

December 2023

Our reference: 93454-Munro-ClaremontAv

Flood Risk Assessment and Surface Water Drainage Strategy for Planning

Prepared for: Cherrytrees Care

Location: Cherrytrees Care 15-17 Claremont Avenue Woking GU22 7SF

Unda Consulting Limited, Southpoint, Old Brighton Road, Gatwick, West Sussex, RH11 0PR +44 (0) 1293 214 444 enquiries@unda.co.uk

Document Issue Record

Location:	Cherrytrees Care, 15-17	Claremont Ave	enue, Woking, GU22 7SF		
Application:	Cherrytrees Care				
Prepared for:	Alterations and extensio	ns to the exist	ing building to provide impro	oved accommoda	tion
Title:	Flood Risk Assessment a	nd Surface Wa	ater Drainage Strategy for Pla	anning	
Project No.:	93454	Date:	12 th December 2023	Issue No.:	1.1
Written By:	A.Rousou, Bsc (Hons)	Checked By:	E. Bouet, BSc (Hons)	Authorised By:	E. Bouet, BSc (Hons)

This report (including any enclosures and attachments) has been prepared for the exclusive use and benefit of the commissioning party and solely for the purpose for which it is provided. Unless we provide express prior written consent, no part of this report should be reproduced, distributed or communicated to any third party. We do not accept any liability if this report is used for an alternative purpose from which it is intended, nor to any third party in respect of this report. Any data and information provided by third parties and referred to herein has not been checked or verified by us unless otherwise expressly stated within this report. This report was checked and approved on the date it was issued and is therefore valid on this date. Understanding, circumstances, regulations and professional standards do change, which could subsequently affect the validity of this report. This report is not to be used for detailed design of drainage systems. It is recommended that every drainage scheme uses hydraulic modelling software to finalise volume requirements and design details before drawings are produced.

Commercial in Confidence

Unda Consulting Limited, Southpoint, Old Brighton Road, Gatwick, RH11 0PR. +44 (0) 1293 214 444. info@unda.co.uk

UNDA

1. Introduction

- 1.1. This Flood Risk Assessment and Surface Water Drainage Strategy has been prepared by Unda Consulting Limited on behalf of Cherrytrees Care, in support of a planning application for alterations and extensions to the existing building to provide improved accommodation at Cherrytrees Care, 15-17 Claremont Avenue, Woking, GU22 7SF. This report assesses flood risk and surface water drainage for the proposed development.
- 1.2. The proposed planning application is for alterations and extensions to the existing building to provide improved accommodation. Post development the total increase in roof area will amount to approximately 72m².
- 1.3. In order to mitigate flood risk posed by post development runoff, adequate control measures will be required within the site. This will ensure that surface water runoff is dealt with at source and the flood risk off site is not increased.

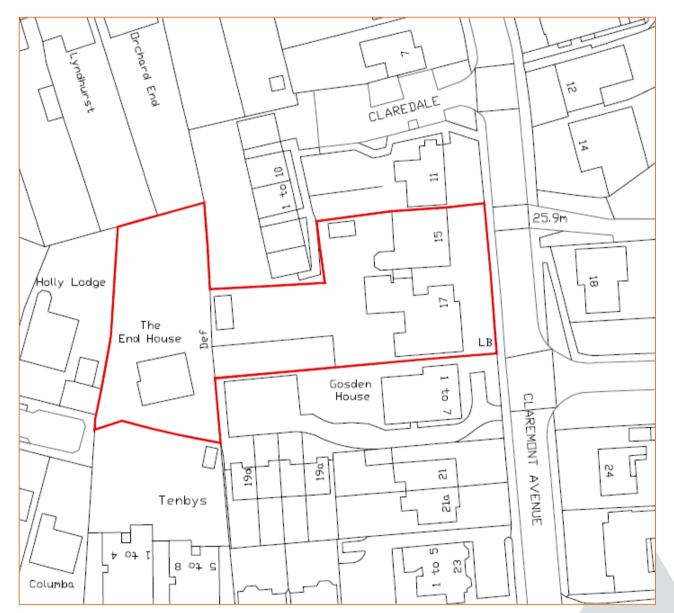


Figure 1: Site location plan (Source: Amber Architecture)

Commercial in Confidence

UND

2. Existing Site:

- 2.1. The site is currently occupied by a care facility.
- 2.2. The surrounding area is predominantly residential.

Figure 2: Site location (Source: Google)

Site Topography:

2.3. A topographical survey has been undertaken at the site by Ground Surveys Ltd and had been provided by the client for inclusion within the report.

Existing Ground Conditions:

- 2.4. The 1:50,000 BGS map shows the site to be located upon the bedrock of Bagshot Formation Sand.
- 2.5. BGS mapping indicates that the site is not underlined by superficial deposits.
- 2.6. The soil type taken from the BGS UKSO Soil Map Viewer, shows a soil parent material of Fluvial Sands and Gravels with a soil texture of sandy to sandy loam.
- 2.7. There are no BGS borehole logs located within the site extents.
- 2.8. The published Environment Agency Source Protection Zones map shows the site is not located within a Groundwater Source Protection Zone.

Commercial in Confidence

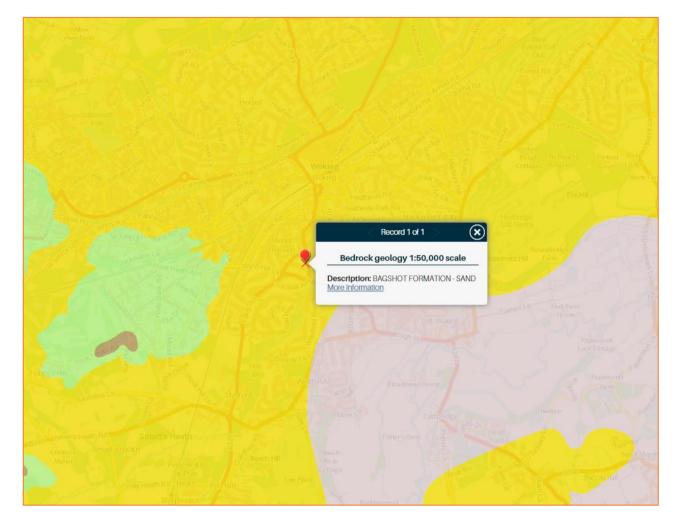
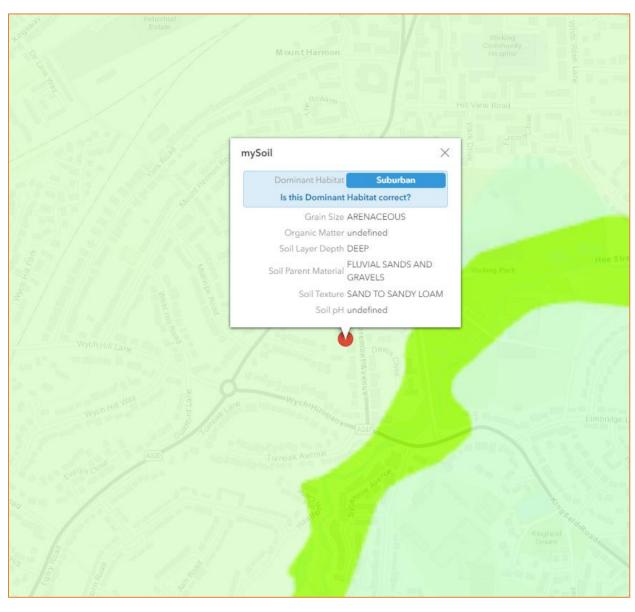



Figure 3: BGS Bedrock Geology (Source: BGS)

Commercial in Confidence

Unda Consulting Limited, Southpoint, Old Brighton Road, Gatwick, RH11 0PR. +44 (0) 1293 214 444. info@unda.co.uk

UND/

Figure 5: Soil Map (Source: UK Soils, BGS)

Nearby Watercourses / Drainage Features:

2.9. The Hoe stream is located approximately 172m south east of the site.

Commercial in Confidence

Unda Consulting Limited, Southpoint, Old Brighton Road, Gatwick, RH11 0PR. +44 (0) 1293 214 444. info@unda.co.uk

UND/

3. Development Proposals:

Proposed Development:

- 3.1. The proposed planning application is for alterations and extensions to the existing building to provide improved accommodation. Post development the total increase in roof area will amount to approximately 72m².
- 3.2. This strategy will solely focus on the proposed increase in roof area.

