f)+(6g)+(7a) Pressure test Pressure Test Method Measured/design AP50 Infiltration rate	Area (m2) 65.3200 (3	(1b) x 2.4300 (3a)+(3b)+(3c)+(3d)+(3e)	(m3) (2b) = 158.7276 (3n) = 158.7276 (3n) = 158.7276 (3n) = 158.7276 (3n) = 0.0000 0 * 80 = 0.0000 0 * 20 = 0.0000 0 * 10 = 0.0000 0 * 35 = 0.0000 0 * 35 = 0.0000 0 * 20 = 0.0000 0 * 10 = 0.0000 0 * 10 = 0.0000 0 * 40 = 0.0000 Air changes per hour 0 / (5) = 0.1260 Yes Blower Door 5.0000 0.3760 2 x (19)] = 0.8500	(1b) - (3b) (4) (5) (6a) (6b) (6c) (6d) (6e) (6f) (7a) (7b) (7c) (8)
SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) 65.3200 Dwelling volume Number of open chimneys Number of open flues Number of open flues attached to closed fire Number of flues attached to solid fuel boiler Number of flues attached to solid fuel boiler Number of blocked chimneys Number of placked chimneys Number of passive vents Number of passive vents Number of passive vents Number of flueless gas fires Infiltration due to chimneys, flues and fans = (6a)+(6b)+(6c)+(6d)+(6e)+(6f)+(6g)+(7a) Pressure test Pressure Test Method Measured/design AP50 Infiltration rate Number of sides sheltered Shelter factor Infiltration rate adjusted to include shelter factor	Area (m2) 65.3200 (3	$(1b) x \qquad 2.4300$ $(3a) + (3b) + (3c) + (3d) + (3e)$ 20.0000 $(20) = 1 - [0.075 \times (21) = (18)]$ Sep Oct	(m3) (2b) = 158.7276 158.7276 (3n) = 158.7276 (3n) = 158.7276 (3n) = 0.0000 0 * 80 = 0.0000 0 * 20 = 0.0000 0 * 10 = 0.0000 0 * 20 = 0.0000 0 * 20 = 0.0000 0 * 1	(1b) - (3b) (4) (5) (6a) (6b) (6c) (6d) (6e) (6f) (7a) (7b) (7c) (8) (17) (18) (19) (20) (21)
SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) 65.3200 Dwelling volume Number of open chimneys Number of open flues Number of open flues attached to closed fire Number of flues attached to solid fuel boiler Number of flues attached to solid fuel boiler Number of blocked chimneys Number of placked chimneys Number of passive vents Number of passive vents Number of passive vents Number of flueless gas fires Infiltration due to chimneys, flues and fans = (6a)+(6b)+(6c)+(6d)+(6e)+(6f)+(6g)+(7a) Pressure test Pressure Test Method Measured/design AP50 Infiltration rate Number of sides sheltered Shelter factor Infiltration rate adjusted to include shelter factor	Aug 0 3.7000 0 0.9250	(20) = 1 - [0.075 > (21) = (18) Sep Oct 4.0000 1.0750	m3) (2b) = 158.7276 (3n) = 158.7276 (3n) = 158.7276 (3n) = 158.7276 (3n) = 0.0000 0 * 80 = 0.0000 0 * 20 = 0.0000 0 * 20 = 0.0000 0 * 20 = 0.0000 2 * 10 = 0.0000 0 * 10 = 0.0000 Air changes per hour 0 / (5) = 0.1260 Yes Blower Door 5.0000 0.3760 2 x (19)] = 0.8500 x (20) = 0.3196 Nov Dec 4.5000 4.7000 1.1250 1.1750	(1b) - (3b) (4) (5) (6a) (6b) (6c) (6d) (6e) (6f) (7b) (7c) (8) (17) (18) (19) (20) (21)

SAP 10 Online 2.10.12 Page 4 of 12

Effective ac 0.5830 0.5798 0.5766 0.5618 0.5590 0.5461 0.5461 0.5437 0.5511 0.5590 0.5646 0.5705 (25)

3. Heat losses and hea							 tArea		3 11			3 V	
Element				Gross m2	Openings m2		m2 .6800	U-value W/m2K 1.0000	A x U W/K 1.6800		-value kJ/m2K	A x K kJ/K	(26)
TER Opaque door TER Opening Type (Uw = Exposed to Retail External Wall Roof at Plane Total net area of exte	ernal el		Aum(A, m2)	69.0100 65.3200	11.5600	9 65 57 65	.8800 .3200 .4500 .3200 .6500	1.1450 0.1300 0.1800 0.1100	11.3130 8.4916 10.3410 7.1852				(27) (28b) (29a) (30) (31)
Fabric heat loss, W/K Party Wall	= Sum	(A x U)				14	(26)(.3100	30) + (32) = 0.0000	= 39.0108 0.0000				(33) (32)
Thermal mass parameter List of Thermal Bridge K1 Element	es							Le		i-value	Tota		(35)
E2 Other linte E3 Sill E4 Jamb E20 Exposed f. E10 Eaves (in: E12 Gable (in: E16 Corner (n: E18 Partry wall P4 Party wall Thermal bridges (Sum() Point Thermal bridges	loor (no sulation sulation ormal) l betwee - Expos - Roof L x Psi)	ormal) n at cei n at cei en dwell sed floo (insula	iling level) iling level) lings or (normal) ation at cei)) iling level				3. 17. 22. 22. 5. 4. 4.	5600 3400 7000 8800 5500 8700 8600 8600 8700 8700	0.0500 0.0500 0.0500 0.3200 0.0600 0.0600 0.0900 0.1600 0.1200	0.37: 0.16 0.88: 7.32: 1.35: 0.35: 0.43: 0.29: 0.93: 0.70:	70 50 16 30 222 74 16 92 44 12.8294 0.0000	
Total fabric heat loss		atad mar	a+bl:: (20)m	- 0 33 /	25) m (5)				(33) + (36)	+ (36a) =	51.8402	(37)
Ventilation heat loss Jan (38)m 30.538 Heat transfer coeff]	reb 0.3700	Mar 30.2045	Apr 29.4270	May 29.2816	Jun 28.6044	Jul 28.6044	Aug 28.4790	Sep 28.8652	Oct 29.2816	Nov 29.5758	Dec 29.8835	(38)
82.379 Average = Sum(39)m /		2.2102	82.0447	81.2672	81.1217	80.4446	80.4446	80.3192	80.7054	81.1217	81.4160	81.7237 81.2665	(39)
Jan HLP 1.26		Feb 1.2586	Mar 1.2560	Apr 1.2441	May 1.2419	Jun 1.2315	Jul 1.2315	Aug 1.2296	Sep 1.2355	Oct 1.2419	Nov 1.2464	Dec 1.2511	(40)
HLP (average) Days in mont	31	28	31	30	31	30	31	31	30	31	30	1.2441	
4. Water heating energ			s (kWh/year))									
Assumed occupancy Hot water usage for m												2.1274	(42)
59.888 Hot water usage for ba	89 58	8.9889	57.6774	55.1681	53.3163	51.2511	50.0773	51.3789	52.8057	55.0230	57.5862	59.6594	(42a)
25.87 Hot water usage for of	74 25 ther use		24.9519	23.9540	23.2068	22.3783	21.9308	22.4682	23.0533	23.9399	24.9583	25.7899	
36.410 Average daily hot wate		5.0923 (litres/	33.7681 /day)	32.4439	31.1196	29.7954	29.7954	31.1196	32.4439	33.7681	35.0923	36.4166 112.3140	
Jan Daily hot water use		Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Energy conte 193.50° Energy content (annual	78 170 1)	9.5743 0.2722	116.3974 178.8984	111.5660 152.7282	107.6427 144.9078	103.4248 127.1729	101.8035 123.1225	104.9667 129.9707	133.5483	112.7310 152.9748 Total = S	117.6368 167.5952 um(45)m =	121.8659 190.8126 1865.5115	
Distribution loss (4) 29.020 Water storage loss:		.15 X (4 5.5408	26.8348	22.9092	21.7362	19.0759	18.4684	19.4956	20.0322	22.9462	25.1393	28.6219	
Store volume a) If manufacturer de Temperature factor: Enter (49) or (54) in	from Tak		actor is kno	own (kWh/d	lay):							170.0000 1.5003 0.5400 0.8102	(48) (49)
Total storage loss 25.11! If cylinder contains			25.1153 r storage	24.3051	25.1153	24.3051	25.1153	25.1153	24.3051	25.1153	24.3051	25.1153	(56)
25.119 Primary loss 23.262 Combi loss 0.000	53 22 24 23 00 0	2.6848 1.0112 0.0000	25.1153 23.2624 0.0000	22.5120 0.0000	23.2624 0.0000		25.1153 23.2624 0.0000			25.1153 23.2624 0.0000	24.3051 22.5120 0.0000	25.1153 23.2624 0.0000	(59)
	55 213 87 -24 00 -0	3.9682 4.2139 0.0000		199.5453 -20.9953 -0.0000	193.2855 -19.5669 -0.0000		171.5002 -15.6944 -0.0000 0.0000	-16.6894 -0.0000	180.3654 -17.3235 -0.0000 0.0000	-20.4225 -0.0000	-23.1362 -0.0000	239.1903 -26.8717 -0.0000 0.0000	(63a) (63b)
FGHRS 0.000 Output from w/h 214.500			0.0000		0.0000 173.7186	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	
12Total per year (kWh, Electric shower(s)									er year (kWh/				(64)
0.000 Heat gains from water		0.0000 a. kWh/n	0.0000 month	0.0000 Tot	0.0000 al Energy us	0.0000 ed by insta	0.0000 antaneous e		0.0000 wer(s) (kWh/y			0.0000	
				88.2358	86.8840	79.7387	79.6404	81.9174	81.8585	89.5663	93.1791	102.1474	(65)
5. Internal gains (see													
	1	Feb	Mar 106.3693	Apr 106.3693	May 106.3693	Jun 106.3693	Jul 106.3693	Aug 106.3693	Sep 106.3693	Oct 106.3693	Nov 106.3693	Dec 106.3693	(66)
Lighting gains (calcui	lated in	n Append	dix L, equat	tion L9 or		ee Table 5			102.3755	99.0731	102.3755	99.0731	
Appliances gains (calc 186.138	culated 80 188	in Appe 8.0695	endix L, equ 183.2021	172.8400	or L13a), al 159.7597	so see Tab: 147.4661	le 5 139.2532		142.1891				
Cooking gains (calcula 33.63)	ated in	Appendi 3.6369	ix L, equati	ion L15 or 33.6369	L15a), also 33.6369	see Table 5	5 33.6369	33.6369	33.6369 0.0000	33.6369 3.0000		33.6369 3.0000	

