Mr R. Marland Land at the Rear of 54 Tonacliffe Rd. Whitworth Rochdale

Structural Design For Garden Retaining Wall, Surface Water & Foul Drainage And Slope Stability

D.Garforth Structural Design & Draughting 159. Newmarket Rd. Ashton-under-Lyne Lancs

Setural Age	As	9. Newr	market R nder-Lyr	-	nting			Projec t No.	Docu	ment/ Itei	n Refe	erence)
Project:		54 To	nacliffe	Rd				23-2303	3				
Subject:		Introd	luction						Sheet		2	Of	40
lssue			1	Date	2	Date	3	Date	4	Date	5		Date
Made/ Revi	ised	by	DG	05.23									
Checked b	у												
Approved -	-												

INTRODUCTION

The following document is associated with the construction work to take place at the above mentioned address and contains design calculations for structural elements, as well as approximate schematic arrangements of those elements.

DEFINITIONS

The "Engineer" is STRUCTURAL DESIGN & DRAUGHTING

The "Client" is the individual or organisation that has instructed the engineer to carry out structural engineering consultancy work.

The "Architect" is the individual or organisation that has provided the information upon which these calculations are based.

The "Builder" is the contractor who has been engaged to undertake the construction work to which this document relates.

IMPORTANT GUIDANCE ON THE USE OF THIS DOCUMENT

(TO BE READ BY ALL PARTIES)

This document is intended to be accompanied by all relevant architects' and engineer's drawings, and all relevant documentation should be considered prior to commencement of the work. Engineer's drawings relating to this document will be explicitly outlined herein.

This document should be reviewed in its entirety (along with any other relevant documentation) by the builder, architect (if applicable) and client, prior to commencement of the work.

Any layouts, instructions or recommendations should be considered. Any deviations from the proposals outlined herein are to be approved by the Engineer prior to the work being undertaken. Any deviations from the proposals made without the Engineer's consent are beyond the scope of this document and the Engineer cannot be held liable for any adverse consequences of such deviations.

The calculations within this document have been carried out in good faith based on the data provided by the client and/or builder/architect.

Where applicable extracts of the information provided will be included within this document for reference. It is the responsibility of the architect (where applicable) or client to notify the engineer when changes are made to the information. This will enable the design to be reviewed and, where necessary, changes made.

Approval of these calculations and drawings by the Local Authority Building Control or similar approved body should be obtained prior to any ordering of material or fabrication. No liability is accepted for any changes that may be required as a result of work having commenced prior to such an approval.

Where information about the existing arrangements of buildings is not available (e.g. floor / roof span orientations or load-bearing wall arrangements) the Engineer will use their judgement to make assumptions. These (generally conservative) assumptions will be clearly outlined within the document, and should be confirmed by a suitably qualified individual on site. The engineer is then to be notified of any discrepancies prior to commencement of the work as design changes may be necessary.

IF IN DOUBT: ASK!!

It should be noted that until the existing structure has been exposed it is not always possible to foresee what the existing structural arrangement will be. This may include floor and roof span directions, construction materials and existing beam locations among other aspects. It is therefore advised to remove finishes from areas being modified as early as possible to avoid any delays on site that the untimely discovery of such (previously unknown) information can lead to.

In addition, it is advised to carry out some form of ground investigation as early as possible to avoid any unexpected below ground construction requirements which may cause delays on site e.g. piled foundations, raft foundations etc.

Angelian Angelian	15 As	9. Newr	market R nder-Lyr		nting			Projec t No.	Docu	iment/ Itei	n Refe	erence	
Project:		54 To	nacliffe	Rd				23-2303	3				
Subject:		Introd	luction						Shee	t	3	Of	40
Issue			1	Date	2	Date	3	Date	4	Date	5		Date
Made/ Rev	ised	by	DG	05.23									
Checked b	у												
Approved	-												

Wherever there is any uncertainty we will make every effort to highlight where this lies, however suitable project planning / management by the contractor / client are essential to the smooth execution of any construction project.

CONSTRUCTION NOTES GENERAL NOTES

- Any SPAN / HEIGHT DIMENSIONS shown in this document are for CALCULATION PURPOSES ONLY and are not to be used as a final dimension for the fabrication / machining of structural elements.

- All dimensions are to be checked on site by the builder / contractor / fabricator prior to commencement of fabrication / machining / construction.

Any discrepancies between the information outlined herein and the dimensions on site are to be reported to the engineer.

- Temporary works are the sole responsibility of the builder / contractor. Temporary works method statements are to be provided to the Engineer by the builder / contractor prior to commencement of the work.

- All parties are assumed to be aware of their responsibilities under the Construction Design and Management (CDM) Regulations 2015.

If you are unsure of this please contact the Engineer.

- STRUCTURAL DESIGN & DRAUGHTING take no responsibility for any elements outside of the scope of these calculations. For structural elements not covered by this document it is assumed that a design is being prepared / provided by others, if additional calculations / drawings / specifications are required then please contact STRUCTURAL DESIGN & DRAUGHTING and we can provide a fee for their design.

All structural work has to be carried out by a competent builder in accordance with the requirements of The Building Regulations Part A and the recommendations set out in BS8103 Parts 1-3.

- This document is to be read in conjunction with the architectural drawings / details, and any discrepancies reported to the engineer immediately. Final steel levels and dimensions are to be confirmed by the architectural consultant.

- If STRUCTURAL DESIGN & DRAUGHTING are not contracted to visit site we take no responsibility for the quality of construction nor its compliance with this document. It is the contractor's responsibility to ensure that all works comply with the drawings, notes and assumptions made within these calculations.

- The client / contractor should be aware of beam, frame and column deflections and their impact on existing or adjacent elements, for example beam deflection on bi-fold doors. Typical beam deflections will be span/250 total (Dead+Live) for beams and height/300 (Wind) for columns.

The following calculations provide anticipated deflections within the relevant sections.

- The client should be aware that where beams are installed within existing masonry structures it is likely that minor cracking will occur within the masonry above due to the load redistribution. It is recommended that the contractor allows to make suitable repairs within their contract.

- All proprietary (i.e. off-the-shelf) items specified within this document are to be installed in strict accordance with the manufacturer's recommendations. This includes, but is not limited to restraint straps, lintels, chemical / resin anchors and fixing brackets.

- For structural elements not considered within the scope of this document it is assumed that a suitable specification is to be made by others. If additional calculations, specifications or drawings are required then please contact STRUCTURAL DESIGN & DRAUGHTING and we can provide a fee for their design.

- At locations where beam bearing information is provided on the layout this will be in a position where loadbearing masonry (with foundations / support) has been assumed. It should be confirmed by a suitably qualified individual that these walls are load-bearing, and the masonry is to be inspected for suitability prior to commencement of the work.

DESIGN PHILOSOPHY

All structural members are designed to be capable of withstanding applied loads during construction, operation and maintenance of the building without any distress, failure, loss of function, damage or durability problems. They are to support the most onerous combinations of dead, imposed and (where applicable) wind loads tending to produce either maximum ultimate stresses or deflection.

Statural Age	As	9. New	market R nder-Lyr		hting			Projec t No.	Docu	ıment/ Itei	n Refe	erence	1
Project:		54 To	nacliffe	Rd				23-2303	33				
Subject:		Introd	duction						Shee	t	4	Of	40
Issue			1	Date	2	Date	3	Date	4	Date	5		Date
Made/ Revi	ised	by	DG	05.23									
Checked b	у												
Approved -	-												

STABILITY STATEMENT

For this project the stability is to be provided by the following structural systems or a combination thereof: Global Lateral Stability: moment-transmitting frames / masonry piers or shear walls with dead load restoring moment / floors or ceilings to provide diaphragm (boarded & strapped where critical)

Wall Panel Local Lateral Stability: steel or timber posts / masonry piers or walls / floors, ceilings or rafters (boarded & strapped where critical) / timber stud walls.

Vertical Loads: masonry walls, piers or columns with padstones for concentrated loads where necessary / steel posts / strip footings / pad foundations

Internal walls are to be removed. If required sway frames will be introduced

DESIGN PHILOSOPHY

The calculations shall be read in conjunction with drawings 23-23033 - 001

GROUND BEARING PRESSURES

150kN/m²

Notes:

British Sta	ndards and Codes of Practice
BS 648	Schedule of Weights of Building Material
BS 6399	Loading for Buildings
BS EN 1993	Structural Use of Steelwork

BS EN 1995 Structural Use of Unreinforced Masonry

Design has been carried out in accordance with accepted international practice and utilising the above standards and industry best practice.

Sectoral Age & #	15 As	9. Newr	market R nder-Lyr	-	hting			Projec t No.	Docu	iment/ Itei	m Refe	erence	1
Project:		54 To	nacliffe	Rd				23-2303	33				
Subject:		Retair	ning Wal	I					Shee	t	5	Of	40
Issue			1	Date	2	Date	3	Date	4	Date	5		Date
Made/ Revi	sed	by	DG	05.23									
Checked by	у												
Approved -													

RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Tedds calculation version 2.9.19

Retaining wall details	
Stem type;	Cantilever
Stem height;	h _{stem} = 3200 mm
Stem thickness;	t _{stem} = 400 mm
Angle to rear face of stem;	α = 90 deg
Stem density;	$\gamma_{\text{stem}} = 25 \text{ kN/m}^3$
Toe length;	I _{toe} = 1200 mm
Heel length;	I _{heel} = 500 mm
Base thickness;	t _{base} = 350 mm
Base density;	γ _{base} = 25 kN/m ³
Height of retained soil;	h _{ret} = 2600 mm
Angle of soil surface;	β = 10 deg
Depth of cover;	d _{cover} = 600 mm
Depth of excavation;	d _{exc} = 200 mm
Retained soil properties	
Soil type;	Medium dense rock fill
Moist density;	γ _{mr} = 16.3 kN/m ³
Saturated density;	γ _{sr} = 20.3 kN/m ³
Characteristic effective shear resistance angle;	φ'r.k = 30 deg
Characteristic wall friction angle;	δ _{r.k} = 15 deg
Base soil properties	
Soil type;	Very dense well graded sand and gravel
Soil density;	γ _b = 21 kN/m ³
Characteristic cohesion;	c' _{b.k} = 0 kN/m ²
Characteristic effective shear resistance angle;	φ' _{b.k} = 42 deg
Characteristic wall friction angle;	$\delta_{b,k} = 21 \text{ deg}$
Characteristic base friction angle;	δ _{bb.k} = 28 deg
Loading details	
Variable surcharge load;	Surcharge _Q = 10 kN/m ²

Sectoral Age & E Mangintanto	15 As	9. Newr	market F nder-Lyı	-	hting			Projec t No.	Docu	iment/ Itei	m Refe	erence)
Project:		54 To	nacliffe	Rd				23-2303	33				
Subject:		Retair	ning Wal	I					Shee	t	6	Of	40
Issue			1	Date	2	Date	3	Date	4	Date	5		Date
Made/ Revi	sed	by	DG	05.23									
Checked by	у												
Approved -													

General arrangement - sketch pressures relate to bearing check

Calculate retaining wall geometry	
Base length;	$I_{\text{base}} = I_{\text{toe}} + t_{\text{stem}} + I_{\text{heel}} = 2100 \text{ mm}$
Moist soil height;	h _{moist} = h _{soil} = 3200 mm
Length of surcharge load;	I _{sur} = I _{heel} = 500 mm
- Distance to vertical component;	x _{sur_v} = I _{base} - I _{heel} / 2 = 1850 mm
Effective height of wall;	h_{eff} = h_{base} + d_{cover} + h_{ret} + $I_{sur} \times tan(\beta)$ = 3638 mm
- Distance to horizontal component;	x _{sur_h} = h _{eff} / 2 = 1819 mm
Area of wall stem;	$A_{stem} = h_{stem} \times t_{stem} = 1.28 \text{ m}^2$
- Distance to vertical component;	x _{stem} = I _{toe} + t _{stem} / 2 = 1400 mm
Area of wall base;	$A_{\text{base}} = I_{\text{base}} \times t_{\text{base}} = 0.735 \text{ m}^2$
- Distance to vertical component;	x _{base} = I _{base} / 2 = 1050 mm
Area of moist soil;	$A_{moist} = h_{moist} \times I_{heel} + tan(\beta) \times I_{heel}^2 / 2 = 1.622 \text{ m}^2$
- Distance to vertical component;	$x_{\text{moist}_v} = I_{\text{base}} - (h_{\text{moist}} \times I_{\text{heel}}^2 / 2 + \tan(\beta) \times I_{\text{heel}}^3 / 6) / A_{\text{moist}}$
	= 1851 mm
- Distance to horizontal component;	x _{moist_h} = h _{eff} / 3 = 1213 mm
Area of base soil;	$A_{pass} = d_{cover} \times I_{toe} = 0.72 \text{ m}^2$

Satural Ange 8 Maggittation	As	9. New	market F nder-Lyı												
Project:		54 To	nacliffe	Rd				23-2303	33						
Subject:		Retai	ning Wa	I					Shee	t	7	Of	40		
Issue			1	Date	2	Date	3	Date	4	Date	5		Date		
Made/ Revi	ised	by	DG	05.23											
Checked b	у														
Approved -	-														

