Mr R. Marland Land at the Rear of 54 Tonacliffe Rd. Whitworth Rochdale

Structural Design For Garden Retaining Wall

D.Garforth Structural Design & Draughting 159. Newmarket Rd. Ashton-under-Lyne Lancs

Satural Age	Stro 159 Ash 016	uctural D). Newm iton-und 51 330 37	Design & arket Rd. ler-Lyne 714	Draughting	5			Project No.	Docume	nt/ Item	Refere	ence	
Project:		54 Ton	acliffe Ro	I				23-23033					
Subject:		Introdu	uction						Sheet		2	Of	20
Issue			1	Date	2	Date	3	Date	4	Date	5	•	Date
Made/ Revis	sed by	1	DG	05.23									
Checked by													
Approved -													

INTRODUCTION

The following document is associated with the construction work to take place at the above mentioned address and contains design calculations for structural elements, as well as approximate schematic arrangements of those elements.

DEFINITIONS

The "Engineer" is STRUCTURAL DESIGN & DRAUGHTING

The "Client" is the individual or organisation that has instructed the engineer to carry out structural engineering consultancy work.

The "Architect" is the individual or organisation that has provided the information upon which these calculations are based.

The "Builder" is the contractor who has been engaged to undertake the construction work to which this document relates.

IMPORTANT GUIDANCE ON THE USE OF THIS DOCUMENT

(TO BE READ BY ALL PARTIES)

This document is intended to be accompanied by all relevant architects' and engineer's drawings, and all relevant documentation should be considered prior to commencement of the work. Engineer's drawings relating to this document will be explicitly outlined herein.

This document should be reviewed in its entirety (along with any other relevant documentation) by the builder, architect (if applicable) and client, prior to commencement of the work.

Any layouts, instructions or recommendations should be considered. Any deviations from the proposals outlined herein are to be approved by the Engineer prior to the work being undertaken. Any deviations from the proposals made without the Engineer's consent are beyond the scope of this document and the Engineer cannot be held liable for any adverse consequences of such deviations.

The calculations within this document have been carried out in good faith based on the data provided by the client and/or builder/architect.

Where applicable extracts of the information provided will be included within this document for reference. It is the responsibility of the architect (where applicable) or client to notify the engineer when changes are made to the information. This will enable the design to be reviewed and, where necessary, changes made.

Approval of these calculations and drawings by the Local Authority Building Control or similar approved body should be obtained prior to any ordering of material or fabrication. No liability is accepted for any changes that may be required as a result of work having commenced prior to such an approval.

Where information about the existing arrangements of buildings is not available (e.g. floor / roof span orientations or loadbearing wall arrangements) the Engineer will use their judgement to make assumptions. These (generally conservative) assumptions will be clearly outlined within the document, and should be confirmed by a suitably qualified individual on site. The engineer is then to be notified of any discrepancies prior to commencement of the work as design changes may be necessary.

IF IN DOUBT: ASK!!

It should be noted that until the existing structure has been exposed it is not always possible to foresee what the existing structural arrangement will be. This may include floor and roof span directions, construction materials and existing beam locations among other aspects. It is therefore advised to remove finishes from areas being modified as early as possible to avoid any delays on site that the untimely discovery of such (previously unknown) information can lead to.

Satural Ange 8 Maggitta	Stro 159 Ash 016	uctural E 9. Newm nton-und 51 330 37	Design & arket Rd ler-Lyne 714	Draughting	5			Project No.	Docume	Document/ Item Reference					
Project:		54 Ton	acliffe Ro	ł				23-23033							
Subject:		Introdu	uction						Sheet		3	Of	20		
Issue			1	Date	2	Date	3	Date	4	Date	5		Date		
Made/ Revis	sed by	/	DG	05.23											
Checked by															
Approved -															

In addition, it is advised to carry out some form of ground investigation as early as possible to avoid any unexpected below ground construction requirements which may cause delays on site e.g. piled foundations, raft foundations etc. Wherever there is any uncertainty we will make every effort to highlight where this lies, however suitable project planning / management by the contractor / client are essential to the smooth execution of any construction project.

CONSTRUCTION NOTES

GENERAL NOTES

- Any SPAN / HEIGHT DIMENSIONS shown in this document are for CALCULATION PURPOSES ONLY and are not to be used as a final dimension for the fabrication / machining of structural elements.

- All dimensions are to be checked on site by the builder / contractor / fabricator prior to commencement of fabrication / machining / construction.

Any discrepancies between the information outlined herein and the dimensions on site are to be reported to the engineer.

- Temporary works are the sole responsibility of the builder / contractor. Temporary works method statements are to be provided to the Engineer by the builder / contractor prior to commencement of the work.

- All parties are assumed to be aware of their responsibilities under the Construction Design and Management (CDM) Regulations 2015.

If you are unsure of this please contact the Engineer.

- STRUCTURAL DESIGN & DRAUGHTING take no responsibility for any elements outside of the scope of these calculations. For structural elements not covered by this document it is assumed that a design is being prepared / provided by others, if additional calculations / drawings / specifications are required then please contact STRUCTURAL DESIGN & DRAUGHTING and we can provide a fee for their design.

- All structural work has to be carried out by a competent builder in accordance with the requirements of The Building Regulations Part A and the recommendations set out in BS8103 Parts 1-3.

- This document is to be read in conjunction with the architectural drawings / details, and any discrepancies reported to the engineer immediately. Final steel levels and dimensions are to be confirmed by the architectural consultant.

- If STRUCTURAL DESIGN & DRAUGHTING are not contracted to visit site we take no responsibility for the quality of construction nor its compliance with this document. It is the contractor's responsibility to ensure that all works comply with the drawings, notes and assumptions made within these calculations.

- The client / contractor should be aware of beam, frame and column deflections and their impact on existing or adjacent elements, for example beam deflection on bi-fold doors. Typical beam deflections will be span/250 total (Dead+Live) for beams and height/300 (Wind) for columns.

The following calculations provide anticipated deflections within the relevant sections.

- The client should be aware that where beams are installed within existing masonry structures it is likely that minor cracking will occur within the masonry above due to the load redistribution. It is recommended that the contractor allows to make suitable repairs within their contract.

- All proprietary (i.e. off-the-shelf) items specified within this document are to be installed in strict accordance with the manufacturer's recommendations. This includes, but is not limited to restraint straps, lintels, chemical / resin anchors and fixing brackets.

- For structural elements not considered within the scope of this document it is assumed that a suitable specification is to be made by others. If additional calculations, specifications or drawings are required then please contact STRUCTURAL DESIGN & DRAUGHTING and we can provide a fee for their design.

- At locations where beam bearing information is provided on the layout this will be in a position where loadbearing masonry (with foundations / support) has been assumed. It should be confirmed by a suitably qualified individual that these walls are load-bearing, and the masonry is to be inspected for suitability prior to commencement of the work.

Satural Asso	Stro 159 Ash 016	uctural E). Newm iton-und 51 330 37	Design & arket Rd. ler-Lyne 714	Draughting	5			Project No.	Docum	ent/ Item	Refere	ence	
Project:		54 Ton	acliffe Ro	I				23-23033	6				
Subject:		Introdu	uction						Sheet		4	Of	20
Issue			1	Date	2	Date	3	Date	4	Date	5		Date
Made/ Revis	sed by	1	DG	05.23									
Checked by													
Approved -													

DESIGN PHILOSOPHY

All structural members are designed to be capable of withstanding applied loads during construction, operation and maintenance of the building without any distress, failure, loss of function, damage or durability problems. They are to support the most onerous combinations of dead, imposed and (where applicable) wind loads tending to produce either maximum ultimate stresses or deflection.

