

September 2022

Our reference: 92181-Valand-DeaneCrftRd

Technical Note for Surface Water Drainage Condition Discharge

Prepared for: Kalpesh Patel

Location: 40 Oakfield Gardens London N18 1NX

Unda Consulting Limited, Southpoint, Old Brighton Road, Gatwick, West Sussex, RH11 0PR +44 (0) 1293 214 444 enquiries@unda.co.uk

Document Issue Record

Location:	40 Oakfield Gardens, London, N18 1NX					
Application:	Conversion of single family dwelling house into 2 x self-contained flats with private amenity space, involving single storey rear extension					
Prepared for:	Kalpesh Patel	Kalpesh Patel				
Title:	Surface Water Drainage	Surface Water Drainage Technical Note				
Project No.:	92181	Date:	28 th September 2022	Issue No.:	1.0	
Written By:	A. Rousou BSc (Hons)	Checked By:	E. Bouet, BSc (Hons)	Authorised By:	E. Bouet, BSc (Hons)	

This report (including any enclosures and attachments) has been prepared for the exclusive use and benefit of the commissioning party and solely for the purpose for which it is provided. Unless we provide express prior written consent, no part of this report should be reproduced, distributed or communicated to any third party. We do not accept any liability if this report is used for an alternative purpose from which it is intended, nor to any third party in respect of this report. Any data and information provided by third parties and referred to herein has not been checked or verified by us unless otherwise expressly stated within this report. This report was checked and approved on the date it was issued and is therefore valid on this date. Understanding, circumstances, regulations and professional standards do change, which could subsequently affect the validity of this report. This report is not to be used for detailed design of drainage systems. It is recommended that every drainage scheme uses hydraulic modelling software to finalise volume requirements and design details before drawings are produced.

Commercial in Confidence

1. Introduction

- 1.1. This Surface Water Drainage Technical Note has been prepared by Unda Consulting Limited on behalf of Kalpesh Patel, to address Condition 6 and part of Condition 9 of a planning application.
- 1.2. The Planning application relates to construction of conversion of single family dwelling house into 2 x self-contained flats with private amenity space, involving single storey rear extension. These works are proposed to be undertaken at 40 Oakfield Gardens, London N18 1NX.
- 1.3. Post development the total roof area of the residential dwelling and timber sheds will be approximately 72m².
- 1.4. This report assesses the surface water drainage arrangement for the proposed development, which forms Condition 6 and Part of Condition 9 of a planning application. Conditions 6 and 9 states the following:

Condition 6:

6 The development shall not commence until a Sustainable Drainage Strategy has been submitted to and approved in writing by the Local Planning Authority. The details shall be based on the disposal of surface water by means of a sustainable drainage system in accordance with the principles as set out in the Technical Guidance to the National Planning Policy Framework and should be in line with our DMD Policy SuDS Requirements:

a. Shall be designed to a 1 in 1 and 1 in 100 year storm event with the allowance for climate change;

b. Follow the SuDS management train and London Plan Drainage Hierarchy by providing a number of treatment phases corresponding to their pollution potential;

c. Should maximise opportunities for sustainable development, improve water quality, biodiversity, local amenity and recreation value;

d. The system must be designed to allow for flows that exceed the design capacity to be stored on site or conveyed off-site with minimum impact;

e. Clear ownership, management and maintenance arrangements must be established; and

f. The details submitted shall include levels, sizing, cross sections and specifications for all drainage features.

Condition 9:

9 Prior to first occupation, details of the internal consumption of potable water shall be submitted to and approved in writing by the Local Planning Authority. Submitted details will demonstrate reduced water consumption through the use of water efficient fittings, appliances and recycling systems to show consumption equal to or less than 105 litres per person per day.

The development shall be carried out strictly in accordance with the details so approved and maintained as such thereafter.

1.5. This Technical Note provides the information required to address the surface water elements of planning application Condition 6 and part of Condition 9.

Commercial in Confidence

2. Existing Site:

- 2.1. The existing site is occupied by a three storey terraced, single family dwelling with a total site area of approximately 145m².
- 2.2. The site is located on a residential street therefore the surrounding area is characterised by residential dwellings.

Figure 1: Site location (Source: Google)

Site Topography:

2.3. Environment Agency LiDAR has been used to assess the topography across the site and wider area. Light Detection and Ranging (LIDAR) is an airborne mapping technique, which uses a laser to measure the distance between the aircraft and the ground surface. Up to 100,000 measurements per second are made of the ground, allowing highly detailed terrain models to be generated at high spatial resolutions. The EA's LIDAR data archive contains digital elevation data derived from surveys carried out by the EA's specialist remote sensing team. Accurate elevation data is available for over 70% of England. The LiDAR technique records an elevation accurate to +0.3m every 2m. This dataset is derived from a combination of the full dataset which has been merged and re-sampled to give the best possible coverage. The dataset can be supplied as a Digital Surface Model (DSM) produced from the signal returned to the LIDAR (which includes heights of objects, such as vehicles, buildings and vegetation, as well as the terrain surface) or as a Digital Terrain Model (DTM) produced by removing objects from the Digital Surface Model. 1.0m horizontal resolution DTM LiDAR data has been used for the purposes of this study.

Commercial in Confidence

2.4. Topographic site levels are shown to range between approximately 20.89mAOD and 21.33mAOD.

Existing Ground Conditions:

- 2.5. The 1:50,000 BGS map shows the site to be located directly upon the bedrock of London Clay Formation Clay, Silt and Sand.
- 2.6. According to BGS mapping the site is underlain by Enfield Silt Member Clay and Silt superficial deposits.
- 2.7. The soil type taken from the BGS UKSO Soil Map Viewer, shows a soil parent material of Deep Loam Loess with a soil texture of Silt to Silty Loam.
- 2.8. There are no nearby BGS borehole logs in the vicinity of the site.
- 2.9. The published Environment Agency Groundwater Vulnerability map shows the site is not located within a Groundwater Source Protection Zone.

Figure 2: BGS Bedrock Geology (Source: BGS)

Commercial in Confidence

Figure 3: BGS Superficial Deposits (Source: BGS)

Commercial in Confidence

UND/

Figure 4: Soil Map (Source: UK Soils, BGS)

Nearby Watercourses / Drainage Features:

2.10. The nearest existing watercourse is the Pymmes Brook located approximately 280m south of the site.

Existing Drainage:

2.11. It is understood the existing site discharges to sewer at an unattenuated rate.

Commercial in Confidence

3. Development Proposals:

Proposed Development:

- 3.1. Discharge of Surface Water Planning Condition 6 and part of Condition 9 is for the conversion of single family dwelling house into 2 x self-contained flats with private amenity space, involving single storey rear extension at 40 Oakfield Gardens, London N18 1NX. Post development the total roof area of the residential dwelling and timber sheds will be approximately 72m².
- 3.2. However, betterment will be provided by attenuating part of the existing roof as well as an increasing the permeable area located within the front garden.

Figure 6: Proposed Site Layout Plan (Source: DS3 Studios)

Commercial in Confidence

4. Surface Water Drainage Strategy:

4.1. In order to mitigate flood risk posed by post development runoff, adequate control measures will need to be considered within the site. This will ensure that surface water runoff is dealt with at source and flood risk is not increased elsewhere.

Drainage Hierarchy:

- 4.2. The drainage strategy for the site has been prepared according to the drainage discharge hierarchy from CIRIA C753 The Suds Manual, as follows:
 - Infiltration to the maximum extent that is practical;
 - Discharge to surface waters;
 - Discharge to surface water sewer.

Infiltration Potential:

- 4.3. Records from the BGS indicate that the site is located directly upon the bedrock of London Clay Formation Clay, Silt and Sand.
- 4.4. Due to the constraints of the site, there is insufficient space for the provision of infiltration SUDs to be viable therefore attenuated discharge is proposed.

Proposed Discharge Rate:

- 4.5. Existing greenfield runoff rates for the total site have been calculated as 0.0 l/s for the 1:1 annual runoff event, 0.1 l/s for the 1:30 year event and 0.2 l/s for the 1:100 year event. Refer to calculations in appendix.
- 4.6. Runoff from the front draining part of the roof will discharge into cellular storage located in the front garden. This will then discharge into the sites existing surface water pipework via an orifice plate. There will also be an area of permeable paving located within the front garden.
- 4.7. Below ground cellular storage is being utilised so it can be located within a communal area and to fit within the sites tight constraints.
- 4.8. The remaining impermeable areas will discharge to sewer at an unattenuated rate.

Cellular Storage Attenuation:

- 4.9. The frontward draining part of the roof (23m²) will discharge into the cellular storage located beneath the front garden.
- 4.10. The proposed development comprises some 23m² of potentially impermeable surfacing. In order to comply with CIRIA C753 The SuDS Manual, a 10% allowance will be added to take into account future urban creep. Applying a 10% allowance to all new impermeable surfacing (23m²) gives a value of 25.3m². Therefore, all drainage calculations have been made on the basis of a total impermeable area of 25.3m².
- 4.11. Preliminary calculations indicate that sufficient storage required to attenuate runoff from the proposed impermeable areas $(25.3m^2)$ arising from the critical 1:100 year + 40% climate change event can be provided within a cellular attenuation of dimensions $4m^2 \times 0.40m$ deep x 0.95 (voids).
- 4.12. Preliminary calculations indicated that approximately 1.52m³ of storage is required to attenuate the runoff for all storms up to and including the 1:100 year + 40% climate change event.
- 4.13. *Please note that the levels of the cellular storage within the Micro drainage calculations are arbitrary for modelling purposes.*
- 4.14. All preliminary surface water drainage calculations have been undertaken using MicroDrainage software. Refer to the appendix.