SAP 10 Online 2.10.12 Page 5 of 12

Losses e.g. e			alues) (Tab -85.0955	le 5) -85.0955	-85.0955	-85.0955	-85.0955	-85.0955	-85.0955	-85.0955	-85.0955	-85.0955	(71)
Water heating		.e 5)	131.9703	122.5498	116.7796	110.7482	107.0435	110.1041	113.6924	120.3848	129.4154	137.2948	
Total interna	l gains		472.1563	455.6762	433.5232	415.5007	400.2807	401.4097	413.1678	429.9199	455.3333	472.2039	
6. Solar gain:	s 												
[Jan]			A		Solar flux Table 6a	Sneci	g fic data	Specific	FF data	Acces		Gains W	
					W/m2		fic data Table 6b		le 6c	Table 6			
Southeast Southwest				000	36.7938		0.6300	0	.7000 .7000	0.770		51.6131 4.4979	. ,
Northwest) 			.7000	0.770	0	16.8618	(81)
Solar gains	72.9727 554.5939		192.6119 664.7683		318.0042 751.5274		309.8587 710.1393	267.7335	216.9512 630.1189	147.5786 577.4985	88.4244 543.7577		
Total gains	334.3939	021.0370	004.7003	719.2074	731.3274	741.2100	710.1393	009.1432	030.1109	377.4903	343.7377	533.9933	(04)
7. Mean inter													
Temperature de Utilisation fa	actor for ga	ins for li	ving area,	nil,m (see 1	able 9a)			_				21.0000	(85)
tau alpha	Jan 29.6084 2.9739	Feb 29.6693 2.9780	Mar 29.7291 2.9819	Apr 30.0135 3.0009	May 30.0674 3.0045	Jun 30.3205 3.0214	Jul 30.3205 3.0214	Aug 30.3678 3.0245	Sep 30.2225 3.0148	Oct 30.0674 3.0045	Nov 29.9587 2.9972	Dec 29.8459 2.9897	
util living a		0.9412	0.9137	0.8528	0.7517	0.6029	0.4660	0.5070	0.7028	0.8706	0.9390	0.9628	(86)
MIT	18.8848	19.1482	19.5386	20.0684	20.5225	20.8282	20.9417	20.9236	20.7122	20.1411	19.4369	18.8415	
Th 2 util rest of 1		19.8734	19.8754	19.8849	19.8866	19.8948	19.8948	19.8964	19.8917	19.8866	19.8830	19.8793	
MIT 2	0.9514 17.4428	0.9307 17.7742	0.8977 18.2630	0.8244 18.9163	0.7022 19.4455	0.5233 19.7714	0.3611 19.8669	0.4015 19.8569	0.6304 19.6643	0.8397 19.0187	0.9263 18.1487	0.9561 17.3933	(90)
Living area f:	18.4031	18.6892	19.1125	19.6836	20.1628	20.4752	20.5827	20.5673	20.3621	Living area 19.7661			
Temperature acadjusted MIT		18.6892	19.1125	19.6836	20.1628	20.4752	20.5827	20.5673	20.3621	19.7661	19.0066	0.0000 18.3578	(93)
8. Space heat	ing requirem	ent											
Utilisation Useful gains	Jan 0.9388	Feb 0.9169 570.1396	Mar 0.8846 588.0715	Apr 0.8186 588.8082	May 0.7154 537.6306	Jun 0.5667 420.0409	Jul 0.4279 303.8354	Aug 0.4674 312.7773	Sep 0.6631 417.8220	Oct 0.8358 482.6848	Nov 0.9138 496.9079	Dec 0.9441 504.1351	
Ext temp. Heat loss rate	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	
Space heating	1161.8002	1133.6158	1034.7895	876.3501	686.5135	472.6248	320.3847	334.7117	505.3861	743.5720	969.3866	1157.0241	(97)
Space heating	requirement		332.3582 er year (kW	207.0301 h/year)	110.7689	0.0000	0.0000	0.0000	0.0000	194.1001	340.1847	485.7494 2525.8604	(98a)
Solar heating	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(98b)
Solar heating Space heating	kWh			wn/year) 207.0301	110 7689	0.0000	0.0000	0.0000	0.0000	194.1001	340.1847	0.0000 485.7494	(98c)
Space heating Space heating	requirement						0.0000	0.0000	0.0000		/ (4) =	2525.8604 38.6690	
	-												
9a. Energy rec												0.0000	(201)
Fraction of sp Efficiency of	pace heat fr	om main sy	stem(s)		. (labie li	.,						1.0000	(202)
Efficiency of Efficiency of	main space	heating sy	stem 2 (in	%)								0.0000	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating Space heating	477.0130	378.6560	332.3582		110.7689	0.0000	0.0000	0.0000	0.0000	194.1001	340.1847	485.7494	(98)
Space heating	92.3000	92.3000	92.3000	92.3000	92.3000	0.0000	0.0000	0.0000	0.0000	92.3000	92.3000	92.3000	(210)
Space heating	516.8072	410.2448	360.0847		120.0097	0.0000	0.0000	0.0000	0.0000	210.2926	368.5641	526.2724	(211)
Space heating	0.0000	0.0000 heating sy	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(212)
Space heating			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Waton barti	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating Water heating	requirement 214.5068		201.9207	178.5500	173.7186	157.2465	155.8058	161.6590	163.0419	180.9301	191.2762	212.3186	(64)
Efficiency of (217)m			85.1697	84.3925	83.0785	79.8000	79.8000	79.8000	79.8000	84.2177	85.3361	79.8000 85.8549	(216)
Fuel for wate:	r heating, k	Wh/month	237.0803		209.1018	197.0508	195.2454	202.5802	204.3132	214.8362	224.1444	247.2993	
Space cooling (221)m	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Pumps and Fa Lighting		6.5973 16.5144	7.3041 14.8694	7.0685 10.8940	7.3041 8.4148	7.0685 6.8750	7.3041 7.6763	7.3041 9.9779	7.0685 12.9603	7.3041 17.0046	7.0685 19.2067	7.3041 21.1576	
Electricity go (233a)m Electricity go	-51.0957	-67.4692	-90.9299	-95.7047	-98.0812	-89.8462	-88.7704	-86.2440	-81.1353	-73.9536	-54.5463	-44.7377	(233a)
(234a)m Electricity ge	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 ity)	0.0000	0.0000	0.0000	0.0000	0.0000	(234a)

SAP 10 Online 2.10.12 Page 6 of 12

(235a)m 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	-212.5816 -128.4519 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 -58.7419 -35.4021 0.0000 0.0000 0.0000 0.0000 2736.5768 0.0000 79.8000 2614.9677 0.0000 86.0000 166.1363 -3228.6047 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2375.0762	(235c) (233b) (234b) (235d) (235d) (211) (213) (215) (219) (221) (231) (232) (233) (234) (235a) (235) (236) (237)
22a. Carbon dioxide emissions - Individual heating systems including micro-CHP Energy kWh/year Space heating - main system 1 2736.5768 Total CO2 associated with community systems Water heating (other fuel) 2614.9677 Space and water heating Pumps, fans and electric keep-hot 86.0000 Energy for lighting 166.1363 Energy saving/generation technologies PV Unit electricity used in dwelling -922.5141 PV Unit electricity exported -2306.0906 Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER)	kg CO2/kWh 0.2100 0.2100 0.1387 0.1443	kg CO2/year 574.6811 0.0000 549.1432 1123.8244 11.9293	(261) (373) (264) (265) (267) (268)
	1.1300 1.5128 1.5338	kWh/year 3092.3318 0.0000 2954.9135	(275) (473) (278) (279) (281) (282) (283) (283) (286)
SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF FABRIC ENERGY EFFICIENCY 1. Overall dwelling characteristics Area (m2) Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) Dwelling volume (3)	(m)	(2b) = 158.7276	(1b) - (3b) (4)
Number of open chimneys Number of open flues Number of chimneys / flues attached to closed fire Number of flues attached to solid fuel boiler Number of flues attached to other heater Number of blocked chimneys		m3 per hour 0 * 80 = 0.0000 0 * 20 = 0.0000 0 * 10 = 0.0000 0 * 20 = 0.0000 0 * 35 = 0.0000 0 * 20 = 0.0000	(6a) (6b) (6c) (6d) (6e)