- Distance to vertical component;	$x_{pass_v} = I_{base} - (d_{cover} \times I_{toe} \times (I_{base} - I_{toe} / 2)) / A_{pass} = 600$ mm
- Distance to horizontal component;	x _{pass_h} = (d _{cover} + h _{base}) / 3 = 317 mm
Area of excavated base soil;	$A_{exc} = h_{pass} \times I_{toe} = 0.48 \text{ m}^2$
- Distance to vertical component;	x _{exc_v} = I _{base} - (h _{pass} × I _{toe} × (I _{base} - I _{toe} / 2)) / A _{exc} = 600 mm
- Distance to horizontal component;	$x_{exc_h} = (h_{pass} + h_{base}) / 3 = 250 \text{ mm}$
Design approach 1	
Partial factors on actions - Table A.3 - Combination	on 1
Partial factor set;	A1
Permanent unfavourable action;	γ _G = 1.350
Permanent favourable action;	γ _{Gf} = 1.000
Variable unfavourable action;	γ _Q = 1.500
Variable favourable action;	$\gamma_{Qf} = 0.000$
Partial factors for soil parameters – Table A.4 - C	ombination 1
Soil parameter set;	M1
Angle of shearing resistance;	γ ₀ · = 1.00
Effective cohesion;	γ _{c'} = 1.00
Weight density;	$\gamma_{\gamma} = 1.00$
Retained soil properties	
Design moist density;	γ_{mr} ' = γ_{mr} / γ_{γ} = 16.3 kN/m ³
Design saturated density;	γ_{sr} ' = γ_{sr} / γ_{γ} = 20.3 kN/m ³
Design effective shear resistance angle;	$\phi'_{r.d} = \operatorname{atan}(\operatorname{tan}(\phi'_{r.k}) / \gamma_{\phi'}) = 30 \operatorname{deg}$
Design wall friction angle;	$\delta_{r.d} = \operatorname{atan}(\operatorname{tan}(\delta_{r.k}) / \gamma_{\phi}) = 15 \text{ deg}$
Base soil properties	
Design soil density;	$\gamma_b' = \gamma_b / \gamma_\gamma = 21 \text{ kN/m}^3$
Design effective shear resistance angle;	$\phi'_{b.d} = \operatorname{atan}(\operatorname{tan}(\phi'_{b.k}) / \gamma_{\phi'}) = 42 \operatorname{deg}$
Design wall friction angle;	$\delta_{b.d} = \operatorname{atan}(\operatorname{tan}(\delta_{b.k}) / \gamma_{\phi'}) = 21 \operatorname{deg}$
Design base friction angle;	$\delta_{bb.d} = atan(tan(\delta_{bb.k}) / \gamma_{\phi'}) = 28 \text{ deg}$
Design effective cohesion;	$c'_{b,d} = c'_{b,k} / \gamma_{c'} = 0 \text{ kN/m}^2$
Using Coulomb theory	
Active pressure coefficient;	$K_{A} = \sin(\alpha + \phi'_{r.d})^2 / (\sin(\alpha)^2 \times \sin(\alpha - \delta_{r.d}) \times [1 + \sqrt{[\sin(\phi'_{r.d})^2 + (1 + \sqrt{[\sin(\phi'_{r.d)^2 + (1 + \sqrt{[\sin(\phi'_{r.d)^2 + (1 + \sqrt{[\sin(\phi'_{r.d})^2 + (1 + [\sin(\phi'_{r.d)^2 + (1 + \sqrt{[\sin(\phi'_{r.d)^2 + (1 + \sqrt{[\sin(\phi'_{d)^2 + (1 + \sqrt{[\sin(\phi'_{r.d)^2 + (1 + \sqrt{[\oplus(\phi'_{r.d)^2 + (1 + \sqrt{[\oplus(\phi'_{r.d)^2 + (1 + \sqrt{[\oplus(\phi'_{r.d)^2 + (1 + \sqrt{[\oplus(\phi'_{d.d)^2 + (1 + \sqrt{[\oplus(\phi'_{d)^2 + ($
	+ $\delta_{r.d}$ × sin($\phi'_{r.d}$ - β) / (sin(α - $\delta_{r.d}$) × sin(α + β))]] ²) = 0.343
Passive pressure coefficient;	$K_{P} = \sin(90 - \phi'_{b.d})^2 / (\sin(90 + \delta_{b.d}) \times [1 - \sqrt{[\sin(\phi'_{b.d} + \delta_{b.d})}]$
	$\times sin(\phi'_{b.d}) / (sin(90 + \delta_{b.d}))]]^2) = 14.662$
Overturning check	
Vertical forces on wall	
Wall stem;	$F_{stem} = \gamma_{Gf} \times A_{stem} \times \gamma_{stem} = 32 \text{ kN/m}$

Satural Age	As	9. Newr	narket F nder-Lyı	-Lyne t No. Document/ Item Refere											
Project:		54 To	nacliffe	Rd				23-2303	33						
Subject:		Retair	ning Wal	I					Shee	t	8	Of	40		
Issue			1	Date	2	Date	3	Date	4	Date	5	1	Date		
Made/ Rev	ised	by	DG	05.23											
Checked b	у														
Approved	-														

Wall base; Moist retained soil; Base soil; Total; Horizontal forces on wall Surcharge load;

Moist retained soil; Base soil;

Total;

Overturning moments on wall Surcharge load; Moist retained soil; Total; Restoring moments on wall Wall stem; Wall base; Moist retained soil; Base soil; Total;

Check stability against overturning **Factor of safety**;

Bearing pressure check Vertical forces on wall Wall stem; Wall base; Surcharge load; Moist retained soil; Base soil; Total;

Horizontal forces on wall Surcharge load;

Moist retained soil;

$$\begin{split} F_{base} &= \gamma_{Gf} \times A_{base} \times \gamma_{base} = \textbf{18.4 kN/m} \\ F_{moist_v} &= \gamma_{Gf} \times A_{moist} \times \gamma_{mr}' = \textbf{26.4 kN/m} \\ F_{exc_v} &= \gamma_{Gf} \times A_{exc} \times \gamma_{b}' = \textbf{10.1 kN/m} \\ F_{total_v} &= F_{stem} + F_{base} + F_{moist_v} + F_{exc_v} = \textbf{86.8 kN/m} \end{split}$$

$$\begin{split} F_{sur_h} &= K_A \times cos(\delta_{r.d}) \times \gamma_Q \times Surcharge_Q \times h_{eff} = \textbf{18.1} \\ kN/m \\ F_{moist_h} &= \gamma_G \times K_A \times cos(\delta_{r.d}) \times \gamma_{mr}' \times h_{eff}^2 / 2 = \textbf{48.1} \\ kN/m \\ F_{exc_h} &= max(-\gamma_{Gf} \times K_P \times cos(\delta_{b.d}) \times \gamma_b' \times (h_{pass} + h_{base})^2 / 2, \\ -(F_{moist_h} + F_{sur_h})) = \textbf{-66.2} \\ kN/m \\ F_{total\ h} &= F_{sur\ h} + F_{moist\ h} + F_{exc\ h} = \textbf{0} \\ kN/m \end{split}$$

$$\begin{split} M_{sur_OT} &= F_{sur_h} \times x_{sur_h} = \textbf{32.9 kNm/m} \\ M_{moist_OT} &= F_{moist_h} \times x_{moist_h} = \textbf{58.4 kNm/m} \\ M_{total OT} &= M_{sur OT} + M_{moist OT} = \textbf{91.3 kNm/m} \end{split}$$

$$\begin{split} M_{stem_R} &= F_{stem} \times x_{stem} = \textbf{44.8 kNm/m} \\ M_{base_R} &= F_{base} \times x_{base} = \textbf{19.3 kNm/m} \\ M_{moist_R} &= F_{moist_v} \times x_{moist_v} = \textbf{48.8 kNm/m} \\ M_{exc_R} &= F_{exc_v} \times x_{exc_v} = \textbf{6 kNm/m} \\ M_{total_R} &= M_{stem_R} + M_{base_R} + M_{moist_R} + M_{exc_R} = \textbf{118.9 kNm/m} \end{split}$$

FoSot = M_{total_R} / M_{total_OT} = 1.303 PASS - Maximum restoring moment is greater than overturning moment

$$\begin{split} F_{stem} &= \gamma_G \times A_{stem} \times \gamma_{stem} = \textbf{43.2 kN/m} \\ F_{base} &= \gamma_G \times A_{base} \times \gamma_{base} = \textbf{24.8 kN/m} \\ F_{sur_v} &= \gamma_Q \times Surcharge_Q \times I_{heel} = \textbf{7.5 kN/m} \\ F_{moist_v} &= \gamma_G \times A_{moist} \times \gamma_{mr'} = \textbf{35.6 kN/m} \\ F_{pass_v} &= \gamma_G \times A_{pass} \times \gamma_b' = \textbf{20.4 kN/m} \\ F_{total_v} &= F_{stem} + F_{base} + F_{sur_v} + F_{moist_v} + F_{pass_v} = \textbf{131.5 kN/m} \\ \end{split}$$

$$\begin{split} &F_{sur_h} = K_A \times cos(\delta_{r.d}) \times \gamma_Q \times Surcharge_Q \times h_{eff} = \textbf{18.1} \\ &kN/m \\ &F_{moist_h} = \gamma_G \times K_A \times cos(\delta_{r.d}) \times \gamma_{mr}' \times h_{eff}^2 / 2 = \textbf{48.1} \ kN/m \end{split}$$

Satural Ange 8 Sagintaria	15 As	9. Newr	market F nder-Lyr	-	nting		Docu	ment/ Ite	m Refe	erence	1		
Project:		54 To	nacliffe	Rd				23-2303	3				
Subject:		Retair	ning Wal	1					Shee	t	9	Of	40
Issue			1	Date	2	Date	3	Date	4	Date	5		Date
Made/ Revi	ised	by	DG	05.23									
Checked b	у												
Approved	-												

Base soil;

Total;
Moments on wall
Wall stem;
Wall base;
Surcharge load;
Moist retained soil;
Base soil;
Total;
Check bearing pressure
Propping force;
Distance to reaction;
Eccentricity of reaction;
Loaded length of base;
Bearing pressure at toe;
Bearing pressure at heel;
Effective overburden pressure;
Design effective overburden pressure;
Bearing resistance factors;

$$\begin{split} F_{pass_h} &= max(-\gamma_{Gf} \times K_P \times cos(\delta_{b.d}) \times \gamma_b' \times (d_{cover} + h_{base})^2 / \\ 2, -(F_{moist_h} + F_{sur_h})) &= -66.2 \text{ kN/m} \\ F_{total_h} &= F_{sur_h} + F_{moist_h} + F_{pass_h} = 0 \text{ kN/m} \\ \\ M_{stem} &= F_{stem} \times x_{stem} = 60.5 \text{ kNm/m} \\ \\ M_{base} &= F_{base} \times x_{base} = 26 \text{ kNm/m} \\ \\ M_{sur} &= F_{sur_v} \times x_{sur_v} - F_{sur_h} \times x_{sur_h} = -19 \text{ kNm/m} \\ \\ M_{moist} &= F_{moist_v} \times x_{moist_v} - F_{moist_h} \times x_{moist_h} = 7.5 \text{ kNm/m} \\ \\ M_{pass} &= F_{pass_v} \times x_{pass_v} = 12.2 \text{ kNm/m} \\ \\ \\ M_{total} &= M_{stem} + M_{base} + M_{sur} + M_{moist} + M_{pass} = 87.3 \\ \\ \\ \text{kNm/m} \end{split}$$

Fprop base = Ftotal h = 0 kN/m $\overline{\mathbf{x}} = \mathbf{M}_{\text{total}} / \mathbf{F}_{\text{total}_v} = 664 \text{ mm}$ $e = \bar{x} - I_{base} / 2 = -386 mm$ $I_{load} = 2 \times \overline{x} = 1327 \text{ mm}$ $q_{toe} = F_{total_v} / I_{load} = 99.1 \text{ kN/m}^2$ $q_{heel} = 0 \text{ kN/m}^2$ q = (t_{base} + d_{cover}) $\times \gamma_b$ ' = 20 kN/m² $q' = q / \gamma_{\gamma} = 20 \text{ kN/m}^2$ $N_q = Exp(\pi \times tan(\phi'_{b.d})) \times (tan(45 \text{ deg} + \phi'_{b.d} / 2))^2 =$ 85.374 $N_c = (N_q - 1) \times cot(\phi'_{b.d}) = 93.706$ $N_{\gamma} = 2 \times (N_{q} - 1) \times tan(\phi'_{b.d}) = 151.941$ Foundation shape factors; $s_q = 1$ s_γ = 1 $s_c = 1$ Load inclination factors; $H = F_{sur_h} + F_{moist_h} + F_{pass_h} - F_{prop_base} = 0 \text{ kN/m}$ V = F_{total_v} = **131.5** kN/m m = 2 $i_q = [1 - H / (V + I_{load} \times c'_{b.d} \times cot(\phi'_{b.d}))]^m = 1$ $i_{\gamma} = [1 - H / (V + I_{load} \times c'_{b.d} \times cot(\phi'_{b.d}))]^{(m+1)} = 1$ $i_c = i_q - (1 - i_q) / (N_c \times tan(\phi'_{b.d})) = 1$ Net ultimate bearing capacity

$$\begin{split} n_{f} &= c'_{b.d} \times N_{c} \times s_{c} \times i_{c} + q' \times N_{q} \times s_{q} \times i_{q} + 0.5 \times \gamma_{b}' \times I_{load} \times N_{\gamma} \times s_{\gamma} \times i_{\gamma} = \textbf{3820.3 kN/m}^{2} \\ \textbf{Factor of safety;} & \textbf{FoS}_{bp} = \textbf{n}_{f} / \textbf{max}(\textbf{q}_{toe}, \textbf{q}_{heel}) = \textbf{38.552} \\ PASS - Allowable \ bearing \ pressure \ exceeds \ maximum \ applied \ bearing \ pressure \ pressur$$

