

Project Title

# Flood Risk Assessment & Outline Drainage Strategy

At Former Lilley Stone School London Road Newark NG24 1TW

For Bildurn (Properties) Ltd St Marys School Plumptre Place Nottingham NG1 1LW

PG Consulting 108 Ack Lane West Cheadle Hulme Cheshire SK8 7ES

Tel: Mail: Paul Graveney Consulting Ltd Trading :

Paul Graveney Consulting Ltd Trading as PG Consulting Company Registration 11238546



# Document Management

| Project No.:  | PGC 198                        |
|---------------|--------------------------------|
| Project Name: | Former Lilley Stone School     |
| Report Title: | London Road, Newark, NG24 1TW  |
| Issue:        | 4                              |
| Status:       | Final                          |
| Prepared By:  | Paul Graveney BEng, CEng, MICE |

# **Document Revision**

| Issue | Status | Author        | Approved      | Date     |
|-------|--------|---------------|---------------|----------|
| 1     | Draft  | Paul Graveney | Paul Graveney | 03/08/23 |
| 2     | Final  | Paul Graveney | Paul Graveney | 11/09/23 |
| 3     | Final  | Paul Graveney | Paul Graveney | 23/10/23 |
| 4     | Final  | Paul Graveney | Paul Graveney | 09/01/24 |

# **Distribution**

| Issue | Organisation | Quantity |
|-------|--------------|----------|
| 1     | BPD/FEA/BPL  | 1        |
| 2     | BPD/FEA/BPL  | 1        |
| 3     | BPD/FEA/BPL  | 1        |
| 4     | BPD/FEA/BPL  | 1        |

This report is the property of Paul Graveney Consulting Ltd and is confidential to the client designated in the report. Whilst it may be shown to their professional advisers, the contents are not to be disclosed to, or made use of, by any third party, without our express written consent. Without such consent we can accept no responsibility to any third party.

Paul Graveney Consulting Ltd certify that they have carried out the work contained herein with due skill, care and diligence to their best belief and knowledge based on the time and information available.

This report is made on behalf of Paul Graveney Consulting Ltd. By receiving it and acting on it, the client – or any third party relying on it – accepts that no individual is personally liable in contract, tort or breach of statutory duty or otherwise (including negligence).

Paul Graveney Consulting Ltd

# **CONTENTS**

| Executi | ve Summary                                              | 1  |
|---------|---------------------------------------------------------|----|
| 1.0     | Introduction                                            | 3  |
| 2.0     | Development Description and Location                    | 4  |
| 2.1     | Site Location                                           | 4  |
| 2.2     | Existing site Description                               | 4  |
| 2.3     | Topography                                              | 5  |
| 2.4     | Local Hydrology                                         | 5  |
| 3.0     | Planning Policy and Consultation                        | 6  |
| 3.1     | National Planning Policy Framework                      | 6  |
| 3.2     | Strategic Flood Risk Assessment (SFRA)                  | 6  |
| 3.3     | Consultation                                            | 7  |
| 4.0     | Definition of Flood Hazard                              | 8  |
| 4.1     | Sources of information                                  | 8  |
| 4.2     | Flooding from Sea (Tidal) and River (Fluvial)           | 8  |
| 4.3     | Flooding from Land and Surface Waters (Overland Flow)   | 9  |
| 4.4     | Flooding from Sewers and Private Drainage               | 10 |
| 4.5     | Flooding from Groundwater                               | 11 |
| 4.6     | Flooding from Other Water Features                      | 12 |
| 5.0     | Outline Drainage Strategy                               | 13 |
| 5.1     | External Consultation                                   | 13 |
| 5.2     | Existing Drainage                                       | 13 |
| 5.3     | Existing Runoff                                         | 13 |
| 5.4     | Geology                                                 | 14 |
| 5.5     | Hydrological Assessment                                 | 14 |
| 5.6     | Sustainable Drainage Systems (SuDS) Assessment          | 14 |
| 5.7     | The Non-Statutory Technical Standards for SuDS          | 18 |
| 5.8     | Climate Change                                          | 19 |
| 5.9     | Outline Surface Water Drainage Strategy                 | 19 |
| 5.10    | Volume Control                                          | 20 |
| 5.11    | Pollution Control                                       | 20 |
| 5.12    | Maintenance                                             | 22 |
| 5.13    | Foul Water Drainage                                     | 27 |
| 6.0     | Management Measures, Off Site Impacts and Residual Risk | 28 |
| 6.1     | Flood Risk Management Measures                          | 28 |
| 6.2     | Off Site Impacts                                        | 28 |
| 6.3     | Residual Risk                                           | 28 |
| Append  | dix A: Site Plans                                       |    |

- Appendix B: Topographical Survey
- Appendix C: PGC Drawings
- Appendix D: Hydraulic Calculations
- Appendix E: SW Sewer Records

# **Executive Summary**

#### Table 1 – Flood Risk Summary

| Item                              | Brief Description                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tidal                             | The development site is not influenced by Tidal flood risk.                                                                                                                                                                                                                                                                                  |
| Fluvial (Watercourse)             | The development site is located in low-risk Flood Zone 1.                                                                                                                                                                                                                                                                                    |
| Surface (Overland Flood Flow)     | The development site is predominantly at 'very low risk' of surface flooding with isolated areas at 'low risk'.                                                                                                                                                                                                                              |
| Existing Sewers & New<br>Drainage | There are existing combined water sewers located within the adopted<br>highways to both the north and south of the site. New drainage serving<br>the development site to be designed in line with local and national<br>guidance. Any exceedance flooding located away from the new<br>dwellings to the highways and soft landscaping areas. |
| Groundwater                       | No indication through SFRA that site is at risk of groundwater flooding.                                                                                                                                                                                                                                                                     |
| Artificial Sources                | No artificial sources in close proximity.                                                                                                                                                                                                                                                                                                    |
| Minimum Finished Floor Level      | At or above existing ground levels.                                                                                                                                                                                                                                                                                                          |

# Table 2 – Drainage & SuDS Summary

| Item                   | Brief Description                                                                                                                                                                                                                                                                  |  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Geology                | No formal site investigation has been undertaken at this time. A review of the BGS boreholes has indicated that the site is underlain by Topsoil / made ground over Sand and Gravel.                                                                                               |  |
| Infiltration Rate      | Infiltration techniques considered viable option for the discharge of surface water from the site. At this time and in advance of formal testing, a rate of $5x10^{-5}$ m/s to be used in the outline design.                                                                      |  |
| Nearest Watercourses   | The nearest watercourse is the River Trent which lies circa 500m to the north west of the site.                                                                                                                                                                                    |  |
| Nearest Adopted Sewers | No adopted sewers identified from the Severn Trent Water sewer<br>records to exist within the site boundary. There are however a number<br>of combined water sewers are in close proximity to the site to both the<br>north and south. No surface water sewers in close proximity. |  |



| Item                                                              | Brief Description                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Existing Discharge Rates and<br>Outfall Location                  | Site can be classed for drainage purposes as both brownfield and greenfield, with brownfield areas to north draining to the STW sewer network and greenfield areas to the south draining to the ground.<br>Brownfield Site Area 0.9ha:<br>1yr - 75  I/s (30 mm/hr)<br>30yr - 162.5  I/s (65 mm/hr)<br>100yr - 237.5  I/s (95 mm/hr)<br>Greenfield Area 3.45ha:<br>1yr - 8.1  I/s<br>0bar - 9.8  I/s<br>30yr - 19.2  I/s<br>100yr - 25.2  I/s |  |
| Proposed Surface Water<br>Outfall and SuDS Hierarchal<br>Approach | Surface water generated from the new impermeable areas of the development will be directed to two large infiltration tanks located in the new public open spaces to the north and south of the site.                                                                                                                                                                                                                                         |  |
| Proposed Discharge Rate                                           | 5x10 <sup>-5</sup> m/s Infiltration rate and FoS of 5.                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Allowance for Climate Change                                      | 40% - based on a >100-year design life to 'the 2100's'.                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Proposed Attenuation Method<br>and Outline Volume                 | d Two large geocellular infiltration tanks.<br>Circa 1,617m <sup>3</sup> to contain the 100-year + 40% peak event.                                                                                                                                                                                                                                                                                                                           |  |
| SuDS features                                                     | Water Butts, permeable paving, geocellular infiltration tanks.                                                                                                                                                                                                                                                                                                                                                                               |  |
| Maintenance Responsibility                                        | Property Owners, sewerage authority and highways authority.                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Foul Drainage Outfall                                             | Foul drainage to discharge into the existing combined water sewers in<br>London Road to the north and Harewood Avenue to the south of the<br>site. Due to the levels of the public sewers in relation to the site, a new<br>onsite adopted foul pumping station is proposed.                                                                                                                                                                 |  |



#### 1.0 Introduction

- 1.1 PG Consulting (PGC) has been appointed by Bildurn Properties Ltd to prepare this Flood Risk Assessment and Outline Drainage Strategy to support a Hybrid planning application seeking full permission for the demolition of existing buildings, conversion of 3 no. retained heritage buildings to provide 32 apartments, retention of one dwelling and erection of 35 new dwellings including access, parking and landscaping; and outline planning permission of the erection of up to 67 new dwellings (all matters reserved except access), on land south east of Newark, situated on land off London Road, Newark, NG24 1TW. The assessment has been undertaken in line with Section 10 of the 'National Planning Policy Framework' plus the accompanying Technical Guidance on Flood Risk.
- 1.2 This Flood Risk Assessment (FRA) has been commissioned by Bildurn Properties Ltd and is specific to their interests in the development proposals as described by the Architectural plan in Appendix A. This report may not be assigned.
- 1.3 The report has been commissioned to identify any flood related issues associated with the proposed developments and any likely constraints that could be imposed plus to consider the outline drainage strategy for it. The following issues have been suggested by the Environment Agency (EA), Severn Trent Water (STW) & Newark and Sherwood District Council acting as Lead Local Flood Authority (LLFA), and subsequently addressed within this report.

Identify available data relating to flood risk at the site.

- Determine whether the site is at risk from flooding from all sources, including but not exhaustive, from breach or overtopping of any existing flood defenses, watercourse flooding, surface water flooding and/or ground water flooding.
- If at risk from any source, devise appropriate measures to prevent flood risk whilst not compromising the flood risk elsewhere.
- Determine the current surface water drainage regime and assess impacts as a result of the proposed development.
- Discuss if required Sustainable Drainage Systems (SuDS) as an option for reducing surface water flood risk.

Determine any potential increase in surface water peak runoff and volume as a result of the proposed development.

Devise an appropriate outline surface water drainage strategy to deal with any increase in surface water runoff and include for climate change.

- Consider the recommendations of Newark and Sherwood District Council Strategic Flood Risk Assessment (SFRA) and the Newark and Sherwood District Council Flood Risk Management Strategy Document.
- Prepare the Flood Risk Assessment and Outline Drainage Strategy report.
- Assess mitigation measures & off-site impacts and define any residual risks.



# 2.0 Development Description and Location

#### 2.1 Site Location

The site is referenced in Table 33, and a site location map is provided in Appendix A.

Table 3: Site Referencing Information

| Item                          | Brief Description                                                                                 |  |
|-------------------------------|---------------------------------------------------------------------------------------------------|--|
| Site name                     | Former Lilley Stone School                                                                        |  |
| Site address and location     | London Road, Newark, NG24 1TW                                                                     |  |
| Council Area                  | Newark and Sherwood District Council                                                              |  |
| Approximate Grid<br>Reference | OS: 479879, 353575                                                                                |  |
| General Locality              | The development is located on the outskirts of Newark Town centre on the south eastern periphery. |  |

- 2.2 Existing site Description
- 2.2.1 The proposed development site is irregular in plan shape and encompasses the former Lilley and Stone School that has been left empty for a number of years. The school buildings make up the northern part of the site leading off London Road with the southern areas encompassing the school playing fields.
- 2.2.2 Newark Tennis Club is located to the south east of the site with vehicular access through eastern edge of the school from London Road.
- 2.2.3 The school site is bounded by London Road to the north and north east, residential dwellings to the east, and commercial and retail units to the west of the proposed development.
- 2.2.4 Figure 1 below identifying the existing site location. Further details of the existing layouts can be seen on the Red Line Plans in Appendix A.



#### Figure 1: Location Plan (© Google 2023)



- 2.3 Topography
- 2.3.1 A full topographical survey of the development site has been undertaken. The site is generally very flat with levels varying from 16.5m AOD in the north adjacent London Road up to circa 17.2m AOD in the south west of the site adjacent Harewood Avenue. Full details can be found on the Topographical survey in Appendix B.
- 2.4 Local Hydrology
- 2.4.1 The River Trent is located 500m north west of the site beyond the town centre and flows in a south westerly direction. No other ditches or watercourses have been identified in close proximity to the site.

# 3.0 Planning Policy and Consultation

- 3.1 National Planning Policy Framework
- 3.1.1 The indicative flood maps provided by the Environment Agency locate the development boundary within Flood Zone 1 i.e. land defined as having an annual probability of fluvial flooding of less than 1 in 1000 (<0.1%) in any year. As a requirement of the new NPPF (2022), Annex D, the proposed development must satisfy the requirements of the Sequential Test and where applicable the Exception Test.
- 3.1.2 Sequential Test:

Under the NPPF (2022), Flood Zone 1, where the development area is located is defined as low probability flood risk. The proposed development is for residential end use, which in line with Table 2 is classified as 'More Vulnerable'.

- 3.1.3 Placing both these criteria into Table 3 (Flood Risk Vulnerability and Flood Zone 'Compatibility'), More Vulnerable development in Flood Zone 1 determines that the 'Development is Appropriate', the sequential test is passed and that the Exception Test is not applicable to this development proposal.
- 3.2 Strategic Flood Risk Assessment (SFRA)
- 3.2.1 SFRAs assess the risk associated with all types of flooding and provide the information required to identify the amount of development permitted in an area, how drainage systems in the area should function and also how risks in vulnerable areas can be reduced and/or mitigated. The NPPF states that regional planning bodies (RPB's) or Local Planning Authorities should prepare SFRA's in consultation with the EA.
- 3.2.2 The development sits within the coverage of the Newark and Sherwood District Council Level 2 SFRA Final Report dated February 2020. The published SFRA identifies current and future broad scale flood related issues. The purpose of the SFRA is to assess and map all known sources of flood risk including fluvial, surface water, sewer, groundwater and all impounded water bodies, taking into account future climate change predictions.
- 3.2.3 A summary of the main elements from the SFRA associated with the district is detailed below. The full report can be obtained from the Newark and Sherwood District Council website.

SFRA provides a detailed understanding of flood risks across the borough from all sources. The main source of flooding is fluvial from the River Tent to the north west of the site.

Surface water flooding is deemed a very low flood risk with isolated areas at low flood risk. Development should seek to manage runoff rates and volumes to the receiving surface water drainage system in order to reduce the flood risk to downstream areas.

Development should be designed so that there is no flooding to the development in a 1 in 30-year event and so that there is no property flooding in a 1 in 100 year plus climate change event.

For all sites, development proposals should look at opportunities to incorporate SuDS to reduce the risk of surface water flooding.



All proposed developments must ensure that foul and surface water are kept separate. Full sequential and exception tests to be carried out (where applicable). Follow all local and national policy. Flood Resilient construction to be used where applicable. Safe dry access and egress to be assured.

- 3.3 Consultation
- 3.3.1 Severn Trent Water (STW)

At the time of writing a predevelopment enquiry has not been submitted to STW.

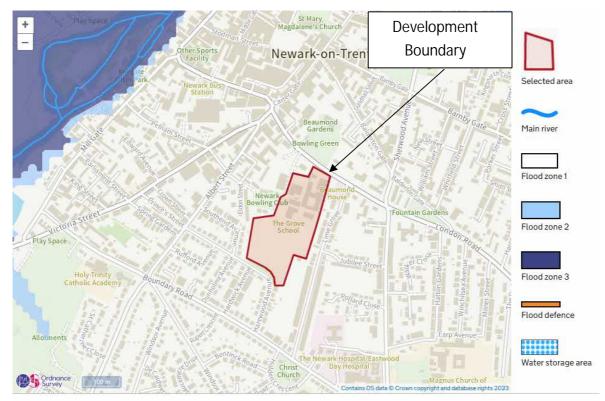
# 4.0 Definition of Flood Hazard

- 4.0.1 The NPPF guidelines require the developer to assess the impact of the proposed development runoff on the downstream catchment in conjunction with assessing the risk of runoff from the surrounding area on the proposed development layout.
- 4.0.2 In the following sections the flood risk to the site from all sources will be assessed. As the site will restrict the surface water runoff there is no increased flood risk to the downstream network.
- 4.1 Sources of information
- 4.1.1 The following section defines the flood risk receptors and anticipated flood risk. Table 4 defines the main sources of information used in the identification of flood risk.