SAP 10 Online 2.10.12 Page 7 of 12

Number of interm Number of passiv Number of fluele	re vents										2 * 10 = 0 * 10 = 0 * 40 =	20.0000 0.0000 0.0000	(7b)
Infiltration due Pressure test Pressure Test Me Measured/design Infiltration rat Number of sides	thod AP50	ys, flues a	and fans :	= (6a)+(6b)+	+(6c)+(6d)+(6e)+(6f)+(6g) + (7a) + (7b	o)+(7c) =		20.0000		0.1260 Yes lower Door 3.0000 0.2760	(17)
Shelter factor Infiltration rat	e adjusted	to include	e shelter f	actor					(20) = 1 - (21	[0.075 x) = (18) x		0.8500 0.2346	
Wind speed Wind factor Adj infilt rate If exhaust air h If balanced with Effective ac									Sep 4.0000 1.0000 0.2346 a)	Oct 4.3000 1.0750 0.2522 0.5318	Nov 4.5000 1.1250 0.2639	Dec 4.7000 1.1750 0.2757 0.0000 0.0000 0.5380	(22a) (22b) (23b) (23c)
3. Heat losses a											,		
Element Glazing (Uw = 1. Solid Door Exposed to Retai External Wall Roof at Plane Total net area o Fabric heat loss Party Wall Internal Wall 1	.l of external			Gross m2 69.0100 55.3200	Openings m2 11.5600	9. 1. 65. 57. 65. 199.		U-value W/m2K 1.1450 1.2000 0.1800 0.1900 0.1200 0) + (32) 0.0000	A x U W/K 11.3130 2.0160 11.7576 10.9155 7.8384 = 43.8405 0.0000	110 9 70	.0000 .0000 .0000	A x K kJ/K 6319.5000 587.8800 1001.7000 871.7400	(30) (31) (33) (32)
E3 Sill E4 Jamb E20 Expo E10 Eave E12 Gabl E16 Corn E18 Part	ameter (TM Bridges int : lintels (cosed floor es (insulat ee (insulat er (normal ty Wall - Ex v Wall - Ex c (Sum(L x P ridges	P = Cm / The including of (normal) ion at ceil ion at ceil) ween dwell: posed floor of (insulation)	other steel ling level) ling level) ings r (normal) tion at cei	lintels)				L 77 317 22 22 5 4 4 5	.5600 .3400 .7000 .8800 .5500 .8700 .8600 .8600 .8700	+ (32a) i-value 0.0180 0.0200 0.0150 0.0530 0.0530 0.0410 0.0550 0.4800 0.0400) + (36) +	Tot: 0.13: 0.06: 0.26: 1.21: 1.33: 0.25: 0.19: 0.26: 2.81: 0.23:	61 68 55 26 04 24 93 73	(35)
Ventilation heat	loss calc	ulated mont	thly (38)m : Mar	= 0.33 x (25	5)m x (5) May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Heat transfer co	79.1566	28.4423 79.0656	28.3531 78.9764	27.9342 78.5575	27.8558 78.4791	27.4910 78.1143	27.4910 78.1143	27.4234 78.0467	27.6315 78.2548	27.8558 78.4791	28.0144 78.6377	28.1802 78.8035 78.5571	
HLP HLP (average) Days in mont	Jan 1.2118 31	Feb 1.2104 28	Mar 1.2091 31	Apr 1.2027 30	May 1.2015 31	Jun 1.1959 30	Jul 1.1959 31	Aug 1.1948 31	Sep 1.1980 30	Oct 1.2015 31	Nov 1.2039 30	Dec 1.2064 1.2027 31	(40)
4. Water heating	energy re	quirements	(kWh/year)										
Hot water usage	for mixer 0.0000 for baths 25.8774 for other 36.4166	0.0000 25.4931 uses 35.0923	0.0000 24.9519 33.7681	0.0000 23.9540 32.4439	0.0000 23.2068 31.1196	0.0000 22.3783 29.7954	0.0000 21.9308 29.7954	0.0000 22.4682 31.1196	0.0000 23.0533 32.4439	0.0000 23.9399 33.7681	0.0000 24.9583 35.0923	2.1274 0.0000 25.7899 36.4166 57.0984	(42a) (42b) (42c)
Daily hot water	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	, -,
Energy conte Energy content (60.5854 86.2728	58.7200 90.2504	56.3979 77.2059	54.3264 73.1338	52.1737 64.1536	51.7262 62.5583	53.5878 66.3529	55.4972 68.4336	57.7080 78.3092 Total = Su	60.0506 85.5531 m(45)m =	62.2065 97.4003 948.2826	
Distribution los Water storage lo Total storage lo	0.0000 ss:	0.15 x (45 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(46)
If cylinder cont Primary loss Combi loss Total heat requi	0.0000 ains dedic 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 d for each m	0.0000 0.0000 0.0000 0.0000 nonth 62.1638	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 53.1746	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 58.1686	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 72.7202	0.0000 0.0000 0.0000 0.0000 82.7903	(57) (59) (61)
WWHRS PV diverter Solar input FGHRS	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	(63a) (63b) (63c)
Output from w/h 12Total per year	83.8597 (kWh/year	73.3319	76.7129	65.6250	62.1638	54.5306	53.1746	56.4000 Total p	58.1686 er year (kWh/	66.5628 year) = Su	72.7202 m(64)m =	82.7903 806.0402 806	

