

Civil Engineers & Transport Planners

Parker Collins House

Flood Risk Assessment & Drainage Strategy

January 2024 231743/FRA/OR/RS/01 Rev A

LANMOR Consulting Ltd, Thorogood House, 34 Tolworth Close Surbiton, Surrey, KT6 7EW

Tel: 0208 339 7899 Fax: 0208 339 7898 E-mail: info@lanmor.co.uk Internet: www.lanmor.co.uk

DOCUMENT STATUS

Project:	Parker Collins House
Title:	Flood Risk Assessment & Drainage Strategy
Client:	Rushmon Homes
Reference:	231743/FRA/OR/RS/01

Produced by:	OR	Date:	12/01/2024
Checked by:	RS	Date:	12/01/2024
Approved by:	KBL	Date:	12/01/2024

<u>lssue/revision</u>	<u>Date</u>	<u>Status</u>	Issued by
	/ /		
First	12/01/2024	For Approval	RS
А	17/01/2024	For Approval	KBL

CONTENTS

1	INTRODUCTION1					
	1.1	Scope	1			
2	SITE	CONDITIONS	. 2			
	2.1	Site Location	2			
	2.2	Site Geology	2			
	2.3	Proposed Development	2			
3	SOU	RCES OF FLOODING	. 3			
	3.1	Fluvial / Tidal Flooding	3			
	3.2	Surface Water Flooding	4			
	3.3	Groundwater Flooding	5			
	3.4	Reservoir Flooding	6			
4	MOD	DELLED FLOOD EVENTS AND CLIMATE CHANGE	. 7			
	4.1	Flood Probability	7			
	4.2	Climate Change Allowances 1	LO			
5	IMP	ACT OF FLOODING 1	12			
	5.1	Impact on Flow of Flood Waters	12			
	5.2	Impact on Flood Storage Volumes1	12			
	5.3	Flood Impact on Development 1	L3			
	5.4	Safe Access & Egress 1	L3			
	5.5	Development Vulnerability Classification	L3			
6	SEQU	JENTIAL TEST 1	L4			
7	EXIS	TING DRAINAGE	15			
	7.1	Existing Foul Water Drainage	15			
	7.2	Existing Surface Water Drainage	۱5			
8	PRO	POSED DRAINAGE	16			
	8.1	Proposed Foul Water Drainage1	16			
	8.2	Proposed Surface Water Drainage 1	16			
9	SURI	ACE WATER/ SUDS MAINTENANCE AND TREATMENT	۱9			
	9.1	SuDS Maintenance 1	٤9			
	9.2	SuDS Treatment	23			
10	SUM	MARY AND CONCLUSION	25			

TABLES

TABLE 4.1 – FLOOD DATA FOR DEFENDED SCENARIO	9
TABLE 4.2 – FLOOD DATA FOR UNDEFENDED SCENARIO	9
TABLE 5.1 – EXISTING AND PROPOSED FLOOD STORAGE VOLUMES	12
TABLE 6.1 – FLOOD RISK VULNERABILITY CLASSIFICATION	14
TABLE 8.1 – EXISTING AND PROPOSED DISCHARGE RATES	18
TABLE 9.1 – MANHOLE / PIPE MAINTENANCE SCHEDULE	20
TABLE 9.2 – PERMEABLE PAVING MAINTENANCE SCHEDULE	21
TABLE 9.3 – ATTENUATION TANK MAINTENANCE	22
TABLE 9.3 – CIRIA SUDS MANUAL C753 (LAND USE CLASSIFICATIONS)	23
TABLE 9.4 – CIRIA SUDS MANUAL C753 (MITIGATION INDICES TO SURFACE WATER)	24

FIGURES

FIGURE 3.1 – EA FLOOD ZONE MAPPING	4
FIGURE 3.2 – EXTENT OF FLOODING FROM SURFACE WATER	5
FIGURE 3.3 – FLOOD RISK FROM GROUNDWATER	6
FIGURE 4.1 – EXISTING FLOOD ZONE 2 & 3 EXTENTS	7
FIGURE 4.2 – PROPOSED DEVELOPMENT FLOOD ZONE 2 & 3 EXTENTS	8
FIGURE 4.3 – FLOOD ZONE 3 PLUS CC EXTENT	11
FIGURE 8.1 – SUDS HIERARCHY	17

APPENDICES

APPENDIX A

1348-03 Proposed Site Plan

APPENDIX B

Topographical Survey

APPENDIX C

Plan 1

APPENDIX D

231743/FRA/01 – Depths of Flooding for 1% AEP +25% CC 231743/FRA/02 – Existing & Proposed Flood Storage Volumes 231743/SK/02 – Proposed Levels

APPENDIX E

231743/DS/01 – Proposed Drainage Strategy 231743/DS/02 – Surface Water Sewer Long Section

APPENDIX F

Greenfield Calculations Permeable Paving & Tank Calculations

1 INTRODUCTION

1.1 Scope

- 1.1.1 Lanmor Consulting Ltd has been appointed to complete a Flood Risk Assessment
 & Drainage Strategy report for the proposed development at Parker Collins
 House, Portsmouth Road, Ripley, Woking, GU23 6JA.
- 1.1.2 This report describes the existing and proposed development, the implications of flooding and the impact the proposed development will have on the flood plain in accordance with the government's guidance document: The National Planning Policy Framework (NPPF), with specific reference to its Planning Practice Guidance.
- 1.1.3 This report will consider the following:
 - Location of the site;
 - Development proposals;
 - Existing information on extents and depths of flood events or on flood predictions;
 - Sources of flooding;
 - The impact of flooding on site.
- 1.1.4 This flood risk assessment has been prepared in accordance with the requirements of the National Planning Policy Framework and will demonstrate that the proposed development will be safe and will not increase the risk of flooding in the surrounding areas.
- 1.1.5 This report will also consider the proposed drainage regime for the site. It will assess the site's current Greenfield runoff rate, suitable methods of discharging the runoff from the development and set the drainage strategy for the proposed development, including discharge rates and any requirements for attenuation.

2 SITE CONDITIONS

2.1 Site Location

2.1.1 The site is located at the intersection of Send Marsh Road and Portsmouth Road and is in close proximity to a residential area to the north. The site is in Ripley, Woking, which is southwest of London. The site is positioned directly to the southeast of a watercourse that runs parallel to Portsmouth Road for the length of the site.

2.2 Site Geology

- 2.2.1 British Geological Survey records indicate the site sits upon a bedrock of London
 Clay Formation, which consists of clay, silt and sand. The sedimentary bedrock
 was formed between 56 and 47.8 million years ago during the Palaeogene period.
 There are no superficial deposits recorded over laying the London Clay formation.
- 2.2.2 Due to the nature of clay, it is unlikely ground infiltration would be viable.

2.3 Proposed Development

2.3.1 The proposals seek approval for the construction of 6 x 3 bed semi-detached houses, a detached 3 bed house and 2x detached 4 bed houses together with associated parking and new access off Send Marsh Road, following demolition of existing house and outbuildings.

3 SOURCES OF FLOODING

3.1 Fluvial / Tidal Flooding

- 3.1.1 Flood mapping for planning has been provided by the Environment Agency (EA) for the site and surrounding area. The mapping indicates the site to be within Flood Zone 2, with a small area of Flood Zone 3 on the route of the watercourse along the northwest boundary.
- 3.1.2 The NPPF and PPG define the Flood Zones as follows:
 - Zone 1: 'Low Probability' This zone comprises land assessed as having a less than a 1 in 1000 annual probability of river or sea flooding (<0.1%) in any year.
 - Zone 2: 'Medium Probability' This zone comprises land assessed as having between a 1 in 100 and 1 in 1000 annual probability of river flooding (1% 0.1%) or between a 1 in 200 and 1 in 1000 annual probability of sea flooding (0.5%-0.1%) in any year.
 - Zone 3a: 'High Probability' This zone comprises land assessed as having a 1 in 100 or greater annual probability of river flooding (>1%) or a 1 in 200 or greater annual probability of flooding from the sea (>0.5%) in any year.
 - Zone 3b: 'The Functional Floodplain' This zone comprises land where water has to flow or be stored in times of flood. SFRAs should identify this Flood Zone (land which would flood with an annual probability of 1 in 20 (5%) or greater in any year or is designed to flood in an extreme (0.1%) flood, or at another probability to be agreed between the LPA and the Environment Agency, including water conveyance routes).
- 3.1.3 The EA mapping shows the site to be within Flood Zone 2 with a probability of fluvial flooding between 1% and 0.1% in any given year. Figure 3.1 below shows an extract from the Flood Maps for Planning, the site is located in Flood Zone 2 with only a small area of Flood Zone 3 associated with the watercourse that passes along the northwest boundary.

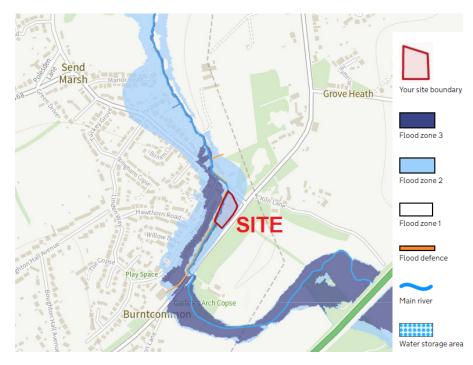


Figure 3.1 – EA Flood Zone Mapping

3.1.4 The areas shaded in light blue represents the extent of Flood Zone 2 areas, while regions shaded in dark blue represent Flood Zone 3 areas.

3.2 Surface Water Flooding

- 3.2.1 The surface water flood mapping provided by the EA is considered to be the best available source of national information for surface water flooding. The EA accept that the mapping has limitations and state that: *'these maps cannot definitively show that an area of land or property is, or is not, at risk of flooding, and the maps are not suitable for use at an individual property level.'*
- 3.2.2 The EA mapping indicates the application site to have a very low risk of surface water flooding, although there is a higher risk of flooding along the northwest boundary along the route of the watercourse as you would expect.
- 3.2.3 This map can be found below as Figure 3.2.

Figure 3.2 – Extent of flooding from surface water

3.2.4 Figure 3.2 shows the site is at very low risk of surface water flooding with the exception of the northwest boundary where there is a risk of surface water flooding associated with the watercourse bounding the site.

3.3 Groundwater Flooding

3.3.1 Guildford Borough Council (GBC) as part of their planning policy published their Strategic Flood Risk Assessment (SFRA) this demonstrates that the site is not in an area of major groundwater flood risk. The groundwater flood mapping from the SFRA is included in Figure 3.3 below.

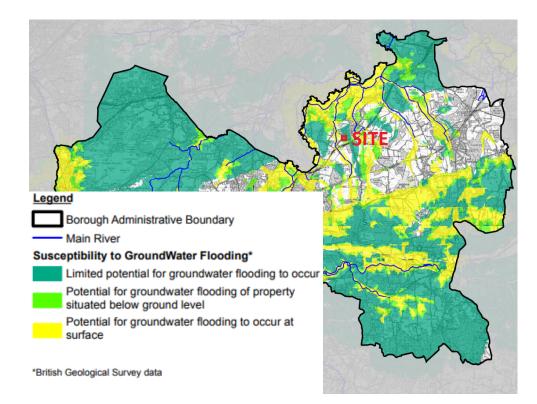


Figure 3.3 – Flood Risk from Groundwater

3.4 Reservoir Flooding

3.4.1 The EA's flood risk mapping indicates that there is no risk of flooding to the site in the event of a dam or reservoir failure.

4 MODELLED FLOOD EVENTS AND CLIMATE CHANGE

4.1 Flood Probability

- 4.1.1 The principal source of flooding to the site comes from the watercourse, known as the East Clandon Stream, which directly abuts the site along its northwest boundary. According to the Environment Agency's "Flood Maps for Planning", the site is mostly within Flood Zone 2, but with Flood Zone 3 contained along the route of the watercourse.
- 4.1.2 Detailed flood modelling was requested from the EA and they have provided Products 5, 6 and 7 with the raw flood modelling data. The hydraulic modelling for the East Clandon Stream was undertaken by JBA Consulting. In their draft report dated June 2020 (Product 5) they have identified flood defences along the northern riverbank of the stream in the vicinity of the site (opposite the site). These defences provide protection to the properties on Maple Road that back onto the stream. However, the report has found the defences are in poor condition and would not currently provide full protection. Two scenarios have been modelled for the defended and undefended scenarios and the data has been extracted for both. Figure 4.1 below shows the worst-case scenario for the undefended event.

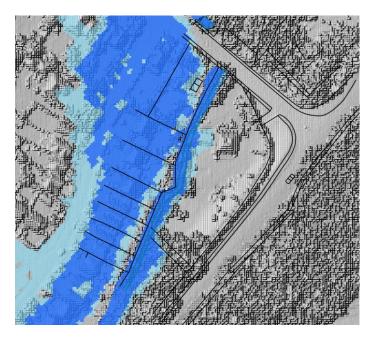


Figure 4.1 – Existing Flood Zone 2 & 3 Extents

- 4.1.3 The flood data (flood outlines extents) provided by the EA for the different return periods have been overlaid on the existing site. Figure 4.1 below shows the flood extents from a 1 in 100 year event or 1.0% probability (Flood Zone 3) in dark blue and the 1 in 1000 year event or 0.1% probability (Flood Zone 2) in light blue.
- 4.1.4 Figure 4.2 below shows the extent of flooding on the development proposals, the proposed buildings will be located outside of flood zone 3.

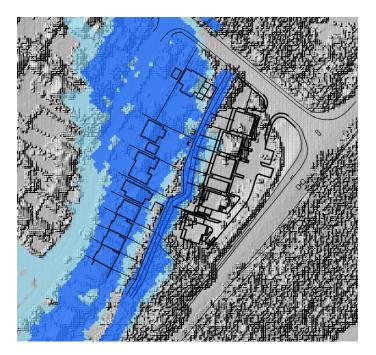


Figure 4.2 – Proposed Development Flood Zone 2 & 3 Extents

- 4.1.5 Flood level data for the 2 scenarios were extracted from the product 6 model data Plan 1 in Appendix C shows the location of the flood data extracted which are tabulated below in tables 4.1 and 4.2.
- 4.1.6 In the defended scenario the Flood Zone 3 extent is contained within the river channel, whist Flood Zone 2 affects the properties to the west, but only a small part of the application site. For the undefended scenario the Flood Zone 3 extent now impacts the properties on Maple Road as indicated in Figure 4.2 above, with little change to the Flood Zone 2 extent.

4.1.7 The EA's latest flood modelling of the East Clandon Stream has shown that the majority of the application site is in Flood Zone 1, at low risk of fluvial flooding. The extent of Flood Zone 2 on the 'Flood map for planning' is taken from historical records of flooding in January 1968 and not the modelled extents, which is why the GIS mapping of the flood outlines substantially smaller than that indicted on the EA flood maps for planning.

	Eastings	Northings	1 in 10	1 in 20	1 in 30	1 in 75	1 in 100	1 in 1000	1 in 100 +25%
Point 1	504251	155242	29.66	29.79	29.86	30.02	30.07	30.42	30.26
Point 2	504259	155259	29.58	29.71	29.78	29.95	30.00	30.38	30.21
Point 3	504269	155270	29.56	29.70	29.76	29.93	29.99	30.37	30.20
Point 4	504271	155285	29.51	29.65	29.72	29.89	29.95	30.35	30.17
Point 5	504274	155297	29.44	29.59	29.65	29.84	29.90	30.34	30.15
Point 6	504283	155316	29.28	29.45	29.49	29.69	29.76	30.24	30.03
Point 7	504291	155333	29.16	29.36	29.37	29.59	29.66	30.19	29.97

Table 4.1 – Flood Data for Defended Scenario

	Eastings	Northings	1 in 10	1 in 20	1 in 30	1 in 75	1 in 100	1 in 1000	1 in 100 +25%
Point 1	504251	155242	29.66	29.79	29.86	29.99	30.01	30.23	30.13
Point 2	504259	155259	29.58	29.71	29.78	29.91	29.94	30.17	30.07
Point 3	504269	155270	29.56	29.70	29.76	29.90	29.93	30.16	30.06
Point 4	504271	155285	29.51	29.65	29.72	29.86	29.89	30.13	30.03
Point 5	504274	155297	29.44	29.59	29.65	29.80	29.83	30.12	30.00
Point 6	504283	155316	29.28	29.45	29.49	29.66	29.69	30.02	29.89
Point 7	504291	155333	29.16	29.36	29.37	29.55	29.60	29.98	29.82

Table 4.2 – Flood Data for Undefended Scenario

4.1.8 A topographical survey of the site shows there is a significant fall in levels from east to west, with the highest level in the southeast corner of 34.62m AOD and a lowest level on the banks of the stream of 29.28m AOD. At this point the stream channel level is 28.17m AOD. The flood data points have been plotted against the surveyed levels to provide a more accurate plot of the extent of flood waters into the site. This is shown on drawing 231743/FRA/01 in Appendix D.

4.2 Climate Change Allowances

- 4.2.1 The Environment Agency have published climate change allowances to be used in the preparation of Flood Risk Assessments. The allowance to be implemented for fluvial flooding it is based on the management catchment area, flood zone and site vulnerability. The site is located within the Wey and tributaries Management Catchment, as identified on the Department for Environment Food & Rural Affairs (DEFRA) climate change allowances website.
- 4.2.2 The site lies within all of Flood Zones 1, 2 and 3. Under Annex 3 of the NPPF the proposed development would be classed as: "Buildings used for residential uses" to be a "More Vulnerable" use.
- 4.2.3 The Flood Risk Assessments: Climate Change Allowances guidance, recommends that the Central Allowance for More Vulnerable uses in Floods Zones 2 and 3 should be used. The DEFRA website provides the Central Allowance to be applied to peak river flows for developments with a 100-year lifetime as 24%. The flood modelling provided by the EA included a scenario with a 25% increase in river flows, and this model will be used in our assessment.
- 4.2.4 Figure 4.3 show the results of the EA's flood modelling for the worst-case undefended scenario for the 1% AEP event plus 25% climate change allowance.
- 4.2.5 This report has therefore taken into account the future impacts of climate change when assessing the impact of flood waters on the development, in accordance with the NPPF and its Planning Practice Guidance. The above flood mapping indicates the proposed building will not be affected by a 1.0%AEP (1 in 100 year) + 25% allowance for climate change, however a detailed assessment of flooding on site was undertaken using the topographical survey information for the site.
- 4.2.6 Drawing 231743/FRA/01 shows the potential flood extent for the 1.0%+25% CC scenario, this has been used to assessment compensation requirements due to raising of ground levels and is discussed further in the next chapter.

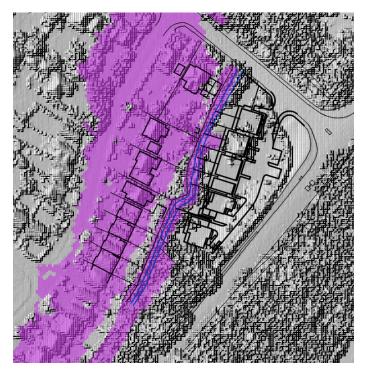


Figure 4.3 – Flood Zone 3 Plus CC Extent

5 IMPACT OF FLOODING

5.1 Impact on Flow of Flood Waters

5.1.1 As demonstrated above, the application site lies within Flood Zones 1, 2 and 3. The higher risk area, Flood Zone 3, is confined to the western side of the site. The proposed buildings, as indicated on drawing 231743/FRA/01 in Appendix D, will not affect the free flow of flood waters for an event with a probability of 1.0% plus 25% climate change allowance.

5.2 Impact on Flood Storage Volumes

- 5.2.1 The survey information that once the climate change allowance is factored in overtopping of the riverbank might occur to the rear of Plots 3-5 and Plots 6-9. In the case of Plots 6-9 gardens the flood waters will not reach the proposed dwellings, and therefore maintaining the existing ground levels to the rear of the properties will not impact on flood storage volumes.
- 5.2.2 For Plots 3-5, there is an existing building but flood waters could extent around it which will cover the area of the proposed patios of Plots 3-4. The patios will be slightly raised therefore, existing and proposed flood storage volumes have been calculated for this area, to ensure there is no loss. The results are shown on drawing 2317413/FRA/02 in Appendix D which found that there will be an increase of 3.23m³ as a result of the proposed works.

	Existing Band	Total Vol.	Proposed Band	Proposed Total	Band Change	Total Change
Band 1	4.07	7.20	5.24	10.43	+1.17	+3.23
Band 2	2.08	3.13	3.35	5.19	+1.27	+2.06
Band 3	0.83	1.05	1.62	1.84	+0.79	+0.79
Band 4	0.22	0.22	0.22	0.22	0.00	0.00

Table 5.1 – Existing and Proposed Flood Storage Volumes

5.2.3 This report has shown that the proposed buildings will be outside of the 1% AEP +25% CC flooding extent so they will not reduce the volume of flood storage on site. The raised patios to the rear of Plots 3 and 4 could impact existing flood storage so comparison has been made on a level for level basis to ensure there is no loss in storage. It is therefore concluded that the proposals will not result in the loss of any flood storage volume across the application site for an event with a probability of 1.0% +25% CC allowance.

5.3 Flood Impact on Development

- 5.3.1 The floor level of the proposed buildings varies from 31.0 to 30.6m AOD. The buildings will be located above the estimated flood level for a 1.0% +25% CC event. The lowest ground floor level is Plot 7 at +30.6m AOD. The design flood level in this area (Point 3) is +30.200m AOD so a freeboard of 400mm will be provided to the finished floor level of the proposed building at this point and up to 800mm for the other properties.
- 5.3.2 The flood modelling demonstrates the proposed properties will the not be subject to flooding from a 1.0% +25%CC event, so they should suffer damage from flooding and minimum of 400mm clearance is provided between the highest estimated flood level and lowest floor level.

5.4 Safe Access & Egress

5.4.1 The proposed building will be located above the highest estimated flood level for an event with a probability of 1.0% +25% CC allowance, the internal road and Send Marsh Road will be free from flooding with a probability of 1.0% +25% CC so a safe dry access can be provided at all times during a flood event.

5.5 Development Vulnerability Classification

5.5.1 The proposed development will comprise of the construction of 9 residential properties. Under Annex 3 of the NPPF and Planning Practical Guidance, the development would be classified as a building used for dwelling houses and therefore considered to have a "More Vulnerable" proposed use. This use class has been used when assessing the future impacts of climate change, and when undertaking the Sequential Test.

6 SEQUENTIAL TEST

- 6.1.1 The aim of the Sequential Test is to ensure that a sequential approach is used to steer new developments to areas with the lowest probability of flooding as set out in the NPPF and PPG.
- 6.1.2 Strategic Flood Risk Assessments (SFRA) refine information on the probability of flooding, taking other sources of flooding and the impacts of climate change into account. They provide the basis for applying the Sequential Test.
- 6.1.3 The proposed development is for residential use and therefore considered a 'More Vulnerable' use. An assessment of the EA's flood modelling has shown that the site falls within Flood Zones 1, 2 and 3 but with the extent of Flood Zones 2 and 3 limited to the western boundary along the route of the stream. A sequential approach has been used when designing the layout of the development and the dwellings have been located in an area at less risk of flooding. As the proposed dwellings will be located above the estimated flood level for a 1 in 1000 year 0.1% (Flood Zone 1) the Sequential Test is satisfied.
- 6.1.4 Table 2 of the PGG reproduced as Table 6.1 below sets out the compatibility of proposed development in relation to the Flood Zones. The proposed dwellings are considered a More Vulnerable use and are located in Flood Zone 1 which is considered a suitable use, and the exception test is not required.

Flood Zones	Flood Risk Vulnerability Classification				
	Essential infrastructure	Highly vulnerable	More vulnerable	Less vulnerable	Water compatible
Zone 1	✓	✓	~	✓	✓
Zone 2	~	Exception Test required	~	~	~
Zone 3a †	Exception Test required †	x	Exception Test required	~	~
Zone 3b *	Exception Test required *	X	X	X	✓ *
Key:					
🗸 Exce	eption test is not	required			
X Devel	opment should n	ot be permitt	ed		

Table 6.1 – Flood Risk vulnerability Classification

7 EXISTING DRAINAGE

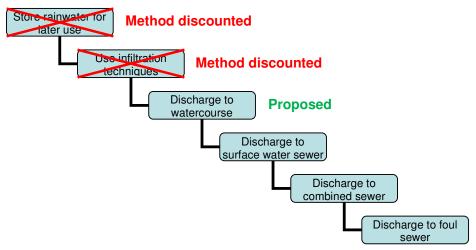
7.1 Existing Foul Water Drainage

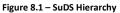
- 7.1.1 Thames Water sewer records have been obtained for the local area; these show there are no public sewers directly adjacent to the site. The nearest foul public sewer is to the north of the site in Send Marsh Road.
- 7.1.2 A topographical survey of the site has identified a few manholes to the rear of the property. It is assumed that the foul water drainage from the existing building is discharged to a septic tank to the rear, or via a private connection though the properties on Maple Road. A CCTV survey will be required to confirm how the site currently drains and if the is an existing connection suitable for reuse.

7.2 Existing Surface Water Drainage

7.2.1 No soakaways etc have been identified on site, it is assumed that there are currently no surface water drains directly to the ditch to the west. There are no adopted surface water sewers in the area of the site.

8 PROPOSED DRAINAGE


8.1 Proposed Foul Water Drainage


8.1.1 The foul water from the proposed dwellings will be collected on site with a new network. If it is found that there is no existing connection to the public sewer then a new connection will be constructed along Send Marsh Road. The new sewer will have to cross either under or over the existing culvert of the East Clandon Stream and so a pumping station may be required on site to facilitate the connection. The drainage network on site will be designed to meet the requirements of the building regulations, with 24 hour back up storage provided in the pump chamber.