STABILITY STATEMENT

For this project the stability is to be provided by the following structural systems or a combination thereof: Global Lateral Stability: moment-transmitting frames / masonry piers or shear walls with dead load restoring moment / floors or ceilings to provide diaphragm (boarded & strapped where critical)

Wall Panel Local Lateral Stability: steel or timber posts / masonry piers or walls / floors, ceilings or rafters (boarded & strapped where critical) / timber stud walls.

Vertical Loads: masonry walls, piers or columns with padstones for concentrated loads where necessary / steel posts / strip footings / pad foundations

Internal walls are to be removed. If required sway frames will be introduced

DESIGN PHILOSOPHY

The calculations shall be read in conjunction with drawings 23-23033 - 001

GROUND BEARING PRESSURES

150kN/m²

Notes:

British Standards and Codes of Practice

BS 648	Schedule of Weights of Building Material
BS 6399	Loading for Buildings
BS EN 1993	Structural Use of Steelwork
BS EN 1995	Structural Use of Unreinforced Masonry

Design has been carried out in accordance with accepted international practice and utilising the above standards and industry best practice.

	Str 159 Asł 016	uctural [9. Newm nton-unc 51 330 33	Design & Jarket Rd Jer-Lyne 714	Draughting	3			Project No.	Docu	ment/ Item	Refere	ence		
Project:		54 Ton	acliffe Ro	ł				23-2303	3					
Subject:		Introd	uction						Sheet	:	5	Of	2	20
Issue			1	Date	2	Date	3	Date	4	Date	5	I	Date	3
Made/ Revis	sed by	1	DG	05.23										
Checked by														
Approved -														

Tedds calculation version 2.9.19

RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Retaining wall details	
Stem type;	Cantilever
Stem height;	h _{stem} = 3200 mm
Stem thickness;	t _{stem} = 400 mm
Angle to rear face of stem;	α = 90 deg
Stem density;	$\gamma_{\text{stem}} = 25 \text{ kN/m}^3$
Toe length;	I _{toe} = 1200 mm
Heel length;	I _{heel} = 500 mm
Base thickness;	t _{base} = 350 mm
Base density;	$\gamma_{\text{base}} = 25 \text{ kN/m}^3$
Height of retained soil;	h _{ret} = 2600 mm
Angle of soil surface;	β = 10 deg
Depth of cover;	d _{cover} = 600 mm
Depth of excavation;	d _{exc} = 200 mm
Retained soil properties	
Soil type;	Medium dense rock fill
Moist density;	γ _{mr} = 16.3 kN/m ³
Saturated density;	γ _{sr} = 20.3 kN/m ³
Characteristic effective shear resistance angle;	φ'r.k = 30 deg
Characteristic wall friction angle;	$\delta_{r.k}$ = 15 deg
Base soil properties	
Soil type;	Very dense well graded sand and gravel
Soil density;	γ _b = 21 kN/m ³
Characteristic cohesion;	c' _{b.k} = 0 kN/m ²
Characteristic effective shear resistance angle;	φ' _{b.k} = 42 deg
Characteristic wall friction angle;	$\delta_{b,k} = 21 \text{ deg}$
Characteristic base friction angle;	δ _{bb.k} = 28 deg
Loading details	
Variable surcharge load;	Surcharge _Q = 10 kN/m ²

Satural Age	Stro 159 Asł 016	uctural E). Newm iton-unc 51 330 32	Design & E arket Rd. ler-Lyne 714	Draughting				Project No.	Docume	nt/ Item	Refer	ence		
Project:		54 Ton	acliffe Rd					23-23033						
Subject:		Introdu	uction						Sheet		6	Of		20
Issue			1	Date	2	Date	3	Date	4	Date	5		Dat	te
Made/ Revis	sed by	/	DG	05.23										
Checked by														
Approved -														

General arrangement - sketch pressures relate to bearing check

Calculate retaining wall geometry	
Base length;	$I_{\text{base}} = I_{\text{toe}} + t_{\text{stem}} + I_{\text{heel}} = 2100 \text{ mm}$
Moist soil height;	h _{moist} = h _{soil} = 3200 mm
Length of surcharge load;	I _{sur} = I _{heel} = 500 mm
- Distance to vertical component;	x _{sur_v} = I _{base} - I _{heel} / 2 = 1850 mm
Effective height of wall;	h_{eff} = h_{base} + d_{cover} + h_{ret} + $I_{sur} \times tan(\beta)$ = 3638 mm
- Distance to horizontal component;	x _{sur_h} = h _{eff} / 2 = 1819 mm
Area of wall stem;	A _{stem} = h _{stem} × t _{stem} = 1.28 m ²
- Distance to vertical component;	x _{stem} = I _{toe} + t _{stem} / 2 = 1400 mm
Area of wall base;	A_{base} = $I_{\text{base}} \times t_{\text{base}}$ = 0.735 m ²
- Distance to vertical component;	x _{base} = I _{base} / 2 = 1050 mm
Area of moist soil;	$A_{moist} = h_{moist} \times I_{heel} + tan(\beta) \times I_{heel}^2 / 2 = 1.622 \text{ m}^2$

Angelian	Stro 159 Ash 016	uctural D). Newm iton-und 51 330 37	Design & l arket Rd. ler-Lyne 714	Draughting				Project No.	Document/ Item Reference					
Project:		54 Ton	acliffe Ro	I				23-23033						
Subject:		Introdu	uction						Sheet		7	Of	20	
Issue			1	Date	2	Date	3	Date	4	Date	5		Date	
Made/ Revis	sed by	/	DG	05.23										
Checked by														
Approved -														

 Distance to vertical component; 	$x_{moist_v} = I_{base} - (h_{moist} \times I_{heel}^2 / 2 + tan(\beta) \times I_{heel}^3 / 6) / A_{moist} =$
	1851 mm
 Distance to horizontal component; 	x _{moist_h} = h _{eff} / 3 = 1213 mm
Area of base soil;	$A_{\text{pass}} = d_{\text{cover}} \times I_{\text{toe}} = 0.72 \text{ m}^2$
- Distance to vertical component;	$x_{pass_v} = I_{base} - (d_{cover} \times I_{toe} \times (I_{base} - I_{toe} / 2)) / A_{pass} = 600 \text{ mm}$
- Distance to horizontal component;	$x_{pass_h} = (d_{cover} + h_{base}) / 3 = 317 \text{ mm}$
Area of excavated base soil;	$A_{exc} = h_{pass} \times I_{toe} = 0.48 \text{ m}^2$
 Distance to vertical component; 	$x_{exc_v} = I_{base} - (h_{pass} \times I_{toe} \times (I_{base} - I_{toe} / 2)) / A_{exc} = 600 \text{ mm}$
- Distance to horizontal component;	$x_{exc_h} = (h_{pass} + h_{base}) / 3 = 250 mm$
Design approach 1	
Partial factors on actions - Table A.3 - Combination	on 1
Partial factor set;	A1
Permanent unfavourable action;	γ g = 1.350
Permanent favourable action;	$\gamma_{Gf} = 1.000$
Variable unfavourable action;	γ q = 1.500
Variable favourable action;	$\gamma_{Qf} = 0.000$
	;Partial factors for soil parameters – Table A.4 - Combination 1
Soil parameter set;	M1
Angle of shearing resistance;	γ _φ · = 1.00
Effective cohesion;	$\gamma c = 1.00$
Weight density;	$\gamma_{\gamma} = 1.00$
Retained soil properties	
Design moist density;	γ_{mr} = γ_{mr} / γ_{γ} = 16.3 kN/m ³
Design saturated density;	γ_{sr} ' = γ_{sr} / γ_{γ} = 20.3 kN/m ³
Design effective shear resistance angle;	φ'r.d = atan(tan(φ'r.k) / γφ') = 30 deg
Design wall friction angle;	$\delta_{r.d} = \operatorname{atan}(\operatorname{tan}(\delta_{r.k}) / \gamma_{\phi'}) = 15 \operatorname{deg}$
Base soil properties	
Design soil density;	γ_b ' = γ_b / γ_γ = 21 kN/m ³
Design effective shear resistance angle;	$\phi'_{b.d} = \operatorname{atan}(\operatorname{tan}(\phi'_{b.k}) / \gamma_{\phi'}) = 42 \operatorname{deg}$
Design wall friction angle;	$\delta_{b.d} = \operatorname{atan}(\operatorname{tan}(\delta_{b.k}) / \gamma_{\phi'}) = 21 \operatorname{deg}$
Design base friction angle;	$\delta_{bb,d} = atan(tan(\delta_{bb,k}) / \gamma_{\phi}) = 28 \text{ deg}$
Design effective cohesion;	$c'_{b.d} = c'_{b.k} / \gamma_{c'} = 0 \text{ kN/m}^2$
Using Coulomb theory	
Active pressure coefficient;	$K_{A} = \sin(\alpha + \phi'_{r,d})^2 / (\sin(\alpha)^2 \times \sin(\alpha - \delta_{r,d}) \times [1 + \sqrt{[\sin(\phi'_{r,d} + $
	$\delta_{r.d}$ × sin($\phi'_{r.d}$ - β) / (sin(α - $\delta_{r.d}$) × sin(α + β))]] ²) = 0.343