Table 4: Sources of information used in the identification of flood risk

| Source of Information                | Details                    |
|--------------------------------------|----------------------------|
| Environment Agency                   | Flood Map from EA website  |
| Severn Trent Water                   | Sewer Records              |
| Newark and Sherwood District Council | SFRA Report & Various Maps |

- 4.2 Flooding from Sea (Tidal) and River (Fluvial)
- 4.2.1 The site is not located near the sea or a tidally influenced watercourse, therefore the risk of tidal flooding is deemed to be VERY LOW.
- 4.2.2 The National Planning Policy Framework (NPPF) categorises flood risk as follows:


Zone 1 (low probability) – Land assessed as having less than a 1 in 1,000 annual probability of river or sea flooding (<0.1%);

Zone 2 (medium probability) – Land assessed as having between a 1 in 100 and 1 in 1,000 annual probability of river flooding (1% - 0.1%), or between a 1 in 200 and 1 in 1,000 annual probability of sea flooding (0.5% - 0.1%) in any year; and

Zone 3a (high probability) - Land assessed as having a 1 in 100 or greater annual probability of river flooding (>1%), or a 1 in 200 or greater annual probability of flooding from the sea (>0.5%) in any year.

Zone 3b The Functional Floodplain - This zone comprises land where water has to flow or be stored in times of flood. Local planning authorities should identify in their Strategic Flood Risk Assessments areas of functional floodplain and its boundaries accordingly, in agreement with the EA. (Not separately distinguished from Zone 3a on the Flood Map). 4.2.3 Figure 2 below locates the site on the Environment Agency's indicative floodplain map. It is clear from this that the red line boundary sits outside of a fluvial generator of flood water from any identified waterbody or river and thus located in LOW RISK Flood zone 1, i.e. land defined as having an annual probability of fluvial flooding of less than 1 in 1000 (<0.1%) in any year. The risk from fluvial flood water therefore reduces to acceptable levels and thus does not require further assessment.

Figure 2 – The EA's Indicative 100-year Fluvial Floodplain Map



#### 4.3 Flooding from Land and Surface Waters (Overland Flow)

4.3.1 The EA descriptions for the High, Medium and Low risk scenarios for surface water flooding are as follows:

High risk means that each year this area has a chance of flooding of greater than 3.3%. Medium risk means that each year this area has a chance of flooding of between 1% and 3.3%.

Low risk means that each year this area has a chance of flooding of between 0.1% and 1%.

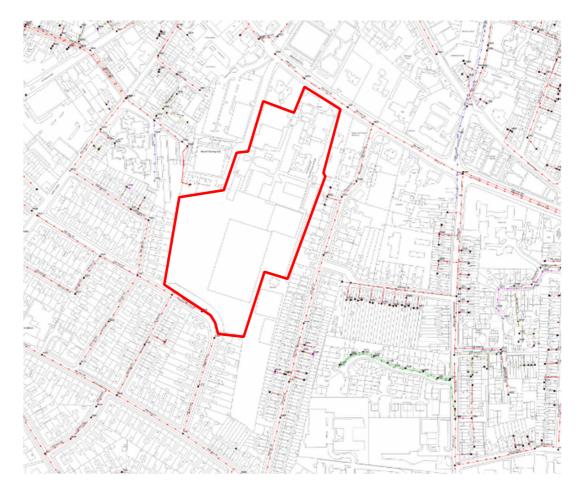
Very Low risk means that each year this area has a chance of flooding of less than 0.1%.

onsulting

**Civil & Infrastructure Engineers** 

- 4.3.2 The Environment Agency's surface water flood maps (refer to Figure 3) show the majority of the site area at very low risk of surface water flooding. There are isolated areas shown as low risk which are likely to be associated with topographical low points and would indicate that the site is currently subject to localised ponding as a result of the topography.
- 4.3.3 There are no existing surface water flow routes through the site that would need to be maintained. As part of the proposed development the levels across the development will ensure that all low points are located away from buildings, thus posing a low risk. The new surface water drainage will also be designed and installed in accordance with the latest guidance and climate change allowances to ensure no surface water ponding will occur.
- 4.3.4 Based on this assessment, the site can be considered at LOW RISK from surface water flooding.

Figure 3 – Extract EA Flood Risk Mapping - Flood Risk from Surface Water


# 4.4 Flooding from Sewers and Private Drainage

4.4.1 The Severn Trent Water (STW) sewer records have been reviewed (see figure 4 below and Appendix E) and confirm that there are no existing sewers passing through the site. Beyond the site boundary the sewer records confirm that are a number of public sewers within the vicinity of the site. There is a 300mm combined water sewer in London Road to the north of the site, flowing in a south easterly direction. There is also a 225mm combined water sewer to the south of the site, in Harewood Avenue flowing in a north westerly direction.



4.4.2 The STW adopted sewers and private drainage networks serving the surrounding district ensures that the development footprint is protected from the impact of both upstream and downstream runoff. It is speculated that complete protection may well exist beyond a storm event equivalent to the 30-year statistical event. Beyond this projection, there may be a small degree of peripheral 'Exceedance' flooding within the areas above the sewers. However, this is expected to be localised and restricted to the location of specific manhole covers located outside the development boundary. Thus, flood risk to the site from sewers is considered LOW and diminished to acceptable levels.

Figure 4 – Severn Trent Water Sewer Records



- 4.5 Flooding from Groundwater
- 4.5.1 In general terms, groundwater flooding can occur from three main sources, raised water tables, seepage and percolation, and groundwater recovery or rebound. If groundwater levels are naturally close to the surface, then this can present a flood risk during intense rainfall.
- 4.5.2 At the time of writing no specific intrusive phase 2 site investigation has been carried out at the site.
- 4.5.3 The Newark and Sherwood District Council Level 2 Strategic Flood Risk Assessment (SFRA) indicates that no groundwater flooding has been experienced in the locality of the development site.

- 4.5.4 Notwithstanding this, an intrusive investigation should be undertaken in advance of detailed design stage to establish exact ground water levels and how they fluctuate seasonally. If required, measures would need to be introduced into the drainage scheme to deal with high groundwater to ensure that flooding to property does not occur.
- 4.5.5 It is considered that any groundwater issues can be mitigated as required, subject to further investigation, at the detailed design stage. The risk to the site from groundwater flooding is therefore considered LOW.
- 4.6 Flooding from Other Water Features
- 4.6.1 Reservoir flooding is extremely unlikely to happen and there has been no loss of life in the UK from reservoir flooding since 1925. The Environment Agency is the enforcement authority and ensures that reservoirs are inspected regularly, and essential safety work is carried out.
- 4.6.2 The Long-Term Flood Risk Assessment (Flood Risk from Reservoirs) map shows that the site is at VERY LOW RISK of Reservoir flooding.



# 5.0 Outline Drainage Strategy

- 5.1 External Consultation
- 5.1.1 At the time of writing PGC has not consulted with Severn Trent Water.
- 5.2 Existing Drainage
- 5.2.1 As per Section 4.4, the Severn Trent Water sewer records have been reviewed and confirm there are a number of sewers in close proximity to the development boundary. There is a 300mm combined water sewer in London Road to the north of the site, flowing in a south easterly direction and a 225mm combined water sewer to the south of the site, in Harewood Avenue flowing in a north westerly direction. No existing sewers have been identified passing through the site. Nor are there any surface water sewers identified in close proximity.
- 5.3 Existing Runoff
- 5.3.1 The site is currently occupied by the former Lilley Stone School, with the school buildings located to the north of the site and sports pitches located to the south. The site can therefore be considered as brownfield to the north and greenfield to the south.
- 5.3.2 Brownfield discharge calculations have been undertaken for the north of the site based on a peak flow rate for a variety of storm events. Table 5 below provides a summary of the existing brownfield runoff rates based on an area of 0.9ha.

| Brownfield Runoff Rates    |  |  |
|----------------------------|--|--|
| 1 yr 30yr 100yr            |  |  |
| 75 l/s 162.5 l/s 237.5 l/s |  |  |

Table 5: Existing Brownfield Runoff Rates

5.3.2 Greenfield discharge calculations have been undertaken for the site in accordance with Rainfall Runoff Management for Developments (Report SC030219, October 2013, Defra/EA). In accordance with the Non-statutory Technical Standards for Sustainable Drainage Systems (March 2015, Defra) greenfield rates have been calculated for the 1 in 1 year, Q<sub>bar</sub>, 1 in 30 and 1 in 100-year rainfall events. A copy of the calculations is contained in Appendix D. Table 6 below provides a summary of the existing greenfield runoff rates based on an area of 3.45ha.

#### Table 6: Existing Greenfield Runoff Rates

|         | Greenfield | Runoff Rates |          |
|---------|------------|--------------|----------|
| 1 yr    | Qbar       | 30yr         | 100yr    |
| 8.1 l/s | 9.8 l/s    | 19.2 l/s     | 25.2 l/s |

#### 5.4 Geology

- 5.4.1 The British Geological Survey (BGS) map confirms that the superficial deposits of the site are described as Balderton Sand and Gravel Member overlying the bedrock geology comprised of the Edwalton Member Mudstone.
- 5.4.3 A review of local boreholes indicates that the strata is generally sand and gravel overlain by made ground or topsoil.
- 5.4.4 The site is not located in a Groundwater Source Protection Zone.
- 5.4.5 Given the granular nature of the underlying geology, infiltration is likely to be a viable option for the discharge of surface water from the site. Intrusive ground investigations will be required to determine the final infiltration rates.
- 5.5 Hydrological Assessment
- 5.5.4 As discussed in previous sections, a review of the topographical survey, OS Maps and other online mapping would indicate the closest surface water feature is the River Trent located circa 500m to the northwest of the site.
- 5.6 Sustainable Drainage Systems (SuDS) Assessment
- 5.6.1 SuDS Objectives

Sustainable drainage developed in line with the ideals of sustainable development is collectively referred to as Sustainable Drainage Systems (SuDS). At a particular site, these systems are designed both to manage the environmental risks resulting from the urban runoff and to contribute wherever possible to environmental enhancement. SuDS objectives are therefore to minimise the impacts from the development on the quantity and quality of the runoff and maximise amenity and biodiversity opportunities (CIRIA C753, 2015).

#### 5.6.2 SuDS Design Themes

The 'Management Train Approach' should be central to the surface water drainage strategy of the proposed site. The main objective is treatment and control of runoff as near to the source as possible protecting downstream habitats and further enhancing the amenity value of the site. This concept uses a hierarchy of drainage techniques to incrementally reduce pollution, flow rates and volumes of storm water discharge from the site, and is as follows:

i. Prevention – The use of good site design and housekeeping measures to prevent runoff and pollution and includes the use of rainwater reuse / harvesting.

- ii. Source Controls Control of runoff at source or as close to source as possible (e.g. soakaways, green roofs, pervious pavements).
- iii. Site Control Management of water in a local area and can include below ground storage / attenuation, detention basins, large infiltration devices.
- iv. Regional Control Management of water from a site or various sites and can include wetlands and balancing ponds.

#### 5.6.3 SuDS Site Constraints

SuDS techniques are suitable for all sites; therefore an assessment of the existing site is required so that SuDS limitations can be determined.

Land Use Characteristics: The size and type of development enables a potential range of prevention, source control and site control SuDS devices to be considered above and below ground.

Site Characteristics: No site investigation has been carried out at the site. Findings from a review of the BGS maps indicate that the ground is granular and that infiltration techniques would potentially be suitable. Intrusive ground investigation will be required to determine infiltration rates.

Catchment Characteristics: The site is currently classed for drainage purposes as 'Brownfield' to the north and 'Greenfield' to the south and so for surface water runoff purposes off site, the runoff rates for the redeveloped area would need to demonstrate a reduction in the brownfield rate from the north and match the respective greenfield rates for the south of the site, unless local policy advises an alternative method.

Environmental and Amenity Performance: The inclusion of SuDS within the overall development is a key driver in providing both amenity and habitat creation. All types of SuDS will be considered and blended into the landscaping zone, where possible. Safety to all future users is paramount and so best practice guidance will be incorporated so that there is no requirement for significant safety precautions. Maintenance plans will be prepared for all SuDS devices that are included.

#### 5.6.4 SuDS Methods

Table 7 & 8 on the following pages provide an assessment of various above and below ground SuDS methods that can provide water quality treatment and management of flows to reduce runoff rates & volumes and whether they can be suitably incorporated at this development site. The purpose of this assessment is to set out options to be considered at the planning stage with consideration to time constraints, viability and lifetime maintenance of the residential led development.

#### Table 7: Surface SuDS Methods

| Method                                   | Comment                                                                                                                                                                                                                                                                                                 | Suitability for Development                                                                                                                                                                                                                                                                       |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Green Roofs                              | Can be used on suitable low-rise<br>buildings to provide retention,<br>attenuation and treatment of<br>rainwater. Promotes evaporation<br>and local biodiversity.                                                                                                                                       | Not suitable:<br>Architectural proposals for the<br>development and maintenance issues<br>deem this unsuitable.                                                                                                                                                                                   |
| Water Butts                              | Plastic tanks placed at the base of<br>rainwater down pipes to collect<br>rainwater runoff from the roof areas<br>for reuse by the property owners.                                                                                                                                                     | Suitable:<br>Suited to residential developments such as<br>this and subject to client approval                                                                                                                                                                                                    |
| Rainwater<br>Harvesting                  | Rainwater harvesting reduces the<br>total runoff volume from the<br>developed site by reusing as 'Grey'<br>water. Also reduces treated water<br>consumption.                                                                                                                                            | Not Suitable:<br>Additional costs of installation would have<br>severe effect on viability of development.<br>Running and maintenance costs would not<br>be acceptable to future occupiers.<br>Not as efficient for single dwellings.                                                             |
| Infiltration<br>Options                  | Reduces total run off volume from<br>the development by allowing water<br>to infiltrate to suitable sub strata.                                                                                                                                                                                         | Suitable:<br>A review of the BGS website and local<br>boreholes have indicated that the<br>underlying sub strata would be suitable for<br>infiltration-based options, subject to<br>confirmation of infiltration rates.                                                                           |
| Permeable<br>Surfacing<br>(Infiltration) | Reduces total run off volume from<br>the development by allowing water<br>to infiltrate to suitable sub strata.<br>Can be used to enhance water<br>quality.                                                                                                                                             | Suitable:<br>A review of the BGS website and local<br>boreholes have indicated that the<br>underlying sub strata would be suitable for<br>infiltration-based options.<br>Potentially used in the parking areas and<br>driveways, subject to final architectural<br>design and developer approval. |
| Permeable<br>Surfacing<br>(Standard)     | Can be used to enhance quality of<br>runoff water.<br>Sub-base provides 'source' storage<br>and reduces the volume of storage<br>downstream with selection of stone<br>fill or use of plastic box stems.<br>Impermeable membrane at base of<br>construction to prevent impact on<br>pavement stability. | Suitable:<br>Potentially used in the parking areas and<br>driveways, subject to final architectural<br>design and developer approval.                                                                                                                                                             |
| Bio-<br>Retention                        | Collect and retain run-off within tree<br>pits or above ground planers to help<br>improve water quality, prior to<br>discharge in piped system or<br>infiltration.                                                                                                                                      | Not Suitable:<br>The type of the development restricts the<br>use of above ground surface runoff<br>storage.                                                                                                                                                                                      |
| Swales,<br>basins and<br>ponds           | Provide areas for above ground<br>surface runoff storage.<br>Swales also improve water quality<br>through filtration.                                                                                                                                                                                   | Not Suitable:<br>The limited space available restricts the use<br>of swales, basins and ponds due to their<br>size requirements.                                                                                                                                                                  |

| PG Consulting                              | Į |
|--------------------------------------------|---|
| <b>Civil &amp; Infrastructure Engineer</b> | s |

#### Table 8: Sub-Surface SuDS Methods

| Method                                              | Comment                                                                                                                                                                                                                                                                                                                    | Suitability for Development                                                                            |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Geocellular<br>Storage                              | Suitable for sites with insufficient space<br>for basins etc.<br>Suitable for sites where topography<br>prevents the use of open basins etc.                                                                                                                                                                               | Suitable:<br>Subject to detailed design and drainage layout<br>to be used to attenuate the peak flows. |
| Large<br>Diameter<br>Pipes,<br>Culverts or<br>Tanks | Suitable for sites with insufficient space<br>for basins etc.<br>Provide a volume of below ground<br>storage with a high void ratio and good<br>man entry provision to allow for future<br>maintenance and cleaning.<br>Generally, be suitable for adoption by the<br>statutory water company (e.g., United<br>Utilities). | Suitable:<br>The use of oversized pipes is more suited to<br>large residential schemes.                |

#### 5.6.5 SuDS Hierarchal Approach

Based on the SuDS assessment in Tables 7 & 8, plus an assessment of the local site conditions, the SuDS hierarchal approach for discharge of surface water at the development site is considered in greater detail below:

#### Table 9: SuDS Hierarchal Approach

| Method                               | Suitability | Suitability for Development                                                                                                                                                                                                                        |
|--------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Infiltration to Ground               | Yes         | A review of the BGS website and local boreholes have indicated that<br>the underlying sub strata may be suitable for infiltration-based<br>options. Further intrusive site investigation is required to<br>determine the final infiltration rates. |
| Connection to<br>Watercourse         | No          | There are no watercourses in close proximity to the site.                                                                                                                                                                                          |
| Connection to<br>Surface Water Sewer | No          | No surface water sewers identified within close proximity.                                                                                                                                                                                         |
| Connection to a<br>Combined Sewer    | No          | There are other suitable options that would take precedent.                                                                                                                                                                                        |

#### 5.6.6 SuDS Design Philosophy

SuDS assessment and hierarchal approach discussed in Table 7, 8 and 9 above has defined the overall SuDS strategy. Thus, the SuDS philosophy for the development site is the promotion of source control and site control techniques with surface water being discharged to ground via infiltration tanks.