SAP 10 Online 2.10.12 Page 8 of 12

Electric shows		40 7007	46 6625	44 5204	AE 2660	42 2740	44 7172	4E 2660	44 5204	46,6625	45 7061	47.0610	(64-)
Heat gains fro	47.9610		46.6635	44.5304 Tot			44.7173 antaneous e		44.5304 wer(s) (kWh	46.6635 /year) = Sum	45.7861 (64a)m =		
neac gains iic	32.9552		30.8441	27.5389	26.8824	24.4513	24.4730	25.4415	25.6747	28.3066	29.6266	32.6878	(65)
5. Internal ga	ains (see Ta	able 5 and	5a)										
Metabolic gair	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(66)m Lighting gains	s (calculate	ed in Appen	106.3693 dix L, equa 99.0731	tion L9 or	L9a), also :	see Table 5		106.3693	106.3693	106.3693	106.3693	106.3693	
Appliances gai	ins (calcula	ated in App		uation L13	or L13a), a	lso see Tab		99.0731	102.3755 142.1891	99.0731 152.5512	102.3755	99.0731 177.9251	
Cooking gains	(calculated 33.6369	d in Append 33.6369	ix L, equat: 33.6369	ion L15 or 33.6369	L15a), also 33.6369	see Table :	5 33.6369	33.6369	33.6369	33.6369	33.6369	33.6369	(69)
Pumps, fans Losses e.g. ev					0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Water heating	gains (Tab:	le 5)	-85.0955 41.4571	38.2484	-85.0955 36.1323	-85.0955 33.9602	-85.0955 32.8938	-85.0955 34.1956	-85.0955 35.6594	-85.0955 38.0465	-85.0955 41.1480	-85.0955 43.9353	
Total internal	l gains		378.6432	368.3748	349.8760	338.7127	326.1309	325.5012	335.1348	344.5816	364.0658	375.8443	
6. Solar gains	 3												
[Tan]									E-P	-		a	
[Jan]				m2	Solar flux Table 6a W/m2	Speci: or !	g fic data Table 6b	Specific or Tab	FF data le 6c	Acces facto Table 6	r	Gains W	
Southeast Southwest			4.5	900	36.7938		0.6300	0	.7000 .7000	0.770 0.770	0	51.6131 4.4979	
Northwest			4.8	900 	11.2829		0.6300	0	.7000	0.770	0	16.8618	(81)
Solar gains Total gains			192.6119 571.2551					267.7335 593.2347		147.5786 492.1602	88.4244 452.4902		
-													
7. Mean intern													
Temperature du												21.0000	(85)
Utilisation fa	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
tau alpha util living an		30.8493 3.0566	30.8841 3.0589	31.0488 3.0699	31.0798 3.0720	31.2250 3.0817	31.2250 3.0817	31.2520 3.0835	31.1689 3.0779	31.0798 3.0720	31.0171 3.0678	30.9519 3.0635	
ucii iiving a	0.9741	0.9595	0.9365	0.8818	0.7868	0.6395	0.4999	0.5469	0.7463	0.9038	0.9597	0.9772	(86)
MIT Th 2 util rest of h	18.7729 19.9105	19.0464 19.9117	19.4482 19.9128	19.9981 19.9179	20.4791 19.9188	20.8086 19.9233	20.9341 19.9233	20.9117 19.9241	20.6737 19.9216	20.0535 19.9188	19.3221 19.9169	18.7190 19.9149	
MIT 2	0.9692 17.8970	0.9520 18.1667	0.9241 18.5614	0.8577 19.0936	0.7411 19.5365	0.5610 19.8134	0.3925 19.8979	0.4393 19.8873	0.6782 19.7146	0.8790 19.1575	0.9509 18.4457	0.9729 17.8467	
	18.4803	18.7525	19.1520	19.6960	20.1642	20.4761	20.5880	20.5695		Living area 19.7542	/ (4) = 19.0294	0.6660 18.4276	
Temperature ac adjusted MIT		18.7525	19.1520	19.6960	20.1642	20.4761	20.5880	20.5695	20.3533	19.7542	19.0294	0.0000 18.4276	(93)
8. Space heati	ing requirer	ment											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation Useful gains Ext temp.		0.9419 495.1845 4.9000	0.9136 521.9190 6.5000	0.8520 538.4386 8.9000	0.7524 502.4927 11.7000	0.6031 400.7349 14.6000	0.4605 292.8862 16.6000	0.5060 300.1804 16.4000	0.7075 390.6189 14.1000	0.8746 430.4351 10.6000	0.9417 426.1129 7.1000	0.9651 422.3517 4.2000	(95)
Heat loss rate				848.1032	664.2668	459.0084	311.5174	325.4175	489.3490	718.4145		1121.1858	
Space heating	508.1620		355.1038		120.3600	0.0000	0.0000	0.0000	0.0000	214.2567	368.6292	519.9325	(98a)
Space heating Solar heating		0.0000	er year (kW)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(98h)
Solar heating Space heating	contribution				0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(305)
Space heating	requirement		355.1038 ar contribu			0.0000 (kWh/year)	0.0000	0.0000	0.0000	214.2567	368.6292	2712.6533	
Space heating	per mz									(980)	/ (4) =	41.5287	(99)
8c. Space cool													
Ext. temp. Heat loss rate	Jan 4.3000	Feb 4.9000	Mar 6.5000	Apr 8.9000	May 11.7000	Jun 14.6000	Jul 16.6000	Aug 16.4000	Sep 14.1000	Oct 10.6000	Nov 7.1000	Dec 4.2000	
Utilisation	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	734.2742 0.7558	578.0457 0.8240	593.1550 0.7921	0.0000	0.0000	0.0000	0.0000	
Useful loss Total gains	0.0000	0.0000	0.0000	0.0000	0.0000	554.9812 735.8738	476.3097 704.7129	469.8276 656.7032	0.0000	0.0000	0.0000	0.0000	(102)
Space cooling Cooled fraction	0.0000	0.0000	0.0000	0.0000	0.0000	130.2427	169.9320	139.0354	0.0000 fC =	0.0000 cooled area	0.0000	0.0000	
Intermittency		ole 10b) 0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	
Space cooling		0.0000	0.0000	0.0000	0.0000	32.5607	42.4830	34.7588	0.0000	0.0000	0.0000	0.0000	

SAP 10 Online 2.10.12 Page 9 of 12

Space cooling requirement Energy for space heating Energy for space cooling Total Fabric Energy Efficiency (DFEE)				109.8025 41.5287 1.6810 43.2097 43.2	(99) (108)
SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET FABRIC ENERGY EFFICIENCY					
1. Overall dwelling characteristics					
Ground floor Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)(1n) Dwelling volume Area (m2) 65.3200 (6	_	height (m) 2.4300 (3d)+(3e).		Volume (m3) 158.7276 158.7276	(1b) - (3b (4) (5)
2. Ventilation rate					
Number of open chimneys Number of open flues Number of chimneys / flues attached to closed fire Number of flues attached to solid fuel boiler Number of flues attached to other heater Number of blocked chimneys Number of intermittent extract fans Number of passive vents Number of flueless gas fires			m3 0 * 80 = 0 * 20 = 0 * 10 = 0 * 20 = 0 * 20 = 0 * 20 = 2 * 10 = 0 * 10 = 0 * 40 =	per hour 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	(6b) (6c) (6d) (6e) (6f) (7a) (7b)
Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(6c)+(6d)+(6e)+(6f)+(6g)+(7a)+(7b)+(7c)$ = Pressure Test Method Measured/design AP50 Infiltration rate Number of sides sheltered		20.0000		0.1260 Yes ower Door 5.0000 0.3760	(17)
Shelter factor Infiltration rate adjusted to include shelter factor	(20) = 1 - (21)	[0.075 x = (18) x		0.8500 0.3196	
Wind speed 5.1000 5.0000 4.9000 4.4000 4.3000 3.8000 3.8000 3.7000 Wind factor 1.2750 1.2500 1.2250 1.1000 1.0750 0.9500 0.9500 0.9250		Oct 4.3000 1.0750	Nov 4.5000 1.1250	Dec 4.7000 1.1750	
Adj infilt rate 0.4075 0.3995 0.3915 0.3516 0.3436 0.3036 0.3036 0.2956 If exhaust air heat pump using Appendix N, (23b) = (23a) x Fmv (equation (N5)), otherwise (23b) = (2 If balanced with heat recovery: efficiency in % allowing for in-use factor (from Table 4h) = Effective ac 0.5830 0.5798 0.5766 0.5618 0.5590 0.5461 0.5461 0.5437	3a)	0.3436	0.3596	0.3755 0.0000 0.0000 0.5705	(23b) (23c)
3. Heat losses and heat loss parameter					
Element Gross Openings NetArea U-value TER Opaque door m2 m2 m2 m2 w/m2K TER Opening Type (Uw = 1.20) 9.8800 1.1050 Exposed to Retail 69.0100 11.5600 57.4500 0.1800 Roof at Plane 65.3200 65.3200 0.1300 Total net area of external elements Aum(A, m2) Party Wall 199.6500 Party Wall 14.3100 0.0000	A x U W/K 1.6800 11.3130 8.4916 10.3410 7.1852 = 39.0108 0.0000		value J/m2K	A x K kJ/K	(26) (27) (28b) (29a) (30) (31) (33) (32)
E2 Other lintels (including other steel lintels) E3 Sill E4 Jamb 1 E20 Exposed floor (normal) 2 E10 Eaves (insulation at ceiling level) E12 Gable (insulation at ceiling level) E16 Corner (normal) E18 Party wall between dwellings P7 Party Wall - Exposed floor (normal)	7.5600 3.3400 7.7000 2.8800 2.5500 5.8700 4.8600 4.8600 5.8700	-value 0.0500 0.0500 0.0500 0.3200 0.0600 0.0600 0.0900 0.0600 0.1600	Total 0.3780 0.1670 0.8855 7.3216 1.3530 0.3522 0.4374 0.2916 0.9392))) 5)) 2 1	(35)
P4 Party wall - Roof (insulation at ceiling level) Thermal bridges (Sum(L x Psi) calculated using Appendix K) Point Thermal bridges Total fabric heat loss		0.1200 + (36) +	0.7044 (36a) = (36a) =	12.8294 0.0000 51.8402	
Ventilation heat loss calculated monthly (38)m = 0.33 x (25)m x (5) Jan Feb Mar Apr May Jun Jul Aug (38)m 30.5389 30.3700 30.2045 29.4270 29.2816 28.6044 28.6044 28.4790	Sep 28.8652	Oct 29.2816	Nov 29.5758	Dec 29.8835	(38)
Heat transfer coeff 82.3791 82.2102 82.0447 81.2672 81.1217 80.4446 80.4446 80.3192 Average = Sum(39)m / 12 =	80.7054	81.1217	81.4160	81.7237 81.2665	(39)
Jan Feb Mar Apr May Jun Jul Aug HLP 1.2612 1.2586 1.2560 1.2441 1.2419 1.2315 1.2315 1.2296 HLP (average)	Sep 1.2355	Oct 1.2419	Nov 1.2464	Dec 1.2511 1.2441	(40)