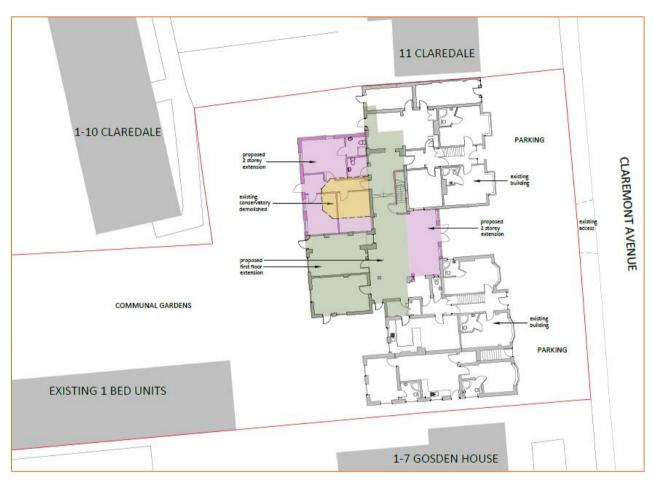


Figure 6: Proposed Site Plan (Source: Amber Architecture)

Vulnerability to flooding:

- 3.3. The NPPF classifies property usage by vulnerability to flooding. The site will remain "more vulnerable", as the application is for alterations and extensions to the existing building to provide improved accommodation.
- 3.4. Accordingly, it is considered that the vulnerability of the site as a whole will remain the same. However, there will be an intensification of site usage.

Commercial in Confidence

4. Flood Risk Assessment:

Flood Zones:

4.1. Within planning, Flood Zones refer to the probability of river and sea flooding, ignoring the presence of defences. They are shown on the Environment Agency's Flood Map for Planning (Rivers and Sea), available on the Environment Agency's website.

Flood Zone	Definition
Zone 1	Land having a less than 1 in 1,000 annual probability of river or sea flooding. (Shown as 'clear' on the
Low Probability	Flood Map – all land outside Zones 2 and 3)
Zone 2	Land having between a 1 in 100 and 1 in 1,000 annual probability of river flooding; or Land having
Medium	between a 1 in 200 and 1 in 1,000 annual probability of sea flooding. (Land shown in light blue on the
Probability	Flood Map)
Zone 3a	Land having a 1 in 100 or greater annual probability of river flooding; or Land having a 1 in 200 or
High Probability	greater annual probability of sea flooding. (Land shown in dark blue on the Flood Map)
Zone 3b	This zone comprises land where water has to flow or be stored in times of flood. Local planning
The Functional	authorities should identify in their Strategic Flood Risk Assessments areas of functional floodplain and
Floodplain	its boundaries accordingly, in agreement with the Environment Agency. (Not separately distinguished
	from Zone 3a on the Flood Map)

Table 1: Environment Agency Flood Map for Planning (Rivers and Sea) (Source: EA)

4.2. The Flood Zones shown on the Environment Agency's Flood Map for Planning (Rivers and Sea) do not take account of the possible impacts of climate change and consequent changes in the future probability of flooding.

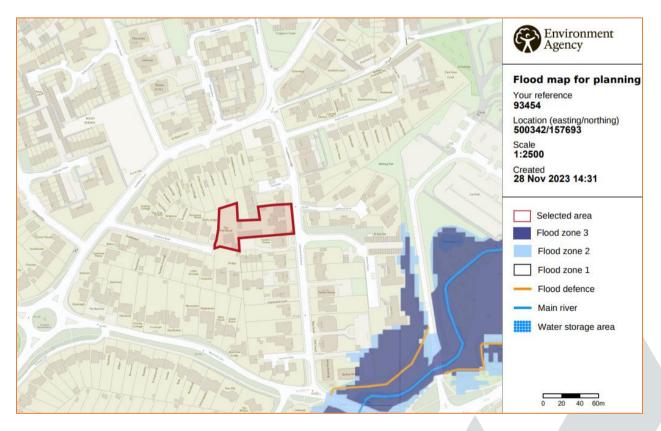


Figure 7: Environment Agency Flood Map for Planning (Rivers and Sea) (Source: EA)

4.3. The proposed site is located within Flood Zone 1 (Low Probability) which means it is defined as land having less than a 1:1000 annual probability of fluvial flooding.

Commercial in Confidence

Fluvial:

4.4. Due to the site topography and distance to the nearest watercourse, the risk of fluvial flooding is considered to be very low.

Tidal:

4.5. Given the site's topography and distance to the nearest watercourse, the risk of tidal flooding is considered to be very low.

Historical flood events:

4.6. According to the EA, the site has not previously been flooded.

Pluvial:

- 4.7. Pluvial (surface water) flooding happens when rainwater does not drain away through the normal drainage systems or soak into the ground, but instead it lies on or flows over the ground instead.
- 4.8. In 2013 the EA, working with Lead Local Flood Authorities (LLFAs), produced an updated Flood Map for Surface Water. It is considered to represent a significant improvement on the previous surface water flood maps available, both in terms of method and representation of the risk of flooding. The modelling techniques and data used are considerably improved, and also incorporated locally produced mapping where this is available to represent features best modelled at a local scale.
- 4.9. The Flood Map for Surface Water assesses flooding scenarios as a result of rainfall with the following chance of occurring in any given year (annual probability of flooding is shown in brackets):
 - 1:30 (3.3%)
 - 1:100 (1%)
 - 1:1000 (0.1%)
- 4.10. The mapping below shows the Risk of Flooding from Surface Water where the site is located on the crosshair. Please note that the EA to not consider this information suitable to be used to identify the risk to individual properties or sites. It is useful to raise awareness in areas which may be at risk and may require additional investigation.
- 4.11. The EA Risk of Flooding from Surface Water Map suggests that the area of the site being developed lies within an area of "Very Low" to "Medium" risk of flooding from surface water.

Commercial in Confidence

Figure 8: Extract from Environment Agency RoFSW map (Source: EA)

Groundwater:

- 4.12. Groundwater flooding occurs as a result of water rising up from the underlying rocks or from water flowing from abnormal springs. This tends to occur after much longer periods of sustained high rainfall. Higher rainfall means more water will infiltrate into the ground and cause the water table to rise above normal levels. Groundwater tends to flow from areas where the ground level is high, to areas where the ground level is low. In low-lying areas, the water table is usually at shallower depths anyway, but during very wet periods, with all the additional groundwater flowing towards these areas, the water table can rise to the surface causing groundwater flooding.
- 4.13. Groundwater flooding is most likely to occur in low-lying areas underlain by permeable rocks (aquifers). These may be extensive, regional aquifers, such as chalk or sandstone, or may be localised sands or river gravels in valley bottoms underlain by less permeable rocks. Groundwater flooding takes longer to dissipate because groundwater moves much more slowly than surface water and will take time to flow away underground.
- 4.14. The Woking Borough Council SFRA (2015) indicates that the site is located within area with limited potential for groundwater flooding to occur.
- 4.15. No further information has been provided to suggest that the site has flooded from groundwater flooding previously.