Design approach 1

Partial factors on actions - Table A.3 - Combination 2

Satural Ange 8 Sagintan	As	9. Newı	market F nder-Lyı	-	hting		Projec t No.	Docu	iment/ Itei	n Refe	erence	1	
Project:	54 Tonacliffe Rd 23-23033												
Subject:		Retair	ning Wal	I					Shee	t	10	Of	40
Issue			1	Date	2	Date	3	Date	4	Date	5		Date
Made/ Revi	vised by DG 05.23												
Checked by													
Approved	pproved -												

Partial factor set;	A2
Permanent unfavourable action;	γ _G = 1.000
Permanent favourable action;	γ _{Gf} = 1.000
Variable unfavourable action;	γ _Q = 1.300
Variable favourable action;	$\gamma_{Qf} = 0.000$
Partial factors for soil parameters – Table A.4 - Co	mbination 2
Soil parameter set;	M2
Angle of shearing resistance;	γ _{¢'} = 1.25
Effective cohesion;	γ _{c'} = 1.25
Weight density;	$\gamma_{\gamma} = 1.00$
Retained soil properties	
Design moist density;	γ_{mr} ' = γ_{mr} / γ_{γ} = 16.3 kN/m ³
Design saturated density;	γ_{sr} ' = γ_{sr} / γ_{γ} = 20.3 kN/m ³
Design effective shear resistance angle;	$\phi'_{r.d} = \operatorname{atan}(\operatorname{tan}(\phi'_{r.k}) / \gamma_{\phi'}) = 24.8 \operatorname{deg}$
Design wall friction angle;	$\delta_{r.d}$ = atan(tan($\delta_{r.k}$) / γ_{ϕ}) = 12.1 deg
Base soil properties	
Design soil density;	γ_{b} ' = γ_{b} / γ_{γ} = 21 kN/m ³
Design effective shear resistance angle;	$\phi'_{b.d}$ = atan(tan($\phi'_{b.k}$) / $\gamma_{\phi'}$) = 35.8 deg
Design wall friction angle;	$\delta_{b.d} = \operatorname{atan}(\operatorname{tan}(\delta_{b.k}) / \gamma_{\phi'}) = 17.1 \text{ deg}$
Design base friction angle;	$\delta_{bb.d} = atan(tan(\delta_{bb.k}) / \gamma_{\phi'}) = 23 \text{ deg}$
Design effective cohesion;	c' _{b.d} = c' _{b.k} / γ _{c'} = 0 kN/m ²
Using Coulomb theory	
Active pressure coefficient;	$K_{A} = \sin(\alpha + \phi'_{r.d})^2 / (\sin(\alpha)^2 \times \sin(\alpha - \delta_{r.d}) \times [1 + \sqrt{[\sin(\phi'_{r.d} + \phi'_{r.d})]^2} + \sqrt{[\sin(\phi'_{r.d} + \phi'_{r.d})]$
	+ $\delta_{r.d}$) × sin($\phi'_{r.d}$ - β) / (sin(α - $\delta_{r.d}$) × sin(α + β))]] ²) = 0.431
Passive pressure coefficient;	$K_P = sin(90 - \phi'_{b.d})^2 / (sin(90 + \delta_{b.d}) \times [1 - \sqrt{[sin(\phi'_{b.d} + \delta_{b.d})}]$
	$\times sin(\phi'_{b.d}) / (sin(90 + \delta_{b.d}))]^2) = 7.553$
Overturning check	
Vertical forces on wall	
Wall stem;	$F_{stem} = \gamma_{Gf} \times A_{stem} \times \gamma_{stem} = 32 \text{ kN/m}$
Wall base;	F _{base} = γ _{Gf} × A _{base} × γ _{base} = 18.4 kN/m
Moist retained soil;	$F_{moist_v} = \gamma_{Gf} \times A_{moist} \times \gamma_{mr}' = 26.4 \text{ kN/m}$
Base soil;	$F_{exc_v} = \gamma_{Gf} \times A_{exc} \times \gamma_b' = 10.1 \text{ kN/m}$
Total;	F _{total_v} = F _{stem} + F _{base} + F _{moist_v} + F _{exc_v} = 86.8 kN/m
Horizontal forces on wall	
Surcharge load;	$\label{eq:sur_h} \begin{split} F_{sur_h} &= K_A \times cos(\delta_{r.d}) \times \gamma_Q \times Surcharge_Q \times h_{eff} = \textbf{19.9} \\ kN/m \end{split}$
Moist retained soil;	$F_{moist_h} = \gamma_G \times K_A \times cos(\delta_{r.d}) \times \gamma_{mr}' \times h_{eff}^2 / 2 = \textbf{45.3 kN/m}$

Satural Age	As	9. Newr	narket F nder-Lyı	-	nting		Projec t No.	Docu	iment/ Ite	m Refe	erence			
Project:		54 To	nacliffe	Rd			23-2303	3						
Subject:		Retair	ning Wal	I					Shee	t	11	Of	40	
Issue			1	Date	2	Date	3	Date	4	Date	5		Date	
Made/ Revi	Made/ Revised by DG 05.23													
Checked by														
Approved -														

Base soil;

Total;

Overturning moments on wall Surcharge load; Moist retained soil; Total; Restoring moments on wall Wall stem; Wall base; Moist retained soil; Base soil; Total;

Check stability against overturning **Factor of safety**;

$$\begin{split} &\mathsf{F}_{\mathsf{exc_h}} = \mathsf{max}(\text{-}\gamma_{\mathsf{Gf}} \times \mathsf{K}_{\mathsf{P}} \times \mathsf{cos}(\delta_{b.d}) \times \gamma_{b}' \times (\mathsf{h}_{\mathsf{pass}} + \mathsf{h}_{\mathsf{base}})^2 \, / \\ &2, \, \text{-}(\mathsf{F}_{\mathsf{moist_h}} + \mathsf{F}_{\mathsf{sur_h}})) = \textbf{-42.6} \; \mathsf{kN/m} \\ &\mathsf{F}_{\mathsf{total_h}} = \mathsf{F}_{\mathsf{sur_h}} + \mathsf{F}_{\mathsf{moist_h}} + \mathsf{F}_{\mathsf{exc_h}} = \textbf{22.6} \; \mathsf{kN/m} \end{split}$$

$$\begin{split} M_{sur_OT} &= F_{sur_h} \times x_{sur_h} = \textbf{36.2 kNm/m} \\ M_{moist_OT} &= F_{moist_h} \times x_{moist_h} = \textbf{54.9 kNm/m} \\ M_{total_OT} &= M_{sur_OT} + M_{moist_OT} = \textbf{91.2 kNm/m} \end{split}$$

$$\begin{split} M_{stem_R} &= F_{stem} \times x_{stem} = \textbf{44.8 kNm/m} \\ M_{base_R} &= F_{base} \times x_{base} = \textbf{19.3 kNm/m} \\ M_{moist_R} &= F_{moist_v} \times x_{moist_v} = \textbf{48.8 kNm/m} \\ M_{exc_R} &= F_{exc_v} \times x_{exc_v} = \textbf{6 kNm/m} \\ M_{total_R} &= M_{stem_R} + M_{base_R} + M_{moist_R} + M_{exc_R} = \textbf{118.9 kNm/m} \end{split}$$

FoSot = M_{total_R} / M_{total_OT} = 1.305 PASS - Maximum restoring moment is greater than overturning moment

Bearing pressure check

Vertical forces on wall Wall stem; Wall base; Surcharge load; Moist retained soil; Base soil; Total;

Horizontal forces on wall Surcharge load;

Moist retained soil; Base soil;

Total;

Moments on wall Wall stem; Wall base; Surcharge load; Moist retained soil;
$$\begin{split} F_{stem} &= \gamma_G \times A_{stem} \times \gamma_{stem} = \textbf{32 kN/m} \\ F_{base} &= \gamma_G \times A_{base} \times \gamma_{base} = \textbf{18.4 kN/m} \\ F_{sur_v} &= \gamma_Q \times Surcharge_Q \times I_{heel} = \textbf{6.5 kN/m} \\ F_{moist_v} &= \gamma_G \times A_{moist} \times \gamma_{mr}' = \textbf{26.4 kN/m} \\ F_{pass_v} &= \gamma_G \times A_{pass} \times \gamma_b' = \textbf{15.1 kN/m} \\ F_{total_v} &= F_{stem} + F_{base} + F_{sur_v} + F_{moist_v} + F_{pass_v} = \textbf{98.4 kN/m} \\ \end{split}$$

$$\begin{split} F_{sur_h} &= K_A \times cos(\delta_{r.d}) \times \gamma_Q \times Surcharge_Q \times h_{eff} = \textbf{19.9} \\ kN/m \\ F_{moist_h} &= \gamma_G \times K_A \times cos(\delta_{r.d}) \times \gamma_{mr'} \times h_{eff}^2 / 2 = \textbf{45.3} \ kN/m \\ F_{pass_h} &= max(-\gamma_{Gf} \times K_P \times cos(\delta_{b.d}) \times \gamma_b' \times (d_{cover} + h_{base})^2 / 2, -(F_{moist_h} + F_{sur_h})) = -\textbf{65.2} \ kN/m \\ F_{total_h} &= F_{sur_h} + F_{moist_h} + F_{pass_h} = \textbf{0} \ kN/m \end{split}$$

$$\begin{split} M_{stem} &= F_{stem} \times x_{stem} = \textbf{44.8 kNm/m} \\ M_{base} &= F_{base} \times x_{base} = \textbf{19.3 kNm/m} \\ M_{sur} &= F_{sur_v} \times x_{sur_v} - F_{sur_h} \times x_{sur_h} = \textbf{-24.2 kNm/m} \\ M_{moist} &= F_{moist_v} \times x_{moist_v} - F_{moist_h} \times x_{moist_h} = \textbf{-6.1 kNm/m} \end{split}$$

Stand Angel	15 As	9. New	market F nder-Lyı	-	nting		Projec t No.	Docu	iment/ Itei	m Refe	erence		
Project:		54 To	nacliffe	Rd		23-2303	23-23033						
Subject:		Retai	ning Wal	I					Shee	t	12	Of	40
Issue			1	Date	2	Date	3	Date	4	Date	5		Date
Made/ Revi	evised by DG 05.23												
Checked by													
Approved -													

Base soil; Total;
$$\begin{split} M_{pass} &= F_{pass_v} \times x_{pass_v} = \textbf{9.1 kNm/m} \\ M_{total} &= M_{stem} + M_{base} + M_{sur} + M_{moist} + M_{pass} = \textbf{42.8} \\ kNm/m \end{split}$$

Check bearing pressure	
Propping force;	F _{prop_base} = F _{total_h} = 0 kN/m
Distance to reaction;	$\overline{\mathbf{x}} = \mathbf{M}_{\text{total}} / \mathbf{F}_{\text{total}_v} = 435 \text{ mm}$
Eccentricity of reaction;	e = x - I _{base} / 2 = -615 mm
Loaded length of base;	$I_{load} = 2 \times \bar{x} = 871 \text{ mm}$
Bearing pressure at toe;	q _{toe} = F _{total_v} / I _{load} = 112.9 kN/m ²
Bearing pressure at heel;	q _{heel} = 0 kN/m ²
Effective overburden pressure;	$q = (t_{base} + d_{cover}) \times \gamma_b' = 20 \text{ kN/m}^2$
Design effective overburden pressure;	$q' = q / \gamma_{\gamma} = 20 \text{ kN/m}^2$
Bearing resistance factors;	$N_q = Exp(\pi \times tan(\phi'_{b.d})) \times (tan(45 \text{ deg } + \phi'_{b.d} / 2))^2 =$
	36.651
	$N_{c} = (N_{q} - 1) \times cot(\phi'_{b.d}) = 49.493$
	$N_{\gamma} = 2 \times (N_q - 1) \times tan(\phi'_{b.d}) = 51.36$
Foundation shape factors;	s _q = 1
	s _γ = 1
	s _c = 1
Load inclination factors;	H = F _{sur_h} + F _{moist_h} + F _{pass_h} - F _{prop_base} = 0 kN/m
	V = F _{total_v} = 98.4 kN/m
	m = 2
	$i_q = [1 - H / (V + I_{load} \times c'_{b.d} \times cot(\phi'_{b.d}))]^m = 1$
	$i_{\gamma} = [1 - H / (V + I_{load} \times c'_{b.d} \times cot(\phi'_{b.d}))]^{(m + 1)} = 1$
	i_c = i_q - (1 - i_q) / (N _c × tan($\phi'_{b.d}$)) = 1

Net ultimate bearing capacity

Factor of safety;

 $n_{f} = c'_{b.d} \times N_{c} \times s_{c} \times i_{c} + q' \times N_{q} \times s_{q} \times i_{q} + 0.5 \times \gamma_{b}' \times I_{load} \times N_{\gamma} \times s_{\gamma} \times i_{\gamma} = 1200.8 \text{ kN/m}^{2}$

FoS_{bp} = n_f / max(q_{toe}, q_{heel}) = 10.632

PASS - Allowable bearing pressure exceeds maximum applied bearing pressure

RETAINING WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1 and EN1996-1-1:2005 incorporating Corrigenda dated February 2006 and July 2009 and the UK National Annex

Tedds calculation version 2.9.19

Concrete details - Table 3.1 - Strength and deformation characteristics for concrete Concrete strength class: C28/35