The following design philosophy is proposed:

- Surface water treatment using the 'Management Train' approach to remove and isolate contamination at all SuDS facilities prior to conveyance to the existing drainage infrastructure.
- Prevent measures in the form of water butts at the base of rear rainwater pipes for reuse by the property owners.
- Source Control via the potential inclusion of permeable surfacing to the driveways and private parking areas.
- Site control in the form of infiltration tanks.

Aim to limit where possible the impermeable fraction of development.

- 5.7 The Non-Statutory Technical Standards for SuDS
- 5.7.1 It is best practice to develop drainage strategies to the DEFRA document 'The Non-Statutory Technical Standards for SuDS'.
- 5.7.2 The DEFRA document advises the following with respect to 'Peak Flow Control' (S2) and 'Volume Control' (S4) for Greenfield sites such as this:

S2 For greenfield developments, the peak runoff rate from the development to any highway drain, sewer or surface water body for the 1 in 1 year rainfall event and the 1 in 100-year rainfall event should never exceed the peak greenfield runoff rate for the same event.

S3 For developments which were previously developed, the peak runoff rate from the development to any drain, sewer or surface water body for the 1 in 1 year rainfall event and the 1 in 100-year rainfall event must be as close as reasonably practicable to the greenfield runoff rate from the development for the same rainfall event, but should never exceed the rate of discharge from the development prior to redevelopment for that event.

S4 Where reasonably practicable, for greenfield development, the runoff volume from the development to any highway drain, sewer or surface water body in the 1 in 100-year, 6-hour rainfall event should never exceed the greenfield runoff volume for the same event.

S5 Where reasonably practicable, for developments which have been previously developed, the runoff volume from the development to any highway drain, sewer or surface water body in the 1 in 100-year, 6-hour rainfall event must be constrained to a value as close as is reasonably practicable to the greenfield runoff volume for the same event, but should never exceed the runoff volume from the development site prior to redevelopment for that event.

S6 Where it is not reasonably practicable to constrain the volume of runoff to any drain, sewer or surface water body in accordance with S4 or S5 above, the runoff volume must be discharged at a rate that does not adversely affect flood risk.

5.7.3 As noted above, and in line with policy, it is intended that surface water will discharge to ground, subject to confirmation of infiltration rates by permeability testing.

#### 5.8 Climate Change

- 5.8.1 In May 2022, the Environment Agency released updated climate change allowances for peak rainfall intensities which should be applied to new developments. Rather than nationwide allowances, each area will have its own peak rainfall allowances. In the case of the Newark area, this is the River Trent and Erewash Management Catchment peak rainfall allowances.
- 5.8.2 Based on the nature of the development, a lifespan in excess of 100 years is anticipated. Therefore, the potential climate change allowance for the 2070's ranges between 25% for the central allowance and 40% for the upper end allowance. As such, an allowance of 40% for climate change on peak 100-year rainfall intensity will be included in calculations.
- 5.9 Outline Surface Water Drainage Strategy
- 5.9.1 The general principal of the surface water drainage strategy is to collect the runoff from the roofs and other hard paved areas and direct it to two new below ground surface water drainage networks. These will flow by gravity to two infiltration tanks to be located in the Public Open Spaces in the north and south of the development site. The infiltration tanks will be in the form of geocellular tanks which will provide attenuation whilst also allowing infiltration to the underlaying sands and gravels. The private driveways and parking areas will potentially encompass permeable paving and water butts will be installed to the rear of each property, subject to Client approval and confirmation on surface finishes.
- 5.9.2 The proposed drainage layout for the new development site will be designed in accordance with the new Design & Construction Guidance (DCG), BS EN 752: 2008 and Building Regulations Part H guidance, i.e. up to the 30-year storm return period criterion and tested for the 1 in 100-year return period including a 40% increase to account for climate change to confirm that there is no flood risk to the properties.
- 5.9.3 Flooding can occur on a local scale beyond the 30yr criterion due to runoff exceeding the capacity of the minor system during extreme events and it can only be addressed on a site-specific basis. Guidance states that development should be protected against flooding from extreme events (1 in 30 year) and that flood pathways are identified when the drainage system is exceeded.
- 5.9.4 In the case of this development, exceedance flows will be all those over and above the 30-year design criterion set by Design & Construction Guidance. Using storage within the external areas would be achievable and would direct flood water away from the proposed properties, with flows directed back into the surface water drainage network as water levels in the drainage network receded. The exceedance flows and volumes can be calculated for the new development drainage layout. In the case of this development, consideration will be given to make sure all water is controlled so that it does not impact on any new and adjoining properties.
- 5.9.5 Although it is envisaged that Prevention and Source Controls measures could be included in the final scheme, this strategy will assume for outline calculations purposes that only Site Control methods are incorporated. A source control attenuation assessment has been simulated in the Microdrainage Design Software. It is noted that these rates and volumes are preliminary for this outline assessment and are likely to alter at detailed design stage when more site-specific information is made available.

- 5.9.6 Drawing PGC198-C-001 in Appendix C indicates the Drainage Strategy based on the Architects masterplan intent, with the outline hydraulic calculations in Appendix D.
- 5.9.7 Any future drainage calculations carried out as part of a site wide drainage strategy or for the development layouts themselves must include the appropriate increase in rainfall to satisfy the future Climate change allowances. In the case of this development, this would be 40%.
- 5.9.8 Table 10 below defines the outline attenuation volumes based on the 2 no. infiltration tanks.

Table 10: Outline Attenuation Volumes

| Tank No. | Site Area<br>(ha) | Impermeable<br>Area (ha) @<br>60% | Infiltration Rate m/s | Outline Attenuation<br>Volumes for the 100<br>Year + 40% climate<br>Change Event |
|----------|-------------------|-----------------------------------|-----------------------|----------------------------------------------------------------------------------|
| 1        | 2.31              | 1.37                              | 5 x 10 <sup>-5</sup>  | 921m <sup>3</sup>                                                                |
| 2        | 2.04              | 1.03                              | 5 x 10 <sup>-5</sup>  | 696m <sup>3</sup>                                                                |
| Тс       | otal              |                                   |                       | 1,617m <sup>3</sup>                                                              |

#### 5.10 Volume Control

5.10.1 The impermeable area of the application site will be increased as a result of the development and therefore the volume of run-off in the 100-year 6-hour storm event will be increased above the pre-development greenfield level. This increase in volume will be managed through infiltration to prevent an adverse effect on flood risk to the adjoining catchments.

# 5.11 Pollution Control

5.11.1 Runoff from roofs is generally considered to be clean and will be discharged directly into the new drainage network. Surface water run-off from hard paved areas at risk of contamination should receive water quality treatment. Access roads are considered as a low hazard in terms of contamination. Table 11 illustrates the pollution hazard indices for different land use classifications from The CIRIA SuDS Manual C753 (2015).



Table 11: Pollution Hazard indices for land use classification (Table 26.2 the CIRIA SuDS manual 2015)

| Land use                                                                                                                                                                                                                                                                                                                                    | Pollution<br>hazard level | Total suspended solids (TSS) | Metals                                                                                 | Hydro-<br>carbons |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------|----------------------------------------------------------------------------------------|-------------------|
| Residential roofs                                                                                                                                                                                                                                                                                                                           | Very low                  | 0.2                          | 0.2                                                                                    | 0.05              |
| Other roofs (typically commercial/<br>industrial roofs)                                                                                                                                                                                                                                                                                     | Low                       | 0.3                          | 0.2 (up to 0.8<br>where there<br>is potential for<br>metals to leach<br>from the roof) | 0.05              |
| Individual property driveways,<br>residential car parks, low traffic roads<br>(eg cui de sacs, homezones and<br>general access roads) and non-<br>residential car parking with infrequent<br>change (eg schools, offices) ie < 300<br>traffic movements/day                                                                                 | Low                       | 0.5                          | 0.4                                                                                    | 0.4               |
| Commercial yard and delivery areas,<br>non-residential car parking with<br>frequent change (eg hospitals, retail), all<br>roads except low traffic roads and trunk<br>roads/motorways <sup>1</sup>                                                                                                                                          | Medium                    | 0.7                          | 0.6                                                                                    | 0.7               |
| Sites with heavy pollution (eg haulage<br>yards, lorry parks, highly frequented<br>lorry approaches to industrial estates,<br>waste sites), sites where chemicals and<br>fuels (other than domestic fuel oil) are<br>to be delivered, handled, stored, used<br>or manufactured; industrial sites; trunk<br>roads and motorways <sup>1</sup> | High                      | 0.82                         | 0.8²                                                                                   | 0.9²              |

5.11.2 Table 12 then illustrates the SuDS Component mitigation indices from The CIRIA SuDS Manual C753 (2015)

Table 12: Indicative SuDS mitigation indices (Table 26.4 the CIRIA SuDS manual 2015)

| Characteristics of the material overlying the<br>proposed infiltration surface, through which the<br>runoff percolates <sup>1</sup>                                                                                                                                                                                                         | TSS                              | Metals         | Hydrocarbons                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------|------------------------------------------------------------------|
| A layer of dense vegetation underlain by a soil with good<br>contaminant attenuation potential <sup>2</sup> of at least 300 mm in depth <sup>3</sup>                                                                                                                                                                                        | 0.64                             | 0.5            | 0.6                                                              |
| A soil with good contaminant attenuation potential $^{2}$ of at least 300 mm in depth $^{3}$                                                                                                                                                                                                                                                | 0.44                             | 0.3            | 0.3                                                              |
| Infiltration trench (where a suitable depth of filtration material is included that provides treatment, ie graded gravel with sufficient smaller particles but not single size coarse aggregate such as 20 mm gravel) underlain by a soil with good contaminant attenuation potential <sup>2</sup> of at least 300 mm in depth <sup>3</sup> | 0.44                             | 0.4            | 0.4                                                              |
| Constructed permeable pavement (where a suitable filtration<br>layer is included that provides treatment, and including a<br>geotextile at the base separating the foundation from the<br>subgrade) underlain by a soil with good contaminant attenuation<br>potential <sup>2</sup> of at least 300 mm in depth <sup>3</sup>                | 0.7                              | 0.6            | 0.7                                                              |
| Bioretention underlain by a soil with good contaminant<br>attenuation potential <sup>2</sup> of at least 300 mm in depth <sup>3</sup>                                                                                                                                                                                                       | 0.84                             | 0.8            | 0.8                                                              |
| Proprietary treatment systems <sup>5, 6</sup>                                                                                                                                                                                                                                                                                               | each of the o<br>levels for infl | contaminant ty | hat they can addres<br>pes to acceptable<br>ions relevant to the |

#### Notes

- 1 All designs must include a minimum of 1 m unsaturated depth of aquifer material between the infiltration surface and the maximum likely groundwater level (as required in infiltration design Chapter 25).
- 2 For example as recommended in Sniffer (2008a and 2008b), Scott Wilson (2010) or other appropriate guidance.
- 3 Alternative depths may be considered where it can be demonstrated that the combination of the proposed depth and soil characteristics will provide equivalent protection to the underlying groundwater see note 1.
- 4 If significant volumes of sediment are allowed to enter an infiltration system, there will be a high risk of rapid clogging and subsequent system failure.
- 5 See Chapter 14 for approaches to demonstrate product performance. Note: a British Water/Environment Agency assessment code of practice is currently under development that will allow manufacturers to complete an agreed test protocol for systems intended to treat contaminated surface water runoff. Full details can be found at: www.britishwater.co.uk/Publications/codes-of-practise.aspx
  6 SEPA only considere propriatery treatment systems as appropriate in accentional circumstances where other types of SUPS
- 6 SEPA only considers proprietary treatment systems as appropriate in exceptional circumstances where other types of SuDS component are not practicable. Proprietary treatment systems may also be considered appropriate for existing sites that are causing pollution, where there is a requirement to retrofit treatment. WAT-RM-08 (SEPA, 2014) also provides a flowchart with a summary of checks on suitability of a proprietary system.
- 5.11.3 The selection of treatment should ensure that the SuDS mitigation component index (Table 12) exceeds the pollution hazard index (Table 11).
- 5.11.4 Currently, permeable paving, gullies and infiltration tanks are proposed. These will provide the necessary treatment for the new roof and highway areas to reduce contamination risk to the downstream catchments.
- 5.12 Maintenance
- 5.12.1 This section is intended to give an overview of the operation and maintenance for the drainage features included with the drainage strategy and in relation to typical details. Where proprietary products are specified, the manufacturer's instructions and recommendations should be followed in priority to this document unless specifically noted otherwise due to project constraints. The recommended operations and frequencies are typical only and should be more frequent initially to ensure that there are no unforeseen issues with the operation and then adjusted to suit the site requirements.

- 5.12.2 Where sewers and SuDS features are offered for adoption, the adopting authority will have their own maintenance strategy in place.
- 5.12.3 There are three types of maintenance activities associated with surface water drainage systems. The SuDS Manual, CIRIA C753, defines these as:

Regular Maintenance – 'basic tasks undertaken on a frequent and predictable schedule' including vegetation management, litter and debris removal, and inspections.'

Occasional Maintenance – 'tasks that are likely to be required periodically, but on a much less frequent and predictable basis than the routine tasks (sediment removal is an example.'

Remedial Maintenance – 'intermittent tasks that may be required to rectify faults associated with the system, although the likelihood of faults can be minimised by good design. Where remedial work is found to be necessary, it is likely to be due to site-specific characteristics or unforeseen events, and as such timings are difficult to predict.'

5.12.4 Specific maintenance needs should be monitored, and maintenance schedules adjusted to suit the location and condition of the drainage feature in question.

Table 13: Extract from The SuDS Manual Table 32.1: Typical key SuDS components operation and maintenance activities

|                                         | Su                                     | DS Component                                      |                     |
|-----------------------------------------|----------------------------------------|---------------------------------------------------|---------------------|
| Operation and<br>Maintenance Activity   | Piped Network /<br>Inspection Chambers | Geocellular<br>Attenuation /<br>Infiltration Tank | Permeable<br>Paving |
| Inspection                              | •                                      | •                                                 | •                   |
| Litter and debris removal               | •                                      |                                                   | -                   |
| Grass cutting                           |                                        |                                                   |                     |
| Weed and invasive plant control         |                                        |                                                   |                     |
| Shrub management<br>(including pruning) |                                        |                                                   |                     |
| Sediment management <sup>1</sup>        | •                                      | •                                                 | •                   |
| Vegetation replacement                  |                                        |                                                   |                     |
| Vacuum sweeping and brushing            |                                        |                                                   | •                   |
| Structure rehabilitation / repair       |                                        |                                                   |                     |
| Infiltration surface reconditioning     |                                        |                                                   |                     |



#### 5.12.5 Piped Networks, Inspection, Manhole and Catchpit Chambers

The appropriate health and safety equipment must be used when accessing manholes. Confined space certificates must be held by any personnel entering a manhole and the appropriate permits should be obtained from the Maintenance Manager prior to any access.

