DRAINAGE REPORT

Project: Land at Tally Ho Cottage, Bledington

Made by:		Date:	Project No:	Checked by:	Approved by:	Pages	Rev
M Taylor		20/09/23	23109		MT	3	А
Item	Detai	ls and Design I	References and output				
Item Method of surface water discharge	Detai It is Ho (Surf in th In lin site four	Is and Design I proposed to Cottage, Blea face water fla e following o 1. Soakawa 2. Discharg 3. Discharg ne with this p to BRE365 ad to be low,	References an Building Co Hierarchy	d output			
	The repr Blar Cur drai	infiltration t resent the in thet below po rently the at ns at the gre	Infiltration F 8.9x10 ⁻⁶ m/	Rate: /s			
	The tarm Eac belo to a storn All s the dev	e bellmouth hac system, a h dwelling v ow its perme ccommodat m plus a 40% surface wat area will co elopment.	entrance will and will be self vill discharge r able driveway. te rainfall ever & allowance for er run-off will ontinue to disc	be constructed in a per draining. oof water to an infiltration The systems have been nots well in excess of the future climate change. be dealt with within the charge at greenfield ra	ermeable on blanket designed 100 year e site and ates after		

Calculations: Soakaway	Contributing Areas	RESULTS									
Design	PLOT 1	100vr + 40%									
	House roof $= 119$	Utilisation Factor									
	Permeable pavement = 150	6.0m2	-0.47 < 1 - 0K								
	TOTAL = 275	5.5m2									
			Half Drain Time								
	Soakaway Dimensions = 9.4	4m x 16.6m x 0.58m									
			=4.54 nrs < 24 - OK								
			100								
	PLOT 2		100yr + 40%								
	House roof $= 119$	9.5m2	Utilisation Factor								
	Permeable pavement = 143	2 0m2	=0.50 <1 – OK								
	TOTAL = 26°	1 5m2									
			Half Drain Time								
	Soakaway Dimensions = 90)m x 15 8m x 0 58m	=4.51 hrs < 24 - OK								
	Storage Void Ratio – 30% (Granular Sub-base)										
	Variables										
	Infiltration Rate = 8.9×10^{-6} m/s										
	r (rainfall ratio) = 0.4										
	C_V (coefficient of Volumetric Run-off) = 1										
	$\nabla (\text{coefficient of volumetric Kun-on}) = 1$										
	System has been checked against the 100 year storm event										
	plus 40% for climate change.										
	Infiltration through the bases is reduced by 50% to account for										
	future silting of the system.										
	c										
	Due to the natural topography	y of the site exceedance flows will									
	be contained within the site b	oundary and cannot run-off to the									
	public highway as is the norr	m. The utilisation factor has been									
	limited to 0.50, effectively	y doubling the capacity of the									
	infiltration blankets, and des	signed to function far beyond the									
	100 year storm event. Exceed	dance is further discussed below.									
	The areas of green roof will	significantly attenuate flows and									
	allow time for transpiration of	of water through the plants. This									
	periods of prolonged wet we	, and will be less significant after									
	these calculations giving a	e conservative approach to the									
	design										
	Soakaway design spreads	sheets to BRE Digest 365 are									
	attached to this note										