SAP 10 Online 2.10.12 Page 10 of 12

31

30

31

31

30

31

31

31

Days in mont

28

31

4. Water heating energy requirements (kWh/year)2.1274 (42) Assumed occupancy 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 (42a) Hot water usage for baths 25.8774 25.4931 24.9519 23.9540 23.2068 22.3783 21.9308 22.4682 23.0533 23.9399 24.9583 25.7899 (42b) Hot water usage for other uses 36.4166 35.0923 32.4439 29.7954 29.7954 31.1196 36.4166 (42c) 57.0984 (43) 31.1196 32.4439 Average daily hot water use (litres/day) Apr May Jun Jul Sep Oct Nov Daily hot water use 62.2940 60.5854 56.3979 53.5878 55.4972 57.7080 60.0506 62.2065 (44) Energy conte 98.6584 86.2728 90.2504 77.2059 73.1338 64.1536 62.5583 66.3529 68.4336 78.3092 85.5531 97.4003 (45) Energy conte 50.0003 Energy content (annual) Distribution loss (46)m 0.0000 948.2826 0.0000 (46) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Water storage loss: Water storage 1000. Total storage loss 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 (56) If cylinder contains dedicated solar storage 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 (57) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 (59) 0.0000 (61) Primary loss 0.0000 0.0000 Combi loss 0.0000 0.0000 Total heat required for water heating calculated for each month 83.8597 0.0000 0.0000 73.3319 0.0000 0.0000 65.6250 62.1638 54.5306 53.1746 56.4000 58.1686 66.5628 72.7202 82.7903 (62) 0.0000 0.0000 WWHRS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 (63a) (63b) PV diverter 0.0000 Solar input 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 (63c) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Output from w/h 73.3319 62.1638 53.1746 58.1686 66.5628 82.7903 (64) Total per year (kWh/year) = Sum(64)m = 806.0402 (64) 12Total per year (kWh/year) Electric shower(s) 47.9610 806 (64) 42.7337 46.6635 44.5304 44.7173 47.9610 (64a) 45.3660 44.5304 46.6635 Total Energy used by instantaneous electric shower(s) (kWh/year) = Sum(64a)m = 545.5538 (64a) Heat gains from water heating, kWh/month 32.9552 29.0164 30 30.8441 5. Internal gains (see Table 5 and 5a) Metabolic gains (Table 5), Watts
Jan Feb May 106.3693 Aug 106.3693 Sep 106.3693 | Jan | Feb | Mar | Apr | May | Jun | Geometric | Jun 106.3693 106.3693 106.3693 106.3693 (66) 99.0731 99.0731 102.3755 99.0731 102.3755 99.0731 (67) 139.2532 142.1891 137.3217 152.5512 165.6315 177.9251 (68) 186.1380 188.0695 183.2021 172.8400 159./59/ 144.4661

Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5

33.6369 33.6369 33.6369 33.6369 33.6369 33.6369

Pumps, fans 0.0000 0.0000 0.0000 0.0000 0.0000 33.6369 (69) 0.0000 (70) 0.0000 0.0000 0.0000 0.0000 0.0000 Losses e.g. evaporation (negative values) (Table 5) -85.0955 -85.0955 -85.0955 -85 -85.0955 -85.0955 -85.0955 -85.0955 -85 0955 -85.0955 -85.0955 -85.0955 -85.0955 (71) Water heating gains (Table 5) 44.2946 43.1792 41.4571 38.2484 36.1323 33.9602 34.1956 35.6594 38.0465 41.1480 43.9353 (72) Total internal gains 384.4165 395.8476 378.6432 368.3748 349.8760 338.7127 326.1309 325.5012 335.1348 344.5816 364.0658 375.8443 (73) Solar flux Specific data Specific data m2 Table 6a factor W/m2 or Table 6b or Table 6c Table 6d 0.7700 0.7700 0.7700 4.5900 0.4000 0.6300 0.7000 51.6131 (77) 4.4979 (79) Southwest Northwest 4.8900 11.2829 0.6300 0.7000 16.8618 (81) 192.6119 318.0042 Solar gains Total gains 457.3892 525.7479 571.2551 631.9660 667.8802 664.4286 635.9896 593.2347 552.0859 492.1602 452.4902 437.6337 (84) 7. Mean internal temperature (heating season) Temperature during heating periods in the living area from Table 9, Th1 (C) 21.0000 (85) Utilisation factor for gains for living area, nil,m (see Table 9a)

Jan Feb Mar Apr May

tau 29.6084 29.6693 29.7291 30.0135 30.067

alpha 2.9739 2.9780 2.9819 3.0009 3.004 May 30.0674 3.0045 Jun 30.3205 3.0214 Jul 30.3205 3.0214 Aug 30.3678 3.0245 Sep 30.2225 3.0148 Nov 29.9587 29.8459 3.0045 util living area 0.9774 (86) 0 9744 0 9604 0 9384 0.8857 0 7940 0 6490 0 5101 0.5569 0 7542 0 9067 0 9605 18.6690 18.9468 19.3595 19.9333 20.4352 20.7887 20.9254 20.9012 20.6453 19.9986 19.2458 18.6244 (87) Th 2 util rest of house 0.9695 19.8917 19.8793 (88) 19.8866 19.8948 19.8866 19.8830 0.8617 0.5690 0.4461 0.6854 0.9517 0.9731 (89) MIT 2 17.7291 (90) 0.6660 (91) 18.3254 (92) 17.7678 18.0426 18.4489 19.0081 19.4723 19.7738 19.8662 19.8554 19.6670 19.0822 18.3476 19.6242 20.1135 20.4497 20.5716 Temperature adjustment 0.0000 18.6447 19.0553 19.6242 20.1135 20.4497 20.5716 20.5518 20.3185 19.6925 18.9458 18.3254 (93) 18.3680

SAP 10 Online 2.10.12 Page 11 of 12

8. Space heat													
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation	0.9609	0.9425	0.9151	0.8552	0.7584	0.6111	0.4690	0.5143	0.7141	0.8770	0.9423	0.9651	
Useful gains		495.5076	522.7564	540.4625	506.4899	406.0394	298.3011	305.1066	394.2195	431.6192	426.3631	422.3615	
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	(96)
Heat loss rat		100 0560	1000 0005	031 5035	COO 5107	470 5700	210 4020	222 4714	F01 06F0	727 5076	064 4040	1154 2555	(07)
Space heating	1158.9082 1	1129.9568	1030.0985	871.5275	682.5197	470.5739	319.4932	333.4714	501.8659	737.5976	964.4340	1154.3755	(97)
space meating	535.2357	126 3100	377.4625	238.3668	130.9661	0.0000	0.0000	0.0000	0.0000	227.6480	387.4110	544.6184	(000)
Space heating					130.9001	0.0000	0.0000	0.0000	0.0000	227.0400	307.4110	2868.0585	(30a)
Solar heating		cocar p	CI YCUI (KWI	ii/ ycar)								2000.0303	
oolul neacling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(98b)
Solar heating												0.0000	(,
Space heating	kWh												
	535.2357	426.3499	377.4625	238.3668	130.9661	0.0000	0.0000	0.0000	0.0000	227.6480	387.4110	544.6184	(98c)
Space heating		after sol	ar contribut	tion - tota:	l per year	(kWh/year)						2868.0585	
Space heating	per m2									(98c)	/ (4) =	43.9078	(99)
8c. Space coo													
Calculated fo	r June, July			e 10b									
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Ext. temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	
Heat loss rat													
	0.0000	0.0000	0.0000	0.0000	0.0000	756.1791	595.2900	610.4258	0.0000	0.0000	0.0000	0.0000	
Utilisation Useful loss	0.0000	0.0000	0.0000	0.0000	0.0000	0.7410	0.8107	0.7783	0.0000	0.0000	0.0000	0.0000	
Total gains	0.0000	0.0000	0.0000	0.0000	0.0000	560.3370	482.6062 704.7129	475.0759 656.7032	0.0000	0.0000	0.0000	0.0000	
Space cooling	0.0000	0.0000	0.0000	0.0000	0.0000	735.8738	704.7129	636.7032	0.0000	0.0000	0.0000	0.0000	(103)
space cooring	0.0000	0.0000	0.0000	0.0000	0.0000	126.3865	165.2474	135.1307	0.0000	0.0000	0.0000	0.0000	(104)
Cooled fracti		0.0000	0.0000	0.0000	0.0000	120.3003	103.2474	155.1507		cooled area		1.0000	
Intermittency		le 10b)							10 -	coolea alea	(4)	1.0000	(100)
	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	(106)
Space cooling	kWh												,
	0.0000	0.0000	0.0000	0.0000	0.0000	31.5966	41.3119	33.7827	0.0000	0.0000	0.0000	0.0000	(107)
Space cooling	requirement											106.6912	(107)
Energy for sp	ace heating											43.9078	(99)
Energy for sp	ace cooling											1.6334	(108)
Total												45.5412	(109)
Fabric Energy													(109)

SAP 10 Online 2.10.12 Page 12 of 12

breglobal

Job no: Date: Assessor name:

23/10/2023 Iraj Maghounaki

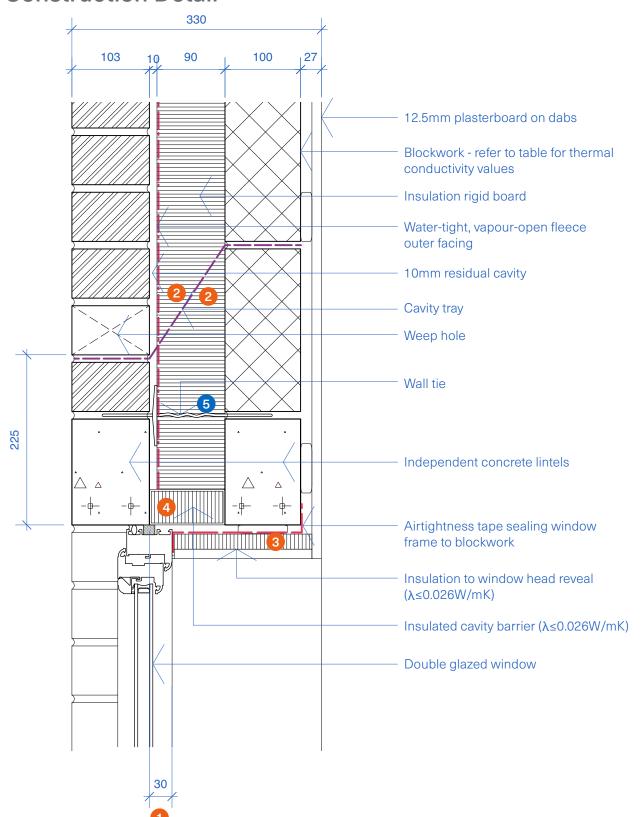
Registration no:

BRE400012

PR10887

Development name:

148 Oxford Road, Oxford, OX4 2EA


BRE Global 2008. BRE Certification is a registered trademark owned by BRE Global and may not be used without BRE Global's written permission.