Concrete strength class,	620/35
Characteristic compressive cylinder strength;	f _{ck} = 28 N/mm ²
Characteristic compressive cube strength;	f _{ck,cube} = 35 N/mm ²
Mean value of compressive cylinder strength;	f _{cm} = f _{ck} + 8 N/mm ² = 36 N/mm ²

Sector of Age	As	9. New	market F nder-Lyı	-	nting		Projec t No.	Docu	iment/ Itei	m Refe	erence		
Project:		54 To	nacliffe	Rd		23-2303	23-23033						
Subject:		Retai	ning Wa	I					Shee	t	13	Of	40
Issue 1 Date 2 Date 3							Date	4	Date	5		Date	
Made/ Revi	de/ Revised by DG 05.23												
Checked by													
Approved -													

Mean value of axial tensile strength;	f _{ctm} = 0.3 N/mm ² × (f _{ck} / 1 N/mm ²) ^{2/3} = 2.8 N/mm ²							
5% fractile of axial tensile strength;	$f_{ctk,0.05} = 0.7 \times f_{ctm} = 1.9 \text{ N/mm}^2$							
Secant modulus of elasticity of concrete;	E _{cm} = 22 kN/mm ² × (f _{cm} / 10 N/mm ²) ^{0.3} = 32308 N/mm ²							
Partial factor for concrete - Table 2.1N;	γc = 1.50							
Compressive strength coefficient - cl.3.1.6(1);	$\alpha_{\rm cc} = 0.85$							
Design compressive concrete strength - exp.3.1								
15.9 N/mm ²								
Maximum aggregate size;	h _{agg} = 20 mm							
Ultimate strain - Table 3.1;	$\epsilon_{cu2} = 0.0035$							
Shortening strain - Table 3.1;	ε _{cu3} = 0.0035							
Effective compression zone height factor;	$\lambda = 0.80$							
Effective strength factor;	η = 1.00							
Bending coefficient k ₁ ;	K ₁ = 0.40							
Bending coefficient k ₂ ;	$K_2 = 1.00 \times (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$							
Bending coefficient k ₃ ;	K ₃ =0.40							
Bending coefficient k₄;	$K_4 = 1.00 \times (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$							
Reinforcement details								
Characteristic yield strength of reinforcement;	fvk = 500 N/mm ²							
Modulus of elasticity of reinforcement;	E _s = 200000 N/mm ²							
Partial factor for reinforcing steel - Table 2.1N;	γs = 1.15							
Design yield strength of reinforcement;	f _{yd} = f _{yk} / γs = 435 N/mm²							
Cover to reinforcement								
Top face of base;	c _{bt} = 40 mm							
Bottom face of base;	c _{bb} = 40 mm							
Masonry details - Section 3.1								
Masonry type;	Aggregate concrete - Group 1							
Normalised mean compressive strength;	$f_b = 7.3 \text{ N/mm}^2$							
Characteristic flexural strength - cl.6.3.4(1);	f _{xk} = 0 N/mm ²							
Initial shear strength - Table NA.5;	f _{vko} = 0.15 N/mm²							
Mortar details - Section 3.2								
Mortar type;	General purpose - M6, prescribed mix							
Compressive strength of mortar;	$f_m = 6 \text{ N/mm}^2$							
Ultimate limit states - Table NA.1								
Class of execution control;	1							
Category of manufacture control;	1							
Partial factor for direct or flexural compression;	γ _{Mc} = 2.0							
Partial factor for flexural tension;	умt = 2.3							
Partial factor for shear;	γ _{Mr} = 2.0							
,								

Santural Age 8 Mangahista Mangahista	15 As	9. Newr	market F nder-Lyr	-	hting		Projec t No.	Docu	iment/ Itei	n Refe	erence	,	
Project:		54 Tonacliffe Rd 23-23033											
Subject:		Retair	ning Wal	I					Shee	t	14	Of	40
Issue			1	Date	2	Date	3	Date	4	Date	5		Date
Made/ Revi	ised	by	DG	05.23									
Checked by													
Approved -	roved -												

Characteristic strengths of concrete infill - Table 3.2 Concrete infill strength class; Characteristic compressive strength; Characteristic shear strength; Design shear strength;

C28/35

f_{ck,infill} = 25 N/mm²

f_{cvk,infill} = 0.45 N/mm²

 $f_{cvd,infill} = f_{cvk,infill} \ / \ \gamma_{Mv} = 0.225 \ N/mm^2$

Satural Case 8 Haughter	As	9. New	market F Inder-Lyi		hting		Projec t No.	Docu	iment/ Itei	n Refe	erence					
Project: 54 Tonacliffe Rd									23-23033							
Subject:		Retai	ning Wal	I					Shee	t	15	Of	40			
Issue			1	Date	2	Date	3	Date	4	Date	5		Date			
Made/ Revised by DG 05.23																
Checked by																
Approved -																

Check stem design at base of stem Depth of section;	t = 400 mm							
	t – 400 mm							
Cavity wall details								
Front leaf thickness;	$t_f = 100 \text{ mm}$							
Rear leaf thickness;	t _r = 100 mm							
Masonry characteristics								
Compressive strength constants - Table NA.4	K = 0.750							
Characteristic compressive strength - cl.3.6.1.2 5.162 N/mm ²	2(1) $f_k = K \times f_b^{0.7} \times f_m^{0.3} =$							
Design compressive strength	$f_d = min(f_k, f_{ck,infill}) / \gamma_{Mc} = 2.581 \text{ N/mm}^2$							
Design flexural strength	$f_{xd} = f_{xk} / \gamma_{Mt} = 0 \text{ N/mm}^2$							
Height of masonry	h _{wt} = h _{stem} = 3200 mm							
Compressive axial force combination 0	$F_x = \gamma_{Gf} \times \gamma_{stem} \times h_{wt} \times t = 32 \text{ kN/m}$							
Moment combination 0	$M_x = \gamma_{Gf} \times \gamma_{stem} \times h_{wt} \times t^2 / 2 = 6.4 \text{ kNm/m}$							
Eccentricity of axial load	e = max(abs(t / 2 - M _x / F _x), 0.05 × t) = 20 mm							
Capacity reduction factor - exp.6.4	$\Phi = 1 - 2 \times e / t = 0.9$							
Design vertical resistance - exp.6.2	$N_{Rd} = \Phi \times t \times f_d = 929.2 \text{ kN/m}$							
Design vertical compressive stress	$\sigma_d = min(F_x / t, 0.15 \times N_{Rd} / t) = 0.08 N/mm^2$							
Apparent design flexural strength - exp.6.16	$f_{xd,app} = f_{xd} + \sigma_d = 0.08 \text{ N/mm}^2$							
Limit of charact. shear strength - exp. 3.1;	f _{vk,lim} = 0.065 × f _b = 0.475 N/mm ²							
Characteristic shear strength - exp.3.5	$f_{vk} = min(f_{vko} + 0.4 \times \sigma_d, f_{vk,lim}) = 0.182 \text{ N/mm}^2$							
Design shear strength	$f_{vd} = f_{vk} / \gamma_{Mv} = 0.091 \text{ N/mm}^2$							
Reinforced masonry members subjected to bendir	ng, bending and axial loading, or axial loading - Section 6.6							
Design bending moment combination 2;	M = 65.4 kNm/m							
Tension reinforcement provided;	16 dia.bars @ 200 c/c							
Area of tension reinforcement provided;	$A_{sr.prov} = \pi \times \phi_{sr}^2 / (4 \times s_{sr}) = 1005 \text{ mm}^2/\text{m}$							
Depth to tension reinforcement;	d = 260 mm							
Minimum area of reinforcement - cl.8.2.3(1);	A _{sr.min} = 0.0005 × d = 130 mm²/m							
Lever arm - exp.6.23;	$z = d \times min(1 - 0.5 \times A_{sr.prov} \times f_{yd} / (d \times f_d), 0.95) = 175$							
mm								
Moment of resistance - exp.6.22 and exp.6.24a;	$\label{eq:MRd} \begin{split} M_{Rd} &= min(A_{sr,prov} \times f_{yd} \times z, 0.4 \times f_{d} \times d^2) = \textbf{69.8} \; kNm/m \\ \textbf{M} \; / \; \textbf{M}_{Rd} = \textbf{0.937} \end{split}$							
PAS	SS - Moment of resistance exceeds applied design moment							
Reinforced masonry members subjected to shear	loading - Section 6.7							
Design shear force	V = 53.141 kN/m							
Longitudinal reinforcement ratio - exp.J.2;	ρ _{enh} = A _{sr.prov} / d = 0.004							
Enhanced shear strength - exp.J.1;	$f_{vd,enh1}$ = min((0.35 N/mm ² + 17.5 N/mm ² × ρ_{enh}), 0.7							
	N/mm²) / γ _{Mν} = 0.209 N/mm²							
-								

a_{v,enh} = M / V = **1231** mm

Shear span;

Hanghittes	 Structural Design & Draughting 159. Newmarket Rd. Ashton-under-Lyne 0161 330 3714 Projec t No.									erence			
Project:		54 To	nacliffe I	Rd				23-2303	3				
Subject:		Retair	ning Wal	I					Sheet		16	Of	4
Issue			1	Date	2	Date	3	Date	4	Date	5		Date
Made/ Rev		by	DG	05.23									
Checked I													
Approved	-												
	Enh	ancemen	t factor;				χ = 2.5 - ι	min($0.25 \times a_v$	_{,enh} / d, 1.	5) = 1.32			
	Enh	anced sh	ear strenç	gth - exp.J.	3;	t	f _{vd,enh2} = r	$\min(\chi \times f_{vd,enh})$, 1.75N/n	nm² / γ _{Mv})	= 0.275		
							N/mm²						
	Des	ign shea	r resistar	nce - exp.6	5.40;		V _{Rd} = mir	n(f _{vd,enh2} , f _{cvd,}	_{infill}) × d =	58.5 kN/	n		
						,	V / V _{Rd} =	0.908					
					PA	SS - Des	ign shear	resistance e	xceeds ap	oplied des	ign shea	ar force	
	Hori	izontal rei	nforceme	nt parallel	to face of	stem							
	Min	imum are	ea of rein	forcement	- cl.8.2.3	(4);	A _{sx.req} = (0.0005 × d =	130 mm²/	'n			
	Tra	nsverse i	reinforce	ment prov	ided;		10 dia.ba	ars @ 200 c/d	;				
	Are	a of trans	sverse re	inforceme	nt provid	ed;	A _{sx.prov} =	$\pi \times \phi_{sx}^2$ / (4 >	< s _{sx}) = 39	3 mm²/m			
				PASS - A	rea of rein	forcemen	t provide	d is greater th	nan area d	of reinforce	ement re	equired	
	Che	ck base o	design at t	toe									
	Dep	th of sect	ion;			I	h = 350 n	nm					
	Rec	tangular	section in	flexure - S	ection 6.1								
		-		ent combi			M = 45.2	kNm/m					
		-	-	forcement			d = h - c⊧	_{ob} - φ _{bb} / 2 = 3	06 mm				
					,			$d^2 \times f_{ck}$) = 0.0					
							•	η × α _{cc} /γc)×(1		• K 1)/(2 × I	(2))×(λ >	< (δ -	
	K ₁)/	(2 × K ₂))						1				. (0	
	,	(K' = 0.20	7					
								- > K - No com	pression i	reinforcen	nent is re	equired	
	Lev	er arm;				:).5 + 0.5 × (1				•	
	d =	291 mm					·	· ·					
	Dep	th of neu	utral axis;	;		:	x = 2.5 ×	(d – z) = 38 ı	nm				
	Are	a of tens	ion reinfo	orcement r	equired;		A _{bb.reg} = I	M / (f _{vd} × z) =	358 mm ²	²/m			
	Ten	sion rein	forceme	nt provide	d;		Mesh B5	03 - 8 dia.ba	rs @ 100	c/c			
	Are	a of tens	ion reinfo	prcement p	provided;		A _{bb.prov} =	$\pi \times \phi_{bb}^2 / (4 \times$	< s _{bb}) = 5	03 mm²/m	1		
	Min	imum are	ea of rein	forcement	- exp.9.1	N;	A _{bb.min} =	max(0.26 × f	_{ctm} / f _{yk} , 0	.0013) × d	= 440 r	nm²/m	
				forcemen	-			0.04 × h = 14	-				
							max(A _{bb.}	req, Abb.min) / /	A _{bb.prov} =	0.876			
				PASS - A	rea of rein	forcemen	t provide	d is greater th	nan area d	of reinforce	ement re	equired	
	Cra	ck control	- Section	7.3									
	-		ck width;	-		,	w _{max} = 0.	3 mm					
		-		EN1990 -	Table A1		$\psi_2 = 0.6$	•					
				g moment			•	.8 kNm/m					
			-	-	-								

Tensile stress in reinforcement;

Effective area of concrete in tension;

Load duration;

Load duration factor;

 σ_{s} = M_{sls} / (A_{bb.prov} × z) = 190 N/mm²

 $A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2)$

Long term

kt = **0.4**

Satural Age	As	9. New	market F nder-Lyr		nting		Projec t No.	Docu	iment/ Ite	m Refe	erence				
Project:		54 To	nacliffe	Rd				23-2303	33						
Subject:		Retai	ning Wal	I					Shee	t	17	Of	40		
Issue			1	Date	2	Date	3	Date	4	Date	5		ate		
Made/ Revised by DG 05.23															
Checked by															
Approved	Approved -														