Sectoral Age	Stro 159 Ash 016	uctural E). Newm iton-unc 51 330 33	Design & Jarket Rd. Jer-Lyne 714	Draughting	5			Project No.	Docume	nt/ Item	Refere	nce		
Project:		54 Ton	acliffe Ro	ł				23-23033						
Subject:		Introd	uction						Sheet		8	Of		20
Issue			1	Date	2	Date	3	Date	4	Date	5		Dat	e
Made/ Revis	sed by	/	DG	05.23										
Checked by														
Approved -														

Passive pressure coefficient;

Overturning check Vertical forces on wall Wall stem; Wall base; Moist retained soil; Base soil; Total; Horizontal forces on wall Surcharge load; Moist retained soil; Base soil;

Total;

Overturning moments on wall Surcharge load; Moist retained soil; Total; Restoring moments on wall Wall stem; Wall base; Moist retained soil; Base soil; Total;

Check stability against overturning **Factor of safety**;

Bearing pressure check Vertical forces on wall Wall stem; Wall base; Surcharge load;
$$\begin{split} & K_{\mathsf{P}} = sin(90 - \phi'_{b.d})^2 / (sin(90 + \delta_{b.d}) \times [1 - \sqrt{[sin(\phi'_{b.d} + \delta_{b.d})} \times sin(\phi'_{b.d}) / (sin(90 + \delta_{b.d}))]]^2) = \textbf{14.662} \end{split}$$

$$\begin{split} F_{stem} &= \gamma_{Gf} \times A_{stem} \times \gamma_{stem} = \textbf{32 kN/m} \\ F_{base} &= \gamma_{Gf} \times A_{base} \times \gamma_{base} = \textbf{18.4 kN/m} \\ F_{moist_v} &= \gamma_{Gf} \times A_{moist} \times \gamma_{mr'} = \textbf{26.4 kN/m} \\ F_{exc_v} &= \gamma_{Gf} \times A_{exc} \times \gamma_{b}' = \textbf{10.1 kN/m} \\ F_{total_v} &= F_{stem} + F_{base} + F_{moist_v} + F_{exc_v} = \textbf{86.8 kN/m} \end{split}$$

$$\begin{split} F_{sur_h} &= K_A \times cos(\delta_{r.d}) \times \gamma_Q \times Surcharge_Q \times h_{eff} = \textbf{18.1 kN/m} \\ F_{moist_h} &= \gamma_G \times K_A \times cos(\delta_{r.d}) \times \gamma_{mr}' \times h_{eff}^2 / 2 = \textbf{48.1 kN/m} \\ F_{exc_h} &= max(-\gamma_{Gf} \times K_P \times cos(\delta_{b.d}) \times \gamma_b' \times (h_{pass} + h_{base})^2 / 2, - (F_{moist_h} + F_{sur_h})) = \textbf{-66.2 kN/m} \\ F_{total_h} &= F_{sur_h} + F_{moist_h} + F_{exc_h} = \textbf{0} \text{ kN/m} \end{split}$$

$$\begin{split} M_{sur_OT} &= F_{sur_h} \times x_{sur_h} = \textbf{32.9 kNm/m} \\ M_{moist_OT} &= F_{moist_h} \times x_{moist_h} = \textbf{58.4 kNm/m} \\ M_{total_OT} &= M_{sur_OT} + M_{moist_OT} = \textbf{91.3 kNm/m} \end{split}$$

$$\begin{split} &M_{stem_R} = F_{stem} \times x_{stem} = \textbf{44.8 kNm/m} \\ &M_{base_R} = F_{base} \times x_{base} = \textbf{19.3 kNm/m} \\ &M_{moist_R} = F_{moist_v} \times x_{moist_v} = \textbf{48.8 kNm/m} \\ &M_{exc_R} = F_{exc_v} \times x_{exc_v} = \textbf{6 kNm/m} \\ &M_{total_R} = M_{stem_R} + M_{base_R} + M_{moist_R} + M_{exc_R} = \textbf{118.9 kNm/m} \end{split}$$

FoS_{ot} = **M**_{total_R} / **M**_{total_OT} = 1.303 PASS - Maximum restoring moment is greater than overturning moment

$$\begin{split} F_{stem} &= \gamma_G \times A_{stem} \times \gamma_{stem} = \textbf{43.2 kN/m} \\ F_{base} &= \gamma_G \times A_{base} \times \gamma_{base} = \textbf{24.8 kN/m} \\ F_{sur_v} &= \gamma_Q \times Surcharge_Q \times I_{heel} = \textbf{7.5 kN/m} \end{split}$$

Angeliano	Stro 159 Ash 016	uctural D). Newm iton-und 51 330 37	Design & I arket Rd. Ier-Lyne 714	Draughting				Project No.	Docume	nt/ Item	Refere	nce	
Project:		54 Ton	acliffe Rd	l				23-23033					
Subject:		Introdu	uction						Sheet		9	Of	20
Issue			1	Date	2	Date	3	Date	4	Date	5		Date
Made/ Revis	sed by	/	DG	05.23									
Checked by													
Approved -													