Exceedance In any surface water design scenario it is possible that the peak design storm could be exceeded or the system could fail through damage or blockage. The exceedance flow route indicates how water will behave in this event, and must ensure that it is controlled safely, avoiding risk to property or persons. The site is sandwiched between two roads and sits lower than both, so all exceedance will be contained within the site. The infiltration blankets have been designed to a utilisation factor of 0.50, meaning that exceedance will not occur until storm events far greater than the 100 year storm (+ climate change). Ground levels in the gardens of each house will be lowered to provide areas, away from the dwellings, other nearby buildings and their access routes, where exceedance flows can be stored safely above ground. This will create a storage volume of around 60m3, effectively doubling the storage volume of around 60m3, effectively doubling the storage volume of the surface water system. Given the constraints of the site and adjacent land this is the only available safe exceedance plan. Method of foul water discharge to inside floor level for the houses is lower than the sewer invert level and it will, therefore, be necessary to provide a domestic pumping station to serve each property. The pumping stations will discharge to a common chamber and connect from there, under gravity to the public sewer, under a Section 106 'Consent to Connect' agreement with the Water A where the conservant on connect agreement with the Water and connect from there.	Groundwater clearance	Soakaways should also be designed to ensure a minimum of 1m of undisturbed ground is provided between the formation level and ground water level. A borehole was drilled about 200m meters to the west (ref SP22 SW23) which records groundwater at a depth of 123 ft (37.5m), this indicates a clearance of over 35m for the soakaway. A Copy of the record is attached.	Minimum groundwater clearance > 1m - OK
factor of 0.50, meaning that exceedance will not occur until storm events far greater than the 100 year storm (+ climate change).Ground levels in the gardens of each house will be lowered to provide areas, away from the dwellings, other nearby buildings and their access routes, where exceedance flows can be stored safely above ground. This will create a storage volume of around 60m3, effectively doubling the storage volume of the surface water system.Given the constraints of the site and adjacent land this is the only available safe exceedance plan.Method of foul water dischargeThere is a 150mm diameter public sewer running north along Old Burford Road past the front of the site. The sewer is only about 1.2m deep, with an invert level at about 114.5m AOD.The proposed finished floor level for the houses is lower than the sewer invert level and it will, therefore, be necessary to provide a domestic pumping station to serve each property.The pumping stations will discharge to a common chamber and connect from there, under gravity to the public sewer, under a Section 106 'Consent to Connect' agreement with the Water 4 where:	Exceedance	In any surface water design scenario it is possible that the peak design storm could be exceeded or the system could fail through damage or blockage. The exceedance flow route indicates how water will behave in this event, and must ensure that it is controlled safely, avoiding risk to property or persons. The site is sandwiched between two roads and sits lower than both, so all exceedance will be contained within the site. The infiltration blankets have been designed to a utilisation	
Method of foul water dischargeThere is a 150mm diameter public sewer running north along Old Burford Road past the front of the site. The sewer is only about 1.2m deep, with an invert level at about 114.5m AOD.The proposed finished floor level for the houses is lower than the sewer invert level and it will, therefore, be necessary to provide a domestic pumping station to serve each property.The pumping stations will discharge to a common chamber and connect from there, under gravity to the public sewer, under a Section 106 'Consent to Connect' agreement with the Water Authority.		factor of 0.50, meaning that exceedance will not occur until storm events far greater than the 100 year storm (+ climate change). Ground levels in the gardens of each house will be lowered to provide areas, away from the dwellings, other nearby buildings and their access routes, where exceedance flows can be stored safely above ground. This will create a storage volume of around 60m3, effectively doubling the storage volume of the surface water system. Given the constraints of the site and adjacent land this is the only available safe exceedance plan.	
	Method of foul water discharge	There is a 150mm diameter public sewer running north along Old Burford Road past the front of the site. The sewer is only about 1.2m deep, with an invert level at about 114.5m AOD. The proposed finished floor level for the houses is lower than the sewer invert level and it will, therefore, be necessary to provide a domestic pumping station to serve each property. The pumping stations will discharge to a common chamber and connect from there, under gravity to the public sewer, under a Section 106 'Consent to Connect' agreement with the Water Authority.	

Enclosures:

BRE 365 Soakaway Test Log & Design Spreadsheets, Borehole Record (for Groundwater)

Public Sewer Record

Drawing - Drainage Layout & Details - 23109 / 01

Flow Drainage Design

info@flowdrainagedesign.co.uk Tel: 07837685280

Tally Ho Cottage

		Revision	
Job No:	23109	Page:	C/01
Prepared By:	МТ	Date:	06/12/2023

Section: PLOT 2 - Permeable Paving

SUMMARY OF CALCULATIONS								
ical design rainfal	l duration 't _{crit} ' =	120	min					
required storage	e volume 'V _{req} ' =	12.77	m ³					
provided storage	volume 'V _{prov} ' =	27.15	m ³					
uti	ilisation factor =	0.47	.0К					
ired time to disch	arge 50% 't ₅₀ ' =	4.54	hours					
uti	ilisation factor =	0.19	.0К					

SOAKAWAY DATA

soakaway width 'W' [m] =	9.40
soakaway length 'L' [m] =	16.60
total depth from ground level $'D_b'$ [m] =	0.58
depth to drain invert level $'D_d'$ [m] =	0.00
soakaway effective depth 'D _{eff} ' [m] =	0.58
free volume in infill aggregate [%] =	30
SOAKAGE TRIAL PIT DATA	
soakage trial pit width 'W.' [m] =	0 45

soakage trial pit length $'L_t'$ [m] = 1.00 total depth from ground level $'D_{tb}'$ [m] = 0.50 depth to pipe invert level $'D_{tp}'[m] =$ 0.15

soakage trial pit effective depth 'D_{teff}' [m] = 0.35

free volume in infill aggregate [%] = 100

NOTE: faces of excavation assumed to be vertical

GENERAL DATA

site location: England and Wales soakaway type: infilled pit or trench

impermeable area drained to soakaway 'A' $[m^2]$ =	275.5
60 min rainfall depth of 5 year return period 'R' [mm] =	20
M5-60 to M5-2d rainfall ratio 'r' =	0.40
allowance for climate change:	40%

SOIL INFILTRATION DATA

allowance for infiltration through soakaway base:	50%
available on-site infiltration test results:	
use soakage trial pit table below	
internal surface area of trial pit a_{p50} [m ²] =	0.96
storage volume between 75-25% V_p' [m ³] =	0.08
time for water to fall from 75-25% $^{\prime}t_{p}^{\prime}$ [min] =	153.75
soil infiltration rate 'f' [m/s] =	8.92E-06

REQUIRED STORAGE CAPACITY PER RAINFALL DURATION													
rainfall	reinfell	M5-D		M10-D			M30-D			M100-I	C	outflow from	roquirod
duration [min]	factor Z1	rainfalls <i>[mm]</i>	Z2	rainfalls [mm]	inflow [m ³]	Z2 rainfalls inflow [<i>mm</i>] [m ³]		Z2	rainfalls [mm]	inflow [m ³]	soakaway [m³]	storage [m ³]	
5	0.37	7.47	1.20	12.59	3.47	1.46	15.24	4.20	1.85	19.33	5.33	0.25	5.08
10	0.52	10.47	1.22	17.90	4.93	1.49	21.88	6.03	1.92	28.10	7.74	0.50	7.24
15	0.63	12.67	1.23	21.82	6.01	1.51	26.77	7.37	1.95	34.63	9.54	0.75	8.79
30	0.80	16.07	1.24	27.89	7.68	1.53	34.42	9.48	2.00	44.95	12.38	1.49	10.89
60	1.00	20.00	1.24	34.72	9.57	1.54	43.21	11.91	2.03	56.84	15.66	2.99	12.67
120	1.21	24.13	1.24	41.90	11.54	1.54	51.86	14.29	2.01	68.03	18.74	5.98	12.77
240	1.45	28.93	1.22	49.59	13.66	1.52	61.47	16.94	1.98	80.14	22.08	11.95	10.13
360	1.60	32.07	1.21	54.49	15.01	1.50	67.51	18.60	1.95	87.70	24.16	17.93	6.23
600	1.79	35.87	1.20	60.38	16.63	1.49	74.61	20.56	1.92	96.56	26.60	29.88	0.00
1440	2.24	44.80	1.18	74.03	20.40	1.44	90.58	24.96	1.85	116.13	31.99	71.71	0.00

* Z2 is growth factor from M5 rainfalls

				SOA	KAGE	TRIA	L PIT	INFIL	TRAT	ON TE	EST R	ESUL	TS							
water le	evel measurement N°:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Soakage	time [min] =	0	2	4	6	8	18	28	48	68	88	108	128	148						
Trial 1	depth to water [m] =	0.15	0.16	0.17	0.19	0.20	0.23	0.26	0.30	0.32	0.35	0.37	0.41	0.44						
Soakage	time [min] =	0	5	10	20	40	60	90	120	1 50	180									
Trial 2	depth to water [m] =	0.15	0.17	0.20	0.23	0.27	0.31	0.34	0.37	0.41	0.45									
Soakage	time [min] =	0	5	10	20	40	60	90	120	150	180	210								
Trial 3	depth to water [m] =	0.15	0.16	0.18	0.20	0.24	0.28	0.32	0.35	0.38	0.40	0.43								

Flow Drainage Design

info@flowdrainagedesign.co.uk Tel: 07837685280

Tally Ho Cottage

		Revision	
Job No:	23109	Page:	C/01
Prepared By:	МТ	Date:	06/12/2023

SUMMARY	OF CAL	CULATIC	NS	

120	min	
12.30	m ³	
24.74	m ³	
0.50	.OK	
4.51	hours	
0.19	.0К	
	120 12.30 24.74 0.50 4.51 0.19	120 min 12.30 m ³ 24.74 m ³ 0.50 .OK 4.51 hours 0.19 .OK

SOAKAWAY DATA

soakaway width 'W' [m] =	9.00
soakaway length 'L' [m] =	15.80
total depth from ground level $'D_b'$ [m] =	0.58
depth to drain invert level $'D_d'$ [m] =	0.00
soakaway effective depth 'D _{eff} ' [m] =	0.58
free volume in infill aggregate [%] =	30
SOAKAGE TRIAL PIT DATA	
soakage trial pit width 'W _t ' [m] =	0.45

soakage trial pit length 'L_t' [m] =

depth to pipe invert level $'D_{tp}'[m] =$

free volume in infill aggregate [%] =

NOTE: faces of excavation assumed to be vertical

total depth from ground level $'D_{tb}'$ [m] =

soakage trial pit effective depth 'D_{teff}' [m] =

1.00

0.50

0.15

0.35

100

GENERAL DATA

site location: England and Wales soakaway type: infilled pit or trench

impermeable area drained to soakaway 'A' $[m^2]$ =	261.5
60 min rainfall depth of 5 year return period 'R' [mm] =	20
M5-60 to M5-2d rainfall ratio 'r' =	0.40
allowance for climate change:	40%