Water Re-use:

4.15. Runoff from the flats could be collected, filtered and stored in a rainwater harvesting (RWH) tank, which would be buried under a soft landscaped area in the garden. From the tank, water could be piped to toilets, and to an outlet where it can be drawn off for irrigation use. The toilets and outlet would have a back-up connection to a mains water supply, to provide water when the RWH tanks are empty.

Commercial in Confidence

4.16. If the RWH tank contains more water than required for toilet and garden usage, the additional water will be discharged via the surface water connection to the cellular storage; which in turn would discharge at a controlled rate, detailed within strategy. If there is insufficient space within the cellular storage, excess water from the rainwater harvesting tank could be discharged to sewer at an unattenuated rate.

Water Quality:

- 4.17. Water quality has been assessed in line with the Simple Index approach from Chapter 26 of CIRIA C753 The SuDS Manual: Step 1 – Allocate suitable pollution hazard indices for the proposed land use.
 - Step 2 Select SuDS with a total pollution mitigation index that equals or exceeds the pollution hazard index.
- 4.18. The highest pollution hazard level for the proposed land use is Low (residential car parks and low trafficked roads). The pollution hazard indices for this land use are shown in Table 2 below.

Total suspended solids (TSS)	Metals	Hydrocarbons
0.5	0.4	0.4

Table 3: Pollution Hazard Indices for the proposed site (from Table 26.2 of CIRIA C753 The SuDS Manual)

4.19. All SuDS components are assessed for their effectiveness in pollutant removal prior to discharge to ground in Table 26.3 in CIRIA C753 The SuDS Manual. The pollution mitigation indices for permeable pavements are show in Table 3 below.

Total suspended solids (TSS)	Metals	Hydrocarbons
0.7	0.6	0.7

Table 4: Pollution Mitigation Indices for permeable pavements (from Table 26.3 of CIRIA C753 The SuDS Manual)

- 4.20. The Pollution Mitigation Indices for permeable pavement are greater than the Pollution Hazard Indices for car parks and low trafficked roads. Therefore, permeable pavements will provide sufficient water quality treatment prior to discharge to ground.
- 4.21. Runoff from roof areas is considered to be uncontaminated and does not warrant any form of treatment process to improve water quality. Nevertheless, it is suggested to include debris / sediment traps on any new drainage.

Design Exceedance:

4.22. Should the onsite drainage system fail under extreme rainfall events or blockage, flooding may occur within the site. In the event of the drainage system failure, the runoff flow can be managed through detailing the new external levels to direct water away from structures.

Adoption and Maintenance:

- 4.23. It is proposed that all SuDS facilities will be jointly maintained privately by the end users.
- 4.24. A draft Maintenance Schedule is outlined in the Table below.

Cellular Storage:

- 4.33. It is not envisaged that silt build up within the cellular crate systems will require a rigorous maintenance regime so long as silt is removed from upstream catch pits and inspection chambers on a regular basis. Notwithstanding this, a suitable maintenance regime for the systems will comprise of routine inspection and silt removal (as necessary). Inspection should be undertaken using CCTV equipment offered up the inspection tunnels located within the crate system. Camera access can be gained via inspection chambers and inlet pipework located at each end of the tunnels.
- 4.34. Silt removal can be achieved by jetting the inspection tunnels. Jetting should be undertaken in accordance with current jetting guidelines, in particular the Code of Practice for Sewer Jetting published by The Water Research Centre. Jetting at 150bar at 300l/min should be more than adequate in removing any build-up of material within the tunnel. The crate system will take higher pressures. However, unlike regular jetting which relies heavily on high pressure to remove hardened deposits on the inner bore of pipes, effective cleansing of a crate system relies more on the delivery flow rate to flush solids back through the system.

Commercial in Confidence

4.35. A standard jet head with rear facing nozzles should be used. The head should be fed to the far end of the crate tunnel via the nearest inspection chamber, activated and retracted. As the nozzle is removed, debris will be swept back into the inspection chamber where it can then be removed with the use of a standard gully sucker. This method will ensure the effective removal of gross solids (carrier bags, cans, leaf litter etc.) from the system. Whilst 100% removal cannot be guaranteed, it has been shown that this jetting method will also remove an element of finer material which would otherwise be 'lost' within the system.

Infiltration Permeable Paving

- 4.36. Permeable surfaces need to be regularly cleaned of silt and other sediments to preserve their infiltration capability. A brush and suction cleaner, which can be a lorry-mounted device or a smaller precinct sweeper, should be used and the sweeping regime should be as follows:
 - 1. End of winter (April) to collect winter debris.
 - 2. Mid-summer (July/August) to collect dust, flower and grass-type deposits.
 - 3. After autumn leaf fall (November).
- 4.37. If reconstruction is necessary, the following procedure should be followed:
 - 1. Lift surface layer and laying course.
 - 2. Remove any geotextile filter layer.
 - 3. Inspect sub-base and remove, wash and replace if required.
 - 4. Renew any geotextile layer.
 - 5. Renew laying course, jointing material and concrete block paving.
- 4.38. Materials removed from the voids or the layers below the surface of the paving may contain hazardous substances such as heavy metals and hydrocarbons which may need to be disposed of as controlled waste.

Pipework and Catchpits:

4.39. It is not envisaged that silt build up within the pipework systems will require a rigorous maintenance regime so long as silt is removed from upstream catch pits on a regular basis. Notwithstanding this, a suitable maintenance regime for the systems will comprise of routine inspection (every three months) and silt removal (as necessary).

Drainage Element	Maintenance Requirement	Frequency
Gutters & Downpipes	Inspect and remove silt/ debris	To be inspected every three months and silt/ debris removed as necessary.
Catchpits and Inspection Chambers	Inspect and remove silt	To be inspected every three months and silt/ debris removed as necessary. Flow control to be checked for blockages.
Cellular Storage	Inspect and remove debris	CCTCV inspection following first storm event. Monthly CCTV inspections for first 3 months. 6 monthly CCTV inspections thereafter. Jetting to remove silt as necessary.
Flow Controls	Inspected for blockage and blockage / debris build up removed	Every six months
	Sweeping/vacuuming to remove build-up of silt or other sediments	Three times a year or as necessary
Infiltration Permeable Paving	 Removal of weeds Replacement of cracked paving blocks Remedial work to cracks and depressions 	As required

Table 6: Suggested Maintenance Regime for Elements of the Drainage Infrastructure

Note: In addition to the above maintenance requirements, it is recommended that all drainage elements are inspected: Following the first storm event;

Monthly for the first 3 months following commissioning.

Commercial in Confidence

5. Discussion and Conclusions:

- 5.1. This Surface Water Drainage Technical Note has been prepared by Unda Consulting Limited on behalf of Kalpesh Patel, to address Condition 6 and part of Condition 9 of a planning application.
- 5.2. The Planning application relates to construction of conversion of single family dwelling house into 2 x self-contained flats with private amenity space, involving single storey rear extension. These works are proposed to be undertaken at 40 Oakfield Gardens, London N18 1NX.
- 5.3. Post development the total roof area of the residential dwelling and timber sheds will be approximately 72m².
- 5.4. This report assesses the surface water drainage arrangement for the proposed development, which forms Condition 6 and Part of Condition 9 of a planning application. Conditions 6 and 9 states the following:

Condition 6:

6 The development shall not commence until a Sustainable Drainage Strategy has been submitted to and approved in writing by the Local Planning Authority. The details shall be based on the disposal of surface water by means of a sustainable drainage system in accordance with the principles as set out in the Technical Guidance to the National Planning Policy Framework and should be in line with our DMD Policy SuDS Requirements:

a. Shall be designed to a 1 in 1 and 1 in 100 year storm event with the allowance for climate change;

b. Follow the SuDS management train and London Plan Drainage Hierarchy by providing a number of treatment phases corresponding to their pollution potential;

c. Should maximise opportunities for sustainable development, improve water quality, biodiversity, local amenity and recreation value;

d. The system must be designed to allow for flows that exceed the design capacity to be stored on site or conveyed off-site with minimum impact;

e. Clear ownership, management and maintenance arrangements must be established; and

f. The details submitted shall include levels, sizing, cross sections and specifications for all drainage features.

Condition 9:

9 Prior to first occupation, details of the internal consumption of potable water shall be submitted to and approved in writing by the Local Planning Authority. Submitted details will demonstrate reduced water consumption through the use of water efficient fittings, appliances and recycling systems to show consumption equal to or less than 105 litres per person per day.

The development shall be carried out strictly in accordance with the details so approved and maintained as such thereafter.

- 5.5. The existing site is occupied by a three storey terraced, single family dwelling with a total site area of approximately 145m².
- 5.6. Topographic site levels are shown to range between approximately 20.89mAOD and 21.33mAOD.
- 5.7. Discharge of Surface Water Planning Condition 6 and part of Condition 9 is for the conversion of single family dwelling house into
 2 x self-contained flats with private amenity space, involving single storey rear extension at 40 Oakfield Gardens, London N18
 1NX. Post development the total roof area of the residential dwelling and timber sheds will be approximately 72m².
- 5.8. However, betterment will be provided by attenuating part of the existing roof as well as an increasing the permeable area located within the front garden.
- 5.9. The 1:50,000 BGS map shows the site to be located directly upon the bedrock of London Clay Formation Clay, Silt and Sand.
- 5.10. According to BGS mapping the site is underlain by Enfield Silt Member Clay and Silt superficial deposits.
- 5.11. The soil type taken from the BGS UKSO Soil Map Viewer, shows a soil parent material of Deep Loam Loess with a soil texture of Silt to Silty Loam.