Sewer:

- 4.16. Sewer flooding occurs when the sewer network cannot cope with the volume of water that is entering it. It is often experienced during times of heavy rainfall when large amounts of surface water overwhelm the sewer network causing flooding. Temporary problems such as blockages, siltation, collapses and equipment or operational failures can also result in sewer flooding.
- 4.17. All Water Companies have a statutory obligation to maintain a register of properties/areas which have reported records of flooding from the public sewerage system, and this is shown on the DG5 Flood Register. This includes records of flooding from foul sewers, combined sewers and surface water sewers which are deemed to be public and therefore maintained by the Water Company. The DG5 register records of flood incidents resulting in both internal property flooding and external flooding incidents. Once a property

Commercial in Confidence

is identified on the DG5 register, water companies can typically put funding in place to address the issues and hence enable the property to be removed from the register. It should be noted that flooding from land drainage, highway drainage, rivers/watercourses and private sewers is not recorded within the register.

- 4.18. According to the Woking Borough Council SFRA (2015) the postcode area GU227 has had 7-9 records of sewer flooding from the past 20 years.
- 4.19. No further information has been provided to suggest that the site has flooded from sewer surcharge flooding previously.

Other Sources:

- 4.20. The EA Risk of Flooding from Reservoirs Map suggests that the is not within the "Maximum extent of flooding" from reservoir failure, therefore, the EA advise on their website that reservoir flooding is extremely unlikely. The risk to the site from reservoir flooding is therefore minimal and is far lower than that relating to the potential for fluvial flooding to occur.
- 4.21. No further information has been provided to suggest the site is susceptible to from the failure of reservoirs, canals or other artificial infrastructure from the risk of flooding.

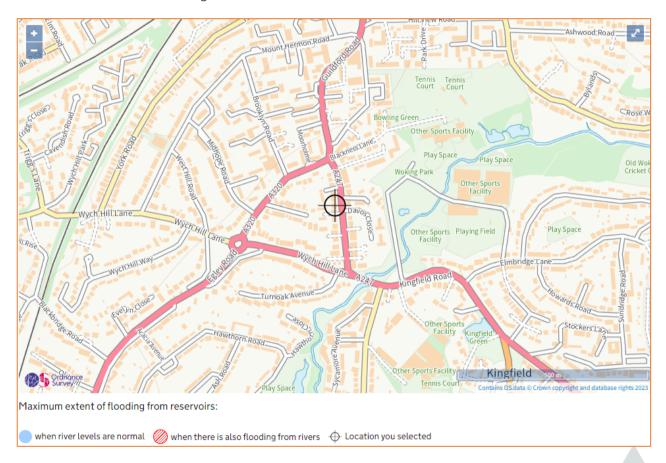


Figure 10: Extract from Environment Agency Reservoir Flooding map (Source: EA)

Commercial in Confidence

5. Surface Water Drainage Strategy:

5.1. In order to mitigate flood risk posed by post development runoff, adequate control measures will need to be considered within the site. This will ensure that surface water runoff is dealt with at source and flood risk is not increased elsewhere.

Drainage Hierarchy:

- 5.2. The drainage strategy for the site has been prepared according to the drainage discharge hierarchy from CIRIA C753 The Suds Manual, as follows:
 - Infiltration to the maximum extent that is practical;
 - Discharge to surface waters;
 - Discharge to surface water sewer;
 - Discharge to a combined sewer.

Infiltration Potential:

- 5.3. The 1:50,000 BGS map shows the site to be located upon the bedrock of Bagshot Formation Sand. Therefore, infiltration SuDS are considered feasible at the site.
- 5.4. In the absence of in-situ testing, an assumed infiltration rate has been utilised based on the below coefficients. Table 25.1 of the CIRIA C753 The Suds Manual 2015 (Figure 11) provides typical infiltration coefficients based on soil texture.

Soil type/texture	ISO 14688-1 description (after Blake, 2010)	Typical infiltration coefficients (m/s)
Good infiltration media		
gravel	Sandy GRAVEL	3 × 10 ⁻⁴ – 3 × 10 ⁻²
sand	Slightly silty slightly clayey SAND	1 × 10 ⁻⁵ – 5 × 10 ⁻⁵
loamy sand	Silty slightly clayey SAND	1 × 10 ⁻⁴ – 3 × 10 ⁻⁵
sandy loam	Silty clayey SAND	1 × 10 ⁻⁷ – 1 × 10 ⁻⁵
Poor infiltration media		
loam	Very silty clayey SAND	1 × 10 ⁻⁷ – 5 × 10 ⁻⁶
silt loam	Very sandy clayey SILT	1 × 10 ⁻⁷ – 1 × 10 ⁻⁵
 chalk (structureless) 	N/A	3 × 10 ⁻⁸ – 3 × 10 ⁻⁶
 sandy clay loam 	Very clayey silty SAND	3 × 10 ⁻¹⁰ – 3 × 10 ⁻⁷
Very poor infiltration media	-	
 silty clay loam 	-	1 × 10 ⁻⁸ – 1 × 10 ⁻⁶
 clay 	Can be any texture of soil	< 3 × 10 ⁻⁸
• till	described above	3 × 10 ⁻⁹ – 3 × 10 ⁻⁶
Other		
 rock* (note mass infiltration capacity will 	N/A	3 × 10 ⁻⁹ – 3 × 10 ⁻⁵
depend on the type of rock and the extent and		
nature of discontinuities and any infill)		

Figure 11: Typical Infiltration Coefficients Based on Soil Texture (Source: Table 25.1 of the CIRIA C753)

5.5. Given the underlying strata an assumed minimum infiltration rate of 1×10^{-5} m/s has been utilised for this assessment. However, given the underlying bedrock geology the true infiltration rate is likely to be greater than that used within this assessment.

Proposed Discharge Rate:

- 5.6. Greenfield runoff rates for the area of the site being attenuated have been calculated as 0.0 l/s for the 1:1 annual runoff event, 0.1 l/s for the 1:30 year event and 0.1 l/s for the 1:100-year event. Refer to calculations in appendix.
- 5.7. Post development the total increase in roof area will amount to approximately 72m². Therefore, 72m² of roof area will discharge into a cellular storage soakaway.
- 5.8. All new ground surfaces will be of permeable construction.

Commercial in Confidence

Cellular Storage Soakaway:

- 5.9. The surface water runoff from 72m² of roof area will discharge into the cellular storage soakaway.
- 5.10. The proposed development comprises some 72m² of potentially impermeable surfacing. In order to comply with CIRIA C753 The SuDS Manual, a 10% allowance will be added to take into account future urban creep. Applying a 10% allowance to all new roof area (72m²) gives a value of 79.2m². Therefore, all drainage calculations have been made on the basis of a total impermeable area of 79.2m².
- 5.11. Preliminary calculations indicate that sufficient storage required to attenuate runoff from the proposed impermeable areas $(79.2m^2)$ arising from the critical 1:100 year + 45% climate change event can be provided within cellular storage of dimensions $14m^2 \times 0.40m$ deep x 0.95 (voids).
- 5.12. Preliminary calculations indicate that approximately 5.32m³ of storage is required to attenuate the runoff for all storms up to and including the 1:100 year + 45% climate change event.
- 5.13. *Please note that the levels and locations of the cellular storage within the Causeway calculations are arbitrary for modelling purposes.*
- 5.14. All preliminary surface water drainage calculations have been undertaken using Causeway software. Refer to the appendix.