Moist retained soil: $F_{moist_v} = \gamma_G \times A_{moist} \times \gamma_{mr'} = 35.6 \text{ kN/m}$ Base soil; $F_{pass_v} = \gamma_G \times A_{pass} \times \gamma_b' = 20.4 \text{ kN/m}$ Total; Ftotal v = Fstem + Fbase + Fsur v + Fmoist v + Fpass v = 131.5 kN/m Horizontal forces on wall Surcharge load; $F_{sur_h} = K_A \times cos(\delta_{r.d}) \times \gamma_Q \times Surcharge_Q \times h_{eff} = 18.1 \text{ kN/m}$ Moist retained soil; $F_{moist_h} = \gamma_G \times K_A \times cos(\delta_{r.d}) \times \gamma_{mr'} \times h_{eff}^2 / 2 = 48.1 \text{ kN/m}$ Base soil; $F_{pass_h} = max(-\gamma_{Gf} \times K_P \times cos(\delta_{b.d}) \times \gamma_b' \times (d_{cover} + h_{base})^2 / 2, -$ (F_{moist_h} + F_{sur_h})) = -66.2 kN/m Total; $F_{total h} = F_{sur h} + F_{moist h} + F_{pass h} = 0 \text{ kN/m}$ Moments on wall Wall stem; M_{stem} = F_{stem} × x_{stem} = 60.5 kNm/m $M_{\text{base}} = F_{\text{base}} \times x_{\text{base}} = 26 \text{ kNm/m}$ Wall base; Surcharge load; $M_{sur} = F_{sur_v} \times x_{sur_v} - F_{sur_h} \times x_{sur_h} = -19 \text{ kNm/m}$ Moist retained soil; $M_{moist} = F_{moist_v} \times x_{moist_v} - F_{moist_h} \times x_{moist_h} = 7.5 \text{ kNm/m}$ Base soil; Mpass = Fpass v × xpass v = 12.2 kNm/m Total; Mtotal = Mstem + Mbase + Msur + Mmoist + Mpass = 87.3 kNm/m Check bearing pressure Propping force; $F_{prop_base} = F_{total_h} = 0 \text{ kN/m}$ Distance to reaction; $\overline{\mathbf{x}} = \mathbf{M}_{\text{total}} / \mathbf{F}_{\text{total}_v} = 664 \text{ mm}$ Eccentricity of reaction; $e = \bar{x} - I_{base} / 2 = -386 \text{ mm}$ $I_{load} = 2 \times \overline{x} = 1327 \text{ mm}$ Loaded length of base; Bearing pressure at toe; $q_{toe} = F_{total_v} / I_{load} = 99.1 \text{ kN/m}^2$ $q_{heel} = 0 \text{ kN/m}^2$ Bearing pressure at heel; Effective overburden pressure; $q = (t_{base} + d_{cover}) \times \gamma_b' = 20 \text{ kN/m}^2$ Design effective overburden pressure; $q' = q / \gamma_{\gamma} = 20 \text{ kN/m}^2$ Bearing resistance factors; $N_q = Exp(\pi \times tan(\phi'_{b.d})) \times (tan(45 \text{ deg} + \phi'_{b.d} / 2))^2 = 85.374$ $N_c = (N_q - 1) \times cot(\phi'_{b.d}) = 93.706$ $N_{\gamma} = 2 \times (N_q - 1) \times tan(\phi'_{b.d}) = 151.941$ Foundation shape factors; s_q = 1 $s_{\gamma} = 1$ $s_c = 1$ Load inclination factors; H = F_{sur_h} + F_{moist_h} + F_{pass_h} - F_{prop_base} = 0 kN/m V = F_{total_v} = **131.5** kN/m m = 2 $i_q = [1 - H / (V + I_{load} \times c'_{b.d} \times cot(\phi'_{b.d}))]^m = 1$ $i_{\gamma} = [1 - H / (V + I_{load} \times c'_{b.d} \times cot(\phi'_{b.d}))]^{(m+1)} = 1$

	Stro 159 Ash 016	uctural E 9. Newm nton-unc 51 330 37	Design & I arket Rd. Ier-Lyne 714	Draughting	3			Project No.	Docur	nent/ Item	Refere	ence		
Project:		54 Ton	acliffe Rd	l				23-23033	3					
Subject:		Introdu	uction						Sheet		10	Of	2	20
Issue			1	Date	2	Date	3	Date	4	Date	5		Date	;
Made/ Revis	sed by	/	DG	05.23										
Checked by														
Approved -														

	$i_c = i_q - (1 - i_q) / (N_c \times tan(\phi'_{b.d})) = 1$
Net ultimate bearing capacity	
$n_{f} = c'_{b.d} \times N_{c} \times s_{c} \times i_{c}$	+ q' × N _q × s _q × i _q + 0.5 × γ_b ' × I _{load} × N _{γ} × s _{γ} × i _{γ} = 3820.3 kN/m ²
Factor of safety;	FoS _{bp} = n _f / max(q _{toe} , q _{heel}) = 38.552
PASS - Allowable	bearing pressure exceeds maximum applied bearing pressure
Design approach 1	
Partial factors on actions - Table A.3 - Combination	12
Partial factor set;	A2
Permanent unfavourable action;	γ _G = 1.000
Permanent favourable action;	γ _{Gf} = 1.000
Variable unfavourable action;	γα = 1.300
Variable favourable action;	$\gamma_{Qf} = 0.000$
	Partial factors for soil parameters – Table A.4 - Combination 2
Soil parameter set;	M2
Angle of shearing resistance;	γ _{θ'} = 1.25
Effective cohesion;	γ _{c'} = 1.25
Weight density;	$\gamma_{\gamma} = 1.00$
Retained soil properties	
Design moist density;	γ_{mr} ' = γ_{mr} / γ_{γ} = 16.3 kN/m ³
Design saturated density;	γ_{sr} ' = γ_{sr} / γ_{γ} = 20.3 kN/m ³
Design effective shear resistance angle;	$\phi'_{r.d} = atan(tan(\phi'_{r.k}) / \gamma_{\phi'}) = 24.8 \text{ deg}$
Design wall friction angle;	$\delta_{r.d}$ = atan(tan($\delta_{r.k}$) / γ_{ϕ}) = 12.1 deg
Base soil properties	
Design soil density;	$\gamma_{b}' = \gamma_{b} / \gamma_{\gamma} = 21 \text{ kN/m}^{3}$
Design effective shear resistance angle;	$\phi'_{b.d} = \operatorname{atan}(\operatorname{tan}(\phi'_{b.k}) / \gamma_{\phi'}) = 35.8 \operatorname{deg}$
Design wall friction angle;	$\delta_{b,d}$ = atan(tan($\delta_{b,k}$) / γ_{ϕ}) = 17.1 deg
Design base friction angle;	$\delta_{bb.d} = \operatorname{atan}(\operatorname{tan}(\delta_{bb.k}) / \gamma_{\phi'}) = 23 \operatorname{deg}$
Design effective cohesion;	$c'_{b.d} = c'_{b.k} / \gamma_{c'} = 0 \text{ kN/m}^2$
Using Coulomb theory	
Active pressure coefficient;	$K_{A} = \sin(\alpha + \phi'_{r.d})^2 / (\sin(\alpha)^2 \times \sin(\alpha - \delta_{r.d}) \times [1 + \sqrt{[\sin(\phi'_{r.d} + \delta_{r.d})^2}]$
	$\delta_{r.d}$ × sin(ϕ 'r.d - β) / (sin(α - $\delta_{r.d}$) × sin(α + β))]] ²) = 0.431
Passive pressure coefficient;	$K_P=sin(90-\phi'_{b.d})^2/(sin(90+\delta_{b.d})\times[1-\sqrt[]{sin(\phi'_{b.d}+\delta_{b.d})}\times$
	$sin(\phi'_{b.d}) / (sin(90 + \delta_{b.d}))]]^2) = 7.553$

Overturning check

Sectoral Age	Stro 159 Ash 016	uctural E). Newm iton-unc 51 330 32	Design & E arket Rd. ler-Lyne 714	Draughting		Project No.	Docume	nt/ Item	Refere	nce				
Project:		54 Ton	acliffe Rd					23-23033						
Subject:		Introdu	uction						Sheet		11	Of		20
Issue			1	Date	2	Date	3	Date	4	Date	5		Dat	e
Made/ Revis	ed by	/	DG	05.23										
Checked by														
Approved -														

