STOCKTON DRAINAGE STATEMENT CONDITION 20 (HANZARD DRIVE ROUNDABOUT \& SECONDARY ACCESS ROAD BASINS, PHASE 2)

Document Ref: STO-ARC-XX-050-RP-CE-0013
Revision: 1

NOVEMBER 2023

Version Control

Issue	Revision No.	Date Issued	Page No.	Description	Reviewed By
01	P01	21.11 .2023	9	David Ogden	

\qquad
\qquad
\qquad

This report dated 22 November 2023 has been prepared for Amazon UK Services Ltd (the "Client") in accordance with the terms and conditions of appointment (the "Appointment") between the Client and Error! No text of specified style in document. ("Arcadis") for the purposes specified in the Appointment. For avoidance of doubt, no other person(s) may use or rely upon this report or its contents, and Arcadis accepts no responsibility for any such use or reliance thereon by any other third party.

Contents

- 1 Introduction .. 2
- 2 Surface Water Drainage .. 6
- 3 Conclusion .. 10

Appendices

- Appendix A

Drawing STO-ARC-XX-XX-DR-CE-0531-01 (Drainage Plan Basin Area),
Drawing STO-ARC-XX-XX-DR-CE-0525-01 (Secondary Access Road Basins GA)
Drawing STO-ARC-XX-XX-SK-CE-0530-01 (Roundabout Drainage Plan)

- Appendix B

Microdrainage Calculations - 1 in 100 year $\mathbf{+ 4 0 \%}$ CC
Drawing STO-ARC-XX-XX-DR-CE-0509-02 S38 Highway Drainage Standard Details Sheet 2
C753 Basin Design Assessment Checklist
C753 Basin Health and Safety Risk Assessment

1 Introduction

1.1.1 Arcadis Consulting (UK) Limited has been commissioned by the Amazon UK Services Ltd to provide a surface water drainage strategy in support of a planning application for the formation of new access roads, associated ancillary works and new roundabout on the Land Northwest of Wynyard Business Park, Chapel Lane North, Wynyard.
1.1.2 This Drainage Statement has been prepared to set out the details of the highway surface water drainage in support of discharge of planning Condition 20 for the remaining extents of the application site, including the southern 200 m of secondary access road, and the proposed junction improvements for Hanzard Drive / Glenarm Road. Phase 1 (the Site) and Phase 2 (the northern section of secondary access road) have been discharged previously. This is the remaining and outstanding section of new highway and part of existing Hanzard Drive/Glenarm Road that can be drained to the proposed attenuation basins. The catchment extends from the previously approved Phase 2 site boundary all the way along Glenarm Road to the proposed Hanzard Drive roundabout.

1.1.3 The purpose of the report is to provide details of the surface water drainage strategy to manage surface water runoff generated by the proposed southern section of the secondary access road and mitigation of any potential downstream impacts resulting from the provision.
1.1.4 This technical statement should be read in conjunction with Arcadis drawings STO-ARC-SW-XX-DR-CE-025 01 (Secondary Access Road Basins) and STO-ARC-SW-XX-DR-CE-0530 01 (Roundabout Drainage Plan), included within Appendix A.
1.1.5 Drawing STO-ARC-XX-XX-DR-CE-0530 also shows the existing/proposed drainage within Glenarm Road and Hanzard Drive and adjacent development parcels that currently drains separately to any new proposed drainage within the secondary access road.

1.2 Conditions

1.2.1 Condition 20, as set out below require the details for the proposed drainage to be submitted for approval prior to commencement as well as the build programme and construction management plan.
1.2.2 This report seeks to provide the relevant details to discharge this condition in relation to the Secondary Access Road southern section.

20 The development hereby approved shall not be commenced on site except piling, until a scheme for 'the implementation, maintenance and management of a Sustainable Surface Water Drainage Scheme has first been submitted to and approved in writing by the Local Planning Authority. The scheme shall be implemented and thereafter managed and maintained in accordance with the approved details, the scheme shall include but not be restricted to providing the following details;

- Detailed design of the surface water management system;
- A build programme and timetable for the provision of the critical surface water drainage infrastructure;
- A management plan detailing how surface water runoff from the site will be managed during the construction phase;

1.3 Existing Site Description

1.3.1 The site is located approximately 3 miles north-west of Billingham, centred on National Grid Reference (NGR) 43755 26999. The site covers an area of approximately 0.9 hectares. The southern secondary access road will cross arable fields, connecting the main site with Glenarm Road. This is the outstanding section of Phase 2. The recently constructed Phase 2 section of highway was approved in February 2022:
1.3.2 The site is bound by Whinny Moor Plantation to the west and north, the North Burn River to the east and Glenarm Road to the west. A small unnamed tributary of the North Burn also runs on an eastwest alignment in the south of the site.
1.3.3 The unnamed tributary is located along this field boundary adjacent to the wooded area and then flows across Whinney Moor Plantation and through the main site as shown on Figure 2 below.
1.3.4 As set out within the Approved FRA, the site is underlain by clay and therefore infiltration is not feasible in this location and positive drainage is required.
1.3.5 The existing ground levels slope roughly from northwest to southeast, and an existing tributary runs along the boundary between the arable fields and the woodland area as shown on Figure $\mathbf{2}$ below.