Surface Water Drainage Discussion

5.12. Records from the BGS indicate that the site is located directly upon the bedrock of London Clay Formation - Clay, Silt and Sand.

Commercial in Confidence

- 5.13. Due to the constraints of the site, there is insufficient space for the provision of infiltration SUDs to be viable therefore attenuated discharge is proposed.
- 5.14. Existing greenfield runoff rates for the total site have been calculated as 0.0 l/s for the 1:1 annual runoff event, 0.1 l/s for the 1:30 year event and 0.2 l/s for the 1:100 year event. Refer to calculations in appendix.
- 5.15. Runoff from the front draining part of the roof will discharge into cellular storage located in the front garden. This will then discharge into the sites existing surface water pipework via an orifice plate. There will also be an area of permeable paving located within the front garden.
- 5.16. Below ground cellular storage is being utilised so it can be located within a communal area and to fit within the sites tight constraints.
- 5.17. The remaining impermeable area will discharge to sewer at an unattenuated rate.
- 5.18. The frontward draining part of the roof (23m²) will discharge into the cellular storage located beneath the front garden.
- 5.19. The proposed development comprises some 23m² of potentially impermeable surfacing. In order to comply with CIRIA C753 The SuDS Manual, a 10% allowance will be added to take into account future urban creep. Applying a 10% allowance to all new impermeable surfacing (23m²) gives a value of 25.3m². Therefore, all drainage calculations have been made on the basis of a total impermeable area of 25.3m².
- 5.20. Preliminary calculations indicate that sufficient storage required to attenuate runoff from the proposed impermeable areas (25.3m²) arising from the critical 1:100 year + 40% climate change event can be provided within a cellular attenuation of dimensions 4m² x 0.40m deep x 0.95 (voids).
- 5.21. Preliminary calculations indicated that approximately 1.52m³ of storage is required to attenuate the runoff for all storms up to and including the 1:100 year + 40% climate change event.
- 5.22. Please note that the levels of the cellular storage within the Micro drainage calculations are arbitrary for modelling purposes.
- 5.23. All preliminary surface water drainage calculations have been undertaken using MicroDrainage software. Refer to the appendix.
- 5.24. The Pollution Mitigation Indices for permeable pavement are greater than the Pollution Hazard Indices for car parks and low trafficked roads. Therefore, permeable pavements will provide sufficient water quality treatment prior to discharge to ground.
- 5.25. Runoff from roof areas is considered to be uncontaminated and does not warrant any form of treatment process to improve water quality. Nevertheless, it is suggested to include debris / sediment traps on any new drainage.
- 5.26. Should the onsite drainage system fail under extreme rainfall events or blockage, flooding may occur within the site. In the event of the drainage system failure, the runoff flow can be managed through detailing the new external levels to direct water away from structures.
- 5.27. This drainage strategy has been undertaken in accordance with the principles set out in NPPF. We can conclude that providing the development adheres to the conditions advised above, the said development proposals can be accommodated without increasing flood risk within the locality in accordance with objectives set by Central Government and the EA.

Unda Consulting Limited September 2022

Commercial in Confidence

6. Appendix

A - Plans by others:

• Proposed Plans – DS3 Studios.

B - MicroDrainage Calculations:

- ICP SUDS Rural Runoff Calculations;
- Cellular Storage Attenuation Calculations.

C - Plans:

• Proposed Drainage Layout [92181-01].

Commercial in Confidence

Unda Consulting Ltd		Page 1
Southpoint	92181-Valand-DeaneCrftRd	
Old Brighton Road	Greenfield Runoff	
Gatwick RH11 OPR		Micro
Date 20/09/2022	Designed by AR	
File CELLULAR STORAGE.SRCX	Checked by EB	Diamage
Innovyze	Source Control 2020.1	

ICP SUDS Mean Annual Flood

Input

Return Period (years) 100 Soil 0.450 Area (ha) 0.015 Urban 0.000 SAAR (mm) 632 Region Number Region 6

Results 1/s

QBAR Rural 0.1 QBAR Urban 0.1 Q100 years 0.2 Q1 year 0.0 Q30 years 0.1 Q100 years 0.2

Unda Consulting Lto		Page 1					
Southpoint 92181-Valand-DeaneCrftRd							
Old Brighton Road		Cellular	Storage				
Gatwick RH11 OPR			1 in 1 ve	ar event			Micco
Date 20/09/2022			Designed	hy AR			
	CE CDC	v	Checked b	U FD			Drainage
FILE CELLULAR SIORA	GE.SRC	Δ	Checked b	Y EB			
Innovyze			Source Co	ntrol 202	20.1		
<u>Summary of Results for 1 year Return Period</u> Half Drain Time : 56 minutes.							
Storm	Max	Max	Max	Max	Max	Max	Status
Event	Level	Depth	Infiltration	Control D	Outflow	Volume	
	(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15 min Summ	≥r 9.643	0.043	0.0	0.0	0.0	0.2	ОК
30 min Summ	er 9.650	0.050	0.0	0.0	0.0	0.2	0 K
60 min Summ	er 9.654	0.054	0.0	0.0	0.0	0.2	O K
120 min Summ	er 9.655	0.055	0.0	0.0	0.0	0.2	O K
180 min Summ	er 9.653	0.053	0.0	0.0	0.0	0.2	O K
240 min Summ	er 9.650	0.050	0.0	0.0	0.0	0.2	ОК
360 min Summ	er 9.644	0.044	0.0	0.0	0.0	0.2	ОК
480 min Summ	er 9.639	0.039	0.0	0.0	0.0	0.1	O K
600 min Summ	er 9.635	0.035	0.0	0.0	0.0	0.1	O K
720 min Summ	er 9.632	0.032	0.0	0.0	0.0	0.1	O K
960 min Summ	er 9.626	0.026	0.0	0.0	0.0	0.1	O K
1440 min Summ	er 9.620	0.020	0.0	0.0	0.0	0.1	O K
2160 min Summ	er 9.615	0.015	0.0	0.0	0.0	0.1	O K
2880 min Summ	er 9.613	0.013	0.0	0.0	0.0	0.0	O K
4320 min Summ	er 9.611	0.011	0.0	0.0	0.0	0.0	O K
5760 min Summ	er 9.609	0.009	0.0	0.0	0.0	0.0	O K
7200 min Summ	er 9.608	0.008	0.0	0.0	0.0	0.0	O K
8640 min Summ	er 9.608	0.008	0.0	0.0	0.0	0.0	O K
10080 min Summ	er 9.607	0.007	0.0	0.0	0.0	0.0	O K
15 min Wint	er 9.648	0.048	0.0	0.0	0.0	0.2	ОК

	Storm Event		Storm Event		Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m ³)	Time-Peak (mins)
1 -		~	00 007	0.0	0.0	1 7		
15	min	Summer	32.82/	0.0	0.2	1/		
30	min	Summer	21.088	0.0	0.2	30		
60	min	Summer	13.089	0.0	0.3	46		
120	min	Summer	7.947	0.0	0.4	80		
180	min	Summer	5.903	0.0	0.4	114		
240	min	Summer	4.774	0.0	0.4	148		
360	min	Summer	3.525	0.0	0.5	212		
480	min	Summer	2.831	0.0	0.5	276		
600	min	Summer	2.388	0.0	0.5	338		
720	min	Summer	2.078	0.0	0.6	398		
960	min	Summer	1.668	0.0	0.6	520		
1440	min	Summer	1.225	0.0	0.7	752		
2160	min	Summer	0.899	0.0	0.7	1104		
2880	min	Summer	0.722	0.0	0.8	1468		
4320	min	Summer	0.530	0.0	0.9	2180		
5760	min	Summer	0.426	0.0	0.9	2864		
7200	min	Summer	0.359	0.0	1.0	3672		
8640	min	Summer	0.312	0.0	1.0	4392		
10080	min	Summer	0.278	0.0	1.0	5080		
15	min	Winter	32.827	0.0	0.2	17		
10			32.02/	0.0	÷.2	1		
		©	1982-202	20 Inno	vyze			

Unda Consulting Ltd	Page 2	
Southpoint	92181-Valand-DeaneCrftRd	
Old Brighton Road	Cellular Storage	
Gatwick RH11 OPR	1 in 1 year event	Micro
Date 20/09/2022	Designed by AR	
File CELLULAR STORAGE.SRCX	Checked by EB	Diamage
Innovyze	Source Control 2020.1	