Water Quality:

5.15. Water quality has been assessed in line with the Simple Index approach from Chapter 26 of CIRIA C753 The SuDS Manual:

Step 1 – Allocate suitable pollution hazard indices for the proposed land use.

Step 2 – Select SuDS with a total pollution mitigation index that equals or exceeds the pollution hazard index.

5.16. Runoff from roof areas is considered to be uncontaminated and does not warrant any form of treatment process to improve water quality. Nevertheless, it is suggested to include debris / sediment traps on any new drainage.

Design Exceedance:

5.17. Should the onsite drainage system fail under extreme rainfall events or blockage, flooding may occur within the site. In the event of the drainage system failure, the runoff flow can be managed through detailing the new external levels to direct water away from structures.

Adoption and Maintenance:

- 5.18. It is proposed that all SuDS facilities will be maintained privately by the end users.
- 5.19. A draft Maintenance Schedule is outlined in the Table below.

Cellular Storage:

- 5.20. It is not envisaged that silt build up within the cellular crate systems will require a rigorous maintenance regime so long as silt is removed from upstream catch pits and inspection chambers on a regular basis. Notwithstanding this, a suitable maintenance regime for the systems will comprise of routine inspection and silt removal (as necessary). Inspection should be undertaken using CCTV equipment offered up the inspection tunnels located within the crate system. Camera access can be gained via inspection chambers and inlet pipework located at each end of the tunnels.
- 5.21. Silt removal can be achieved by jetting the inspection tunnels. Jetting should be undertaken in accordance with current jetting guidelines, in particular the Code of Practice for Sewer Jetting published by The Water Research Centre. Jetting at 150bar at 300l/min should be more than adequate in removing any build-up of material within the tunnel. The crate system will take higher pressures. However, unlike regular jetting which relies heavily on high pressure to remove hardened deposits on the inner bore of pipes, effective cleansing of a crate system relies more on the delivery flow rate to flush solids back through the system.
- 5.22. A standard jet head with rear facing nozzles should be used. The head should be fed to the far end of the crate tunnel via the nearest inspection chamber, activated and retracted. As the nozzle is removed, debris will be swept back into the inspection chamber where it can then be removed with the use of a standard gully sucker. This method will ensure the effective removal of gross solids (carrier bags, cans, leaf litter etc.) from the system. Whilst 100% removal cannot be guaranteed, it has been shown that this jetting method will also remove an element of finer material which would otherwise be 'lost' within the system.

Commercial in Confidence

Pipework and Catchpits:

5.23. It is not envisaged that silt build up within the pipework systems will require a rigorous maintenance regime so long as silt is removed from upstream catch pits on a regular basis. Notwithstanding this, a suitable maintenance regime for the systems will comprise of routine inspection (every three months) and silt removal (as necessary).

Drainage Element	Maintenance Requirement	Frequency
Gutters & Downpipes	Inspect and remove silt/ debris	To be inspected every three months and silt/ debris removed as necessary.
Catchpits and Inspection Chambers	Inspect and remove silt	To be inspected every three months and silt/ debris removed as necessary. Flow control to be checked for blockages.
Cellular Storage	Inspect and remove debris	CCTCV inspection following first storm event. Monthly CCTV inspections for first 3 months. 6 monthly CCTV inspections thereafter. Jetting to remove silt as necessary.

Table 2: Suggested Maintenance Regime for Elements of the Drainage Infrastructure

Note: In addition to the above maintenance requirements, it is recommended that all drainage elements are inspected:

- Following the first storm event
- Monthly for the first 3 months following commissioning.

Commercial in Confidence

6. Flood Risk Mitigation:

Physical Design Measures:

- 6.1. To help protect against flooding during extreme events, the applicant has agreed to implement flood resistant design measures into the proposal, in consultation with the Local Authority building control department.
- 6.2. As such, the following measures are recommended where they can practically and feasibly be implemented:
 - Closed-cell foam used in wall cavities;
 - Exterior ventilation outlets, utility points and air bricks fitted with removable waterproof covers;
 - Ground floor electrical main ring run from 600mm above finished ground floor level;
 - Electrical incomer and meter situated 600mm above finished ground floor level;
 - Boilers, control and water storage / immersion installed 600mm above finished ground floor level;
 - Raised wiring and power outlets at least 600mm above finished ground floor level;
 - Plumbing insulation of closed-cell design;
 - Manhole covers secured;
 - Anti-syphon fitted to all toilets;
 - Use of MDF carpentry (i.e. skirting, architrave, built-in storage) avoided at ground floor level;
- 6.3. A flood proof door should be installed for external ground floor level doors, or demountable 600mm flood defence barriers to defend lower level doorways and low windows if flood doors are not practical or other planning constraints prevent it.
- 6.4. It is also recommended that self-closing air bricks and demountable flood defence barriers to defend ground level doorways and low windows up to 600mm above finished ground floor level are installed if flood doors are not practical or other planning constraints prevent it.
- 6.5. Flood resistance measures (such as demountable flood barriers) are recommended to a maximum height of 600mm above ground level, as depths over 600mm can cause structural problems.

Safe Escape:

- 6.6. The NPPF requires a route of safe escape for all residents and uses to be provided from residential properties in Flood Zone 3. Safe escape is usually defined as being though slow-moving flood water no deeper than 25cm.
- 6.7. The proposed planning application is for alterations and extensions to the existing building to provide improved accommodation, and the site is located entirely within Flood Zone 1, therefore a route of safe escape is not required.
- 6.8. In the absence of safe escape, residents should follow the warning and evacuation procedure detailed in the following section.

Flood Warning:

- 6.9. As the UK's official weather service, the Met Office is responsible for issuing weather warnings, which warn of impacts caused by severe weather. The Met Office provide warnings up to seven days ahead for rain, thunderstorms, wind, snow, lightning, ice and fog.
- 6.10. Met Office weather warnings are available in a number of ways, which make it easy to get the very latest information wherever you are. These include the Met Office app and website, social media, email alerts, TV, radio and RSS.
- 6.11. It is recommended that the site owner sign up to the National Severe Weather Warning Service. More information can be found here: <u>https://www.metoffice.gov.uk/weather/guides/warnings</u>.
- 6.12. The Met Office issues weather warnings, through the National Severe Weather Warning Service, when severe weather has the potential to bring impacts to the UK. These warnings are given a colour (yellow, amber or red) depending on a combination of both the impact the weather may have and the likelihood of those impacts occurring.

Commercial in Confidence

UND

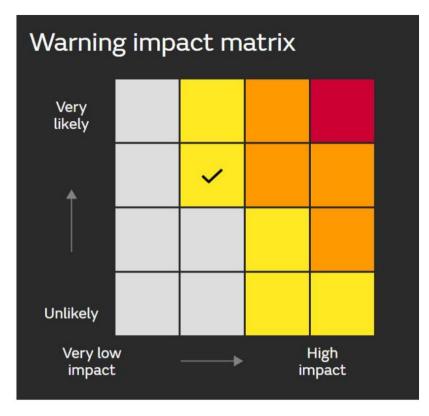


Figure 12: Met Office Weather Warning Impact Matrix (Source: Met Office)

- 6.13. Yellow Warning: Yellow warnings can be issued for a range of weather situations. Many are issued when it is likely that the weather will cause some low level impacts, including some disruption to travel in a few places. Many people may be able to continue with their daily routine, but there will be some that will be directly impacted and so it is important to assess if you could be affected. Other yellow warnings are issued when the weather could bring much more severe impacts to the majority of people but the certainty of those impacts occurring is much lower. It is important to read the content of yellow warnings to determine which weather situation is being covered by the yellow warning.
- 6.14. Amber Warning: There is an increased likelihood of impacts from severe weather, which could potentially disrupt your plans. This means there is the possibility of travel delays, road and rail closures, power cuts and the potential risk to life and property. You should think about changing your plans and taking action to protect yourself and your property. You may want to consider the impact of the weather on your family and your community and whether there is anything you need to do ahead of the severe weather to minimise the impact.
- 6.15. Red Warning: Dangerous weather is expected and, if you haven't already done so, you should take action now to keep yourself and others safe from the impact of the severe weather. It is very likely that there will be a risk to life, with substantial disruption to travel, energy supplies and possibly widespread damage to property and infrastructure. You should avoid travelling, where possible, and follow the advice of the emergency services and local authorities.