	A _{c.eff} = 103917 mm²/m
Mean value of concrete tensile strength;	$f_{ct.eff} = f_{ctm} = 2.8 \text{ N/mm}^2$
Reinforcement ratio;	$\rho_{p.eff} = A_{bb.prov} / A_{c.eff} = 0.005$
Modular ratio;	$\alpha_e = E_s / E_{cm} = 6.19$
Bond property coefficient;	k ₁ = 0.8
Strain distribution coefficient;	k ₂ = 0.5
	k ₃ = 3.4
	k ₄ = 0.425
Maximum crack spacing - exp.7.11;	$s_{r.max}$ = $k_3 \times c_{bb}$ + $k_1 \times k_2 \times k_4 \times \phi_{bb}$ / $\rho_{p.eff}$ = 417 mm
Maximum crack width - exp.7.8;	$w_k = s_{r.max} \times max(\sigma_s - k_t \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_e \times \rho_{p.eff}),$
	$0.6 imes \sigma_s)$ / Es
	w _k = 0.238 mm
	w _k / w _{max} = 0.793
	PASS - Maximum crack width is less than limiting crack width
Rectangular section in shear - Section 6.2	
Design shear force;	V = 63.7 kN/m
-	$C_{Rd,c} = 0.18 / \gamma_{C} = 0.120$
	k = min(1 + √(200 mm / d), 2) = 1.808
Longitudinal reinforcement ratio;	ρι = min(A _{bb.prov} / d, 0.02) = 0.002
•	v_{min} = 0.035 N ^{1/2} /mm × k ^{3/2} × f _{ck} ^{0.5} = 0.450 N/mm ²
Design shear resistance - exp.6.2a & 6.2b;	$V_{\text{Rd.c}}$ = max($C_{\text{Rd.c}}$ × k × (100 N ² /mm ⁴ × ρ_l × f _{ck}) ^{1/3} , v _{min})
×d	
	V _{Rd.c} = 137.8 kN/m
	V / V _{Rd.c} = 0.462
	PASS - Design shear resistance exceeds design shear force
Check base design at heel	
Depth of section;	h = 350 mm
•	
Rectangular section in flexure - Section 6.1 Design bending moment combination 2;	M = 9.7 kNm/m
Depth to tension reinforcement;	$d = h - c_{bt} - \phi_{bt} / 2 = 306 \text{ mm}$
Depth to tension remotement,	$K = M / (d^2 \times f_{ck}) = 0.004$
	$K' = (2 \times \eta \times \alpha_{cc}/\gamma_c) \times (1 - \lambda \times (\delta - K_1)/(2 \times K_2)) \times (\lambda \times (\delta - K_1)/(2 \times K_2))$
K1)/(2 × K2))	KI = 0.007
	K' = 0.207 K' > K - No compression reinforcement is required
	K' > K - No compression reinforcement is required
Lever arm;	$z = min(0.5 + 0.5 \times (1 - 2 \times K / (\eta \times \alpha_{cc} / \gamma_c))^{0.5}, 0.95) \times$
d = 291 mm	$x = 2.5 \dots (d = z) = 29 mm$
Depth of neutral axis;	$x = 2.5 \times (d - z) = 38 \text{ mm}$
Area of tension reinforcement required;	$A_{bt,req} = M / (f_{yd} \times z) = 76 \text{ mm}^2/\text{m}$

Satural Age	As	9. New	market F nder-Lyı		nting		Projec t No.	Docu	ment/ Ite	m Refe	erence								
Project:	roject: 54 Tonacliffe Rd								33										
Subject:		Retai	ning Wal	I					Shee	t	18	Of	40						
Issue			1	Date	2	Date	3	Date	4	Date	5		Date						
Made/ Rev	ade/ Revised by DG 05.23																		
Checked by																			
Approved	Approved -																		

Tension reinforcement provided;	Mesh B503 - 8 dia.bars @ 100 c/c
Area of tension reinforcement provided;	$A_{bt.prov} = \pi \times \phi_{bt}^2 / (4 \times s_{bt}) = 503 \text{ mm}^2/\text{m}$
Minimum area of reinforcement - exp.9.1N;	$A_{bt.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 440 \text{ mm}^2/\text{m}$
Maximum area of reinforcement - cl.9.2.1.1(3);	A _{bt.max} = 0.04 × h = 14000 mm²/m
	max(A _{bt.req} , A _{bt.min}) / A _{bt.prov} = 0.876

PASS - Area of reinforcement provided is greater than area of reinforcement required

Crack control - Section 7.3	
Limiting crack width;	w _{max} = 0.3 mm
Variable load factor - EN1990 – Table A1.1;	$\psi_2 = 0.6$
Serviceability bending moment;	M _{sis} = 5.5 kNm/m
Tensile stress in reinforcement;	$\sigma_s = M_{sis} / (A_{bt,prov} \times z) = 37.9 \text{ N/mm}^2$
Load duration;	Long term
Load duration factor;	k _t = 0.4
Effective area of concrete in tension;	A _{c.eff} = min(2.5 × (h - d), (h - x) / 3, h / 2)
	A _{c.eff} = 103917 mm²/m
Mean value of concrete tensile strength;	$f_{ct.eff} = f_{ctm} = 2.8 \text{ N/mm}^2$
Reinforcement ratio;	$\rho_{p.eff} = A_{bt.prov} / A_{c.eff} = 0.005$
Modular ratio;	$\alpha_e = E_s / E_{cm} = 6.19$
Bond property coefficient;	k ₁ = 0.8
Strain distribution coefficient;	k ₂ = 0.5
	k ₃ = 3.4
	k ₄ = 0.425
Maximum crack spacing - exp.7.11;	$s_{r.max} = k_3 \times c_{bt} + k_1 \times k_2 \times k_4 \times \phi_{bt} / \rho_{p.eff} = 417 \text{ mm}$
Maximum crack width - exp.7.8;	$w_{k} = s_{r.max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}),$
	$0.6 imes \sigma_s) / E_s$
	w _k = 0.047 mm
	w _k / w _{max} = 0.158
	PASS - Maximum crack width is less than limiting crack width
Rectangular section in shear - Section 6.2	
Design shear force;	V = 36.1 kN/m
	$C_{Rd,c} = 0.18 / \gamma_{C} = 0.120$
	k = min(1 + √(200 mm / d), 2) = 1.808
Longitudinal reinforcement ratio;	ρι = min(A _{bt.prov} / d, 0.02) = 0.002
	v_{min} = 0.035 N ^{1/2} /mm × k ^{3/2} × f _{ck} ^{0.5} = 0.450 N/mm ²
Design shear resistance - exp.6.2a & 6.2b;	$V_{\text{Rd.c}} = \max(C_{\text{Rd.c}} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_I \times f_{\text{ck}})^{1/3}, v_{\text{min}})$
×d	
	V _{Rd.c} = 137.8 kN/m
	V / V _{Rd.c} = 0.262
	PASS - Design shear resistance exceeds design shear force

Sector of Age	15 As	9. Newr	market F nder-Lyr	-	Projec t No.	Docu	iment/ Itei	n Refe	erence									
Project:		54 To	nacliffe	Rd			23-2303	33				40						
Subject:		Retair	ning Wal	I					Shee	t	19	Of	40					
Issue			1	Date	2	Date	3	Date	4	Date	5		Date					
Made/ Revi	e/ Revised by DG 05.23																	
Checked by																		
Approved -	Approved -																	

Secondary transverse reinforcement to base - Section 9.3 Minimum area of reinforcement – cl.9.3.1.1(2); $A_{bx.req} = 0.2 \times A_{bb.prov} = 101 \text{ mm}^2/\text{m}$ Maximum spacing of reinforcement - cl.9.3.1.1(3); s_{bx_max} = 450 mm Transverse reinforcement provided; Mesh - 8 dia.bars @ 200 c/c Area of transverse reinforcement provided; $A_{bx,prov} = \pi \times \phi_{bxt}^2 / (4 \times s_{bxt}) = 251 \text{ mm}^2/\text{m}$ PASS - Area of reinforcement provided is greater than area of reinforcement required Secondary transverse reinforcement to base - Section 9.3 Minimum area of reinforcement – cl.9.3.1.1(2); $A_{bx,req} = 0.2 \times A_{bb,prov} = 101 \text{ mm}^2/\text{m}$ Maximum spacing of reinforcement - cl.9.3.1.1(3); s_{bx_max} = 450 mm Transverse reinforcement provided; Mesh - 8 dia.bars @ 200 c/c Area of transverse reinforcement provided; $A_{bx,prov} = \pi \times \phi_{bxb}^2 / (4 \times s_{bxb}) = 251 \text{ mm}^2/\text{m}$ PASS - Area of reinforcement provided is greater than area of reinforcement required

Sector of Age	15 As	9. Newr	narket F nder-Lyı	-	Projec t No.	Docu	iment/ Itei	m Refe	erence)			
Project:		54 To	nacliffe	Rd			23-2303	33					
Subject:		Draina	age						Shee	t	20	Of	40
Issue			1	Date	2	Date	3	Date	4	Date	5		Date
Made/ Revis	sed by DG 05.23												
Checked by	Checked by												
Approved -													

Calculation for the surface water and foul drainage for the proposed property on land at the rear of 54. Tnnacliffe Rd. Whitworth.

British Standards and	British Standards and Codes of Practice										
BS EN 12056-3:2000	Design Rainfall and Drainage of an Area										
Chezy Formulas)										
Escritt Formulas)	Formulae for the sizing and flow rates of gutters and drain runs										
Colebrook White For	nulas)										

Design has been carried out in accordance with accepted international practice and utilising the above standards and industry best practice.

Satural Age	As	9. Newr	market F nder-Lyı	-	hting		Projec t No.	Docu	iment/ Ite	m Refe	erence)				
Project:		54 To	nacliffe	Rd			23-2303	33				40 Date				
Subject:		Draina	age						Shee	t	21	Of	40			
Issue			1	Date	2	Date	3	Date	4	Date	5		Date			
Made/ Revi	ised	sed by DG 05.23														
Checked b	Checked by															
Approved -	-															

In accordance with the National Planning Practice Guidance, the proposed drainage scheme for the plot on land at the rear of 54 Tonnacliffe Rd. has been made after consideration of the required drainage hierarchy as follows: -

Infiltration

Two trial holes were excavated on the site. These trial holes both showed a layer of topsoil (200mm approx.). This top soil overlay sandy gravel of unknown depth. The hole in the area of the house hit rock at 200mm approx. Percolation tests were carried out at both trial pits. These tests showed that the fall in water level was significant with the holes fully draining within 90 seconds.

Infiltration drainage was therefore discounted. Location plan and photographs of the trial holes are attached.

Drainage to a local water course

There are no water courses within a reasonable distance and without passing through other properties and a major road.

Connection to a surface water sewer, highways drain, or another drainage system There are no surface water or highways drains within the site proximity.

Connection to a combined sewer

The drainage system at the rear of 54 Tonnacliffe Road is a public combined sewer system which runs on the far side of the access road and serves the 2 properties on Oakenshaw Avenue. This system culminates in a 225mm diameter combined sewer running generally North South along the A671 Market Street.

Sector of Age	As	9. Newı	market F nder-Lyı	-	hting		Projec t No.	Docu	iment/ Itei	m Refe	erence	9					
Project:		54 To	nacliffe	Rd			23-2303	33									
Subject:		Drain	age						Shee	t	22	Of	40				
Issue			1	Date	2	Date	3	Date	4	Date	5		Date				
Made/ Revi																	
Checked b	necked by																
Approved -	d -																

Percolation Test Results

Trial Pit 1

As specified, the trial pit was dug 500x500x500 then 300x300x1.0m giving a total depth of 1.5m and the surrounding soaked. The hole was then filled to a pre marked level. Within 90 seconds the hole had drained. This was repeated 3 times and the longest recorded time was 90 seconds.

Test 1	1				
	Water Level Full	420.0mm			
	Water Level	0.0mm	VP =	85 / 420 =	0.2
Test 2	2				
	Water Level Full	420.0mm			
	Water Level	0.0mm	VP =	88 / 420 =	0.2
Test 3	3				
	Water Level Full	420.0mm			
	Water Level	0.0mm	VP =	90 / 420 =	0.2

Trial Pit 2

Trial pit 2 hit rock at 200mm. Additional positions were tried within the area of the proposed property foundation with rock being found at a similar depth in all 3 locations. This trial pit was therefore abandoned.

As the water drained freely in all cases with an average VP of 0.2, it is considered that the soil in this site is unsuitable for infiltration drainage to be considered viable. A VP lower than 5 is considered to indicate that the speed of infiltration is likely to wash fines and cause settlement of the surrounding ground.