Vertical forces on wall	
Wall stem;	$F_{stem} = \gamma_{Gf} \times A_{stem} \times \gamma_{stem} = 32 \text{ kN/m}$
Wall base;	$F_{base} = \gamma_{Gf} \times A_{base} \times \gamma_{base} = 18.4 \text{ kN/m}$
Moist retained soil;	$F_{moist_v} = \gamma_{Gf} \times A_{moist} \times \gamma_{mr}' = 26.4 \text{ kN/m}$
Base soil;	$F_{exc_v} = \gamma_{Gf} \times A_{exc} \times \gamma_b' = 10.1 \text{ kN/m}$
Total;	F _{total_v} = F _{stem} + F _{base} + F _{moist_v} + F _{exc_v} = 86.8 kN/m
Horizontal forces on wall	
Surcharge load;	$F_{sur h} = K_A \times cos(\delta_{r,d}) \times \gamma_Q \times Surcharge_Q \times h_{eff} = 19.9 \text{ kN/m}$
Moist retained soil;	$F_{\text{moist h}} = \gamma_{\text{G}} \times \text{K}_{\text{A}} \times \cos(\delta_{\text{r.d}}) \times \gamma_{\text{mr}}' \times h_{\text{eff}}^2 / 2 = 45.3 \text{ kN/m}$
Base soil;	$F_{exc h} = max(-\gamma_{Gf} \times K_P \times cos(\delta_{b,d}) \times \gamma_b' \times (h_{pass} + h_{base})^2 / 2, -$
	$(F_{moist_h} + F_{sur_h})) = -42.6 \text{ kN/m}$
Total;	$F_{total_h} = F_{sur_h} + F_{moist_h} + F_{exc_h} = 22.6 \text{ kN/m}$
Overturning moments on wall	
Surcharge load:	M _{sur OT} = F _{sur h} × x _{sur h} = 36.2 kNm/m
Moist retained soil;	$M_{\text{moist OT}} = F_{\text{moist h}} \times X_{\text{moist h}} = 54.9 \text{ kNm/m}$
Total;	$M_{\text{total OT}} = M_{\text{sur OT}} + M_{\text{moist OT}} = 91.2 \text{ kNm/m}$
Restoring moments on wall	
Wall stem:	M _{stem R} = F _{stem} × x _{stem} = 44.8 kNm/m
Wall base:	Mbase R = Fbase \times xbase = 19.3 kNm/m
Moist retained soil:	$M_{\text{moist } R} = F_{\text{moist } v} \times X_{\text{moist } v} = 48.8 \text{ kNm/m}$
Base soil;	$M_{\text{exc }R} = F_{\text{exc }V} \times x_{\text{exc }V} = 6 \text{ kNm/m}$
Total;	Mtotal R = Mstem R + Mbase R + Mmoist R + Mexc R = 118.9
	kNm/m
Check stability against overturning	
Factor of safety;	FoSot = Mtotal R / Mtotal OT = 1.305
-	PASS - Maximum restoring moment is greater than overturning moment
Bearing pressure check	
Vertical forces on wall	
Wall stem.	Entry = $y_0 \times \Delta_{\text{stars}} \times y_{\text{stars}} = 32 \text{ kN/m}$
Wall base	From $= \gamma_{C} \times \Delta_{restern} \times \gamma_{stern} = 32 \text{ KeV/H}$

Surcharge load; Moist retained soil; Base soil; Total;

Horizontal forces on wall

 $F_{sur_v} = \gamma_Q \times Surcharge_Q \times I_{heel} = \textbf{6.5 kN/m}$ $F_{moist_v} = \gamma_G \times A_{moist} \times \gamma_{mr}' = \textbf{26.4 kN/m}$ $F_{\text{pass}_v} = \gamma_G \times A_{\text{pass}} \times \gamma_b \text{'} = \textbf{15.1 kN/m}$ $F_{total_v} = F_{stem} + F_{base} + F_{sur_v} + F_{moist_v} + F_{pass_v} = 98.4 \text{ kN/m}$

Start Constant	Stro 159 Ash 016	uctural E). Newm iton-unc 51 330 32	Design & I arket Rd. Ier-Lyne 714	Draughting	5		Project No.	Docume	nt/ Item	Refere	nce			
Project:		54 Ton	acliffe Rd	I				23-23033						
Subject:		Introdu	uction						Sheet		12	Of	20)
Issue			1	Date	2	Date	3	Date	4	Date	5		Date	
Made/ Revis	ed by	/	DG	05.23										
Checked by														
Approved -														

Surcharge load;	$F_{sur_h} = K_A \times cos(\delta_{r.d}) \times \gamma_Q \times Surcharge_Q \times h_{eff} = 19.9 \text{ kN/m}$
Moist retained soil;	$F_{moist_h} = \gamma_G \times K_A \times cos(\delta_{r.d}) \times \gamma_{mr}' \times h_{eff}^2 / 2 = 45.3 \text{ kN/m}$
Base soil;	$F_{pass_h} = max(-\gamma_{Gf} \times K_P \times cos(\delta_{b.d}) \times \gamma_b' \times (d_{cover} + h_{base})^2 / 2, -$
	(F _{moist_h} + F _{sur_h})) = -65.2 kN/m
Total;	F _{total_h} = F _{sur_h} + F _{moist_h} + F _{pass_h} = 0 kN/m
Moments on wall	
Wall stem;	M _{stem} = F _{stem} × x _{stem} = 44.8 kNm/m
Wall base;	M _{base} = F _{base} × x _{base} = 19.3 kNm/m
Surcharge load;	$M_{sur} = F_{sur_v} \times x_{sur_v} - F_{sur_h} \times x_{sur_h} = -24.2 \text{ kNm/m}$
Moist retained soil;	$M_{moist} = F_{moist_v} \times x_{moist_v} - F_{moist_h} \times x_{moist_h} = \textbf{-6.1 kNm/m}$
Base soil;	M _{pass} = F _{pass_v} × x _{pass_v} = 9.1 kNm/m
Total;	M _{total} = M _{stem} + M _{base} + M _{sur} + M _{moist} + M _{pass} = 42.8 kNm/m
Check bearing pressure	
Propping force;	F _{prop_base} = F _{total_h} = 0 kN/m
Distance to reaction;	$\overline{\mathbf{x}} = \mathbf{M}_{\text{total}} / \mathbf{F}_{\text{total}_{\mathbf{v}}} = 435 \text{ mm}$
Eccentricity of reaction;	$e = \bar{x} - I_{base} / 2 = -615 \text{ mm}$
Loaded length of base;	$I_{\text{load}} = 2 \times \overline{x} = 871 \text{ mm}$
Bearing pressure at toe;	$q_{toe} = F_{total_v} / I_{load} = 112.9 \text{ kN/m}^2$
Bearing pressure at heel;	$q_{heel} = 0 kN/m^2$
Effective overburden pressure;	$q = (t_{base} + d_{cover}) \times \gamma_b' = 20 \text{ kN/m}^2$
Design effective overburden pressure;	q' = q / γ _γ = 20 kN/m²
Bearing resistance factors;	$N_q = Exp(\pi \times tan(\phi'_{b.d})) \times (tan(45 \text{ deg } + \phi'_{b.d} / 2))^2 = 36.651$
	N _c = (N _q - 1) × cot(φ' _{b.d}) = 49.493
	$N_{\gamma} = 2 \times (N_q - 1) \times tan(\phi'_{b.d}) = 51.36$
Foundation shape factors;	s _q = 1
	$s_{\gamma} = 1$
	s _c = 1
Load inclination factors;	H = F _{sur_h} + F _{moist_h} + F _{pass_h} - F _{prop_base} = 0 kN/m
	V = F _{total_v} = 98.4 kN/m
	m = 2
	$i_q = [1 - H / (V + I_{load} \times c'_{b.d} \times cot(\phi'_{b.d}))]^m = 1$
	$i_{\gamma} = [1 - H / (V + I_{load} \times c'_{b.d} \times cot(\phi'_{b.d}))]^{(m+1)} = 1$
	$i_c = i_q - (1 - i_q) / (N_c \times tan(\phi'_{b.d})) = 1$
Net ultimate bearing capacity	
$n_f = c'_{b.d} \times N_c \times$	$s_{c} \times i_{c} + q' \times N_{q} \times s_{q} \times i_{q} + 0.5 \times \gamma_{b}' \times I_{load} \times N_{\gamma} \times s_{\gamma} \times i_{\gamma} = 1200.8 \text{ kN/m}^{2}$

Factor of safety;