Flood Plan:

6.16. It is recommended that the applicant and future owners, occupiers and Landlords of the property prepare a flood plan to protect life and property during a flood event:

Before a flood:

- Find out if you are at risk of flooding.
- Find out if you can receive flood warnings.
- Prepare and keep a list of all your important contacts to hand or save them on your mobile phone.
- Think about what items you can move now and what you would want to move to safety during a flood such as pets, cars, furniture, and electrical equipment.
- Know how to turn off gas, electricity and water supplies.

Commercial in Confidence

- Prepare a flood kit of essential items and keep it handy. It can include copies of important documents, a torch, a batterypowered or wind-up radio, blankets and warm clothing, waterproofs, rubber gloves and a first aid kit including all essential medication.
- Consider buying flood protection products such as flood boards and airbrick covers to help reduce flood water getting into your property.

During a flood:

- Tune into your local radio station on a battery or wind-up radio.
- Fill jugs and saucepans with water.
- Grab your flood kit if you have prepared one.
- Collect blankets, torch, first aid kit, medication and food.
- Move important documents, personal items, valuables, and lightweight belongings upstairs or to high shelves.
- Raise large items of furniture or put them in large bags if you have them.
- Move people, outdoor belongings, cars and pets to higher ground.
- Switch off water, gas and electricity at mains when water is about to enter your home. Do not touch sources of electricity when standing in water.
- Fit flood protection products, if you have them, for example flood boards, airbrick covers, sandbags.
- Put plugs in sinks and baths. Weigh them down with a pillowcase or plastic bag filled with soil.
- If you do not have non-return valves fitted, plug water inlet pipes with towels or cloths.
- Move your family and pets upstairs or to a high place with a means of escape.
- Listen to the advice of the emergency service and evacuate if told to do so.
- Avoid walking or driving through flood water. Six inches of fast-flowing water can knock over an adult and two feet of water can move a car.

After a flood:

- If you have flooded, contact your insurance company as soon as possible.
- Take photographs and videos of your damaged property as a record for your insurance company.
- If you do not have insurance, contact your local authority for information on grants and charities that may help you.
- Flood water can contain sewage, chemicals and animal waste. Always wear waterproof outerwear, including gloves, wellington boots and a face mask.
- Have your electrics, central heating and water checked by qualified engineers before switching them back on.

Fluvial floodplain storage:

- 6.17. The NPPF requires that where development is proposed in undefended areas of floodplain, which lie outside of the functional floodplain, the implications of ground raising operations for flood risk elsewhere needs to be considered. Raising existing ground levels may reduce the capacity of the floodplain to accommodate floodwater and increase the risk of flooding by either increasing the depth of flooding to existing properties at risk or by extending the floodplain to cover properties normally outside of the floodplain. Flood storage capacity can be maintained by lowering ground levels either within the curtilage of the development or elsewhere in the floodplain, in order to maintain at least the same volume of flood storage capacity within the floodplain.
- 6.18. In undefended tidal areas, raising ground levels is unlikely to impact on maximum tidal levels so the provision of compensatory storage should not be necessary.
- 6.19. For development in a defended flood risk area, the impact on residual flood risk to other properties needs to be considered. New development behind flood defences can increase the residual risk of flooding if the flood defences are breached or overtopped by changing the conveyance of the flow paths or by displacing flood water elsewhere. If the potential impact on residual risk is unacceptable then mitigation should be provided.
- 6.20. The site is situated in Flood Zone 1 when using the Environment Agency Flood Map for Planning (Rivers and Sea). No fluvial floodwater would be displaced by the proposed development.

Commercial in Confidence

7. Discussion and Conclusions:

- 7.1. This Flood Risk Assessment and Surface Water Drainage Strategy has been prepared by Unda Consulting Limited on behalf of Cherrytrees Care, in support of a planning application for alterations and extensions to the existing building to provide improved accommodation at Cherrytrees Care, 15-17 Claremont Avenue, Woking, GU22 7SF. This report assesses flood risk and surface water drainage for the proposed development.
- 7.2. A topographical survey has been undertaken at the site by Ground Surveys Ltd and had been provided by the client for inclusion within the report.
- 7.3. The proposed planning application is for alterations and extensions to the existing building to provide improved accommodation. Post development the total increase in roof area will amount to approximately 72m².
- 7.4. This strategy will solely focus on the proposed increase in roof area.
- 7.5. The 1:50,000 BGS map shows the site to be located upon the bedrock of Bagshot Formation Sand.
- 7.6. BGS mapping indicates that the site is not underlined by superficial deposits.
- 7.7. The soil type taken from the BGS UKSO Soil Map Viewer, shows a soil parent material of Fluvial Sands and Gravels with a soil texture of sandy to sandy loam.
- 7.8. The published Environment Agency Source Protection Zones map shows the site is not located within a Groundwater Source Protection Zone.
- 7.9. The Hoe stream is located approximately 172m south east of the site.

Flood Risk Discussion

- 7.10. The proposed site is located within Flood Zone 1 (Low Probability) which means it is defined as land having less than a 1:1000 annual probability of fluvial flooding.
- 7.11. According to the EA, the site has not previously been flooded.
- 7.12. The EA Risk of Flooding from Surface Water Map suggests that the area of the site being developed lies within an area of "Very Low" to "Medium" risk of flooding from surface water.
- 7.13. The Woking Borough Council SFRA (2015) indicates that the site is located within area with limited potential for groundwater flooding to occur.
- 7.14. According to the Woking Borough Council SFRA (2015) the postcode area GU227 has had 7-9 records of sewer flooding from the past 20 years.

Surface Water Drainage Strategy Discussion

- 7.15. The 1:50,000 BGS map shows the site to be located upon the bedrock of Bagshot Formation Sand. Therefore, infiltration SuDS are considered feasible at the site.
- 7.16. Given the underlying strata an assumed minimum infiltration rate of 1 x 10⁻⁵ m/s has been utilised for this assessment. However, given the underlying bedrock geology the true infiltration rate is likely to be greater than that used within this assessment.
- 7.17. Greenfield runoff rates for the area of the site being attenuated have been calculated as 0.0 l/s for the 1:1 annual runoff event, 0.1 l/s for the 1:30 year event and 0.1 l/s for the 1:100-year event. Refer to calculations in appendix.
- 7.18. Post development the total increase in roof area will amount to approximately 72m². Therefore, 72m² of roof area will discharge into a cellular storage soakaway.
- 7.19. All new ground surfaces will be of permeable construction.
- 7.20. The surface water runoff from 72m² of roof area will discharge into the cellular storage soakaway.