Anglitan	Structura 159. New Ashton-u 0161 330	market F Inder-Lyi	-	nting			Projec t No.	Document/ Item Reference				
Project:	54 To	onacliffe	Rd				23-23033	3				
Subject:	Drair	nage						Shee	et	23	Of	40
Issue		1	Date	2	Date	3	Date	4	Date	5		Date
Made/ Revi	sed by	DG	05.23									
Checked by												
Approved -												
Gu	itters ea to be dr DESIGN RA		8.	6 x 6.9 /	2 =	29.7	m² / Gutte	r			1	
	itters ea to be dra	INFALL	-			29.7	m² / Gutte	r	Tedds calc	ulation v	ersion 2	2.0.02
Gu	itters ea to be dra DESIGN RA	INFALL ce with the	Wallingford			29.7	m² / Gutte	r	Tedds calc		ersion 2	2.0.02
Gu	Itters ea to be dra <u>DESIGN RA</u> In accordanc	<u>INFALL</u> ce with the all intensity	Wallingford		ire	29.7 Mancheste		r	Tedds calc	ulation v	ersion 2	2.0.02
Gu	Itters ea to be dra <u>DESIGN RA</u> In accordance Design rainfa	INFALL ce with the all intensity catchmer	Wallingford		re	-	er	r	Tedds calc	ulation v	ersion 2	2.0.02

r = 0.360

Tedds calculation version 2.0.02

5-year return period rainfall of 60 minutes duration;M5_60min = 18.0 mmIncrease of rainfall intensity due to global warming; $p_{climate} = 0 \%$ Factor Z1 (Wallingford procedure);Z1 = 0.79Rainfall for 30min storm with 5 year return period;M5_30mini = Z1 × M5_60min = 14.2 mmFactor Z2 (Wallingford procedure);Z2 = 1.52Rainfall for 30min storm with 30 year return period;M30_30min = Z2 × M5_30mini = 21.6 mmDesign rainfall intensity; $I_{max} = M30_30min / D = 43.3 mm/hr$ Maximum surface water runoffCatchment area:

Catchment area; $A_{catch} = 60 \text{ m}^2$ Percentage of area that is impermeable;p = 100 %Maximum surface water runoff; $Q_{max} = A_{catch} \times p \times I_{max} = 0.7 \text{ l/s}$

DESIGN RAINFALL

In accordance with the Wallingford Procedure

Ratio 60 min to 2 day rainfall of 5 yr return period;

Design rainfall intensity Location of catchment area; Manchester D = 30 min Storm duration: Period = 100 yr Return period; Ratio 60 min to 2 day rainfall of 5 yr return period; r = 0.360 M5_60min = 18.0 mm 5-year return period rainfall of 60 minutes duration; Increase of rainfall intensity due to global warming; p_{climate} = 40 % Factor Z1 (Wallingford procedure); Z1 = 0.79 Rainfall for 30min storm with 5 year return period; $M5_{30min_i} = Z1 \times M5_{60min} \times (1 + p_{climate}) = 19.9 mm$ Factor Z2 (Wallingford procedure); Z2 = 2.03 Rainfall for 30min storm with 100 year return period; M100 30min = $Z2 \times M5$ 30min = 40.4 mm Design rainfall intensity; I_{max} = M100_30min / D = 80.8 mm/hr Maximum surface water runoff Catchment area; $A_{catch} = 60 \text{ m}^2$

Stural Age & & Magniture	15 As	9. New	market F nder-Lyi		hting		Projec t No.	Docι	ument/ Iter	n Refe	erence		
Project:		54 To	nacliffe	Rd			23-2303	3					
Subject:		Drain	age						Shee	et	24	Of	40
Issue			1	Date	2	Date	3	Date	4	Date	5		Date
Made/ Revi	sed	by	DG	05.23									
Checked by													
Approved -													

Percentage of area that is impermeable; Maximum surface water runoff;

p = 100 % $Q_{max} = A_{catch} \times p \times I_{max} = 1.3$ I/s

Roof drainage gutters - to BS EN 12056-3:2000 (with Amd. No. 17041)

Effective area of roof - Clause 4.3	
Width of roof from gutter to ridge	Br=3.45 m
Length of roof to be drained	Lr=8.60 m
No allowance will be made for wind.	
Effective roof area	A=Lr*Br=8.6*3.45=29.67 m¬2
Rainfall intensity	r=0.021 l/(s.m2)
The runoff coefficient	C=1
Rate of flow of water (Clause 4.1)	Q=r*A*C=0.021*29.67*1
	=0.62 l/s

Capacity of gutter - Clause 5.1	
Nominal half round eaves gutter; of width 100 m	m
Full cross-sectional area of gutter	Ae=3926 mm¬2
Nominal capacity of the gutter	Qn=2.78*1.0E-5*Ae^1.25
	=2.78*1.0E-5*3926^1.25 = 0.86 l/s
Depth of water below designed water line	W=50 mm
Capacity of gutter	QI=0.9*Qn=0.9*0.86394 = 0.78 I/s

Long gutters Length of gutter L=8.6 m Ratio of length to maximum depth L'W=L*1000/W=8.6*1000/50 = 172 As the drainage length of the gutter exceeds 50 times the design water depth, W, the gutter will be considered to be "long". The capacity of the gutter will be multiplied by the appropriate capacity factor, FI, from Table 6. Gradient of gutter Ggrad=3 mm/m The gutter is referred to as "normally level" as the gradient is not more than 3 mm/m. **Reduction factor** FI=0.8336 QI=QI*FI=0.77754*0.8336 = 0.65 I/s Capacity of gutter Since Q <= QI (0.62307 <= 0.65) capacity of gutter is sufficient.

The outlet is not fitted with a strainer or grating.	
Outlet coefficient	Ko=1.0
Outlet head factor (Figure 10)	Fh=0.65
Gutter critical depth of flow	yc=Fh*W=0.65*50=32.5 mm
Gutter discharge to outlet	Q=Q=0.62307 L/s

Gutter discharges into a circular downpipe.

Outlet sizing - Clause 5.3 Diameter of circular downpipe D=65 mm Note: A non-circular rainwater pipe could be used provided it has the same cross sectional area as a circular downpipe of internal diameter 65 mm i.e. Area required = 3316.6 mm²

From Table 8, assuming a filling degree of 0.33 and a pipe roughness

Satural Ange 8 Manguntan	As	9. Newr	narket R nder-Lyr	-	hting		Projec t No.	Docu	iment/ Itei	m Refe	erence)	
Project:		54 To	nacliffe	Rd				23-2303	33				
Subject:		Draina	age						Shee	t	25	Of	40
Issue			1	Date	2	Date	3	Date	4	Date	5		Date
Made/ Revi	ised	d by DG 05.23											
Checked b	у												
Approved -	-												

of 0.25 mm the capacity of the rainwater pipe in I/s is given by the following expression:

Qrwp=(2.5*10^-4*0.25^-0.167*D^2.667*0.33^1.667)*Ko =(2.5*10^-4*0.25^-0.167*65^2.667*0.33^1.667)*1 = 3.4 I/s As Qrwp > Q (3.3954 > 0.62307) the gutter will discharge freely and the size of the outlet is satisfactory.

DESIGN	Gutter is a nominal half round	
SUMMARY	(segmental) gutter	
	Width of gutter	100 mm
	Capacity of gutter is	0.65 l/s
	Rate of flow of water	0.62 l/s
	Diameter of outlet pipe	65 mm

Satural Age	As	9. Newı	market F nder-Lyı	-	nting		Projec t No.	Docu	iment/ Itei	m Refe	erence	•	
Project:		54 To	nacliffe	Rd				23-2303	3				
Subject:		Draina	age						Shee	t	26	Of	40
Issue			1	Date	2	Date	3	Date	4	Date	5	1	Date
Made/ Rev	ised	by	DG	05.23									
Checked b	у												
Approved	-												

Surface Water Drain RWP to IC 3

Length = 7.92m

Minimum Fall = 1 in 100

TEDDS calculation version 1.0.04

Drain design details	
Design flow rate;	$Q_{design} = 5.00 \times 10^{-3} \text{ m}^3/\text{s}$
Length of the drain;	L = 7.9 m
Fall along length of drain;	h = 0.080 m
Gradient of drain;	i = h / L = 0.010; (1 in 99)
Minimum flow velocity;	V _{min} = 0.750 m/s
Minimum pipe diameter;	D _{min} = 100 mm
Surface roughness;	k _s = 0.6 mm
Mean hydraulic depth factor;	m = 0.25
Kinematic viscosity of fluid;	v = 1.31×10 ⁻⁶ m²/s
Using the Chezy equation	
Constant;	c = 56
Diameter of pipe required;	$D = ((Q_{design}^2 \times 16) / (\pi^2 \times m \times c^2 \times i \times 1m/s^2))^{0.2} = 87 \text{ mm}$
Nearest pipe diameter;	D _{chezy} = 100 mm
Flow velocity using Chezy;	$V_{chezy} = c \times \sqrt{(m \times D_{chezy} \times i \times 1m/s^2)} = 0.890 \text{ m/s}$
Using the Escritt equation	
Diameter of pipe required;	D = (Q _{design} × 1000 × √(1 / i) / 0.00035 m³/s) ^{0.382} × 1mm =
93 mm	
Nearest pipe diameter;	D _{escritt} = 100 mm
Flow velocity using Escritt;	V _{escritt} = 26.738 × (D _{escritt} / 1mm) ^{0.62} ×1 m/s / (√(1 / i) × 60) =
0.778 m/s	
Using the Colebrook-White Equation for pipe runnir	ng full and partially full
Design pipe diameter;	D _{design} = max(D _{chezy} , D _{escritt} , D _{min}) = 100 mm
Constant;	$Z=\sqrt{(2\times(g_{acc}\ /\ 1m/s^2)\times(D_{design}\ /1000mm)\times i)}=0.141$

Flow velocity; $D_{\text{design}}))+((2.51\times\nu)/(D_{\text{design}}\times Z\times 1m/s)))\times 1m/s$ $V_{full} = -2 \times Z \times log((k_s/(3.7 \times$

Sectoral Age 4 Maggintan	159 As	9. New	market F nder-Lyı	-	nting		Projec t No.	Docu	iment/ Ite	m Refe	erence)	
Project:		54 To	nacliffe	Rd				23-2303	33				
Subject:		Drain	age						Shee	t	27	Of	40
Issue			1	Date	2	Date	3	Date	4	Date	5		Date
Made/ Revi	sed	by DG 05.23											
Checked by	у												
Approved -	•												

Flow rate running full;

V_{full} = 0.769 m/s

 $Q_{full} = V_{full} \times \pi \times D_{design}^2 / 4 = 6.04 \times 10^{-3} \text{ m}^3/\text{s}$

PASS - Maximum flow rate is greater than design flow rate

From Hydraulics Research Tables 35 and 36 Depth as proportion of D;

x = 0.696

Flow velocity at design flow rate;

V_{design} = 0.858 m/s

PASS - Design velocity is greater than 0.750 m/s

Satural Age	As	9. New	market F nder-Lyı	-	hting		Projec t No.	Docu	iment/ Itei	m Refe	erence	ł	
Project:		54 To	nacliffe	Rd			23-2303	3					
Subject:		Drain	age						Shee	t	28	Of	40
Issue			1	Date	2	Date	3	Date	4	Date	5		Date
Made/ Rev	ised												
Checked b	y												
Approved	-												

Foul Drain

Constant;

Length = 22.4m

Minimum Fall = 1 in 80

DESIGN OF A FOUL SEWER

TEDDS calculation version 1.0.04

Sewer design details	
Design flow rate;	Q _{design} = 5.00×10 ⁻³ m ³ /s
Length of the sewer;	L = 22.4 m
Fall along length of sewer;	h = 0.280 m
Gradient of sewer;	i = h / L = 0.013; (1 in 80)
Minimum flow velocity;	V _{min} = 0.750 m/s
Minimum pipe diameter;	D _{min} = 100 mm
Surface roughness;	k _s = 1.5 mm
Mean hydraulic depth factor;	m = 0.30
Kinematic viscosity of fluid;	ν = 1.31×10 ⁻⁶ m²/s
Using the Chezy equation	
Constant;	c = 56
Diameter of pipe required;	$D = ((Q_{\text{design}^2} \times 16) / (\pi^2 \times m \times c^2 \times i \times 1m/s^2))^{0.2} = 81 \text{ mm}$
Nearest pipe diameter;	D _{chezy} = 100 mm
Flow velocity using Chezy;	$V_{chezy} = c \times \sqrt{(m \times D_{chezy} \times i \times 1m/s^2)} = 1.084 \text{ m/s}$
Using the Escritt equation	
Diameter of pipe required;	D = (Q _{design} × 1000 × √(1 / i) / 0.00035 m³/s) ^{0.382} × 1mm =
89 mm	
Nearest pipe diameter;	D _{escritt} = 100 mm
Flow velocity using Escritt;	V _{escritt} = 26.738 × (D _{escritt} / 1mm) ^{0.62} ×1 m/s / (√(1 / i) × 60) =
0.866 m/s	

Using the Colebrook-White Equation for pipe running full and partially full D_{design} = max(D_{chezy}, D_{escritt}, D_{min}) = 100 mm Design pipe diameter; $Z = \sqrt{(2 \times (g_{acc} / 1m/s^2) \times (D_{design} / 1000mm) \times i)} = 0.157$

Satural Age	As	9. Newr	narket R nder-Lyr	-	hting			Projec t No.	Docu	iment/ Ite	m Refe	erence	
Project:		54 To	nacliffe	Rd				23-2303	33				
Subject:		Draina	age						Shee	t	29	Of	40
Issue			1	Date	2	Date	3	Date	4	Date	5		Date
Made/ Revi	ised	by	DG	05.23									
Checked b	у												
Approved -	-												

Flow velocity; D_{design}))+((2.51×v)/(D_{design}×Z×1m/s)))×1m/s $V_{full} = -2 \times Z \times log((k_s/(3.7 \times$

Flow rate running full;

V_{full} = 0.742 m/s

 $Q_{full} = V_{full} \times \pi \times D_{design}^2 \, / \, 4 = 5.83 \times 10^{-3} \ m^3/s$

PASS - Maximum flow rate is greater than design flow rate

From Hydraulics Research Tables 35 and 36 Depth as proportion of D;