Pipes are proprietary products, and the materials can vary across the site and as such where used the manufacture's recommendations should be followed.

Pipes are intended to be the main conveyance across the development and where oversized they form the attenuation volume required by the limitation of the discharge rate. They are intended to be dry except for during rainfall events. These have been designed to be self-cleaning where possible for smaller diameter pipes, and for larger diameters the risk is reduced due to the overall pipe size.

Access for maintenance is provided through access chambers and manholes.

Regular inspection and maintenance are important to identify areas which may have been obstructed / clogged and may not be drainage correctly thus exposing the development to a greater level of flood risk.

| Maintenance<br>Schedule                 | Required Action                                                                                                                               | Typical Frequency                                |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Devider                                 | Inspect and identify any features that are not operating correctly. If required, take remedial action                                         | Monthly for three<br>months, then six<br>monthly |
| Regular<br>Maintenance                  | Debris removal from catchment surface / gratings<br>(where may cause risks to performance)                                                    | Monthly (and after large storms)                 |
|                                         | Remove sediment from trapped sumps, manholes and catchpits.                                                                                   | Annually or as required                          |
| Remedial<br>Maintenance                 | Repair / rehabilitation of gratings, inlets and outlets                                                                                       | As required                                      |
| Monitoring                              | Inspect / check all gratings, trapped sumps, manholes<br>and catchpits to ensure that they are in good<br>condition and operating as designed | Annually and after large storm events            |
| Structure<br>Rehabilitation<br>/ Repair | Regular Maintenance and Monitoring to identify if repair and / or replacement of features or pipework is required.                            | As required                                      |

Table 14: Operation and Maintenance Requirements of Piped Networks and Inspection Chambers



#### 5.12.6 Geocellular Attenuation / Infiltration Tanks

Geocellular tanks are proprietary products, and the materials can vary across the site and as such where used the manufacture's recommendations should be followed.

Geocellular tanks form the temporary attenuation volume required prior to surface water discharging to ground. They are intended to be dry except for during rainfall events.

Access for maintenance has been provided by locating downstream manhole chambers.

Table 15: Operation and Maintenance Requirements for Attenuation / Infiltration Tanks

| Maintenance<br>Schedule | Required Action                                                                                                                                                                          | Typical Frequency                                                                 |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Regular<br>Maintenance  | Inspect and identify any areas that are not operating<br>correctly. If required, take remedial action<br>Debris removal from catchment surface (where may<br>cause risks to performance) | Monthly for three<br>months, then annually<br>Monthly (and after<br>large storms) |
| Remedial                | Remove sediment from trapped sumps, manholes<br>and catchpits.<br>Repair / rehabilitation of gratings, inlets, outlets and                                                               | Annually or as required As required                                               |
| Maintenance             | vents                                                                                                                                                                                    |                                                                                   |
| Monitoring              | Inspect / check all inlets, outlets, and vents to ensure<br>that they are in good condition and operating as<br>designed                                                                 | Annually and after large storm events                                             |
|                         | Survey inside of tank for sediment build up and remove if necessary                                                                                                                      | Every 5 years or as required                                                      |



#### 5.12.7 <u>Permeable paving</u>

Permeable pavements are proprietary products, and the materials can vary across the site and as such where used the manufacture's recommendations should be followed.

Permeable paving allows rainwater to infiltrate through the surface to underlying structural layers. The run-off is temporarily stored below the surface before use, infiltration to ground or controlled discharge downstream. The underlying layers can also provide a treatment medium to reduce pollutants prior to discharge.

| Maintenance<br>Schedule   | Required Action                                                                                                                                                                                  | Typical Frequency                                                                                                                                                                                                                                                                                                                                           |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Regular<br>Maintenance    | Brushing and vacuuming (standard cosmetic<br>sweep over whole surface)                                                                                                                           | Once a year, after autumn leaf<br>fall, or reduced frequency as<br>required, based on site-specific<br>observations of clogging or<br>manufacturer's recommendations<br>– pay particular attention to areas<br>where water runs onto pervious<br>surface from adjacent<br>impermeable areas as this area is<br>most likely to collect the most<br>sediment. |
| Occasional<br>Maintenance | Stabilise and mow contributing and adjacent<br>areas<br>Removal of weeds or management using                                                                                                     | As required<br>As required – once per year on                                                                                                                                                                                                                                                                                                               |
| Waintenance               | glyphospate applied directly into the weeds<br>by an applicator rather than spraying                                                                                                             | less frequently used pavements                                                                                                                                                                                                                                                                                                                              |
|                           | Remediate any landscaping which, through<br>vegetation maintenance or soil slip, has been<br>raised to within 50mm of the level of the<br>paving                                                 | As required                                                                                                                                                                                                                                                                                                                                                 |
| Remedial<br>Maintenance   | Remedial work to any depressions, rutting<br>and cracked or broken blocks considered<br>detrimental to the structural performance or<br>a hazard to users, and replace lost jointing<br>material | As required                                                                                                                                                                                                                                                                                                                                                 |
|                           | Rehabilitation of surface and upper<br>substructure by remedial sweeping                                                                                                                         | Every 10 to 15 years or as required<br>(if infiltration performance is<br>reduced due to significant<br>clogging)                                                                                                                                                                                                                                           |
|                           | Initial inspection                                                                                                                                                                               | Monthly for three months after installation                                                                                                                                                                                                                                                                                                                 |

Table 16: Operation and Maintenance Requirements for Permeable Paving



| Monitoring | Inspect for evidence of poor operation and /<br>or weed growth – if required, take remedial<br>action | Three-monthly, 48h after large storms in first six months |
|------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
|            | Inspect silt accumulation rates and establish appropriate brushing frequencies                        | Annually                                                  |
|            | Monitor inspection chambers                                                                           | Annually                                                  |

- 5.13 Foul Water Drainage
- 5.13.1 Foul water generated by the development will be collected by new below ground piped drainage networks. These will discharge into the existing STW combined water sewers in London Road to the north and Harewood Avenue to the south of the site. Based on the existing invert levels of the STW sewers, a new adopted foul water pumping station will be incorporated into the scheme.
- 5.13.2 At the time of writing STW have not been consulted regarding foul water discharge into their network.
- 5.13.5 The proposed foul drainage for the new development site will be designed in accordance with Design & Construction Guidance (DCG), BS EN 752: 2008 and Building Regulations Part H guidance.



# 6.0 Management Measures, Off Site Impacts and Residual Risk

- 6.1 Flood Risk Management Measures
- 6.1.1 The assessment has determined that the development site is at low risk of flooding from all sources.
- 6.1.2 The surface water drainage strategy for the new development site will be discharge runoff to ground via two infiltration tanks in line with local and national policy. The infiltration tanks will also provide attenuation prior to the runoff being discharged to ground. The new surface water networks will be designed in line with current British Standard guidance up to the 100-year storm return period including an allowance for climate change.
- 6.1.3 The use of SuDS in the form of Prevention, Source Control and Site Control measures will help to minimise the flood risk impact to the surrounding networks.
- 6.1.4 There will be a site management health and safety document prepared in respect of the final development. This will include the required maintenance regime for the on-site drains & sewers, and drainage facilities such as the channels, gullies, pipes, manholes, swales and all SuDS facilities.
- 6.1.5 A management company and property owners will be responsible for the operation and maintenance to ensure that the surface water drainage system will always operate at its maximum efficiency.
- 6.2 Off Site Impacts
- 6.2.1 The redevelopment of the site does not impair the hydraulic continuity of any watercourse and the current "local hydraulics" of distributing watercourses / outfalls.
- 6.2.2 Surface water runoff will reduce for the higher order event from the pre-development regime and utilises SuDS solutions to satisfy the site constraints. This will reduce surface water flooding impact onto the downstream catchment.
- 6.2.3 As there is no flood displacement or increased rate of runoff as part of this proposal into the adjacent watercourse, the proposed development will therefore not increase flood risk onto its locality.
- 6.3 Residual Risk
- 6.3.1 Flood risk to people and property can be managed but it can never be completely removed; a residual risk remains after flood management or mitigation measures have been put in place. This relates to a rainfall event beyond what can be fully quantified.



Appendix A – Architects Drawings



Key

Existing Trees

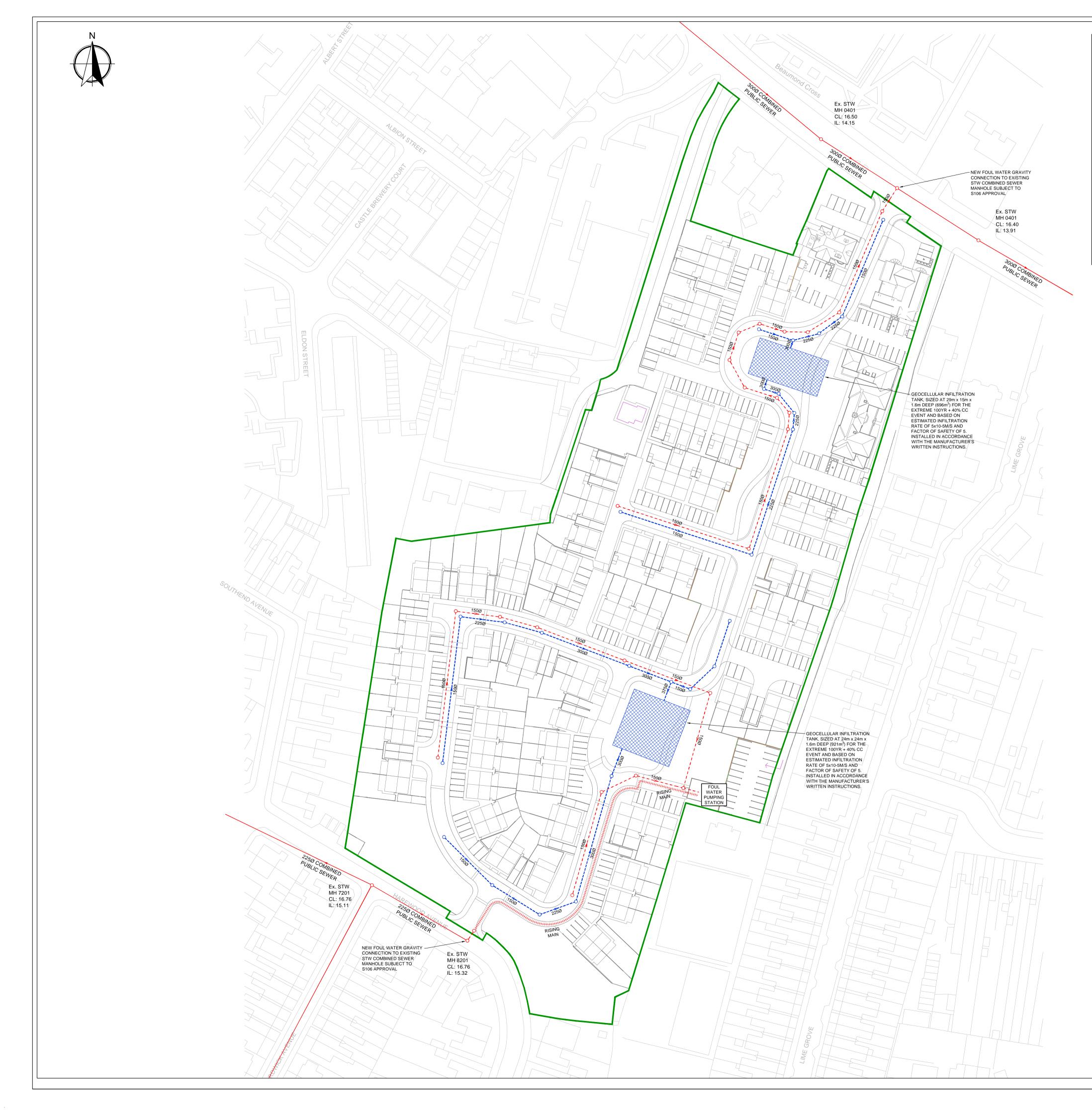
Proposed Trees

| Job Number:<br>23-0030<br>Client Name:<br>Bildurn Properties | Project Address:<br>London Rd, Newark NG24<br>1TW |
|--------------------------------------------------------------|---------------------------------------------------|
| Director / Associate:<br>Matthew Branton                     | Project Lead:<br>Sarah Boxford                    |
| Status:<br>A3 Planning                                       | Functional Breakdown:<br>B1                       |
| Sheet Size:                                                  | Scale:<br>1:500                                   |
|                                                              | Masterplan                                        |
| Full Document Reference:                                     |                                                   |
| Identification / Location<br>Project Originator Function     | Space Form Disc. Number                           |