Figure 2 - Existing Site

1.4 Proposed Scheme

1.4.1 This report relates to the southern section of the secondary access road, which can be drained to the proposed attenuation basins shown. The catchment extends from the Phase 2 site boundary all the way to the proposed Hanzard Drive roundabout. Phase $1 \& 2$ drainage for Condition 20 was set out separately and approved.
1.4.2 The proposed highway is to be adopted by Stockton Borough Council Highways and as such has Technical Approval pending agreement for the final drainage proposals for the outstanding elements.
1.4.3 The total proposed new highway that will drain to the existing ditchcourse equates to 0.9 ha impermeable area with the remaining extents of carriageway to the north draining into the already approved Phase $1 \& 2$ highway drainage (where appropriate allowance for attenuation was previously made)
1.4.4 As can be seen space within the planning extents is limited outside of the earthworks required to deliver the access road and is further constrained by the proximity of the existing ditchcourse and foul sewer.

2 Surface Water Drainage

2.1 Existing Surface Water Drainage Mechanisms

2.1.1 The existing drainage is outlined within the Flood Risk Assessment (Ref: STO-ARC-XX-XX-RP-CE0001), with uncontrolled overland runoff discharging to the North Burn to the east and the tributary that crosses the site.
2.1.2 For the southern secondary access road levels generally fall to the eastern side of the site, towards the existing tributary that sits on the eastern boundary of the arable fields before cutting across the plantation to the main site.
2.1.3 There is currently minimal hardstanding within the site and therefore the existing Mean Annual Greenfield runoff rate has been calculated as $3.71 / \mathrm{s} / \mathrm{ha}$.
2.1.4 Highway drainage and surface water runoff from the existing highways within the wider red line boundary, Glenarm Road and its junction with Hanzard Drive are managed by a private network of sewers as shown within Appendix A on Drawing STO-ARC-XX-XX-DR-CE-0530 - Roundabout Drainage Plan. This network drains runoff from these existing roads westwards along Glenarm Drive and away from the proposed southern secondary access road and is therefore currently managed separately to any new proposed drainage for new highways.
2.1.5 This existing network also manages runoff from several existing development parcels, before discharging into the existing ditch on the eastern edge of the site, slightly to the north of the route of Glenarm Road, bisecting the proposed highway.

2.2 Surface Water Drainage Strategy

2.2.1 Without appropriate control measures, the proposed development could increase the volume and rate of surface water runoff through the addition of impermeable surfaces of pavements and footways which limit infiltration. Storm water should be managed as close to source as possible and copy greenfield characteristics and minimise the amount of runoff transferred downstream.
2.2.2 The aim of this drainage strategy is to demonstrate the detailed drainage proposals for the development that meet the flood risk requirements of the Lead Local Flood Authority and the Council.
2.2.3 The drainage strategy is based on the approved scheme and agreed design principles as set out in the Flood Risk Assessment and includes proposals for a surface water drainage system based on SuDS principles, incorporating source control, ensuring that following large rainfall events the developed site presents no greater flood risk to the surrounding area than the predevelopment site.
2.2.4 The Surface water Drainage Strategy is set out on Drawing STO-ARC-XX-XX-DR-CE-0531-01 (Drainage Plan Basin Area) and STO-ARC-XX-XX-DR-CE-0514-01 (Glenarm Road Drainage Plan) as included in Appendix \boldsymbol{A}.
2.2.5 The total proposed new highway that drains to the existing watercourse equates to 0.9 ha impermeable area, with the recently constructed extents of carriageway to the north draining into the already approved phase $1 \& 2$ highway drainage (where appropriate allowance for attenuation was previously made)
2.2.6 This report covers the southern section of secondary access road which can be drained to the proposed attenuation basins shown - approximately 0.28ha. The remaining 0.62 ha of new/diverted impermeable highway at Hanzard Drive/Glenarm Road will be covered under a separate submission. See drawing STO-ARC-XX-XX-DR-CE-0537-01 (Catchment Plan) contained within Appendix A.
2.2.7 Runoff from the southern secondary access road will be managed in line with the requirements as set out within the Stockton-on-Tees Design Guide and Specification for Residential and Industrial Estates Development and appropriate drainage, attenuation and flow control will be provided as part of the infrastructure works.
2.2.8 Highway drainage within the new and existing road will be adopted by Stockton Borough Council Highways, however, the attenuation basins will be maintained by the Landowner.
2.2.9 As shown on drawing STO-ARC-XX-XX-DR-CE-0531-01 (Drainage Plan Basin Area) contained within Appendix A, highway drainage will connect to the existing tributary that runs along the eastern edge of the site.
2.2.10 The 1 in 100 year rainfall event attenuation storage requirement (including an allowance for 40% climate change), is set out in Table 1 below.