SOIL INFILTRATION DATA

allowance for infiltration through soakaway base:	50%
available on-site infiltration test results:	
use soakage trial pit table below	
internal surface area of trial pit a_{p50} [m ²] =	0.96
storage volume between 75-25% V_p' [m ³] =	0.08
time for water to fall from 75-25% $'t_p'$ [min] =	153.75
soil infiltration rate 'f' [m/s] =	8.92E-06

REQUIRED STORAGE CAPACITY PER RAINFALL DURATION													
rainfall	M5-D		M10-D	1		M30-D)		M100-E	D C	outflow from	required	
duration [<i>min</i>]	factor Z1	rainfalls [mm]	Z2	rainfalls [mm]	falls inflow Z2 rainfalls 1m] [m ³] Z2 [mm]		rainfalls [mm]	inflow [m ³]	Z2	rainfalls inflow [mm] [m ³]		soakaway [m³]	storage [m ³]
5	0.37	7.47	1.20	12.59	3.29	1.46	15.24	3.99	1.85	19.33	5.05	0.23	4.83
10	0.52	10.47	1.22	17.90	4.68	1.49	21.88	5.72	1.92	28.10	7.35	0.46	6.89
15	0.63	12.67	1.23	21.82	5.71	1.51	26.77	7.00	1.95	34.63	9.06	0.69	8.37
30	0.80	16.07	1.24	27.89	7.29	1.53	34.42	9.00	2.00	44.95	11.76	1.37	10.38
60	1.00	20.00	1.24	34.72	9.08	1.54	43.21	11.30	2.03	56.84	14.86	2.74	12.12
120	1.21	24.13	1.24	41.90	10.96	1.54	51.86	13.56	2.01	68.03	17.79	5.49	12.30
240	1.45	28.93	1.22	49.59	12.97	1.52	61.47	16.08	1.98	80.14	20.96	10.97	9.98
360	1.60	32.07	1.21	54.49	14.25	1.50	67.51	17.65	1.95	87.70	22.93	16.46	6.47
600	1.79	35.87	1.20	60.38	15.79	1.49	74.61	19.51	1.92	96.56	25.25	27.44	0.00
1440	2.24	44.80	1.18	74.03	19.36	1.44	90.58	23.69	1.85	116.13	30.37	65.85	0.00

* Z2 is growth factor from M5 rainfalls

SOAKAGE TRIAL PIT INFILTRATION TEST RESULTS																				
water le	evel measurement N°:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Soakage	time [min] =	0	2	4	6	8	18	28	48	68	88	108	128	148						
Trial 1	depth to water [m] =	0.15	0.16	0.17	0.19	0.20	0.23	0.26	0.30	0.32	0.35	0.37	0.41	0.44						
Soakage	time [min] =	0	5	10	20	40	60	90	120	150	180									
Trial 2	depth to water [m] =	0.15	0.17	0.20	0.23	0.27	0.31	0.34	0.37	0.41	0.45									
Soakage	time [min] =	0	5	10	20	40	60	90	120	150	180	210								
Trial 3	depth to water [m] =	0.15	0.16	0.18	0.20	0.24	0.28	0.32	0.35	0.38	0.40	0.43								

.

NGRC BOREHOLE RECORDS ADJUSTMENT FORM

QUARTER SHEET SPZZSW

BH REGISTRATION NUMBER 21-31

RECORDS ENTERED AND HELD BY WALLINGFORD

4

BH REGISTRATION NUMBER(S)

SP 22 63 110 SP 2432 2265 BLEDINGTON. In 1934-5 a boring, 200 ft. deep, was made in Mr. H. Bolter's garden in Bledington village three miles north-morth-west of Milton under Wychwood. It is said to be "in clay [Lower Lias] all the way" and two 'springs'/to have been encountered, the first at 123 ft. and the second at 158 ft. The borehole was lined to 150 ft., the last 20 ft. of tube being perforated. In March, 1935, water was overflowing the top of the tube at the rate of 600 gallons per hour. Analysis is of the tube at the mater showed the water contained large quantities of sodium chloride (common salt) and sodium sulphate (Glaubers Salt) , sufficient to render it unpalatable. POINT THIOD 8 that / Site marked (17, 111.42) on tracing by F.W. Barnes, who divined the site. He verifies above details + sives R.W.L. as c. 12' alove surface. The Corney was made Ry Laincellury + Some, Kinglam, Oxon Lower has 200 gt PP 35PM 5/4/82. Beckley House 0.) +356 No 1 used - overflows & waste. Very soft water but salins , conserving Viertes v sites a glos 29 NE-E 29.14 49 GLOS. 29 N.E./E. Ref. 218/48 Bledington