8.2 Proposed Surface Water Drainage

- 8.2.1 The Sustainable Drainage Systems (SuDS) hierarchy has been used to set the drainage strategy for the development. The SuDS considered as part of this assessment for the disposal of surface water runoff include rainwater harvesting, ground infiltration and discharging to watercourse.
- 8.2.2 Green or blue roofs were considered, but the proposed dwellings will all have pitched roofs, so these are not practical and have been discounted.
- 8.2.3 Rainwater harvesting was also considered, as a means of reusing surface water runoff within the dwellings. However, these systems require a separate network of pipes within the property, as well as tanks and pumps to store the rainwater and distribute it throughout. It was considered impractical to implement rainwater harvesting systems on the site due to site constraints and excessive cost for the development.
- 8.2.4 In addition, for these systems to be successfully implemented there must be sufficient demand for water reuse otherwise this may lead to water quality issues. Furthermore, rainwater harvesting tanks should not be included in the assessment of attenuation required to store runoff from a development as there is no guarantee that the tank will be sufficiently empty to receive another storm.

- 8.2.5 Should the rainwater harvesting tank be full at the start of the storm, it will not be able to receive any more runoff, therefore additional storage of a similar size would be required to cater for all storm events and the rainwater harvesting tank will provide no benefit in terms of attenuation. For those reasons, and the excessive cost of providing the system, this method has been discounted.
- 8.2.6 Next on the SuDS Hierarchy is use of infiltration techniques. Soil infiltration involves the surface runoff water being drained into the ground and absorbed by the soil. Due to the nature of the geology of the site being clay, infiltration is not viable therefore this has also been discounted.
- 8.2.7 Next on the list is discharging surface water to a river or watercourse. There is a watercourse which runs along the western boundary of the site. It is therefore proposed to attenuate runoff on site and discharge to the watercourse at a restricted rate.

8.2.8 The development proposals involve the construction of new houses, access road and parking areas. There is the opportunity to use permeable paving on the access road and parking areas as a form of SuDS. This will provide water quality benefits along with attenuation storage but cannot discharge to ground due to the presents of clay. In addition, a below ground tank will be used in the rear gardens of the properties to attenuation the runoff from the roofs before the final discharge to the stream. 8.2.9 Calculations have been completed to estimate the existing Greenfield and Brownfield runoff rates from the existing site to set the proposed discharge rates. The results are tabulated below and are also included in Appendix F.

Return	Greenfield	Brownfield	Proposed	Discharge	%
Period	Rate (I/s)	Rate (I/s)	Depth of Water in Tank (m)	Proposed Flow Rate (I/s)	Reduction
Q _{BAR}	1.8	-	-	-	-
1 in 1	1.5	1.5	0.172	1.3	13%
1 in 30	4.1	3.7	0.445	3.0	27%
1 in 100	5.8	4.8	0.545	4.9	16%
1 in 100 +45% CC	8.4	6.9	0.926	6.0	29%

Table 8.1 – Existing and Proposed Discharge Rates

- 8.2.10 Attenuation storage will be provided in the sub-base of the permeable paving which will be formed from **300mm of gravel and 150mm permavoid** units to provide extra storage. The discharge from the paving will be restricted by a 20mm diameter orifice plate which will connect into the drainage network.
- 8.2.11 Surface water runoff from the roofs will be collected in an attenuation tank in the rear gardens along with the discharge from the permeable paving. The final discharge will be restricted by a combination of a 40mm diameter orifice plate at the base of the tank, and a HydroBrake set at 2.5 l/s at a higher level to act as an overflow during extreme events. The tank has been sized at 3.0m wide by 10.0m long by 0.8m deep to accommodate the 1 in 100 year storm event (1% AEP) plus 45% allowance for future climate change.
- 8.2.12 The final discharge rate for the 1% AEP event plus CC has been calculated at 6.0 l/s which is a 29% reduction on the Greenfield rate for the same event. Overall, there will be a 13-29% reduction in flow rates from the Greenfields rates as a result of the development.
- 8.2.13 Drawing 231743/DS/01 shows the drainage strategy for the development and is included in Appendix E. The supporting drainage calculations for the different return periods are also included in Appendix F.

9 SURFACE WATER/ SUDS MAINTENANCE AND TREATMENT

9.1 SuDS Maintenance

- 9.1.1 Regularly inspecting the surface water drainage network for blockages and clearing unwanted debris / silt from the system should improve the performance of the surface water network and decrease the need for future repairs.
- 9.1.2 The level and frequency of maintenance required on site is dependent on the type of facility. The type of maintenance will fall into one of three categories "regular maintenance", "occasional maintenance" and "remedial maintenance".
- 9.1.3 Regular maintenance of the drainage and SuDS features will include, inspections, removal of litter / debris and sweeping of the surfaces. Occasional maintenance will include removal of sediment etc. and remedial maintenance may include structural repairs if required.
- 9.1.4 The drainage and SuDS elements after an initial inspection following construction should be inspected on a monthly basis for the first 12 months and after large storms, thereafter the following maintenance regime should be applied and adjusted if the 12-month monitoring process has identified any issues.
- 9.1.5 A management company will be set up to manage the development which will include the access roads and landscaped areas. The developer will be responsible for the drainage and SuDS until the management company is set up when the responsibility for the maintenance of SuDS will be transferred and they will ensure the system is funded adequately.
- 9.1.6 The appropriate health and safety equipment must be used when accessing manholes. Confined space certificates must be held by any personnel entering a manhole and the appropriate permits should be obtained.

Pipes and Manholes

9.1.7 For drainage pipes and manhole, the following maintenance is recommended.

Manhole / F	Manhole / Pipe Maintenance Schedule						
	Required Action	Typical Frequency					
Regular maintenance	Inspect for evidence of poor operation via water level in chambers. If required, take remedial action.	3-monthly, 48 hours after large storms.					
	Check and remove large vegetation growth near pipe runs.	Monthly or as required					
	Remove sediment from structures.	Annually or as required					
Remedial Actions	Rod through poorly performing runs as initial remediation.	As required					
	If continued poor performance jet and CCTV survey poorly performing runs.	As required					
Monitoring	Inspect/check all inlets, outlets, to ensure that they are in good condition and operating as designed.	Annually					
	Survey inside of pipe manholes for sediment build-up and remove if necessary	Every 5 years or as required					

Table 9.1 – Manhole / Pipe Maintenance Schedule

Permeable Paving

9.1.8 For permeable paving areas, the following maintenance is recommended.

Permeable Paving Maintenance Schedule			
	Required Action	Typical Frequency	
Regular maintenance	Remove debris and leaves etc.	Once a year, after autumn leaf fall, or reduced frequency as required, based on site-specific observations of clogging or manufacturer's recommendations – pay particular attention to areas where water runs onto pervious surfaces from adjacent impermeable areas as this area is most likely to collect the most sediment.	
Occasional maintenance	Stabilise and mow contributing and adjacent areas	As required	
	Removal of weeds	As required- once per year on less frequently used pavements	
Remedial Actions	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50 mm of the level of the paving	As required	
	Remedial work to any depressions, rutting etc	As required	
	Rehabilitation of surface and upper substructure	Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging)	
	Inspect for evidence of poor operation and/or weed growth - if required, take remedial action.	Three-monthly, 48 hours after large storms in the first six months	
Monitoring	Inspect silt accumulation rates and establish appropriate frequencies for rehabilitation	Annually	
	Monitor inspection chambers	Annually	

Table 9.2 – Permeable Paving Maintenance Schedule

Attenuation Tanks

9.1.9 For the attenuation tanks, the following maintenance will be required.

Attenuation Tank Maintenance Schedule			
	Required Action	Typical Frequency	
Regular maintenance	Inspect and identify any areas that are not operating correctly. If required, take remedial action	Annually	
	Remove debris from the catchment surface (where it may cause risk to performance).	Monthly	
	For systems where rainfall infiltrates in the tank from above, check surface of filter for blockage by sediment, algae or other matter, remove and replace surface infiltration medium as necessary	Annually	
	Remove sediment from pre- treatment structures.	Annually or as required	
Remedial Actions	Repair/rehabilitate inlets/outlets, overflows and vents.	As required	
Monitoring	Inspect/check all inlets, outlets, vents and overflows to ensure that they are in good condition and operating as designed.	Annually	
	Survey inside of tanks for sediment build-up and remove if necessary	Every 5 years or as required	

Table 9.3 – Attenuation Tank Maintenance

9.2 SuDS Treatment

TA 2

- 9.2.1 As part of the CIRIA SuDS Manual C753, Section 26 provides guidance regarding methods for managing pollution risks from surface water runoff.
- 9.2.2 Part of the assessment is to determine which land use classification the proposed development falls under, Table 26.1 of the CIRIA Report C753 sets the approaches to water quality risk management. For this site the Simple Index Approach will be used.
- 9.2.3 Table 26.2 in C753 reproduced as Table 9.3, shows the potential hazard associated with different land uses the hazard indices. The development will consist of residential properties, it is concluded that the site should be classed within the sections shown in Table 9.3 below.
- 9.2.4 The roofs of the dwellings are considered to have a "very low" pollution hazard, generating 0.2 total suspended solids, 0.2 metals and 0.05 hydro-carbons. The access and parking area is considered to have a "low" pollution hazard, generating 0.5 total suspended solids, 0.4 metals and 0.4 hydro-carbons.

Land use	Pollution hazard level	Total suspended solids (TSS)	Metals	Hydro- carbons
Residential roofs	Very low	0.2	0.2	0.05
Other roofs (typically commercial/ industrial roofs)	Low	0.3	0.2 (up to 0.8 where there is potential for metals to leach from the roof)	0.05
Individual property driveways, residential car parks, low traffic roads (eg cul de sacs, homezones and general access roads) and non- residential car parking with infrequent change (eg schools, offices) ie < 300 traffic movements/day	Low	0.5	0.4	0.4
ommercial yard and delivery areas, on-residential car parking with equent change (eg hospitals, retail), all bads except low traffic roads and trunk bads/motorways ¹	Medium	0.7	0.6	0.7
Sites with heavy pollution (eg haulage rards, lorry parks, highly frequented orry approaches to industrial estates, vaste sites), sites where chemicals and uels (other than domestic fuel oil) are o be delivered, handled, stored, used or manufactured; industrial sites; trunk oads and motorways!	High	0.8 ²	0.8 ²	0.9 ²

Table 9.3 – CIRIA SuDS Manual C753 (Land use classifications)

- 9.2.5 The proposed development will incorporate permeable paving for storage and disposal of runoff from the site. Suitable treatment measures offered by SuDS features are set out in CIRA report.
- 9.2.6 Table 26.3 of C753 reproduced below as Table 9.4 sets out the mitigation indices provided by SuDS features for discharge to surface waters.

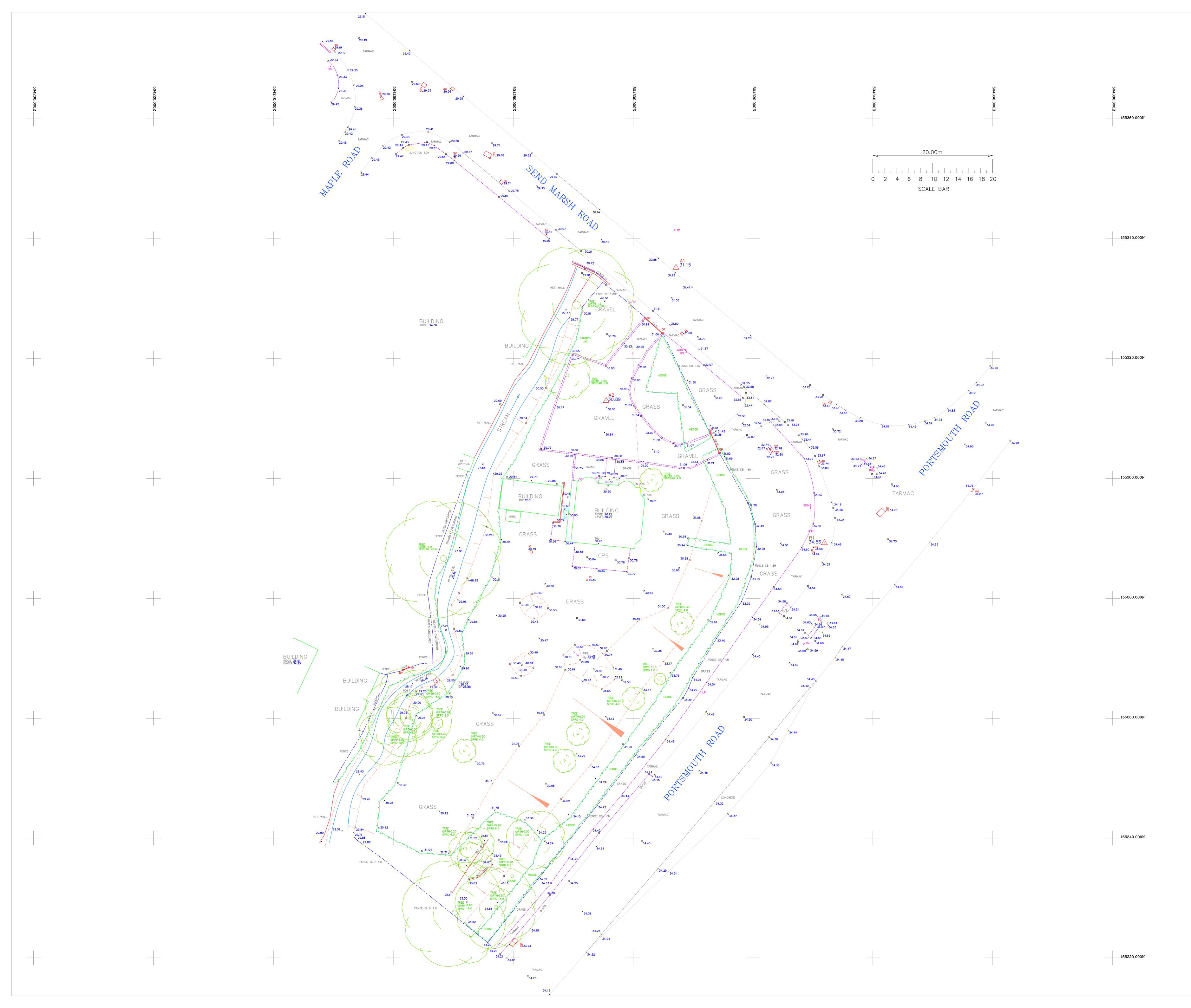
	Indicative SuDS mitigation indices for discharges to surface waters					
26.3		Mitigation indices ¹				
	Type of SuDS component	TSS	Metals	Hydrocarbons		
	Filter strip	0.4	0.4	0.5		
	Filter drain	0.4 ²	0.4	0.4		
	Swale	0.5	0.6	0.6		
	Bioretention system	0.8	0.8	0.8		
	Permeable pavement	0.7	0.6	0.7		
	Detention basin	0.5	0.5	0.6		
	Pond ⁴	0.73	0.7	0.5		
	Wetland	0.8 ³	0.8	0.8		
	Proprietary treatment systems ^{5,8}	These must demonstrate that they can address each of the contaminant types to acceptable levels for frequent events up to approximately the 1 in 1 year return period event, for inflow concentrations relevant to the contributing drainage area.				

Table 9.4 – CIRIA SuDS Manual C753 (Mitigation Indices to Surface Water)

9.2.7 The permeable paving will provide mitigation of 0.7 for total suspended solids,0.6 for metals and 0.7 for hydrocarbons. These are all greater than the pollution hazard indices identified in Table 9.3 above.

10 SUMMARY AND CONCLUSION

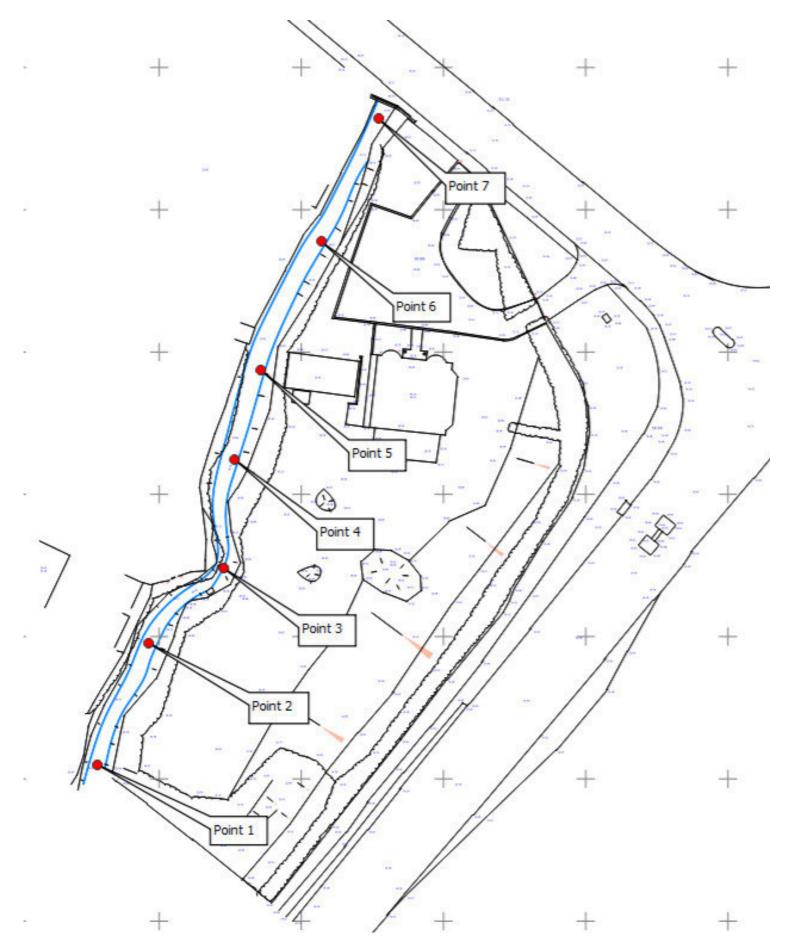
- 10.1.1 This report describes the existing and proposed development, the implications of flooding and the impact the proposed development will have on the flood plain in accordance with the government's guidance document: The National Planning Policy Framework (NPPF), with specific reference to its Planning Practice Guidance.
- 10.1.2 The site is located at the intersection of Send Marsh Road and Portsmouth Road and is in close proximity to a residential area to the north. The proposals involve the erection of 6 x 3 bed semi-detached houses, a detached 3 bed house and 2x detached 4 bed houses with parking. A new access off Send Marsh Road will be provided for the development.
- 10.1.3 The EA Flood Map for Planning shows the site is within Flood Zones 2 and 3. The mapping shows the extent of Flood Zone 3 is confined to the corridor of the watercourse with the majority of the site falling within Flood Zone 2. However, an assessment of the EA's latest hydraulic modelling has shown that the majority of the site actually falls within Flood Zone 1. When climate change allowances have been factored into the flood model the proposed properties will still be free from flooding with a probability of 1.0% +25% CC.
- 10.1.4 This assessment has demonstrated that the proposed development will not restrict the free flow of flood waters or result in the loss of flood storage. The proposed buildings will be free of flooding and a safe access can be provided to and from the site during flood conditions.
- 10.1.5 The drainage strategy for the site will restrict the runoff from the site to less than the current greenfield rate, the runoff will be attenuated in the permeable paving and below ground tank on site ensuring there is no increased risk of flooding to the proposed development or neighbouring area.
- 10.1.6 This FRA has demonstrated that the proposals will not have any impact on the current flooding in the area and that a suitable drainage strategy can be provided without increasing the risk of flooding, and we therefore see no reason why these proposals should be refused on the grounds of flooding or drainage.


APPENDIX A

1348-03 Proposed Site Plan

APPENDIX B

Topographical Survey

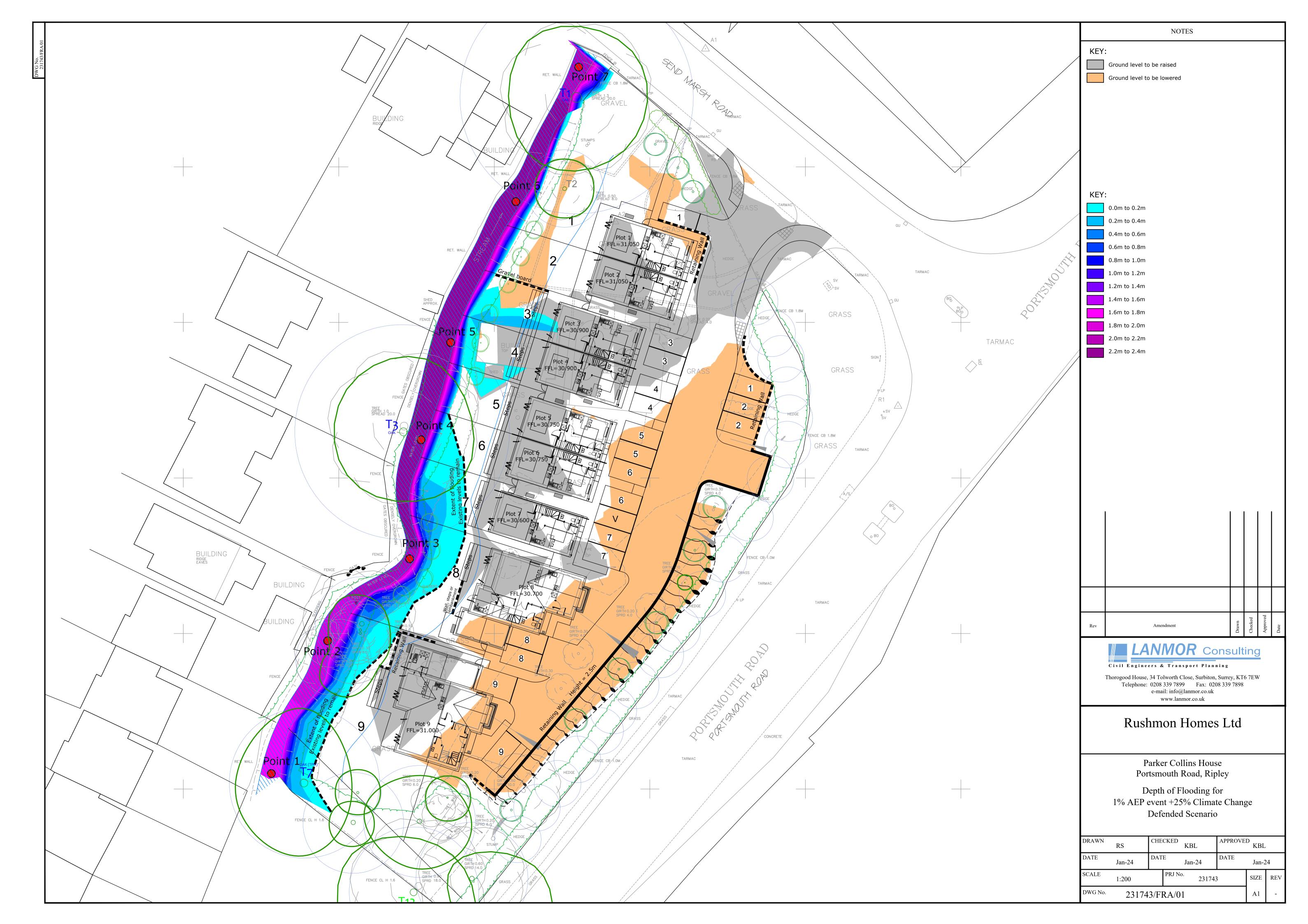


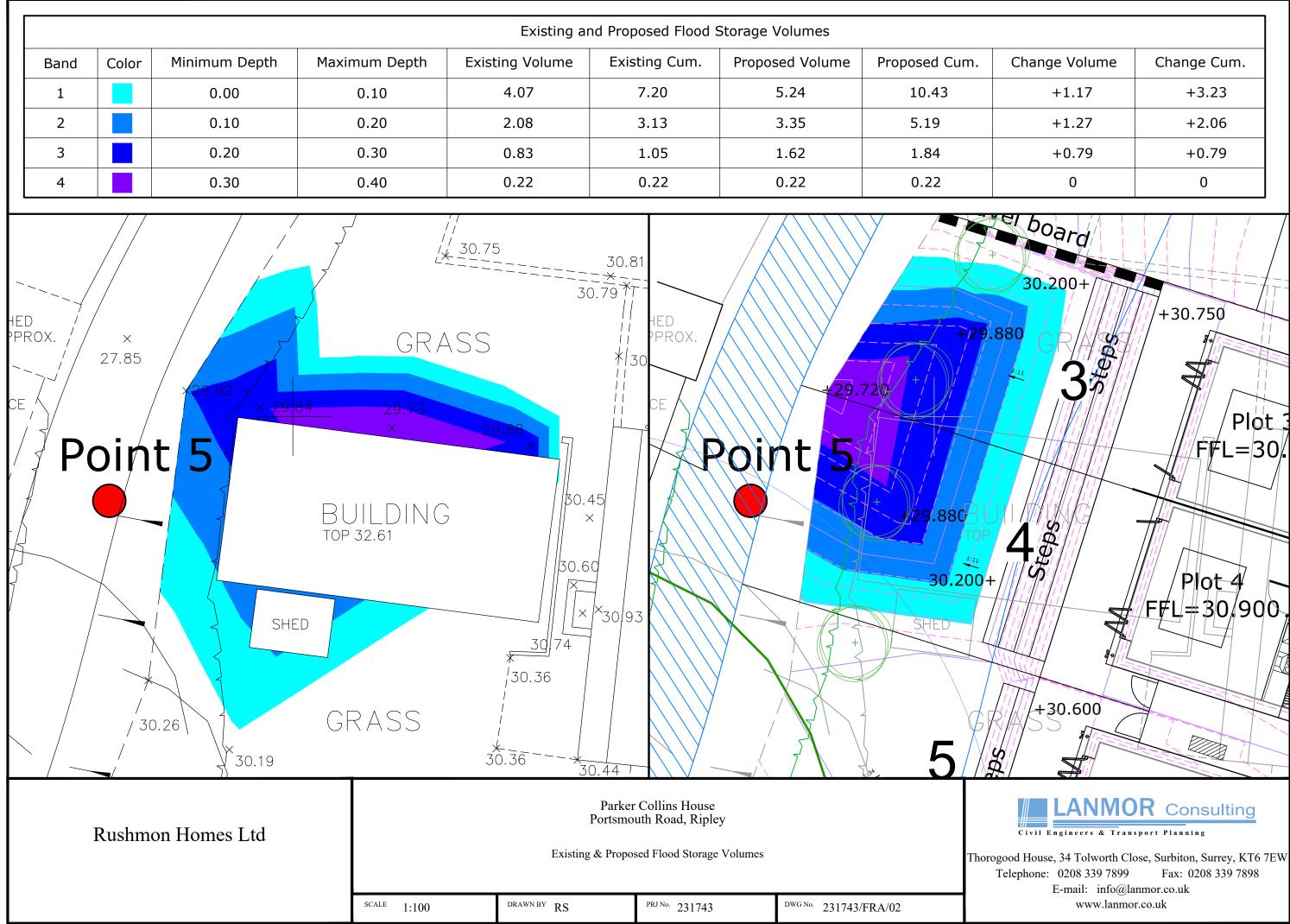
Buildin BL BH BSL C DP DPC DH DHL FFL (2100) (25.26) CH	Baseme Beam So Beam So Cill Heig Down Pi Damp Pi Door He Door He Finished	offit Height offit Level ht from FFL pe roof Course ight ad level Floor Level Ceiling Height g Level	HD H RWP SL SVP VP W C Level H Level CSU F-H	Heating Duct Height Rain Water Pip Soffit Level Soil and Vent I Vent Pipe Window Heigh Direction of Flo Cill Level Window Head Detail Approx. Ceiling slopes Floor - Window	Pipe t from cill por Joist Span Level up
A/R BH BOL BT BW BWK CATV CB CCTV CHLK CHPL CL CM CP CPL DIA DK DP EJB EC EP ER FH FIG FW GU GV H IC IL IR KO LB LC LP MH	Assumer Borehole Bollard British T Barbed V Brickwor Cable TV Close Bo Closed C Chainlind Chestnu Cover Le Cable M Catch Pi Diamete Drop Ke Down Pi Electricit Electri Electrici	elecom Cover Wire Fence k V Cover barded Fence Circuit TV k Fence t Paling Fence evel arker t t Base Level r b pe y Junction Box y Cover y Pole Rod rant o Ground ter ve on Cover evel ing Fence tlet b bumn bst	tions MKR MT OHP OSB PGM PR PW PWM RE RG RS RW PW PWM RE RG RS RW PW PWM RE RG RS SC SFA SV SVP SV SVP SV SVP SV SVP SV SVP SV PL TT PL T PL V PH V M N SAP SC SFA SV SV SV SV SV SV SV SV SV SV SV SV SV	Marker Mercury Telecc Overhead Cabl Overhead Pipe Ordnance Surv Post Box Permanent Gro Post & Rail Fer Post & Wire Me Rodding Eye Road Gully Road Name Road Sign Retaining Wall Rain Water Pip Sapling Stop Cock Spread Traverse Statio Stop Valve Soil Vent Pipe Storm Water Telephone Box Telephone Box Traken From Re Threshold Leve Telephone Jun Trial Pit Traffic Light Telephone Pole Unable To Lift Unable To Trac Vent Pipe Water Key Hole Water Valve Approximate	e ey Bench Mark nund Marker nce esh Fence e n n hch Mark ecords i ction Box
BELOW T IN WRITIN CLIENT O BEYOND	O AN AGI NG THE L PR HIS AP THE LIMI Y Statio i	REED SPECIF IABILITY OF F POINTED AG	EICATION. UNI REED GEOMA ENT AND DOE THE SPECIFIC	OR THE CLIEN LESS OTHERW TICS LTD IS LII ES NOT EXTEN CATION.	ISE AGREED
STN A1 STN A2	504 504	1307.154 1295.514	155335.187 155312.954	31.15 30.89	Nail Nail
	vey is bo			34.56 Ince Survey No N A1 where p	
with a sc	ale facto	r of 1 applie	ed.		
			d OSGM15 ge Newlyn (ODN)	e OS active ne oid model.	
4 3 2 1		eam and bou	indaries surv	ley	- - 19-10-2023 20-07-2023
I Rov I	- Pre QA neck	liminary - No	ot Complete Descrip	tion	- Date
C	Cop	oyright Reed	Geomatics I	_td 2023	•
			eoma	atics	
RE HEAD	SURVEYED BYREED Geomatics LtdHEAD OFFICEBRANCH OFFICE16 St NICHOLAS DRIVEBRANDONS VENNS GATESHEPPERTONCHEDDARMIDDXSOMERSETTW17 9LDBS27 3LW				
SHEP MIDD	PERTON X		CH SC	MERSET	_
SHEP MIDD2 TW17 TEL 0	PERTON X 9LD 1932 22 [.]	N	CH SC BS CE	MERSET	NNS GATE
SHEP MIDD2 TW17 TEL 0 E-MAI SURVI DRAW	PERTON X 9LD 1932 22 [,] L info@r EYED	N 1358 eedgeomatic SR SR	CH SC BS CE CE CLIENT: RU	DMERSET 527 3LW 5LL 07939 100	NNS GATE
SHEP MIDD TW17 TEL 0 E-MAI SURVI DRAW	PERTON X 9LD 1932 22 ⁻ L info@r EYED N	N 1358 eedgeomatic SR SR 1:200	CH SC BS CE CLIENT: RU H	MERSET 27 3LW ELL 07939 100 ww.reedgeoma SHMO OMES	NNS GATE
SHEP MIDD TW17 TEL 0 E-MAI SURVI DRAW	PERTON 9LD 1932 22 ⁻ L info@r EYED N E OPC =SS ⁻	N 1358 eedgeomatic SR 1:200 OGRAF	CLIENT: RU PHICA	MERSET 27 3LW ELL 07939 100 ww.reedgeoma SHMO OMES L SUR	NNS GATE
SHEP MIDD TW17 TEL 0 E-MAI SURVI DRAW SCALE	PERTON 9LD 1932 22 ⁻ L info@r EYED N E OPC =SS ⁻	N 1358 eedgeomatic SR 1:200 OGRAF	CLIENT: RU PHICAI	MERSET 27 3LW L 07939 100 W.reedgeoma SHMO OMES OMES L SUR L SUR LNS HO TH ROA EY	NNS GATE

A0 Sheet

APPENDIX C

Plan 1

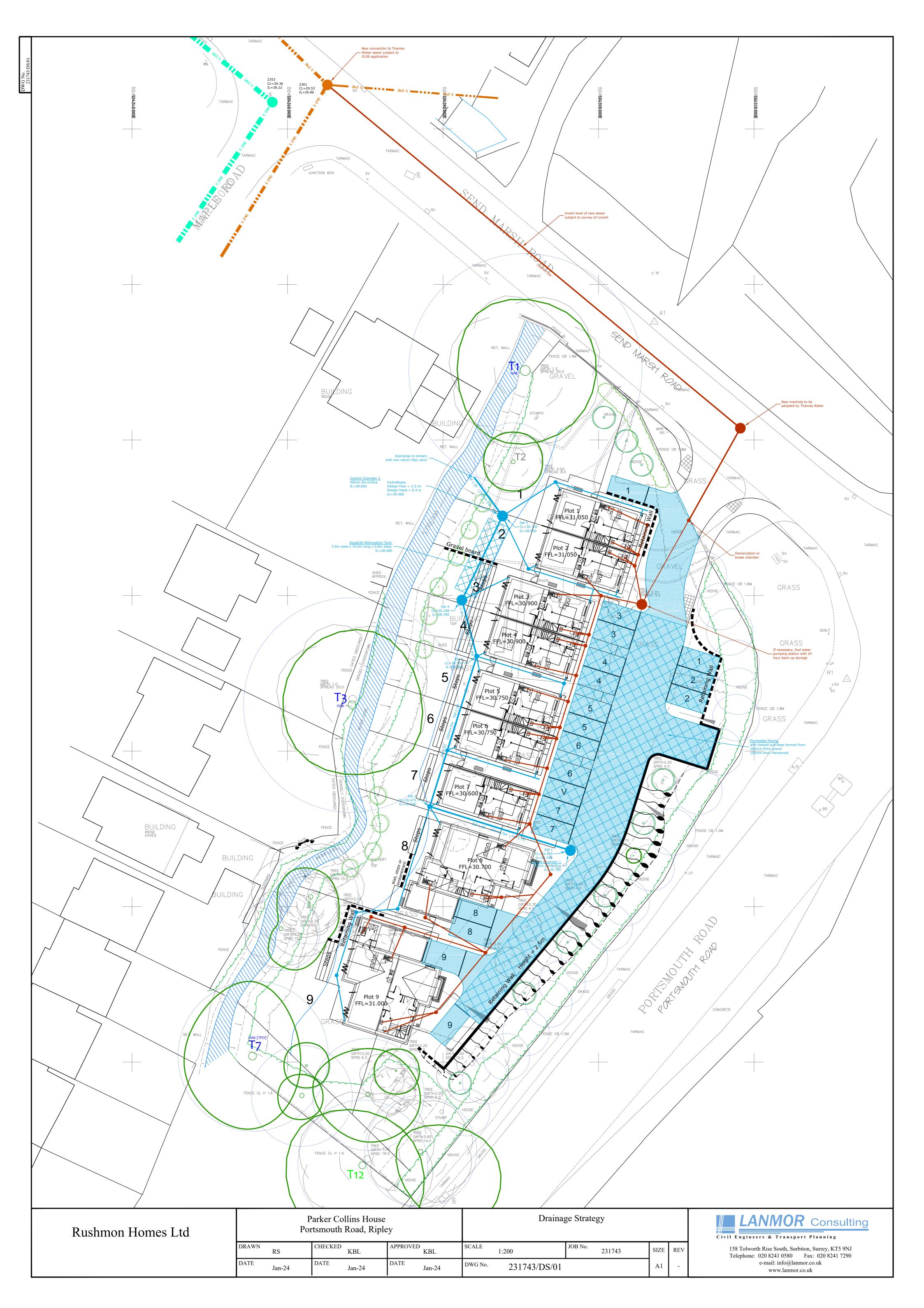



Flood Node Locations

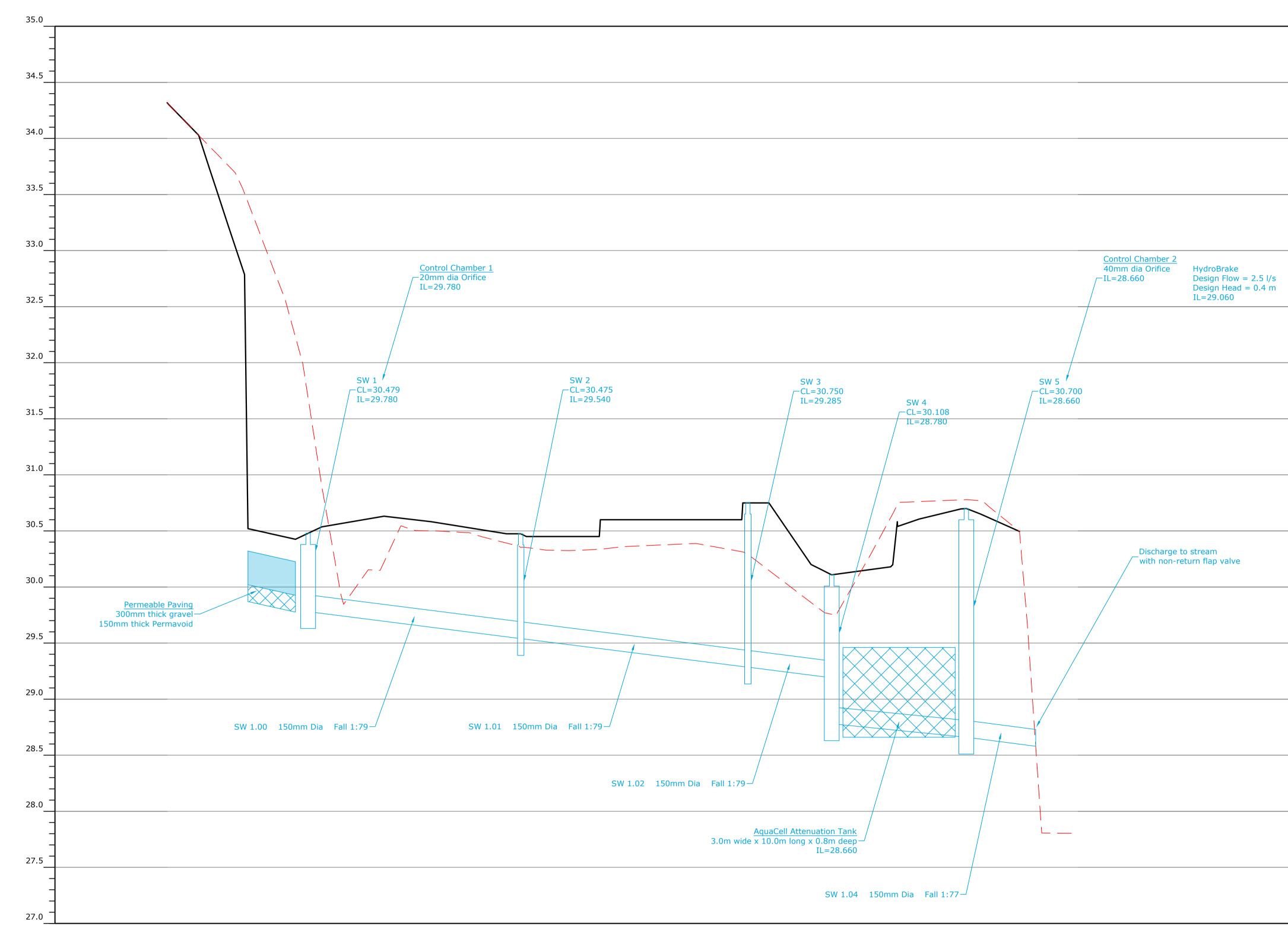
APPENDIX D

231743/FRA/01 – Depths of Flooding for 1% AEP +25% CC

231743/FRA/02 – Existing & Proposed Flood Storage Volumes


231743/SK/02 – Proposed Levels

			NO	ΓES				٦
PORTSMOUTH								
Q ^O [×]								
ARMAC								
		l			1 1	I	I	
							+	-
	Rev		Amendment		Drawn	Checked	Appioveu Date	
							Date	;
		Civil Engine				ing		
		Thorogood House, Telephone:	0208 339 789 e-mail: info@		Surrey, KT6 08 339 7898	5 7EW		
		Rusł	nmon]	Homes	s Ltd			
				lins Hous				┨
		Por	tsmouth	Road, Rip	oley			
			Propose	d Levels				
	DRAWN DATE	RS	CHECKED DATE	KBL	APPROVE DATE	KBI		┥
	SCALE	Jan-24	PRJ No	Jan-24		Jan-2 SIZE	24 REV	_
	DWG No	1:200 · 23174	3/SK/02	231743)	A1		۲ ا
						[


APPENDIX E

231743/DS/01 – Proposed Drainage Strategy

231743/DS/02 – Surface Water Sewer Long Section

)WG No. 231743/DS/02

Surface Water Drainage

		NO	ΓES					
Rev		Amendment			rawn	hecked	pproved	ate
Rev					Drawn	Checked	Approved	Date
Rev	Civil Engin	NMC						Date
	Civil Engine Thorogood House	eers & Tran 2, 34 Tolworth C 2 0208 339 789	sport Plann Close, Surbiton, 9 Fax: 020	n i n g Surre	ult _{y, KT}	ing 6 7ew		Date
	Civil Engine Thorogood House	ers & Tran e, 34 Tolworth C : 0208 339 789 e-mail: info@	sport Plann Close, Surbiton,	n i n g Surre	ult _{y, KT}	ing 6 7ew		Date
	Civil Engine Thorogood House Telephone	ers & Tran e, 34 Tolworth C : 0208 339 789 e-mail: info@	sport Plann Close, Surbiton, 9 Fax: 02(Dlanmor.co.uk mor.co.uk	n i n g Surre)8 339	ult 9, KT 7898	ing 6 7ew		Date
	Civil Engine Thorogood House Telephone	eers & Tran e, 34 Tolworth C : 0208 339 789 e-mail: info@ www.lan	sport Plann Close, Surbiton, 9 Fax: 02(Dlanmor.co.uk mor.co.uk	n i n g Surre)8 339	ult 9, KT 7898	ing 6 7ew		Date
	Civil Engin Thorogood House Telephone Rus	ers & Tran e, 34 Tolworth C : 0208 339 789 e-mail: info@ www.lan hmon	sport Plant Close, Surbiton, Fax: 020 Clanmor.co.uk mor.co.uk Homes	Surre 38 339 S L	ult 9, KT 7898	ing 6 7ew		Date
	Civil Engin Thorogood House Telephone Rus	ers & Tran e, 34 Tolworth C : 0208 339 789 e-mail: info@ www.lan	sport Plant Close, Surbiton, Fax: 020 Clanmor.co.uk mor.co.uk Homes	Surre 38 339 S L	ult 9, KT 7898	ing 6 7ew		Date
	Civil Engin Thorogood House Telephone Rus I Po	ers & Tran e, 34 Tolworth C : 0208 339 789 e-mail: info@ www.lan hmon Parker Col rtsmouth I Drainage	sport Plan Close, Surbiton, Fax: 020 Clanmor.co.uk mor.co.uk Homes Homes Clins Hous Road, Rip	Surre Surre 339 S L	ult ^{y, KT} 7898	ing 6 7EW		Date
	Civil Engin Thorogood House Telephone Rus I Po	ers & Tran e, 34 Tolworth C : 0208 339 789 e-mail: info@ www.lan hmon Parker Col rtsmouth	sport Plan Close, Surbiton, Fax: 020 Clanmor.co.uk mor.co.uk Homes Homes Clins Hous Road, Rip	Surre Surre 339 S L	ult ^{y, KT} 7898	ing 6 7EW		Date
	Civil Engine Thorogood House Telephone Rus I Po Surface	ers & Tran e, 34 Tolworth C : 0208 339 789 e-mail: info@ www.lan hmon Parker Col rtsmouth I Drainage	sport Plant Close, Surbiton, Fax: 020 Clanmor.co.uk mor.co.uk Homes Homes Clins Hous Road, Rip Strategy wer Long	Surre Surre 3339 SL Se oley	ult ^{y, KT} 7898	ing 6 7EW		Date
	Civil Engin Thorogood House Telephone Rus I Po Surface	A Tran e, 34 Tolworth C : 0208 339 789 e-mail: info@ www.lan hmon Parker Col rtsmouth Drainage Water Se	sport Plan Close, Surbiton, Fax: 020 Clanmor.co.uk mor.co.uk Homes Homes Clins Hous Road, Rip	Surre Surre 3339 SL Se oley	ult ^{y, KT} 7898 td	ing 6 7EW		
DRAWN	Civil Engine Thorogood House Telephone Rus I Po Surface RS	A Tran 2, 34 Tolworth C 2: 0208 339 789 2: 0208 3: 0	sport Plan Close, Surbiton, Fax: 020 Clanmor.co.uk mor.co.uk Homes Clins Hous Road, Rip Strategy wer Long KBL Jan-24	Surrey Surrey S L Se oley Sec APPI DAT	ult ^{y, KT} 7898 td	ing 6 7EW	3L 1-24	

APPENDIX F

Greenfield Calculations

Lanmor Consulting Ltd		Page 1
Thorogood House	Parker Collins House	
34 Tolworth Close	Portsmouth Road	4
Surbition Surrey KT6 7EW	Ripley	Micco
Date December 2023	Designed by RS	Draipago
File	Checked by KBL	Drainage
XP Solutions	Source Control 2015.1	
I	CP SUDS Mean Annual Flood Input	
Return Period (vear	s) 100 SAAR (mm) 700 Urban 0.00	00

Return Period (years)100 SAAR (mm)700Urban0.000Area (ha)0.414Soil0.450 Region Number Region 6

Results 1/s

QBAR Rural QBAR Urban	
Q100 years	5.8
Q1 year	1.5
Q30 years	4.1
Q100 years	5.8

Permeable Paving & Tank Calculations

Lanmor Consulting Ltd		Page 1
Thorogood House	Parker Collins House	
34 Tolworth Close	Portsmouth Road	4
Surbition Surrey KT6 7EW	Ripley	Mirco
Date January 2024	Designed by RS	Desipado
File Cascade.casx	Checked by KBL	Drainage
XP Solutions	Source Control 2015.1	

Cascade Summary of Results for PAVING.srcx

Upstream Outflow To Overflow To Structures

(None) TANK.srcx (None)

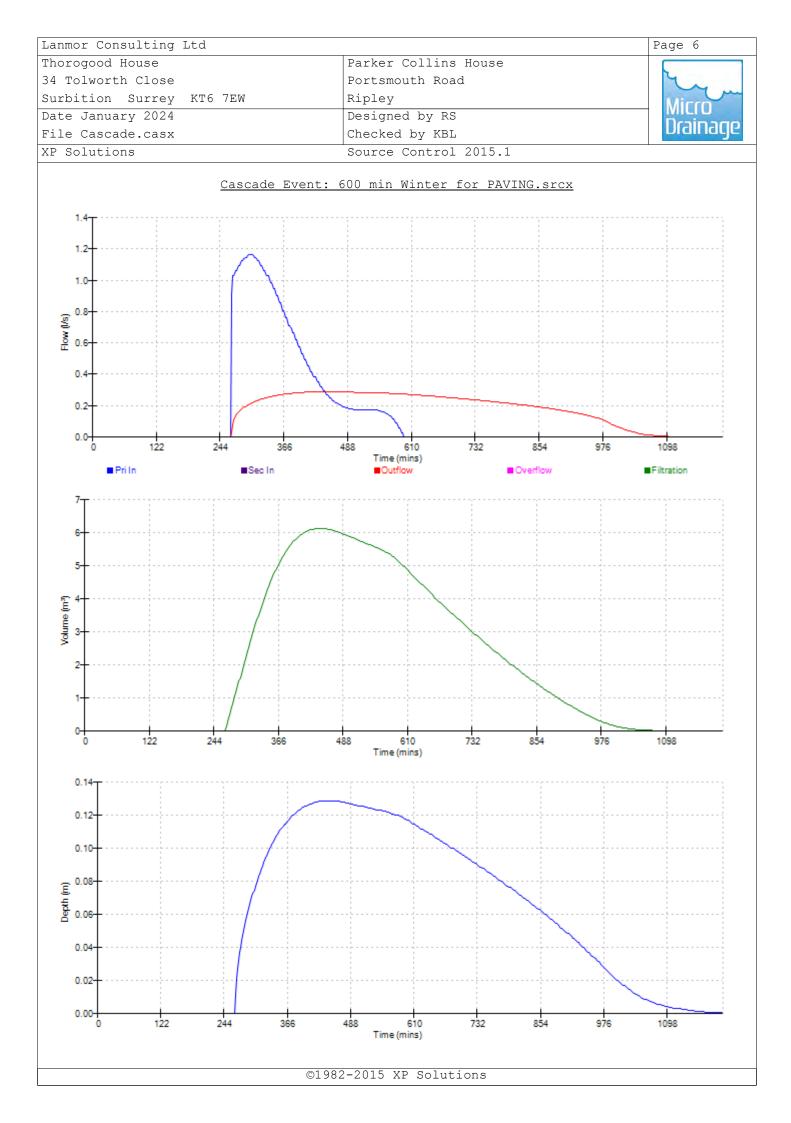
Half Drain Time : 202 minutes.

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m ³)	Status
15	min :	Summer	29.780	0.000	0.0	0.0	0.0	0.0	ОК
30	min	Summer	29.819	0.039	0.0	0.1	0.1	0.6	ΟK
60	min	Summer	29.851	0.071	0.0	0.2	0.2	1.9	ΟK
120	min	Summer	29.872	0.092	0.0	0.2	0.2	3.2	ΟK
180	min	Summer	29.881	0.101	0.0	0.3	0.3	3.8	ΟK
240	min	Summer	29.886	0.106	0.0	0.3	0.3	4.1	ΟK
360	min	Summer	29.891	0.111	0.0	0.3	0.3	4.5	ΟK
480	min :	Summer	29.894	0.114	0.0	0.3	0.3	4.8	ΟK
600	min	Summer	29.895	0.115	0.0	0.3	0.3	4.9	ΟK
720	min :	Summer	29.896	0.116	0.0	0.3	0.3	5.0	ΟK
960	min	Summer	29.896	0.116	0.0	0.3	0.3	5.0	ΟK
1440	min	Summer	29.894	0.114	0.0	0.3	0.3	4.8	ΟK
2160	min	Summer	29.886	0.106	0.0	0.3	0.3	4.2	ΟK
2880	min	Summer	29.878	0.098	0.0	0.2	0.2	3.6	ΟK
4320	min	Summer	29.862	0.082	0.0	0.2	0.2	2.5	ΟK
5760	min	Summer	29.850	0.070	0.0	0.2	0.2	1.8	ΟK
7200	min	Summer	29.840	0.060	0.0	0.2	0.2	1.3	ΟK
8640	min	Summer	29.832	0.052	0.0	0.2	0.2	1.0	ΟK
10080	min	Summer	29.825	0.045	0.0	0.2	0.2	0.8	ΟK
15	min M	Winter	29.780	0.000	0.0	0.0	0.0	0.0	ΟK
30	min 1	Winter	29.838	0.058	0.0	0.2	0.2	1.3	ΟK
60	min M	Winter	29.867	0.087	0.0	0.2	0.2	2.8	ΟK

	Stor Even		Rain (mm/hr)		Discharge Volume (m ³)	Time-Peak (mins)
15	min	Summer	30.991	0.0	0.0	0
30	min	Summer	20.215	0.0	0.6	33
60	min	Summer	12.800	0.0	2.2	62
120	min	Summer	7.942	0.0	3.9	122
180	min	Summer	5.979	0.0	5.0	180
240	min	Summer	4.882	0.0	5.9	224
360	min	Summer	3.646	0.0	7.0	280
480	min	Summer	2.956	0.0	7.8	344
600	min	Summer	2.511	0.0	8.5	412
720	min	Summer	2.199	0.0	8.9	482
960	min	Summer	1.782	0.0	9.7	616
1440	min	Summer	1.326	0.0	10.6	882
2160	min	Summer	0.988	0.0	11.3	1276
2880	min	Summer	0.800	0.0	11.4	1648
4320	min	Summer	0.595	0.0	11.0	2380
5760	min	Summer	0.483	0.0	10.6	3112
7200	min	Summer	0.410	0.0	10.4	3816
8640	min	Summer	0.359	0.0	10.1	4496
10080	min	Summer	0.322	0.0	9.8	5152
15	min	Winter	30.991	0.0	0.0	0
30	min	Winter	20.215	0.0	1.4	33
60	min	Winter	12.800	0.0	3.1	62

©1982-2015 XP Solutions

Lanmor Consulting Ltd		Page 2
Thorogood House	Parker Collins House	
34 Tolworth Close	Portsmouth Road	La la
Surbition Surrey KT6 7EW	Ripley	Micco
Date January 2024	Designed by RS	Desinado
File Cascade.casx	Checked by KBL	Drainage
XP Solutions	Source Control 2015.1	1


	Storm	Max	Max	Max	Max	Max	Max	Status
	Event	Level	Depth	Infiltration	Control D	Coutflow	Volume	
		(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
120	min Winter	29.887	0.107	0.0	0.3	0.3	4.3	ΟK
180	min Winter	29.897	0.117	0.0	0.3	0.3	5.0	ΟK
240	min Winter	29.902	0.122	0.0	0.3	0.3	5.5	ΟK
360	min Winter	29.906	0.126	0.0	0.3	0.3	5.8	ΟK
480	min Winter	29.908	0.128	0.0	0.3	0.3	6.0	Οŀ
600	min Winter	29.909	0.129	0.0	0.3	0.3	6.1	Οŀ
720	min Winter	29.908	0.128	0.0	0.3	0.3	6.1	Οŀ
960	min Winter	29.907	0.127	0.0	0.3	0.3	5.9	ΟK
1440	min Winter	29.900	0.120	0.0	0.3	0.3	5.3	ΟK
2160	min Winter	29.887	0.107	0.0	0.3	0.3	4.3	Οŀ
2880	min Winter	29.874	0.094	0.0	0.2	0.2	3.3	Οŀ
4320	min Winter	29.852	0.072	0.0	0.2	0.2	1.9	Οŀ
5760	min Winter	29.835	0.055	0.0	0.2	0.2	1.1	ΟK
7200	min Winter	29.823	0.043	0.0	0.2	0.2	0.7	ΟK
8640	min Winter	29.815	0.035	0.0	0.1	0.1	0.5	ΟK
10080	min Winter	29.809	0.029	0.0	0.1	0.1	0.3	ΟK

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
120	min	Winter	7.942	0.0	5.1	118
180	min	Winter	5.979	0.0	6.4	176
240	min	Winter	4.882	0.0	7.3	230
360	min	Winter	3.646	0.0	8.6	294
480	min	Winter	2.956	0.0	9.6	368
600	min	Winter	2.511	0.0	10.3	444
720	min	Winter	2.199	0.0	10.9	520
960	min	Winter	1.782	0.0	11.8	666
1440	min	Winter	1.326	0.0	13.0	952
2160	min	Winter	0.988	0.0	14.0	1344
2880	min	Winter	0.800	0.0	14.4	1728
4320	min	Winter	0.595	0.0	14.3	2424
5760	min	Winter	0.483	0.0	13.8	3112
7200	min	Winter	0.410	0.0	13.3	3752
8640	min	Winter	0.359	0.0	12.8	4488
10080	min	Winter	0.322	0.0	12.4	5136

Lanmor Consulting Ltd		Page 3
Thorogood House	Parker Collins House	
34 Tolworth Close	Portsmouth Road	4
Surbition Surrey KT6 7EW	Ripley	Micco
Date January 2024	Designed by RS	Desinado
File Cascade.casx	Checked by KBL	Diamaye
XP Solutions	Source Control 2015.1	
<u>Cascade R</u>	ainfall Details for PAVING.srcx	
Rainfall Model Return Period (years) Region M5-60 (mm) Ratio R Summer Storms	1 Cv (Summer) 0.750 n England and Wales Cv (Winter) 0.840 20.000 Shortest Storm (mins) 15 R 0.400 Longest Storm (mins) 10080	
	<u>Time Area Diagram</u>	
	Total Area (ha) 0.081	
	Time (mins) Area	
	From: To: (ha)	
	0 4 0.081	

Lanmor Consulting Ltd					Page 4
	Parker	Collin	s House		5
34 Tolworth Close P	Portsmo	uth Ro	ad		L.
-	Ripley				Mirco
Date January 2024 D	esigne	d by R	S		Desinage
File Cascade.casx C	Checked	by KB	L		Diamaye
XP Solutions S	Source	Contro	1 2015.1		
Cascade Model	Detai	<u>ls for</u>	PAVING.srcx		
Storage is Onl	line Cov	ver Leve	1 (m) 30.430		
	plex S				
	<u>-</u>				
<u>Po</u>	rous Ca	ar Pari	<u>k</u>		
Infiltration Coefficient Base ((m/hr) 0	.00000	Width (m)	4.1	
Membrane Percolation (m	. ,	1000	Length (m)		
Max Percolation			Slope (1:X)		
			Depression Storage (mm)		
			Evaporation (mm/day) Cap Volume Depth (m)	3 0.150	
Po	rous Ca	ar Parl			
Infiltration Coefficient Base (11 5	
Membrane Percolation (m		1000	Width (m) Length (m)		
Max Percolation	. ,		Slope (1:X)		
			Depression Storage (mm)		
-	rosity			3	
Invert Leve	el (m)	29.780	Cap Volume Depth (m)	0.150	
<u>Po</u>	rous Ca	ar Parl	<u>k</u>		
Infiltration Coefficient Base (
Membrane Percolation (m Max Percolation		1000 10.4	Length (m)		
			Slope (1:X) Depression Storage (mm)		
	rosity	0.95	Evaporation (mm/day)	3	
Invert Leve	-	29.920	Cap Volume Depth (m)		
Po	rous Ca	ar Parl	<u>k</u>		
Infiltration Coefficient Base ((m/hr) 0	.00000	Width (m)	4.1	
Membrane Percolation (m	nm/hr)	1000	Length (m)	26.7	
Max Percolation	,	30.4	Slope (1:X)	50.0	
Safety F			Depression Storage (mm)	5 3	
Por Invert Leve	rosity el (m)		Evaporation (mm/day) Cap Volume Depth (m)		
Po	rous Ca	ar Parl	<u>k</u>		
Infiltration Coefficient Base ((m/hr) 0	.00000	Width (m)	11.5	
Membrane Percolation (m	. ,	1000	Length (m)		
Max Percolation		100.0	Slope (1:X)		
Safety F	Factor rosity		Depression Storage (mm) Evaporation (mm/day)	5 3	
Invert Leve			Cap Volume Depth (m)		
<u>Po</u>	rous Ca	ar Parl	<u>k</u>		
Infiltration Coefficient Base ((m/hr) 0	.00000	Width (m)	5.0	
Membrane Percolation (m		1000	Length (m)	7.5	
Max Percolation		10.4	Slope (1:X)	36.3	
Safety F			Depression Storage (mm)	5	
	rosity	0.95	Evaporation (mm/day)	3 0 150	
Invert Leve	≓⊥ (m)	30.010	Cap Volume Depth (m)	0.120	

Lanmor Consulting Ltd					Page 5
Thorogood House	Parker	Collin	s House		
34 Tolworth Close	Portsm	nouth Ro	4		
Surbition Surrey KT6 7EW	Ripley	7	~~~		
Date January 2024		ned by R	MICLO		
File Cascade.casx	-	ed by KB			Drainage
XP Solutions		4	1 2015.1		
	Source		1 2013.1		
	Domoulo	Car Dar	1-		
1	Porous	<u>Car Par</u>	<u>K</u>		
Infiltration Coefficient Base	(m/hr)	0 00000	Width (m)	5.0	
Membrane Percolation	(, ,		Length (m)		
Max Percolatio	,		Slope (1:X)		
Safety	- Factor	2.0	Depression Storage (mm)	5	
E	orosity	0.30	Evaporation (mm/day)	3	
Invert Le	evel (m)	30.070	Cap Volume Depth (m)	0.300	
	_	~ -			
1	Porous	<u>Car Par</u>	<u>k</u>		
Infiltration Coefficient Base	(m/bx)	0 00000	Width (m)	5.0	
Membrane Percolation			Length (m)		
Max Percolatic	,		Slope (1:X)		
			Depression Storage (mm)		
		0.30			
	-		Cap Volume Depth (m)		
Orifi	ice Out	flow Co	<u>ntrol</u>		
Diameter (m) 0.020 Discharg	ge Coeff	icient 0.	600 Invert Level (m) 29	9.780	

Lanmor Consulting Ltd	Page 1	
Thorogood House	Parker Collins House	
34 Tolworth Close	Portsmouth Road	L.
Surbition Surrey KT6 7EW	Ripley	Micco
Date January 2024	Designed by RS	Desinado
File Cascade.casx	Checked by KBL	Drainage
XP Solutions	Source Control 2015.1	

Cascade Summary of Results for TANK.srcx

Upstream Outflow To Overflow To Structures

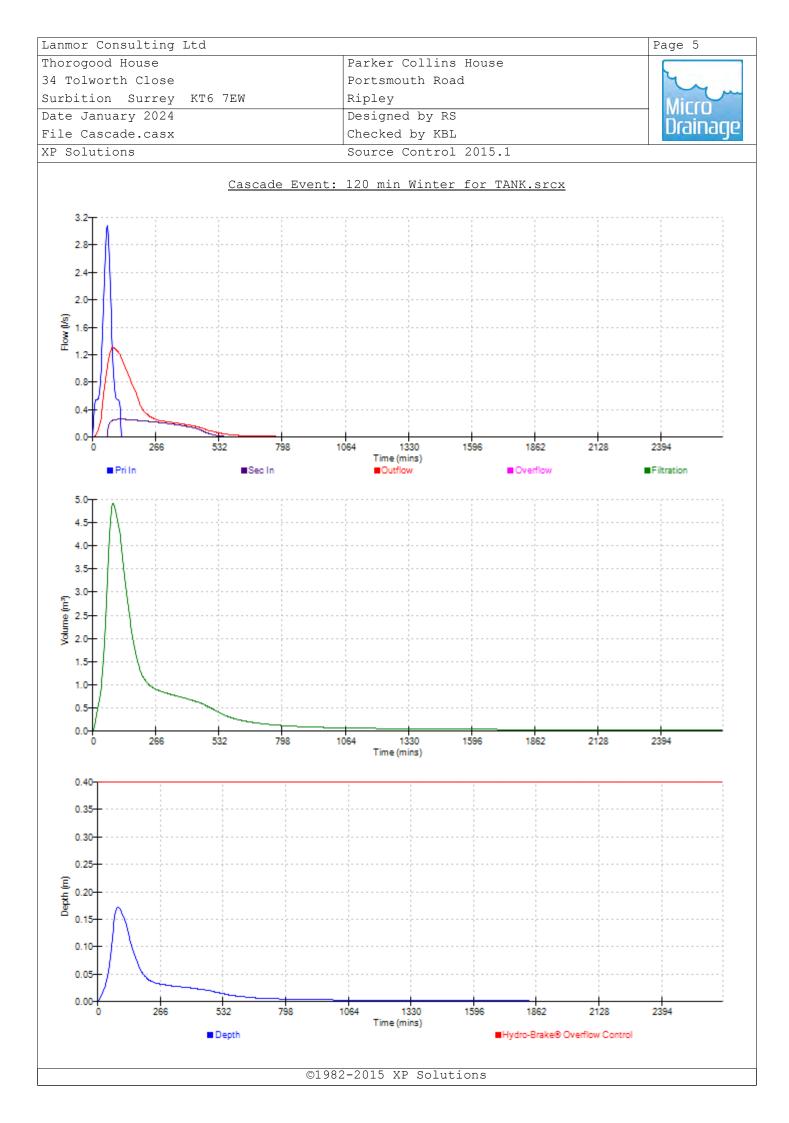
PAVING.srcx (None) (None)

Half Drain Time : 42 minutes.

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Overflow (l/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15	min S	Summer	28.775	0.115	0.0	1.0	0.0	1.0	3.3	ОК
30	min S	Summer	28.797	0.137	0.0	1.1	0.0	1.1	3.9	ОК
60	min S	Summer	28.812	0.152	0.0	1.2	0.0	1.2	4.3	ОК
120	min S	Summer	28.817	0.157	0.0	1.2	0.0	1.2	4.5	ОК
180	min S	Summer	28.813	0.153	0.0	1.2	0.0	1.2	4.4	ОК
240	min S	Summer	28.808	0.148	0.0	1.2	0.0	1.2	4.2	ОК
360	min S	Summer	28.794	0.134	0.0	1.1	0.0	1.1	3.8	ΟK
480	min S	Summer	28.782	0.122	0.0	1.1	0.0	1.1	3.5	ΟK
600	min S	Summer	28.773	0.113	0.0	1.0	0.0	1.0	3.2	ОК
720	min S	Summer	28.765	0.105	0.0	1.0	0.0	1.0	3.0	ОК
960	min S	Summer	28.753	0.093	0.0	0.9	0.0	0.9	2.7	ΟK
1440	min S	Summer	28.737	0.077	0.0	0.8	0.0	0.8	2.2	ΟK
2160	min S	Summer	28.723	0.063	0.0	0.7	0.0	0.7	1.8	ΟK
2880	min S	Summer	28.716	0.056	0.0	0.6	0.0	0.6	1.6	ΟK
4320	min S	Summer	28.709	0.049	0.0	0.5	0.0	0.5	1.4	ΟK
5760	min S	Summer	28.704	0.044	0.0	0.4	0.0	0.4	1.3	ΟK
7200	min S	Summer	28.701	0.041	0.0	0.4	0.0	0.4	1.2	ΟK
8640	min S	Summer	28.699	0.039	0.0	0.4	0.0	0.4	1.1	ΟK
10080	min S	Summer	28.697	0.037	0.0	0.3	0.0	0.3	1.0	ΟK
15	min V	Winter	28.790	0.130	0.0	1.1	0.0	1.1	3.7	ΟK
30	min V	Winter	28.816	0.156	0.0	1.2	0.0	1.2	4.4	ΟK
60	min V	Winter	28.831	0.171	0.0	1.3	0.0	1.3	4.9	ΟK

Storm	Rain		Discharge		
Event	(mm/hr)	Volume	Volume	Volume	(mins)
		(m³)	(m³)	(m³)	
15 min Summer	30.991	0.0	3.8	0.0	16
30 min Summer	20.215	0.0	5.6	0.0	29
60 min Summer	12.800	0.0	8.5	0.0	46
120 min Summer	7.942	0.0	11.8	0.0	80
180 min Summer	5.979	0.0	13.9	0.0	114
240 min Summer	4.882	0.0	15.5	0.0	148
360 min Summer	3.646	0.0	17.8	0.0	216
480 min Summer	2.956	0.0	19.5	0.0	280
600 min Summer	2.511	0.0	20.9	0.0	344
720 min Summer	2.199	0.0	22.0	0.0	406
960 min Summer	1.782	0.0	23.8	0.0	530
1440 min Summer	1.326	0.0	26.4	0.0	768
2160 min Summer	0.988	0.0	28.8	0.0	1128
2880 min Summer	0.800	0.0	30.4	0.0	1472
4320 min Summer	0.595	0.0	32.2	0.0	2204
5760 min Summer	0.483	0.0	33.6	0.0	2944
7200 min Summer	0.410	0.0	34.7	0.0	3672
8640 min Summer	0.359	0.0	35.7	0.0	4408
10080 min Summer	0.322	0.0	36.5	0.0	5136
15 min Winter	30.991	0.0	4.3	0.0	16
30 min Winter	20.215	0.0	6.9	0.0	30
60 min Winter	12.800	0.0	10.2	0.0	48
	©1982-2	2015 XP	Solution	IS	

Lanmor Consulting Ltd	Page 2	
Thorogood House	Parker Collins House	
34 Tolworth Close	Portsmouth Road	L.
Surbition Surrey KT6 7EW	Ripley	Mirro
Date January 2024	Designed by RS	Desipado
File Cascade.casx	Checked by KBL	Drainage
XP Solutions	Source Control 2015.1	


Cascade	Summary	of	Results	for	TANK.srcx

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (l/s)	Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
120	min Wi	inter	28.832	0.172	0.0	1.3	0.0	1.3	4.9	ОК
180	min Wi	inter	28.824	0.164	0.0	1.3	0.0	1.3	4.7	ОК
240	min Wi	inter	28.814	0.154	0.0	1.2	0.0	1.2	4.4	ΟK
360	min Wi	inter	28.794	0.134	0.0	1.1	0.0	1.1	3.8	ОК
480	min Wi	inter	28.779	0.119	0.0	1.0	0.0	1.0	3.4	ОК
600	min Wi	inter	28.767	0.107	0.0	1.0	0.0	1.0	3.0	ОК
720	min Wi	inter	28.757	0.097	0.0	0.9	0.0	0.9	2.8	ОК
960	min Wi	inter	28.744	0.084	0.0	0.8	0.0	0.8	2.4	ОК
1440	min Wi	inter	28.727	0.067	0.0	0.7	0.0	0.7	1.9	ΟK
2160	min Wi	inter	28.715	0.055	0.0	0.6	0.0	0.6	1.6	ОК
2880	min Wi	inter	28.710	0.050	0.0	0.5	0.0	0.5	1.4	ОК
4320	min Wi	inter	28.703	0.043	0.0	0.4	0.0	0.4	1.2	ОК
5760	min Wi	inter	28.699	0.039	0.0	0.4	0.0	0.4	1.1	ОК
7200	min Wi	inter	28.695	0.035	0.0	0.3	0.0	0.3	1.0	ОК
8640	min Wi	inter	28.693	0.033	0.0	0.3	0.0	0.3	0.9	ОК
10080	min Wi	inter	28.690	0.030	0.0	0.2	0.0	0.2	0.9	ΟK

	Storm Event		Flooded Volume (m ³)	Discharge Volume (m ³)	Overflow Volume (m ³)	Time-Peak (mins)
180 240 360 480 600 720	min Winter min Winter min Winter min Winter min Winter min Winter min Winter	7.942 5.979 4.882 3.646 2.956 2.511 2.199 1.782	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	13.9 16.3 18.1 20.7 22.7 24.2 25.5 27.6		86 124 160 228 296 362 426 550
1440 2160 2880 4320 5760 7200 8640	min Winter min Winter min Winter min Winter min Winter min Winter min Winter min Winter min Winter	1.782 1.326 0.988 0.800 0.595 0.483 0.410 0.359 0.322	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	27.6 30.6 33.7 35.7 38.1 39.4 40.5 41.5 42.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	794 1148 1500 2236 2992 3752 4456 5144

Lanmor Consulting Ltd		Page 3
Thorogood House	Parker Collins House	
34 Tolworth Close	Portsmouth Road	Ya
Surbition Surrey KT6 7EW	Ripley	Mirco
Date January 2024	Designed by RS	- IVIILIU Desigona
File Cascade.casx	Checked by KBL	Dialinage
XP Solutions	Source Control 2015.1	
Rainfall Model Return Period (years)	1 Cv (Summer) 0.750 England and Wales Cv (Winter) 0.840 20.000 Shortest Storm (mins) 15 0.400 Longest Storm (mins) 10080	

Janmor Consulting Ltd		Page 4
horogood House	Parker Collins House	
34 Tolworth Close	Portsmouth Road	4
Surbition Surrey KT6 7EW	Ripley	- Cum
Date January 2024	Designed by RS	Micro
Tile Cascade.casx	Checked by KBL	Drainage
XP Solutions	Source Control 2015.1	
Cascade	Model Details for TANK.srcx	
Storage	is Online Cover Level (m) 30.500	
<u>Ce</u> :	<u>lular Storage Structure</u>	
	Invert Level (m) 28.660 Safety Factor 2. cient Base (m/hr) 0.00000 Porosity 0.9 cient Side (m/hr) 0.00000	
Depth (m) Area (m ²) Inf. Area (m ²) Depth	(m) Area (m ²) Inf. Area (m ²) Depth (m) Ar	cea (m²) Inf. Area (m²)
0.000 30.0 30.0	.800 30.0 50.8 0.801	0.0 50.8
<u>0</u>	rifice Outflow Control	
Diameter (m) 0 040 Disc	harge Coefficient 0 600 Invert Level (m) 2	8 660
	harge Coefficient 0.600 Invert Level (m) 2	8.660
	harge Coefficient 0.600 Invert Level (m) 2 ake Optimum® Overflow Control	8.660
	-	8.660
<u>Hydro-Br</u>	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400	8.660
<u>Hydro-Br</u>	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5	8.660
<u>Hydro-Br</u>	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated	8.660
<u>Hydro-Br</u>	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5	8.660
<u>Hydro-Br</u> De	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) 83 nvert Level (m) 29.060	8.660
<u>Hydro-Br</u> De Minimum Outlet Pip	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) 83 nvert Level (m) 29.060 e Diameter (mm) 100	8.660
<u>Hydro-Br</u> De	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) 83 nvert Level (m) 29.060 e Diameter (mm) 100	8.660
<u>Hydro-Br</u> De Minimum Outlet Pip Suggested Manhol	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) 83 nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 1200	8.660 i (m) Flow (l/s)
<u>Hydro-Br</u> De Minimum Outlet Pip Suggested Manhol	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 1200 Flow (1/s) Control Points 0 2.5	
<u>Hydro-Br</u> De Minimum Outlet Pip Suggested Manho Control Points Head (m Design Point (Calculated) 0.40 Flush-Flo™ 0.13	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 1200 Flow (1/s) Control Points Akick-Flo® Calculated 0 2.5 Kick-Flo® Calculated	i (m) Flow (1/s) 0.290 2.1 - 2.0
<u>Hydro-Br</u> De Minimum Outlet Pip Suggested Manho Control Points Head (m Design Point (Calculated) 0.40 Flush-Flo™ 0.13 The hydrological calculations have been	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 1200 Flow (1/s) Control Points 0 2.5	i (m) Flow (1/s) 0.290 2.1 - 2.0 or the Hydro-Brake
<u>Hydro-Br</u> De Minimum Outlet Pip Suggested Manho Control Points Head (m Design Point (Calculated) 0.40 Flush-Flo™ 0.13 The hydrological calculations have been	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 1200 Flow (1/s) Control Points 0 2.5 . 2.4 Mean Flow over Head Range based on the Head/Discharge relationship for the storage of control device other than a Hydro-Bit	i (m) Flow (1/s) 0.290 2.1 - 2.0 or the Hydro-Brake
Hydro-Br Hydro-Br Minimum Outlet Pip Suggested Manhod Control Points Head (m Design Point (Calculated) 0.40 Flush-Flo™ 0.13 The hydrological calculations have been Optimum® as specified. Should another utilised then these storage routing calculations	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 1200 Flow (1/s) Control Points 0 2.5 . 2.4 Mean Flow over Head Range based on the Head/Discharge relationship for the storage of control device other than a Hydro-Bit	i (m) Flow (1/s) 0.290 2.1 - 2.0 or the Hydro-Brake rake Optimum® be
Hydro-Br De Minimum Outlet Pip Suggested Manhoi Control Points Head (m Design Point (Calculated) 0.40 Flush-Flo™ 0.13 The hydrological calculations have been Optimum® as specified. Should another futilised then these storage routing calculations Depth (m) Flow (1/s) Depth (m) Flow (1/s)	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 1200 Flow (1/s) Control Points Flow (1/s) Control Points Head 2.5 Xick-Flo® 0 2.5 Kick-Flo® 2.4 Mean Flow over Head Range based on the Head/Discharge relationship for the stations will be invalidated 0 Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s)	d (m) Flow (1/s) 0.290 2.1 - 2.0 or the Hydro-Brake rake Optimum® be c) Depth (m) Flow (1/s)
Hydro-Br Definition Minimum Outlet Ping Suggested Manhoi Control Points Head (m Design Point (Calculated) 0.40 Flush-Flo™ 0.13 The hydrological calculations have been Optimum® as specified. Should another utilised then these storage routing calculations Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 2.4 0.800 3.	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 1200 Flow (1/s) Control Points Flow (1/s) Control Points Head 1200 Sissed on the Head/Discharge relationship for the second se	<pre>d (m) Flow (1/s) 0.290 2.1 - 2.0 or the Hydro-Brake rake Optimum® be c) Depth (m) Flow (1/s) 1 7.000 9.4</pre>
Hydro-Br Design Point (Calculated) 0.40 Flush-Flo™ 0.13 The hydrological calculations have been Optimum® as specified. Should another utilised then these storage routing calculations have been 0.13 Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 2.4 0.800 3. 0.100 2.4 1.000 3.	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage 0iameter (mm) nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 1200 Flow (1/s) Control Points Head 0 2.5 Kick-Flo® 0 2.4 Mean Flow over Head Range 0 2.4 based on the Head/Discharge relationship for control device other than a Hydro-Bisculations will be invalidated 0 Depth (m) Flow (1/s) Depth (m) Flow (1/s) 4 2.000 5.2 4.000 7. 7 2.200 5.4 4.500 7.	<pre>d (m) Flow (1/s) 0.290 2.1 - 2.0 or the Hydro-Brake rake Optimum® be 0) Depth (m) Flow (1/s) 1 7.000 9.4 5 7.500 9.8</pre>
Hydro-Br Design Point (Calculated) 0.40 Flush-Flo™ 0.13 The hydrological calculations have been Optimum® as specified. Should another utilised then these storage routing calculations have been 0.13 Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 2.4 0.800 3. 0.200 2.4 1.000 3. 0.300 2.2 1.200 4.	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage 0iameter (mm) nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 1200 Flow (1/s) Control Points Head 0 2.5 Kick-Flo® 0 2.4 Mean Flow over Head Range 0 0 based on the Head/Discharge relationship for control device other than a Hydro-Bis 0 culations will be invalidated 0 Pepth (m) Flow (1/s) Pepth (m) Flow (1/s) 4 2.000 5.2 4.000 7. 2.200 5.4 4.500 7. 1 2.400 5.6 5.000 8.	<pre>d (m) Flow (1/s) 0.290 2.1 - 2.0 or the Hydro-Brake rake Optimum® be c) Depth (m) Flow (1/s) 1 7.000 9.4 5 7.500 9.8 0 8.000 10.1</pre>
Hydro-Br Design Point (Calculated) 0.40 Flush-Flo™ 0.13 The hydrological calculations have been Optimum® as specified. Should another utilised then these storage routing calculations have been 0.13 Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 2.4 0.800 3. 0.200 2.4 1.000 3. 0.300 2.2 1.200 4. 0.400 2.5 1.400 4.	ake Optimum® Overflow ControlUnit Reference MD-SHE-0083-2500-0400-2500Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™CalculatedObjectiveMinimise upstream storageDiameter (mm) 83 nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 1200 Flow (1/s)Control PointsHead0 2.5 2.4 Kick-Flo®Mean Flow over Head Rangebased on the Head/Discharge relationship for cype of control device other than a Hydro-Bisulations will be invalidated0 5.2 4.000 7 2.200 5.4 4.500 7 2.400 5.6 5.000 $8.$ 4 2.600 5.8 5.500 $8.$	<pre>d (m) Flow (1/s) 0.290 2.1 - 2.0 or the Hydro-Brake rake Optimum® be c) Depth (m) Flow (1/s) 1 7.000 9.4 5 7.500 9.8 0 8.000 10.1 3 8.500 10.4</pre>
Hydro-Br Design Point (Calculated) 0.40 Flush-Flo™ 0.13 The hydrological calculations have been Optimum® as specified. Should another utilised then these storage routing calculations have been 0.13 Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 2.4 0.800 3. 0.200 2.4 1.000 3. 0.300 2.2 1.200 4.	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage 0 Diameter (mm) 83 nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 1200 Flow (1/s) Control Points Head 0 2.5 Kick-Flo® 0 2.4 Mean Flow over Head Range 0 0 based on the Head/Discharge relationship for control device other than a Hydro-Bisculations will be invalidated 7 2.200 5.4 4 2.000 5.2 4.000 7. 2.200 5.4 4.500 7. 1 2.400 5.6 5.000 8. 4 2.600 5.8 5.500 8. 6 3.000 6.2 6.000 8.	<pre>d (m) Flow (1/s) 0.290 2.1 - 2.0 or the Hydro-Brake rake Optimum® be c) Depth (m) Flow (1/s) 1 7.000 9.4 5 7.500 9.8 0 8.000 10.1 3 8.500 10.4 7 9.000 10.7</pre>

Lanmor Consulting Ltd	Page 1	
Thorogood House	Parker Collins House	
34 Tolworth Close	Portsmouth Road	4
Surbition Surrey KT6 7EW	Ripley	Mirco
Date January 2024	Designed by RS	Desinado
File Cascade.casx	Checked by KBL	Drainage
XP Solutions	Source Control 2015.1	·

Cascade Summary of Results for PAVING.srcx

Upstream Outflow To Overflow To Structures

(None) TANK.srcx (None)

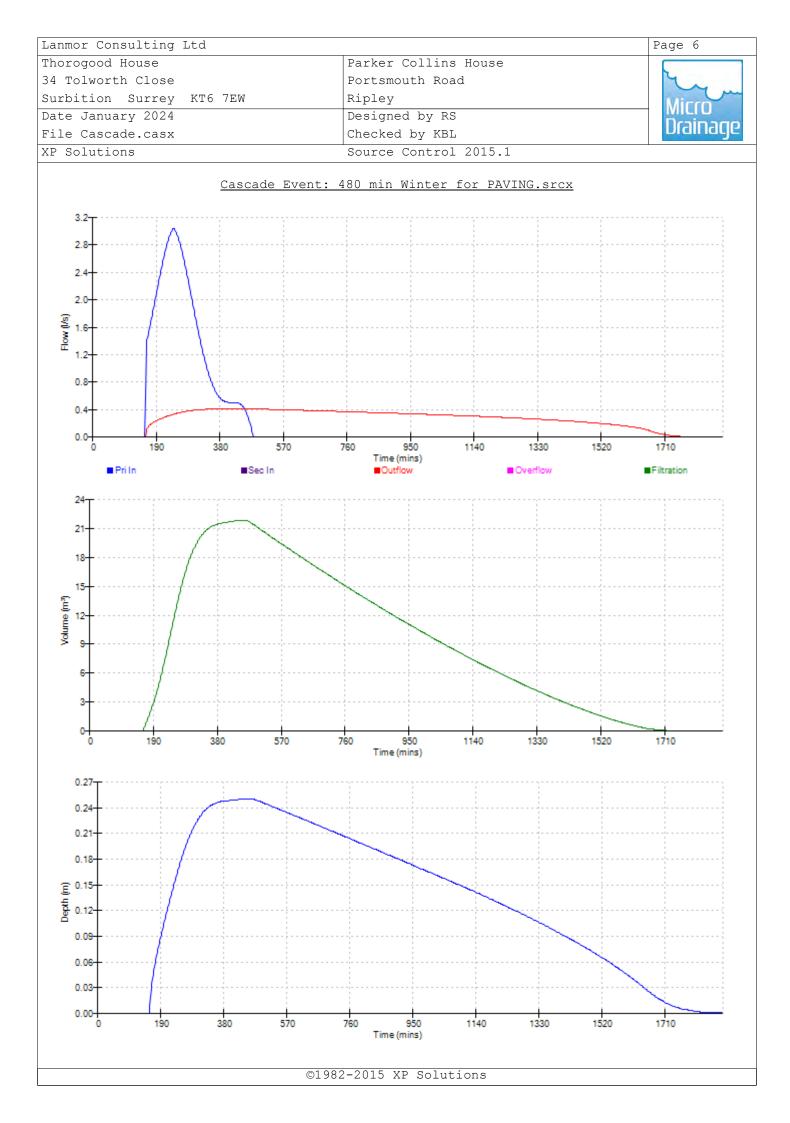
Half Drain Time : 505 minutes.

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15	min S	Summer	29.906	0.126	0.0	0.3	0.3	5.9	ΟK
30	min S	Summer	29.937	0.157	0.0	0.3	0.3	9.2	ΟK
60	min S	Summer	29.964	0.184	0.0	0.3	0.3	12.5	ΟK
120	min S	Summer	29.987	0.207	0.0	0.4	0.4	15.5	ΟK
180	min S	Summer	29.997	0.217	0.0	0.4	0.4	16.9	ΟK
240	min S	Summer	30.003	0.223	0.0	0.4	0.4	17.7	ΟK
360	min S	Summer	30.007	0.227	0.0	0.4	0.4	18.4	ΟK
480	min S	Summer	30.009	0.229	0.0	0.4	0.4	18.5	ΟK
600	min S	Summer	30.009	0.229	0.0	0.4	0.4	18.6	ΟK
720	min S	Summer	30.009	0.229	0.0	0.4	0.4	18.6	ΟK
960	min S	Summer	30.008	0.228	0.0	0.4	0.4	18.5	ΟK
1440	min S	Summer	30.003	0.223	0.0	0.4	0.4	17.7	ΟK
2160	min S	Summer	29.992	0.212	0.0	0.4	0.4	16.1	ΟK
2880	min S	Summer	29.979	0.199	0.0	0.4	0.4	14.4	ΟK
4320	min S	Summer	29.956	0.176	0.0	0.3	0.3	11.4	ΟK
5760	min S	Summer	29.935	0.155	0.0	0.3	0.3	9.0	ΟK
7200	min S	Summer	29.918	0.138	0.0	0.3	0.3	7.1	ΟK
8640	min S	Summer	29.903	0.123	0.0	0.3	0.3	5.6	ΟK
10080	min S	Summer	29.890	0.110	0.0	0.3	0.3	4.5	ΟK
15	min W	Vinter	29.920	0.140	0.0	0.3	0.3	7.3	ΟK
30	min W	Vinter	29.952	0.172	0.0	0.3	0.3	11.0	ΟK
60	min W	Vinter	29.981	0.201	0.0	0.4	0.4	14.7	O K

		t	(mm/hr)	Volume (m³)	Volume (m³)	Time-Peak (mins)
15	min	Summer	76.035	0.0	6.1	19
30	min	Summer	49.499	0.0	9.5	34
60	min	Summer	30.811	0.0	13.1	64
120	min	Summer	18.615	0.0	16.9	122
180	min	Summer	13.715	0.0	19.1	182
240	min	Summer	10.995	0.0	20.7	242
360	min	Summer	8.034	0.0	23.0	360
480	min	Summer	6.428	0.0	24.7	414
600	min	Summer	5.404	0.0	26.0	476
720	min	Summer	4.687	0.0	27.1	536
960	min	Summer	3.743	0.0	28.8	672
1440	min	Summer	2.723	0.0	31.0	940
2160	min	Summer	1.979	0.0	32.9	1344
2880	min	Summer	1.577	0.0	34.0	1756
4320	min	Summer	1.143	0.0	34.8	2508
5760	min	Summer	0.910	0.0	34.6	3232
7200	min	Summer	0.762	0.0	33.8	3968
8640	min	Summer	0.659	0.0	32.7	4672
10080	min	Summer	0.583	0.0	31.7	5352
15	min	Winter	76.035	0.0	7.5	19
30	min	Winter	49.499	0.0	11.3	33
60	min	Winter	30.811	0.0	15.4	62

©1982-2015 XP Solutions

Lanmor Consulting Ltd		Page 2
Thorogood House	Parker Collins House	
34 Tolworth Close	Portsmouth Road	La la
Surbition Surrey KT6 7EW	Ripley	Micco
Date January 2024	Designed by RS	Desinado
File Cascade.casx	Checked by KBL	Drainage
XP Solutions	Source Control 2015.1	1


	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control Σ (l/s)	Max Outflow (l/s)	Max Volume (m³)	Status
120	min Winter	30.005	0.225	0.0	0.4	0.4	18.1	ΟK
180	min Winter	30.017	0.237	0.0	0.4	0.4	19.8	Οŀ
240	min Winter	30.023	0.243	0.0	0.4	0.4	20.7	ΟK
360	min Winter	30.029	0.249	0.0	0.4	0.4	21.6	O F
480	min Winter	30.030	0.250	0.0	0.4	0.4	21.9	O F
600	min Winter	30.030	0.250	0.0	0.4	0.4	21.7	O F
720	min Winter	30.029	0.249	0.0	0.4	0.4	21.7	Οŀ
960	min Winter	30.027	0.247	0.0	0.4	0.4	21.3	O F
1440	min Winter	30.018	0.238	0.0	0.4	0.4	19.9	O F
2160	min Winter	30.000	0.220	0.0	0.4	0.4	17.3	O F
2880	min Winter	29.982	0.202	0.0	0.4	0.4	14.8	O F
4320	min Winter	29.948	0.168	0.0	0.3	0.3	10.5	OF
5760	min Winter	29.920	0.140	0.0	0.3	0.3	7.3	OH
7200	min Winter	29.897	0.117	0.0	0.3	0.3	5.1	OH
8640	min Winter	29.878	0.098	0.0	0.2	0.2	3.5	OF
10080	min Winter	29.862	0.082	0.0	0.2	0.2	2.5	O H

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
120	min	Winter	18.615	0.0	19.6	120
180	min	Winter	13.715	0.0	22.1	178
240	min	Winter	10.995	0.0	23.9	236
360	min	Winter	8.034	0.0	26.5	348
480	min	Winter	6.428	0.0	28.5	454
600	min	Winter	5.404	0.0	30.0	546
720	min	Winter	4.687	0.0	31.2	570
960	min	Winter	3.743	0.0	33.1	722
1440	min	Winter	2.723	0.0	35.8	1024
2160	min	Winter	1.979	0.0	38.2	1452
2880	min	Winter	1.577	0.0	39.6	1872
4320	min	Winter	1.143	0.0	41.0	2640
5760	min	Winter	0.910	0.0	41.3	3392
7200	min	Winter	0.762	0.0	41.0	4104
8640	min	Winter	0.659	0.0	40.3	4752
10080	min	Winter	0.583	0.0	39.3	5440

Lanmor Consulting Ltd		Page 3
Thorogood House	Parker Collins House	
34 Tolworth Close	Portsmouth Road	L.
Surbition Surrey KT6 7EW	Ripley	Micro
Date January 2024	Designed by RS	- MICrO
File Cascade.casx	Checked by KBL	Drainage
XP Solutions	Source Control 2015.1	
<u>Cascade Rair</u>	nfall Details for PAVING.srcx	
Rainfall Model Return Period (years) Region En M5-60 (mm) Ratio R Summer Storms	FSR Winter Storms Yes 30 Cv (Summer) 0.750 ngland and Wales Cv (Winter) 0.840 20.000 Shortest Storm (mins) 15 0.400 Longest Storm (mins) 10080 Yes Climate Change % +0	
	<u>Time Area Diagram</u>	
,	Total Area (ha) 0.081	
	Time (mins) Area From: To: (ha)	
	0 4 0.081	

Lanmor Consulting Ltd					Page 4	
	Parker	Collin	s House		5	
34 Tolworth Close P	Portsmo	uth Ro	ad		L.	
-	Ripley		Mirco			
Date January 2024 D	January 2024 Designed by RS					
File Cascade.casx C	Checked	by KB	L		Diamaye	
XP Solutions S	Source	Contro	1 2015.1			
Cascade Model	Detai	<u>ls for</u>	PAVING.srcx			
Storage is Onl	line Cov	ver Leve	1 (m) 30.430			
	plex S					
	<u>-</u>					
<u>Po</u>	rous Ca	ar Pari	<u>k</u>			
Infiltration Coefficient Base ((m/hr) 0	.00000	Width (m)	4.1		
Membrane Percolation (m	. ,	1000	Length (m)			
Max Percolation			Slope (1:X)			
			Depression Storage (mm)			
			Evaporation (mm/day) Cap Volume Depth (m)	3 0.150		
Po	rous Ca	ar Parl				
Infiltration Coefficient Base (11 5		
Membrane Percolation (m		1000	Width (m) Length (m)			
Max Percolation	. ,		Slope (1:X)			
			Depression Storage (mm)			
-	rosity			3		
Invert Leve	el (m)	29.780	Cap Volume Depth (m)	0.150		
<u>Po</u>	rous Ca	ar Parl	<u>k</u>			
Infiltration Coefficient Base (
Membrane Percolation (m Max Percolation		1000 10.4	Length (m)			
			Slope (1:X) Depression Storage (mm)			
	rosity	0.95	Evaporation (mm/day)	3		
Invert Leve	-	29.920	Cap Volume Depth (m)			
Po	rous Ca	ar Parl	<u>k</u>			
Infiltration Coefficient Base ((m/hr) 0	.00000	Width (m)	4.1		
Membrane Percolation (m	nm/hr)	1000	Length (m)	26.7		
Max Percolation	,	30.4	Slope (1:X)	50.0		
Safety F			Depression Storage (mm)	5 3		
Por Invert Leve	rosity el (m)		Evaporation (mm/day) Cap Volume Depth (m)			
Po	rous Ca	ar Parl	<u>k</u>			
Infiltration Coefficient Base ((m/hr) 0	.00000	Width (m)	11.5		
Membrane Percolation (m	. ,	1000	Length (m)			
Max Percolation		100.0	Slope (1:X)			
Safety F	Factor rosity		Depression Storage (mm) Evaporation (mm/day)	5 3		
Invert Leve			Cap Volume Depth (m)			
<u>Po</u>	rous Ca	ar Parl	<u>k</u>			
Infiltration Coefficient Base ((m/hr) 0	.00000	Width (m)	5.0		
Membrane Percolation (m		1000	Length (m)	7.5		
Max Percolation		10.4	Slope (1:X)	36.3		
Safety F			Depression Storage (mm)	5		
	rosity	0.95	Evaporation (mm/day)	3 0 150		
Invert Leve	≓⊥ (m)	30.010	Cap Volume Depth (m)	0.120		

					D E
Lanmor Consulting Ltd					Page 5
Thorogood House	Parker	Collin			
34 Tolworth Close	Portsm	nouth Ro	ad		L.
Surbition Surrey KT6 7EW	Ripley	7			Micco
Date January 2024	Desigr	ned by R	S		Desinance
File Cascade.casx	Checke	ed by KB	L		Drainage
XP Solutions	Source	e Contro	1 2015.1		
I	Porous	Car Par	<u>k</u>		
	(())				
Infiltration Coefficient Base	(, ,		Width (m)		
Membrane Percolation	,		Length (m)		
Max Percolatio			Slope (1:X)		
-			Depression Storage (mm)		
	-	0.30			
Invert Le	evel (m)	30.070	Cap Volume Depth (m)	0.300	
I	Porous	Car Par	k		
-			_		
Infiltration Coefficient Base	e (m/hr)	0.00000	Width (m)	5.0	
Membrane Percolation	(mm/hr)	1000	Length (m)	7.5	
Max Percolatio			Slope (1:X)		
Safety	/ Factor	2.0	Depression Storage (mm)	5	
P	orosity 0.30 Evaporation (mm/day)			3	
Invert Le	evel (m)	30.160	Cap Volume Depth (m)	0.300	
Orif	<u>ice Out</u>	flow Co	ntrol		
Diameter (m) 0.020 Discharc	ge Coeff	icient 0.	600 Invert Level (m) 29	9.780	

Lanmor Consulting Ltd	Page 1	
Thorogood House	Parker Collins House	
34 Tolworth Close	Portsmouth Road	L.
Surbition Surrey KT6 7EW	Ripley	Micco
Date January 2024	Designed by RS	Desinado
File Cascade.casx	Checked by KBL	Drainage
XP Solutions	Source Control 2015.1	

Cascade Summary of Results for TANK.srcx

Upstream Outflow To Overflow To Structures

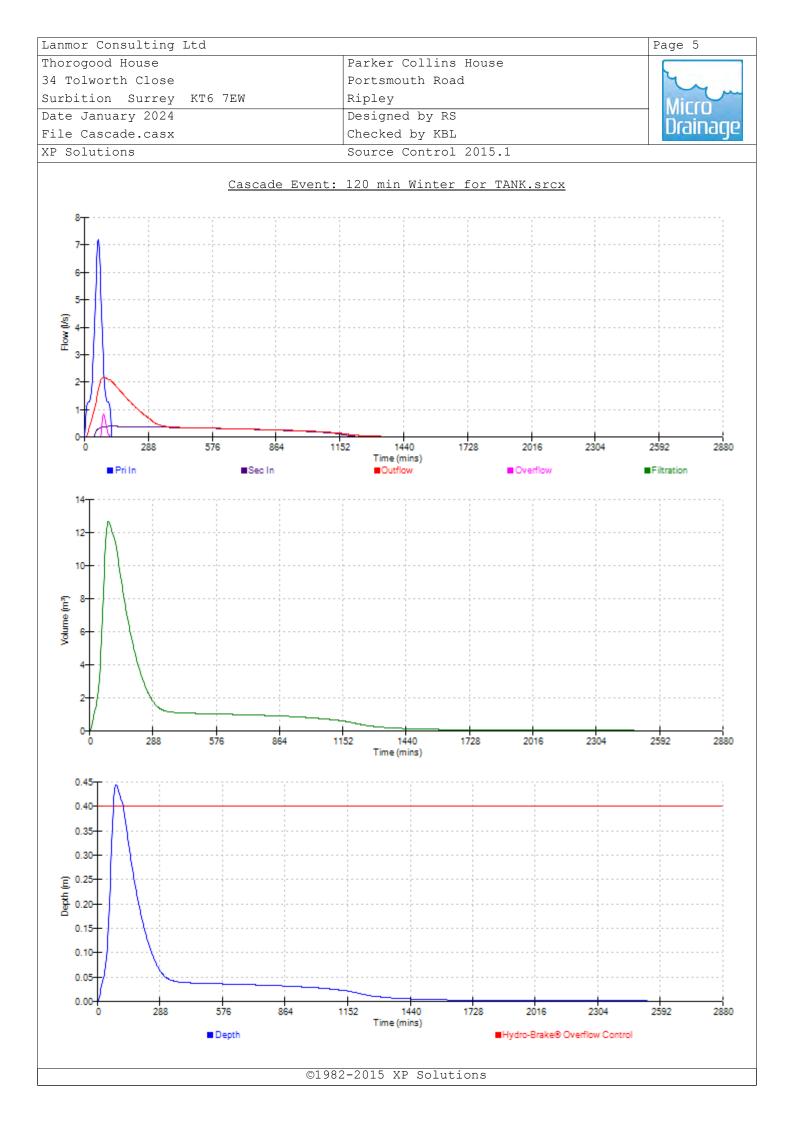
PAVING.srcx (None) (None)

Half Drain Time : 61 minutes.

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (l/s)	Max Overflow (l/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15	min S	Summer	28.958	0.298	0.0	1.8	0.0	1.8	8.5	ОК
30	min S	Summer	29.024	0.364	0.0	2.0	0.0	2.0	10.4	ΟK
60	min S	Summer	29.060	0.400	0.0	2.1	0.0	2.1	11.4	ΟK
120	min S	Summer	29.070	0.410	0.0	2.1	0.1	2.1	11.7	ОК
180	min S	Summer	29.061	0.401	0.0	2.1	0.0	2.1	11.4	ΟK
240	min S	Summer	29.046	0.386	0.0	2.0	0.0	2.0	11.0	ΟK
360	min S	Summer	29.016	0.356	0.0	1.9	0.0	1.9	10.1	ΟK
480	min S	Summer	28.988	0.328	0.0	1.9	0.0	1.9	9.3	ΟK
600	min S	Summer	28.964	0.304	0.0	1.8	0.0	1.8	8.7	ΟK
720	min S	Summer	28.942	0.282	0.0	1.7	0.0	1.7	8.0	ΟK
960	min S	Summer	28.907	0.247	0.0	1.6	0.0	1.6	7.0	ΟK
1440	min S	Summer	28.857	0.197	0.0	1.4	0.0	1.4	5.6	ΟK
2160	min S	Summer	28.810	0.150	0.0	1.2	0.0	1.2	4.3	ΟK
2880	min S	Summer	28.782	0.122	0.0	1.1	0.0	1.1	3.5	ΟK
4320	min S	Summer	28.750	0.090	0.0	0.9	0.0	0.9	2.6	ΟK
5760	min S	Summer	28.732	0.072	0.0	0.8	0.0	0.8	2.1	ΟK
7200	min S	Summer	28.722	0.062	0.0	0.7	0.0	0.7	1.8	ΟK
8640	min S	Summer	28.716	0.056	0.0	0.6	0.0	0.6	1.6	ΟK
10080	min S	Summer	28.712	0.052	0.0	0.6	0.0	0.6	1.5	ΟK
15	min V	Winter	28.995	0.335	0.0	1.9	0.0	1.9	9.6	ΟK
30	min V	Winter	29.071	0.411	0.0	2.1	0.1	2.2	11.7	ΟK
60	min V	Winter	29.101	0.441	0.0	2.2	0.7	2.9	12.6	ΟK

Storm Event	Rain (mm/hr)		Discharge Volume (m ³)	Overflow Volume (m ³)	Time-Peak (mins)
15 min Summer	76.035	0.0	15.4	0.0	17
30 min Summer		0.0	21.7	0.0	31
60 min Summer		0.0	28.4	0.0	54
120 min Summer	18.615	0.0	35.3	0.0	86
180 min Summer	13.715	0.0	39.5	0.0	120
240 min Summer	10.995	0.0	42.5	0.0	154
360 min Summer	8.034	0.0	46.9	0.0	222
480 min Summer	6.428	0.0	50.1	0.0	288
600 min Summer	5.404	0.0	52.7	0.0	352
720 min Summer	4.687	0.0	54.9	0.0	416
960 min Summer	3.743	0.0	58.4	0.0	540
1440 min Summer	2.723	0.0	63.3	0.0	782
2160 min Summer	1.979	0.0	68.2	0.0	1148
2880 min Summer	1.577	0.0	71.4	0.0	1500
4320 min Summer	1.143	0.0	75.5	0.0	2208
5760 min Summer	0.910	0.0	77.8	0.0	2944
7200 min Summer	0.762	0.0	79.0	0.0	3672
8640 min Summer	0.659	0.0	79.6	0.0	4400
10080 min Summer	0.583	0.0	80.1	0.0	5136
15 min Winter	76.035	0.0	17.9	0.0	17
30 min Winter	49.499	0.0	25.0	0.0	31
60 min Winter	30.811	0.0	32.4	0.8	48
	©1982-	2015 XP	Solution	S	

Lanmor Consulting Ltd	Page 2	
Thorogood House	Parker Collins House	
34 Tolworth Close	Portsmouth Road	L.
Surbition Surrey KT6 7EW	Ripley	Mirro
Date January 2024	Designed by RS	Desipado
File Cascade.casx	Checked by KBL	Drainage
XP Solutions	Source Control 2015.1	


Cascade	Summary	of	Results	for	TANK.srcx

	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (l/s)	Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
120	min Wint	er 29.105	0.445	0.0	2.2	0.9	3.0	12.7	ОК
180	min Wint	er 29.093	0.433	0.0	2.1	0.5	2.7	12.3	ОК
240	min Wint	er 29.078	0.418	0.0	2.1	0.2	2.3	11.9	ОК
360	min Wint	er 29.033	0.373	0.0	2.0	0.0	2.0	10.6	ОК
480	min Wint	er 28.993	0.333	0.0	1.9	0.0	1.9	9.5	ОК
600	min Wint	er 28.959	0.299	0.0	1.8	0.0	1.8	8.5	ΟK
720	min Wint	er 28.931	0.271	0.0	1.7	0.0	1.7	7.7	ΟK
960	min Wint	er 28.886	0.226	0.0	1.5	0.0	1.5	6.4	ОК
1440	min Wint	er 28.828	0.168	0.0	1.3	0.0	1.3	4.8	ОК
2160	min Wint	er 28.781	0.121	0.0	1.1	0.0	1.1	3.5	ОК
2880	min Wint	er 28.756	0.096	0.0	0.9	0.0	0.9	2.7	ОК
4320	min Wint	er 28.730	0.070	0.0	0.7	0.0	0.7	2.0	ОК
5760	min Wint	er 28.717	0.057	0.0	0.6	0.0	0.6	1.6	ОК
7200	min Wint	er 28.712	0.052	0.0	0.6	0.0	0.6	1.5	ОК
8640	min Wint	er 28.708	0.048	0.0	0.5	0.0	0.5	1.4	ΟK
10080	min Wint	er 28.704	0.044	0.0	0.4	0.0	0.4	1.3	0 K

	Storm Event		Flooded Volume (m ³)	Discharge Volume (m ³)	Overflow Volume (m ³)	Time-Peak (mins)
120	min Winte	r 18.615	0.0	40.2	1.1	86
	min Winte		0.0	44.9	0.6	124
240	min Winte	r 10.995	0.0	48.3	0.2	164
360	min Winte	r 8.034	0.0	53.2	0.0	238
480	min Winte	r 6.428	0.0	56.9	0.0	306
600	min Winte	r 5.404	0.0	59.9	0.0	374
720	min Winte	r 4.687	0.0	62.3	0.0	436
960	min Winte	r 3.743	0.0	66.3	0.0	566
1440	min Winte	r 2.723	0.0	72.0	0.0	810
2160	min Winte	r 1.979	0.0	77.7	0.0	1172
2880	min Winte	r 1.577	0.0	81.6	0.0	1556
4320	min Winte	r 1.143	0.0	86.6	0.0	2288
5760	min Winte	r 0.910	0.0	89.7	0.0	3000
7200	min Winte	r 0.762	0.0	91.6	0.0	3744
8640	min Winte	r 0.659	0.0	92.8	0.0	4464
10080	min Winte	r 0.583	0.0	93.5	0.0	5240

Lanmor Consulting Ltd		Page 3
Thorogood House	Parker Collins House	
34 Tolworth Close	Portsmouth Road	Ya
Surbition Surrey KT6 7EW	Ripley	Micco
Date January 2024	Designed by RS	- Micro
File Cascade.casx	Checked by KBL	Drainage
XP Solutions	Source Control 2015.1	
<u>Cascade F</u>	Rainfall Details for TANK.srcx	
Rainfall Model Return Period (years) Region M5-60 (mm)	30 Cv (Summer) 0.750 England and Wales Cv (Winter) 0.840	
Ratio R Summer Storms	0.400 Longest Storm (mins) 10080	
	<u>Time Area Diagram</u>	
	Total Area (ha) 0.066	
	Time (mins) Area From: To: (ha)	
	0 4 0.066	

Lanmor Consulting Ltd		Page 4
Thorogood House	Parker Collins House	
34 Tolworth Close	Portsmouth Road	4
Surbition Surrey KT6 7EW	Ripley	- Cum
Date January 2024	Designed by RS	MICIO
Tile Cascade.casx	Checked by KBL	Drainage
XP Solutions	Source Control 2015.1	
Cascade	Model Details for TANK.srcx	
Storage	is Online Cover Level (m) 30.500	
Cel	lular Storage Structure	
	Invert Level (m) 28.660 Safety Factor 2 eient Base (m/hr) 0.00000 Porosity 0. eient Side (m/hr) 0.00000	
Depth (m) Area (m ²) Inf. Area (m ²) Depth	(m) Area (m ²) Inf. Area (m ²) Depth (m) A	rea (m²) Inf. Area (m²)
0.000 30.0 30.0	.800 30.0 50.8 0.801	0.0 50.8
<u>0</u>	rifice Outflow Control	
Diameter (m) 0.040 Disc	harge Coefficient 0.600 Invert Level (m)	28.660
	harge Coefficient 0.600 Invert Level (m) 2	28.660
	harge Coefficient 0.600 Invert Level (m) 2 ake Optimum® Overflow Control	28.660
	-	
<u>Hydro-Br</u>	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400)
<u>Hydro-Br</u>	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5)) 5
<u>Hydro-Br</u>	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated)) 5 1
<u>Hydro-Br</u>	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5	
<u>Hydro-Br</u> De	Ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) 83 nvert Level (m) 29.060)) 5 1 2 3
<u>Hydro-Br</u> De Minimum Outlet Pip	Ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo ^{m4} Calculated Objective Minimise upstream storage Diameter (mm) 83 nvert Level (m) 29.060 e Diameter (mm) 100) 5 1 2 3 3
<u>Hydro-Br</u> De	Ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo ^{m4} Calculated Objective Minimise upstream storage Diameter (mm) 83 nvert Level (m) 29.060 e Diameter (mm) 100) 5 1 2 3 3
<u>Hydro-Br</u> De Minimum Outlet Pig Suggested Manhol	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) 83 nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 1200) 5 1 2 3 3
<u>Hydro-Br</u> De Minimum Outlet Pig Suggested Manhol	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) 83 nvert Level (m) 29.060 e Diameter (mm) 100 Flow (1/s) Control Points 2.5 Kick-Flo®) 5 1 2 3 3 0 0
<u>Hydro-Br</u> De Minimum Outlet Pip Suggested Manhol Control Points Head (m Design Point (Calculated) 0.400 Flush-Flo™ 0.133	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) 83 nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 1200 Flow (1/s) Control Points 2.5 Kick-Flo® 2.4 Mean Flow over Head Range	0) 5 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
<u>Hydro-Br</u> De Minimum Outlet Pig Suggested Manhol Control Points Head (m) Design Point (Calculated) 0.400 Flush-Flo™ 0.133	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) 83 nvert Level (m) 29.060 e Diameter (mm) 100 Flow (1/s) Control Points Yes Xick-Flo®) 5 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
<u>Hydro-Br</u> De Minimum Outlet Pig Suggested Manhol Control Points Head (m) Design Point (Calculated) 0.400 Flush-Flo™ 0.133	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) 83 nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 1200 Flow (1/s) Control Points 2.5 Kick-Flo® 2.4 Mean Flow over Head Range based on the Head/Discharge relationship f ype of control device other than a Hydro-F) 5 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Hydro-Br Hydro-Br Hydro-Br Minimum Outlet Pig Suggested Manhol Control Points Head (m Design Point (Calculated) 0.400 Flush-Flo™ 0.132 The hydrological calculations have been Optimum® as specified. Should another of	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) 83 nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 1200 Flow (1/s) Control Points 2.5 Kick-Flo® 2.4 Mean Flow over Head Range based on the Head/Discharge relationship f ype of control device other than a Hydro-F) 5 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9
Hydro-Br De Minimum Outlet Pig Suggested Manhol Control Points Head (m) Design Point (Calculated) 0.400 Flush-Flo™ 0.133 The hydrological calculations have been 0.133 The hydrological calculations have been 0.133 Depth (m) Flow (1/s) Depth (m) Flow (1/s)	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) 83 nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 1200 Flow (1/s) Control Points 2.5 Kick-Flo® 2.4 Mean Flow over Head Range based on the Head/Discharge relationship f ype of control device other than a Hydro-Fulations will be invalidated 0 Depth (m) Flow (1/s) Depth (m) Flow (1/s)	<pre>)) d (m) Flow (1/s) 0.290 2.1 - 2.0 Eor the Hydro-Brake Brake Optimum® be s) Depth (m) Flow (1/s)</pre>
Hydro-Br De Minimum Outlet Pig Suggested Manhol Control Points Head (m) Design Point (Calculated) 0.400 Flush-Flo™ 0.133 The hydrological calculations have been 0.133 Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 2.4 0.800 3.	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) 83 nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 1200 Flow (1/s) Control Points Loss 2.4 Mean Flow over Head Range 2.4 based on the Head/Discharge relationship f ype of control device other than a Hydro-Fulations will be invalidated O Depth (m) Flow (1/s) Depth (m) Flow (1/s) 4 2.000 5.2	<pre>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>
Hydro-Br De Minimum Outlet Pig Suggested Manhol Control Points Head (m) Design Point (Calculated) 0.400 Flush-Flo™ 0.133 The hydrological calculations have been 0.103 Optimum® as specified. Should another of utilised then these storage routing calculations Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 2.4 0.800 3. 0.200 2.4 1.000 3.	Ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 1200 Flow (1/s) Control Points Heat 2.5 Kick-Flo® 2.4 Mean Flow over Head Range based on the Head/Discharge relationship f ype of control device other than a Hydro-Fulations will be invalidated 0 Depth (m) Flow (1/s) Depth (m) Flow (1/s) 4 2.000 5.2 4.000 7 7 2.200 5.4 4.500 7	<pre> b b b b b b b b b b b b b b b b b b b</pre>
Hydro-Br De Minimum Outlet Pig Suggested Manhol Control Points Head (m) Design Point (Calculated) 0.400 Flush-Flo™ 0.133 The hydrological calculations have been 0.103 Optimum® as specified. Should another of utilised then these storage routing calculations Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 2.4 0.800 3. 0.200 2.4 1.000 3. 0.300 2.2 1.200 4.	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 100 flow (1/s) Control Points Loss Kick-Flo® 2.4 Mean Flow over Head Range based on the Head/Discharge relationship f ype of control device other than a Hydro-Fulations will be invalidated O Depth (m) Flow (1/s) Depth (m) Flow (1/s) 4 2.000 5.2 4.000 7 2.200 5.4 4.500 7 1 2.400 5.6 5.000 8	<pre> b b b b b b b b b b b b b b b b b b b</pre>
Hydro-Br De Minimum Outlet Pig Suggested Manhol Control Points Head (m) Design Point (Calculated) 0.400 Flush-Flo™ Depth (m) Flow (1/s) Depth (m) Flow (1/s) Oppth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 2.4 0.800 3. 0.200 2.4 1.000 3. 0.300 2.2 1.200 4. 0.400 2.5 1.400 4.	ake Optimum® Overflow ControlUnit Reference MD-SHE-0083-2500-0400-2500Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™CalculatedObjective Minimise upstream storageDiameter (mm) 83 nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 100 flow (1/s)Control PointsFlow (1/s)Control PointsLow 2.5 2.4 Mean Flow over Head Rangebased on the Head/Discharge relationship fype of control device other than a Hydro-Fulations will be invalidatedDDepth (m) Flow (1/s)4 2.000 5.2 4.000 7 2.200 5.4 4.500 4 2.600 5.8 5.500	<pre> b b b b c d (m) Flow (1/s) 0.290 2.1 - 2.0 b cor the Hydro-Brake Brake Optimum® be s) Depth (m) Flow (1/s) .1 7.000 9.4 .5 7.500 9.8 .0 8.000 10.1 .3 8.500 10.4 b b b b b b b b b b b b b b b b b b b</pre>
Hydro-Br De Minimum Outlet Pig Suggested Manhol Control Points Head (m) Design Point (Calculated) 0.400 Flush-Flo™ 0.133 The hydrological calculations have been 0.103 Optimum® as specified. Should another of utilised then these storage routing calculations Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 2.4 0.800 3. 0.200 2.4 1.000 3. 0.300 2.2 1.200 4.	ake Optimum® Overflow ControlUnit Reference MD-SHE-0083-2500-0400-2500Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™CalculatedObjective Minimise upstream storageDiameter (mm) 83 nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 100 flow (1/s)Control PointsFlow (1/s)Control PointsHead 2.5 2.4 Mean Flow over Head Rangebased on the Head/Discharge relationship fype of control device other than a Hydro-Fulations will be invalidated0Depth (m) Flow (1/s)4 2.000 5.2 4 4.000 7 2.200 5.4 4.500 7 2.400 5.6 5.000 8 4 2.600 5.8 5.500 8 6 3.000 6.2 6 6.000 8	<pre> b b b b b b b b b b b b b b b b b b b</pre>

Lanmor Consulting Ltd		Page 1
Thorogood House	Parker Collins House	
34 Tolworth Close	Portsmouth Road	4
Surbition Surrey KT6 7EW	Ripley	Mirco
Date January 2024	Designed by RS	Desipado
File Cascade.casx	Checked by KBL	Drainage
XP Solutions	Source Control 2015.1	

Cascade Summary of Results for PAVING.srcx

Upstream Outflow To Overflow To Structures

(None) TANK.srcx (None)

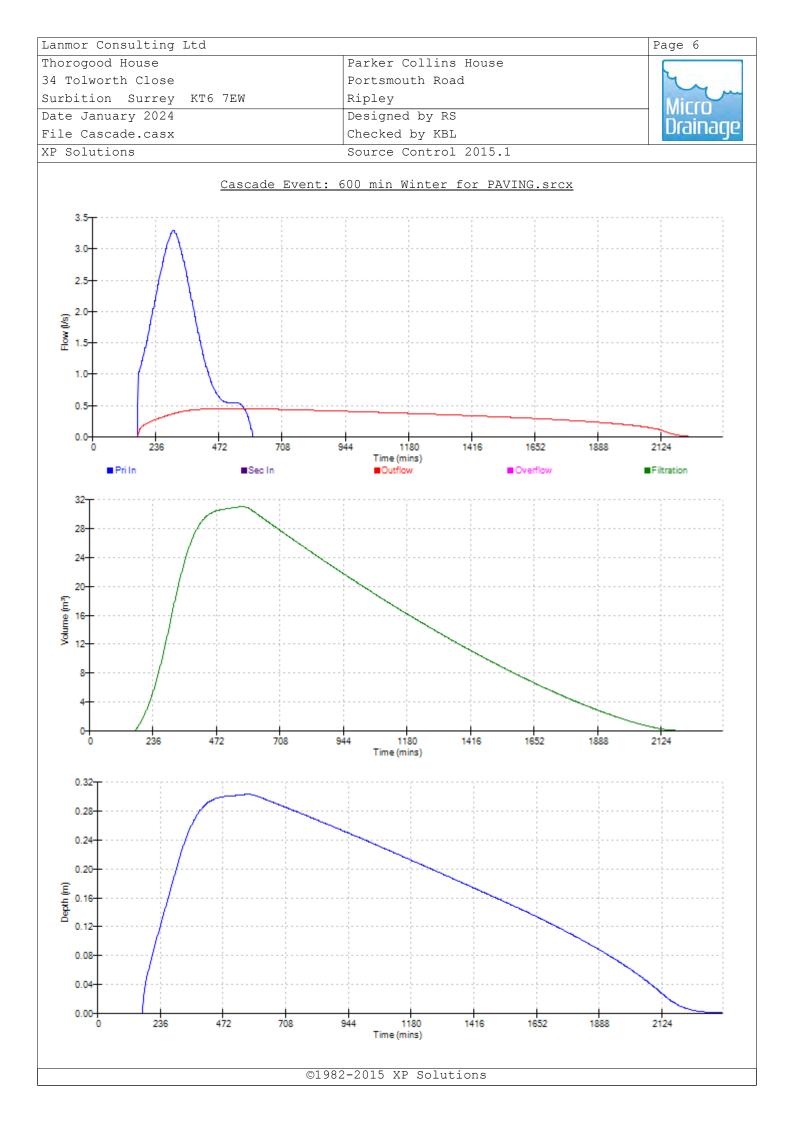
Half Drain Time : 630 minutes.

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m ³)	Status
15	min S	Summer	29.939	0.159	0.0	0.3	0.3	9.3	ΟK
30	min S	Summer	29.974	0.194	0.0	0.4	0.4	13.8	ΟK
60	min S	Summer	30.006	0.226	0.0	0.4	0.4	18.2	ΟK
120	min S	Summer	30.033	0.253	0.0	0.4	0.4	22.3	ΟK
180	min S	Summer	30.045	0.265	0.0	0.4	0.4	24.3	ΟK
240	min S	Summer	30.051	0.271	0.0	0.4	0.4	25.4	ΟK
360	min S	Summer	30.057	0.277	0.0	0.4	0.4	26.3	ΟK
480	min S	Summer	30.058	0.278	0.0	0.4	0.4	26.5	ΟK
600	min S	Summer	30.058	0.278	0.0	0.4	0.4	26.5	ΟK
720	min S	Summer	30.058	0.278	0.0	0.4	0.4	26.4	ΟK
960	min S	Summer	30.056	0.276	0.0	0.4	0.4	26.1	ОК
1440	min S	Summer	30.050	0.270	0.0	0.4	0.4	25.0	ΟK
2160	min S	Summer	30.037	0.257	0.0	0.4	0.4	22.9	ОК
2880	min S	Summer	30.023	0.243	0.0	0.4	0.4	20.8	ΟK
4320	min S	Summer	29.997	0.217	0.0	0.4	0.4	16.8	ΟK
5760	min S	Summer	29.973	0.193	0.0	0.4	0.4	13.6	ΟK
7200	min S	Summer	29.953	0.173	0.0	0.3	0.3	11.0	ΟK
8640	min S	Summer	29.935	0.155	0.0	0.3	0.3	9.0	ΟK
10080	min S	Summer	29.920	0.140	0.0	0.3	0.3	7.3	ΟK
15	min V	Winter	29.953	0.173	0.0	0.3	0.3	11.1	ΟK
30	min V	Winter	29.992	0.212	0.0	0.4	0.4	16.1	ΟK
60	min V	Winter	30.026	0.246	0.0	0.4	0.4	21.1	ΟK

Storm Event			Rain (mm/hr)		Discharge Volume (m ³)	Time-Peak (mins)
		Summer		0.0	9.5	19
		Summer	64.789	0.0	14.2	34
60	min	Summer	40.510	0.0	19.0	64
120	min	Summer	24.461	0.0	24.0	122
180	min	Summer	17.964	0.0	26.9	182
240	min	Summer	14.342	0.0	28.9	242
360	min	Summer	10.418	0.0	31.7	360
480	min	Summer	8.302	0.0	33.8	468
600	min	Summer	6.956	0.0	35.5	514
720	min	Summer	6.017	0.0	36.8	572
960	min	Summer	4.784	0.0	38.9	696
1440	min	Summer	3.456	0.0	41.7	968
2160	min	Summer	2.493	0.0	44.2	1384
2880	min	Summer	1.975	0.0	45.6	1784
4320	min	Summer	1.421	0.0	46.9	2552
5760	min	Summer	1.124	0.0	47.0	3296
7200	min	Summer	0.936	0.0	46.5	4040
8640	min	Summer	0.806	0.0	45.5	4760
10080	min	Summer	0.710	0.0	44.2	5448
15	min	Winter	98.681	0.0	11.3	19
30	min	Winter	64.789	0.0	16.5	33
60	min	Winter	40.510	0.0	22.0	62
		@100	22-2015	VD Col	utiona	

©1982-2015 XP Solutions

Lanmor Consulting Ltd	Page 2	
Thorogood House	Parker Collins House	
34 Tolworth Close	Portsmouth Road	La la
Surbition Surrey KT6 7EW	Ripley	Micco
Date January 2024	Designed by RS	Desinado
File Cascade.casx	Checked by KBL	Drainage
XP Solutions	Source Control 2015.1	


Cascade Summary of Results for PAVING.srcx									
	Storm Event	Max Level	-	Max Infiltration			Max Volume (m ³)	Status	
		(m)	(m)	(1/s)	(1/s)	(1/s)	(111-)		
120	min Winter	30.054	0.274	0.0	0.4	0.4	25.8	ΟK	
180	min Winter	30.067	0.287	0.0	0.4	0.4	28.1	ОК	
240	min Winter	30.074	0.294	0.0	0.4	0.4	29.3	ОК	
360	min Winter	30.081	0.301	0.0	0.5	0.5	30.6	ОК	
480	min Winter	30.083	0.303	0.0	0.5	0.5	31.0	ΟK	
600	min Winter	30.083	0.303	0.0	0.5	0.5	31.0	ΟK	
720	min Winter	30.081	0.301	0.0	0.5	0.5	30.7	ОК	
960	min Winter	30.078	0.298	0.0	0.4	0.4	30.1	ОК	
1440	min Winter	30.069	0.289	0.0	0.4	0.4	28.4	ΟK	
2160	min Winter	30.051	0.271	0.0	0.4	0.4	25.2	ΟK	
2880	min Winter	30.031	0.251	0.0	0.4	0.4	22.0	ΟK	
4320	min Winter	29.994	0.214	0.0	0.4	0.4	16.5	ΟK	
5760	min Winter	29.961	0.181	0.0	0.3	0.3	12.1	ΟK	
7200	min Winter	29.934	0.154	0.0	0.3	0.3	8.8	ОК	
8640	min Winter	29.912	0.132	0.0	0.3	0.3	6.4	ΟK	
10080	min Winter	29.892	0.112	0.0	0.3	0.3	4.7	ОК	

	Storm Event			Flooded Volume	Discharge Volume	Time-Peak (mins)
				(m³)	(m³)	
120	min	Winter	24.461	0.0	27.6	120
180	min	Winter	17.964	0.0	30.8	178
240	min	Winter	14.342	0.0	33.0	236
360	min	Winter	10.418	0.0	36.3	350
480	min	Winter	8.302	0.0	38.7	462
600	min	Winter	6.956	0.0	40.5	566
720	min	Winter	6.017	0.0	42.1	660
960	min	Winter	4.784	0.0	44.5	744
1440	min	Winter	3.456	0.0	47.8	1052
2160	min	Winter	2.493	0.0	50.8	1492
2880	min	Winter	1.975	0.0	52.6	1928
4320	min	Winter	1.421	0.0	54.5	2724
5760	min	Winter	1.124	0.0	55.2	3464
7200	min	Winter	0.936	0.0	55.1	4184
8640	min	Winter	0.806	0.0	54.5	4848
10080	min	Winter	0.710	0.0	53.7	5552

Lanmor Consulting Ltd		Page 3
Thorogood House	Parker Collins House	
34 Tolworth Close	Portsmouth Road	L
Surbition Surrey KT6 7EW	Ripley	Micro
Date January 2024	Designed by RS	Desinado
File Cascade.casx	Checked by KBL	Diamage
XP Solutions	Source Control 2015.1	
Cascade Rain	fall Details for PAVING.srcx	
Rainfall Model Return Period (years) Region En M5-60 (mm) Ratio R Summer Storms	FSR Winter Storms Yes 100 Cv (Summer) 0.750 agland and Wales Cv (Winter) 0.840 20.000 Shortest Storm (mins) 15 0.400 Longest Storm (mins) 10080 Yes Climate Change % +0	
-	<u> Time Area Diagram</u>	
Т	Cotal Area (ha) 0.081	
	Time (mins) Area From: To: (ha)	
	0 4 0.081	

Lanmor Consulting Ltd					Page 4
	Parker	Collin	s House		5
34 Tolworth Close P	Portsmo	uth Ro	ad		L.
-	Ripley				Mirco
Date January 2024 D	esigne	d by R	S		Desinage
File Cascade.casx C	Checked	by KB	L		Diamaye
XP Solutions S	Source	Contro	1 2015.1		
Cascade Model	Detai	<u>ls for</u>	PAVING.srcx		
Storage is Onl	line Cov	ver Leve	1 (m) 30.430		
	plex S				
	<u>-</u>				
<u>Po</u>	rous Ca	ar Pari	<u>k</u>		
Infiltration Coefficient Base ((m/hr) 0	.00000	Width (m)	4.1	
Membrane Percolation (m	. ,	1000	Length (m)		
Max Percolation			Slope (1:X)		
			Depression Storage (mm)		
			Evaporation (mm/day) Cap Volume Depth (m)	3 0.150	
Po	rous Ca	ar Parl			
Infiltration Coefficient Base (11 5	
Membrane Percolation (m		1000	Width (m) Length (m)		
Max Percolation	. ,		Slope (1:X)		
			Depression Storage (mm)		
-	rosity			3	
Invert Leve	el (m)	29.780	Cap Volume Depth (m)	0.150	
<u>Po</u>	rous Ca	ar Parl	<u>k</u>		
Infiltration Coefficient Base (
Membrane Percolation (m Max Percolation		1000 10.4	Length (m)		
			Slope (1:X) Depression Storage (mm)		
	rosity	0.95	Evaporation (mm/day)	3	
Invert Leve	-	29.920	Cap Volume Depth (m)		
Po	rous Ca	ar Parl	<u>k</u>		
Infiltration Coefficient Base ((m/hr) 0	.00000	Width (m)	4.1	
Membrane Percolation (m	nm/hr)	1000	Length (m)	26.7	
Max Percolation	,	30.4	Slope (1:X)	50.0	
Safety F			Depression Storage (mm)	5 3	
Por Invert Leve	rosity el (m)		Evaporation (mm/day) Cap Volume Depth (m)		
Po	rous Ca	ar Parl	<u>k</u>		
Infiltration Coefficient Base ((m/hr) 0	.00000	Width (m)	11.5	
Membrane Percolation (m	. ,	1000	Length (m)		
Max Percolation		100.0	Slope (1:X)		
Safety F	Factor rosity		Depression Storage (mm) Evaporation (mm/day)	5 3	
Invert Leve			Cap Volume Depth (m)		
<u>Po</u>	rous Ca	ar Parl	<u>k</u>		
Infiltration Coefficient Base ((m/hr) 0	.00000	Width (m)	5.0	
Membrane Percolation (m		1000	Length (m)	7.5	
Max Percolation		10.4	Slope (1:X)	36.3	
Safety F			Depression Storage (mm)	5	
	rosity	0.95	Evaporation (mm/day)	3 0 150	
Invert Leve	≓⊥ (m)	30.010	Cap Volume Depth (m)	0.120	

Lanmor Consulting Ltd					Page 5
Thorogood House	Parker	Collin	s House		
34 Tolworth Close	Portsm	nouth Ro	ad		4
Surbition Surrey KT6 7EW	Ripley	7			~~~
Date January 2024		ned by R	MICLO		
File Cascade.casx	-	ed by KB			Drainage
XP Solutions		4	1 2015.1		
	Source		1 2013.1		
	Domoulo	Car Dar	1-		
1	Porous	<u>Car Par</u>	<u>K</u>		
Infiltration Coefficient Base	(m/hr)	0 00000	Width (m)	5.0	
Membrane Percolation	(, ,		Length (m)		
Max Percolatio	,		Slope (1:X)		
Safety	- Factor	2.0	Depression Storage (mm)	5	
E	orosity	0.30	Evaporation (mm/day)	3	
Invert Le	evel (m)	30.070	Cap Volume Depth (m)	0.300	
	_	~ -			
1	Porous	<u>Car Par</u>	<u>k</u>		
Infiltration Coefficient Base	(m/hr)	0 00000	Width (m)	5.0	
Membrane Percolation			Length (m)		
Max Percolatic	,		Slope (1:X)		
			Depression Storage (mm)		
		0.30			
	-		Cap Volume Depth (m)		
Orifi	ice Out	flow Co	<u>ntrol</u>		
Diameter (m) 0.020 Discharg	ge Coeff	icient 0.	600 Invert Level (m) 29	9.780	

Lanmor Consulting Ltd		Page 1
Thorogood House	Parker Collins House	
34 Tolworth Close	Portsmouth Road	La.
Surbition Surrey KT6 7EW	Ripley	Micco
Date January 2024	Designed by RS	Desinado
File Cascade.casx	Checked by KBL	Drainage
XP Solutions	Source Control 2015.1	

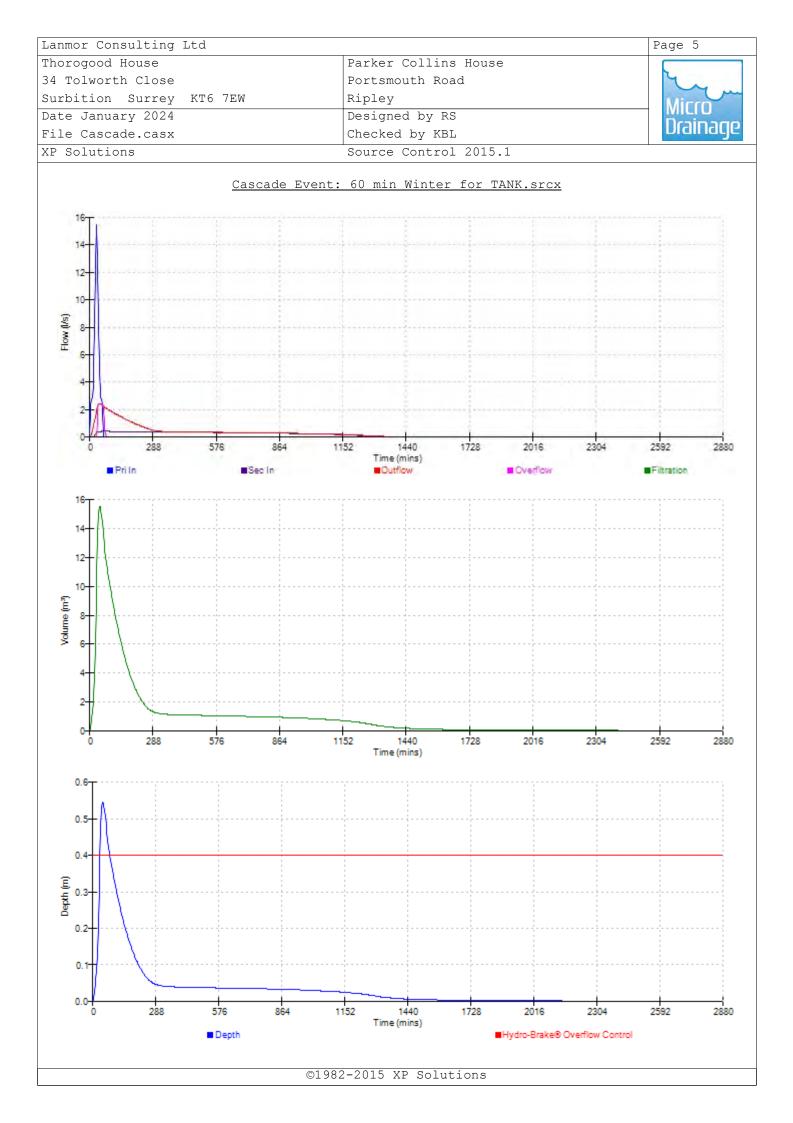
Upstream Outflow To Overflow To Structures

PAVING.srcx (None) (None)

Half Drain Time : 74 minutes.

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Overflow (l/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15	min S	Summer	29.050	0.390	0.0	2.0	0.0	2.0	11.1	ОК
30	min S	Summer	29.121	0.461	0.0	2.2	1.4	3.6	13.1	ΟK
60	min S	Summer	29.152	0.492	0.0	2.3	2.3	4.6	14.0	ΟK
120	min S	Summer	29.158	0.498	0.0	2.3	2.4	4.7	14.2	ΟK
180	min S	Summer	29.145	0.485	0.0	2.3	2.1	4.4	13.8	ΟK
240	min S	Summer	29.131	0.471	0.0	2.2	1.7	4.0	13.4	ΟK
360	min S	Summer	29.110	0.450	0.0	2.2	1.0	3.2	12.8	ΟK
480	min S	Summer	29.093	0.433	0.0	2.1	0.5	2.7	12.4	ΟK
600	min S	Summer	29.075	0.415	0.0	2.1	0.1	2.2	11.8	ΟK
720	min S	Summer	29.050	0.390	0.0	2.0	0.0	2.0	11.1	ΟK
960	min S	Summer	29.001	0.341	0.0	1.9	0.0	1.9	9.7	ΟK
1440	min S	Summer	28.930	0.270	0.0	1.7	0.0	1.7	7.7	ΟK
2160	min S	Summer	28.864	0.204	0.0	1.4	0.0	1.4	5.8	ΟK
2880	min S	Summer	28.823	0.163	0.0	1.3	0.0	1.3	4.7	ΟK
4320	min S	Summer	28.778	0.118	0.0	1.0	0.0	1.0	3.4	ΟK
5760	min S	Summer	28.753	0.093	0.0	0.9	0.0	0.9	2.6	ΟK
7200	min S	Summer	28.738	0.078	0.0	0.8	0.0	0.8	2.2	ΟK
8640	min S	Summer	28.727	0.067	0.0	0.7	0.0	0.7	1.9	ΟK
10080	min S	Summer	28.720	0.060	0.0	0.7	0.0	0.7	1.7	ΟK
15	min V	Winter	29.097	0.437	0.0	2.2	0.6	2.8	12.4	ΟK
30	min V	Winter	29.165	0.505	0.0	2.3	2.4	4.7	14.4	ΟK
60	min V	Winter	29.205	0.545	0.0	2.4	2.4	4.9	15.5	O K

	Storm Event	Rain (mm/hr)	Volume	Discharge Volume	Volume	Time-Peak (mins)
			(m³)	(m³)	(m³)	
15	min Summer	98.681	0.0	21.7	0.0	18
30	min Summer	64.789	0.0	30.1	1.1	29
60	min Summer	40.510	0.0	39.1	3.0	44
120	min Summer	24.461	0.0	48.2	3.8	76
180	min Summer	17.964	0.0	53.5	3.5	110
240	min Summer	14.342	0.0	57.2	3.0	144
360	min Summer	10.418	0.0	62.6	1.9	210
480	min Summer	8.302	0.0	66.6	0.9	280
600	min Summer	6.956	0.0	69.8	0.2	352
720	min Summer	6.017	0.0	72.5	0.0	420
960	min Summer	4.784	0.0	76.7	0.0	548
1440	min Summer	3.456	0.0	82.6	0.0	794
2160	min Summer	2.493	0.0	88.6	0.0	1148
2880	min Summer	1.975	0.0	92.6	0.0	1524
4320	min Summer	1.421	0.0	97.5	0.0	2244
5760	min Summer	1.124	0.0	100.4	0.0	2944
7200	min Summer	0.936	0.0	102.1	0.0	3672
8640	min Summer	0.806	0.0	102.9	0.0	4408
10080	min Summer	0.710	0.0	103.2	0.0	5144
15	min Winter	98.681	0.0	24.9	0.2	17
30	min Winter	64.789	0.0	34.4	2.4	28
60	min Winter	40.510	0.0	44.4	4.5	46
		©1982-2	2015 XP	Solution	S	


Lanmor Consulting Ltd		Page 2
Thorogood House	Parker Collins House	
34 Tolworth Close	Portsmouth Road	4
Surbition Surrey KT6 7EW	Ripley	Mirro
Date January 2024	Designed by RS	Desinance
File Cascade.casx	Checked by KBL	Drainage
XP Solutions	Source Control 2015.1	

Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
120 min Winter	29.194	0.534	0.0	2.4	2.4	4.8	15.2	ОК
180 min Winter	29.162	0.502	0.0	2.3	2.4	4.7	14.3	ΟK
240 min Winter	29.141	0.481	0.0	2.3	2.0	4.3	13.7	ОК
360 min Winter	29.115	0.455	0.0	2.2	1.2	3.4	13.0	ОК
480 min Winter	29.096	0.436	0.0	2.2	0.6	2.7	12.4	ОК
600 min Winter	29.075	0.415	0.0	2.1	0.1	2.2	11.8	ОК
720 min Winter	29.040	0.380	0.0	2.0	0.0	2.0	10.8	ОК
960 min Winter	28.977	0.317	0.0	1.8	0.0	1.8	9.0	ОК
1440 min Winter	28.894	0.234	0.0	1.5	0.0	1.5	6.7	ОК
2160 min Winter	28.826	0.166	0.0	1.3	0.0	1.3	4.7	ОК
2880 min Winter	28.789	0.129	0.0	1.1	0.0	1.1	3.7	ОК
4320 min Winter	28.750	0.090	0.0	0.9	0.0	0.9	2.6	ОК
5760 min Winter	28.731	0.071	0.0	0.8	0.0	0.8	2.0	ОК
7200 min Winter	28.719	0.059	0.0	0.7	0.0	0.7	1.7	ОК
8640 min Winter	28.714	0.054	0.0	0.6	0.0	0.6	1.5	ОК
10080 min Winter	28.710	0.050	0.0	0.5	0.0	0.5	1.4	0 K

	Storm		Rain	Flooded	Discharge	Overflow	Time-Peak
	Event	(mm/hr)	Volume	Volume	Volume	(mins)
				(m³)	(m³)	(m³)	
120	min Wi	ntor	24.461	0.0	54.7	5.9	82
T80	min Wi	nter	17.964	0.0	60.7	5.6	114
240	min Wi	nter	14.342	0.0	64.8	4.8	148
360	min Wi	nter	10.418	0.0	70.9	3.1	216
480	min Wi	nter	8.302	0.0	75.4	1.5	290
600	min Wi	nter	6.956	0.0	79.0	0.2	372
720	min Wi	nter	6.017	0.0	82.0	0.0	442
960	min Wi	nter	4.784	0.0	86.8	0.0	570
1440	min Wi	nter	3.456	0.0	93.5	0.0	822
2160	min Wi	nter	2.493	0.0	100.5	0.0	1188
2880	min Wi	nter	1.975	0.0	105.2	0.0	1556
4320	min Wi	nter	1.421	0.0	111.2	0.0	2288
5760	min Wi	nter	1.124	0.0	115.0	0.0	3000
7200	min Wi	nter	0.936	0.0	117.4	0.0	3744
8640	min Wi	nter	0.806	0.0	118.9	0.0	4448
10080	min Wi	nter	0.710	0.0	119.8	0.0	5328

Lanmor Consulting Ltd		Page 3
Thorogood House	Parker Collins House	
34 Tolworth Close	Portsmouth Road	Y
Surbition Surrey KT6 7EW	Ripley	Micco
Date January 2024	Designed by RS	Desinant
File Cascade.casx	Checked by KBL	Dialitatji
XP Solutions	Source Control 2015.1	
Cascade	Rainfall Details for TANK.srcx	
Rainfall Model Return Period (years) Region M5-60 (mm) Ratio H Summer Storms	100 Cv (Summer) 0.750 n England and Wales Cv (Winter) 0.840) 20.000 Shortest Storm (mins) 15 R 0.400 Longest Storm (mins) 10080	

Janmor Consulting Ltd		Page 4
horogood House	Parker Collins House	
34 Tolworth Close	Portsmouth Road	4
Surbition Surrey KT6 7EW	Ripley	- Cum
Date January 2024	Designed by RS	Micro
Tile Cascade.casx	Checked by KBL	Drainage
XP Solutions	Source Control 2015.1	
Cascade	Model Details for TANK.srcx	
Storage	is Online Cover Level (m) 30.500	
<u>Ce</u> :	<u>lular Storage Structure</u>	
	Invert Level (m) 28.660 Safety Factor 2. cient Base (m/hr) 0.00000 Porosity 0.9 cient Side (m/hr) 0.00000	
Depth (m) Area (m ²) Inf. Area (m ²) Depth	(m) Area (m ²) Inf. Area (m ²) Depth (m) Ar	cea (m²) Inf. Area (m²)
0.000 30.0 30.0	.800 30.0 50.8 0.801	0.0 50.8
<u>0</u>	rifice Outflow Control	
Diameter (m) 0 040 Disc	harge Coefficient 0 600 Invert Level (m) 2	8 660
	harge Coefficient 0.600 Invert Level (m) 2	8.660
	harge Coefficient 0.600 Invert Level (m) 2 ake Optimum® Overflow Control	8.660
	-	8.660
<u>Hydro-Br</u>	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400	8.660
<u>Hydro-Br</u>	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5	8.660
<u>Hydro-Br</u>	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated	8.660
<u>Hydro-Br</u>	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5	8.660
<u>Hydro-Br</u> De	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) 83 nvert Level (m) 29.060	8.660
<u>Hydro-Br</u> De Minimum Outlet Pip	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) 83 nvert Level (m) 29.060 e Diameter (mm) 100	8.660
<u>Hydro-Br</u> De	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) 83 nvert Level (m) 29.060 e Diameter (mm) 100	8.660
<u>Hydro-Br</u> De Minimum Outlet Pip Suggested Manhol	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) 83 nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 1200	8.660 i (m) Flow (l/s)
<u>Hydro-Br</u> De Minimum Outlet Pip Suggested Manhol	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 1200 Flow (1/s) Control Points 0 2.5	
<u>Hydro-Br</u> De Minimum Outlet Pip Suggested Manho Control Points Head (m Design Point (Calculated) 0.40 Flush-Flo™ 0.13	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 1200 Flow (1/s) Control Points Akick-Flo® Calculated 0 2.5 Kick-Flo® Calculated	i (m) Flow (1/s) 0.290 2.1 - 2.0
<u>Hydro-Br</u> De Minimum Outlet Pip Suggested Manho Control Points Head (m Design Point (Calculated) 0.40 Flush-Flo™ 0.13 The hydrological calculations have been	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 1200 Flow (1/s) Control Points 0 2.5	i (m) Flow (1/s) 0.290 2.1 - 2.0 or the Hydro-Brake
<u>Hydro-Br</u> De Minimum Outlet Pip Suggested Manho Control Points Head (m Design Point (Calculated) 0.40 Flush-Flo™ 0.13 The hydrological calculations have been	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 1200 Flow (1/s) Control Points 0 2.5 . 2.4 Mean Flow over Head Range based on the Head/Discharge relationship for the storage of control device other than a Hydro-Bit	i (m) Flow (1/s) 0.290 2.1 - 2.0 or the Hydro-Brake
Hydro-Br Hydro-Br Minimum Outlet Pip Suggested Manhod Control Points Head (m Design Point (Calculated) 0.40 Flush-Flo™ 0.13 The hydrological calculations have been Optimum® as specified. Should another utilised then these storage routing calculations	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 1200 Flow (1/s) Control Points 0 2.5 . 2.4 Mean Flow over Head Range based on the Head/Discharge relationship for the storage of control device other than a Hydro-Bit	i (m) Flow (1/s) 0.290 2.1 - 2.0 or the Hydro-Brake rake Optimum® be
Hydro-Br De Minimum Outlet Pip Suggested Manhoi Control Points Head (m Design Point (Calculated) 0.40 Flush-Flo™ 0.13 The hydrological calculations have been Optimum® as specified. Should another futilised then these storage routing calculations Depth (m) Flow (1/s) Depth (m) Flow (1/s)	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 1200 Flow (1/s) Control Points Flow (1/s) Control Points Head 2.5 Xick-Flo® 0 2.5 Kick-Flo® 2.4 Mean Flow over Head Range based on the Head/Discharge relationship for the stations will be invalidated 0 Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s)	d (m) Flow (1/s) 0.290 2.1 - 2.0 or the Hydro-Brake rake Optimum® be c) Depth (m) Flow (1/s)
Hydro-Br Definition Minimum Outlet Ping Suggested Manhoi Control Points Head (m Design Point (Calculated) 0.40 Flush-Flo™ 0.13 The hydrological calculations have been Optimum® as specified. Should another utilised then these storage routing calculations Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 2.4 0.800 3.	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage Diameter (mm) nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 1200 Flow (1/s) Control Points Flow (1/s) Control Points Head 1200 Sissed on the Head/Discharge relationship for the second se	<pre>d (m) Flow (1/s) 0.290 2.1 - 2.0 or the Hydro-Brake rake Optimum® be c) Depth (m) Flow (1/s) 1 7.000 9.4</pre>
Hydro-Br Design Point (Calculated) 0.40 Flush-Flo™ 0.13 The hydrological calculations have been Optimum® as specified. Should another utilised then these storage routing calculations have been 0.13 Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 2.4 0.800 3. 0.100 2.4 1.000 3.	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage 0iameter (mm) nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 1200 Flow (1/s) Control Points Head 0 2.5 Kick-Flo® 0 2.4 Mean Flow over Head Range 0 2.4 based on the Head/Discharge relationship for control device other than a Hydro-Bisculations will be invalidated 0 Depth (m) Flow (1/s) Depth (m) Flow (1/s) 4 2.000 5.2 4.000 7. 7 2.200 5.4 4.500 7.	<pre>d (m) Flow (1/s) 0.290 2.1 - 2.0 or the Hydro-Brake rake Optimum® be 0) Depth (m) Flow (1/s) 1 7.000 9.4 5 7.500 9.8</pre>
Hydro-Br Design Point (Calculated) 0.40 Flush-Flo™ 0.13 The hydrological calculations have been Optimum® as specified. Should another utilised then these storage routing calculations have been 0.13 Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 2.4 0.800 3. 0.200 2.4 1.000 3. 0.300 2.2 1.200 4.	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage 0iameter (mm) nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 1200 Flow (1/s) Control Points Head 0 2.5 Kick-Flo® 0 2.4 Mean Flow over Head Range 0 0 based on the Head/Discharge relationship for control device other than a Hydro-Bisculations will be invalidated 0 Pepth (m) Flow (1/s) Pepth (m) Flow (1/s) 4 2.000 5.2 4.000 7. 2.200 5.4 4.500 7. 1 2.400 5.6 5.000 8.	<pre>d (m) Flow (1/s) 0.290 2.1 - 2.0 or the Hydro-Brake rake Optimum® be c) Depth (m) Flow (1/s) 1 7.000 9.4 5 7.500 9.8 0 8.000 10.1</pre>
Hydro-Br Design Point (Calculated) 0.40 Flush-Flo™ 0.13 The hydrological calculations have been Optimum® as specified. Should another utilised then these storage routing calculations have been 0.13 Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 2.4 0.800 3. 0.200 2.4 1.000 3. 0.300 2.2 1.200 4. 0.400 2.5 1.400 4.	ake Optimum® Overflow ControlUnit Reference MD-SHE-0083-2500-0400-2500Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™CalculatedObjectiveMinimise upstream storageDiameter (mm) 83 nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 1200 Flow (1/s)Control PointsHead0 2.5 2.4 Kick-Flo®Mean Flow over Head Rangebased on the Head/Discharge relationship for cype of control device other than a Hydro-Bisulations will be invalidated0 5.2 4.000 7 2.200 5.4 4.500 7 2.400 5.6 5.000 $8.$ 4 2.600 5.8 5.500 $8.$	<pre>d (m) Flow (1/s) 0.290 2.1 - 2.0 or the Hydro-Brake rake Optimum® be c) Depth (m) Flow (1/s) 1 7.000 9.4 5 7.500 9.8 0 8.000 10.1 3 8.500 10.4</pre>
Hydro-Br Design Point (Calculated) 0.40 Flush-Flo™ 0.13 The hydrological calculations have been Optimum® as specified. Should another utilised then these storage routing calculations have been 0.13 Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 2.4 0.800 3. 0.200 2.4 1.000 3. 0.300 2.2 1.200 4.	ake Optimum® Overflow Control Unit Reference MD-SHE-0083-2500-0400-2500 Design Head (m) 0.400 sign Flow (1/s) 2.5 Flush-Flo™ Calculated Objective Minimise upstream storage 0 Diameter (mm) 83 nvert Level (m) 29.060 e Diameter (mm) 100 e Diameter (mm) 1200 Flow (1/s) Control Points Head 0 2.5 Kick-Flo® 0 2.4 Mean Flow over Head Range 0 0 based on the Head/Discharge relationship for control device other than a Hydro-Bis 0 culations will be invalidated 0 1/s 4 2.000 5.2 4.000 7. 2.200 5.4 4.500 7. 1 2.400 5.6 5.000 8. 4 2.600 5.8 5.500 8. 6 3.000 6.2 6.000 8.	<pre>d (m) Flow (1/s) 0.290 2.1 - 2.0 or the Hydro-Brake rake Optimum® be c) Depth (m) Flow (1/s) 1 7.000 9.4 5 7.500 9.8 0 8.000 10.1 3 8.500 10.4 7 9.000 10.7</pre>

Lanmor Consulting Ltd	Page 1	
Thorogood House	Parker Collins House	
34 Tolworth Close	Portsmouth Road	4
Surbition Surrey KT6 7EW	Ripley	Micco
Date January 2024	Designed by RS	Desinado
File Cascade.casx	Checked by KBL	Drainage
XP Solutions	Source Control 2015.1	1

Upstream Outflow To Overflow To Structures

(None) TANK.srcx (None)

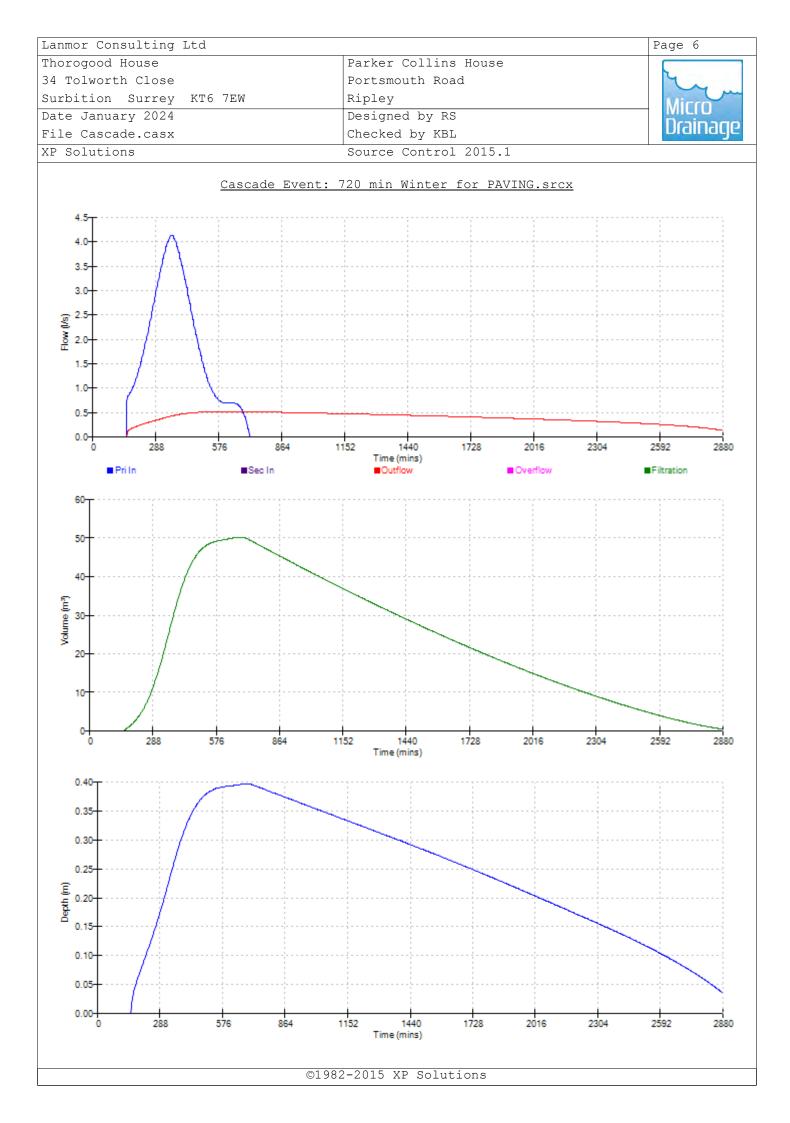
Half Drain Time : 897 minutes.

	Storn Event		Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Σ Outflow (l/s)	Max Volume (m ³)	Status
15	min	Summer	29.991	0.211	0.0	0.4	0.4	16.0	O K
30	min	Summer	30.035	0.255	0.0	0.4	0.4	22.6	0 K
60	min	Summer	30.073	0.293	0.0	0.4	0.4	29.1	0 K
120	min	Summer	30.105	0.325	0.0	0.5	0.5	35.3	0 K
180	min	Summer	30.121	0.341	0.0	0.5	0.5	38.5	0 K
240	min	Summer	30.129	0.349	0.0	0.5	0.5	40.3	O K
360	min	Summer	30.139	0.359	0.0	0.5	0.5	42.3	Flood Risk
480	min	Summer	30.143	0.363	0.0	0.5	0.5	43.1	Flood Risk
600	min	Summer	30.144	0.364	0.0	0.5	0.5	43.3	Flood Risk
720	min	Summer	30.143	0.363	0.0	0.5	0.5	43.1	Flood Risk
960	min	Summer	30.141	0.361	0.0	0.5	0.5	42.7	Flood Risk
1440	min	Summer	30.135	0.355	0.0	0.5	0.5	41.5	Flood Risk
2160	min	Summer	30.123	0.343	0.0	0.5	0.5	38.9	O K
2880	min	Summer	30.109	0.329	0.0	0.5	0.5	36.2	O K
4320	min	Summer	30.083	0.303	0.0	0.5	0.5	31.0	O K
5760	min	Summer	30.058	0.278	0.0	0.4	0.4	26.5	O K
7200	min	Summer	30.035	0.255	0.0	0.4	0.4	22.7	O K
8640	min	Summer	30.015	0.235	0.0	0.4	0.4	19.5	O K
10080	min	Summer	29.996	0.216	0.0	0.4	0.4	16.7	O K
15	min	Winter	30.009	0.229	0.0	0.4	0.4	18.6	O K
30	min	Winter	30.055	0.275	0.0	0.4	0.4	26.0	O K
60	min	Winter	30.095	0.315	0.0	0.5	0.5	33.4	0 K

	Storm Event		Rain (mm/hr)		Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	143.087	0.0	16.2	19
30	min	Summer	93.944	0.0	23.0	34
60	min	Summer	58.739	0.0	30.1	64
120	min	Summer	35.469	0.0	37.4	122
180	min	Summer	26.047	0.0	41.6	182
240	min	Summer	20.795	0.0	44.5	242
360	min	Summer	15.106	0.0	48.8	362
480	min	Summer	12.038	0.0	52.0	480
600	min	Summer	10.086	0.0	54.5	600
720	min	Summer	8.725	0.0	56.5	658
960	min	Summer	6.936	0.0	59.5	770
1440	min	Summer	5.012	0.0	60.1	1024
2160	min	Summer	3.615	0.0	68.7	1432
2880	min	Summer	2.864	0.0	71.6	1844
4320	min	Summer	2.060	0.0	74.9	2640
5760	min	Summer	1.629	0.0	76.5	3408
7200	min	Summer	1.357	0.0	77.2	4184
8640	min	Summer	1.169	0.0	77.2	4928
10080	min	Summer	1.030	0.0	76.8	5648
15	min	Winter	143.087	0.0	18.9	19
30	min	Winter	93.944	0.0	26.4	33
60	min	Winter	58.739	0.0	34.4	62

©1982-2015 XP Solutions

Lanmor Consulting Ltd	Page 2	
Thorogood House	Parker Collins House	
34 Tolworth Close	Portsmouth Road	La l
Surbition Surrey KT6 7EW	Ripley	Micco
Date January 2024	Designed by RS	Desinado
File Cascade.casx	Checked by KBL	Drainage
XP Solutions	Source Control 2015.1	


	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (l/s)		Max Volume (m³)	Status
120	min W	Vinter	30.130	0.350	0.0	0.5	0.5	40.4	Flood Risk
180	min W	Vinter	30.147	0.367	0.0	0.5	0.5	44.0	Flood Risk
240	min W	Vinter	30.157	0.377	0.0	0.5	0.5	46.1	Flood Risk
360	min W	Vinter	30.169	0.389	0.0	0.5	0.5	48.6	Flood Risk
480	min W	Vinter	30.174	0.394	0.0	0.5	0.5	49.8	Flood Risk
600	min W	Vinter	30.176	0.396	0.0	0.5	0.5	50.2	Flood Risk
720	min W	Vinter	30.176	0.396	0.0	0.5	0.5	50.2	Flood Risk
960	min W	Vinter	30.173	0.393	0.0	0.5	0.5	49.5	Flood Risk
1440	min W	Vinter	30.164	0.384	0.0	0.5	0.5	47.6	Flood Risk
2160	min W	Vinter	30.147	0.367	0.0	0.5	0.5	44.0	Flood Risk
2880	min W	Vinter	30.128	0.348	0.0	0.5	0.5	40.0	0 K
4320	min W	Vinter	30.091	0.311	0.0	0.5	0.5	32.5	O K
5760	min W	Vinter	30.056	0.276	0.0	0.4	0.4	26.1	0 K
7200	min W	Vinter	30.024	0.244	0.0	0.4	0.4	20.9	ΟK
8640	min W	Vinter	29.996	0.216	0.0	0.4	0.4	16.7	ΟK
10080	min W	Vinter	29.971	0.191	0.0	0.4	0.4	13.3	0 K

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
120	min	Winter	35.469	0.0	42.5	122
180	min	Winter	26.047	0.0	47.3	180
240	min	Winter	20.795	0.0	50.6	238
360	min	Winter	15.106	0.0	55.4	354
480	min	Winter	12.038	0.0	59.0	468
600	min	Winter	10.086	0.0	61.8	578
720	min	Winter	8.725	0.0	63.7	686
960	min	Winter	6.936	0.0	65.2	884
1440	min	Winter	5.012	0.0	64.9	1098
2160	min	Winter	3.615	0.0	78.3	1556
2880	min	Winter	2.864	0.0	81.6	1992
4320	min	Winter	2.060	0.0	85.8	2852
5760	min	Winter	1.629	0.0	88.1	3632
7200	min	Winter	1.357	0.0	89.4	4400
8640	min	Winter	1.169	0.0	89.9	5112
10080	min	Winter	1.030	0.0	89.9	5848

Lanmor Consulting Ltd		Page 3
Thorogood House	Parker Collins House	
34 Tolworth Close	Portsmouth Road	La
Surbition Surrey KT6 7EW	Ripley	Micro
Date January 2024	Designed by RS	
File Cascade.casx	Checked by KBL	Diamage
XP Solutions	Source Control 2015.1	
<u>Cascade Rair</u> Rainfall Model	nfall Details for PAVING.srcx FSR Winter Storms Yes	
Return Period (years) Region Er M5-60 (mm) Ratio R Summer Storms	100 Cv (Summer) 0.750 ngland and Wales Cv (Winter) 0.840 20.000 Shortest Storm (mins) 15 0.400 Longest Storm (mins) 10080 Yes Climate Change % +45	
	<u>Time Area Diagram</u>	
	Total Area (ha) 0.081	
	Time (mins) Area	
	From: To: (ha)	
	0 4 0.081	

Lanmor Consulting Ltd					Page 4
	Parker	Collin	s House		5
34 Tolworth Close P	Portsmo	uth Ro	ad		L.
-	Ripley				Mirco
Date January 2024 D	esigne	d by R	S		Desinage
File Cascade.casx C	Checked	by KB	L		Diamaye
XP Solutions S	Source	Contro	1 2015.1		
Cascade Model	Detai	<u>ls for</u>	PAVING.srcx		
Storage is Onl	line Cov	ver Leve	1 (m) 30.430		
	plex S				
	<u>-</u>				
<u>Po</u>	rous Ca	ar Pari	<u>k</u>		
Infiltration Coefficient Base ((m/hr) 0	.00000	Width (m)	4.1	
Membrane Percolation (m	. ,	1000	Length (m)		
Max Percolation			Slope (1:X)		
			Depression Storage (mm)		
			Evaporation (mm/day) Cap Volume Depth (m)	3 0.150	
Po	rous Ca	ar Parl			
Infiltration Coefficient Base (11 5	
Membrane Percolation (m		1000	Width (m) Length (m)		
Max Percolation	. ,		Slope (1:X)		
			Depression Storage (mm)		
-	rosity			3	
Invert Leve	el (m)	29.780	Cap Volume Depth (m)	0.150	
<u>Po</u>	rous Ca	ar Parl	<u>k</u>		
Infiltration Coefficient Base (
Membrane Percolation (m Max Percolation		1000 10.4	Length (m)		
			Slope (1:X) Depression Storage (mm)		
	rosity	0.95	Evaporation (mm/day)	3	
Invert Leve	-	29.920	Cap Volume Depth (m)		
Po	rous Ca	ar Parl	<u>k</u>		
Infiltration Coefficient Base ((m/hr) 0	.00000	Width (m)	4.1	
Membrane Percolation (m	nm/hr)	1000	Length (m)	26.7	
Max Percolation	,	30.4	Slope (1:X)	50.0	
Safety F			Depression Storage (mm)	5 3	
Por Invert Leve	rosity el (m)		Evaporation (mm/day) Cap Volume Depth (m)		
Po	rous Ca	ar Parl	<u>k</u>		
Infiltration Coefficient Base ((m/hr) 0	.00000	Width (m)	11.5	
Membrane Percolation (m	. ,	1000	Length (m)		
Max Percolation		100.0	Slope (1:X)		
Safety F	Factor rosity		Depression Storage (mm) Evaporation (mm/day)	5 3	
Invert Leve			Cap Volume Depth (m)		
<u>Po</u>	rous Ca	ar Parl	<u>k</u>		
Infiltration Coefficient Base ((m/hr) 0	.00000	Width (m)	5.0	
Membrane Percolation (m		1000	Length (m)	7.5	
Max Percolation		10.4	Slope (1:X)	36.3	
Safety F			Depression Storage (mm)	5	
	rosity	0.95	Evaporation (mm/day)	3 0 150	
Invert Leve	≓⊥ (m)	30.010	Cap Volume Depth (m)	0.120	

					D E
Lanmor Consulting Ltd					Page 5
Thorogood House	Parker	Collin	s House		
34 Tolworth Close	Portsm	nouth Ro	ad		L.
Surbition Surrey KT6 7EW	Ripley	7			Micco
Date January 2024	Desigr	ned by R	S		Desinance
File Cascade.casx	Checke	ed by KB	L		Drainage
XP Solutions	Source	e Contro	1 2015.1		
I	Porous	Car Par	<u>k</u>		
	(())				
Infiltration Coefficient Base	(, ,		Width (m)		
Membrane Percolation	,		Length (m)		
Max Percolatio			Slope (1:X)		
-			Depression Storage (mm)		
	-	0.30			
Invert Le	evel (m)	30.070	Cap Volume Depth (m)	0.300	
I	Porous	Car Par	k		
-			_		
Infiltration Coefficient Base	e (m/hr)	0.00000	Width (m)	5.0	
Membrane Percolation	(mm/hr)	1000	Length (m)	7.5	
Max Percolatio			Slope (1:X)		
Safety	/ Factor	2.0	Depression Storage (mm)	5	
P	orosity	0.30	Evaporation (mm/day)	3	
Invert Le	evel (m)	30.160	Cap Volume Depth (m)	0.300	
Orif	<u>ice Out</u>	flow Co	ntrol		
Diameter (m) 0.020 Discharc	ge Coeff	icient 0.	600 Invert Level (m) 29	9.780	

Lanmor Consulting Ltd	Page 1	
Thorogood House	Parker Collins House	
34 Tolworth Close	Portsmouth Road	La.
Surbition Surrey KT6 7EW	Ripley	Micco
Date January 2024	Designed by RS	Desinado
File Cascade.casx	Checked by KBL	Drainage
XP Solutions	Source Control 2015.1	

Upstream Outflow To Overflow To Structures

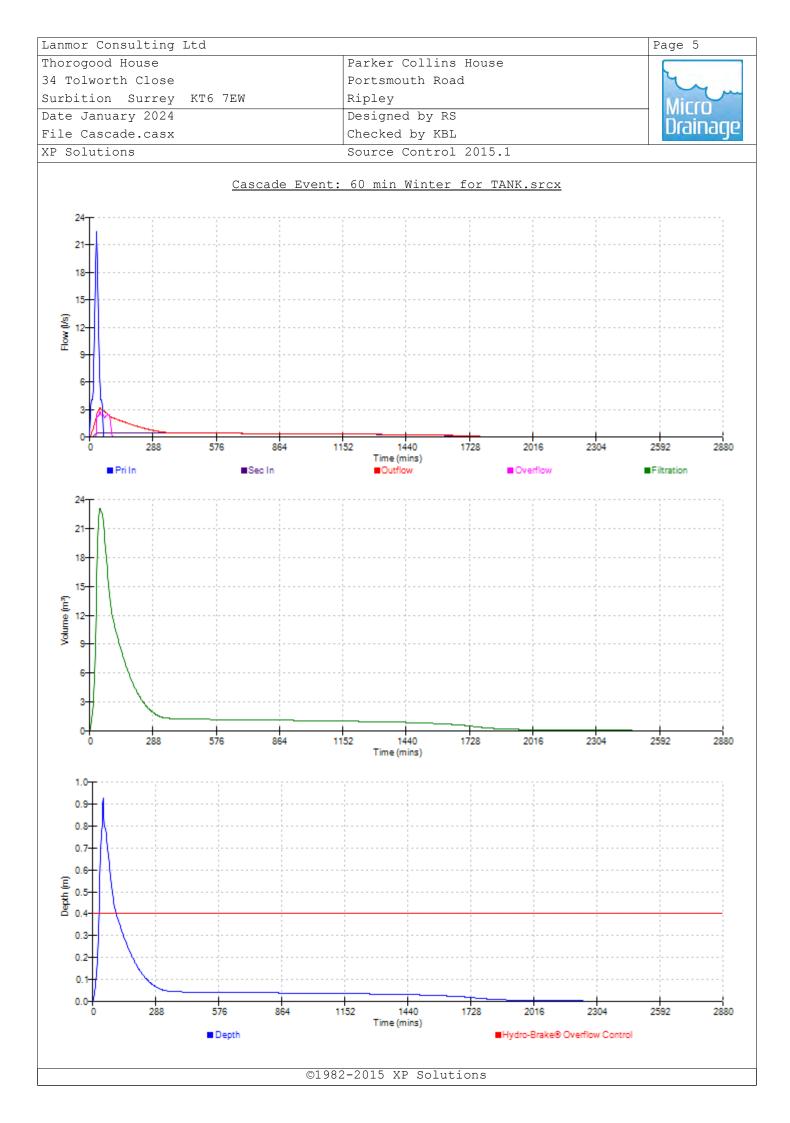
PAVING.srcx (None) (None)

Half Drain Time : 86 minutes.

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Overflow (l/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15	min S	Summer	29.205	0.545	0.0	2.4	2.4	4.9	15.5	ОК
30	min S	Summer	29.315	0.655	0.0	2.7	2.4	4.9	18.7	ОК
60	min S	Summer	29.383	0.723	0.0	2.8	2.4	5.0	20.6	ΟK
120	min S	Summer	29.396	0.736	0.0	2.8	2.4	5.1	21.0	ОК
180	min S	Summer	29.368	0.708	0.0	2.8	2.4	4.9	20.2	ΟK
240	min S	Summer	29.324	0.664	0.0	2.7	2.4	4.9	18.9	ΟK
360	min S	Summer	29.246	0.586	0.0	2.5	2.4	4.9	16.7	ОК
480	min S	Summer	29.190	0.530	0.0	2.4	2.4	4.8	15.1	ОК
600	min S	Summer	29.156	0.496	0.0	2.3	2.4	4.7	14.1	ΟK
720	min S	Summer	29.139	0.479	0.0	2.3	2.0	4.2	13.7	ОК
960	min S	Summer	29.117	0.457	0.0	2.2	1.3	3.5	13.0	ΟK
1440	min S	Summer	29.086	0.426	0.0	2.1	0.3	2.5	12.1	ΟK
2160	min S	Summer	29.000	0.340	0.0	1.9	0.0	1.9	9.7	ΟK
2880	min S	Summer	28.932	0.272	0.0	1.7	0.0	1.7	7.8	ΟK
4320	min S	Summer	28.854	0.194	0.0	1.4	0.0	1.4	5.5	ΟK
5760	min S	Summer	28.810	0.150	0.0	1.2	0.0	1.2	4.3	ΟK
7200	min S	Summer	28.783	0.123	0.0	1.1	0.0	1.1	3.5	ΟK
8640	min S	Summer	28.765	0.105	0.0	1.0	0.0	1.0	3.0	ΟK
10080	min S	Summer	28.752	0.092	0.0	0.9	0.0	0.9	2.6	ΟK
15	min V	Winter	29.274	0.614	0.0	2.6	2.4	4.9	17.5	ΟK
30	min V	Winter	29.408	0.748	0.0	2.8	2.4	5.2	21.3	ΟK
60	min V	Winter	29.586	0.926	0.0	3.2	2.8	6.0	23.1	ΟK

Storm		Rain	Flooded	Discharge	Overflow	Time-Peak	
	Event		(mm/hr)	Volume	Volume	Volume	(mins)
				(m³)	(m³)	(m³)	
15	min :	Summer	143.087	0.0	33.9	2.5	17
30	min :	Summer	93.944	0.0	46.1	5.2	30
60	min :	Summer	58.739	0.0	59.1	7.7	46
120	min :	Summer	35.469	0.0	72.5	10.1	80
180	min :	Summer	26.047	0.0	80.3	11.1	114
240	min :	Summer	20.795	0.0	85.7	11.0	146
360	min :	Summer	15.106	0.0	93.6	10.4	208
480	min :	Summer	12.038	0.0	99.5	9.5	266
600	min :	Summer	10.086	0.0	104.3	8.3	322
720	min :	Summer	8.725	0.0	108.2	7.1	384
960	min :	Summer	6.936	0.0	113.9	4.7	510
1440	min :	Summer	5.012	0.0	118.8	1.0	780
2160	min :	Summer	3.615	0.0	133.1	0.0	1168
2880	min :	Summer	2.864	0.0	139.6	0.0	1528
4320	min :	Summer	2.060	0.0	148.3	0.0	2248
5760	min :	Summer	1.629	0.0	153.9	0.0	2952
7200	min :	Summer	1.357	0.0	157.8	0.0	3680
8640	min :	Summer	1.169	0.0	160.5	0.0	4408
10080	min :	Summer	1.030	0.0	162.4	0.0	5144
15	min N	Winter	143.087	0.0	38.6	3.7	17
30	min N	Winter	93.944	0.0	52.0	6.6	30
60	min N	Winter	58.739	0.0	66.9	9.5	48
			@1000 /				

©1982-2015 XP Solutions


Lanmor Consulting Ltd		Page 2
Thorogood House	Parker Collins House	
34 Tolworth Close	Portsmouth Road	4
Surbition Surrey KT6 7EW	Ripley	Micco
Date January 2024	Designed by RS	Desinance
File Cascade.casx	Checked by KBL	Drainage
XP Solutions	Source Control 2015.1	

Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
120 min Winter	29.511	0.851	0.0	3.0	2.6	5.6	22.9	ОК
180 min Winter	29.411	0.751	0.0	2.9	2.4	5.2	21.4	ΟK
240 min Winter	29.344	0.684	0.0	2.7	2.4	4.9	19.5	ОК
360 min Winter	29.224	0.564	0.0	2.5	2.4	4.9	16.1	ΟK
480 min Winter	29.158	0.498	0.0	2.3	2.4	4.7	14.2	ОК
600 min Winter	29.136	0.476	0.0	2.3	1.9	4.1	13.6	ОК
720 min Winter	29.122	0.462	0.0	2.2	1.4	3.7	13.2	ΟK
960 min Winter	29.103	0.443	0.0	2.2	0.8	3.0	12.6	ОК
1440 min Winter	29.057	0.397	0.0	2.0	0.0	2.0	11.3	ОК
2160 min Winter	28.941	0.281	0.0	1.7	0.0	1.7	8.0	ОК
2880 min Winter	28.875	0.215	0.0	1.5	0.0	1.5	6.1	ОК
4320 min Winter	28.807	0.147	0.0	1.2	0.0	1.2	4.2	ОК
5760 min Winter	28.772	0.112	0.0	1.0	0.0	1.0	3.2	ОК
7200 min Winter	28.752	0.092	0.0	0.9	0.0	0.9	2.6	ΟK
8640 min Winter	28.738	0.078	0.0	0.8	0.0	0.8	2.2	ΟK
10080 min Winter	28.728	0.068	0.0	0.7	0.0	0.7	1.9	O K

	Storm	Rain	Flooded	Discharge	Overflow	Time-Peak
	Event	(mm/hr)	Volume	Volume	Volume	(mins)
			(m³)	(m³)	(m³)	
120	min Winte	er 35.469	0.0	81.8	12.3	86
	min Winte		0.0	90.6	13.8	122
240	min Winte	er 20.795	0.0	96.7	14.1	158
360	min Winte	er 15.106	0.0	105.5	13.4	216
480	min Winte	er 12.038	0.0	112.2	11.9	266
600	min Winte	er 10.086	0.0	117.4	9.9	326
720	min Winte	er 8.725	0.0	121.1	7.9	388
960	min Winte	er 6.936	0.0	125.8	4.3	520
1440	min Winte	er 5.012	0.0	130.5	0.0	836
2160	min Winte	er 3.615	0.0	150.4	0.0	1208
2880	min Winte	er 2.864	0.0	157.8	0.0	1560
4320	min Winte	er 2.060	0.0	168.0	0.0	2292
5760	min Winte	er 1.629	0.0	174.8	0.0	3048
7200	min Winte	er 1.357	0.0	179.7	0.0	3752
8640	min Winte	er 1.169	0.0	183.2	0.0	4496
10080	min Winte	er 1.030	0.0	185.8	0.0	5240

Lanmor Consulting Ltd		Page 3
Thorogood House	Parker Collins House	
34 Tolworth Close	Portsmouth Road	L.
Surbition Surrey KT6 7EW	Ripley	Micco
Date January 2024	Designed by RS	Desinado
File Cascade.casx	Checked by KBL	Diamage
XP Solutions	Source Control 2015.1	
<u>Cascade Ra</u> :	infall Details for TANK.srcx	
Rainfall Model Return Period (years) Region E: M5-60 (mm) Ratio R Summer Storms	FSR Winter Storms Yes 100 Cv (Summer) 0.750 ngland and Wales Cv (Winter) 0.840 20.000 Shortest Storm (mins) 15 0.400 Longest Storm (mins) 10080 Yes Climate Change % +45	
	<u>Time Area Diagram</u>	
	Total Area (ha) 0.066	
	Time (mins) Area	
	From: To: (ha)	
	0 4 0.066	

Lanmor Consulting Lt	d						Page 4	1
Thorogood House		Par	ker Col	lins Ho	use			
34 Tolworth Close			Portsmouth Road					
Surbition Surrey H	T6 7EW	Rin	oley		m			
Date January 2024	-	_	Designed by RS					ſŌ
File Cascade.casx			Checked by KBL					nage
XP Solutions			irce Con		15.1			
	Cascad	e Model	Details	for TA	NK.srcx			
	Storage	e is Onlin	ne Cover 1	Level (m)	30.500			
	<u>Ce</u>	ellular S	<u>Storage</u>	Structu	<u>ire</u>			
	nfiltration Coeff nfiltration Coeff	icient Bas	se (m/hr)	0.00000	Por	actor 2.0 osity 0.95		
Depth (m) Area (m²) Ir	nf. Area (m²) Dept	th (m) Are	a (m²) I	nf. Area	(m²) Dep	th (m) Area	(m²) Inf. An	rea (m²)
0.000 30.0	30.0	0.800	30.0		50.8	0.801	2.3	50.8
		Orifice	<u>Outflow</u>	Contro	1			
Diame	eter (m) 0.040 Dis	scharge Cc	pefficient	0.600	Invert Lev	vel (m) 28.6	60	
	Hydro-B	rake Opt	imum® O	verflow	Control			
	<u>iryaro b</u>	Iake opt		VELITOW		-		
				ID-SHE-00	083-2500-0			
	т	Design H Design Flc				0.400 2.5		
	-		ish-Flo™		Ca	lculated		
			-	Minimise	e upstream	-		
		Diamet Invert Le	er (mm)			83 29.060		
	Minimum Outlet Pi		- ()			100		
	Suggested Manho					1200		
Control Pc	ints Head (1	m) Flow (i	1/s)	Control	L Points	Head (n	n) Flow (l/s))
Design Point (C	alculated) 0.4 Flush-Flo™ 0.1		2.5 2.4 Mean	Flow ov	Kick- er Head R		- 2.0	
The hydrological calc	ulations have been	n based or	the Hear	1/Dischar	rao rolati	onchin for	the Undro-Pr	ako
Optimum® as specified					-	-	-	
utilised then these s						1	÷	
Depth (m) Flow (l/s)	epth (m) Flow (1/	s) Depth	(m) Flow	(1/s) D	epth (m)	Flow (l/s) [Depth (m) Flo	ow (1/s)
0.100 2.4	0.800 3	3.4 2.	000	5.2	4.000	7.1	7.000	9.4
0.200 2.4			200	5.4	4.000	7.1	7.500	9.4 9.8
0.300 2.2			400	5.6	5.000	8.0	8.000	10.1
0.400 2.5	1.400 4	1.4 2.	600	5.8	5.500	8.3	8.500	10.4
0.500 2.7			000	6.2	6.000	8.7	9.000	10.7
0.600 3.0	1.800 4	3.	500	6.7	6.500	9.1	9.500	11.0