Flow velocity at design flow rate;

x = 0.715

PASS - Design pipe flow less than 0.75 times full depth

V_{design} = 0.832 m/s

PASS - Design velocity is greater than 0.750 m/s

Satural Days	As	9. Newı	market F nder-Lyr	-	nting			Projec t No.	Docu	iment/ Ite	m Refe	erence)
Project:		54 To	nacliffe	Rd				23-2303	33				
Subject:		Slope	Stability	y					Shee	t	30	Of	40
Issue			1	Date	2	Date	3	Date	4	Date	5		Date
Made/ Revi	ised	by	DG	05.23									
Checked b	у												
Approved -	-												

SLOPE STABILITY - SLIP CIRCLE ANALYSIS

Tedds calculation version 1.0.02

Drained stability - Bishop's simplified method effective stress analysis

Shear resistance of lower soil;

Pore pressure ratio;

Slice No.	Area (m²)	W (kN/m)	x (mm)	α (deg)	B (kN/m)	T (kN/m)
1	0.0	0.0	-2968	-11.4	0.5	0.0
2	0.0	0.1	-2928	-11.3	0.6	0.0

r_u = 0.3

Satural Ange 8 1 Mangentan	As	9. Newr	market F nder-Lyr	-	nting			Projec t No.	Docu	iment/ Ite	m Refe	erence	
Project:		54 To	nacliffe	Rd				23-2303	33				
Subject:		Slope	Stability	y					Shee	t	31	Of	40
Issue			1	Date	2	Date	3	Date	4	Date	5		Date
Made/ Revi	ised	by	DG	05.23									
Checked b	у												
Approved -	-												

Slice No.	Area (m²)	W (kN/m)	x (mm)	α (deg)	B (kN/m)	T (kN/m)
3	0.0	0.1	-2880	-11.1	0.6	0.0
4	0.0	0.1	-2831	-10.9	0.6	0.0
5	0.0	0.1	-2783	-10.7	0.6	0.0
6	0.0	0.2	-2735	-10.7	0.6	0.0
7	0.0	0.2	-2735	-10.5	0.6	0.0
		0.2				0.0
8	0.0		-2639	-10.1	0.7	
9	0.0	0.3	-2591	-9.9	0.7	-0.1
10	0.0	0.3	-2543	-9.8	0.7	-0.1
11	0.0	0.4	-2494	-9.6	0.7	-0.1
12	0.0	0.4	-2446	-9.4	0.7	-0.1
13	0.0	0.4	-2398	-9.2	0.7	-0.1
14	0.0	0.5	-2350	-9.0	0.8	-0.1
15	0.0	0.5	-2302	-8.8	0.8	-0.1
16	0.0	0.5	-2254	-8.6	0.8	-0.1
17	0.0	0.6	-2205	-8.5	0.8	-0.1
18	0.0	0.6	-2157	-8.3	0.8	-0.1
19	0.0	0.6	-2109	-8.1	0.8	-0.1
20	0.0	0.7	-2061	-7.9	0.9	-0.1
21	0.0	0.7	-2013	-7.7	0.9	-0.1
22	0.0	0.7	-1965	-7.5	0.9	-0.1
23	0.0	0.8	-1917	-7.3	0.9	-0.1
24	0.0	0.8	-1868	-7.2	0.9	-0.1
25	0.0	0.8	-1820	-7.0	0.9	-0.1
26	0.0	0.9	-1772	-6.8	1.0	-0.1
27	0.1	0.9	-1724	-6.6	1.0	-0.1
28	0.1	0.9	-1676	-6.4	1.0	-0.1
29	0.1	1.0	-1628	-6.2	1.0	-0.1
30	0.1	1.0	-1580	-6.0	1.0	-0.1
31	0.1	1.0	-1531	-5.9	1.0	-0.1
32	0.1	1.1	-1483	-5.7	1.0	-0.1
33	0.1	1.1	-1435	-5.5	1.1	-0.1
34	0.1	1.1	-1387	-5.3	1.1	-0.1
35	0.1	1.2	-1339	-5.1	1.1	-0.1
36	0.1	1.2	-1291	-4.9	1.1	-0.1

Satural Age 8 4 Magintation	As	9. Newr	market F nder-Lyr	-	nting			Projec t No.	Docu	iment/ Itei	m Refe	erence	
Project:		54 To	nacliffe	Rd				23-2303	33				
Subject:		Slope	Stability	y					Shee	t	32	Of	40
Issue			1	Date	2	Date	3	Date	4	Date	5		Date
Made/ Revi	ised	by	DG	05.23									
Checked by	у												
Approved -	-												

Slice	Area	W	x	α	В	Т
No.	(m²)	(kN/m)	(mm)	(deg)	(kN/m)	(kN/m)
37	0.1	1.2	-1242	-4.8	1.1	-0.1
38	0.1	1.3	-1194	-4.6	1.1	-0.1
39	0.1	1.3	-1146	-4.4	1.1	-0.1
40	0.1	1.3	-1098	-4.2	1.2	-0.1
41	0.1	1.4	-1050	-4.0	1.2	-0.1
42	0.1	1.4	-1002	-3.8	1.2	-0.1
43	0.1	1.4	-954	-3.6	1.2	-0.1
44	0.1	1.4	-905	-3.5	1.2	-0.1
45	0.1	1.5	-857	-3.3	1.2	-0.1
46	0.1	1.5	-809	-3.1	1.2	-0.1
47	0.1	1.5	-761	-2.9	1.3	-0.1
48	0.1	1.6	-713	-2.7	1.3	-0.1
49	0.1	1.6	-665	-2.5	1.3	-0.1
50	0.1	1.6	-616	-2.4	1.3	-0.1
51	0.1	1.7	-568	-2.2	1.3	-0.1
52	0.1	1.7	-520	-2.0	1.3	-0.1
53	0.1	1.7	-472	-1.8	1.3	-0.1
54	0.1	1.7	-424	-1.6	1.3	0.0
55	0.1	1.8	-376	-1.4	1.4	0.0
56	0.1	1.8	-328	-1.3	1.4	0.0
57	0.1	1.8	-279	-1.1	1.4	0.0
58	0.1	1.9	-231	-0.9	1.4	0.0
59	0.1	1.9	-183	-0.7	1.4	0.0
60	0.1	1.9	-135	-0.5	1.4	0.0
61	0.1	1.9	-87	-0.3	1.4	0.0
62	0.1	2.0	-39	-0.1	1.5	0.0
63	0.1	2.0	9	0.0	1.5	0.0
64	0.1	2.0	58	0.2	1.5	0.0
65	0.1	2.1	106	0.4	1.5	0.0
66	0.1	2.1	154	0.6	1.5	0.0
67	0.1	2.1	202	0.8	1.5	0.0
68	0.1	2.1	250	1.0	1.5	0.0
69	0.1	2.2	298	1.1	1.5	0.0
70	0.1	2.2	347	1.3	1.5	0.1

Satural Age 8 4 Magintation	As	9. Newr	market F nder-Lyr	-	nting			Projec t No.	Docu	iment/ Itei	m Refe	erence	
Project:		54 To	nacliffe	Rd				23-2303	33				
Subject:		Slope	Stability	y					Shee	t	33	Of	40
Issue			1	Date	2	Date	3	Date	4	Date	5		Date
Made/ Revi	sed	by	DG	05.23									
Checked by	У												
Approved -													

Slice	Area	W (kN/m)	X (mm)	α	B	T (Ichl/m)
No.	(m²)	(kN/m)	(mm)	(deg)	(kN/m)	(kN/m)
71	0.1	2.2	395	1.5	1.6	0.1
72	0.1	2.2	443	1.7	1.6	0.1
73	0.1	2.3	491	1.9	1.6	0.1
74	0.1	2.3	539	2.1	1.6	0.1
75	0.1	2.3	587	2.2	1.6	0.1
76	0.1	2.4	635	2.4	1.6	0.1
77	0.1	2.4	684	2.6	1.6	0.1
78	0.1	2.4	732	2.8	1.6	0.1
79	0.1	2.4	780	3.0	1.6	0.1
80	0.1	2.5	828	3.2	1.7	0.1
81	0.1	2.5	876	3.3	1.7	0.1
82	0.1	2.5	924	3.5	1.7	0.2
83	0.1	2.5	973	3.7	1.7	0.2
84	0.1	2.6	1021	3.9	1.7	0.2
85	0.1	2.6	1069	4.1	1.7	0.2
86	0.1	2.6	1117	4.3	1.7	0.2
87	0.1	2.6	1165	4.5	1.7	0.2
88	0.1	2.7	1213	4.6	1.7	0.2
89	0.1	2.7	1261	4.8	1.8	0.2
90	0.2	2.7	1310	5.0	1.8	0.2
91	0.2	2.7	1358	5.2	1.8	0.2
92	0.2	2.8	1406	5.4	1.8	0.3
93	0.2	2.8	1454	5.6	1.8	0.3
94	0.2	2.8	1502	5.7	1.8	0.3
95	0.2	2.8	1550	5.9	1.8	0.3
96	0.2	2.8	1598	6.1	1.8	0.3
97	0.2	2.9	1647	6.3	1.8	0.3
98	0.2	2.9	1695	6.5	1.8	0.3
99	0.2	2.9	1743	6.7	1.9	0.3
100	0.2	2.9	1791	6.9	1.9	0.4
101	0.2	3.0	1839	7.0	1.9	0.4
102	0.2	3.0	1887	7.2	1.9	0.4
103	0.2	3.0	1936	7.4	1.9	0.4
104	0.2	3.0	1984	7.6	1.9	0.4

Sactoral Age 8 Maggintan	As	9. Newr	narket F nder-Lyı	-	nting			Projec t No.	Docι	iment/ Ite	m Refe	erence	
Project:		54 To	nacliffe	Rd				23-2303	33				
Subject:		Slope	Stability	y					Shee	t	34	Of	40
Issue			1	Date	2	Date	3	Date	4	Date	5	1	Date
Made/ Revi	sed	by	DG	05.23									
Checked b	у												
Approved -	•												

Slice	Area	W	x	α	В	Т
No.	(m²)	(kN/m)	(mm)	(deg)	(kN/m)	(kN/m)
105	0.2	3.1	2032	7.8	1.9	0.4
106	0.2	3.1	2080	8.0	1.9	0.4
107	0.2	3.1	2128	8.2	1.9	0.4
108	0.2	3.1	2176	8.3	1.9	0.5
109	0.2	3.1	2224	8.5	2.0	0.5
110	0.2	3.2	2273	8.7	2.0	0.5
111	0.2	3.2	2321	8.9	2.0	0.5
112	0.2	3.2	2369	9.1	2.0	0.5
113	0.2	3.2	2417	9.3	2.0	0.5
114	0.2	3.2	2465	9.5	2.0	0.5
115	0.2	3.3	2513	9.6	2.0	0.5
116	0.2	3.3	2562	9.8	2.0	0.6
117	0.2	3.3	2610	10.0	2.0	0.6
118	0.2	3.3	2658	10.2	2.0	0.6
119	0.2	3.3	2706	10.4	2.0	0.6
120	0.2	3.4	2754	10.6	2.1	0.6
121	0.2	3.4	2802	10.8	2.1	0.6
122	0.2	3.4	2850	11.0	2.1	0.6
123	0.2	3.4	2899	11.1	2.1	0.7
124	0.2	3.4	2947	11.3	2.1	0.7
125	0.2	3.5	2995	11.5	2.1	0.7
126	0.2	3.5	3043	11.7	2.1	0.7
127	0.2	3.5	3091	11.9	2.1	0.7
128	0.2	3.5	3139	12.1	2.1	0.7
129	0.2	3.5	3187	12.3	2.1	0.8
130	0.2	3.6	3236	12.5	2.1	0.8
131	0.2	3.6	3284	12.6	2.1	0.8
132	0.2	3.6	3332	12.8	2.2	0.8
133	0.2	3.6	3380	13.0	2.2	0.8
134	0.2	3.6	3428	13.2	2.2	0.8
135	0.2	3.7	3476	13.4	2.2	0.8
136	0.2	3.7	3525	13.6	2.2	0.9
137	0.2	3.7	3573	13.8	2.2	0.9
138	0.2	3.7	3621	14.0	2.2	0.9

Satural Age 8 4 Magintation	As	9. Newr	market F nder-Lyr	-	nting			Projec t No.	Docu	iment/ Itei	m Refe	erence	
Project:		54 To	nacliffe	Rd				23-2303	33				
Subject:		Slope	Stability	y					Shee	t	35	Of	40
Issue			1	Date	2	Date	3	Date	4	Date	5		Date
Made/ Revi	ised	by	DG	05.23									
Checked by	у												
Approved -	-												

Slice	Area	W	x	α	В	Т
No.	(m²)	(kN/m)	(mm)	(deg)	(kN/m)	(kN/m)
139	0.2	3.7	3669	14.2	2.2	0.9
140	0.2	3.7	3717	14.3	2.2	0.9
141	0.2	3.8	3765	14.5	2.2	0.9
142	0.2	3.8	3813	14.7	2.2	1.0
143	0.2	3.8	3862	14.9	2.2	1.0
144	0.2	3.8	3910	15.1	2.3	1.0
145	0.2	3.8	3958	15.3	2.3	1.0
146	0.2	3.9	4006	15.5	2.3	1.0
147	0.2	3.9	4054	15.7	2.3	1.0
148	0.2	3.9	4102	15.9	2.3	1.1
149	0.2	3.9	4151	16.1	2.3	1.1
150	0.2	3.9	4199	16.3	2.3	1.1
151	0.2	3.9	4247	16.4	2.3	1.1
152	0.2	4.0	4295	16.6	2.3	1.1
153	0.2	4.0	4343	16.8	2.3	1.2
154	0.2	4.0	4391	17.0	2.3	1.2
155	0.2	4.0	4439	17.2	2.3	1.2
156	0.2	4.0	4488	17.4	2.3	1.2
157	0.2	4.0	4536	17.6	2.3	1.2
158	0.2	4.0	4584	17.8	2.3	1.2
159	0.2	4.0	4632	18.0	2.3	1.2
160	0.2	4.0	4680	18.2	2.3	1.2
161	0.2	4.0	4728	18.4	2.3	1.2
162	0.2	3.9	4777	18.6	2.3	1.3
163	0.2	3.9	4825	18.8	2.3	1.3
164	0.2	3.9	4873	19.0	2.3	1.3
165	0.2	3.9	4921	19.1	2.3	1.3
166	0.2	3.9	4969	19.3	2.3	1.3
167	0.2	3.9	5017	19.5	2.3	1.3
168	0.2	3.9	5065	19.7	2.3	1.3
169	0.2	3.8	5114	19.9	2.3	1.3
170	0.2	3.8	5162	20.1	2.3	1.3
171	0.2	3.8	5210	20.3	2.3	1.3
172	0.2	3.8	5258	20.5	2.2	1.3

Satural Ange 8 1 Mangentan	As	9. Newr	market F nder-Lyr	-	nting			Projec t No.	Docu	iment/ Ite	m Refe	erence	
Project:		54 To	nacliffe	Rd				23-2303	33				
Subject:		Slope	Stability	y					Shee	t	36	Of	40
Issue			1	Date	2	Date	3	Date	4	Date	5		Date
Made/ Revi	ised	by	DG	05.23									
Checked b	y I I I I I I I I I I I I I I I I I I I												
Approved -	-												

Slice	Area	W	X	α	B	T
No.	(m²)	(kN/m)	(mm)	(deg)	(kN/m)	(kN/m)
173	0.2	3.8	5306	20.7	2.2	1.3
174	0.2	3.8	5354	20.9	2.2	1.3
175	0.2	3.8	5402	21.1	2.2	1.4
176	0.2	3.7	5451	21.3	2.2	1.4
177	0.2	3.7	5499	21.5	2.2	1.4
178	0.2	3.7	5547	21.7	2.2	1.4
179	0.2	3.7	5595	21.9	2.2	1.4
180	0.2	3.7	5643	22.1	2.2	1.4
181	0.2	3.7	5691	22.3	2.2	1.4
182	0.2	3.6	5740	22.5	2.2	1.4
183	0.2	3.6	5788	22.7	2.2	1.4
184	0.2	3.6	5836	22.9	2.2	1.4
185	0.2	3.6	5884	23.1	2.2	1.4
186	0.2	3.6	5932	23.3	2.1	1.4
187	0.2	3.5	5980	23.5	2.1	1.4
188	0.2	3.5	6028	23.7	2.1	1.4
189	0.2	3.5	6077	23.9	2.1	1.4
190	0.2	3.5	6125	24.1	2.1	1.4
191	0.2	3.5	6173	24.3	2.1	1.4
192	0.2	3.5	6221	24.5	2.1	1.4
193	0.2	3.4	6269	24.7	2.1	1.4
194	0.2	3.4	6317	24.9	2.1	1.4
195	0.2	3.4	6366	25.1	2.1	1.4
196	0.2	3.4	6414	25.3	2.1	1.4
197	0.2	3.4	6462	25.5	2.1	1.4
198	0.2	3.3	6510	25.7	2.1	1.4
199	0.2	3.3	6558	25.9	2.0	1.4
200	0.2	3.3	6606	26.1	2.0	1.5
201	0.2	3.3	6654	26.3	2.0	1.5
202	0.2	3.3	6703	26.5	2.0	1.5
203	0.2	3.2	6751	26.7	2.0	1.5
204	0.2	3.2	6799	26.9	2.0	1.5
205	0.2	3.2	6847	27.2	2.0	1.5
206	0.2	3.2	6895	27.4	2.0	1.5

Satural Ange 8 1 Mangentan	As	9. Newr	market F nder-Lyr	-	nting			Projec t No.	Docu	iment/ Itei	m Refe	erence	
Project:		54 To	nacliffe	Rd				23-2303	33				
Subject:		Slope	Stability	y					Shee	t	37	Of	40
Issue			1	Date	2	Date	3	Date	4	Date	5	1	Date
Made/ Revi	ised	by	DG	05.23									
Checked b	у												
Approved -	-												

Slice No.	Area (m²)	W (kN/m)	x (mm)	α (deg)	B (kN/m)	T (kN/m)
207	0.2	3.1	6943	27.6	2.0	1.5
208	0.2	3.1	6991	27.8	2.0	1.5
209	0.2	3.1	7040	28.0	2.0	1.5
210	0.2	3.1	7088	28.2	1.9	1.5
211	0.2	3.1	7136	28.4	1.9	1.5
212	0.2	3.0	7184	28.6	1.9	1.5
213	0.2	3.0	7232	28.8	1.9	1.5
214	0.2	3.0	7280	29.0	1.9	1.5
215	0.2	3.0	7329	29.2	1.9	1.4
216	0.2	2.9	7377	29.5	1.9	1.4
217	0.2	2.9	7425	29.7	1.9	1.4
218	0.2	2.9	7473	29.9	1.9	1.4
219	0.2	2.9	7521	30.1	1.9	1.4
220	0.2	2.8	7569	30.3	1.8	1.4
221	0.2	2.8	7617	30.5	1.8	1.4
222	0.2	2.8	7666	30.7	1.8	1.4
223	0.2	2.8	7714	30.9	1.8	1.4
224	0.2	2.7	7762	31.2	1.8	1.4
225	0.1	2.7	7810	31.4	1.8	1.4
226	0.1	2.7	7858	31.6	1.8	1.4
227	0.1	2.7	7906	31.8	1.8	1.4
228	0.1	2.6	7955	32.0	1.8	1.4
229	0.1	2.6	8003	32.2	1.8	1.4
230	0.1	2.6	8051	32.5	1.7	1.4
231	0.1	2.6	8099	32.7	1.7	1.4
232	0.1	2.5	8147	32.9	1.7	1.4
233	0.1	2.5	8195	33.1	1.7	1.4
234	0.1	2.5	8243	33.3	1.7	1.4
235	0.1	2.5	8292	33.5	1.7	1.4
236	0.1	2.4	8340	33.8	1.7	1.4
237	0.1	2.4	8388	34.0	1.7	1.3
238	0.1	2.4	8436	34.2	1.7	1.3
239	0.1	2.3	8484	34.4	1.6	1.3
240	0.1	2.3	8532	34.7	1.6	1.3

Satural Age 8 4 Magintation	As	9. Newr	market F nder-Lyr	-	nting			Projec t No.	Docu	iment/ Itei	m Refe	erence	
Project:		54 To	nacliffe	Rd				23-2303	33				
Subject:		Slope	Stability	y					Shee	t	38	Of	40
Issue			1	Date	2	Date	3	Date	4	Date	5		Date
Made/ Revi	ised	by	DG	05.23									
Checked by	у												
Approved -	-												

Slice No.	Area (m²)	W (kN/m)	x (mm)	α (deg)	B (kN/m)	T (kN/m)
241	0.1	2.3	8580	34.9	1.6	1.3
242	0.1	2.3	8629	35.1	1.6	1.3
243	0.1	2.2	8677	35.3	1.6	1.3
244	0.1	2.2	8725	35.6	1.6	1.3
245	0.1	2.2	8773	35.8	1.6	1.3
246	0.1	2.1	8821	36.0	1.6	1.3
247	0.1	2.1	8869	36.2	1.5	1.2
248	0.1	2.1	8918	36.5	1.5	1.2
249	0.1	2.0	8966	36.7	1.5	1.2
250	0.1	2.0	9014	36.9	1.5	1.2
251	0.1	2.0	9062	37.2	1.5	1.2
252	0.1	2.0	9110	37.4	1.5	1.2
253	0.1	1.9	9158	37.6	1.5	1.2
254	0.1	1.9	9206	37.9	1.4	1.2
255	0.1	1.9	9255	38.1	1.4	1.1
256	0.1	1.8	9303	38.3	1.4	1.1
257	0.1	1.8	9351	38.6	1.4	1.1
258	0.1	1.8	9399	38.8	1.4	1.1
259	0.1	1.7	9447	39.0	1.4	1.1
260	0.1	1.7	9495	39.3	1.4	1.1
261	0.1	1.7	9544	39.5	1.3	1.1
262	0.1	1.6	9592	39.7	1.3	1.0
263	0.1	1.6	9640	40.0	1.3	1.0
264	0.1	1.6	9688	40.2	1.3	1.0
265	0.1	1.5	9736	40.5	1.3	1.0
266	0.1	1.5	9784	40.7	1.3	1.0
267	0.1	1.4	9832	40.9	1.2	0.9
268	0.1	1.4	9881	41.2	1.2	0.9
269	0.1	1.4	9929	41.4	1.2	0.9
270	0.1	1.3	9977	41.7	1.2	0.9
271	0.1	1.3	10025	41.9	1.2	0.9
272	0.1	1.3	10073	42.2	1.2	0.8
273	0.1	1.2	10121	42.4	1.1	0.8
274	0.1	1.2	10170	42.7	1.1	0.8

Sectoral Age & E Mangintanto	15 As	9. New	market F nder-Lyı	-	hting			Projec t No.	Docι	iment/ Itei	n Refe	erence		
Project:		54 To	nacliffe	Rd			23-2303	033						
Subject:		Slope	Stability	y					Shee	t	39	Of	40	
Issue			1	Date	2	Date	3	Date	4	Date	5		Date	
Made/ Revi	sed	by	DG	05.23										
Checked by	у													
Approved -	•													

Slice	Area	w	x	α	В	т
No.	(m²)	(kN/m)	(mm)	(deg)	(kN/m)	(kN/m)
275	0.1	1.1	10218	42.9	1.1	0.8
276	0.1	1.1	10266	43.2	1.1	0.8
277	0.1	1.1	10314	43.4	1.1	0.7
278	0.1	1.0	10362	43.7	1.1	0.7
279	0.1	1.0	10410	43.9	1.0	0.7
280	0.1	0.9	10458	44.2	1.0	0.7
281	0.0	0.9	10507	44.5	1.0	0.6
282	0.0	0.9	10555	44.7	1.0	0.6
283	0.0	0.8	10603	45.0	1.0	0.6
284	0.0	0.8	10651	45.2	0.9	0.6
285	0.0	0.7	10699	45.5	0.9	0.5
286	0.0	0.7	10747	45.8	0.9	0.5
287	0.0	0.7	10795	46.0	0.9	0.5
288	0.0	0.6	10844	46.3	0.9	0.4
289	0.0	0.6	10892	46.5	0.8	0.4
290	0.0	0.5	10940	46.8	0.8	0.4
291	0.0	0.5	10988	47.1	0.8	0.3
292	0.0	0.4	11036	47.4	0.8	0.3
293	0.0	0.4	11084	47.6	0.7	0.3
294	0.0	0.3	11133	47.9	0.7	0.2
295	0.0	0.3	11181	48.2	0.7	0.2
296	0.0	0.2	11229	48.5	0.7	0.2
297	0.0	0.2	11277	48.7	0.6	0.1
298	0.0	0.1	11325	49.0	0.6	0.1
299	0.0	0.1	11373	49.3	0.6	0.1
300	0.0	0.0	11413	49.5	0.6	0.0
Σ					485.4	208.9

Origin co-ordinates;

Radius of circle;

Sector angle;

Number of slices;

Width of each slice;

For each slice, angle;

Slice weight;

x = 3000 **mm**

y = 14700 **mm R =** 15003 **mm**

N = 300

b = (AB + L + EF) / N = 48 mm

$$\alpha_N = asin(x_N / R)$$

 $W_N = b \times h_N \times \gamma$

Sectoral Age	15 As	9. Newr	market F nder-Lyı	-	nting			Projec t No.	Docu	ment/ Iter	n Refe	erence	
Project:		54 To	nacliffe	Rd				23-2303	33				
Subject:		Slope	Stability	y					Shee	t	40	Of	40
Issue			1	Date	2	Date	3	Date	4	Date	5		Date
Made/ Revi	sed	by	DG	05.23									
Checked b	y I I I I I I I I I I I I I I I I I I I												
Approved -													

Pore pressure;

Shearing force induced along base;

Sum of shearing forces induced along base; Factor of safety using Fellenius' method; Required factor of safety; $u_N = r_u \times \gamma \times h_N$

 $\mathsf{B}_{\mathsf{N}} = [\mathsf{c'} \times \mathsf{b} + (\mathsf{W}_{\mathsf{N}} - \mathsf{u}_{\mathsf{N}} \times \mathsf{b}) \times \tan(\phi')] \times \sec(\alpha_{\mathsf{N}}) / (1 + \tan(\alpha_{\mathsf{N}}) \times \tan(\phi') / \mathsf{F})$

 $T_N = W_N \times sin(\alpha_N)$

Σ**B =** 485.368 kN/m Σ**T =** 208.878 kN/m

 $\mathbf{F} = \mathbf{\Sigma}\mathbf{B} / \mathbf{\Sigma}\mathbf{T} = 2.324$

Freq = 2

PASS - Actual factor of safety exceeds required factor of safety