Permission is given for this tool to be copied without infringement of copyright for use only on projects where a Code for Sustainable Homes assessment is carried out. Whilst every care is taken in preparing the Wat 1 assessment tool, BREG cannot accept responsibility for any inaccuracies or for consequential loss incurred as a result of such inaccuracies arising through the use of the Wat 1 tool.

PRINTING: before printing please make sure that in "Page Setup" you have selected the page to be as "Landscape" and that the Scale has been set up to 70% (maximum)

WATER EFFICIE	ENCY CALCU	ILATOR	FOR N	IEW DV	VELLIN	GS - (B	ASIC C	ALCUL.	ATOR)												
	House Type:	Тур	e 1	Тур	e 2	Тур	oe 3	Тур	e 4	Тур	e 5	Тур	e 6	Тур	e 7	Тур	e 8	Тур	e 9	Тур	e 10
	Description:	Fla	t 2																		
Installation Type	Unit of measure	Capacity/ flow rate	Litres/ person/ day																		
Is a dual or single flush WC specified? Dual		ıal																			
wc	Full flush volume	6	8.76		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
WC	Part flush volume	3	8.88		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Taps (excluding kitchen and external taps)	Flow rate (litres / minute)	6	11.06		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Are both a Bath &		Bath &	Shower																		
Bath	Capacity to overflow	155	17.05		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Shower	Flow rate (litres / minute)	8	34.96		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Kitchen sink taps	Flow rate (litres / minute)	6	13.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Has a washi	ng machine been specified?	N	О																		
Washing Machine	Litres / kg	0	17.16		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Has a dishwashe	-	N	0																		
Dishwasher	Litres / place setting	0	4.50		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Has a waste d	isposal unit been specified?	No	0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Water Softener	Litres / person / day		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
		lated Use	115.4		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0
	Normalisat		0.91		0.91		0.91		0.91		0.91		0.91		0.91		0.91		0.91		0.91
Code for	Total Consun	nption	105.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0
Sustainable Homes	Mandatory	level	Level 3/4		•		-		•		•		•		-		-		•		-
Building	External u		5.0		5.0		5.0		5.0		5.0		5.0		5.0		5.0		5.0		5.0
Regulations 17.K	Total Consur		110.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0
	17.K Complia	ance?	Yes		-		-		-		-		-		-		-		-		-

(BASIC CALC.) 1 of 1

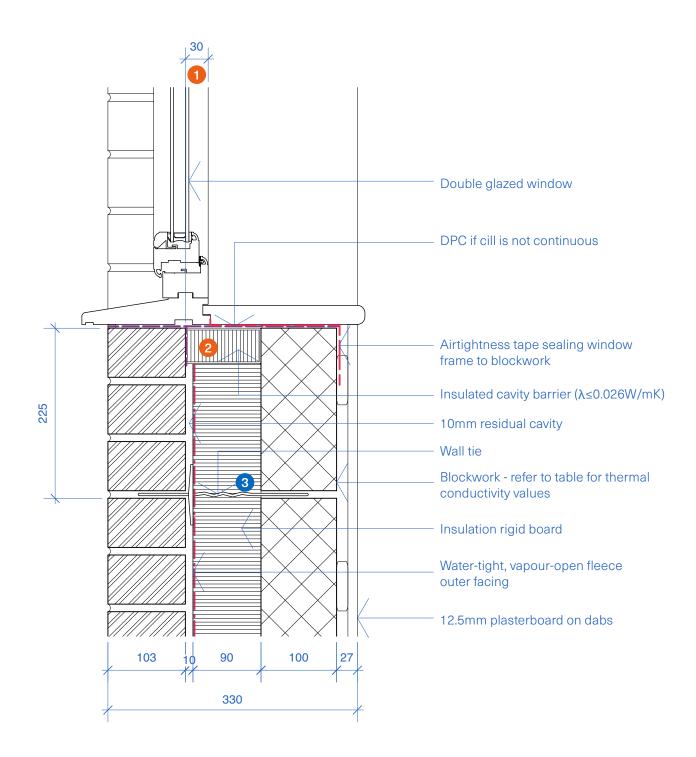
Calculated Ψ (Psi) value for use in SAP Calculation

		Internal leaf blo	nternal leaf block thermal conductivity (W/mK)								
Insulation thermal conductivity (W/mK)		0.11	0.15	0.19	0.28	0.6	1.33				
	0.019	0.022	0.020	0.019	0.017	0.016	0.015				
	0.022	0.022	0.020	0.018	0.017	0.014	0.014				

f-values: 0.957 - 0.961 (values above 0.75 indicate low risk of condensation and mould)

Ψ (Psi) value Thermal Compliance Notes

- Minimum 30mm overlap of window frame and insulated wall cavity.
- Ensure insulation rigid board is cut and fitted around the angle of the cavity tray.
- Minimum 15mm insulation with λ≤0.026W/mK to head reveal.
- Insulated cavity barrier with λ≤0.026W/mK fixed in accordance with maufacturers guidelines. If fixing spikes are used, they should be installed at the required centres. For compression fit cavity barriers, use the correct size for a compressive fit in the cavity.


Construction Notes

Wall tie: 225mm maximum distance from opening. No greater than 450mm vertical spacing. 450mm horizontal centres for first row of wall ties above and below opening. Only use insulation retaining clips that are compatible with the wall tie.

General Notes

The cavity must be closed at the top of the wall and openings for the provisions of Diagram 5.3 ADBv1 to apply.

Calculated Ψ (Psi) value for use in SAP Calculation

		nternal leaf block thermal conductivity (W/mK)								
Insulation thermal conductivity (W/mK)		0.11	0.15	0.19	0.28	0.6	1.33			
	0.019	0.022	0.021	0.021	0.020	0.020	0.020			
	0.022	0.021	0.020	0.020	0.019	0.018	0.018			

f-values: 0.885 - 0.898 (values above 0.75 indicate low risk of condensation and mould)

Ψ (Psi) value Thermal Compliance Notes

Minimum 30mm overlap of window frame and insulated wall cavity.

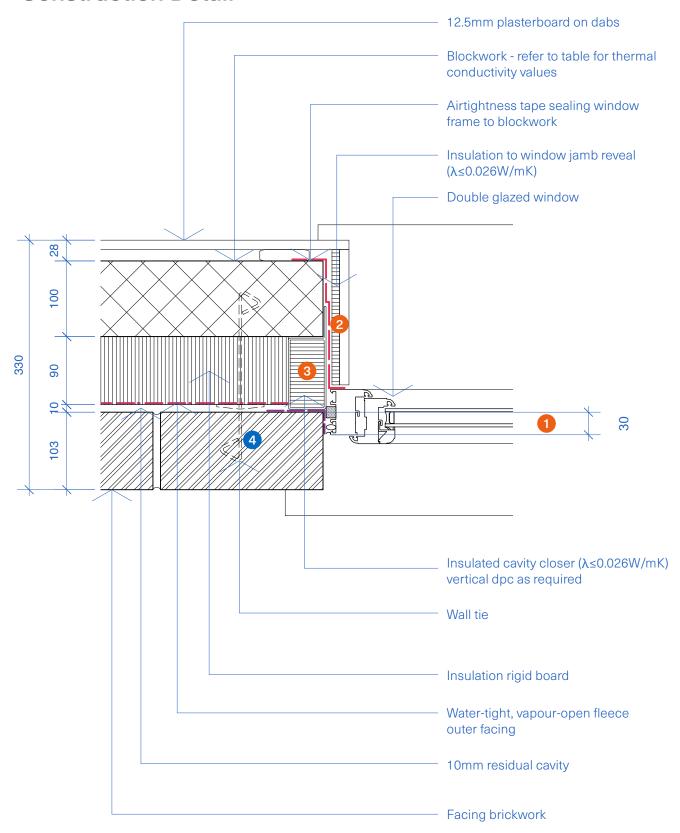
Insulated cavity barrier with \(\lambda \leq 0.026\)W/mK fixed in accordance with maufacturers guidelines. If fixing spikes are used, they should be installed at the required centres. For compression fit cavity barriers, use the correct size for a compressive fit in the cavity.