Appendix B – Topographical Survey




|                                                                                                                                                                    | Keep Surve                                                                             | ys Ltd [                             | Drawir                                             | ng Le    | egend                                        |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------|----------|----------------------------------------------|--|
| Topog                                                                                                                                                              | Traphical Linetypes:                                                                   |                                      |                                                    |          |                                              |  |
|                                                                                                                                                                    | ·                                                                                      | Building Li<br>Barrier<br>Channel    | ne                                                 |          |                                              |  |
|                                                                                                                                                                    |                                                                                        | Concrete<br>Chain Fen<br>Metal Fend  | ce                                                 |          |                                              |  |
|                                                                                                                                                                    |                                                                                        | Post & Wir<br>Wooden F<br>Top of Bar | e Fence<br>ence<br>nk                              |          |                                              |  |
|                                                                                                                                                                    |                                                                                        | Tree Canc<br>Verge Line<br>Wall      | py Line                                            |          |                                              |  |
| Zer                                                                                                                                                                | ro Dig Linetypes                                                                       |                                      |                                                    |          |                                              |  |
|                                                                                                                                                                    | ← GAS →<br>← W →<br>← CATV →                                                           | Gas<br>Water<br>Cable TV             |                                                    |          |                                              |  |
|                                                                                                                                                                    | ← CCTV →<br>← CCTV →<br>← BT →<br>← EMPTY→                                             | Closed Cir<br>British Tele           | ecom                                               |          |                                              |  |
|                                                                                                                                                                    | ► UNK+ ► GPR+ ← COM →                                                                  | Unknown I<br>GPR Anor<br>Communic    | Metallic Ut<br>naly Possi<br>ations                | ble Util | ity                                          |  |
|                                                                                                                                                                    | Foul Water Drainage Route Surface Water Drainage Route Combined Service Drainage Route |                                      |                                                    |          |                                              |  |
| Field Drain       Unknown Drainage Route         Field Drain       Field Drain         Aco Drain       Aco Drain         E-TFR       Electric - Taken from Records |                                                                                        |                                      |                                                    |          |                                              |  |
|                                                                                                                                                                    | $\leftarrow = - O/H E + Electric Overhead$                                             |                                      |                                                    |          |                                              |  |
| ← −O/H BT − − → BT Overhead     MSR → Multi Service Route     Multi SERVice TRENCH     Multi SERVice Trench     W-TFR → Water - Taken from Records                 |                                                                                        |                                      |                                                    |          |                                              |  |
|                                                                                                                                                                    |                                                                                        | Assumed Assumed                      | Water<br>Gas                                       |          | 5                                            |  |
|                                                                                                                                                                    | ← GAS-TFR →                                                                            | Gas - Tak<br>Survey Ext<br>symbols   |                                                    | ecords   |                                              |  |
| 0 <sup>LP</sup>                                                                                                                                                    | Telegraph Pole<br>Lamp Post                                                            |                                      | MH1<br>CL 100.000                                  | )        | Gate<br>Manhole                              |  |
| o <sup>EP</sup><br>o <sup>TL</sup><br>o <sup>FL</sup>                                                                                                              | Electric Post<br>Traffic Light<br>Floodlight                                           |                                      | IL 98.000<br>IC<br>CL 100.00                       | 0        | nspection<br>Chamber                         |  |
| O <sup>FL</sup><br>CTV<br>SC                                                                                                                                       | Cable TV IC<br>Stop Cock                                                               |                                      | CATV<br>CL 100.00<br>BT<br>CL 100.00               | 00       | Cable TV<br>Chamber<br>BT<br>Chamber         |  |
| GV<br>BOL                                                                                                                                                          | Stop Cock<br>Gas Valve<br>Bollard                                                      |                                      | CL 100.00<br>RG<br>100.000<br>SV<br>CL 100.000     | F        | Chamber<br>Road Gully<br>Stop Valve          |  |
| ⊕<br>_2.345<br>O <sup>Post</sup>                                                                                                                                   | Spot Level<br>Post                                                                     |                                      | CL 100.000<br>WM<br>CL 100.000<br>AV<br>CL 100.000 | 0 N      | /ater Meter<br>Air Valve                     |  |
| GUL<br>•                                                                                                                                                           | Post<br>Gully<br>Earth Rod                                                             |                                      | WO<br>CL 100.00<br>FH<br>CL 100.00<br>GV           | 0 /      | Wash Out<br>ire Hydrant                      |  |
| 。GR                                                                                                                                                                | Earth Rod<br>Gas Riser<br>Rain Water Pipe                                              |                                      | CL 100.000<br>Cabinet<br>100.000                   | ) (      | Gas Valve<br>Cabinet<br>Electric             |  |
| o RS                                                                                                                                                               | Rain Water Pipe<br>Road Sign<br>Soil Vent Pipe                                         |                                      | LB<br>CL 100.000<br>MH2<br>CL 100.000              |          | Electric<br>Link Box                         |  |
| •<br>CKS1<br>E=436676.617<br>N=546728.511                                                                                                                          | Station<br>Control Details                                                             |                                      | IL 97.500<br>MH3<br>CL 100.000                     |          | Circular<br>Manhole<br>Triangular<br>Manhole |  |
| N=546728.511<br>Level=25.558                                                                                                                                       | Rodding Eye                                                                            | ( <b>B</b> )                         | IL 97.500                                          |          | Tree                                         |  |
|                                                                                                                                                                    | Loss of Reflection                                                                     | EOS <b>小</b>                         |                                                    | Er       | nd of Signal                                 |  |
| Surv                                                                                                                                                               | ey Notes                                                                               |                                      |                                                    |          |                                              |  |
|                                                                                                                                                                    |                                                                                        |                                      |                                                    |          |                                              |  |
| <image/> <image/>                                                                                                                                                  |                                                                                        |                                      |                                                    |          |                                              |  |
|                                                                                                                                                                    | C:\Users\ashle                                                                         | Yy∖Desktop                           | \CKS.png                                           |          |                                              |  |
| Newark<br>School                                                                                                                                                   |                                                                                        |                                      |                                                    |          |                                              |  |
| GVA                                                                                                                                                                |                                                                                        |                                      |                                                    |          |                                              |  |
| CLIENT<br>TOPOGRAPHICAL<br>SURVEY                                                                                                                                  |                                                                                        |                                      |                                                    |          |                                              |  |
| 1:500 @ A0 MD                                                                                                                                                      |                                                                                        |                                      |                                                    |          |                                              |  |
|                                                                                                                                                                    | 2/09/2017                                                                              |                                      | MD                                                 | 1        |                                              |  |
|                                                                                                                                                                    | Castle Ke<br>Th                                                                        | <b>ep Surv</b><br>ne Keep            | -                                                  |          |                                              |  |
| The Village<br>Castle Eden<br>County Durham                                                                                                                        |                                                                                        |                                      |                                                    |          |                                              |  |
|                                                                                                                                                                    | TS                                                                                     | S24 4SL<br>429 835                   | 098                                                | ۰.uk     |                                              |  |
|                                                                                                                                                                    |                                                                                        | 2004                                 |                                                    |          |                                              |  |
| REV                                                                                                                                                                | AMENDME                                                                                | NT                                   | DRA                                                | WN       | CHECKED                                      |  |
| PROJECT N                                                                                                                                                          | 0.                                                                                     |                                      | 001<br>drg i                                       | -        | REV                                          |  |

PGC 198 – Former Lilley Stone School, Newark. Flood Risk Assessment & Outline Drainage Strategy



Appendix C – PGC Drawings



## SURFACE WATER DRAINAGE

DRAINAGE OPTIONS FOR THE SITE AS FOLLOWS:

DISCHARGE INTO GROUND - UNDERLYING SANDS AND GRAVELS WILL BE SUITABLE AS A MEANS OF DRAINING THE DITE VIA INFILTRATION MEASURES.

DISCHARGE TO SURFACE WATER BODY - NO WATERCOURSE IN CLOSE PROXIMITY.

DISCHARGE TO SURFACE WATER SEWER, HIGHWAY DRAIN OR OTHER DRAINAGE SYSTEM - NO SURFACE WATER SEWER IN CLOSE PROXIMITY.

### SUMMARY

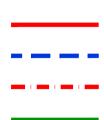
TWO LARGE SOAKAWAY TO BE PLACED BENEATH THE POS AREAS TO ENABLE INFILTRATION TO THE UNDERLYING SANDS AND GRAVELS. DESIGN AT THIS TIME BASED ON ESTIMATED INFILTRATION RATE OF 5x10-5 M/S AND FACTOR OF SAFETY OF 5, THOUGH SUBJECT TO FORMAL BRE 365 TESTING.

### SUDS TO ENCOMPASS:

| • | WATER BUTTS           |
|---|-----------------------|
| • | PERMEABLE SURFACING   |
|   | GEOCELLULAR INFILTRAT |

FOUL WATER DRAINAGE

FOUL WATER GENERATED BY THE NEW RESIDENTIAL DEVELOPMENT WILL DISCHARGE INTO THE EXISTING STW COMBINED SEWERS TO THE NORTH AND SOUTH OF THE SITE VIA NEW CONNECTIONS. DUE TO THE SHALLOW LEVELS OF THE RECEIVING SEWER, A NEW ADOPTED FOUL WATER PUMPING STATION IS TO BE CONSTRUCTED.


# CONSIDERATION HAS BEEN GIVEN TO THE HIERARCHY OF

G TO DRIVEWAYS ATION CRATES.

# **GENERAL NOTES**

- 1. DRAWINGS ARE TO BE READ IN CONJUNCTION WITH ALL RELEVANT SPECIFICATIONS, ENGINEERS, ARCHITECTS & SERVICES DRAWINGS, INCLUDING APPROVED BUILDERS WORK DRAWINGS. CONTRACTOR TO NOTIFY ENGINEER OF DISCREPANCIES BETWEEN STRUCTURAL DRAWINGS AND SPECIFICATIONS OR OTHER DRAWINGS.
- 2. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS NOTED OTHERWISE.
- 3. DETAILS OF EXISTING SEWERS SHALL BE CONFIRMED BY THE CONTRACTOR ON SITE PRIOR TO THE COMMENCEMENT OF WORKS. ANY DISCREPANCIES ARE TO BE REPORTED TO THE ENGINEER IMMEDIATELY. THE CONTRACTOR SHOULD CHECK THE LEVELS OF ALL NEW OUT FALLS IN RELATION TO EXISTING SEWERS PRIOR TO ANY CONSTRUCTION TO ENSURE THE PROPOSED DESIGN CAN BE ACHIEVED.
- 4. DO NOT SCALE FROM THIS DRAWN, WORK TO DIMENSIONS OR COORDINATES PROVIDED. ALL LEVELS ARE IN MILLIMETRES, UNLESS OTHERWISE NOTED. ANY AMBIGUITIES, OMISSIONS AND ERRORS ON DRAWINGS SHALL BE BROUGHT TO THE ATTENTION OF THE ENGINEER IMMEDIATELY.
- 5. THIS DRAWING IS FOR STRATEGY PURPOSES ONLY AND SUBJECT TO CHANGE AT DETAILED DESIGN STAGE

## KEY



- EXISTING COMBINED SEWER
- OUTLINE SURFACE WATER GRAVITY DRAINAGE
- OUTLINE FOUL WATER GRAVITY DRAINAGE
- SITE BOUNDARY

| P2     08.01.24     PG     PG     SITE PLAN UPDATED       P1     18.09.23     PG     PG     PRELIMINARY ISSUE       REV     DATE     DRAWN     REV/D<br>ENG.     NOTES |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BILDURN PROPERTIES LTD<br>PROJECT<br>FORMER LILLEY & STONE SCHOOL,<br>LONDON ROAD, NEWARK<br>DRAINAGE STRATEGY PLAN                                                    |
| DRAWING STATUS PRELIMINARY SCALE 1:750 PG PG PG SHEET A1 DRAWING NO PGC198-C-100 P2 108 Ack Lane West, Clearly before                                                  |
| <b>PGConsulting</b><br>Civil & Infrastructure Engineers                                                                                                                |



### Appendix D – Outline Hydraulic Calculations

Greenfield Flow Rates 100 year + 40% CC Outline Attenuation Calculations

|                 |                                 | Page 1  |
|-----------------|---------------------------------|---------|
|                 | Lilley Stone School<br>GF Rates | Mirco   |
| Date 02/08/2023 | Designed by paulg               |         |
| File            | Checked by                      | Diamaye |
| Innovyze        | Source Control 2017.1.2         | i       |
|                 |                                 |         |

#### ICP SUDS Mean Annual Flood

Input

| Return Period (years) | 1     | Soil          | 0.400    |
|-----------------------|-------|---------------|----------|
| Area (ha)             | 3.450 | Urban         | 0.000    |
| SAAR (mm)             | 600   | Region Number | Region 4 |

#### Results 1/s

QBAR Rural 9.8 QBAR Urban 9.8 Ql year 8.1 Ql year 8.1 Q30 years 19.2 Q100 years 25.2

|             |                                                           |                                  |                                              |                          |                      |          | Page 1  |
|-------------|-----------------------------------------------------------|----------------------------------|----------------------------------------------|--------------------------|----------------------|----------|---------|
|             |                                                           |                                  | Lilley S                                     | tone Scho                | pol                  |          |         |
|             |                                                           |                                  | Northern                                     | Area                     |                      |          | 4       |
|             |                                                           |                                  | 100vr +                                      | 40% CC At                | tenuati              | on       |         |
| Date 13/09/ | 2023                                                      |                                  | -                                            | by paulo                 |                      | -        | - MICLO |
|             |                                                           |                                  | -                                            |                          | 3                    |          | Drainac |
|             | Stone Northern A                                          |                                  | Checked                                      |                          |                      |          |         |
| Innovyze    |                                                           |                                  | Source C                                     | ontrol 20                | )17.1.2              |          |         |
|             |                                                           |                                  | 100                                          |                          | - · ·                | ( 400)   |         |
|             | Summary of Resul                                          | ts ic                            | or 100 ye                                    | ear Retur                | n Period             | . (+40%) | -       |
|             | TT - 1                                                    | E Durch                          |                                              | 010                      | _                    |          |         |
|             | Hal                                                       | I Drai                           | n nue • 1                                    | .012 minute              | 5.                   |          |         |
|             | S torm<br>Event                                           | Max                              |                                              | Max<br>infiltratio:      |                      | Status   |         |
|             | E VEIIC                                                   | шеvе.<br>(m.)                    | m)                                           | (1/s)                    | (m <sup>3</sup> )    |          |         |
|             |                                                           | , ,                              | (iii )                                       |                          | ( )                  |          |         |
|             | 15 min Summer                                             |                                  |                                              | 4.                       |                      | ОК       |         |
|             | 30 min Summer                                             |                                  |                                              | 4.                       |                      | O K      |         |
|             | 60 min Summer                                             |                                  |                                              | 5.                       |                      | O K      |         |
|             | 120 min Summer                                            |                                  |                                              | 5.1                      |                      |          |         |
|             | 180 min Summer                                            |                                  |                                              | 5.                       |                      |          |         |
|             | 240 min Summer                                            |                                  |                                              | 5.                       |                      |          |         |
|             | 360 min Summer                                            |                                  |                                              | 5.                       |                      |          |         |
|             | 480 min Summer                                            |                                  |                                              | 5.                       |                      |          |         |
|             | 600 min Summer                                            |                                  |                                              | 5.                       |                      | ОК       |         |
|             | 720 min Summer                                            |                                  |                                              | 5.                       |                      |          |         |
|             | 960 min Summer                                            |                                  |                                              | 5.4                      |                      | ОК       |         |
|             | 1440 min Summer                                           |                                  |                                              | 5.                       |                      | ОК       |         |
|             | 2160 min Summer                                           |                                  |                                              | 5.3                      |                      |          |         |
|             | 2880 min Summer<br>4320 min Summer                        |                                  |                                              | 5.3                      |                      |          |         |
|             | 5760 min Summer                                           |                                  |                                              | 5.<br>4.                 |                      | 0 K      |         |
|             | 7200 min Summer                                           |                                  |                                              | 4.3                      |                      |          |         |
|             | 8640 min Summer                                           |                                  |                                              | 4.1                      |                      | ОК       |         |
|             | 10080 min Summer                                          |                                  |                                              | 4.                       |                      |          |         |
|             | 15 min Winter                                             |                                  |                                              | 4.                       |                      | ОК       |         |
|             |                                                           |                                  |                                              |                          |                      |          |         |
|             | Sto                                                       | ım                               | Rain                                         | Fboded T                 | in e-₽eak            |          |         |
|             | Ever                                                      |                                  |                                              | Volume                   | (mins)               |          |         |
|             |                                                           |                                  |                                              | (m. ³)                   |                      |          |         |
|             | 15 min                                                    | Summe                            | er 134.356                                   | 0.0                      | 42                   |          |         |
|             | 30 min                                                    |                                  |                                              |                          | 52                   |          |         |
|             | 60 min                                                    | Summe                            |                                              |                          | 82                   |          |         |
|             | 120 min                                                   | Summe                            | er 32.917                                    | 0.0                      | 136                  |          |         |
|             | 180 min                                                   | Summe                            |                                              | 0.0                      | 196                  |          |         |
|             | 240 min                                                   | Summe                            | r 19.298                                     | 0.0                      | 254                  |          |         |
|             | 360 min                                                   | Summe                            | er 13.967                                    | 0.0                      | 372                  |          |         |
|             | 480 min                                                   | Summe                            | er 11.112                                    | 0.0                      | 488                  |          |         |
|             | 600 min                                                   | Summe                            | er 9.299                                     | 0.0                      | 606                  |          |         |
|             | 720 min                                                   | Summe                            | er 8.037                                     | 0.0                      | 722                  |          |         |
|             | 960 min                                                   | Summe                            | er 6.379                                     | 0.0                      | 840                  |          |         |
|             | 1440 min                                                  | Summe                            | er 4.600                                     | 0.0                      | 1088                 |          |         |
|             | 2160 min                                                  | Summe                            | er 3.312                                     | 0.0                      | 1488                 |          |         |
|             |                                                           | Summe                            | er 2.621                                     | 0.0                      | 1896                 |          |         |
|             | 2880 min                                                  |                                  |                                              | 0.0                      | 2704                 |          |         |
|             | 2880 min<br>4320 min                                      | Summe                            | er 1.882                                     |                          |                      |          |         |
|             |                                                           |                                  |                                              |                          | 3480                 |          |         |
|             | 4320 min                                                  | Summe                            | er 1.487                                     |                          | 3480<br>4256         |          |         |
|             | 4320 min<br>5760 min<br>7200 min<br>8640 min              | Summe<br>Summe<br>Summe          | er 1.487<br>er 1.238<br>er 1.065             | 0.0                      | 4256<br>5016         |          |         |
|             | 4320 min<br>5760 min<br>7200 min<br>8640 min<br>10080 min | Summe<br>Summe<br>Summe<br>Summe | er 1.487<br>er 1.238<br>er 1.065<br>er 0.938 | 0.0<br>0.0<br>0.0<br>0.0 | 4256<br>5016<br>5672 |          |         |
|             | 4320 min<br>5760 min<br>7200 min<br>8640 min<br>10080 min | Summe<br>Summe<br>Summe<br>Summe | er 1.487<br>er 1.238<br>er 1.065             | 0.0<br>0.0<br>0.0        | 4256<br>5016         |          |         |

