Project Title: Solstrand, station Road, Bagshot

Project No: 23235

Ву	Date	Sheet	Client	File	Action
JLB	January 2024	1	Brooklands Homes		

1.0 Existing Surface Water Drainage

The current site covers an area of 1625m² and is occupied by a single dwelling, which covers 145m², the remainder of the site is either unmade ground or vegetation. The site slopes from Station Road, downhill towards the southern end of the site. From CCTV surveys carried out, it shows that the surface water from the existing dwelling discharges into the public Thames Water main in Station Road. The run-off rate for the existing dwelling was calculated to be 7.6l/s for a 1 in 30 year event.

2.0 Proposed Surface Water Drainage

It is preferable to drain all surface water to a soakaway; however, following a site investigation it was found that the ground conditions are impermeable, and unsuitable for infiltration. Furthermore, for this site it is not feasible to locate one due to the proximity of buildings and/or retaining structures (existing and proposed) being within 5m. There is also a requirement to remain a minimum of 20m from the boundary of Network Rail land, which runs along the south-eastern side of the site.

Therefore, it is proposed to discharge surface water from all areas into the existing Thames Water surface water sewer. This will be via an attenuated discharge rate of 5.0 l/s, subject to agreement by Thames Water.

The proposed strategy layout is shown on GAP drawing 23235-GAP-XX-XX-DR-C-9000, a copy of which is appended to this document. Initial hydraulic calculations have been prepared to size the attenuation tank and connecting pipework using Flow software. The following criteria have been used for the calculations:

Return Period	100 years
Climate Change	+40%
Storm Durations	15,30,60,120,180,240,360,480,600,720,960 & 1,440 minutes
M ₅₋₆₀	20mm
r	0.4
Cv	0.84

Surface water drainage from Plot 1 will fall under gravity with flow controlled using a hydrobrake, excess surface water will be stored using oversized pipework and manhole chambers. Surface water at the lower end of the site by Plots 2 and 3, will be pumped up to a mixing chamber after the Plot 1 hydrobrake. Storage for excess surface water at the lower end will be provided by permeable sub-base within the turning head, and the surface water pumping chamber itself.

The strategy layout has been designed to accommodate a 1 in 100 year (+40% climate change) storm below ground. For events greater than this the system is designed to allow excess surface water to flood from the ACO channel at the top of the access ramp. From there surface water will fall back to the lower end of the site over the turning head outside Plots 2 and 3., where it would then be eventually drained via the surface water pump. For a simulated event of 1 in 200 years (+70% climate change) the turning head would flood by 25mm.

In the event of a surface water pump failure, excess surface water would first be stored within the pump chamber and permeable sub-base within the turning head. This will provide storage for events up to 1 in 30 years (plus 10% climate change) Should the capacity of this be exceeded, then surface water will collect above ground within the turning head to a maximum depth of 50mm. After this depth water will spill over a weir kerb placed between plots 2 and 3, and follow an overland route towards the

south-eastern corner of the site, which was requested by Surrey Heath Borough Council Drainage Officer. From there surface water will follow a path southward along the railway embankment, carried out by Surrey Heath Borough Council. See drawing 23235-GAP-XX-XX-DR-C-9302 for details of the weir kerb, and overland flow route, within the development.

To prevent flooding from the Thames Water mains affecting the site; excess surface water will flood from the mixing chamber at the site entrance. From there water will flow above ground westwards along Station Road. A non-return valve will be placed on the incoming main from the flow control chamber, to prevent water backing up into the private drainage.

3.0 Proposed Foul Water Drainage

The site is served by an existing Thames Water foul water connection, which is shared with the neighbouring property. It is intended to re-use this connection for foul water from Plot 1, where it can fall under gravity from the site.

For plots 2 and 3 a foul pump chamber will be placed within the turning head, to lift foul water into the existing off-site connection. This will be at a rate of 2.0 litres/second to avoid overwhelming the off-site connection. The pump chamber will be designed to accommodate sufficient foul water storage from the 2 properties for a minimum period of 24 hours, should the event of a power, or mechanical, failure to the pumps.

It has also been requested by the local authority, that all foul water chambers will have bolt down covers.

4.0 Maintenance

The conventional piped network and attenuation devices have been designed to facilitate access for regular inspection and maintenance in accordance with Building Regulations and Sewer Sector Guidance. All maintenance operations are to be carried out in accordance with the manufacturer's recommendations. Intervals will not exceed 12 months.

Ongoing maintenance of the surface water drainage infrastructure will be undertaken by a specialist maintenance company, overseen and organised by the managing agent, who will also be responsible for maintaining the foul drainage network and the estate roads on the site.

There will be a separate electricity supply and meter for the drainage pumps, independent of the individual supplies to the three plots. The managing agent will be responsible for organising all inspections, whilst also providing residents with a 24hr contact number for emergencies. Additional 24hr contact details will be provided to each of the residents to enable direct contact with the specialist pump maintenance company should the managing agent be uncontactable.

In the event of a failure of the pump, and warning system will be provided to alert residents, and/or the management company of the alert.

The drainage scheme will be installed and operational before occupation of the dwellings.

On sale of the houses, each new owner will have a legal responsibility to become a shared owner of the estate road and relevant drainage network associated with the dwelling and this responsibility will be transferred with the ownership of the dwelling. This legal responsibility will include all aspects of the maintenance strategy.

See below an example of the proposed maintenance activities:

General Maintenance

Maintenance Activity	Remedial Action	Inspection Frequency
Check the surface and ensure it is free from debris, dirt and the like	Clean surfacing as required and remove detrimental materials	Typically, monthly or as required
Ensure the surface is clear of sediments	Sweep surface clean of silt and deleterious materials, top up joints with sealing grit as required	Typically, monthly or as required
Inspect joints and carry out weed control	Remove weeds and top up joints with sealing grit as required	Typically, 3-4 times per year or as required
Ensure paving dewaters after rain and between storms	Check joints for sedimentation, mechanically clean or jet wash and sweep surface free from silt, etc. Refill joints with sealing grit as required	Typically, annually or as required
Inspect blocks for spalling or deterioration and joints for loss of grit	Replace blocks and top up joints as required	Typically, annually or as required
Check pre-treatment structures (Catchpits / Silt Traps) for sediment	Remove sediment from pre- treatment structures	Monthly in the first year and then annually

Below Ground pipework:

Maintenance Activity	Remedial Action	Inspection Frequency			
Lift Inspection chamber covers and check for signs of blockages and silt / debris build up	Jet clean and remove debris as required to ensure correct operation of the system	Typically, annually or as required			

System inlets:

Maintenance Activity	Remedial Action	Inspection Frequency			
Check gullies, drainage channels, etc. for build-up of silt or other detrimental materials	Ensure all items are clear an operating correctly	dTypically, every 6 months or as required			

Pre-treatment structures (Catchpits / Silt Traps):

Maintenance Activity	Remedial Action	Inspection					
		Frequency					
Inspect for build-up of sediment materials	Remove debris as required ensure correct operation of system	o3-4 times during the first year, then annually or as required thereafter					

Flow Controls:

Maintenance Activity	Remedial Action	Inspection Frequency
Check control chamber for build- up of silt or other detrimental materials and nothing is blocking the flow control	Ensure all items are operating correctly	clear and Typically, every 6 months or as required

Design Settings

Rainfall Methodology	FSR	Maximum Time of Concentration (mins)	30.00
Return Period (years)	100	Maximum Rainfall (mm/hr)	50.0
Additional Flow (%)	0	Minimum Velocity (m/s)	1.00
FSR Region	England and Wales	Connection Type	Level Soffits
M5-60 (mm)	20.000	Minimum Backdrop Height (m)	0.200
Ratio-R	0.400	Preferred Cover Depth (m)	0.500
CV	0.750	Include Intermediate Ground	\checkmark
Time of Entry (mins)	4.00	Enforce best practice design rules	х

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Width (mm)	Sump (m)	Easting (m)	Northing (m)	Depth (m)
SW 12	0.018	4.00	62.940	600		0.300	580.358	277.236	1.040
FLOW CONTROL			64.270	1800		0.400	579.607	291.366	2.490
TW SADDLE CONNECTION			64.220				575.604	297.071	2.103
SW 30	0.004	4.00	58.850	150			613.653	222.998	0.650
SW 31	0.002	4.00	58.850	450			609.258	234.735	0.780
SW 21	0.004	4.00	58.850	450			599.648	231.494	0.880
SW PUMP			58.810	1200		1.060	594.043	239.153	2.000
SW 22	0.003	4.00	58.850	450			594.621	229.427	0.650
SW 10	0.008	4.00	63.050	450			588.954	260.440	0.720
SW 11			63.050	450			585.423	274.094	0.810
ACO NODE	0.016	4.00	59.170	450	150		582.419	241.289	0.810
DIFFUSER 01			58.810				587.219	234.651	0.810
MIXING CHAMBER			64.100	450			578.547	291.484	1.920
SW 20	0.006	4.00	58.850	450			604.357	217.690	0.650
ROAD GULLY	0.020	4.00	58.670	450		0.600	599.850	233.863	1.160
DIFFUSER 02			58.810				595.409	234.647	0.810
SW 13			63.320	1800		0.500	579.419	281.090	1.640

<u>Links (Input)</u>

Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia	T of C	Rain
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)
1.002	SW 12	SW 13	3.967	0.600	62.200	62.190	0.010	396.7	225	4.52	50.0
1.004	FLOW CONTROL	MIXING CHAMBER	1.067	0.600	62.190	62.180	0.010	106.7	100	4.71	50.0
2.000	SW 30	SW 31	12.533	0.600	58.200	58.070	0.130	96.4	150	4.20	50.0
2.001	SW 31	SW 21	10.142	0.600	58.070	57.970	0.100	101.4	150	4.37	50.0
2.002	SW 21	SW PUMP	9.491	0.600	57.970	57.870	0.100	94.9	150	4.53	50.0
4.000	SW 22	SW 21	5.435	0.600	58.200	57.970	0.230	23.6	150	4.04	50.0
1.000	SW 10	SW 11	14.103	0.600	62.330	62.240	0.090	156.7	150	4.29	50.0
1.001	SW 11	SW 12	5.960	0.600	62.240	62.200	0.040	149.0	150	4.41	50.0
5.000	ACO NODE	DIFFUSER 01	8.192	0.600	58.360	58.000	0.360	22.8	150	4.06	50.0
1.005	MIXING CHAMBER	TW SADDLE CONNECTION	6.315	0.600	62.180	62.117	0.063	100.0	100	4.85	50.0
3.000	SW 20	SW 21	14.585	0.600	58.200	57.970	0.230	63.4	150	4.19	50.0
6.000	ROAD GULLY	DIFFUSER 02	4.510	0.600	58.110	58.000	0.110	41.0	150	4.05	50.0
1.003	SW 13	FLOW CONTROL	10.278	0.600	62.180	62.180	0.000	0.0	450	4.69	50.0

	Godsell Arnold Partnership Ltd	File: drainage - V5.pfd	Page 2
	7 Arrowsmith Court	Network: Storm Network 1	23235 - SW DESIGN
4	Broadstone, Poole	Jason Bale	CALCULATIONS
	BH18 8AX	11/01/2024	REV 02

Pipeline Schedule

Link	Length	Slope	Dia		Lin	k		US CL	US IL	US Depth	DS CL	DS	IL I	DS De	pth
	(m)	(1:X)	(mm)		Тур	be		(m)	(m)	(m)	(m)	(m)	(m)
1.002	2 3.967	396.7	225	Circular_	Defau	It Sewe	er Type	62.940	62.200	0.515	63.320	62.1	90	0.	905
1.004	4 1.067	106.7	100	Circular_	Defau	lt Sewe	er Type	64.270	62.190	1.980	64.100	62.1	80	1.	820
2.000) 12.533	96.4	150	Circular_	Defau	It Sewe	er Type	58.850	58.200	0.500	58.850	58.0	70	0.	630
2.001	1 10.142	101.4	150	Circular_	Defau	It Sewe	er Type	58.850	58.070	0.630	58.850	57.9	70	0.	730
2.002	2 9.491	94.9	150	Circular_	Defau	lt Sewe	er Type	58.850	57.970	0.730	58.810) 57.8	70	0.	790
4.000	5.435	23.6	150	Circular_	Defau	lt Sewe	er Type	58.850	58.200	0.500	58.850	57.9	70	0.	730
1.000	0 14.103	156.7	150	Circular_	Defau	It Sewe	er Type	63.050	62.330	0.570	63.050	62.2	40	0.	660
1.001	1 5.960	149.0	150	Circular_	Defau	It Sewe	er Type	63.050	62.240	0.660	62.940	62.2	00	0.	590
5.000	J 8.192	22.8	150	Circular_	Defau	It Sewe	er Type	59.170	58.360	0.660	58.810	58.0	00	0.	660
1.005	5 6.315	100.0	100	Circular_	Defau	It Sewe	er Type	64.100	62.180	1.820	64.220	62.1	1/ 70	2.	003
3.000	J 14.585	63.4	150	Circular_	Derau	It Sewe	er type	58.850	58.200	0.500	58.850	57.9	/0	0.	/30
6.000	0 4.510	41.0	150	Circular_	Defau	lt Sewe	er Type	58.670	58.110	0.410	58.810	58.0	00	0.	660
1.003	3 10.278	0.0	450	Circular_	Defau	It Sewe	er Type	63.320	62.180	0.690	64.270	62.1	80	1.	640
Link	US	i	Dia	Width	No	de	МН		DS	5	Dia	No	de	r	ин
	Nod	le	(mm)	(mm)	Тур	be	Туре		Noc	le	(mm)	Ту	be	Ţ	уре
1.002	SW 12		600		Manl	hole	Adoptab	le SW	13		1800	Man	hole	Ado	ptable
1.004	FLOW CON	ITROL	1800		Manl	hole	Adoptab	e MIX	KING CHAN	1BER	450	Man	hole	Ado	ptable
2.000	SW 30		150		Manl	hole	Adoptab	le SW	31		450	Man	hole	Ado	ptable
2.001	SW 31		450		Man	hole	Adoptab	le SW	21		450	Man	hole	Ado	ptable
2.002	SW 21		450		Iviani	nole	Adoptab	le SW	PUMP		1200	Ivian	nole	Ado	ptable
4.000	SW 22		450		Manl	hole	Adoptab	le SW	21		450	Man	hole	Ado	ptable
1.000	SW 10		450		Manl	hole	Adoptab	le SW	11		450	Man	hole	Ado	ptable
1.001	SW 11		450		Manl	hole	Adoptab	le SW	12		600	Man	hole	Ado	ptable
5.000	ACO NODE		450	150	Manl	hole	Adoptab	le DIF	FUSER 01			Junct	tion		
1.005	MIXING CH	IAMBER	450		Manl	hole	Adoptab	le TW	SADDLE C	ONNECTION		Junct	tion		
3.000	SW 20		450		Manl	hole	Adoptab	le SW	21		450	Man	hole	Ado	ptable
6.000	ROAD GUL	LY	450		Manl	hole	Adoptab	e DIF	FUSER 02		4000	Junct	tion		
1.003	SW 13		1800		Man	hole	Adoptab	le FLC	W CONTRO	OL	1800	Man	hole	Ado	ptable
						<u>Ma</u>	anhole So	hedule							
	Node		Easting	North	ing	CL	Depth	Dia	Width	Connect	ions	Link	IL	-	Dia
			(m)	(m)	(m)	(m)	(mm) (mm)				(m	ı)	(mm)
SW 12			580.358	3 277.:	236	62.940	1.040	60	0	°	1	1.001	62.2	200	150
											_				
	CONTROL		570.007	7 204	266	C 4 2 7 0	2 400	100	0		0	1.002	62.2	200	225
FLOW	CONTROL		5/9.60/	291.	366	64.270	2.490	1800	0		1	1.003	62.1	80	450
											_		~-		
T\A/ C A I		FCTION		1 207	071	64 220	2 102			1	0	1.004	62.1	.90	100
I VV SAL	DDLE CUNN	LCHON	575.004	+ 297.	0/1	04.220	2.103				T	1.002	02.1	. 1 /	100
										٩					
										1					

Godsell Arnold Partnership Ltd	File: drainage - V5.pfd	Page 3
7 Arrowsmith Court	Network: Storm Network 1	23235 - SW DESIGN
Broadstone, Poole	Jason Bale	CALCULATIONS
BH18 8AX	11/01/2024	REV 02

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Width (mm)	Connection	S	Link	IL (m)	Dia (mm)
SW 30	613.653	222.998	58.850	0.650	150		0				
<u> </u>	600 259	224 725		0 790	450			0	2.000	58.200	150
500 31	009.238	234.735	58.850	0.780	450		0 < 0	T	2.000	58.070	150
							1	0	2.001	58.070	150
SW 21	599.648	231.494	58.850	0.880	450		0	1	4.000	57.970 57.970	150 150
							1-0	3	2.001	57.970	150
-							2	0	2.002	57.970	150
SW PUMP	594.043	239.153	58.810	2.000	1200		Q	1	2.002	57.870	150
SW 22	594.621	229.427	58.850	0.650	450						
								0	4.000	50.000	450
SW 10	588.954	260.440	63.050	0.720	450		0_	0	4.000	58.200	150
				0			9				
	505 400		62.050	0.040				0	1.000	62.330	150
SW 11	585.423	274.094	63.050	0.810	450		° ~ ()	1	1.000	62.240	150
	582 419	241 289	59 170	0 810	450	150	1	0	1.001	62.240	150
	562.115	2 12:200	551170	0.010	130	100	<u> </u>				
	587 219	23/ 651	58 810	0 810			U	0	5.000	58.360	150
DITOSERUI	567.215	234.031	50.010	0.010				-	5.000	38.000	150
MIXING CHAMBER	578.547	291.484	64.100	1.920	450		0	1	1.004	62.180	100
								0	1.005	62.180	100
SW 20	604.357	217.690	58.850	0.650	450		°				
								0	3.000	58.200	150
ROAD GULLY	599.850	233.863	58.670	1.160	450		0 <				
								0	6.000	58.110	150
DIFFUSER 02	595.409	234.647	58.810	0.810			e 4	1	6.000	58.000	150

AI ISEV		Godsell . 7 Arrows	Arnold F smith Co	Partnershi Durt	ip Ltd	File: drair Network:	hage - V Storm N	5.pfd Network 1	P 2	age 4 3235 - SW [DESIGN
		Broadsto BH18 8A	one, Poc X	ole		Jason Bal	e 24			ALCULATIO	NS
		01110 0,		Ma	unhala (<u> </u>					
				<u>IVIa</u>	innole	<u>Schedule</u>					
Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Width (mm)	Con	nections	Lin	k IL (m)	Dia (mm)
SW 13	579.419	281.090	63.320	1.640	1800		0	<u> </u>	1.00	62.190	225
								P			
								1 0	1.00	62.180	450
				Sim	ulatior	<u>n Settings</u>					
	Rainf	all Methodo	logy F	SR			Sk	kip Steady S	State	x	
		FSR Re	gion E	ngland ar	nd Wale	es D	rain Do	wn Time (n	nins)	720	
		M5-60 (r Pat	mm) 2 io-R 0	0.000		Add	ditional :	Storage (m	³/ha)	20.0	
		Winte	r CV 0	.400 .840		C	heck Dis	scharge Vol	ume	x	
		Analysis Sp	eed D	Detailed				-			
		1		St	orm Du	urations			1	I	
15	30	60 120) 18	30 24	0	360 4	80	600 72	20	960 14	140
		Return Peri	od Cli	mate Cha	inge	Additional	Area	Additional	l Flow		
		(years)	10	(CC %)	0	(A %)	0	(Q %)) 0		
			30		10		0		0		
		1	.00		40 70		0		0		
		2	.00		70		0		0		
			<u>Noc</u>	de SW PU	MP Of	fline Pump	<u>Contro</u>	<u>I</u>			
		Flap \	/alve 、	\checkmark			Design	Flow (I/s)	3.0		
		Loop to I	Node I	MIXING C	HAMBE	R Sw	itch on (itch off (depth (m) depth (m)	1.060) 1	
	ſ	Design Depth	n (m) 2	2.000		500		ueptii (iii)	0.020	5	
			D	epth Fl	low	Depth	Flow				
			1	(m) (l	l/s)	(m)	(I/s)				
			T		800	5.000	2.100				
		<u>No</u>	de FLO\	<u>N CONTR</u>	<u>OL Onl</u>	<u>ine Hydro</u>	-Brake®	<u>Control</u>			
_		Flap Valve	\checkmark			Obj	ective	(HE) Minin	nise up	ostream stor	age
Rep	laces Down Inve	stream Link	x 62 19(n	F	Sump Ava Product Nu	illable Imber	√ CTL-SHF-0	069-20	00-0900-20	000
	Desigr	n Depth (m)	0.900	м	in Outl	et Diamete	er (m)	0.100	005 20	00 0500 20	
	Desig	n Flow (l/s)	2.0	Mir	n Node	Diameter	(mm)	1200			
		Noc	le SW P	UMP Flov	v throu	gh Pond S	torage S	<u>Structure</u>			
Base Inf Coe	efficient (m/	′hr) 0.0000	00			Porosity	0.30	Main	Chanr	nel Length (r	n) 8.900
Side Inf Coe	efficient (m/	′hr) 0.0000	00	lune to 1	Invert	Level (m)	58.000) Main	Chan	nel Slope (1:	X) 1000.0
	Safety Fac	tor 2.0	1	ime to ha	ait emp	ty (mins)	74		M	ain Channel	n 0.025
					Inle	ets					
				DIFFUSE	NUL	DIFFUSE	κ U2				

CAUSEWAY 🚱	Godsell Arnold P 7 Arrowsmith Co Broadstone, Poo	artnership Ltd urt le	File: drainage Network: Stor Jason Bale	- V5.pfd m Network	< 1	Page 5 23235 - SW DESIG CALCULATIONS	δN
	BH18 8AX		11/01/2024			REV 02	
Depth (m) 0.000	Area Inf Area (m²) (m²) 183.3 129.6	Depth Are (m) (m 0.500 183	ea Inf Area ²) (m ²) 3.3 129.6	Depth (m) 0.501	Area (m²) 0.0	Inf Area (m²) 129.6	

Godsell Arnold Partnership Ltd	File: drainage - V5.pfd	Page 6
7 Arrowsmith Court	Network: Storm Network 1	23235 - SW DESIGN
Broadstone, Poole	Jason Bale	CALCULATIONS
BH18 8AX	11/01/2024	REV 02

Results for 10 year Critical Storm Duration. Lowest mass balance: 90.24%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m) (2, 200	(m) 0.100	(1/5)	VOI (m²)	(m ²)	01/
30 minute winter	SVV 12	24	62.390	0.190	5.0	0.1472	0.0000	UK
30 minute winter	FLOW CONTROL	24	62.390	0.210	3.0	0.5336	0.0000	SURCHARGED
30 minute winter	TW SADDLE CONNECTION	25	62.182	0.065	4.6	0.0000	0.0000	OK
15 minute winter	SW 30	10	58.226	0.026	1.2	0.0038	0.0000	ОК
15 minute winter	SW 31	10	58.101	0.031	1.7	0.0064	0.0000	OK
60 minute winter	SW 21	45	58.096	0.126	2.7	0.0303	0.0000	ОК
60 minute winter	SW PUMP	44	58.095	0.225	6.1	0.2553	0.0000	ОК
15 minute winter	SW 22	10	58.217	0.017	1.0	0.0045	0.0000	ОК
30 minute winter	SW 10	24	62.391	0.061	1.8	0.0240	0.0000	ОК
30 minute winter	SW 11	24	62.390	0.150	1.8	0.0239	0.0000	SURCHARGED
15 minute winter	ACO NODE	9	58.396	0.036	4.5	0.0165	0.0000	ОК
60 minute winter	DIFFUSER 01	44	58.096	0.096	2.2	0.0000	0.0000	ОК
30 minute winter	MIXING CHAMBER	25	62.248	0.068	4.6	0.0108	0.0000	ОК
15 minute winter	SW 20	10	58.228	0.028	1.7	0.0094	0.0000	ОК
15 minute winter	ROAD GULLY	9	58.159	0.049	5.7	0.0425	0.0000	ОК
60 minute winter	DIFFUSER 02	44	58.096	0.096	2.8	0.0000	0.0000	ОК
30 minute winter	SW 13	24	62.390	0.210	4.5	0.5336	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
0 minute winter	SW 12	1.002	SW 13	4.5	0.360	0.175	0.1448	
0 minute winter	FLOW CONTROL	1.004	MIXING CHAMBER	1.9	0.590	0.317	0.0057	
5 minute winter	SW 30	2.000	SW 31	1.2	0.513	0.066	0.0295	
.5 minute winter	SW 31	2.001	SW 21	1.7	0.386	0.095	0.0723	
0 minute winter	SW 21	2.002	SW PUMP	2.5	0.527	0.136	0.1584	
0 minute winter	SW PUMP	Pump	MIXING CHAMBER	2.8				9.8
5 minute winter	SW 22	4.000	SW 21	1.0	0.335	0.027	0.0365	
0 minute winter	SW 10	1.000	SW 11	1.8	0.469	0.125	0.1717	
0 minute winter	SW 11	1.001	SW 12	1.1	0.199	0.076	0.1049	
5 minute winter	ACO NODE	5.000	DIFFUSER 01	4.5	1.506	0.120	0.0405	
0 minute winter	DIFFUSER 01	Flow through pond	SW PUMP	3.6	0.055	0.003	4.9945	
0 minute winter	MIXING CHAMBER	1.005	TW SADDLE CONNECTION	4.6	0.831	0.764	0.0351	12.1
5 minute winter	SW 20	3.000	SW 21	1.7	0.432	0.076	0.1014	
5 minute winter	ROAD GULLY	6.000	DIFFUSER 02	5.7	1.481	0.205	0.0245	
0 minute winter	DIFFUSER 02	Flow through pond	SW PUMP	3.6	0.055	0.003	4.9945	
0 minute winter	SW 13	1.003	FLOW CONTROL	3.0	0.226	0.019	0.7437	

Godsell Arnold Partnership Ltd	File: drainage - V5.pfd	Page 7
7 Arrowsmith Court	Network: Storm Network 1	23235 - SW DESIGN
Broadstone, Poole	Jason Bale	CALCULATIONS
BH18 8AX	11/01/2024	REV 02

Results for 30 year +10% CC Critical Storm Duration. Lowest mass balance: 90.24%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute winter	SW 12	25	62.487	0.287	7.0	0.2228	0.0000	SURCHARGED
30 minute winter	FLOW CONTROL	25	62.487	0.307	4.1	0.7814	0.0000	SURCHARGED
60 minute winter	TW SADDLE CONNECTION	46	62.185	0.068	4.9	0.0000	0.0000	ОК
15 minute winter	SW 30	10	58.231	0.031	1.7	0.0045	0.0000	ОК
60 minute winter	SW 31	48	58.146	0.076	1.2	0.0157	0.0000	ОК
60 minute winter	SW 21	47	58.147	0.177	3.7	0.0426	0.0000	SURCHARGED
60 minute winter	SW PUMP	47	58.146	0.276	7.2	0.3127	0.0000	ОК
15 minute winter	SW 22	10	58.220	0.020	1.4	0.0053	0.0000	ОК
30 minute winter	SW 10	25	62.487	0.157	2.5	0.0617	0.0000	SURCHARGED
30 minute winter	SW 11	25	62.487	0.247	2.4	0.0393	0.0000	SURCHARGED
15 minute winter	ACO NODE	9	58.402	0.042	6.3	0.0191	0.0000	ОК
60 minute winter	DIFFUSER 01	46	58.147	0.147	3.1	0.0000	0.0000	ОК
60 minute winter	MIXING CHAMBER	46	62.251	0.071	4.9	0.0113	0.0000	ОК
15 minute winter	SW 20	10	58.232	0.032	2.3	0.0109	0.0000	ОК
15 minute winter	ROAD GULLY	9	58.168	0.058	8.0	0.0505	0.0000	ОК
60 minute winter	DIFFUSER 02	46	58.147	0.147	3.9	0.0000	0.0000	ОК
30 minute winter	SW/ 13	25	62 487	0 307	64	0 7813	0 0000	OK

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
0 minute winter	SW 12	1.002	SW 13	6.4	0.396	0.247	0.1578	
0 minute winter	FLOW CONTROL	1.004	MIXING CHAMBER	2.0	0.591	0.341	0.0060	
5 minute winter	SW 30	2.000	SW 31	1.7	0.566	0.094	0.0377	
60 minute winter	SW 31	2.001	SW 21	1.2	0.269	0.068	0.1350	
60 minute winter	SW 21	2.002	SW PUMP	3.3	0.533	0.180	0.1671	
60 minute winter	SW PUMP	Pump	MIXING CHAMBER	2.9				14.5
5 minute winter	SW 22	4.000	SW 21	1.4	0.339	0.038	0.0477	
0 minute winter	SW 10	1.000	SW 11	2.4	0.466	0.171	0.2483	
0 minute winter	SW 11	1.001	SW 12	1.5	0.206	0.101	0.1049	
5 minute winter	ACO NODE	5.000	DIFFUSER 01	6.3	1.612	0.168	0.0621	
60 minute winter	DIFFUSER 01	Flow through pond	SW PUMP	4.0	0.057	0.003	7.7803	
60 minute winter	MIXING CHAMBER	1.005	TW SADDLE CONNECTION	4.9	0.840	0.810	0.0368	22.0
.5 minute winter	SW 20	3.000	SW 21	2.3	0.449	0.103	0.1329	
5 minute winter	ROAD GULLY	6.000	DIFFUSER 02	8.0	1.574	0.287	0.0363	
60 minute winter	DIFFUSER 02	Flow through pond	SW PUMP	4.0	0.057	0.003	7.7803	
0 minute winter	SW 13	1.003	FLOW CONTROL	4.1	0.358	0.026	1.1843	

	Godsell Arnold Partnership Ltd	File: drainage - V5.pfd	Page 8
	7 Arrowsmith Court	Network: Storm Network 1	23235 - SW DESIGN
1	Broadstone, Poole	Jason Bale	CALCULATIONS
	BH18 8AX	11/01/2024	REV 02

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 90.24%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
60 minute winter	SW 12	50	62.927	0.727	7.6	0.5638	0.0000	FLOOD RISK
60 minute winter	FLOW CONTROL	50	62.926	0.746	4.5	1.8998	0.0000	SURCHARGED
180 minute winter	TW SADDLE CONNECTION	136	62.188	0.071	5.1	0.0000	0.0000	ОК
60 minute winter	SW 30	51	58.272	0.072	1.3	0.0104	0.0000	ОК
60 minute winter	SW 31	51	58.272	0.202	1.9	0.0416	0.0000	SURCHARGED
60 minute winter	SW 21	51	58.272	0.302	5.5	0.0727	0.0000	SURCHARGED
60 minute winter	SW PUMP	52	58.271	0.401	10.4	0.4543	0.0000	ОК
60 minute winter	SW 22	51	58.272	0.072	1.1	0.0190	0.0000	ОК
60 minute winter	SW 10	50	62.927	0.597	2.7	0.2339	0.0000	FLOOD RISK
60 minute winter	SW 11	50	62.927	0.687	2.1	0.1092	0.0000	FLOOD RISK
15 minute winter	ACO NODE	10	58.414	0.054	10.4	0.0245	0.0000	ОК
60 minute winter	DIFFUSER 01	52	58.272	0.272	5.1	0.0000	0.0000	ОК
180 minute winter	MIXING CHAMBER	136	62.254	0.074	5.1	0.0118	0.0000	ОК
60 minute winter	SW 20	50	58.272	0.072	1.9	0.0241	0.0000	ОК
60 minute winter	ROAD GULLY	52	58.272	0.162	6.5	0.1406	0.0000	SURCHARGED
60 minute winter	DIFFUSER 02	52	58.272	0.272	6.5	0.0000	0.0000	ОК
60 minute winter	SW 13	50	62.926	0.746	7.0	1.8998	0.0000	SURCHARGED

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vpl (m³)
50 minute winter	SW 12	1.002	SW 13	7.0	0.382	0.270	0.1578	
50 minute winter	FLOW CONTROL	1.004	MIXING CHAMBER	2.0	0.578	0.343	0.0062	
50 minute winter	SW 30	2.000	SW 31	1.3	0.494	0.072	0.1627	
50 minute winter	SW 31	2.001	SW 21	1.5	0.249	0.084	0.1785	
50 minute winter	SW 21	2.002	SW PUMP	5.1	0.548	0.281	0.1671	
50 minute winter	SW PUMP	Pump	MIXING CHAMBER	3.2				24.8
50 minute winter	SW 22	4.000	SW 21	1.1	0.289	0.030	0.0704	
50 minute winter	SW 10	1.000	SW 11	2.1	0.406	0.151	0.2483	
50 minute winter	SW 11	1.001	SW 12	1.6	0.211	0.108	0.1049	
15 minute winter	ACO NODE	5.000	DIFFUSER 01	10.4	1.711	0.278	0.0921	
50 minute winter	DIFFUSER 01	Flow through pond	SW PUMP	5.4	0.060	0.004	14.6646	
180 minute winter	MIXING CHAMBER	1.005	TW SADDLE CONNECTION	5.1	0.846	0.851	0.0383	50.0
50 minute winter	SW 20	3.000	SW 21	1.9	0.350	0.085	0.1891	
60 minute winter	ROAD GULLY	6.000	DIFFUSER 02	6.5	0.899	0.233	0.0794	
50 minute winter	DIFFUSER 02	Flow through pond	SW PUMP	5.4	0.060	0.004	14.6646	
50 minute winter	SW 13	1.003	FLOW CONTROL	4.5	0.255	0.028	1.6285	

Godsell Arnold Partnership Ltd	File: drainage - V5.pfd	Page 9
7 Arrowsmith Court	Network: Storm Network 1	23235 - SW DESIGN
Broadstone, Poole	Jason Bale	CALCULATIONS
BH18 8AX	11/01/2024	REV 02

Results for 200 year +70% CC Critical Storm Duration. Lowest mass balance: 90.24%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m ³)	Flood (m ³)	Status
60 minute winter	SW 12	34	62.940	0.740	11.7	0.5742	4.9308	FLOOD
30 minute winter	FLOW CONTROL	20	62.949	0.769	7.9	1.9575	0.0000	SURCHARGED
120 minute winter	TW SADDLE CONNECTION	138	62.190	0.073	5.4	0.0000	0.0000	ОК
120 minute winter	SW 30	94	58.418	0.218	1.2	0.0315	0.0000	SURCHARGED
120 minute winter	SW 31	94	58.418	0.348	1.6	0.0718	0.0000	SURCHARGED
120 minute winter	SW 21	94	58.418	0.448	4.7	0.1080	0.0000	SURCHARGED
120 minute winter	SW PUMP	94	58.418	0.548	8.4	0.6201	0.0000	ОК
120 minute winter	SW 22	94	58.418	0.218	1.0	0.0578	0.0000	SURCHARGED
30 minute winter	SW 10	19	62.955	0.625	6.0	0.2449	0.0000	FLOOD RISK
30 minute winter	SW 11	19	62.948	0.708	4.7	0.1125	0.0000	FLOOD RISK
15 minute winter	ACO NODE	10	58.425	0.065	14.7	0.0296	0.0000	ОК
120 minute winter	DIFFUSER 01	94	58.418	0.418	4.5	0.0000	0.0000	ОК
120 minute winter	MIXING CHAMBER	138	62.257	0.077	5.4	0.0122	0.0000	ОК
120 minute winter	SW 20	94	58.418	0.218	1.6	0.0731	0.0000	SURCHARGED
120 minute winter	ROAD GULLY	94	58.419	0.309	5.7	0.2677	0.0000	FLOOD RISK
120 minute winter	DIFFUSER 02	94	58.418	0.418	5.5	0.0000	0.0000	ОК
30 minute winter	SW 13	20	62.946	0.766	13.9	1.9504	0.0000	SURCHARGED

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
0 minute winter	SW 12	1.002	SW 13	8.8	0.426	0.342	0.1578	
0 minute winter	FLOW CONTROL	1.004	MIXING CHAMBER	2.0	0.592	0.343	0.0064	
.20 minute winter	SW 30	2.000	SW 31	1.1	0.424	0.061	0.2206	
.20 minute winter	SW 31	2.001	SW 21	1.3	0.248	0.071	0.1785	
.20 minute winter	SW 21	2.002	SW PUMP	4.4	0.548	0.242	0.1671	
.20 minute winter	SW PUMP	Pump	MIXING CHAMBER	3.6				43.5
.20 minute winter	SW 22	4.000	SW 21	1.0	0.343	0.026	0.0957	
0 minute winter	SW 10	1.000	SW 11	4.7	0.493	0.332	0.2483	
0 minute winter	SW 11	1.001	SW 12	4.7	0.264	0.321	0.1049	
5 minute winter	ACO NODE	5.000	DIFFUSER 01	14.7	1.695	0.392	0.1022	
.20 minute winter	DIFFUSER 01	Flow through pond	SW PUMP	4.5	0.051	0.003	22.7242	
.20 minute winter	MIXING CHAMBER	1.005	TW SADDLE CONNECTION	5.4	0.852	0.891	0.0399	61.0
.20 minute winter	SW 20	3.000	SW 21	1.6	0.278	0.071	0.2568	
.20 minute winter	ROAD GULLY	6.000	DIFFUSER 02	5.5	0.803	0.197	0.0794	
.20 minute winter	DIFFUSER 02	Flow through pond	SW PUMP	4.5	0.051	0.003	22.7242	
0 minute winter	SW 13	1.003	FLOW CONTROL	7.9	0.308	0.050	1.6285	

P01 24.05.23 Preliminary Issue Rev Date Revision Description	JLB Issued by
Drawing Status:	
S0 - Work in I	Progress
GAP	Consulting Civil and Structural Engineer 7 Arrowsmith Court, Station Approaci Broadstone, Dorset, BH18 8A)
GODSELL•ARNOLI PARTNERSHIP LT	Telephone: 01202 600900 Website: www.gapltd.ne
Client: Brooklands Homes	
Project: Solstrand, Station F	Rd, Bagshot
Drawing Title:	
Flood Exceedance I	Route
Construction Detai	ls
Scale: N.T.S	Drawn: JLB Checked: IJW
Project-Originator-Zone-Level-Type-Role	Drawing No.: Revision:
· · · · · · · · · · · · · · · · · · ·	

NOT FOR CONSTRUCTION

NOTES

- This drawing is to be read in conjunction with all relevant architects, engineers and specialist sub-contractors drawings and specifications.
 All setting out to be in accordance with the Architects drawings. Dimensions must not be scaled from the drawing.