Construction Notes

Wall tie: 225mm maximum distance from opening. No greater than 450mm vertical spacing. 450mm horizontal centres for first row of wall ties above and below opening. Only use insulation retaining clips that are compatible with the wall tie.

General Notes

The cavity must be closed at the top of the wall and openings for the provisions of Diagram 5.3 ADBv1 to apply.



Masonry Hybrid Fill | 100mm Cavity | 90mm Insulation | MHF-100-E3-01

MHF-100-E3-01 | Cill, Proprie

| Cill, Proprietary insultated closer

Date:

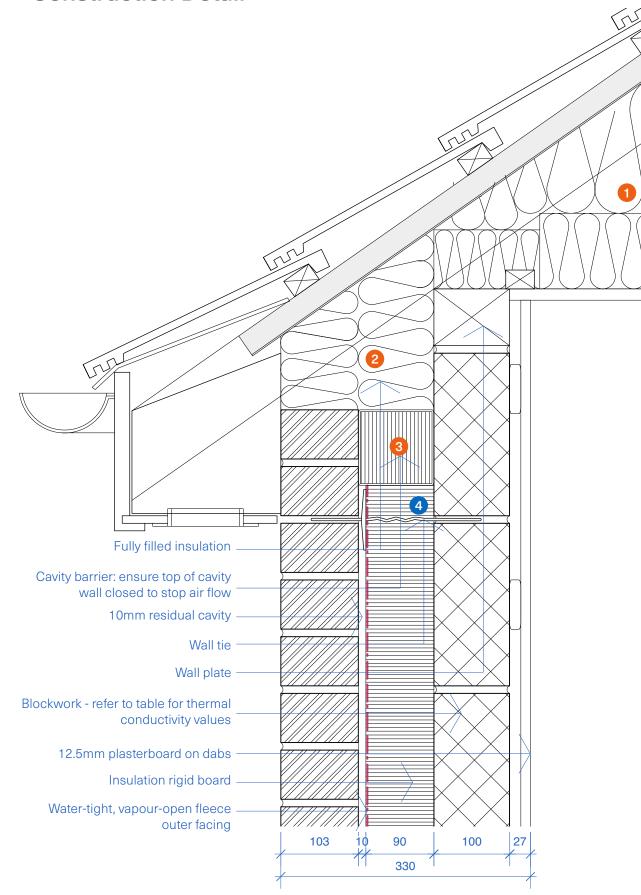
Calculated Ψ (Psi) value for use in SAP Calculation

		Internal leaf block thermal conductivity (W/mK)								
Insulation thermal conductivity (W/mK)		0.11	0.15	0.19	0.28	0.6	1.33			
	0.019	0.017	0.016	0.016	0.016	0.015	0.016			
	0.022	0.016	0.015	0.015	0.014	0.014	0.014			

f-values: 0.934 - 0.943 (values above 0.75 indicate low risk of condensation and mould)

Ψ (Psi) value Thermal Compliance Notes

- Minimum 30mm overlap of window frame and insulated wall cavity.
- 2 10mm insulation with λ≤0.026W/mK to window jamb reveal.
- Insulated cavity barrier with λ≤0.026W/mK fixed in accordance with maufacturers guidelines. If fixing spikes are used, they should be installed at the required centres. For compression fit cavity barriers, use the correct size for a compressive fit in the cavity.


Construction Notes

Wall tie: 225mm maximum distance from opening. No greater than 450mm vertical spacing. 450mm horizontal centres for first row of wall ties above and below opening. Only use insulation retaining clips that are compatible with the wall tie.

General Notes

The cavity must be closed at the top of the wall and openings for the provisions of Diagram 5.3 ADBv1 to apply.

Calculated Ψ (Psi) value for use in SAP Calculation

		Internal leaf blo	nternal leaf block thermal conductivity (W/mK)								
Insulation thermal conductivity (W/mK)		0.11	0.15	0.19	0.28	0.6	1.33				
	0.019	0.056	0.060	0.063	0.067	0.073	0.078				
	0.022	0.052	0.056	0.059	0.062	0.068	0.072				

f-values: 0.919 - 0.933 (values above 0.75 indicate low risk of condensation and mould)

Ψ (Psi) value Thermal Compliance Notes

- 400mm insulation quilt (0.044 W/mK), minimum roof pitch 40°.
- Ensure continuity of insulation between the loft and external wall.
- Horizontal/vertical cavity barriers need to be fixed in accordance with manufacturers guidelines. If fixing spikes are used, they should be installed at the required centres. For compression fit cavity barriers, use the correct size for a compressive fit in the cavity.

Construction Notes

Wall tie: 225mm maximum distance from opening. No greater than 450mm spacing. Only use insulation retaining clips that are compatible with the wall tie.

General Notes

The cavity must be closed at the top of the wall for the provisions of Diagram 5.3 ADBv1 to apply.

Maintain clear separation of components to prevent congestion within the cavity and mortar joints.



Masonry Hybrid Fill | 100mm Cavity | 90mm Insulation

| MHF-100-E10-01

| Eaves (insulation at ceiling level)

Date:

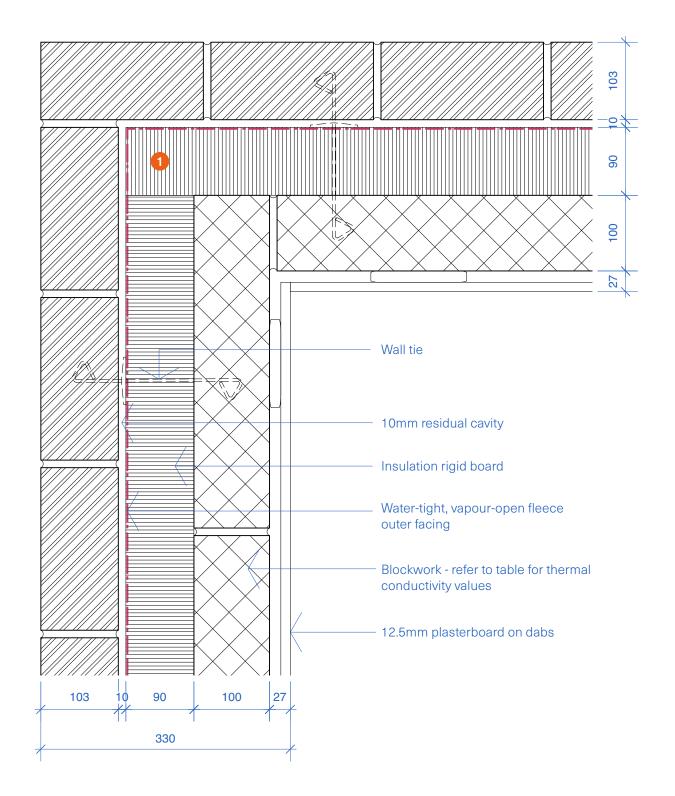
Calculated Ψ (Psi) value for use in SAP Calculation

		Internal leaf blo	nternal leaf block thermal conductivity (W/mK)								
Insulation thermal conductivity (W/mK)		0.11	0.15	0.19	0.28	0.6	1.33				
	0.019	0.028	0.035	0.041	0.055	0.096	0.174				
	0.022	0.030	0.036	0.043	0.056	0.097	0.174				

f-values: 0.868 - 0.942 (values above 0.75 indicate low risk of condensation and mould)

Ψ (Psi) value Thermal Compliance Notes

- 400mm insulation quilt (0.044 W/mK).
- Fill the space between the wall and joist with insulation.


Construction Notes

Wall tie: 225mm maximum distance from opening. No greater than 450mm spacing. Only use insulation retaining clips that are compatible with the wall tie.

General Notes

The cavity must be closed at the top of the wall for the provisions of Diagrams 5.3 and 8.1 ADBv1 to apply.