|             |                                    |        |          |                     |                      |          | Page 2    |
|-------------|------------------------------------|--------|----------|---------------------|----------------------|----------|-----------|
|             |                                    | I      | Lilley S | tone Sch            | nool                 |          |           |
|             |                                    | 1      | Northern | Area                |                      |          | 4         |
|             |                                    | -      | 100vr +  | 40% CC A            | ttenuat              | ion      | - Com     |
| Date 13/09/ | 2002                               |        | -        | by paul             |                      | 1011     | MICTO     |
|             |                                    |        |          |                     | .y                   |          | Drainage  |
| File Lilley | Stone Northern A                   |        | Checked  |                     |                      |          | Brainacje |
| Innovyze    |                                    | 5      | Source C | ontrol 2            | 2017.1.2             |          |           |
|             |                                    |        |          |                     |                      |          |           |
|             | Summary of Resul                   | ts fo  | r 100 ye | ear Retur           | n Perio              | d (+40%) |           |
|             |                                    |        |          |                     |                      |          |           |
|             | Storm                              | Max    | Max      | Max                 | Max                  | Status   |           |
|             | Event                              | Level  | Depth I  | nfiltratic          | on Volum e           |          |           |
|             |                                    | (m.)   | (m.)     | (l⁄s)               | (m ³)                |          |           |
|             | 20 min Minter                      | 14 02/ |          | -                   | 0 241 C              | 0.17     |           |
|             | 30 min Winter<br>60 min Winter     |        |          |                     | .0 341.6<br>.2 423.3 |          |           |
|             | 120 min Winter                     |        |          |                     | .2 423.3             |          |           |
|             | 180 min Winter                     |        |          |                     | .4 562.1             |          |           |
|             | 240 min Winter                     | 15.458 | 3 1.458  | 5.                  | .5 595.6             | ОК       |           |
|             | 360 min Winter                     | 15.52  | 7 1.527  | 5.                  | .6 623.9             | O K      |           |
|             | 480 min Winter                     |        |          | 5.                  | .6 635.2             |          |           |
|             | 600 min Winter                     |        |          |                     | .6 638.1             |          |           |
|             | 720 min Winter                     |        |          |                     | .6 635.6             |          |           |
|             | 960 min Winter                     |        |          |                     | .6 621.0             |          |           |
|             | 1440 min Winter<br>2160 min Winter |        |          |                     | .5 579.8<br>.4 525.7 |          |           |
|             | 2880 min Winter                    |        |          |                     | .3 474.2             |          |           |
|             | 4320 min Winter                    |        |          |                     | .1 377.5             |          |           |
|             | 5760 min Winter                    |        |          |                     | .9 291.6             |          |           |
|             | 7200 min Winter                    | 14.532 | 1 0.531  | 4.                  | .7 216.9             | ОК       |           |
|             | 8640 min Winter                    | 14.375 | 5 0.375  | 4.                  | .6 153.3             | O K      |           |
|             | 10080 min Winter                   | 14.240 | 5 0.246  | 4.                  | .5 100.6             | ΟK       |           |
|             |                                    |        |          |                     |                      |          |           |
|             |                                    |        |          |                     |                      |          |           |
|             | S to:<br>E ven                     |        |          | Flooded '<br>Volume | (mins)               |          |           |
|             | E VEI.                             |        | (mm AIL) | (m. <sup>3</sup> )  | ( 115)               |          |           |
|             | 20                                 | Winter | c 87.792 | 0.0                 | 52                   |          |           |
|             | 30 min<br>60 min                   |        |          | 0.0                 | 52<br>82             |          |           |
|             | 120 min                            |        |          | 0.0                 | 138                  |          |           |
|             | 180 min                            |        |          | 0.0                 | 194                  |          |           |
|             | 240 min                            | Winter |          | 0.0                 | 250                  |          |           |
|             | 360 min                            |        |          | 0.0                 | 366                  |          |           |
|             | 480 min                            |        |          | 0.0                 | 480                  |          |           |
|             | 600 min                            |        |          | 0.0                 | 594                  |          |           |
|             | 720 min                            |        |          | 0.0                 | 704                  |          |           |
|             | 960 min<br>1440 min                |        |          | 0.0                 | 918<br>1152          |          |           |
|             | 1440 min<br>2160 min               |        |          | 0.0                 | 1152                 |          |           |
|             | 2880 min                           |        |          | 0.0                 | 2060                 |          |           |
|             | 4320 min                           |        |          | 0.0                 | 2916                 |          |           |
|             | 5760 min                           |        |          | 0.0                 | 3752                 |          |           |
|             | 7200 min                           | Winter | r 1.238  | 0.0                 | 4488                 |          |           |
|             | 8640 min                           |        |          | 0.0                 | 5200                 |          |           |
|             | 10080 min                          | Winter | r 0.938  | 0.0                 | 5872                 |          |           |
|             |                                    |        |          |                     |                      |          |           |
|             |                                    |        |          |                     |                      |          |           |
|             |                                    |        |          |                     |                      |          |           |
|             |                                    |        |          |                     |                      |          |           |
|             |                                    |        |          |                     |                      |          |           |
|             |                                    |        |          |                     |                      |          |           |
|             |                                    |        |          | Solution            |                      |          |           |

|                              |                            | Page 3    |
|------------------------------|----------------------------|-----------|
|                              | Lilley Stone School        |           |
|                              | Northern Area              | L.        |
|                              | 100yr + 40% CC Attenuation | Micco     |
| Date 13/09/2023              | Designed by paulg          |           |
| File Lilley Stone Northern A | Checked by                 | Dialitaye |
| Innovyze                     | Source Control 2017.1.2    |           |

#### Rainfall Details

| Rainfall Model        | FSR               | Winter Storms Yes          |
|-----------------------|-------------------|----------------------------|
| Return Period (years) | 100               | Cv (Summer) 0.750          |
| Region                | England and Wales | Cv (Winter) 0.840          |
| M5-60 (mm)            | 19.300            | Shortest Storm (mins) 15   |
| Ratio R               | 0.413             | Longest Storm (mins) 10080 |
| Summer Storms         | Yes               | Climate Change % +40       |

#### Pipe Network

Volume in Pipe Network (m<sup>3</sup>) 10 Dia of Outfall Pipe (m) 0.3 Slope of Outfall Pipe (1:X) 200 Roughness of Outfall Pipe (mm) 0.600

Time Area Diagram

Total Area (ha) 1.030

|  |  |  | (mins)<br>To: |  |    |       |
|--|--|--|---------------|--|----|-------|
|  |  |  | 20<br>24      |  | 28 | 0.030 |

|                              |                            | Page 4  |
|------------------------------|----------------------------|---------|
|                              | Lilley Stone School        |         |
|                              | Northern Area              | L'      |
|                              | 100yr + 40% CC Attenuation | Micco   |
| Date 13/09/2023              | Designed by paulg          |         |
| File Lilley Stone Northern A | Checked by                 | Diamaye |
| Innovyze                     | Source Control 2017.1.2    | ·       |

#### Model Details

Storage is Online Cover Level (m) 16.500

#### Cellular Storage Structure

Invert Level (m) 14.000 Safety Factor 5.0 Infiltration Coefficient Base (m/hr) 0.18000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.18000

| Depth (m) | Area (m²) | Inf.Anea (m²) | Depth (m) | Area (m²) | Inf.Area (m²) |
|-----------|-----------|---------------|-----------|-----------|---------------|
| 0.000     | 430.0     | 430.0         | 5.200     | 0.0       | 563.1         |
| 0.400     | 430.0     | 463.2         | 5.600     | 0.0       | 563.1         |
| 0.800     | 430.0     | 496.4         | 6.000     | 0.0       | 563.1         |
| 1.200     | 430.0     | 529.5         | 6.400     | 0.0       | 563.1         |
| 1.600     | 430.0     | 562.7         | 6.800     | 0.0       | 563.1         |
| 1.610     | 0.0       | 563.1         | 7.200     | 0.0       | 563.1         |
| 2.400     | 0.0       | 563.1         | 7.600     | 0.0       | 563.1         |
| 2.800     | 0.0       | 563.1         | 8.000     | 0.0       | 563.1         |
| 3.200     | 0.0       | 563.1         | 8.400     | 0.0       | 563.1         |
| 3.600     | 0.0       | 563.1         | 8.800     | 0.0       | 563.1         |
| 4.000     | 0.0       | 563.1         | 9.200     | 0.0       | 563.1         |
| 4.400     | 0.0       | 563.1         | 9.600     | 0.0       | 563.1         |
| 4.800     | 0.0       | 563.1         | 10.000    | 0.0       | 563.1         |

|             |                                                                                                        |                                                                                                                                             |                                                                                                                                               |                                                                    |                                                                                          |          | Page 1  |
|-------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------|---------|
|             |                                                                                                        |                                                                                                                                             | Lilley S                                                                                                                                      | tone Scho                                                          | ol                                                                                       |          |         |
|             |                                                                                                        |                                                                                                                                             | Southern                                                                                                                                      | Area                                                               |                                                                                          |          | Le .    |
|             |                                                                                                        |                                                                                                                                             | 100yr +                                                                                                                                       | 40% CC At                                                          | tenuati                                                                                  | on       | Micco   |
| Date 13/09/ | 2023                                                                                                   |                                                                                                                                             | Designed                                                                                                                                      | by paulo                                                           | 1                                                                                        |          |         |
| File Lillev | Stone Southern                                                                                         |                                                                                                                                             | Checked                                                                                                                                       |                                                                    |                                                                                          |          | Drainac |
| Innovyze    | Stone Station                                                                                          |                                                                                                                                             |                                                                                                                                               | ontrol 20                                                          | 17 1 2                                                                                   |          |         |
| тшоууге     |                                                                                                        |                                                                                                                                             | Source c                                                                                                                                      | UNICION 20                                                         | ) _ / Z                                                                                  |          |         |
|             | Summary of Resu                                                                                        | lta fa                                                                                                                                      | r 100 vc                                                                                                                                      | or Poturr                                                          | Doriod                                                                                   | 1 (±108) |         |
|             | Summary of Resu                                                                                        | ILS IC                                                                                                                                      | <u> 100 ye</u>                                                                                                                                | ai ketuii                                                          | I PELIOC                                                                                 | 1 (+40%) |         |
|             | На                                                                                                     | f Drai                                                                                                                                      | n Time : 1                                                                                                                                    | 045 minute                                                         | s.                                                                                       |          |         |
|             |                                                                                                        |                                                                                                                                             |                                                                                                                                               |                                                                    |                                                                                          |          |         |
|             | Storm<br>Event                                                                                         | Max<br>Leve                                                                                                                                 |                                                                                                                                               | Max<br>hfiltration                                                 |                                                                                          | Status   |         |
|             | 2 (6110                                                                                                | (m)                                                                                                                                         | -                                                                                                                                             | (1/s)                                                              | (m <sup>3</sup> )                                                                        |          |         |
|             | 1E min Cummo                                                                                           | ~ 1/ EE                                                                                                                                     | 2 0 EE2                                                                                                                                       | 6 3                                                                | 3 301.8                                                                                  | O K      |         |
|             | 15 min Summe:<br>30 min Summe:                                                                         |                                                                                                                                             |                                                                                                                                               | 6.3<br>6.4                                                         |                                                                                          | ОК       |         |
|             | 60 min Summe:                                                                                          |                                                                                                                                             |                                                                                                                                               | 6.7                                                                |                                                                                          | O K      |         |
|             | 120 min Summe:                                                                                         |                                                                                                                                             |                                                                                                                                               | 6.8                                                                |                                                                                          | 0 K      |         |
|             | 180 min Summe:                                                                                         |                                                                                                                                             |                                                                                                                                               | 6.9                                                                |                                                                                          | 0 K      |         |
|             | 240 min Summe                                                                                          |                                                                                                                                             |                                                                                                                                               | 6.9                                                                |                                                                                          | 0 K      |         |
|             | 360 min Summe:                                                                                         |                                                                                                                                             |                                                                                                                                               | 7.0                                                                |                                                                                          | 0 K      |         |
|             | 480 min Summe:                                                                                         |                                                                                                                                             |                                                                                                                                               | 7.0                                                                |                                                                                          | 0 K      |         |
|             | 600 min Summe:                                                                                         |                                                                                                                                             |                                                                                                                                               | 7.0                                                                |                                                                                          | 0 K      |         |
|             | 720 min Summe:                                                                                         |                                                                                                                                             |                                                                                                                                               |                                                                    |                                                                                          |          |         |
|             |                                                                                                        |                                                                                                                                             |                                                                                                                                               | 7.0                                                                |                                                                                          | ОК       |         |
|             | 960 min Summe:                                                                                         |                                                                                                                                             |                                                                                                                                               | 7.0                                                                |                                                                                          | ОК       |         |
|             | 1440 min Summe:                                                                                        |                                                                                                                                             |                                                                                                                                               | 6.9                                                                |                                                                                          | ОК       |         |
|             | 2160 min Summe:                                                                                        |                                                                                                                                             |                                                                                                                                               | 6.8                                                                |                                                                                          | ОК       |         |
|             | 2880 min Summe:                                                                                        |                                                                                                                                             |                                                                                                                                               | 6.7                                                                |                                                                                          | ОК       |         |
|             | 4320 min Summe:                                                                                        |                                                                                                                                             |                                                                                                                                               | 6.6                                                                |                                                                                          | ОК       |         |
|             | 5760 min Summe:                                                                                        |                                                                                                                                             |                                                                                                                                               | 6.4                                                                |                                                                                          | ОК       |         |
|             | 7200 min Summe:                                                                                        |                                                                                                                                             |                                                                                                                                               | 6.3                                                                |                                                                                          | ОК       |         |
|             | 8640 min Summe:                                                                                        |                                                                                                                                             |                                                                                                                                               |                                                                    | 2 264.2                                                                                  | ОК       |         |
|             | 10080 min Summe:                                                                                       |                                                                                                                                             |                                                                                                                                               |                                                                    | 210.9                                                                                    | ОК       |         |
|             | 15 min Winte:                                                                                          | 14.02                                                                                                                                       | 1 0.621                                                                                                                                       | 0.3                                                                | 3 339.4                                                                                  | ОК       |         |
|             | 6 H                                                                                                    |                                                                                                                                             | Poto                                                                                                                                          | Ebodod T                                                           |                                                                                          |          |         |
|             | Eve                                                                                                    | om<br>nt                                                                                                                                    | Rain<br>(mm.hr)                                                                                                                               | Flooded T:<br>Volume                                               | me-Peak<br>(mins)                                                                        |          |         |
|             | Eve                                                                                                    |                                                                                                                                             | ųα iu μιτ)                                                                                                                                    | (m <sup>3</sup> )                                                  | (                                                                                        |          |         |
|             | 15 mi                                                                                                  | n Summe                                                                                                                                     | er 134.356                                                                                                                                    | 0.0                                                                | 44                                                                                       |          |         |
|             |                                                                                                        | n Summe                                                                                                                                     |                                                                                                                                               | 0.0                                                                | 57                                                                                       |          |         |
|             |                                                                                                        | n Summe                                                                                                                                     |                                                                                                                                               | 0.0                                                                | 84                                                                                       |          |         |
|             |                                                                                                        | n Summe                                                                                                                                     |                                                                                                                                               | 0.0                                                                | 142                                                                                      |          |         |
|             |                                                                                                        | n Summe                                                                                                                                     |                                                                                                                                               | 0.0                                                                | 198                                                                                      |          |         |
|             |                                                                                                        | n Summe                                                                                                                                     |                                                                                                                                               | 0.0                                                                | 258                                                                                      |          |         |
|             |                                                                                                        |                                                                                                                                             |                                                                                                                                               |                                                                    | 372                                                                                      |          |         |
|             | 360 mi                                                                                                 | n Summe                                                                                                                                     |                                                                                                                                               |                                                                    |                                                                                          |          |         |
|             | 360 mi:<br>480 mi                                                                                      |                                                                                                                                             |                                                                                                                                               | 0.0                                                                |                                                                                          |          |         |
|             | 480 mi:                                                                                                | n Summe                                                                                                                                     | er 11.112                                                                                                                                     | 0.0                                                                | 488                                                                                      |          |         |
|             | 480 mi:<br>600 mi:                                                                                     | n Summe<br>n Summe                                                                                                                          | er 11.112<br>er 9.299                                                                                                                         | 0.0                                                                | 488<br>608                                                                               |          |         |
|             | 480 mi<br>600 mi<br>720 mi                                                                             | n Summe<br>n Summe<br>n Summe                                                                                                               | er 11.112<br>er 9.299<br>er 8.037                                                                                                             | 0.0<br>0.0<br>0.0                                                  | 488<br>608<br>724                                                                        |          |         |
|             | 480 mi<br>600 mi<br>720 mi<br>960 mi                                                                   | n Summe<br>n Summe<br>n Summe<br>n Summe                                                                                                    | er 11.112<br>er 9.299<br>er 8.037<br>er 6.379                                                                                                 | 0.0<br>0.0<br>0.0<br>0.0                                           | 488<br>608<br>724<br>856                                                                 |          |         |
|             | 480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi                                                        | n Summe<br>n Summe<br>n Summe<br>n Summe<br>n Summe                                                                                         | er 11.112<br>er 9.299<br>er 8.037<br>er 6.379<br>er 4.600                                                                                     | 0.0<br>0.0<br>0.0<br>0.0<br>0.0                                    | 488<br>608<br>724<br>856<br>1098                                                         |          |         |
|             | 480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi                                             | n Summe<br>n Summe<br>n Summe<br>n Summe<br>n Summe<br>n Summe                                                                              | er 11.112<br>er 9.299<br>er 8.037<br>er 6.379<br>er 4.600<br>er 3.312                                                                         | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                             | 488<br>608<br>724<br>856<br>1098<br>1496                                                 |          |         |
|             | 480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi                                             | n Summe<br>n Summe<br>n Summe<br>n Summe<br>n Summe<br>n Summe<br>n Summe                                                                   | er 11.112<br>er 9.299<br>er 8.037<br>er 6.379<br>er 4.600<br>er 3.312<br>er 2.621                                                             | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                      | 488<br>608<br>724<br>856<br>1098<br>1496<br>1908                                         |          |         |
|             | 480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi<br>2880 mi                                  | n Summe<br>n Summe<br>n Summe<br>n Summe<br>n Summe<br>n Summe<br>n Summe<br>n Summe                                                        | er 11.112<br>er 9.299<br>er 8.037<br>er 6.379<br>er 4.600<br>er 3.312<br>er 2.621<br>er 1.882                                                 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0               | 488<br>608<br>724<br>856<br>1098<br>1496<br>1908<br>2720                                 |          |         |
|             | 480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi<br>2880 mi<br>4320 mi                       | n Summe<br>n Summe<br>n Summe<br>n Summe<br>n Summe<br>n Summe<br>n Summe<br>n Summe                                                        | er 11.112<br>er 9.299<br>er 8.037<br>er 6.379<br>er 4.600<br>er 3.312<br>er 2.621<br>er 1.882<br>er 1.487                                     | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0        | 488<br>608<br>724<br>856<br>1098<br>1496<br>1908<br>2720<br>3488                         |          |         |
|             | 480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi<br>4320 mi<br>5760 mi                       | n Summe<br>n Summe<br>n Summe<br>n Summe<br>n Summe<br>n Summe<br>n Summe<br>n Summe<br>n Summe                                             | er 11.112<br>er 9.299<br>er 8.037<br>er 6.379<br>er 4.600<br>er 3.312<br>er 2.621<br>er 1.882<br>er 1.487<br>er 1.238                         | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 488<br>608<br>724<br>856<br>1098<br>1496<br>1908<br>2720<br>3488<br>4264                 |          |         |
|             | 480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi<br>4320 mi<br>5760 mi<br>8640 mi            | n Summe<br>n Summe                       | er 11.112<br>er 9.299<br>er 8.037<br>er 6.379<br>er 4.600<br>er 3.312<br>er 2.621<br>er 1.882<br>er 1.487<br>er 1.238<br>er 1.065             | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 488<br>608<br>724<br>856<br>1098<br>1496<br>1908<br>2720<br>3488<br>4264<br>5016         |          |         |
|             | 480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi<br>2880 mi<br>4320 mi<br>5760 mi<br>8640 mi | n Summe<br>n Summe | er 11.112<br>er 9.299<br>er 8.037<br>er 6.379<br>er 4.600<br>er 3.312<br>er 2.621<br>er 1.882<br>er 1.487<br>er 1.238<br>er 1.065<br>er 0.938 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 488<br>608<br>724<br>856<br>1098<br>1496<br>1908<br>2720<br>3488<br>4264<br>5016<br>5680 |          |         |
|             | 480 mi<br>600 mi<br>720 mi<br>960 mi<br>1440 mi<br>2160 mi<br>2880 mi<br>4320 mi<br>5760 mi<br>8640 mi | n Summe<br>n Summe | er 11.112<br>er 9.299<br>er 8.037<br>er 6.379<br>er 4.600<br>er 3.312<br>er 2.621<br>er 1.882<br>er 1.487<br>er 1.238<br>er 1.065             | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 488<br>608<br>724<br>856<br>1098<br>1496<br>1908<br>2720<br>3488<br>4264<br>5016         |          |         |