FoS_{bp} = n_f / max(q_{toe}, q_{heel}) = 10.632

Stand Age	Str 159 Asł 016	uctural E). Newm hton-unc 51 330 32	Design & arket Rd ler-Lyne 714	Draughting	5			Project No.	Docur	ment/ Item	Refere	ence	
Project:		54 Ton	acliffe Ro	ł				23-2303	3				
Subject:		Introdu	uction						Sheet		13	Of	20
Issue			1	Date	2	Date	3	Date	4	Date	5	1	Date
Made/ Revis	sed by	/	DG	05.23									
Checked by													
Approved -													

PASS - Allowable bearing pressure exceeds maximum applied bearing pressure

RETAINING WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1 and EN1996-1-1:2005 incorporating Corrigenda dated February 2006 and July 2009 and the UK National Annex

Tedds calculation version 2.9.19

Concrete details - Table 3.1 - Strength and deformation characteristics for concrete

Concrete strength class;	C28/35
Characteristic compressive cylinder strength;	f _{ck} = 28 N/mm ²
Characteristic compressive cube strength;	f _{ck,cube} = 35 N/mm ²
Mean value of compressive cylinder strength;	f _{cm} = f _{ck} + 8 N/mm ² = 36 N/mm ²
Mean value of axial tensile strength;	f _{ctm} = 0.3 N/mm ² × (f _{ck} / 1 N/mm ²) ^{2/3} = 2.8 N/mm ²
5% fractile of axial tensile strength;	f _{ctk,0.05} = 0.7 × f _{ctm} = 1.9 N/mm ²
Secant modulus of elasticity of concrete;	E _{cm} = 22 kN/mm ² × (f _{cm} / 10 N/mm ²) ^{0.3} = 32308 N/mm ²
Partial factor for concrete - Table 2.1N;	γ c = 1.50
Compressive strength coefficient - cl.3.1.6(1);	$\alpha_{cc} = 0.85$
Design compressive concrete strength - exp.3.1	5; $f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_c = 15.9$
N/mm²	
Maximum aggregate size;	h _{agg} = 20 mm
Ultimate strain - Table 3.1;	$\varepsilon_{cu2} = 0.0035$
Shortening strain - Table 3.1;	$\epsilon_{cu3} = 0.0035$
Effective compression zone height factor;	$\lambda = 0.80$
Effective strength factor;	η = 1.00
Bending coefficient k ₁ ;	K ₁ = 0.40
Bending coefficient k ₂ ;	$K_2 = 1.00 \times (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$
Bending coefficient k ₃ ;	K₃ = 0.40
Bending coefficient k₄;	$K_4 = 1.00 \times (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$
Reinforcement details	
Characteristic yield strength of reinforcement;	f _{yk} = 500 N/mm²
Modulus of elasticity of reinforcement;	E _s = 200000 N/mm ²
Partial factor for reinforcing steel - Table 2.1N;	γs = 1.15
Design yield strength of reinforcement;	$f_{yd} = f_{yk} / \gamma_s = 435 \text{ N/mm}^2$
Cover to reinforcement	
Top face of base;	c _{bt} = 40 mm
Bottom face of base;	c _{bb} = 40 mm

Santural Ange 8 Sanghtain	Stro 159 Ash 016	uctural D). Newm iton-und 51 330 37	Design & D arket Rd. ler-Lyne 714	Praughting				Project No.	Docume	nt/ Item	Refer	ence		
Project:		54 Ton	acliffe Rd			23-23033	·							
Subject:		Introdu	uction						Sheet		14	Of		20
Issue			1	Date	2	Date	3	Date	4	Date	5		Dat	te
Made/ Revis	sed by	/	DG	05.23										
Checked by														
Approved -														

Masonry details - Section 3.1	
Masonry type;	Aggregate concrete - Group 1
Normalised mean compressive strength;	f _b = 7.3 N/mm ²
Characteristic flexural strength - cl.6.3.4(1);	f _{xk} = 0 N/mm ²
Initial shear strength - Table NA.5;	f _{vko} = 0.15 N/mm²
Mortar details - Section 3.2	
Mortar type;	General purpose - M6, prescribed mix
Compressive strength of mortar;	f _m = 6 N/mm ²
Ultimate limit states - Table NA.1	
Class of execution control;	1
Category of manufacture control;	1
Partial factor for direct or flexural compression;	умс = 2.0
Partial factor for flexural tension;	γmt = 2.3
Partial factor for shear;	γм ∨ = 2.0
Characteristic strengths of concrete infill - Table 3.2	
Concrete infill strength class;	C28/35
Characteristic compressive strength;	f _{ck,infill} = 25 N/mm ²
Characteristic shear strength;	f _{cvk,infill} = 0.45 N/mm ²
Design shear strength;	$f_{cvd,infill} = f_{cvk,infill} / \gamma_{Mv} = 0.225 \text{ N/mm}^2$

Satural Ange	Stro 159 Asł 016	ructural Design & Draughting i9. Newmarket Rd. shton-under-Lyne 161 330 3714							Docume	nt/ Item	Refere	nce		
Project:		54 Ton	acliffe Rd					23-23033						
Subject:		Introdu	uction						Sheet		15	Of	:	20
Issue			1	Date	2	Date	3	Date	4	Date	5		Date	е
Made/ Revis	sed by	/	DG	05.23										
Checked by														
Approved -														

Check stem design at base of stem					
Depth of section;	t = 400 mm				
Cavity wall details					
Front leaf thickness;	t _f = 100 mm				
Rear leaf thickness;	t _r = 100 mm				
Masonry characteristics					
Compressive strength constants - Table NA.4	K = 0.750				
Characteristic compressive strength - cl.3.6.1.2(1)	$f_k = K \times f_b^{0.7} \times f_m^{0.3} =$			
5.162 N/mm ²					
Design compressive strength	f_d = min(f_k, f_{ck,infill}) / γ_{Mc} = 2.581 N/	mm²			
Design flexural strength	$\mathbf{f}_{xd} = \mathbf{f}_{xk} / \gamma_{Mt} = 0 \ \mathbf{N}/\mathbf{mm}^2$				
Height of masonry	h _{wt} = h _{stem} = 3200 mm				
Compressive axial force combination 0	$F_x = \gamma_{Gf} \times \gamma_{stem} \times h_{wt} \times t = \textbf{32 kN/m}$				
Moment combination 0	$M_{x} = \gamma_{Gf} \times \gamma_{stem} \times h_{wt} \times t^{2} \ / \ 2 = \textbf{6.4 kl}$	Nm/m			
Eccentricity of axial load	e = max(abs(t / 2 - M_x / F_x), 0.05 × 1	t) = 20 mm			
Capacity reduction factor - exp.6.4	$\Phi = 1 - 2 \times e / t = 0.9$				
Design vertical resistance - exp.6.2	$N_{Rd} = \Phi \times t \times f_d = 929.2 \text{ kN/m}$				
Design vertical compressive stress	$\sigma_d = min(F_x / t, 0.15 \times N_{Rd} / t) = 0.0$	08 N/mm²			
Apparent design flexural strength - exp.6.16	$f_{xd,app} = f_{xd} + \sigma_d = 0.08 \text{ N/mm}^2$				

Strate Str 155 Asi 010	uctural [9. Newm hton-unc 61 330 3	Design & Jarket Rd Jer-Lyne 714	Draughting		Project No.	Document/ Item Reference									
Project:	54 Tonacliffe Rd								33						
Subject:	Introd	uction			Sheet	16	Of	20							
Issue	sue 1 Date 2				Date	3	Date	4	4 Date			Date			
Made/ Revised b	y	DG	05.23												
Checked by															
Approved -															
Limit of charact. shear strength - exp. 3.1; $f_{vk,lim} = 0.065 \times f_b = 0.$ Characteristic shear strength - exp.3.5 $f_{vk} = min(f_{vko} + 0.4 \times f_b)$								2 0.182 N /	mm²						
Design shear strength $f_{vd} = f_{vk} / \gamma_{Mv} =$						_{Av} = 0.09	91 N/mm²								
							Library iten	n: Masonry	characteristi	cs outpu	t				
Reinforced ma	sonrv me	embers su	biected to l	pendin	a, bending ai	nd axial	loading, or axi	al loading	a - Section	6.6					