Site	Area (m2)	Theoretical Discharge Rate (1/s)	Volume of Storage (m3)
Hanzard Drive (excluding Glenarm Rd Rdbt)	2819.529	1.01	1.36
Hanzard Drive + Glenarm Roundabout 3782.239 1.13 Glenarm Road 3130.26 1.01			
200m Secondary access south of the pipe crossing	2820.139		256.6
Total	9732.638	5.50	196.5

Table 1
2.2.11 As shown on drawing STO-ARC-XX-XX-DR-CE-0525-01 (Secondary Access Road Basins GA) contained within Appendix A, attenuation for the southern part of the secondary access road will be provided within a basin to be managed and maintained by Wynyard Park; this has been agreed with the Highway Authority.
2.2.12 Micro-drainage Calculations and Standard Details are included within Appendix B.

2.3 Attenuation

2.3.1 Attenuation will be provided in three basins as shown on drawing STO-ARC-SW-XX-DR-CE-0525-01 (Secondary Access Road Basins GA) contained within Appendix A.
2.3.2 The area available for the basins is extremely constrained by an existing foul sewer and easement and adjacent drainage ditch, however, it is still feasible to provide 1 in 3 side slopes for the basins, with a maximum water depth in the 1 in 100 year rainfall event (including an allowance for 40\% climate change) of approximately 1.3 m . This also conforms with the basin design parameters for the nearby recent basins on the Secondary Access Road and the NCL2 development. Water depths are confirmed on drawing STO-ARC-SW-XX-DR-CE-0525-01 (Secondary Access Road Basins GA) contained within Appendix A. A minimum of 300 mm freeboard has been provided above the top design water level and the 3 m wide grasscrete maintenance track is located above this level to allow for ease of access and maintenance in all events.
2.3.3 Wildflower meadow mix planting is proposed in this area.
2.3.4 A basin design Checklist and Health and Safety risk assessment, in line with the CIRIA SUDS Manual (C753) have been undertaken and are contained within Appendix B.
2.3.5 Access chambers are located within wheel tracks within running lanes and control chambers will be located within the highway verge for ease of access and maintenance.
2.3.6 The outfall from the basin will be managed and maintained by Wynyard Business Park.

Outfall from Basin

2.3.7 The basin outfall level is proposed at a level of 44.26m AOD. As with other basins around the development the base of the basin will be slightly lower to allow for sedimentation and vegetation.
2.3.8 The basin will discharge via a new headwall into the existing unnamed ditch tributary.

2.4 Pollution Control

2.4.1 Trapped gullies are proposed for intercepting surface water runoff from the carriageway, cycleway and footway, drainage areas not exceeding 200m².

2.5 Exceedance Event and Residual Risk

2.5.1 The proposed drainage system has been designed to accommodate flows resulting from the 1 in 100year storm event including an allowance for climate change. In the case of exceedance events beyond this design return period, surface water could result in overland flows.
2.5.2 Where surface water runoff may exceed the capacity of the piped network, external areas are designed to slope towards open green spaces, as existing, towards the attenuation facilities proposed.
2.5.3 A minimum of 300 mm freeboard has been provided within these attenuation basins to accommodate additional storage in the event of a blockage at the control or higher order rainfall events.

2.6 Maintenance and Adoption

2.6.1 Control chambers will be located within the highway verge for ease of access and maintenance.
2.6.2 A separate and updated Drainage Management Plan and Maintenance Schedule will be prepared and submitted for agreement as part of discharge of Condition 21 (Preoccupation) and maintenance will be undertaken by Wynyard Park in line with the existing basins across the development.
2.6.3 As noted above, highway drainage will be maintained by the Landowner until such time as the highways are offered for adoption, at which stage this will become adopted and maintained by Stockton Borough Council under a S38 Agreement.
2.6.4 The Basins themselves will remain private, being maintained by Wynyard Park in line with the existing basins across the development.

2.7 Build Programme and Timetable

2.7.1 The attenuation basins will be constructed first and used as surface water management during construction of the highway, in advance of the outfalls being constructed into the existing tributary.
2.7.2 Gully pots will be the final items to be installed, connecting into the highway piped drainage before surfacing of these areas.