Summary of Results for 1 year Return Period

	Storm Max		Max	Max	Max	Max	Max	Status	
	Event	:	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
30	min W	Winter	9.657	0.057	0.0	0.0	0.0	0.2	ОК
60	min V	Winter	9.661	0.061	0.0	0.0	0.0	0.2	ОК
120	min V	Winter	9.660	0.060	0.0	0.0	0.0	0.2	ΟK
180	min V	Winter	9.656	0.056	0.0	0.0	0.0	0.2	ΟK
240	min V	Winter	9.652	0.052	0.0	0.0	0.0	0.2	ΟK
360	min V	Winter	9.643	0.043	0.0	0.0	0.0	0.2	ΟK
480	min V	Winter	9.636	0.036	0.0	0.0	0.0	0.1	ΟK
600	min V	Winter	9.631	0.031	0.0	0.0	0.0	0.1	ΟK
720	min V	Winter	9.627	0.027	0.0	0.0	0.0	0.1	ΟK
960	min V	Winter	9.621	0.021	0.0	0.0	0.0	0.1	ΟK
1440	min V	Winter	9.615	0.015	0.0	0.0	0.0	0.1	ΟK
2160	min V	Winter	9.612	0.012	0.0	0.0	0.0	0.0	ΟK
2880	min V	Winter	9.611	0.011	0.0	0.0	0.0	0.0	ΟK
4320	min V	Winter	9.609	0.009	0.0	0.0	0.0	0.0	ΟK
5760	min V	Winter	9.608	0.008	0.0	0.0	0.0	0.0	ΟK
7200	min V	Winter	9.607	0.007	0.0	0.0	0.0	0.0	ΟK
8640	min V	Winter	9.606	0.006	0.0	0.0	0.0	0.0	ΟK
10080	min V	Winter	9.606	0.006	0.0	0.0	0.0	0.0	ОК

Storm			Rain	Flooded	Discharge	Time-Peak
	Event			Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	21.088	0.0	0.3	30
60	min	Winter	13.089	0.0	0.3	48
120	min	Winter	7.947	0.0	0.4	86
180	min	Winter	5.903	0.0	0.4	124
240	min	Winter	4.774	0.0	0.5	158
360	min	Winter	3.525	0.0	0.5	224
480	min	Winter	2.831	0.0	0.6	288
600	min	Winter	2.388	0.0	0.6	350
720	min	Winter	2.078	0.0	0.6	410
960	min	Winter	1.668	0.0	0.7	530
1440	min	Winter	1.225	0.0	0.7	752
2160	min	Winter	0.899	0.0	0.8	1100
2880	min	Winter	0.722	0.0	0.9	1508
4320	min	Winter	0.530	0.0	1.0	2132
5760	min	Winter	0.426	0.0	1.0	2880
7200	min	Winter	0.359	0.0	1.1	3608
8640	min	Winter	0.312	0.0	1.1	4320
10080	min	Winter	0.278	0.0	1.2	5144

Unda Consulting Ltd		Page 3
Southpoint	92181-Valand-DeaneCrftRd	
Old Brighton Road	Cellular Storage	
Gatwick RH11 OPR	1 in 1 year event	Micro
Date 20/09/2022	Designed by AR	
File CELLULAR STORAGE.SRCX	Checked by EB	Diamage
Innovyze	Source Control 2020.1	

<u>Rainfall Details</u>

	Rainfall Model		FSR	Winter Storms Yes
Return	Period (years)		1	Cv (Summer) 0.750
	Region	England	and Wales	Cv (Winter) 0.840
	M5-60 (mm)		20.400	Shortest Storm (mins) 15
	Ratio R		0.447	Longest Storm (mins) 10080
	Summer Storms		Yes	Climate Change % +0

<u>Time Area Diagram</u>

Total Area (ha) 0.003

Time	(mins)	Area
From:	To:	(ha)

0 4 0.003

©1982-2020 Innovyze

Unda Consulting Ltd		Page 4
Southpoint	92181-Valand-DeaneCrftRd	
Old Brighton Road	Cellular Storage	
Gatwick RH11 OPR	1 in 1 year event	Mirro
Date 20/09/2022	Designed by AR	Dcainago
File CELLULAR STORAGE.SRCX	Checked by EB	Diamage
Innovyze	Source Control 2020.1	1

Model Details

Storage is Online Cover Level (m) 10.000

Cellular Storage Structure

Invert Level (m) 9.600 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000 4.0 4.0 0.400 4.0 4.0

Orifice Outflow Control

Diameter (m) 0.010 Discharge Coefficient 0.600 Invert Level (m) 9.600

©1982-2020 Innovyze

Southpoint 92181-Valand-DeaneCrftRd Old Brighton Road Cellular Storage Gatwick KH11 OPR 1 in 100 year event plus CC Date 20/09/2022 Designed by AR File CELLULAR STORAGE.SRCX Checked by EB Innovyze Source Control 2020.1 Source Control 2020.1 Storm Max Max Max Max Max Status Beent Level Depth Infiltration Control 2 Outflow Volume Control 2001.0.1 15 min summer 9.602 0.202 0.0 10 min summer 9.602 0.202 0.0 0.1 <td< th=""><th>Unda Consulting Ltd</th><th></th><th></th><th></th><th></th><th></th><th></th><th>Page 1</th></td<>	Unda Consulting Ltd							Page 1	
Old Brighton Road Cellular Storage 1 100 year event plus CC Date 20/09/2022 Designed by AR Checked by EB Distruction	Southpoint		9218	31-Vala	nd-Dea	neCrftR	d	_	
Gatwick RH11 0PR 1 in 100 year event plus CC Designed by AR Pile CELLULAR STORAGE.SRCX Checked by EB Checked by Control 2020.1 Source Control 2001 Volume Kash Max Max Max Max Max Status File CELLULAR STORAGE.SRCX Source Control 2 Outflow Volume Kash Max Max Max Max Max Status File Cellume Source Control 2 Outflow Volume (n) (1 0.1 0.1 0.4 Risk Source Control 0.1 0.1 0.9 Flood Risk Source Control 0.1 0.1 0.1 0.9 Flood Risk Source Control 0.1 0.1 0.1 0.9 Flood Risk Source Control 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Old Brighton Road Cellular Storage								
State 20/09/2022 Designed by AR Checked by EB Option Control 2020.1 Summary of Results for 100 year Return Period (+40%) Half Drain Time : 104 minutes. Max Max <th< td=""><td colspan="7">Gatwick BH11 OPB 1 in 100 year event plus CC</td><td></td></th<>	Gatwick BH11 OPB 1 in 100 year event plus CC								
Description Description Dy AR Description Description <thdescription< th=""> Description <thd< td=""><td colspan="8">Balwick Khill OFK I in 100 year event plus co</td></thd<></thdescription<>	Balwick Khill OFK I in 100 year event plus co								
Pile CELLOLAR STORAGE.SRCX Checked by EB Source Control 2020.1 Band Status Band Status Source Control 2020.1 Source Control 2020.1 Band Status Status Band Status	Date 20/09/2022	Date 20/09/2022 Designed by AR							
Innovyze Source Control 2020.1 Surree Control 2020.1 Surree Control 2 Period (+40%) Half Drain Time : 104 minutes. Storm Max Status Storm Max Max Max Max Max Max Status Storm Max Max Max Max Max Status Storm Max Max Max Max Max Max Max Status Max Status Statu	File CELLULAR STORA	GE.SRCX	Chec	cked by	EB			Brainage	
Summary of Results for 100 year Return Period (+408). Haff Drain Time : 104 minutes. Storm Max Max Max Status Storm Max Max Max Status Storm Max Max Status Max Old Old Old Old Old Status Status Old <td colspan="2</td> <td>Innovyze</td> <td></td> <td>Sour</td> <td>ce Con</td> <td>trol 2</td> <td>020.1</td> <td></td> <td></td>	Innovyze		Sour	ce Con	trol 2	020.1			
Summary of Results for 100 year Return Period (+40%) Half Drain Time : 104 minutes. Storm Max Max Max Max Max Max Max Max Status Storm Level Depth Infiltration Control 2 Outflow Volume (m) (1/s) 15 min Summer 9.802 0.202 0.0 0.1 0.1 0.802 0.202 0.0 0.1 0.888 0.248 0.0 0.1 0.1 0.1 0.1 0.1 1.1 Flood Risk 100 min Summer 9.884 0.248 0.0 0.1 0.1 0.1 1.1 Flood Risk 300 min Summer 9.886 0.245 0.0 0.1									
Half Drain Time : 104 minutes. Storm Yeent Max Level Depth (m) Max (m) Max (l/s) Catus (l/s) 15 min Summer 9.840 0.248 0.0 0.1 0.1 0.1 0.9 Flood Risk (00 min Summer 9.846 0.266 0.0 0.1 0.1 1.0 Flood Risk (00 min Summer 9.846 0.266 0.0 0.1 0.1 0.1 0.1 Flood Risk (60 min Summer 9.824 0.245 0.0 0.1 0.1 0.8 Flood Risk (60 min Summer 9.824 0.266 0.0 0.1 0.1 0.8 Flood Risk (60 min Summer 9.824 0.266 0.0 0.1 0.1 0.8 Flood Risk (60 min Summer 9.868 0.0 0.1 0.1 0.8 Flood Risk (60 min Summer 9.663 0.0 0.1 0.1 0.5 Flood Risk (60 min Summer 9.663 0.0 0.1 0.1 0.5 Flood Risk (60 min Summer 9.610 0.0 0.0 0.0	Summary	of Result	<u>ts for 10</u>	<u>)0 year</u>	Retur	<u>n Perio</u>	d (+40	<u>)응)</u>	
Storm Event Max Level Max bepth Max Infiltration (1/s) Max (1/s) Max (1/s)		Half	E Drain Ti	me : 104	minute	s.			
Event Level Depth Infiltration Control 2 Outflow Volume (1/s) Volume (1/s) 15 min Summer 9.802 0.202 0.0 0.1 0.1 0.8 Flood Risk 30 min Summer 9.848 0.248 0.0 0.1 0.1 0.1 0.8 Flood Risk 120 min Summer 9.877 0.277 0.0 0.1 0.1 1.1 Flood Risk 120 min Summer 9.866 0.2262 0.0 0.1 0.1 1.1 Flood Risk 240 min Summer 9.866 0.2262 0.0 0.1 0.1 1.0 Flood Risk 360 min Summer 9.866 0.2266 0.0 0.1 0.1 0.9 Flood Risk 460 min Summer 9.824 0.226 0.0 0.1 0.1 0.9 Flood Risk 720 min Summer 9.764 0.164 0.0 0.1 0.1 0.7 Flood Risk 2160 min Summer 9.643 0.043 0.0 0.1 0.1 0.5 Flood Risk 2160 min Summer 9.643 0.043 0.0 0.0 0.0 0.0 0.0 2280 min Summer 9.643	Storm	Max Max	Max	1	Max	Max	Max	Status	
(m) (n) (1/s) (1/s) (1/s) (m ²) 15 min Summer 9.802 0.202 0.0 0.1 0.1 0.8 Flood Risk 30 min Summer 9.840 0.243 0.0 0.1 0.1 0.9 Flood Risk 120 min Summer 9.876 0.276 0.0 0.1 0.1 1.1 Flood Risk 180 min Summer 9.866 0.266 0.0 0.1 0.1 1.1 Flood Risk 240 min Summer 9.845 0.245 0.0 0.1 0.1 0.9 Flood Risk 600 min Summer 9.845 0.226 0.0 0.1 0.1 0.8 Flood Risk 610 min Summer 9.846 0.226 0.0 0.1 0.1 0.8 Flood Risk 720 min Summer 9.846 0.266 0.0 0.1 0.1 0.8 Flood Risk 2160 min Summer 9.764 0.126 0.0 0.1 0.1 0.5 Flood Risk 2260 min Summer 9.669 0.068 0.0 0.1 0.1 0.5	Event	Level Dept	h Infiltra	tion Co	ntrol Σ	Outflow	Volume		
15 min Summer 9.802 0.202 0.0 0.1 0.1 0.8 Flood Risk 30 min Summer 9.848 0.248 0.0 0.1 0.1 0.9 Flood Risk 60 min Summer 9.877 0.277 0.0 0.1 0.1 1.1 Flood Risk 120 min Summer 9.887 0.276 0.0 0.1 0.1 1.1 Flood Risk 180 min Summer 9.876 0.276 0.0 0.1 0.1 1.0 Flood Risk 360 min Summer 9.845 0.245 0.0 0.1 0.1 0.9 Flood Risk 600 min Summer 9.824 0.224 0.0 0.1 0.1 0.9 Flood Risk 600 min Summer 9.824 0.224 0.0 0.1 0.1 0.9 Flood Risk 600 min Summer 9.824 0.126 0.0 0.1 0.1 0.8 Flood Risk 720 min Summer 9.760 0.126 0.0 0.1 0.1 0.7 Flood Risk 1440 min Summer 9.630 0.088 0.0 0.1 0.1 0.5 Flood Risk 2160 min Summer 9.643 0.043 0.0 0.0 0.1 0.1 0.5 Flood Risk 220 min Summer 9.619 0.019 0.0 0.0 0.0 0.1 0.1 0.8 10080 min Summer 9.619 0.019 0.		(m) (m)	(1/s) (1	l/s)	(1/s)	(m³)		
15 min Summer 9.842 0.242 0.0 0.1 0.1 0.1 0.8 Flood Risk 60 min Summer 9.877 0.277 0.0 0.1 0.1 1.1 Flood Risk 120 min Summer 9.870 0.276 0.0 0.1 0.1 1.1 Flood Risk 120 min Summer 9.876 0.276 0.0 0.1 0.1 1.1 Flood Risk 180 min Summer 9.866 0.266 0.0 0.1 0.1 1.0 Flood Risk 480 min Summer 9.866 0.266 0.0 0.1 0.1 0.9 Flood Risk 480 min Summer 9.866 0.224 0.0 0.1 0.1 0.9 Flood Risk 600 min Summer 9.864 0.224 0.0 0.1 0.1 0.8 Flood Risk 720 min Summer 9.764 0.164 0.0 0.1 0.1 0.7 Flood Risk 1400 min Summer 9.668 0.068 0.0 0.1 0.1 0.3 0 K 2860 min Summer 9.631 0.031 0.0 0.0 0.0 0.0 0.0 0.1 0 K 4320 min Summer 9.648 0.068 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	15 min 0	0 000 0 00	^	0 0	0 1	0 1	0 0		
35 min Summer 9.877 0.277 0.0 0.1 0.1 0.1 1.1 Flood Risk 120 min Summer 9.876 0.276 0.0 0.1 0.1 1.1 Flood Risk 180 min Summer 9.886 0.266 0.0 0.1 0.1 1.0 Flood Risk 240 min Summer 9.845 0.245 0.0 0.1 0.1 1.0 Flood Risk 360 min Summer 9.845 0.242 0.0 0.1 0.1 0.9 Flood Risk 600 min Summer 9.846 0.266 0.0 0.1 0.1 0.9 Flood Risk 600 min Summer 9.846 0.226 0.0 0.1 0.1 0.9 Flood Risk 720 min Summer 9.700 0.190 0.0 0.1 0.1 0.6 Flood Risk 140 min Summer 9.768 0.126 0.0 0.1 0.1 0.6 Flood Risk 1440 min Summer 9.630 0.090 0.0 0.1 0.1 0.5 Flood Risk 1400 min Summer 9.643 0.043 0.0 0.0 0.1 0.1 0.5 K 200 min Summer 9.619 0.019 0.0 0.0 0.0 0.1 0.1 K 210 min Summer 9.61	15 min Summer	9.802 0.20	2	0.0	0.1	0.1	0.8	Flood Risk	
120 min Summer 9.882 0.282 0.0 0.1 0.1 1.1 Flood Risk 180 min Summer 9.866 0.266 0.0 0.1 0.1 1.0 Flood Risk 240 min Summer 9.865 0.245 0.0 0.1 0.1 0.1 0.9 Flood Risk 360 min Summer 9.824 0.224 0.0 0.1 0.1 0.1 0.9 Flood Risk 600 min Summer 9.806 0.206 0.0 0.1 0.1 0.1 0.9 Flood Risk 600 min Summer 9.790 0.190 0.0 0.1 0.1 0.1 0.6 Flood Risk 960 min Summer 9.726 0.126 0.0 0.1 0.1 0.6 Flood Risk 140 min Summer 9.680 0.090 0.0 0.1 0.1 0.5 Flood Risk 2160 min Summer 9.643 0.043 0.0 0.0 0.1 0.1 0.3 O K 2800 min Summer 9.619 0.019 0.0 0.0 0.0 0.0 0.0 0.1 0.1 K 7200 min Summer 9.619 0.019 0.0 0.0 0.0 0.1 0.1 0.8 10800 min Summer 9.619 0.019 0.0 0.0	60 min Summer	9.877 0.27	7	0.0	0.1	0.1	1.1	Flood Risk	
180 min Summer 9.876 0.276 0.0 0.1 0.1 1.0 Flood Risk 240 min Summer 9.866 0.266 0.0 0.1 0.1 1.0 Flood Risk 360 min Summer 9.824 0.224 0.0 0.1 0.1 0.9 Flood Risk 600 min Summer 9.806 0.206 0.0 0.1 0.1 0.9 Flood Risk 720 min Summer 9.900 0.190 0.0 0.1 0.1 0.9 Flood Risk 720 min Summer 9.764 0.164 0.0 0.1 0.1 0.6 Flood Risk 1440 min Summer 9.769 0.126 0.0 0.1 0.1 0.5 Flood Risk 2160 min Summer 9.668 0.068 0.0 0.1 0.1 0.5 Flood Risk 2160 min Summer 9.663 0.043 0.0 0.0 0.0 0.1 0.1 7200 min Summer 9.664 0.024 0.0 0.0 0.0 0.1 0.8 10080 min Summer 9.619 0.019 0.0 0.0 0.0 0.1 0.8 10080 min Summer 9.619 0.027 0.0 0.1 0.1 0.8 10080 min Summer 9.619 0.019 0.0 0.0 0.0 0.1 0.8 10080 min Summer 9.619 0.16 0.	120 min Summer	9.882 0.28	2	0.0	0.1	0.1	1.1	Flood Risk	
240 min Summer 9.866 0.266 0.0 0.1 0.1 1.0 Flood Risk 360 min Summer 9.824 0.224 0.0 0.1 0.1 0.9 Flood Risk 480 min Summer 9.824 0.224 0.0 0.1 0.1 0.9 Flood Risk 600 min Summer 9.806 0.206 0.0 0.1 0.1 0.9 Flood Risk 720 min Summer 9.700 0.190 0.0 0.1 0.1 0.8 Flood Risk 960 min Summer 9.726 0.126 0.0 0.1 0.1 0.6 Flood Risk 1440 min Summer 9.680 0.090 0.0 0.1 0.1 0.6 Flood Risk 2160 min Summer 9.643 0.043 0.0 0.1 0.1 0.5 Flood Risk 2160 min Summer 9.643 0.043 0.0 0.0 0.1 0.1 0.5 Flood Risk 7200 min Summer 9.643 0.043 0.0 0.0 0.1 0.1 0.5 Flood Risk 700 min Summer 9.619 0.019 0.0 0.0 0.0 0.2 0 K 7000 min Summer 9.610 0.016 0.0 0.0 0.1 0 K 1080 min Summer 9.610 0.016 0.0 0.0 0.1 0 K 1080 min Summer 9.610 0.016 0.0 <td< td=""><td>180 min Summer</td><td>9.876 0.27</td><td>6</td><td>0.0</td><td>0.1</td><td>0.1</td><td>1.0</td><td>Flood Risk</td></td<>	180 min Summer	9.876 0.27	6	0.0	0.1	0.1	1.0	Flood Risk	
360 min Summer 9.845 0.245 0.0 0.1 0.1 0.9 Flood Risk 480 min Summer 9.824 0.224 0.0 0.1 0.1 0.9 Flood Risk 600 min Summer 9.826 0.224 0.0 0.1 0.1 0.9 Flood Risk 720 min Summer 9.730 0.190 0.0 0.1 0.1 0.7 Flood Risk 720 min Summer 9.760 0.126 0.0 0.1 0.1 0.6 Flood Risk 1440 min Summer 9.766 0.126 0.0 0.1 0.1 0.6 Flood Risk 2160 min Summer 9.663 0.068 0.0 0.1 0.1 0.5 Flood Risk 2160 min Summer 9.663 0.068 0.0 0.1 0.1 0.3 0 K 4320 min Summer 9.663 0.0043 0.0 0.0 0.0 0.2 0 K 5760 min Summer 9.610 0.019 0.0 0.0 0.0 0.1 0 K 8640 min Summer 9.624 0.024 0.0 0.0 0.0 0.1 0 K 10080 min Summer 9.616 0.016 0.0 0.0 0.0 0.1 0 K 10080 min Summer 9.827 0.227 0.0 0.1 0.1 0.8 120 min Summer 146.763 <t< td=""><td>240 min Summer</td><td>9.866 0.26</td><td>6</td><td>0.0</td><td>0.1</td><td>0.1</td><td>1.0</td><td>Flood Risk</td></t<>	240 min Summer	9.866 0.26	6	0.0	0.1	0.1	1.0	Flood Risk	
480 min Summer 9.824 0.224 0.0 0.1 0.1 0.9 Flood Risk 600 min Summer 9.806 0.206 0.0 0.1 0.1 0.8 Flood Risk 720 min Summer 9.770 0.190 0.0 0.1 0.1 0.8 Flood Risk 960 min Summer 9.764 0.164 0.0 0.1 0.1 0.6 Flood Risk 1440 min Summer 9.764 0.126 0.0 0.1 0.1 0.5 Flood Risk 2160 min Summer 9.660 0.090 0.0 0.1 0.1 0.5 Flood Risk 2160 min Summer 9.664 0.068 0.0 0.1 0.1 0.3 0 K 2880 min Summer 9.663 0.043 0.0 0.0 0.1 0.1 0.3 0 K 4320 min Summer 9.664 0.024 0.0 0.0 0.0 0.1 0.1 0 K 7200 min Summer 9.610 0.019 0.0 0.0 0.0 0.1 0 K 10080 min Summer 9.827 0.227 0.0 0.1 0.1 0.8 18 30 min Summer 146.763 0.0 0.8 18 18 30 min Summer 34.262 0.0 1.5 94 120 min Summer 434.262 0.0 1.7<	360 min Summer	9.845 0.24	5	0.0	0.1	0.1	0.9	Flood Risk	
600 min Summer 9.806 0.206 0.0 0.1 0.1 0.1 0.8 Flood Risk 720 min Summer 9.764 0.164 0.0 0.1 0.1 0.1 0.5 Flood Risk 960 min Summer 9.726 0.126 0.0 0.1 0.1 0.5 Flood Risk 1440 min Summer 9.764 0.164 0.0 0.1 0.1 0.5 Flood Risk 2160 min Summer 9.668 0.068 0.0 0.1 0.1 0.3 0 K 2880 min Summer 9.663 0.043 0.0 0.0 0.0 0.0 0.7 Plood Risk 7200 min Summer 9.664 0.024 0.0 0.0 0.0 0.0 0.1 0 K 7200 min Summer 9.619 0.019 0.0 0.0 0.0 0.1 0 K 1080 min Summer 9.616 0.016 0.0 0.0 0.0 0.1 0 K 10080 min Summer 9.627 0.227 0.0 0.1 0.1 0.9 Flood Risk 30 min Summer 9.624 0.227 0.0 0.1 0.1 0.9 Flood Risk Storm Rain (mm/hr) Volume Volume (mins) (m³) 15 min Summer 9.624 0.20 1.1 32	480 min Summer	9.824 0.22	4	0.0	0.1	0.1	0.9	Flood Risk	
120 min Summer 9.764 0.164 0.0 0.1 0.5 Flood Risk 1440 min Summer 9.640 0.090 0.0 0.1 0.1 0.1 0.3 0 K 2880 min Summer 9.668 0.068 0.0 0.1 0.1 0.3 0 K 4320 min Summer 9.643 0.043 0.0 0.0 0.0 0.1 0 K 7200 min Summer 9.631 0.031 0.0 0.0 0.0 0.1 0 K 10080 min Summer 9.619 0.019 0.0 0.0 0.0 0.1 0 K 10080 min Summer 9.616 0.016 0.0 0.0 0.1 0.4 0.5 Flood Risk Volume Volume Volume (m³) (m³) (m³) Storm (mm/hr) Volume Volume Volume (mins) (m³) 146.763 0.0 1.1 32 60 min Summer 146.763 0.0	600 min Summer	9.806 0.20	6 N	0.0	0.1	0.1	0.8	Flood Risk	
1440 min Summer 9.726 0.126 0.0 0.1 0.1 0.5 Flood Risk 2160 min Summer 9.668 0.068 0.0 0.1 0.1 0.3 0 K 2880 min Summer 9.668 0.068 0.0 0.1 0.1 0.3 0 K 4320 min Summer 9.663 0.043 0.0 0.0 0.0 0.0 0.2 0 K 5760 min Summer 9.631 0.031 0.0 0.0 0.0 0.0 0.1 0 K 7200 min Summer 9.619 0.019 0.0 0.0 0.0 0.1 0 K 8640 min Summer 9.616 0.016 0.0 0.0 0.0 0.1 0 K 10080 min Summer 9.827 0.227 0.0 0.1 0.1 0.9 Flood Risk Storm Rain Flooded Discharge Time-Peak (mins) (m³) (m³) (mins) 0.1 0.1 0.9 Flood Risk Storm Rain Summer 146.763 0.0 0.8 18 30 15 min Summer 34.262 0.0 1.3 60 120 min Summer 146.763 0.0 1.7 126 240 240 0.1 1.7 126	960 min Summer	9 764 0 16	4	0.0	0.1	0.1	0.7	Flood Risk	
2160 min Summer 9.690 0.090 0.0 0.1 0.1 0.3 0 K 2880 min Summer 9.668 0.068 0.0 0.1 0.1 0.3 0 K 4320 min Summer 9.643 0.043 0.0 0.0 0.0 0.2 0 K 5760 min Summer 9.631 0.031 0.0 0.0 0.0 0.1 0 K 7200 min Summer 9.624 0.024 0.0 0.0 0.0 0.1 0 K 8640 min Summer 9.616 0.016 0.0 0.0 0.0 0.1 0 K 10080 min Summer 9.616 0.016 0.0 0.0 0.0 0.1 0 K 15 min Winter 9.827 0.227 0.0 0.1 0.1 0.9 Flooded Risk Storm (mm/hr) Flooded Discharge Time-Peak Event (mm/hr) 15 min Summer 146.763 0.0 0.8 18 30 min Summer 94.501 0.0 1.1 32 60 min Summer 146.763 0.0 1.7 126 240 min Summer 19.759 0.0 1.8 160 360 min Summer 19.759 0.0 1.8 160 360 min Summer 19.759 <t< td=""><td>1440 min Summer</td><td>9.726 0.12</td><td>6</td><td>0.0</td><td>0.1</td><td>0.1</td><td>0.5</td><td>Flood Risk</td></t<>	1440 min Summer	9.726 0.12	6	0.0	0.1	0.1	0.5	Flood Risk	
2880 min Summer 9.668 0.068 0.0 0.1 0.1 0.3 0 K 4320 min Summer 9.643 0.043 0.0 0.0 0.0 0.2 0 K 5760 min Summer 9.631 0.031 0.0 0.0 0.0 0.1 0 K 7200 min Summer 9.624 0.024 0.0 0.0 0.0 0.1 0 K 8640 min Summer 9.619 0.019 0.0 0.0 0.0 0.1 0 K 10080 min Summer 9.616 0.016 0.0 0.0 0.0 0.1 0 K 15 min Winter 9.827 0.227 0.0 0.1 0.1 0.9 Flood Risk Storm Rain (mm/hr) Flooded Discharge Time-Peak (mins) 30 min Summer 146.763 0.0 0.8 18 30 min Summer 57.877 0.0 1.1 32 60 min Summer 57.877 0.0 1.5 94 180 min Summer 19.759 0.0 1.8 160 360 min Summer 14.202 0.0 1.9 230 480 min Summer 11.240 0.0 2.0 296 600 min Summer 9.369 0.0 2.1 <td>2160 min Summer</td> <td>9.690 0.09</td> <td>0</td> <td>0.0</td> <td>0.1</td> <td>0.1</td> <td>0.3</td> <td>ОК</td>	2160 min Summer	9.690 0.09	0	0.0	0.1	0.1	0.3	ОК	
4320 min Summer 9.631 0.043 0.0 0.0 0.0 0.2 0 K 5760 min Summer 9.631 0.031 0.0 0.0 0.0 0.1 0 K 7200 min Summer 9.619 0.019 0.0 0.0 0.0 0.1 0 K 8640 min Summer 9.616 0.016 0.0 0.0 0.0 0.1 0 K 10080 min Summer 9.616 0.016 0.0 0.0 0.0 0.1 0 K 15 min Winter 9.827 0.227 0.0 0.1 0.1 0.9 Flooded Risk Storm Fevent (mm/hr) Volume Volume (mins) (m³) 15 min Summer 146.763 0.0 0.8 18 30 min Summer 94.501 0.0 1.1 32 60 60 min Summer 57.877 0.0 1.3 60 120 min Summer 14.262 0.0 1.7 126 240 min Summer 19.759 0.0 1.8 160 360 min Summer 19.759 0.0 1.8 160 360 min Summer 19.369 0.0 2.1 362 720 min Summer 1.240 0.0 2.2 <td>2880 min Summer</td> <td>9.668 0.06</td> <td>8</td> <td>0.0</td> <td>0.1</td> <td>0.1</td> <td>0.3</td> <td>O K</td>	2880 min Summer	9.668 0.06	8	0.0	0.1	0.1	0.3	O K	
5760 min Summer 9.631 0.031 0.0 0.0 0.0 0.1 0 K 7200 min Summer 9.624 0.024 0.0 0.0 0.0 0.1 0 K 8640 min Summer 9.619 0.019 0.0 0.0 0.0 0.1 0 K 10080 min Summer 9.616 0.016 0.0 0.0 0.0 0.1 0 K 15 min Winter 9.827 0.227 0.0 0.1 0.1 0.9 Flooded Risk Storm (mm/hr) Volume Volume (mins) (m³) (m³) (mas) 15 min Summer 146.763 0.0 0.8 18 30 min Summer 94.501 0.0 1.1 32 60 min Summer 34.262 0.0 1.5 94 180 min Summer 14.202 0.0 1.7 126 240 min Summer 19.759 0.0 1.8 160 360 min Summer 14.202 0.0 1.9 230 480 min Summer 12.240 0.0 2.0 296 600 min Summer 9.369 0.0 2.1 362 720 min Summer 6.374 0.0 2.2 428 960 min Summer 6.374 0.0	4320 min Summer	9.643 0.04	3	0.0	0.0	0.0	0.2	O K	
7200 min Summer 9.624 0.024 0.0 0.0 0.0 0.1 0 K 8640 min Summer 9.619 0.019 0.0 0.0 0.0 0.1 0 K 10080 min Summer 9.616 0.016 0.0 0.0 0.0 0.1 0 K 15 min Winter 9.827 0.227 0.0 0.1 0.1 0.9 Flood Risk Storm Rain Flooded Discharge Time-Peak Event (mm/hr) Volume Volume (mins) (m³) 15 min Summer 146.763 0.0 0.8 18 30 min Summer 94.501 0.0 1.1 32 60 min Summer 57.877 0.0 1.3 60 120 min Summer 14.202 0.0 1.7 126 240 min Summer 19.759 0.0 1.8 160 360 min Summer 11.240 0.0 2.0 296 600 min Summer 19.759 0.0 1.8 160 360 min Summer 19.369 0.0 2.1 362 720 min Summer 8.071 0.0 2.2 428 960 min Summer 6.374 0.0 2.3 552 1440 min Summer 3.265 0.0 2.5 796 2160 min Summer 3.265 <t< td=""><td>5760 min Summer</td><td>9.631 0.03</td><td>1</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.1</td><td>O K</td></t<>	5760 min Summer	9.631 0.03	1	0.0	0.0	0.0	0.1	O K	
10080 min Summer 9.616 0.016 0.0 0.0 0.0 0.1 0.1 15 min Winter 9.827 0.227 0.0 0.1 0.1 0.1 0.9 Storm Event (mm/hr) Volume Volume Volume (mins) (m³) 15 min Summer 146.763 0.0 0.8 18 30 min Summer 94.501 0.0 1.1 32 60 min Summer 57.877 0.0 1.3 60 120 min Summer 14.202 0.0 1.7 126 240 min Summer 14.202 0.0 1.8 160 360 min Summer 14.202 0.0 1.9 230 480 min Summer 11.240 0.0 2.1 362 720 min Summer 8.071 0.0 2.3 552 1440 min Summer 4.565 0.0 2.5 796 2160 min Summer 3.265 0.0 2.6 1164	7200 min Summer	9.624 0.02	4 9	0.0	0.0	0.0	0.1	O K	
Store Rain Flooded Discharge Time-Peak Storm Event (mm/hr) Volume Volume (mins) 15 min Winter 9.827 0.227 0.0 0.1 0.1 0.9 Flood Risk Storm Event (mm/hr) Volume Volume (mins) (m³) (m³) (m³) 15 min Summer 146.763 0.0 0.8 18 30 min Summer 94.501 0.0 1.1 32 60 min Summer 57.877 0.0 1.3 60 120 min Summer 34.262 0.0 1.5 94 180 min Summer 19.759 0.0 1.8 160 360 min Summer 19.759 0.0 1.8 160 360 min Summer 11.240 0.0 2.0 296 600 min Summer 9.369 0.0 2.1 362 720 min Summer 8.071 0.0 2.3 552 1440 min Summer 4.565 0.0 2.5 796	10080 min Summer	9.616 0.01	6	0.0	0.0	0.0	0.1	0 K	
Storm Rain Flooded Discharge Time-Peak Event (mm/hr) Volume Volume (mins) (m³) (m³) (m³) (mins) 15 min Summer 146.763 0.0 0.8 18 30 min Summer 94.501 0.0 1.1 32 60 min Summer 57.877 0.0 1.3 60 120 min Summer 19.759 0.0 1.7 126 240 min Summer 19.759 0.0 1.8 160 360 min Summer 11.240 0.0 2.0 296 600 min Summer 9.369 0.0 2.1 362 720 min Summer 8.071 0.0 2.2 428 960 min Summer 6.374 0.0 2.3 552 1440 min Summer 3.265 0.	15 min Winter	9.827 0.22	7	0.0	0.1	0.1	0.9	Flood Risk	
Storm Rain Flooded Discharge Time-Peak Event (mm/hr) Volume Volume (mins) 15 min Summer 146.763 0.0 0.8 18 30 min Summer 94.501 0.0 1.1 32 60 min Summer 57.877 0.0 1.3 60 120 min Summer 34.262 0.0 1.5 94 180 min Summer 19.759 0.0 1.8 160 360 min Summer 14.202 0.0 1.9 230 480 min Summer 11.240 0.0 2.0 296 600 min Summer 8.071 0.0 2.1 362 720 min Summer 6.374 0.0 2.3 552 1440 min Summer 4.565 0.0 2.5 796 2160 min Summer 3.265 0.0 2.6 1164									
Event (mm/hr) Volume Volume (mins) (m³) (m³) (m³) (m³) 15 min Summer 146.763 0.0 0.8 18 30 min Summer 94.501 0.0 1.1 32 60 min Summer 57.877 0.0 1.3 60 120 min Summer 34.262 0.0 1.5 94 180 min Summer 19.759 0.0 1.8 160 360 min Summer 19.759 0.0 1.9 230 480 min Summer 11.240 0.0 2.0 296 600 min Summer 9.369 0.0 2.1 362 720 min Summer 8.071 0.0 2.2 428 960 min Summer 6.374 0.0 2.3 552 1440 min Summer 4.565 0.0 2.5 796 2160 min Summer 3.265 0.0 2.6 1164		Storm	Rain	Flooded	Discha	rge Time	-Peak		
15 min Summer 146.763 0.0 0.8 18 30 min Summer 94.501 0.0 1.1 32 60 min Summer 57.877 0.0 1.3 60 120 min Summer 34.262 0.0 1.5 94 180 min Summer 24.904 0.0 1.7 126 240 min Summer 19.759 0.0 1.8 160 360 min Summer 14.202 0.0 1.9 230 480 min Summer 11.240 0.0 2.0 296 600 min Summer 8.071 0.0 2.1 362 720 min Summer 6.374 0.0 2.3 552 1440 min Summer 4.565 0.0 2.5 796 2160 min Summer 3.265 0.0 2.6 1164		Event	(mm/hr)	Volume (m ³)	VoLui (m ³)	me (mi	lns)		
15 min Summer 146.7630.00.81830 min Summer 94.5010.01.13260 min Summer 57.8770.01.360120 min Summer 34.2620.01.594180 min Summer 24.9040.01.7126240 min Summer 19.7590.01.8160360 min Summer 14.2020.01.9230480 min Summer 11.2400.02.0296600 min Summer 8.0710.02.2428960 min Summer 6.3740.02.35521440 min Summer 3.2650.02.61164				(111)	(111-)	,			
30 min Summer 94.501 0.0 1.1 32 60 min Summer 57.877 0.0 1.3 60 120 min Summer 34.262 0.0 1.5 94 180 min Summer 24.904 0.0 1.7 126 240 min Summer 19.759 0.0 1.8 160 360 min Summer 14.202 0.0 1.9 230 480 min Summer 11.240 0.0 2.0 296 600 min Summer 9.369 0.0 2.1 362 720 min Summer 8.071 0.0 2.2 428 960 min Summer 6.374 0.0 2.3 552 1440 min Summer 4.565 0.0 2.5 796 2160 min Summer 3.265 0.0 2.6 1164	1	5 min Summe	r 146.763	0.0		0.8	18		
60 min Summer57.8770.01.360120 min Summer34.2620.01.594180 min Summer24.9040.01.7126240 min Summer19.7590.01.8160360 min Summer14.2020.01.9230480 min Summer11.2400.02.0296600 min Summer9.3690.02.1362720 min Summer8.0710.02.2428960 min Summer6.3740.02.35521440 min Summer3.2650.02.61164	3	0 min Summe	r 94.501	0.0		1.1	32		
120 min Summer 34.262 0.0 1.5 94 180 min Summer 24.904 0.0 1.7 126 240 min Summer 19.759 0.0 1.8 160 360 min Summer 14.202 0.0 1.9 230 480 min Summer 11.240 0.0 2.0 296 600 min Summer 9.369 0.0 2.1 362 720 min Summer 8.071 0.0 2.2 428 960 min Summer 6.374 0.0 2.3 552 1440 min Summer 4.565 0.0 2.5 796 2160 min Summer 3.265 0.0 2.6 1164	6	0 min Summe	r 57.877	0.0		1.3	60		
100 min Summer 19.759 0.0 1.7 120 240 min Summer 19.759 0.0 1.8 160 360 min Summer 14.202 0.0 1.9 230 480 min Summer 11.240 0.0 2.0 296 600 min Summer 9.369 0.0 2.1 362 720 min Summer 8.071 0.0 2.2 428 960 min Summer 6.374 0.0 2.3 552 1440 min Summer 4.565 0.0 2.5 796 2160 min Summer 3.265 0.0 2.6 1164	12	O min Summe	r 34.262	0.0		1.5 1.7	94 126		
360 min Summer 14.202 0.0 1.9 230 480 min Summer 11.240 0.0 2.0 296 600 min Summer 9.369 0.0 2.1 362 720 min Summer 8.071 0.0 2.2 428 960 min Summer 6.374 0.0 2.3 552 1440 min Summer 4.565 0.0 2.5 796 2160 min Summer 3.265 0.0 2.6 1164		0 min Summe	r 19 759	0.0		⊥./ 1 8	160		
480 min Summer11.2400.02.0296600 min Summer9.3690.02.1362720 min Summer8.0710.02.2428960 min Summer6.3740.02.35521440 min Summer4.5650.02.57962160 min Summer3.2650.02.61164	36	50 min Summe	r 14.202	0.0		1.9	230		
600 min Summer9.3690.02.1362720 min Summer8.0710.02.2428960 min Summer6.3740.02.35521440 min Summer4.5650.02.57962160 min Summer3.2650.02.61164	48	0 min Summe	r 11.240	0.0		2.0	296		
720 min Summer8.0710.02.2428960 min Summer6.3740.02.35521440 min Summer4.5650.02.57962160 min Summer3.2650.02.61164	60	0 min Summe	r 9.369	0.0		2.1	362		
960 min Summer6.3740.02.35521440 min Summer4.5650.02.57962160 min Summer3.2650.02.61164	72	0 min Summe	r 8.071	0.0		2.2	428		
1440 min Summer 4.565 0.0 2.5 796 2160 min Summer 3.265 0.0 2.6 1164	96	0 min Summe	r 6.374	0.0		2.3	552		
2100 IIIII SUIIIIIEL 3.203 0.0 2.6 1164	144	0 min Summe	r 4.565	0.0		2.5	796		
2880 min Summer 2,572 0,0 2,8 1524	210	0 min Summe	r 2.572	0.0		2.8	1524		