Commercial in Confidence

- 7.21. The proposed development comprises some 72m² of potentially impermeable surfacing. In order to comply with CIRIA C753 The SuDS Manual, a 10% allowance will be added to take into account future urban creep. Applying a 10% allowance to all new roof area (72m²) gives a value of 79.2m². Therefore, all drainage calculations have been made on the basis of a total impermeable area of 79.2m².
- 7.22. Preliminary calculations indicate that sufficient storage required to attenuate runoff from the proposed impermeable areas (79.2m²) arising from the critical 1:100 year + 45% climate change event can be provided within cellular storage of dimensions 14m² x 0.40m deep x 0.95 (voids).
- 7.23. Preliminary calculations indicate that approximately 5.32m³ of storage is required to attenuate the runoff for all storms up to and including the 1:100 year + 45% climate change event.
- 7.24. *Please note that the levels and locations of the cellular storage within the Causeway calculations are arbitrary for modelling purposes.*
- 7.25. Runoff from roof areas is considered to be uncontaminated and does not warrant any form of treatment process to improve water quality. Nevertheless, it is suggested to include debris / sediment traps on any new drainage.
- 7.26. Should the onsite drainage system fail under extreme rainfall events or blockage, flooding may occur within the site. In the event of the drainage system failure, the runoff flow can be managed through detailing the new external levels to direct water away from structures.
- 7.27. This drainage strategy has been undertaken in accordance with the principles set out in NPPF. We can conclude that providing the development adheres to the conditions advised above, the said development proposals can be accommodated without increasing flood risk within the locality in accordance with objectives set by Central Government and the EA.

Unda Consulting Limited

December 2023

Commercial in Confidence

UND

8. Appendix

A - Proposed Plans:

- Proposed Site Plans Amber Architecture;
- Topographical Survey Ground Surveys Ltd.

B– Causeway Calculations:

- IH124 Pre-Development Greenfield Runoff Calculations for the area of the site being attenuated;
- Cellular Storage Soakaway (Depth/Area/Inf Area Storage Structure) Calculations.

C - Drainage Layout Plans:

• Proposed Site Drainage Layout.

Commercial in Confidence

200400 E	
¢ + 157720 N	LEGEND FEATURE STYLES FEATURE ABREVIATIONS SURVEY CONTROL A BI Telecom Cover BIB Telecom Cover BIB Telecom Cover BIB Telecom Box/Booth BUS SWS FWS CID FWS CCB FWS COCCC SWS CCC COMPER-LINE COVERHEAD) TELECOM-LINE T (OVERHEAD) T FENCE TYPES T BWR Barbed Wire CG CCD Concreate Boilard CCC Cover Level CM Gous Meter GM Gous Meter GUIV GM GM Gous Meter GV Cass Valve Inspection Chamber Invert Level KLS Keep Left Sign KO Corrugated Iron CL Corrugated Iron CL Conce Panel CP Cost Boox CP Cost Boox RS
+ <mark>157710 N</mark>	DATUM GRID - ORDNANCE SURVEY NATIONAL GRID (OSTN15) LEVELS - ORDNANCE SURVEY (OSGM15)
+ 157700 N	NOTES Surveyed boundaries are not necessarily the site legal boundaries. Client should refer to the relevant Land Registry document for confirmation of title. Every effort has been made to show all features, however those hidden or obscured at the time of survey cannot be shown. Tree canopy measured values are written as maximum spreads. Tree canopy measured values are written as maximum spreads. Tree species and condition to be confirmed by an arboriculturist Drainage and service covers that were buried, obscured or not visible at the time of the survey cannot be shown. Sewer connections between mannoles are assumed to be straight and only pipes visible from the cover are shown. EURVEYED BY Ground Surveyes Ital Iand & engineering surveyors
+ 157690 N	100 Berkshire Place Wharfedale Road Winnersh Berkshire RG41 5RD t: 01628 485200 e:office@groundsurveys.com www.groundsurveys.com
+ 157680 N	AMBER ARCHITECTURE LTD SITE CHERRYTREES CARE HOME CLAREMONT AVENUE WOKING SURREY GU22 7SF TITLE SITE SURVEY AS EXISTING
500400 E	SCALE 1/100 (A1) DATE DRAWING No. 01 JOB No.

la Consulting Limited	File: Cellular Storag
	Network: Storm Ne

ige Soakaway Page 1 93454 etwork Antony Rousou 04/12/2023

Design Setting	gs
Return Period (years) 100 Additional Flow (%) 0 FSR Region England and Wales M5-60 (mm) 20.000 Ratio-R 0.400 CV 0.750	m Time of Concentration (mins) 30.00 Maximum Rainfall (mm/hr) 50.0 Minimum Velocity (m/s) 1.00 Connection Type Level Soffits Minimum Backdrop Height (m) 0.200 Preferred Cover Depth (m) 1.200 Include Intermediate Ground √ force best practice design rules √
Nodes	
	asting Northing Depth (m) (m) (m)
MH1 0.008 4.00 10.000 10	00.000 100.000 0.401
Simulation Setti	tings
Rainfall MethodologyFSRFSR RegionEngland and WalesM5-60 (mm)20.000Ratio-R0.400Summer CV0.750Winter CV0.840Analysis SpeedNormalSkip Steady Statex	Drain Down Time (mins) 240 Additional Storage (m³/ha) 0.0 Check Discharge Rate(s) √ 1 year (l/s) 0.0 30 year (l/s) 0.1 100 year (l/s) 0.1 Check Discharge Volume x
Storm Duratio	ons
1560180360600960301202404807201440	21604320720010080288057608640
	tional Area Additional Flow (A %) (Q %) 0 0
Pre-development Disc	charge Rate
Site MakeupGreenfieldGreenfield MethodIH124Positively Drained Area (ha)0.007SAAR (mm)649Soil Index3SPR0.40Region6Growth Factor 1 year0.85	Growth Factor 30 year 2.40 Growth Factor 100 year 3.19 Betterment (%) 0 QBar 0.0 Q 1 year (l/s) 0.0 Q 30 year (l/s) 0.1 Q 100 year (l/s) 0.1
Node MH1 Depth/Area Sto	orage Structure
Base Inf Coefficient (m/hr) 0.03600 Safety Factor Side Inf Coefficient (m/hr) 0.00000 Porosity	2.0 Invert Level (m) 9.599 0.95 Time to half empty (mins) 160
•	hf AreaDepthAreaInf Area(m²)(m)(m²)(m²)14.00.4010.014.0

Unda Consulting Limited	File: Cellular Storage Soakaway	Page 2
	Network: Storm Network	93454
	Antony Rousou	
	04/12/2023	

Results for 100 year +45% CC 15 minute summer. 255 minute analysis at 1 minute timestep. Mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	MH1	19	9.756	0.157	5.5	2.0885	0.0000	ОК
	Link	Event	US	Li	ink (Outflow		

	Node		(I/s)
15 minute summer	MH1	Infiltration	0.1

Results for 100 year +45% CC 15 minute winter. 255 minute analysis at 1 minute timestep. Mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	MH1	19	9.775	0.176	5.5	2.3389	0.0000	ОК
	Lin	k Event	US Nod		ink	Outflow (I/s)		
	15 mir	nute winte	er MH:	1 Infilt	ration	0.1		

Flow+ v10.7 Copyright © 1988-2023 Causeway Technologies Ltd

Unda Consulting Limited	File: Cellular Storage Soakaway	Page 4
	Network: Storm Network	93454
	Antony Rousou	
	04/12/2023	

Results for 100 year +45% CC 30 minute summer. 270 minute analysis at 1 minute timestep. Mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)		Node Vol (m³)	Flood (m³)	Status
30 minute summer	MH1	33	9.802	0.203	4.8	2.7039	0.0000	OK
	Link	(Event	US	Li	ink (Dutflow		