3 Conclusion

3.1.1 This Drainage Statement has been prepared to set out the details of the highway surface water drainage in support of discharge of Conditions 20 (for the secondary access road, southern section)
3.1.2 Details for the surface water drainage for Phase $1 \& 2$ of the completed Commercial Development at land in Wynyard Business Park, in support of discharge of Conditions 20 (Drainage), have been set out separately and approved.
3.1.3 The purpose of the report is to provide details of the surface water drainage strategy to manage surface water runoff generated by the proposed secondary access road southern section and mitigation of any potential downstream impacts resulting from the provision.
3.1.4 Surface water runoff will be managed and attenuated onsite for up to and including the 1 in 100 year rainfall event including an allowance for 40% climate change. Details of the proposed attenuation basins and outfall have been provided.
3.1.5 The drainage proposals outlined within this report above along will satisfactorily cater for the surface water generated by the proposed development, as agreed with the Highway Authority.
3.1.6 The surface water drainage strategy will ensure that following redevelopment of the site, there will be no significant adverse impact on flood risk in the local area due to surface water runoff.
3.1.7 Proposals for pollution control have also been set out and ongoing maintenance will be undertaken by Wynyard Park in line with the agreed approach for the existing basins across the site.

Appendix A

Drawing STO-ARC-XX-XX-DR-CE-0531-01 (Drainage Plan Basin Area),
Drawing STO-ARC-XX-XX-DR-CE-0525-01 (Secondary Access Road Basins GA)
Drawing STO-ARC-XX-XX-SK-CE-0530-01 (Roundabout Drainage Plan)

Appendix B

Microdrainage Calculations - 1 in 100 year +40\% CC
Drawing STO-ARC-XX-XX-DR-CE-0537-01 Catchment Plan
Drawing STO-ARC-XX-XX-DR-CE-0509-02 S38 Highway Drainage Standard Details Sheet 2
C753 Basin Design Assessment Checklist
C753 Basin Health and Safety Risk Assessment

Arcadis SSC Europe B.V		Page 4
$\text { P.O. Box } 161$ AD Arnhem 6800 Netherlands	Wynyard Stockton Secondary Road 3 Basins Drainage+Glenarm Rd+Roundabout	
Date 16/02/2022 File 3_BASINS_WITH_3.5L_OUTF..	Designed by Guled Warsama Checked by DO	Drainage
XP Solutions	Network 2019.1	

Synthetic Rainfall Details

Region England and Wales	Cv (Summer)	0.750		
M5-60 (mm)	19.000	$C v$ (Winter)	0.840	
Ratio R	0.400	Storm Duration (mins)	30	
Profile Type	Summer			

SECTION TAKEN ON LINE A-A

HEADWALL DETAIL SCALE NTS

CULVERT GABION HEADWALL - PLAN

SECTION B-B SCALE 1:20

SECTION A - A
SCALE 1:20
© LINTAK

SCALE 1:20

ULVERT GABION HEADWALL - SECTION D-D

CULVERT GABION HEADWALL SECTION C-C

TITL

S38 HIGHWAY RAINAGE DETAILS

Desiged	G.wasamA	50x	${ }^{\text {Ouborr21 }}$
Damm	G.WarsanA	5\%	${ }^{\text {giourra }}$
Chereed	0.006en	5\%	${ }^{\text {P0807721 }}$
Appowed	moanes	\%	${ }^{\text {Omborr21 }}$
Scale:	NTs	Daum:	${ }^{400}$
Oiginasisie:	${ }^{\text {A1 }}$	Gird	os
Sububilic cout	s2	Pojiedtumer	002440
Suitability Description PRELIMINARY NOT TO BE USED FOR CONSTRUCTION			
STO-A	RC-XX-XX-D	-CE-0509	${ }_{\text {Resesion }}^{07}$

Check	MDR	Summary details ${ }^{1}$	Acceptable (Y/N)	Comments/ remedial actions
Dimensions (Sections 13.2 and 22.2)				
Length (m)		55 m (max)	Y	
Width - at top and at base (m)		20m (max)	Y	
Top surface area (m^{2})		$1100 \mathrm{~m}^{2}$	Y	
Side slope (1 in ?)		1 in 3	Y	
Depth - maximum and minimum (m)		1.7 m \& 1.0m	Y	
Freeboard(m)		0.3 m	Y	
Longitud inal slope (1 in ?)		1in100	Y	
Inflows (Sections 13.8.1 and 22.8.1)				
Provide a description of the contributing catchment land use and its size (m^{2})		Access Road $9,732 \mathrm{~m}^{2}$		
Does the design include suitable silt Interception upstream of system, where required?		Road gullies		
Where required, does the design include: suităble flow spreading appropriate energy dissipation?		Headwall bases		
Outfall arrangements (Sections 13.8.2 and 22.8.2)				
Provide details of any flow control systems, overflow arrangements arid limiting discharge rate(s) from the basin		Discharge rate limited to the greenfield runoff rate, limited to $2.731 / \mathrm{s}$ with the use of a flow control.		
Is the basin designed to allow infiltration? If yes, attach infiltration assessment		No		
Does the design include infiltration trenches or blankets beneath the base to promote improved infiltration?		No		
Is a geomembrane required to prevent infiltration? If yes, give reason		No		
Depth to maximum likely groundwater level (m)		Not known		
Is topsoil of sufficient permeability to allow infiltration or underdrainage (where required)?		N/A		
Storage (Sections 13.4 and 22.4)				
Design return period(s) (years)		100yr +40CC		