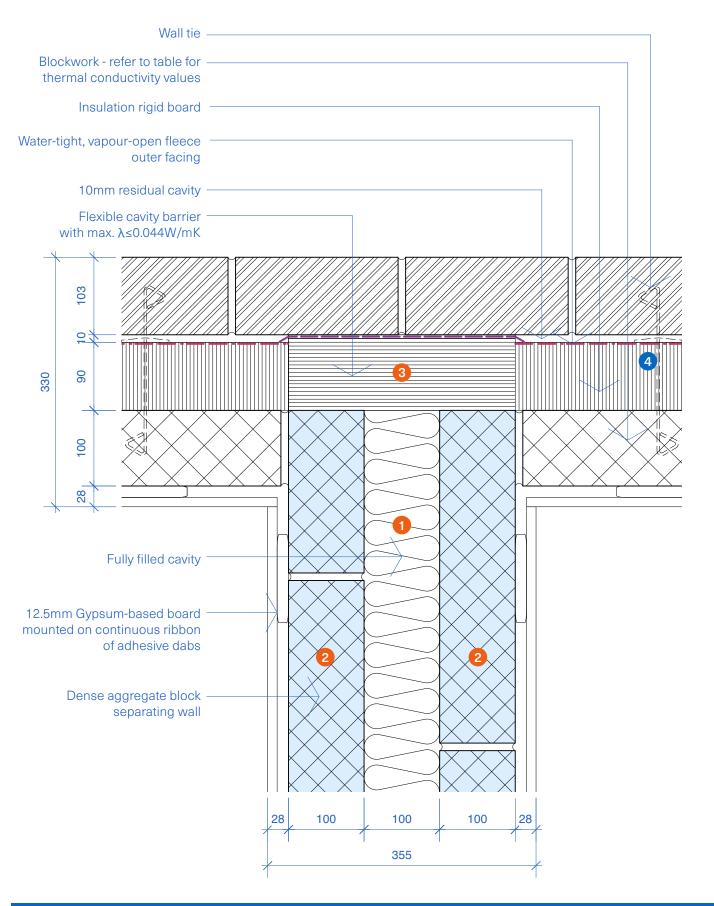
Calculated Ψ (Psi) value for use in SAP Calculation

		Internal leaf blo	nternal leaf block thermal conductivity (W/mK)								
Insulation thermal conductivity (W/mK)		0.11	0.15	0.19	0.28	0.6	1.33				
	0.019	0.033	0.035	0.037	0.040	0.044	0.047				
	0.022	0.035	0.038	0.041	0.044	0.049	0.052				

f-values: 0.904 - 0.952 (values above 0.75 indicate low risk of condensation and mould)

Ψ (Psi) value Thermal Compliance Notes

1 Ensure continuity of insulation at the corner.



Masonry Hybrid Fill | 100mm Cavity | 90mm Insulation

| MHF-100-E16-01

| Corner (normal)

Date:

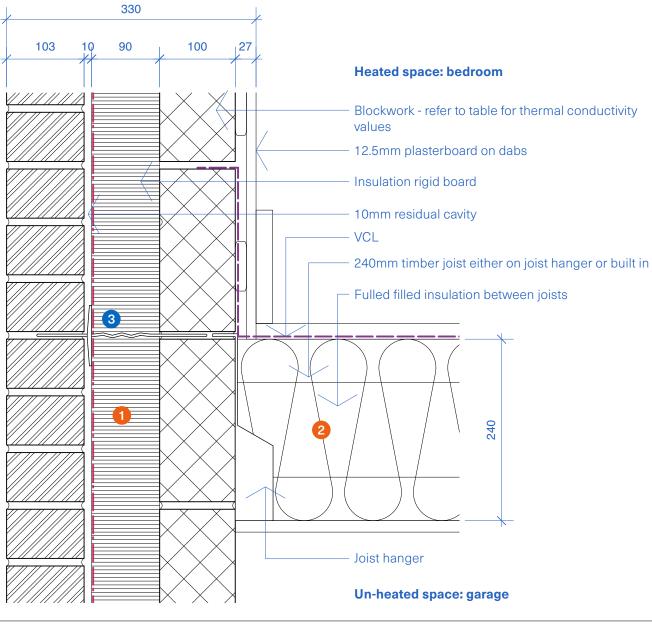
Calculated Ψ (Psi) value for use in SAP Calculation

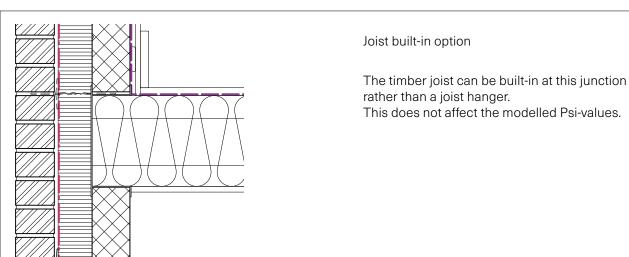
		nternal leaf block thermal conductivity (W/mK)								
Insulation thermal conductivity (W/mK)		0.11	0.15	0.19	0.28	0.6	1.33			
	0.019	0.055	0.055	0.055	0.055	0.055	0.055			
	0.022	0.055	0.055	0.055	0.055	0.055	0.055			

f-values: 0.951 - 0.964 (values above 0.75 indicate low risk of condensation and mould)

The above Psi values are applicable per dwelling on either side of the party wall.

Ψ (Psi) value Thermal Compliance Notes


- Fully fill the separating wall 100mm cavity with insulation (0.036 W/mK).
- 2 x 100mm Dense Aggregate block separating wall.
- Close the external wall cavity with flexible cavity barrier with max. λ≤0.044W/mK.


 Dependent on the type of cavity barrier used, a DPC should be provided to prevent the barrier absorbing moisture. Horizontal/vertical cavity barriers need to be fixed in accordance with manufacturers guidelines. If fixing spikes are used, they should be installed at the required centres. For compression fit cavity barriers, use the correct size for a compressive fit in the cavity.

Construction Notes

Type A (part E) wall ties at no more than 2.5 ties/m2 (900 x 450mm spacing). Wall ties: no greater than 900mm horizontal spacing.

Calculated Ψ (Psi) value for use in SAP Calculation

		nternal leaf block thermal conductivity (W/mK)								
Insulation thermal conductivity (W/mK)		0.11	0.15	0.19	0.28	0.6	1.33			
	0.019	0.037	0.045	0.052	0.068	0.115	0.200			
	0.022	0.038	0.045	0.053	0.068	0.115	0.198			

f-values: 0.836 - 0.905 (values above 0.75 indicate low risk of condensation and mould)

Ψ (Psi) value Thermal Compliance Notes

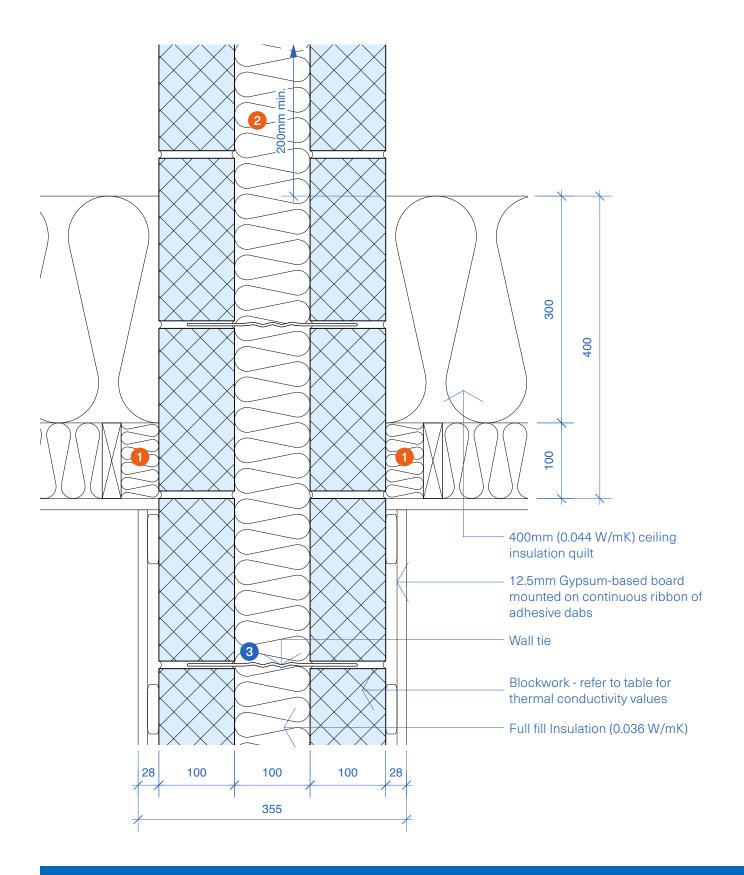
- Insulation to be continuous across the floor abutment zone.
- Timber joist fully filled with minimum 240mm mineral wool between joists over garage, maximum λ≤0.044W/mK.

Construction Notes

Wall tie: No greater than 450mm vertical spacing.
Only use insulation retaining clips that are compatible with the wall tie.

General Notes

Maintain clear separation of components to prevent congestion within the cavity and mortar joints.



Masonry Hybrid Fill | 100mm Cavity | 90mm Insulation

| MHF-100-E20-01

| Exposed Floor (normal)

Date:

Calculated Ψ (Psi) value for use in SAP Calculation

Roof Insulation Thermal Conductivity (W/mK) 0.044	0.15	0.19	0.6 0.101	0.190
	Separating Wall	Block Conducti	vity: W/mK	

f-values: 0.890 - 0.957 (values above 0.75 indicate low risk of condensation and mould) The above Psi-values are applicable per dwelling on either side of the party wall.

Ψ (Psi) value Thermal Compliance Notes

- Fill the space between the separating wall and last joist with insulation.
- Ensure that the cavity insulation extends at least 200mm above the top of the loft insulation.

Construction Notes

Type A (part E) wall ties at no more than 2.5 ties/m2 (900 x 450mm spacing). Wall ties: no greater than 900mm horizontal spacing.

General Notes

The cavity must be fire-stopped (same resistance as the compartment wall) at the top of the wall to the underside of the roof for the provisions of Diagram 8.1 ADBv1 to apply.

Masonry Party Wall | 100mm Cavity | 100mm Insulation

| MPW-P4-01

| Separating wall & roof, insulation at ceiling level

Date: