Design Calculations

for

Internal Alterations
to

The Quest, West Street,
Harrietsham, Maidstone.

Jessica Arnold \& James Whitfield

Calculations Contents
A
B
D

Superstructure Design

(2)CㅡㅡNGINEERS

Job The Quest, West Street, Harrietsham, Maidstone

Job No
18629

(-3 E CONSULTING

Project The Quest, West Street, Harrietsham, Maidston				Job no.18629	
Appendix A1.1-Stress Skin Panel Design				Start page no	$\begin{aligned} & \text { evision } \\ & 1 \end{aligned}$
Calcs by U.G	Calcs date 21/09/2023	Checked by B.S.F	$\begin{array}{\|l} \text { Checked date } \\ 21 / 09 / 2023 \end{array}$	Approved by	Approved date

STRESS SKIN PANEL DESIGN (BS5268-2:2002)

Single-skin panel details

Effective span of panel
Panel width
Web member depth
Web member breadth
Web member spacing
Number of web members per panel
Timber strength class
Top skin
Minimum thickness
Panel depth
$L_{\text {ef }}=1700 \mathrm{~mm}$
$\mathrm{b}_{\text {panel }}=\mathbf{3 7 0 0} \mathrm{mm}$
$\mathrm{h}=50 \mathrm{~mm}$
$\mathrm{b}=\mathbf{1 0 0} \mathrm{mm}$
$\mathrm{s}=400 \mathrm{~mm}$
$\mathrm{N}=10$
C16
$15 \mathrm{~mm} \times 11$ ply Finnish birch plywood 1.4 mm veneer:Sanded
$t_{\text {mins_top }}=14.3 \mathrm{~mm}$
$\mathrm{t}_{\text {panel }}=\mathrm{t}_{\text {mins_top }}+\mathrm{h}=\mathbf{6 4} \mathrm{mm}$

Section properties

Top skin partial flange width
Top skin effective width
Top skin area
Product of EA for top skin
Distance from centroid to top surface
Web member area
Product of EA for web member
Distance from centroid to top surface
Summation of product EA for panel
Summation of product EAy for panel
Neutral axis depth
Distance from NA to centroid of top skin
Distance from NA to centroid of web members
Bending rigidity of panel

Loading details

Panel self weight
Dead load
Imposed UDL
Imposed point load

Modification factors

Section depth factor
Load sharing factor
Stress concentration modification factor
Nail glue modification factor

Consider long term loads

Load duration factor for timber
Load duration factor for plywood
$\mathrm{b}_{\text {se_top }}=\min (25 \times$ tmins_top, $0.1 \times$ Lef, $\mathrm{s}-\mathrm{b})=\mathbf{1 7 0} \mathbf{~ m m}$
$b_{s_{\text {_top }}}=b_{\text {panel }}-(N-1) \times\left(s-b-b_{\text {se_top }}\right)=\mathbf{2 5 3 0} \mathbf{m m}$
$A_{s_{\text {_top }}}=b_{s_{\text {_top }}} \times$ tmins_top $=\mathbf{3 6 1 7 9} \mathrm{mm}^{2}$
$E A_{\text {top }}=E_{\text {t_pars_top }} \times A_{s_{-} \text {top }}=151951.800 \mathrm{kN}$

$A=N \times b \times h=50000 \mathrm{~mm}^{2}$
$E A=E_{\text {mean }} \times A=440000.000 \mathrm{kN}$
$y=($ tmins_top $+\mathrm{h} / 2)=39.3 \mathrm{~mm}$
$\Sigma E A=E A_{\text {top }}+E A=591952 \mathrm{kN}$
$\Sigma E A y=E A_{\text {top }} \times y_{s_{\text {_top }}}+E A \times y=18378 \mathrm{kNm}$
$\bar{y}=\Sigma E A y / \Sigma E A=31.0 \mathrm{~mm}$
$h_{x s _ \text {top }}=a b s\left(y_{s _ \text {top }}-\bar{y}\right)=\mathbf{2 3 . 8 9 7} \mathrm{mm}$
$h_{x}=a b s(y-\bar{y})=8.253 \mathrm{~mm}$
$\mathrm{El}=\mathrm{EA} \times \mathrm{h}^{2} / 12+E A_{\text {top }} \times \mathrm{h}_{\mathrm{xs} _ \text {top }}{ }^{2}+E A \times \mathrm{h}^{2}=\mathbf{2 0 8} \mathrm{kN} / \mathrm{m}^{-2}$
$F_{\text {swt }}=\left(N \times b \times h \times \rho+s_{\text {wit__top }} \times b_{\text {panel }}\right) \times g_{\text {acc }}=0.559 \mathrm{kN} / \mathrm{m}$
$F_{\text {d_udl }}=0.50 \mathrm{kN} / \mathrm{m}^{2}$
$F_{\text {i_udl }}=1.50 \mathrm{kN} / \mathrm{m}^{2}$
$F_{i _p t}=1.40 \mathrm{kN}$
$K_{7}=1.17$
$K_{8}=1.10$
$\mathrm{K}_{37}=0.50$
$\mathrm{K}_{70}=\mathbf{0 . 9 0}$
$K_{3}=1.00$
$\mathrm{K}_{36}=\mathbf{1 . 0 0}$

A Tekla Tedds	Project The Quest, West Street, Harrietsham, Maidstone				$\begin{array}{\|l\|} \hline \text { Job no. } \\ \hline \end{array} 8629$	
	Appendix A1.1-Stress Skin Panel Design				Start page no./Revision 2	
	Calcs by U.G	$\begin{array}{\|l\|} \hline \text { Calcs date } \\ 21 / 09 / 2023 \end{array}$	Checked by B.S.F	$\begin{array}{l\|} \hline \text { Checked date } \\ 21 / 09 / 2023 \end{array}$	Approved by	Approved date

Total UDL

$$
\mathrm{W}=\mathrm{F}_{\text {swt }}+\left(\mathrm{F}_{\text {d_udl }}+\mathrm{F}_{\text {i_udl }}\right) \times \mathrm{b}_{\text {panel }}=7.959 \mathrm{kN} / \mathrm{m}
$$

Check bending stresses

Permissible compressive stress in top skin
$\sigma_{\text {ms_top_adm }}=\sigma_{c _ \text {_pars_top }} \times \mathrm{K}_{36}=\mathbf{9 . 7 0 0} \mathrm{N} / \mathrm{mm}^{2}$
Maximum bending moment
$\mathrm{M}=\mathrm{W}^{*} \mathrm{Lef}^{2} / 8=2.875 \mathrm{kNm}$
Compressive stress at extreme fibre of top skin
$\sigma_{\text {ms_top }}=M \times \overline{\mathrm{y}} \times \mathrm{E}_{\text {t_pars_top }} / \mathrm{El}=1.799 \mathrm{~N} / \mathrm{mm}^{2}$
PASS - Compressive stress at extreme fibre of top skin is less than permissible stress
Permissible bending stress in web
$\sigma_{m w _a d m}=\sigma_{m} \times \mathrm{K}_{3} \times \mathrm{K}_{7} \times \mathrm{K}_{8}=6.821 \mathrm{~N} / \mathrm{mm}^{2}$
Bending stress at upper extreme fibre of web $\quad \sigma_{\text {mw_top }}=\mathrm{M} \times\left(\bar{y}-\mathrm{t}_{\text {mins_top }}\right) \times \mathrm{E}_{\text {mean }} / \mathrm{EI}=\mathbf{2 . 0 3 3 \mathrm { N } / \mathrm { mm } ^ { 2 }}$
PASS - Bending stress at upper extreme fibre of web is less than permissible stress
Bending stress at lower extreme fibre of web $\quad \sigma_{\text {mw_bot }}=\mathrm{M} \times\left(\mathrm{t}_{\text {panel }}-\overline{\mathrm{y}}\right) \times \mathrm{E}_{\text {mean }} / \mathrm{EI}=4.037 \mathrm{~N} / \mathrm{mm}^{2}$
PASS - Bending stress at lower extreme fibre of web is less than permissible stress
Check horizontal shear stresses in web members

Permissible shear stress	$\tau_{\text {adm }}=\tau \times \mathrm{K}_{3} \times \mathrm{K}_{8}=0.737 \mathrm{~N} / \mathrm{mm}^{2}$
Maximum shear force	$\mathrm{V}=\mathrm{W}$ * Lef $/ 2=6.765 \mathrm{kN}$

Product of moment of elasticity and first moment of area about neutral axis

Maximum horizontal shear stress

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{s}}=\mathrm{E} A_{\text {top }} \times \mathrm{h}_{\times \mathrm{s} _ \text {top }}+\mathrm{N} \times \mathrm{b} \times\left(\overline{\mathrm{y}}-\mathrm{t}_{\mathrm{s} _ \text {top }}\right)^{2} \times \mathrm{E}_{\text {mean }} / 2=\mathbf{4 7 6 4} \mathrm{kNm} \\
& \tau_{\max }=\mathrm{V} \times \mathrm{E}_{\mathrm{s}} /(\mathrm{E} \times \mathrm{N} \times \mathrm{b})=\mathbf{0 . 1 5 5} \mathrm{N} / \mathrm{mm}^{2}
\end{aligned}
$$

PASS - Maximum horizontal shear stress is less than permissible shear stress

Check rolling shear stress between top skin and web members

Web contact length
Permissible rolling shear stress at top skin
Maximum rolling shear stress
$b_{\text {con }}=N$ * $b=1000 \mathrm{~mm}$

$\tau_{r_{-} \text {top_max }}=\mathrm{V} \times \mathrm{EA}_{\text {top }} \times \mathrm{h}_{\mathrm{xs} \text { top }} /\left(\mathrm{El} \times \mathrm{b}_{\text {con }}\right)=\mathbf{0 . 1 1 8 \mathrm { N } / \mathrm { mm } ^ { 2 }}$

PASS - Maximum rolling shear stress at top skin is less than permissible rolling shear stress

Check deflection

Permissible deflection
Bending deflection
Shear deflection
Total deflection

Consider medium term loads
Load duration factor for timber
$K_{3}=1.25$
Load duration factor for plywood
$K_{36}=1.33$
Total UDL
Total point load

Check bending stresses

Permissible compressive stress in top skin
Maximum bending moment
Compressive stress at extreme fibre of top skin
$\delta_{\text {adm }}=0.003 \times$ Lef $=\mathbf{5 . 1 0 0 ~ m m}$
$\delta_{\text {bending }}=5$ * $\mathrm{W}^{*} \mathrm{Lef}^{4} /(384$ * EI) $=4.153 \mathrm{~mm}$
$\delta_{\text {shear }}=12 * \mathrm{~W}^{*} \mathrm{Lef}^{2} /\left(5^{*} \Sigma \mathrm{EA}\right)=0.093 \mathrm{~mm}$
$\delta_{\max }=\delta_{\text {bending }}+\delta_{\text {shear }}=4.246 \mathrm{~mm}$
PASS - Total deflection is less than permissible deflection
$\mathrm{W}=\mathrm{F}_{\text {swt }}+\mathrm{F}_{\text {d_udl }} \times \mathrm{b}_{\text {panel }}=2.409 \mathrm{kN} / \mathrm{m}$
$P=F_{i _p t}=1.400 \mathrm{kN}$

$$
\begin{aligned}
& \sigma_{\mathrm{ms} _ \text {top_adm }}=\sigma_{c _ \text {pars_top }} \times \mathrm{K}_{36}=\mathbf{1 2 . 9 0 1} \mathrm{N} / \mathrm{mm}^{2} \\
& \mathrm{M}=\mathrm{W} * \text { Let }^{2} / 8+\mathrm{P} \text { * Lef } / 4=\mathbf{1 . 4 6 5 \mathrm { kNm }} \\
& \sigma_{\mathrm{ms} \text { _top }}=\mathrm{M} \times \overline{\mathrm{y}} \times \mathrm{E}_{\mathrm{t} _ \text {pars_top }} / \mathrm{El}=\mathbf{0 . 9 1 7} \mathrm{N} / \mathrm{mm}^{2}
\end{aligned}
$$

PASS - Compressive stress at extreme fibre of top skin is less than permissible stress

Permissible bending stress in web
Bending stress at upper extreme fibre of web

$$
\begin{aligned}
& \sigma_{\mathrm{mw} _ \text {adm }}=\sigma_{\mathrm{m}} \times \mathrm{K}_{3} \times \mathrm{K}_{7} \times \mathrm{K}_{8}=8.526 \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{\mathrm{mw} _ \text {top }}=\mathrm{M} \times\left(\overline{\mathrm{y}}-\mathrm{t}_{\text {mins_top }}\right) \times \mathrm{E}_{\text {mean }} / \mathrm{El}=1.036 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

PASS - Bending stress at upper extreme fibre of web is less than permissible stress
Bending stress at lower extreme fibre of web

$$
\sigma_{\text {mw_bot }}=\mathrm{M} \times\left(\mathrm{t}_{\text {panel }}-\overline{\mathrm{y}}\right) \times \mathrm{E}_{\text {mean }} / \mathrm{EI}=2.057 \mathrm{~N} / \mathrm{mm}^{2}
$$

PASS - Bending stress at lower extreme fibre of web is less than permissible stress

Project

Project The Quest, West Street, Harrietsham, Maidstone				Job no.18629	
Appendix A1.1-Stress Skin Panel Design				Start page	$\begin{aligned} & \text { evision } \\ & 3 \end{aligned}$
Calcs by U.G	Calcs date 21/09/2023	Checked by B.S.F	Checked date 21/09/2023	Approved by	Approved date

Check horizontal shear stresses in web members
Permissible shear stress
$\tau_{\text {adm }}=\tau \times \mathrm{K}_{3} \times \mathrm{K}_{8}=0.921 \mathrm{~N} / \mathrm{mm}^{2}$
Maximum shear force
$\mathrm{V}=\mathrm{W}^{*} \mathrm{~L}_{\text {ef }} / 2+\mathrm{P} / 2=2.747 \mathrm{kN}$
Product of moment of elasticity and first moment of area about neutral axis
$E_{s}=E A_{\text {top }} \times h_{\text {xs_top }}+N \times b \times\left(\bar{y}-t_{\text {s_top }}\right)^{2} \times E_{\text {mean }} / 2=4764 \mathrm{kNm}$
Maximum horizontal shear stress
$\tau_{\max }=\mathrm{V} \times \mathrm{E}_{\mathrm{s}} /(\mathrm{El} \times \mathrm{N} \times \mathrm{b})=0.063 \mathrm{~N} / \mathrm{mm}^{2}$
PASS - Maximum horizontal shear stress is less than permissible shear stress
Check rolling shear stress between top skin and web members

Web contact length
Permissible rolling shear stress at top skin
Maximum rolling shear stress
PASS - Maximum rolling shear stress at top skin is less than permissible rolling shear stress

Check deflection

Permissible deflection
Bending deflection
Shear deflection
Total deflection
$b_{\text {con }}=N^{*} b=1000 \mathrm{~mm}$
$\tau_{r_{-} \text {top_adm }}=\tau_{r_{-} \text {backs_top }} \times \mathrm{K}_{36} \times \mathrm{K}_{37} \times \mathrm{K}_{70}=0.736 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{r_{-} \text {top_max }}=\mathrm{V} \times \mathrm{EA}_{\text {top }} \times \mathrm{h}_{\text {xs_top }} /\left(\mathrm{El} \times \mathrm{b}_{\text {con }}\right)=0.048 \mathrm{~N} / \mathrm{mm}^{2}$
$\delta_{\text {adm }}=0.003 \times L_{\text {ef }}=5.100 \mathrm{~mm}$
$\delta_{\text {bending }}=\left[\left(5^{*} \mathrm{~W}\right.\right.$ * Lef $\left.\left./ 8\right)+\mathrm{P}\right]{ }^{*}$ Lef $^{3} /(48$ * El $)=1.944 \mathrm{~mm}$
$\delta_{\text {shear }}=12$ * Lef * $(W$ * Lef +2 * P) / (5 * $\Sigma E A)=0.048 \mathrm{~mm}$
$\delta_{\text {max }}=\delta_{\text {bending }}+\delta_{\text {shear }}=1.992 \mathrm{~mm}$

PASS - Total deflection is less than permissible deflection

Splice plate design

Load duration factor for plywood
$\mathrm{K}_{36}=1.00$
Splice to top skin
Compressive stress at extreme fibre of top skin
Permissible rolling shear stress at top skin splice
Minimum length of splice plate for top skin
$\sigma_{\text {ms_top }}=1.799 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{r_{-} \text {top_splice_adm }}=\tau_{r_{\text {_ backs_top }}} \times \mathrm{K}_{36} \times \mathrm{K}_{70}=\mathbf{1 . 1 0 7} \mathrm{N} / \mathrm{mm}^{2}$
$L_{\text {top_splice }}=2 \times \sigma_{\text {ms_top }} \times$ tmins_top $/ \tau_{r_{\text {_top_splice_adm }}}=46 \mathrm{~mm}$

The Quest, West Street, Harrietsham, Maidstone				Job no.18629	
Appendix A1.2-Steel Beam Analysis \& Design				Start page n	vision 1
Calcs by U.G	$\begin{aligned} & \hline \text { Calcs date } \\ & 21 / 09 / 2023 \end{aligned}$	Checked by B.S.F	Checked date 21/09/2023	Approved by	Approved date

STEEL BEAM ANALYSIS \& DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No. 1
TEDDS calculation version 3.0.07

Support conditions

Support A

Support B

Applied loading

Beam loads

Load combinations

Load combination 1

Vertically restrained
Rotationally free
Vertically restrained
Rotationally free

Dead self weight of beam * 1
Dead full UDL $0.81 \mathrm{kN} / \mathrm{m}$
Imposed full UDL 2.65 kN/m

Support A

Support B

Dead * 1.40
Imposed * 1.60
Dead * 1.40
Imposed * 1.60
Dead * 1.40
Imposed * 1.60

Project
ob no.

Appendix A1.2-Steel Beam Analysis \& Design				2	
Calcs by U.G	Calcs date 21/09/2023	Checked by B.S.F	Checked date 21/09/2023	Approved by	Approved date

Analysis results

Maximum moment
Maximum shear
$\mathrm{M}_{\text {max }}=10.2 \mathrm{kNm}$
$\mathrm{M}_{\text {min }}=0 \mathrm{kNm}$
$V_{\text {max }}=11 \mathrm{kN}$
$V_{\text {min }}=-11 \mathrm{kN}$
Deflection
$\delta_{\text {max }}=8.5 \mathrm{~mm}$
$\delta_{\text {min }}=0 \mathrm{~mm}$
Maximum reaction at support A
Unfactored dead load reaction at support A
Unfactored imposed load reaction at support A
$R_{\mathrm{A}_{\text {_max }}}=11 \mathrm{kN}$
$\mathrm{R}_{\mathrm{A} _ \text {min }}=11 \mathrm{kN}$

Maximum reaction at support B
$R_{A_{_} \text {Dead }}=2.3 \mathrm{kN}$
$R_{A _ \text {Imposed }}=4.9 \mathrm{kN}$

Unfactored dead load reaction at support B
$R_{B _\max }=11 \mathrm{kN}$
$R_{B _ \text {min }}=11 \mathrm{kN}$

Unfactored imposed load reaction at support B
$R_{B_{\text {_Dead }}}=2.3 \mathrm{kN}$

Section details

Section type
RB_Imposed $=4.9 \mathrm{kN}$

Steel grade
STC 203x102x43 (Tata Steel Advance) S355

From table 9: Design strength p_{y}

Thickness of element
$\max (\mathrm{T}, \mathrm{t})=\mathbf{2 0 . 5} \mathrm{mm}$
Design strength
$p_{y}=345 \mathrm{~N} / \mathrm{mm}^{2}$
Modulus of elasticity
$E=205000 \mathrm{~N} / \mathrm{mm}^{2}$

Lateral restraint

Span 1 has lateral restraint at supports only

Effective length factors

Effective length factor in major axis
$K_{x}=1.00$
Effective length factor in minor axis
$K_{y}=1.00$
Effective length factor for lateral-torsional buckling
$K_{\text {LT. } A}=1.20+2$ * D
$K_{\text {LT. }}=1.20+2$ * D
Classification of cross sections - Section 3.5
$\varepsilon=\sqrt{ }\left[275 \mathrm{~N} / \mathrm{mm}^{2} / \mathrm{p}_{\mathrm{y}}\right]=0.89$

Outstand flanges - Table 11

Width of section
$\mathrm{b}=\mathrm{D}=111 \mathrm{~mm}$
$\mathrm{b} / \mathrm{t}=9.8^{*} \varepsilon<=18{ }^{*} \varepsilon \quad$ Class 3 semi-compact
Section is class 3 semi-compact

The Quest, West Street, Harrietsham, Maidstone				18629	
Appendix A1.2-Steel Beam Analysis \& Design				Start page n	vision 3
Calcs by U.G	Calcs date 21/09/2023	Checked by B.S.F	Checked date 21/09/2023	Approved by	Approved date

Shear capacity - Section 4.2.3

Design shear force

Shear area
Design shear resistance

Moment capacity - Section 4.2.5

Design bending moment
Effective plastic modulus - Section 3.5.6
Effective plastic modulus - cl.3.5.6.1
Moment capacity low shear - cl.4.2.5.2
$\mathrm{F}_{\mathrm{v}}=\max \left(\operatorname{abs}\left(\mathrm{V}_{\text {max }}\right), \operatorname{abs}\left(\mathrm{V}_{\text {min }}\right)\right)=11 \mathrm{kN}$
($\mathrm{D}-\mathrm{T}-\mathrm{r}$) / $\mathrm{t}<70$ * ε
Web does not need to be checked for shear buckling
$A_{v}=t * D=1410 \mathrm{~mm}^{2}$
$P_{v}=0.6^{*} p_{y}^{*} A_{v}=291.8 \mathrm{kN}$
PASS - Design shear resistance exceeds design shear force
$\mathrm{M}=\max \left(\mathrm{abs}\left(\mathrm{M}_{\mathrm{s} 1 _\max }\right), \mathrm{abs}\left(\mathrm{M}_{\mathrm{s} 1 _\min }\right)\right)=\mathbf{1 0 . 2} \mathrm{kNm}$
$S_{\text {eff }}=Z_{x x}=41867 \mathrm{~mm}^{3}$
$M_{c}=p_{y}{ }^{*} \min \left(Z_{x x \text { lange }}, Z_{x x t o e}\right)=14.4 \mathrm{kNm}$

Effective length for lateral-torsional buckling - Section 4.3.5

Effective length for lateral torsional buckling Slenderness ratio

Equivalent slenderness - Section 4.3.6.7
Buckling parameter
Torsional index
Moment of inertia compression flange minor axis
Moment of inertia tension flange minor axis
Flange ratio
Flange ratio factor
Monosymmetry index
Slenderness factor
Ratio - cl.4.3.6.9
Equivalent slenderness - cl.4.3.6.7
Limiting slenderness - Annex B.2.2
$L_{E}=1.2^{*} L_{s 1}+2$ * $D=4662 \mathrm{~mm}$
$\lambda=L_{E} / r_{y y}=87.278$
$u=0.000$
$\mathrm{x}=5.115$
$\mathrm{l}_{\mathrm{yc}}=\mathbf{0} \mathrm{mm}^{4}$
$\mathrm{l}_{\mathrm{yt}}=\mathrm{T}^{*} \mathrm{~B}^{3} / 12=15618334 \mathrm{~mm}^{4}$
$\eta=l_{y c} /\left(l_{y c}+l_{y t}\right)=\mathbf{0 . 0 0 0}$
$k_{\eta}=1.000$
$\psi=k_{\eta} \times(2 \times \eta-1)=-1.000$
$v=1 /\left[\left(4 \times \eta \times(1-\eta)+0.05 \times(\lambda / x)^{2}+\psi^{2}\right)^{0.5}+\psi\right]^{0.5}=0.583$
$\beta w=S_{\text {eff }} / S_{x x}=0.495$
$\lambda_{L T}=u \times v \times \lambda \times \sqrt{ }[\beta w]=0.000$
$\lambda_{L 0}=0.4 \times\left(\pi^{2} \times E / p_{y}\right)^{0.5}=30.632$
$\lambda_{L T}<\lambda_{L O}-$ No allowance need be made for lateral-torsional buckling

Buckling resistance moment - Section 4.3.6.4

Bending strength
Buckling resistance moment

Check vertical deflection - Section 2.5.2

Consider deflection due to imposed loads
Limiting deflection
Maximum deflection span 1
$\mathrm{p}_{\mathrm{b}}=\mathrm{p}_{\mathrm{y}}=345 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{M}_{\mathrm{b}}=\mathrm{p}_{\mathrm{b}}{ }^{*} \mathrm{~S}_{\text {eff }}=14.4 \mathrm{kNm}$
PASS - Moment capacity exceeds design bending moment
$\delta_{\text {lim }}=\min \left(14 \mathrm{~mm}, \mathrm{~L}_{\mathrm{s} 1} / 360\right)=10.278 \mathrm{~mm}$
$\delta=\max \left(\operatorname{abs}\left(\delta_{\max }\right), \operatorname{abs}\left(\delta_{\text {min }}\right)\right)=8.465 \mathrm{~mm}$
PASS - Maximum deflection does not exceed deflection limit