Check	MDR	Summary details ${ }^{1}$	Acceptable (Y/N)	Comments/ remedial actions
Maximum design water depth(s) and level(s)		1.0m max water depth (300 mm freeboard) Base of basin level 44.30 Level at top of basin is 45.59	Y	
Maximum design storage volume(s) (m^{3}) Note: It would be unusual for this volume to exceed $10,000 \mathrm{~m}^{3}$ _If it does, the design may have to comply with the Reservoirs Act 1975 (as amended by the Flood and Water Managemen t Act (FWMA) 2010). Checks should be made of the design to confirm suitability of such a large volume		$\begin{aligned} & \text { 1) } 347 \mathrm{~m}^{3} \\ & \text { 2) } 95 \mathrm{~m}^{3} \\ & \text { 3) } 322 \mathrm{~m}^{3} \end{aligned}$	Y	
Levels around the edge of the pond/ wetland appropriate to contain design depths of water?		Yes. The level around the edge of the basin is lower than the proposed road level.		

Water quality treatment (Sections 13.5 and 22.5)

For the 1 year, 30 min event confirm:				
Average residence time in detention basin is acceptable for effective treatment		Max flow velocity is $0.4 \mathrm{~m} / \mathrm{s}$	Y	
Or				
Ma ximum velocity is acceptable for				
effective treatment				

Landscape/biodiversity (SecUons 13.6, 13.7, 13.10, 22.6, 22.7 and 22.10)

Does the proposed planting have potential to create biodiverse habitats?				
Have native plant species been used? (Note: if ornamental species are proposed, give reasons and describe measures that prevent their migration to natural water bodies.)				
Is the proposed planting appropriate to the location, visually, relative to gradient, water depths etc and with respect to access and maintenance?				
Where relevant, confirm planting design does not adversely impact highway visibility and safety requirements (check with highway authority)				
Is the proposed topsoil profile suitable to sustain the proposed plant species and as permeable as the filter bed?				

Critical materials and product specifications (Sections 13.9 and 22.9)

Geomembrane				
Geotextile (non-woven)				
Topsoil				
Other (including proprietary systems\}				

Check	MDR	Summary details ${ }^{1}$	Acceptable (Y/N)	Comments/ remedial actions
Constructability (Sections 13.11 and 22.11)				
Are there any identifiable construction risks? If yes, state and confirm acceptable risk management measures are proposed				
Maintainability (Sections 13.12 and 22.12)				
Confirm that access for maintenance is acceptable and summarise details		3 m maintenance path circling the perimeter of the basin.		
Are there specific features that are likely to pose maintenance difficulties? If yes, identify mitigation measures required		No		
Basin design acceptability	Summ any ch	ary details including anges required	Acceptable (Y/N)	Date changes made
Acceptable: Minor changes required: Major changes required/redesign:				

C753 The SuDS Manual

Appendix B: SuDS health and safety risk assessment checklist

Table B. 5 SuDS health and safety risk assessment checklist	
Site/system overview	
Site ID	Stockton
Asset ID	Secondary Access Road Basins
Location	$\begin{aligned} & \text { Basin coordinates } \\ & \text { X (Easting): } 444 \\ & \text { Y (Northing): } 526 \end{aligned}$
SuDS component	Detention basin
Assessment date	16/11/2023
Date of next assessment	After construction
1 Establish context	
General description of component and its operation	Detention basin is normally dry except during and following storm events. It is designed to attenuate surface water incoming from drainage network serving adopted highway.
2 Identify potential hazards	Are hazards present? (Y/N)
Drowning or falling through ice in winter	If YES complete Section 3 Y
Slips, trips and falls	If YES complete Section 4 Y
Entry into pipes or confined spaces (note this is for inadvertent public access; follow relevant legislation and guidance for worker access)	If YES complete Section 5
Water quality - health risk	If YES complete Section 6 Y

C753 The SuDS Manual

Appendix B: SuDS health and safety risk assessment checklist

3 Drowning or falling through ice in winter		
Consider factors that might affect: - the likelihood of people entering the water/accessing the ice - the potential consequence of entering the water/accessing the ice	Summary of influence of factor on likelihood of entry/access, including justification (consider for children < 5 years, children \geq 5 years, adults)	Summary of influence of factor on consequence of entry or access, including justification (consider for children <5 years, children ≥ 5 years, adults)
Environmental factors		
Proximity to populated areas: schools, inns, retail/tourism, picnic areas, play areas, car park, roads, especially attractive features likely to be visited	Normally dry basin will be in proximity to industrial estate car park, roads and roundabout serving industrial units. There is no proximity to populated areas and attractive features. It is assumed that the route adjacent to the basin will be mostly used by professionals going to and from industrial unit being their workplace. It is also expected that access to this zone will be authorized at the entrance to the entire industrial zone.	In case of entry to the basin with water there is a chance that such event can be spotted by people from the road.
Features allowing or encouraging access (eg paths)	Footway / cycleway adjacent the basin will be used by pedestrians and cyclists as a route to and from their workplace i.e. industrial units nearby. According to Ciria C753 drowning more frequently occurs from accidentally falling in rather than by deliberately accessing a body of water and then getting into difficulty.	In case of entry to the basin with water there is a chance that such event can be spotted by people from the road.

Appendix B: SuDS health and safety risk assessment checklist

Physical accessibility of proposed drainage feature: consider intended use and inadvertent access (including of small children)	Basin is physically accessible from all sides making it more likely to enter the basin. It is justified in adjacent column.	Accessible basin make it easier to approach drowning person by other people.
Visibility and natural surveillance of proposed drainage features	Basin is visible from adjacent roads and footway/cycleway in the daytime reducing likelihood of entry/access.	Consequence of entry is reduced due to roads and footway in proximity. Drowning person can be seen from the distance.
Behavioural factors		
Category and volume of expected users: swimmers, anglers, walkers, drivers, specialist water users, General public, dog walkers, teenagers, accompanied/unaccompanied children	These user groups are unexpected in the industrial estate. Swimming in the basin does not seem to be appealing due to industrial nature of the development.	These user groups are unexpected in the industrial estate.
Nature of development (housing, commercial, industrial etc)	Industrial nature of development. Small children are unlikely to be present in this area. It is expected that this zone will not be accessible to unauthorized persons.	Consequences remain the same for all types of development.
Any known existing risks (eg records of accidents) posed by water/drainage features at or close to the site?	Not known	Not known
Design factors - water's edge		

C753 The SuDS Manual
Appendix B: SuDS health and safety risk assessment checklist

Type and nature of water-edge planting	Refer to landscape architect drawings for wateredge planting. Water edge planting would create natural barrier and therefore reduce likelihood of entry/access.	Refer to landscape architect drawings for wateredge planting. Water edge planting would create natural barrier and therefore reduce accessibility to pond. This in turn would make it more difficult to approach drowning person by other people.
Definition of water edge and nature of ground (eg soft/hard)	Surface definition not known. Refer to landscape architect drawings Edges of the pond should be clearly visible assuming appropriate maintenance. This reduces likelihood of inadvertent access to the pond.	Surface definition not known. Refer to landscape architect drawings. Edges of the pond should clearly visible assuming appropriate maintenance making it easier to escape from danger.
Natural obstacles, barriers/fencing	Basin is physically accessible from every side. There are no natural obstacles or barriers/fencing to prevent access to the basin. This is justified in adjacent column.	Barriers would make it more difficult to save a drowning person.
Height of edge above water	Height of edge above water will vary depending on specific rainfall event. There is reasonable distance between footway/cycleway and basin edge. Note that water in the basin should discourage people from accessing the basin. There is no clear correlation between likelihood of entry/access to the basin and water depth profile.	Following storm events simulations water will not approach road i.e. road levels are higher than 1 in 100 year $+40 \%$ climate change water level.

C753 The SuDS Manual

Appendix B: SuDS health and safety risk assessment checklist

Gradient and extent of slopes above, at and below water level	All slopes have gradient not greater than 1 in 3 allowing maintenance personnel to mow and clear vegetation. In addition, falling into water body by accident is more likely for steeper gradients batters.	All slopes have gradient not greater than 1 in 3. This allows unaided movement in either direction making it easier to leave the basin whenever in danger.

Note For definition of levels, see Table 36.2 in Chapter 36.

C753 The SuDS Manual

Appendix B: SuDS health and safety risk assessment checklist

3 Drowning or falling through ice in winter		
Consider factors that might affect: - the likelihood of people entering the water/accessing the ice - the potential consequence of entering the water/accessing the ice	Summary of influence of factor on likelihood of entry/access, including justification (consider for children < 5 years, children ≥ 5 years, adults)	Summary of influence of factor on consequence of entry or access, including justification (consider for children < 5 years, children ≥ 5 years, adults)
Design factors - water body		
Water depth profile	Basin will be usually dry. Water will be present during or after extreme storm events. There is no clear correlation between likelihood of entry/access to the basin and water depth profile.	Water is a drowning hazard. Just 500 mm is deep enough for small child to drown in. However, children won't be expected in monitored industrial estate. According to simulations this basin will have 500 mm or higher level of water during and after storm events worse than 1 in 2 years (50% probability of occurrence).
Water surface area	Surface water from highway is intended to be drained into drainage network, which reduces slipping hazard and likelihood of entry into the basin.	No clear correlation.
Clarity	Water is treated upstream by silt traps within road gullies. There is no clear correlation between clarity of the water and likelihood of entry/access.	Consequence of entry into water treated by silt trap is less severe.
Underwater obstacles or traps	Basin base is meant to be flat or gently sloped without any objects. Maintenance is required to ensure this.	There is no intended underwater obstacles or traps making it is easier to escape from the basin in case of emergency.

Appendix B: SuDS health and safety risk assessment checklist

Potential currents, velocities	No clear correlation with likelihood of entry/access.	The basin base is flat which means that in general. Water velocity will be close to zero allowing everyone who enters the basins to remain standing. However, there might be flowing water at the outfalls i.e. in front of headwalls during and after extreme storm events. To distribute the flow placing cobblestones or concrete blocks in front of headwall needs to be considered. Flattening headwall associated pipe should be also considered as long as its capacity will be sufficient.
Potential increase in depth of water and rate of rise	No clear correlation with likelihood of entry/access.	Basin will be usually dry. The water will be present during or after storm events. Increase in depth will depend on storm event. After most extreme events i.e. 1 in 100 year $+40 \%$ CC it is expected that water level can increase to approx. 1.3m. Basin serves a highway. It is expected that rate of rise will be gradual due to even spread in time-area distribution. Gradual rate of rise should give any person in basin more time to escape from dangerous situation and therefore reduce the risk.
Potential for ice formation and significant depth of water below in winter	Basin will be usually dry. Water and/or ice can be present during or after extreme storm events. There is no clear correlation between likelihood of entry/access to the basin and water depth profile.	Water is drowning hazard. Just 500 mm is deep enough for small child to drown in. According to simulations this basin will have 500 mm or higher level of water during and after storm events worse than 1 in $2 y$ ear. This level of water will be also present after freezing occurs.

C753 The SuDS Manual

Appendix B: SuDS health and safety risk assessment checklist

Public education		No signage.
Signage	Appropriate warning signs could potentially reduce likelihood of entry/access.	Signage does not have influence on consequence of person which already entered the basin.
Community engagement strategies	Not known	Not known
Local education strategies (eg schools)	Not known. Note this is industrial estate.	Not known. Note this is industrial estate.
Overall assessment of likelihood of entry/access and consequences	Likelihood	Consequences
Children <5 years Children >5 years	Adults	Rassible

C753 The SuDS Manual

Appendix B: SuDS health and safety risk assessment checklist

Summary of section 3 risk assessment for drowning or falling through ice						
Group	Likelihood of entry to water	Likely consequence of entry to water	Overall level of risk posed by the design ${ }^{1}$	Further mitigation measures required	Action date	Final level of risk ${ }^{1}$
Children < 5 years	Rare	Extreme	Medium risk	Consider life saving equipment. Regular maintenance is required.	N/A	Medium risk
Children >5 years	Rare	Extreme	Medium risk	Consider life saving equipment Regular maintenance is required.	N/A	Medium risk
Adults	Possible	Moderate	Medium risk	Consider life saving equipment. Regular maintenance is required.	N/A	Medium risk

Note For definition of levels, see Table 36.2 in Chapter 36.

| 4 Slips/trips/falls | | |
| :--- | :--- | :--- | :--- |
| Factors that might affect likelihood of
 people slipping/tripping/falling | Summary of influence of factor on likelihood of
 slip/ trip/fall, including justification (consider for
 children < 5 years, children ≥ 5 years, adults) | Summary of influence of factor on consequence of
 slip/ trip/fall, including justification (consider for
 children < 5 years, children ≥ 5 years, adults) |
| Design factors - inlets and outlets or channels | Three headwalls are proposed within the basin 3.
 There is reasonable distance between these headwalls and
 road. | Three headwalls are proposed within the basin 3.
 There is reasonable distance between these headwalls and
 road. |
| Headwall or channel location | There is no clear correlation between headwall height and
 likelihood of fall from it. | Backwall height will be approximately 1.0 m high. Fall from any
 height can result in dangerous accident. Therefore, to mitigate
 this risk it is recommended to provide railing to the headwalls. |
| Slope of headwall or channel profile | There is no clear correlation between slope of headwall and
 likelihood of fall from it. | There is no clear correlation between slope of headwall and
 consequence of fall from it. |

C753 The SuDS Manual

Appendix B: SuDS health and safety risk assessment checklist

Channels - profile and risk of freezing water	N/A	N/A
Design factors - surfaces	Level change is gentle and no unexpected levels change minimises likelihood of slip/trip/fall.	Level change is gentle and no unexpected levels change reduces influence of factor on consequence of slip/trip/fall.
Level changes	Refer to landscape architect drawings	Refer to landscape architect drawings
Surfacing materials		

C753 The SuDS Manual

Appendix B: SuDS health and safety risk assessment checklist

Summary of section 4 risk assessment for slips/trips/falls						
Group	Likelihood of slips/ trips/falls/other injury	Likely consequence of slips/trips/falls/other injury	Overall level of risk posed by the design ${ }^{1}$	Further mitigation measures required	Action date	Final level of risk ${ }^{1}$
Children < 5 years	Rare	Moderate	Low risk	Consider adding railing to the headwall	N/A	Low risk
Children ≥ 5 years	Rare	Moderate	Low risk	Consider adding railing to the headwall	N/A	Low risk
Adults	Possible	Minor	Medium risk	Consider adding railing to the headwall	N/A	Low risk

Note
For definition of levels, see Table 36.2 in Chapter 36.

Factors that might affect likelihood of people entering pipes or confined spaces	Summary of influence of factor on likelihood of entry into pipes or confined spaces, including justification (consider for children < 5 years, children ≥ 5 years, adults)	Summary of influence of factor on consequence of entering pipe or confined space, including justification (consider for children < 5 years, children ≥ 5 years, adults)
Design factors - inlets and outlets		
Pipe diameter	Larger the pipe the likelihood of entry increases. A headwall pipe is larger than 350 mm . Therefore, it is necessary to install safety grill.	Inadvertent entry to the pipe can be fatal. Therefore, it is recommended to provide a safety grill.
Are grilles provided?	Note safety grills are required due to pipe diameter larger than 350 mm to prevent inadvertent entry into pipe via headwall by the public.	Inadvertent entry to the pipe can be fatal. Therefore, it is recommended to provide a safety grill.

C753 The SuDS Manual

Appendix B: SuDS health and safety risk assessment checklist

Design factors - chambers

Depth of chamber	N/A. Not part of SUD component.	N/A. Not part of SUD component.
Is access possible?	N/A. Not part of SUD component.	N/A. Not part of SUD component.

C753 The SuDS Manual

Appendix B: SuDS health and safety risk assessment checklist

Summary of section 5 risk assessment for entry into pipes/confined spaces						
Group	Likelihood of entry into pipes/ confined spaces	Likely consequence of entry into pipes/ confined spaces ${ }^{1}$	Overall level of risk posed by the design	Further mitigation measures required	Action date	Final level of risk ${ }^{1}$
Children < 5 years	Rare	Extreme	Medium risk	Consider safety grills at the headwalls	N/A	Medium risk
Children ≥ 5 years	Rare	Extreme	Medium risk	Consider safety grills at the headwalls	N/A	Medium risk
Adults	Unlikely	Major	Medium risk	Consider safety grills at the headwalls	N/A	Low risk

Note
For definition of levels, see Table 36.2 in Chapter 36.

6 Health issues

Factors that might affect likelihood of people

 suffering from ill health due to SuDS water qualitySummary of influence of factor on likelihood of poor health, including justification (consider for children < 5 years, children ≥ 5 years, adults)

Summary of influence of factor on consequence of resulting ill health, including justification (consider for children < 5 years, children ≥ 5 years, adults)

Pollution treatment strategy

Level of contamination of publicly accessible water

The water in the basin present during or after extreme storm events, should be cleaner than the water that runs across roads. Pollution levels should be low.

The water in the basin present during or after extreme storm events, should be cleaner than the water that runs across the road. Pollution levels should be low.

Appendix B: SuDS health and safety risk assessment checklist

Likely contamination from rat urine		The water in the basin present during or after extreme storm events, should be cleaner than the water that runs across roads. Pollution levels should be low.
Likely contamination from dog or bird fouling	The water in the basin present during or after extreme storm events, should be cleaner than the water that runs across roads. Pollution levels should be low.	
Likelihood of toxic algal blooms	The water in the basin present during or after extreme storm events, should be cleaner than the water that runs across roads. Pollution levels should be very low.	The water in the basin present during or after extreme storm events, should be cleaner than the water that runs roads. Pollution levels should be low.
Likelihood of vectors (organism which carries disease-		
causing microorganisms from one host to another)	At worst not greater than in, for example, recreational ponds in parks. ponds in parks.	At worst not greater than in, for example, recreational ponds in parks.
Public accessibility to any sediment accumulation zones	At worst not greater than in, for example, recreational ponds in parks.	At worst not greater than in, for example, recreational ponds in parks.
Public education and risk management	At worst not greater than in, for example, recreational ponds in parks.	
Signs	Not fundamental in industrial estate	Not fundamental in industrial estate
Community engagement strategies	Not fundamental in industrial estate	Not fundamental in industrial estate
Local education strategies (eg schools)	Not fundamental in industrial estate	Not fundamental in industrial estate
Robust litter management strategy will reduce the risks	Robust litter management strategy will reduce the risks of rats frequenting the area looking for food	
of rats frequenting the area looking for food		

C753 The SuDS Manual

Appendix B: SuDS health and safety risk assessment checklist

Summary of section 5 risk assessment for health issues						
Group	Likelihood of ill health	Likely consequence of ill health	Overall level of risk posed by the design	Further mitigation measures required	Action date	Final level of risk
Children < 5 years Children ≥ 5 years Adults	Rare Rare Rare	Major Major Moderate	Low Low Low	Not required Not required Not required	$\begin{aligned} & \mathrm{N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \end{aligned}$	Low Low Low

Note
For definition of levels, see Table 36.2 in Chapter 36.

aARCADIS

Arcadis UK
80 Fenchurch Street
London EC3M 4BY
United Kingdom
T: +44 (0) 2078122000
arcadis.com