	•••		outilon
	Node		(I/s)
30 minute summer	MH1	Infiltration	0.1

Page 5

93454

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute winter	MH1	33	9.828	0.229	4.2	3.0488	0.0000	ОК
	Lin	k Event	US Nod		nk	Outflow (I/s)		
	30 mir	nute winte	er MH1	L Infilt	ration	0.1		

Unda Consulting Limited	File: Cellular Storage Soakaway	Page 6
	Network: Storm Network	93454
	Antony Rousou	
	04/12/2023	

Results for 100 year +45% CC 60 minute summer. 300 minute analysis at 1 minute timestep. Mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
60 minute summer	MH1	63	9.848	0.249	3.5	3.3175	0.0000	OK
	Link	Event	US	Li	ink	Outflow		

	Node		(I/s)
60 minute summer	MH1	Infiltration	0.1

Results for 100 year +45% CC 60 minute winter. 300 minute analysis at 1 minute timestep. Mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
60 minute winter	MH1	62	9.882	0.283	2.7	3.7618	0.0000	ОК
	Lin	k Event	US Nod		nk	Outflow (I/s)		
	60 mir	nute winte	er MH:	1 Infilt	ration	0.1		

Unda Consulting Limited	File: Cellular Storage Soakaway	Page 8
	Network: Storm Network	93454
	Antony Rousou	
	04/12/2023	

Results for 100 year +45% CC 120 minute summer. 360 minute analysis at 2 minute timestep. Mass balance: 100.00%

Node Event	US Node		Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
120 minute summer	MH1	122	9.888	0.289	2.2	3.8391	0.0000	ОК
	Link	Event	US		ink	Outflow		

	Node		(I/S)
120 minute summer	MH1	Infiltration	0.1

Results for 100 year +45% CC 120 minute winter. 360 minute analysis at 2 minute timestep. Mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
120 minute winter	MH1	120	9.927	0.328	1.7	4.3560	0.0000	ОК
	Linl	< Event	US		ink	Outflow		
			Nod	е		(l/s)		
	120 mir	nute winte	er MH1	L Infilt	ration	0.1		

Unda Consulting Limited	File: Cellular Storage Soakaway	Page 10
	Network: Storm Network	93454
	Antony Rousou	
	04/12/2023	

Results for 100 year +45% CC 180 minute summer. 420 minute analysis at 4 minute timestep. Mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
180 minute summer	MH1	180	9.911	0.312	1.7	4.1514	0.0000	ОК
	Link	Event	US Nod	_	ink	Outflow (I/s)		

			(-/-/
180 minute summer	MH1	Infiltration	0.1

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
180 minute winter	MH1	· · ·	9.933	0.334	1.2	4.4409	0.0000	ОК
	Linl	< Event	US	Li	ink	Outflow		
			Nod	е		(I/s)		
	180 mir	nute winte	r MH:	1 Infilt	ration	0.1		

	Unda Consulting Limited
CAUSEWAY 🛟	

Results for 100 year +45% CC 240 minute summer. 480 minute analysis at 4 minute timestep. Mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
240 minute summer	MH1	240	9.903	0.304	1.3	4.0403	0.0000	ОК
	Link	Event	US Nod	_	ink	Outflow (I/s)		

			(., .,
240 minute summer	MH1	Infiltration	0.1

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
240 minute winter	MH1	236	9.963	0.364	1.0	4.8397	0.0000	ОК
	Linl	< Event	US Nod	_	ink (Outflow (I/s)		
	240 mir	nute winte		-	ration	0.1		

	•••
CAUSEWAY	

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
360 minute summer	MH1	360	9.917	0.318	1.0	4.2279	0.0000	ОК
	Link	Event	US Nod		ink	Outflow (I/s)		

	nouc		(1/3/
360 minute summer	MH1	Infiltration	0.1

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
360 minute winter	MH1	352	9.960	0.361	0.7	4.7987	0.0000	ОК
	Linl	< Event	US	Li	ink	Outflow		
			Nod	е		(I/s)		
	360 mir	nute winte	r MH:	1 Infilt	ration	0.1		

Unda Consulting Limited	File: Cellular Storage Soakaway	Page 16
	Network: Storm Network	93454
	Antony Rousou	
	04/12/2023	

Results for 100 year +45% CC 480 minute summer. 720 minute analysis at 8 minute timestep. Mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
480 minute summer	MH1	480	9.932	0.333	0.8	4.4272	0.0000	ОК
	Link	Event	US Nod		ink (Outflow (I/s)		

			(., .,
480 minute summer	MH1	Infiltration	0.1

Results for 100 year +45% CC 480 minute winter. 720 minute analysis at 8 minute timestep. Mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
480 minute winter	MH1	464	9.969	0.370	0.6	4.9250	0.0000	ОК
	Linl	k Event	US Nod	_	ink	Outflow (I/s)		
	480 mir	nute winte	er MH1	L Infilt	ration	0.1		

Unda Consulting Limited	File: Cellular Storage Soakaway	Page 18
	Network: Storm Network	93454
	Antony Rousou	
	04/12/2023	

Results for 100 year +45% CC 600 minute summer. 840 minute analysis at 15 minute timestep. Mass balance: 100.00%

Node Event	US Node		Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
600 minute summer	MH1	600	9.919	0.320	0.6	4.2550	0.0000	ОК
	Link	Event	US Nod		ink (Outflow (I/s)		

			(<i>i</i> = <i>i</i>
600 minute summer	MH1	Infiltration	0.1

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
600 minute winter	MH1	585	9.969	0.370	0.5	4.9264	0.0000	ОК
	Lini	c Event	US Nod		nk	Outflow (I/s)		
	600 mir	nute winte		-	ration	0.1		

Unda Consulting Limited	File: Cellular Storage Soakaway Network: Storm Network	Page 20 93454
	Antony Rousou 04/12/2023	

Results for 100 year +45% CC 720 minute summer. 960 minute analysis at 15 minute timestep. Mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
720 minute summer	MH1	690	9.942	0.343	0.5	4.5563	0.0000	ОК
	Link	Event	US Nod	_	ink	Outflow (I/s)		

			(-/-/
720 minute summer	MH1	Infiltration	0.1

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
720 minute winter	MH1	690	9.969	0.370	0.4	4.9155	0.0000	ОК
	Linl	< Event	US Nod		ink	Outflow (I/s)		
	720 mir	nute winte		-	ration	0.1		

Unda Consulting Limited	File: Cellular Storage Soakaway Network: Storm Network Antony Rousou	Page 22 93454
	04/12/2023	

Results for 100 year +45% CC 960 minute summer. 1200 minute analysis at 15 minute timestep. Mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)		Node Vol (m³)	Flood (m³)	Status
960 minute summer	MH1	795	9.910	0.311	0.4	4.1423	0.0000	OK
	Link	Event	US	i Li	ink (Outflow		

	Node		(I/s)
960 minute summer	MH1	Infiltration	0.1

CAUSEWAY	3
----------	---

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
960 minute winter	MH1	900	9.966	0.367	0.3	4.8803	0.0000	ОК
	Linl	k Event	US Nod		ink	Outflow (I/s)		
	960 mir	nute winte		-	ration	0.1		

Flow+ v10.7	Copyright ©	1988-2023	Causeway	⁷ Technologies Ltd

Unda Consulting Limited	File: Cellular Storage Soakaway	Page 24
	Network: Storm Network	93454
	Antony Rousou	
	04/12/2023	

Results for 100 year +45% CC 1440 minute summer. 1680 minute analysis at 30 minute timestep. Mass balance: 100.00%

Node Event	US Node	Peak (mins)		Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
1440 minute summer	MH1	1050	9.873	0.274	0.3	3.6425	0.0000	ОК
	Link	Event	US	5 Li	ink	Outflow		