0.0

0.0

0.0

0.0

0.0

0.0

©1982-2020 Innovyze

2244

2944

3672

4408

5080

18

3.0

3.1

3.2

3.3

3.4

0.9

2880 min Summer 2.572

15 min Winter 146.763

1.835

1.444

1.198

1.028

0.903

4320 min Summer

5760 min Summer

7200 min Summer

8640 min Summer

10080 min Summer

Unda Consulting Ltd		Page 2
Southpoint	92181-Valand-DeaneCrftRd	
Old Brighton Road	Cellular Storage	
Gatwick RH11 OPR	1 in 100 year event plus CC	Mirro
Date 20/09/2022	Designed by AR	
File CELLULAR STORAGE.SRCX	Checked by EB	Diamage
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

	Storm		Max	Max	Max	Max	Max	Max	Status
	Event		Level	Depth ()	Infiltration	Control	2: Outflow	Volume	
			(m)	(m)	(1/5)	(1/5)	(1/5)	(m-)	
30	min W	linter	9.880	0.280	0.0	0.1	0.1	1.1	Flood Risk
60	min W	linter	9.915	0.315	0.0	0.1	0.1	1.2	Flood Risk
120	min W	linter	9.920	0.320	0.0	0.1	0.1	1.2	Flood Risk
180	min W	linter	9.911	0.311	0.0	0.1	0.1	1.2	Flood Risk
240	min W	linter	9.897	0.297	0.0	0.1	0.1	1.1	Flood Risk
360	min W	linter	9.865	0.265	0.0	0.1	0.1	1.0	Flood Risk
480	min W	linter	9.837	0.237	0.0	0.1	0.1	0.9	Flood Risk
600	min W	linter	9.811	0.211	0.0	0.1	0.1	0.8	Flood Risk
720	min W	linter	9.790	0.190	0.0	0.1	0.1	0.7	Flood Risk
960	min W	linter	9.755	0.155	0.0	0.1	0.1	0.6	Flood Risk
1440	min W	linter	9.708	0.108	0.0	0.1	0.1	0.4	Flood Risk
2160	min W	linter	9.669	0.069	0.0	0.1	0.1	0.3	O K
2880	min W	linter	9.648	0.048	0.0	0.0	0.0	0.2	O K
4320	min W	linter	9.628	0.028	0.0	0.0	0.0	0.1	O K
5760	min W	linter	9.620	0.020	0.0	0.0	0.0	0.1	O K
7200	min W	linter	9.615	0.015	0.0	0.0	0.0	0.1	O K
8640	min W	linter	9.613	0.013	0.0	0.0	0.0	0.1	O K
10080	min W	linter	9.612	0.012	0.0	0.0	0.0	0.0	O K

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	94.501	0.0	1.2	32
60	min	Winter	57.877	0.0	1.5	60
120	min	Winter	34.262	0.0	1.7	98
180	min	Winter	24.904	0.0	1.9	136
240	min	Winter	19.759	0.0	2.0	174
360	min	Winter	14.202	0.0	2.1	246
480	min	Winter	11.240	0.0	2.3	318
600	min	Winter	9.369	0.0	2.4	386
720	min	Winter	8.071	0.0	2.4	450
960	min	Winter	6.374	0.0	2.6	578
1440	min	Winter	4.565	0.0	2.8	824
2160	min	Winter	3.265	0.0	3.0	1188
2880	min	Winter	2.572	0.0	3.1	1528
4320	min	Winter	1.835	0.0	3.3	2248
5760	min	Winter	1.444	0.0	3.5	2944
7200	min	Winter	1.198	0.0	3.6	3672
8640	min	Winter	1.028	0.0	3.7	4408
10080	min	Winter	0.903	0.0	3.8	4984

Unda Consulting Ltd		Page 3
Southpoint	92181-Valand-DeaneCrftRd	
Old Brighton Road	Cellular Storage	
Gatwick RH11 OPR	1 in 100 year event plus CC	Micro
Date 20/09/2022	Designed by AR	
File CELLULAR STORAGE.SRCX	Checked by EB	Diamage
Innovyze	Source Control 2020.1	

<u>Rainfall Details</u>

	Rainfall Model		FSR	Winter Storms Yes
Return	Period (years)		100	Cv (Summer) 0.750
	Region	England	and Wales	Cv (Winter) 0.840
	M5-60 (mm)		20.400	Shortest Storm (mins) 15
	Ratio R		0.447	Longest Storm (mins) 10080
	Summer Storms		Yes	Climate Change % +40

<u>Time Area Diagram</u>

Total Area (ha) 0.003

Time	(mins)	Area
From:	To:	(ha)

0 4 0.003

©1982-2020 Innovyze

Unda Consulting Ltd		Page 4
Southpoint	92181-Valand-DeaneCrftRd	
Old Brighton Road	Cellular Storage	
Gatwick RH11 OPR	1 in 100 year event plus CC	Mirro
Date 20/09/2022	Designed by AR	
File CELLULAR STORAGE.SRCX	Checked by EB	Diamage
Innovyze	Source Control 2020.1	·

Model Details

Storage is Online Cover Level (m) 10.000

Cellular Storage Structure

Invert Level (m) 9.600 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000 4.0 4.0 0.400 4.0 4.0

Orifice Outflow Control

Diameter (m) 0.010 Discharge Coefficient 0.600 Invert Level (m) 9.600

DSED GROUND FLOOR PRO PLAN