|                         |                                              |                            |                               |                    |                     |           | Page 2   |
|-------------------------|----------------------------------------------|----------------------------|-------------------------------|--------------------|---------------------|-----------|----------|
|                         |                                              | ]                          | Lilley S                      | tone Sch           | ool                 |           |          |
|                         |                                              |                            | -<br>Southern                 |                    |                     |           | 4        |
|                         |                                              | -                          |                               | 40% CC A           | ttenuat             | ion       | 1 m      |
| $D_{0} = \frac{12}{00}$ | (2022                                        |                            | -                             |                    |                     | 1011      | Micro    |
| Date 13/09/             |                                              |                            |                               | by paul            | g                   |           | Drainago |
| File Lilley             | / Stone Southern A                           | (                          | Checked                       | by                 |                     |           | Brainage |
| Innovyze                |                                              |                            | Source C                      | ontrol 2           | 017.1.2             |           |          |
|                         | Summary of Resul                             |                            | 100                           | 5 /                | - ·                 | 1 ( 400 ) |          |
|                         |                                              |                            |                               |                    |                     |           |          |
|                         | Storm                                        | Max                        | Max                           | Max                | Max                 | Status    |          |
|                         | Event                                        |                            |                               | nfilbratio         |                     | baas      |          |
|                         | 210110                                       |                            | (m.)                          | (1/s)              | (m <sup>3</sup> )   |           |          |
|                         |                                              |                            |                               |                    |                     |           |          |
|                         | 30 min Winter                                |                            |                               | б.                 |                     | O K       |          |
|                         | 60 min Winter                                |                            |                               |                    | 7 535.0             |           |          |
|                         | 120 min Winter                               |                            |                               |                    | 0 683.5             |           |          |
|                         | 180 min Winter                               |                            |                               | 7.                 |                     |           |          |
|                         | 240 min Winter                               |                            |                               | 7.                 |                     |           |          |
|                         | 360 min Winter                               |                            |                               |                    | 2 819.4             |           |          |
|                         | 480 min Winter                               |                            |                               |                    | 2 837.5             |           |          |
|                         | 600 min Winter                               |                            |                               |                    | 2 851.5             |           |          |
|                         | 720 min Winter                               |                            |                               |                    | 2 848.8             |           |          |
|                         | 960 min Winter                               |                            |                               |                    | 2 830.5             |           |          |
|                         | 1440 min Winter                              |                            |                               | 7.                 |                     |           |          |
|                         | 2160 min Winter                              |                            |                               | 7.                 |                     |           |          |
|                         | 2880 min Winter                              |                            |                               | 6.                 |                     |           |          |
|                         | 4320 min Winter<br>5760 min Winter           |                            |                               | б.                 | 6 506.1<br>4 390.7  |           |          |
|                         | 7200 min Winter                              |                            |                               |                    | 4 390.7<br>3 290.0  |           |          |
|                         | 8640 min Winter                              |                            |                               |                    | 1 204.2             |           |          |
|                         | 10080 min Winter                             |                            |                               |                    | 0 133.2             |           |          |
|                         | S to:<br>Ever                                |                            |                               | Fboded 1<br>Volume | ſine-Peak<br>(mins) |           |          |
|                         |                                              |                            |                               | (m ³)              |                     |           |          |
|                         | 30 min                                       | Winter                     | r 87.792                      | 0.0                | 60                  |           |          |
|                         | 60 min                                       | Winter                     | r 54.663                      | 0.0                | 86                  |           |          |
|                         | 120 min                                      | Winter                     | r 32.917                      | 0.0                | 142                 |           |          |
|                         | 180 min                                      | Winter                     | r 24.162                      | 0.0                | 198                 |           |          |
|                         | 240 min                                      |                            |                               | 0.0                | 252                 |           |          |
|                         | 360 min                                      |                            |                               | 0.0                | 368                 |           |          |
|                         | 480 min                                      |                            |                               | 0.0                | 480                 |           |          |
|                         | 600 min                                      |                            |                               | 0.0                | 596                 |           |          |
|                         | 720 min                                      |                            |                               | 0.0                | 708                 |           |          |
|                         | 960 min                                      |                            |                               | 0.0                | 924                 |           |          |
|                         | 1440 min                                     |                            |                               | 0.0                | 1166                |           |          |
|                         | 2160 min<br>2880 min                         |                            |                               | 0.0                | 1620                |           |          |
|                         |                                              |                            |                               | 0.0<br>0.0         | 2076<br>2944        |           |          |
|                         |                                              | Winter                     |                               | 0.0                | ムシキキ                |           |          |
|                         | 4320 min                                     |                            |                               | 0 0                | 3750                |           |          |
|                         | 4320 min<br>5760 min                         | Winter                     | r 1.487                       | 0.0                | 3752<br>4528        |           |          |
|                         | 4320 min<br>5760 min<br>7200 min             | Winter<br>Winter           | r 1.487<br>r 1.238            | 0.0                | 4528                |           |          |
|                         | 4320 min<br>5760 min                         | Winter<br>Winter<br>Winter | r 1.487<br>r 1.238<br>r 1.065 |                    |                     |           |          |
|                         | 4320 min<br>5760 min<br>7200 min<br>8640 min | Winter<br>Winter<br>Winter | r 1.487<br>r 1.238<br>r 1.065 | 0.0                | 4528<br>5208        |           |          |
|                         | 4320 min<br>5760 min<br>7200 min<br>8640 min | Winter<br>Winter<br>Winter | r 1.487<br>r 1.238<br>r 1.065 | 0.0                | 4528<br>5208        |           |          |

|                              |                            | Page 3  |
|------------------------------|----------------------------|---------|
|                              | Lilley Stone School        |         |
|                              | Southern Area              | L'      |
|                              | 100yr + 40% CC Attenuation | Micco   |
| Date 13/09/2023              | Designed by paulg          |         |
| File Lilley Stone Southern A | Checked by                 | Diamaye |
| Innovyze                     | Source Control 2017.1.2    |         |

#### Rainfall Details

| Rainfall Model        | FSR               | Winter Storms Yes          |
|-----------------------|-------------------|----------------------------|
| Return Period (years) | 100               | Cv (Summer) 0.750          |
| Region                | England and Wales | Cv (Winter) 0.840          |
| M5-60 (mm)            | 19.300            | Shortest Storm (mins) 15   |
| Ratio R               | 0.413             | Longest Storm (mins) 10080 |
| Summer Storms         | Yes               | Climate Change % +40       |

#### Pipe Network

Volume in Pipe Network (m<sup>3</sup>) 10 Dia of Outfall Pipe (m) 0.3 Slope of Outfall Pipe (1:X) 200 Roughness of Outfall Pipe (mm) 0.600

#### Time Area Diagram

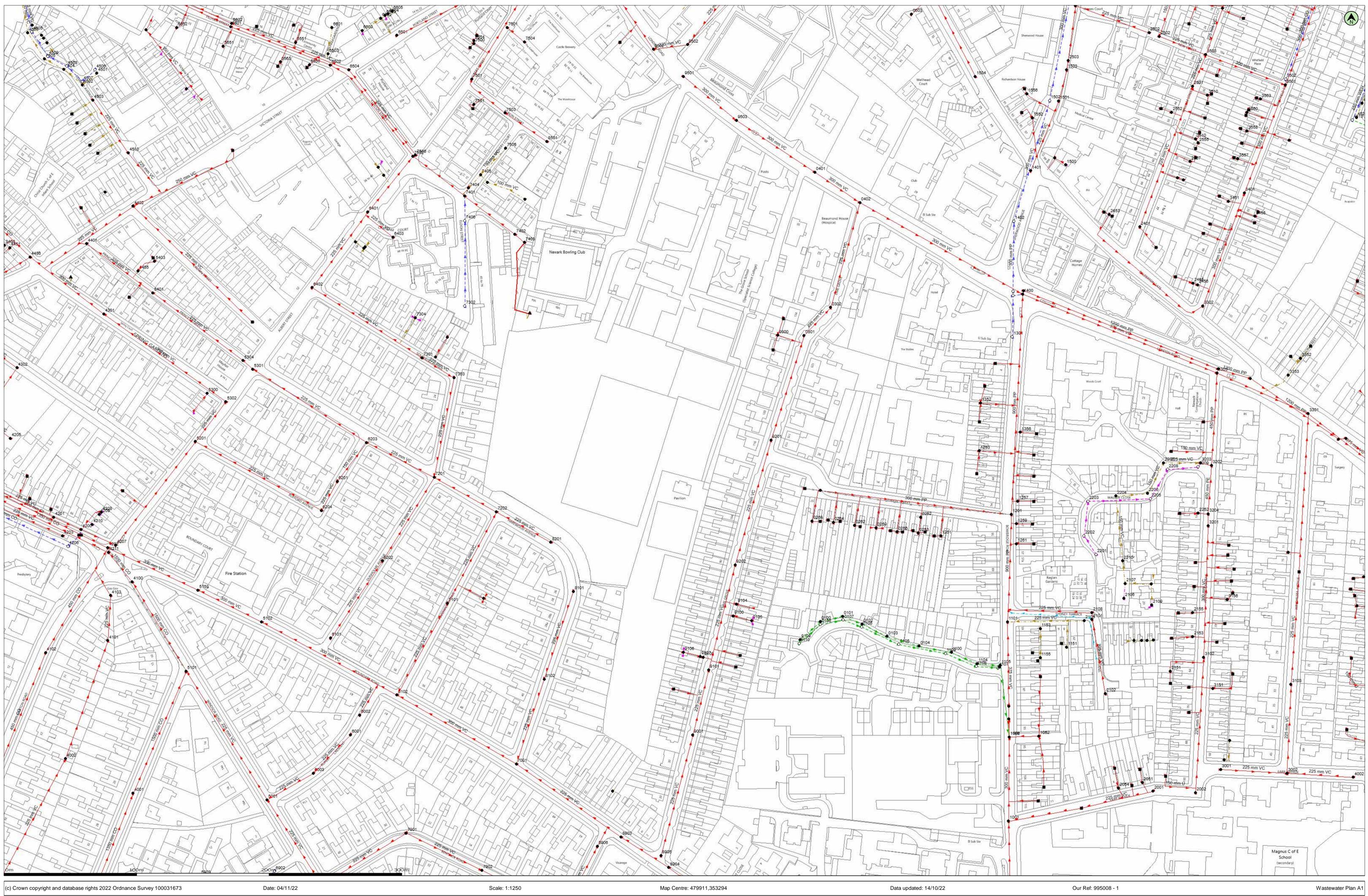
Total Area (ha) 1.370

| Tine<br>From: |                |  |                |  |  | (mins)<br>To: |  |
|---------------|----------------|--|----------------|--|--|---------------|--|
| 0<br>4        | 0.200<br>0.200 |  | 0.300<br>0.200 |  |  | 28<br>32      |  |

|                              |                            | Page 4  |
|------------------------------|----------------------------|---------|
|                              | Lilley Stone School        |         |
|                              | Southern Area              | L'      |
|                              | 100yr + 40% CC Attenuation | Micco   |
| Date 13/09/2023              | Designed by paulg          |         |
| File Lilley Stone Southern A | Checked by                 | Diamaye |
| Innovyze                     | Source Control 2017.1.2    | •       |