	Node		(I/s)
1440 minute summer	MH1	Infiltration	0.1

Unda Consulting Limited	File: Cellular Storage Soakaway	Page 25
	Network: Storm Network	93454
	Antony Rousou	
	04/12/2023	

Results for 100 year +45% CC 1440 minute winter. 1680 minute analysis at 30 minute timestep. Mass balance: 100.00%

Node Event	US Node	Peak (mins)		Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
1440 minute winter	MH1	1110	9.889	0.290	0.2	3.8585	0.0000	OK
	Link	Event	US	Li	ink (Outflow		

	Node		(I/s)
1440 minute winter	MH1	Infiltration	0.1

Unda Consulting Limited	File: Cellular Storage Soakaway	Page 26
	Network: Storm Network	93454
	Antony Rousou	
	04/12/2023	

Results for 100 year +45% CC 2160 minute summer. 2400 minute analysis at 60 minute timestep. Mass balance: 100.00%

Node Event	US Node	Peak (mins)		Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
2160 minute summer	MH1	1440	9.825	0.226	0.2	3.0022	0.0000	OK
	Link	Event	US	_	ink	Outflow (I/s)		

	Node		(1/5)
2160 minute summer	MH1	Infiltration	0.1

Unda Consulting Limited	File: Cellular Storage Soakaway	Page 27
	Network: Storm Network	93454
	Antony Rousou	
	04/12/2023	

Results for 100 year +45% CC 2160 minute winter. 2400 minute analysis at 60 minute timestep. Mass balance: 100.00%

Node Event	US Node	Peak (mins)		Depth (m)		Node Vol (m³)	Flood (m³)	Status
2160 minute winter	MH1	1560	9.857	0.258	0.2	3.4342	0.0000	OK
	Link	Event	US	; Li	ink (Dutflow		

	Node		(I/s)
2160 minute winter	MH1	Infiltration	0.1

	Unda Consulting Limited	File: Cellular Storage Soakaway	Page 28
CAUSEWAY 🛟		Network: Storm Network	93454
		Antony Rousou	
		04/12/2023	

Results for 100 year +45% CC 2880 minute summer. 3120 minute analysis at 60 minute timestep. Mass balance: 100.00%

Node Event	US Node	Peak (mins)		Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
2880 minute summer	MH1	1860	9.787	0.188	0.2	2.4982	0.0000	ОК
	Link	Event	US	_	ink	Outflow (I/s)		

	Node		(1/5)
2880 minute summer	MH1	Infiltration	0.1

Unda Consulting Limited	File: Cellular Storage Soakaway	Page 29
	Network: Storm Network	93454
	Antony Rousou	
	04/12/2023	

Results for 100 year +45% CC 2880 minute winter. 3120 minute analysis at 60 minute timestep. Mass balance: 100.00%

Node Event	US Node	Peak (mins)		Depth (m)		Node Vol (m³)		Status
2880 minute winter	MH1	1980	9.765	0.166	0.1	2.2102	0.0000	OK
	Link	Event	US	i Li	ink (Dutflow		

	Node		(I/s)
2880 minute winter	MH1	Infiltration	0.1

	Unda Consulting Limited	File: Cellular Storage Soakaway	Page 30
CAUSEWAY 🛟		Network: Storm Network	93454
		Antony Rousou	
		04/12/2023	

Results for 100 year +45% CC 4320 minute summer. 4560 minute analysis at 60 minute timestep. Mass balance: 100.00%

Node Event	US Node	Peak (mins)		Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
4320 minute summer	MH1	2640	9.749	0.150	0.1	1.9942	0.0000	ОК
	Link	Event	US Nod		ink	Outflow (I/s)		

	Noue		(1/3)
4320 minute summer	MH1	Infiltration	0.1

	Unda Consulting Limited	File: Cellular Storage Soakaway	Page 31
		Network: Storm Network	93454
		Antony Rousou	
		04/12/2023	

Results for 100 year +45% CC 4320 minute winter. 4560 minute analysis at 60 minute timestep. Mass balance: 100.00%

Node Event	US Node		Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
4320 minute winter	MH1	2820	9.798	0.199	0.1	2.6422	0.0000	ОК
	Link	Event	US	; Li	ink (Outflow		

	Node		(l/s)
4320 minute winter	MH1	Infiltration	0.1

	Unda Consulting Limited
CAUSEWAY 🛟	

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
5760 minute summer	MH1	/	9.749	0.150	0.1	1.9942	0.0000	ОК
	Link	Event	US Nod		ink	Outflow (I/s)		

5760 minute summer	MH1	Infiltration	0.1

	Unda Consulting Limited
CAUSEWAY 🛟	

Results for 100 year +45% CC 5760 minute winter. 6000 minute analysis at 60 minute timestep. Mass balance: 100.00%

Node Event	US Node	Peak (mins)		Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
5760 minute winter		3540	• •	0.199	0.1	- (/	0.0000	ОК
	Link	Event	US	; Li	ink (Outflow		

	Node		(I/s)
5760 minute winter	MH1	Infiltration	0.1

CAUSEWAY 🛟	5	File: Cellular Stor Network: Storm Antony Rousou
		04/12/2023

Results for 100 year +45% CC 7200 minute summer. 7440 minute analysis at 60 minute timestep. Mass balance: 100.00%

Node Event	US Node		Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
7200 minute summer	MH1	4080	9.749	0.150	0.1	1.9942	0.0000	ОК
	Link	Event	US Nod	_	ink	Outflow (I/s)		

			(., .,
7200 minute summer	MH1	Infiltration	0.1

Unda Consulting Limited	File: Cellular Storage Soakawa
	Network: Storm Network
	Antony Rousou
	04/12/2023

way Page 35 93454

Results for 100 year +45% CC 7200 minute winter. 7440 minute analysis at 60 minute timestep. Mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
7200 minute winter	MH1	4200	9.781	0.182	0.1	2.4262	0.0000	ОК
	Link	Event	US		nk	Outflow		

	Node		(1/5)
7200 minute winter	MH1	Infiltration	0.1

CAOSEVVAI V 04/12/2023	CAUSEWAY 😜	5	
---------------------------	------------	---	--

Results for 100 year +45% CC 8640 minute summer. 8880 minute analysis at 60 minute timestep. Mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
8640 minute summer	MH1	4740	9.733	0.134	0.1	1.7782	0.0000	OK
	Link	Event	US Nod	_	ink	Outflow (I/s)		

	nouc		(1/3)
8640 minute summer	MH1	Infiltration	0.1

	-
CAUSEWAY 🛟	
(/) >=V/)Y []	

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
8640 minute winter	MH1	4740	9.733	0.134	0.1	1.7782	0.0000	ОК
	Link	Event	US		nk	Outflow		

	Node		(I/s)
8640 minute winter	MH1	Infiltration	0.1

Unda Consulting Limited	File: Cellular Storage Soakaway	Page 38
	Network: Storm Network	93454
	Antony Rousou	
	04/12/2023	

Results for 100 year +45% CC 10080 minute summer. 10320 minute analysis at 60 minute timestep. Mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
10080 minute summer	MH1	5460	9.733	0.134	0.1	1.7782	0.0000	ОК
	Link E	vent	US Nod		nk (Outflow (I/s)		

10080 minute summer	MH1	Infiltration	0.1

Results for 100 year +45% CC 10080 minute winter. 10320 minute analysis at 60 minute timestep. Mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
10080 minute winter	MH1	60	9.599	0.000	0.0	0.0000	0.0000	ОК
	Link	Event	US Nod		nk	Outflow (l/s)		

10080 minute winter	MH1	Infiltration	0.0