The molecular and the members subjected to bending	, bending and axial loading, of axial loading - Section 6.0
Design bending moment combination 2;	M = 65.4 kNm/m
Tension reinforcement provided;	16 dia.bars @ 200 c/c
Area of tension reinforcement provided;	$A_{sr.prov} = \pi \times \phi_{sr}^2 / (4 \times s_{sr}) = 1005 \text{ mm}^2/\text{m}$
Depth to tension reinforcement;	d = 260 mm
Minimum area of reinforcement - cl.8.2.3(1);	A _{sr.min} = 0.0005 × d = 130 mm ² /m
Lever arm - exp.6.23;	$\textbf{z} = \textbf{d} \times min(\textbf{1} - \textbf{0.5} \times \textbf{A}_{sr.prov} \times \textbf{f}_{yd} \ \textit{/} \ \textbf{(d} \times \textbf{f}_{d}), \ \textbf{0.95}) = 175 \ mm$
Moment of resistance - exp.6.22 and exp.6.24a;	M_{Rd} = min($A_{sr.prov} \times f_{yd} \times z$, 0.4 × $f_d \times d^2$) = 69.8 kNm/m
	M / M _{Rd} = 0.937

PASS - Moment of resistance exceeds applied design moment

Reinforced masonry members subjected to shear loading - Section 6.7

Design shear force	V = 53.141 kN/m
Longitudinal reinforcement ratio - exp.J.2;	$\rho_{enh} = A_{sr.prov} / d = 0.004$
Enhanced shear strength - exp.J.1;	$f_{vd,enh1}$ = min((0.35 N/mm ² + 17.5 N/mm ² × ρ_{enh}), 0.7 N/mm ²)
	/ γ _{Mν} = 0.209 N/mm ²
Shear span;	a _{v,enh} = M / V = 1231 mm
Enhancement factor;	χ = 2.5 - min(0.25 × a _{v,enh} / d, 1.5) = 1.32
Enhanced shear strength - exp.J.3;	$f_{vd,enh2}$ = min($\chi \times f_{vd,enh1}$, 1.75N/mm ² / γ_{Mv}) = 0.275 N/mm ²
Design shear resistance - exp.6.40;	V_{Rd} = min(f _{vd,enh2} , f _{cvd,infill}) × d = 58.5 kN/m
	V / V _{Rd} = 0.908
	PASS - Design shear resistance exceeds applied design shear force

Horizontal reinforcement parallel to face of ste	em
Minimum area of reinforcement - cl.8.2.3(4); A _{sx.req} = 0.0005 × d = 130 mm ² /m
Transverse reinforcement provided;	10 dia.bars @ 200 c/c
Area of transverse reinforcement provided	$A_{sx.prov} = \pi \times \phi_{sx}^2 / (4 \times s_{sx}) = 393 \text{ mm}^2/\text{m}$
PASS - Area of re	inforcement provided is greater than area of reinforcement required
Check base design at toe	

	$K = M / (d^2 \times f_{ck}) = 0.017$
Depth to tension reinforcement;	d = h - c _{bb} - φ _{bb} / 2 = 306 mm
Design bending moment combination 2;	M = 45.2 kNm/m
Rectangular section in flexure - Section 6.1	
Depth of section;	h = 350 mm

Angelian	Structural Design & Draughting 159. Newmarket Rd. Ashton-under-Lyne 0161 330 3714								Document/ Item Reference							
Project:		54 Ton	acliffe Rd	l			23-23033									
Subject:		Introdu	uction						Sheet		17	Of		20		
Issue			1	Date	2	Date	3	Date	4	Date	5		Dat	e		
Made/ Revis	ed by DG 05.23															
Checked by																
Approved -																

× **K**2))

 $\textbf{K'}=(2\times\eta\times\alpha_{cc}/\gamma_{c})\times(1-\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{1})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{2})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{2})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{2})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{2})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{2})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{2})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{2})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{2})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{2})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{2})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{2})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{2})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{2})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{2})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{2})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{2})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{2})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{2})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{2})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{2})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{2})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{2})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{2})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf{K}_{2})/(2\times\textbf{K}_{2}))\times(\lambda\times(\delta-\textbf$

	K' = 0.207
	K' > K - No compression reinforcement is required
Lever arm;	z = min(0.5 + 0.5 × (1 - 2 × K / (η × α _{cc} / γ _c)) ^{0.5} , 0.95) × d =
291 mm	
Depth of neutral axis;	x = 2.5 × (d – z) = 38 mm
Area of tension reinforcement required;	$A_{bb.req} = M / (f_{yd} \times z) = 358 \text{ mm}^2/\text{m}$
Tension reinforcement provided;	Mesh B503 - 8 dia.bars @ 100 c/c
Area of tension reinforcement provided;	$\mathbf{A}_{bb.prov} = \pi \times \phi_{bb}^2 / (4 \times \mathbf{s}_{bb}) = 503 \text{ mm}^2/\text{m}$
Minimum area of reinforcement - exp.9.1N;	$A_{bb.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 440 \text{ mm}^2/\text{m}$
Maximum area of reinforcement - cl.9.2.1.1(3);	A _{bb.max} = 0.04 × h = 14000 mm ² /m
	max(Abb.req, Abb.min) / Abb.prov = 0.876

PASS - Area of reinforcement provided is greater than area of reinforcement required

Library item: Rectangular single output

Crack control - Section 7.3	
Limiting crack width;	w _{max} = 0.3 mm
Variable load factor - EN1990 – Table A1.1;	$\psi_2 = 0.6$
Serviceability bending moment;	M _{sis} = 27.8 kNm/m
Tensile stress in reinforcement;	$\sigma_s = M_{sls} / (A_{bb,prov} \times z) = 190 \text{ N/mm}^2$
Load duration;	Long term
Load duration factor;	$k_{t} = 0.4$
Effective area of concrete in tension;	A _{c.eff} = min(2.5 × (h - d), (h - x) / 3, h / 2)
	A _{c.eff} = 103917 mm²/m
Mean value of concrete tensile strength;	$f_{ct.eff} = f_{ctm} = 2.8 \text{ N/mm}^2$
Reinforcement ratio;	$\rho_{p.eff} = A_{bb.prov} / A_{c.eff} = 0.005$
Modular ratio;	$\alpha_{e} = E_{s} / E_{cm} = 6.19$
Bond property coefficient;	k ₁ = 0.8
Strain distribution coefficient;	k ₂ = 0.5
	$k_3 = 3.4$
	k ₄ = 0.425
Maximum crack spacing - exp.7.11;	$s_{r.max} = k_3 \times c_{bb} + k_1 \times k_2 \times k_4 \times \phi_{bb} / \rho_{p.eff} = 417 \text{ mm}$
Maximum crack width - exp.7.8;	$w_{k} = s_{r.max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6 \times$
	σs) / Es
	w _k = 0.238 mm
	w _k / w _{max} = 0.793
	PASS - Maximum crack width is less than limiting crack width

Satural Ange	Stro 159 Ash 016	uctural E). Newm iton-unc 51 330 33	Design & arket Rd. ler-Lyne 714	Draughting	5	Project No.	Document/ Item Reference									
Project:		54 Ton	acliffe Rd	I				23-23033	6							
Subject:		Introd	uction						Sheet		18	Of		20		
Issue	Issue 1 Date 2 Date 3					3	Date	4	Date	5		Dat	te			
Made/ Revised by				05.23												
Checked by	hecked by															
Approved -																

Rectangular section in shear - Section 6.2	
Design shear force;	V = 63.7 kN/m
	C _{Rd,c} = 0.18 / γ _c = 0.120
	k = min(1 + √(200 mm / d), 2) = 1.808
Longitudinal reinforcement ratio;	ρι = min(A _{bb.prov} / d, 0.02) = 0.002
	v_{min} = 0.035 N ^{1/2} /mm × k ^{3/2} × f _{ck} ^{0.5} = 0.450 N/mm ²
Design shear resistance - exp.6.2a & 6.2b;	$V_{Rd.c}$ = max($C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_I \times f_{ck})^{1/3}$, v_{min}) × d
	V _{Rd.c} = 137.8 kN/m
	V / V_{Rd.c} = 0.462
	PASS - Design shear resistance exceeds design shear force
Check base design at heel	
Depth of section;	h = 350 mm
Rectangular section in flexure - Section 6.1	
Design bending moment combination 2;	M = 9.7 kNm/m
Depth to tension reinforcement;	d = h - c _{bt} - φ _{bt} / 2 = 306 mm
	$K = M / (d^2 \times f_{ck}) = 0.004$
	$\textbf{K'} = (2 \times \eta \times \alpha_{cc} / \gamma_c) \times (1 - \lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_1) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_2) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_2) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_2) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_2) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_2) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_2) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_2) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_2) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_2) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_2) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_2) / (2 \times \textbf{K}_2)) \times (\lambda \times (\delta - \textbf{K}_2) / (2 \times $
× K2))	
	K' = 0.207
	K' > K - No compression reinforcement is required
Lever arm;	z = min(0.5 + 0.5 × (1 - 2 × K / ($\eta \times \alpha_{cc}$ / γ_c)) ^{0.5} , 0.95) × d =
291 mm	
Depth of neutral axis;	x = 2.5 × (d – z) = 38 mm
Area of tension reinforcement required;	$A_{bt.req} = M / (f_{yd} \times z) = 76 \text{ mm}^2/\text{m}$
Tension reinforcement provided;	Mesh B503 - 8 dia.bars @ 100 c/c
Area of tension reinforcement provided;	$A_{bt.prov} = \pi \times \phi_{bt}^2 / (4 \times s_{bt}) = 503 \text{ mm}^2/\text{m}$
Minimum area of reinforcement - exp.9.1N;	$A_{bt.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 440 \text{ mm}^2/\text{m}$
Maximum area of reinforcement - cl.9.2.1.1(3);	A _{bt.max} = 0.04 × h = 14000 mm ² /m
	max(A _{bt.req} , A _{bt.min}) / A _{bt.prov} = 0.876
PASS - Area of reinford	cement provided is greater than area of reinforcement required

Library item: Rectangular single output

Crack control - Section 7.3	
Limiting crack width;	w _{max} = 0.3 mm
Variable load factor - EN1990 – Table A1.1;	ψ2 = 0.6
Serviceability bending moment;	M _{sis} = 5.5 kNm/m
Tensile stress in reinforcement;	σ_s = M _{sls} / (A _{bt.prov} × z) = 37.9 N/mm ²

Satural Age	Stro 159 Asł 016	uctural E). Newm iton-unc 51 330 33	Design & larket Rd. ler-Lyne 714	Draughting	5		Project No.	Document/ Item Reference							
Project:		54 Ton	acliffe Rd	I	23-23033	\$									
Subject:		Introd	uction						Sheet		19	O		20	
Issue		1 Date 2 Date 3						Date	4	Date	5		Da	te	
Made/ Revis	Made/ Revised by DG 05.23														
Checked by	/														
Approved -															

Load duration;	Long term						
Load duration factor;	$k_{t} = 0.4$						
Effective area of concrete in tension;	A _{c.eff} = min(2.5 × (h - d), (h - x) / 3, h / 2)						
	A _{c.eff} = 103917 mm ² /m						
Mean value of concrete tensile strength;	$f_{ct.eff} = f_{ctm} = 2.8 \text{ N/mm}^2$						
Reinforcement ratio;	$\rho_{p,eff} = A_{bt.prov} / A_{c.eff} = 0.005$						
Modular ratio;	$\alpha_{e} = E_{s} / E_{cm} = 6.19$						
Bond property coefficient;	k ₁ = 0.8						
Strain distribution coefficient;	k ₂ = 0.5						
	k ₃ = 3.4						
	k ₄ = 0.425						
Maximum crack spacing - exp.7.11;	$\mathbf{s}_{r.max} = \mathbf{k}_3 \times \mathbf{c}_{bt} + \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_4 \times \phi_{bt} / \rho_{p.eff} = 417 \text{ mm}$						
Maximum crack width - exp.7.8;	$w_k = s_{r.max} \times max(\sigma_s - k_t \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_e \times \rho_{p.eff}), 0.6 \times$						
	σs) / Es						
	w _k = 0.047 mm						
	w _k / w _{max} = 0.158						
	PASS - Maximum crack width is less than limiting crack width						
Rectangular section in shear - Section 6.2							
Design shear force;	V = 36.1 kN/m						
	C _{Rd,c} = 0.18 / γc = 0.120						
	k = min(1 + √(200 mm / d), 2) = 1.808						
Longitudinal reinforcement ratio;	ρι = min(A _{bt.prov} / d, 0.02) = 0.002						
	v_{min} = 0.035 N ^{1/2} /mm × k ^{3/2} × f _{ck} ^{0.5} = 0.450 N/mm ²						
Design shear resistance - exp.6.2a & 6.2b;	V _{Rd.c} = max(C _{Rd.c} × k × (100 N²/mm ⁴ × ρ _l × f _{ck}) ^{1/3} , v _{min}) × d						
	V _{Rd.c} = 137.8 kN/m						
	V / V _{Rd.c} = 0.262						
	PASS - Design shear resistance exceeds design shear force						
Secondary transverse reinforcement to base - Sect	tion 9.3						
Minimum area of reinforcement – cl.9.3.1.1(2);	$A_{bx,req} = 0.2 \times A_{bb,prov} = 101 \text{ mm}^2/\text{m}$						
Maximum spacing of reinforcement - cl.9.3.1.1(3); s _{bx_max} = 450 mm						
Transverse reinforcement provided;	Mesh -8 dia.bars @ 200 c/c						
Area of transverse reinforcement provided;	$A_{bx,prov} = \pi \times \phi_{bxt}^2 / (4 \times s_{bxt}) = 251 \text{ mm}^2/\text{m}$						
PASS - Area of reinford	cement provided is greater than area of reinforcement required						
Secondary transverse reinforcement to base - Sect	tion 9.3						
Minimum area of reinforcement – cl.9.3.1.1(2);	$A_{bx,req} = 0.2 \times A_{bb,prov} = 101 \text{ mm}^2/\text{m}$						
aximum spacing of reinforcement – cl.9.3.1.1(3); $s_{bx_{max}} = 450 \text{ mm}$							
Transverse reinforcement provided;	Mesh -8 dia.bars @ 200 c/c						

Sectoral Ages	Str 159 Asł 016	Structural Design & Draughting 159. Newmarket Rd. Ashton-under-Lyne 0161 330 3714							Docu	Document/ Item Reference				
Project: 54 Tonacliffe Rd							23-2303	33						
Subject:		Introduction							Sheet	Sheet 20 C		Of	20	
Issue			1	Date	2	Date	3	Date	4	Date	5		Date	
Made/ Revised by			DG	05.23										
Checked by														
Approved -														

Area of transverse reinforcement provided;

 $\mathbf{A}_{bx,prov} = \pi \times \phi_{bxb}^2 / (\mathbf{4} \times \mathbf{s}_{bxb}) = 251 \text{ mm}^2/\text{m}$

PASS - Area of reinforcement provided is greater than area of reinforcement required