#### Model Details

Storage is Online Cover Level (m) 16.500


#### Cellular Storage Structure

Invert Level (m) 14.000 Safety Factor 5.0 Infiltration Coefficient Base (m/hr) 0.18000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.18000

| Depth (m) | Area (m²) | Inf.Area (m²) | Depth (m) | Area (m²) | Inf.Area (m²) |
|-----------|-----------|---------------|-----------|-----------|---------------|
| 0.000     | 575.0     | 575.0         | 5.200     | 0.0       | 728.9         |
| 0.400     | 575.0     | 613.4         | 5.600     | 0.0       | 728.9         |
| 0.800     | 575.0     | 651.7         | 6.000     | 0.0       | 728.9         |
| 1.200     | 575.0     | 690.1         | 6.400     | 0.0       | 728.9         |
| 1.600     | 575.0     | 728.5         | 6.800     | 0.0       | 728.9         |
| 1.610     | 0.0       | 728.9         | 7.200     | 0.0       | 728.9         |
| 2.400     | 0.0       | 728.9         | 7.600     | 0.0       | 728.9         |
| 2.800     | 0.0       | 728.9         | 8.000     | 0.0       | 728.9         |
| 3.200     | 0.0       | 728.9         | 8.400     | 0.0       | 728.9         |
| 3.600     | 0.0       | 728.9         | 8.800     | 0.0       | 728.9         |
| 4.000     | 0.0       | 728.9         | 9.200     | 0.0       | 728.9         |
| 4.400     | 0.0       | 728.9         | 9.600     | 0.0       | 728.9         |
| 4.800     | 0.0       | 728.9         | 10.000    | 0.0       | 728.9         |



## Appendix E – Severn Trent Water Sewer Records



| (c) Crown copyright and database rights 2022 Ordnance Survey 100031673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date: 04/11/22                                                                                                                                                                                                                                                         | Scale: 1:1250 Map Centre: 479911,35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Do not scale off this Map. This plan and any information supplied with it is furnished as a general guide, is only valid at the its correctness is given or implied. In particular this plan and any information shown on it must not be relied upon in the ex (including but not limited to excavations) in the vicinity of SEVERN TRENT WATER assets or for the purposes of determine connection to the sewerage or distribution systems. On 1 October 2011 most private sewers and private lateral drains in S which were connected to a public sewer as at 1 July 2011, Transferred to the ownership of Severn Trent Water and becar drains. A further transfer takes place on 1 October 2012. Private pumping stations, which form part of these sewers or late of Severn Trent Water on or before 1 October 2016. Severn Trent Water does not ossess complete records of these assed displayed on the map. Reproduction by permission of Ordnance Survey on behalf of HMSO. © Crown Copyright and datal Ordnance Survey licence number: 100031673. Document users other than SEVERN TRENT WATER business users are provided for reference purpose only and is subject to copyright, therefore, no further copies should be made from it. | vent of any development or works<br>ning the suitability of a point of<br>Severn Trent Water∯ sewerage area,<br>me public sewers and public lateral<br>eral drains, will transfer to ownership<br>ts. These assets may not be<br>base right 2004. All rights reserved. | Public Foul Gravity/Lateral Drain <ul> <li>Highway Drain</li> <li>Overflow Pipe</li> <li>Manhole Foul</li> <li>Manhole Surface</li> <li>O</li> <li>Public Surface Water Gravity/Lateral Drain</li> <li>Overflow Pipe</li> <li>Disposal Pipe</li> <li>Abandoned Pipe</li> <li>X X X X X X</li> <li>Culverted Water Course</li> <li>Culverted Water Course</li> <li>Culverted Water Course</li> <li>Culverted Water Course</li> <li>Pressure Combined</li> <li>Pumping Station</li> <li>Fitting</li> <li>Fitting</li> <li>Private severs are shown in magenta</li> <li>Private severs are shown in magenta</li> <li>Fitting</li> <li>Fittin</li></ul> | SE` |



| Manhole Refere | nce Liquid Type | Cover Level    | Invert Level   | Depth to Invert |
|----------------|-----------------|----------------|----------------|-----------------|
|                | C<br>C          |                | 0<br>0         | 0<br>0          |
|                | C               |                | 0              | 0               |
|                | C               | 16.44          | 13.93          | 2.51            |
|                | С               | 16.68          | 14.65          | 2.03            |
|                | С               |                | 15.09          | 0               |
|                | C               |                | 0              | 0               |
|                | C<br>C          |                | 0              | 0               |
|                | C               | 16.46          | 13.59          | 2.87            |
|                | C               | 16.4           | 13.46          | 2.94            |
|                | С               | 16.52          | 13.27          | 3.24            |
|                | С               | 16.53          | 13.26          | 3.27            |
|                | C               |                | 0              | 0               |
|                | C               |                | 0              | 0               |
|                | C               |                | 0              | 0               |
|                | C               | 15.97          | 0              | 0               |
|                | С               | 16.12          | 0              | 0               |
| )252           | С               |                | 0              | 0               |
| 253            | C               |                | 0              | 0               |
| 256            | C               |                | 0              | 0               |
| 0259<br>0262   | C<br>C          |                | 0              | 0               |
| )264           | C               |                | 0              | 0               |
| 268            | C               |                | 0              | 0               |
| 301            | C               | 16.46          | 14.36          | 2.1             |
| 302            | С               | 16.48          | 14.23          | 2.25            |
| 9401           | С               | 16.4           | 13.91          | 2.49            |
| 402            | C               | 47.41          | 0              | 0               |
| 0603<br>001    | C<br>C          | 17.11<br>16.16 | 15.58<br>14.58 | 1.53<br>1.58    |
| 001            | C               | 16.16          | 14.58<br>0     | 0               |
| 052            | C               |                | 0              | 0               |
| 101            | C               | 16.14          | 13.69          | 2.45            |
| 105            | С               |                | 0              | 0               |
| 106            | C               |                | 14.37          | 0               |
| 201            | C               |                | 13.52          | 0               |
| 251<br>253     | C               |                | 0              | 0               |
| 255<br>257     | C               |                | 0              | 0               |
| 259            | C               |                | 0              | 0               |
| 261            | С               |                | 0              | 0               |
| 352            | С               |                | 0              | 0               |
| 356            | C               |                | 0              | 0               |
| 400<br>401     | C               | 16.00          | 13.16<br>15.09 | 0               |
| 500            | C               | 16.99          | 0              | 0               |
| 501            | C               | 16.46          | 14.58          | 1.88            |
| 503            | C               | 16.16          | 14.05          | 2.11            |
| 504            | С               |                | 0              | 0               |
| 552            | C               |                | 0              | 0               |
| 556            | C               | 4.0.47         | 0              | 0               |
| 2001           | C<br>C          | 16.47<br>16.59 | 15.41<br>14.81 | 1.06<br>1.78    |
| 2051           | C               | 10.55          | 0              | 0               |
| 2054           | C               |                | 0              | 0               |
| 2101           | С               | 16.28          | 14.36          | 1.92            |
| 2102           | С               | 16.35          | 14.87          | 1.48            |
| 2108           | C               | 16.24          | 14.29          | 1.95            |
| 2151           | C               |                | 0              | 0               |
| 153<br>155     | C<br>C          |                | 0              | 0               |
| 252            | C               |                | 0              | 0               |
| 401            | C               | 16.49          | 14.59          | 1.9             |
| 453            | С               |                | 0              | 0               |
| 455            | С               |                | 0              | 0               |
| 456            | С               |                | 0              | 0               |
| 2501           | C               | 16.51          | 13.87          | 2.64            |
| 2502           | C               | 15.96          | 14.35          | 1.61            |
| 503<br>510     | C<br>C          | 16.14          | 13.99<br>0     | 2.15<br>0       |
| 2552           | C               | _              | 0              | 0               |
| 2555           | C               |                | 0              | 0               |
| 557            | С               |                | 0              | 0               |
| 601            | С               | 15.89          | 13.72          | 2.17            |
| 2602           | C               | 15.9           | 14.37          | 1.53            |
| 001<br>002     | C<br>C          | 16.75<br>16.86 | 15.9<br>15.43  | 0.85            |
| 3002<br>3102   | C               | 16.86          | 15.43          | 2.32            |
| 3103           | C               | 16.77          | 14.64          | 2.13            |
| 3151           | C               |                | 0              | 0               |
| 156            | С               |                | 0              | 0               |
| 201            | C               | 10.5-          | 12.97          | 0               |
| 202            | C               | 16.36          | 13.18          | 3.18            |
| 203<br>204     | C<br>C          | 16.37<br>16.33 | 13.59<br>13.35 | 2.78<br>2.98    |
| 3204<br>301    | C               | 16.33          | 13.35          | 3.96            |
| 302            | C               | 16.21          | 14.39          | 1.82            |
| 303            | C               | 16.44          | 12.77          | 3.67            |
| 401            | С               | 16.22          | 13.92          | 2.3             |
| 451            | С               |                | 0              | 0               |
| 3455           | C               |                | 0              | 0               |
| 3466<br>1501   | C               | 16.00          | 0              | 0               |
| 501<br>503     | C<br>C          | 16.23<br>16.38 | 13.42<br>13.61 | 2.81<br>2.77    |
| 503<br>510     | C               | 10.30          | 13.61<br>0     | 0               |
| 557            | C               | _              | 0              | 0               |
| 558            | C               |                | 0              | 0               |
| 560            | С               |                | 0              | 0               |
| 3563           | С               |                | 0              | 0               |
|                |                 |                |                | 0.01            |
| 3602<br>4001   | C<br>C          | 16.55<br>16.52 | 13.94<br>11.85 | 2.61<br>4.67    |

|              | erence Liquid Ty | ·                                                                                                                | vel Invert Leve |              |
|--------------|------------------|------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 4100         | C                | 16.52                                                                                                            | 11.69           | 4.83         |
| 101<br>102   | C<br>C           | 16.69                                                                                                            | 0<br>12.11      | 0<br>4.58    |
| 4102<br>4103 | C                | 10.09                                                                                                            | 0               | 0            |
| 4161         | C                |                                                                                                                  | 0               | 0            |
| 4200         | С                |                                                                                                                  | 0               | 0            |
| 4201         | С                |                                                                                                                  | 0               | 0            |
| 4202         | C                | 16.23                                                                                                            | 11.31           | 4.92         |
| 4203<br>4205 | C<br>C           | 16.23                                                                                                            | 14.99<br>0      | 1.24<br>0    |
| 4205         | C                | 16.43                                                                                                            | 0               | 0            |
| 4208         | C                |                                                                                                                  | 0               | 0            |
| 4209         | С                |                                                                                                                  | 0               | 0            |
| 4210         | С                |                                                                                                                  | 0               | 0            |
| 4211         | C                | 15.7                                                                                                             | 13.04           | 2.66         |
| 4301         | C                | 15.18                                                                                                            | 12.96           | 2.22         |
| 4302<br>4401 | C<br>C           | 15.17                                                                                                            | 0<br>13.13      | 0 2.04       |
| 4402         | C                | 15.64                                                                                                            | 13.35           | 2.29         |
| 4403         | C                | 14.83                                                                                                            | 12.63           | 2.2          |
| 4451         | С                |                                                                                                                  | 0               | 0            |
| 4455         | С                |                                                                                                                  | 0               | 0            |
| 4503         | C                | 15.19                                                                                                            | 14.61           | 0.58         |
| 4510<br>5001 | C<br>C           | 15.6<br>17.06                                                                                                    | 14.14<br>14.47  | 1.46         |
| 5101         | C                | 16.7                                                                                                             | 11.83           | 2.59<br>4.87 |
| 5102         | C                | 16.98                                                                                                            | 12.71           | 4.87         |
| 5103         | C                | 16.79                                                                                                            | 12.53           | 4.26         |
| 5201         | C                | 16.44                                                                                                            | 13.81           | 2.63         |
| 5300         | C                |                                                                                                                  | 0               | 0            |
| 5301         | С                | 16.74                                                                                                            | 14.3            | 2.44         |
| 5302         | С                | 16.56                                                                                                            | 13.51           | 3.05         |
| 5304         | C                | 16.43                                                                                                            | 14.28           | 2.15         |
| 5401         | C                | 15.6                                                                                                             | 13.62           | 1.98         |
| 5403<br>5551 | C                |                                                                                                                  | 0               | 0            |
| 5551<br>5601 | C<br>C           | 15.73                                                                                                            | 0<br>13.37      | 0<br>2.36    |
| 5601<br>5602 | C                | 15.73                                                                                                            | 12.92           | 2.36         |
| 5652         | C                |                                                                                                                  | 0               | 0            |
| 6001         | C                | 16.56                                                                                                            | 15.26           | 1.3          |
| 6002         | С                | 16.62                                                                                                            | 14.72           | 1.9          |
| 6003         | С                | 16.7                                                                                                             | 14.86           | 1.84         |
| 6101         | С                | 16.88                                                                                                            | 15.82           | 1.06         |
| 6102         | С                | 16.97                                                                                                            | 13.09           | 3.88         |
| 6201         | C                | 16.35                                                                                                            | 15.14           | 1.21         |
| 6202<br>6203 | C<br>C           | 16.72<br>16.44                                                                                                   | 15.46<br>14.74  | 1.26<br>1.7  |
| 6203<br>6204 | C                | 16.29                                                                                                            | 14.74           | 1.49         |
| 6401         | C                | 17.2                                                                                                             | 14.94           | 2.26         |
| 6402         | C                | 17.02                                                                                                            | 15.8            | 1.22         |
| 6403         | С                | 17.38                                                                                                            | 15.64           | 1.74         |
| 6501         | С                | 16.63                                                                                                            | 14.97           | 1.66         |
| 6502         | С                | 16.74                                                                                                            | 14.25           | 2.49         |
| 6504         | С                | 16.85                                                                                                            | 13.3            | 3.55         |
| 6551         | С                |                                                                                                                  | 0               | 0            |
| 6553         | C                |                                                                                                                  | 0               | 0            |
| 6556<br>7001 | C<br>C           | 16.95                                                                                                            | 0<br>13.51      | 0<br>3.44    |
| 7101         | C                | 16.74                                                                                                            | 15.44           | 1.3          |
| 7201         | C                | 16.76                                                                                                            | 15.11           | 1.65         |
| 7202         | С                | 16.79                                                                                                            | 0               | 0            |
| 7301         | С                | 17.26                                                                                                            | 16.25           | 1.01         |
| 7303         | С                | 17.35                                                                                                            | 15.97           | 1.38         |
| 7401         | С                | 17.18                                                                                                            | 15.28           | 1.9          |
| 7402         | С                | 17.35                                                                                                            | 15.65           | 1.7          |
| 7403         | C                | 17.39                                                                                                            | 16.14           | 1.25         |
| 7500         | C                | 10 50                                                                                                            | 0               | 0            |
| 7501<br>7502 | C<br>C           | 16.56<br>17.01                                                                                                   | 14.8<br>14.62   | 1.76<br>2.39 |
| 7502         | C                | 16.94                                                                                                            | 14.62           | 2.39         |
| 7504         | C                | 16.33                                                                                                            | 14.29           | 2.04         |
| 7506         | C                | 17.03                                                                                                            | 13.52           | 3.51         |
| 7551         | С                |                                                                                                                  | 0               | 0            |
| 7554         | С                |                                                                                                                  | 0               | 0            |
| 7601         | С                | 16.17                                                                                                            | 14.07           | 2.1          |
| 7901         | С                | 16.64                                                                                                            | 15.78           | 0.86         |
| 7902<br>8101 | C                | 16.51                                                                                                            | 15.29           | 1.22         |
| 3101<br>3102 | C<br>C           | 16.84                                                                                                            | 15.07           | 1.77<br>2 19 |
| 8102<br>8201 | C                | 16.62<br>16.76                                                                                                   | 14.43<br>15.32  | 2.19<br>1.44 |
| 8201<br>8501 | C                | 17.32                                                                                                            | 0               | 0            |
| 8502         | C                | 16.4                                                                                                             | 14.43           | 1.97         |
| 8903         | C                | 16.84                                                                                                            | 13.95           | 2.89         |
| 8904         | С                |                                                                                                                  | 0               | 0            |
| 8905         | С                | 16.89                                                                                                            | 15.82           | 1.07         |
| 8906         | С                | 16.72                                                                                                            | 0               | 0            |
| 9001         | C                | 16.78                                                                                                            | 15.47           | 1.31         |
| 9100         | C                | 40 70                                                                                                            | 0               | 0            |
| 9101         | C<br>C           | 16.72                                                                                                            | 15.17           | 1.55         |
| 9104<br>9105 | C                |                                                                                                                  | 0               | 0            |
| 9105<br>9106 | C                |                                                                                                                  | 0               | 0            |
| 9107         | C                |                                                                                                                  | 0               | 0            |
| 9108         | C                |                                                                                                                  | 0               | 0            |
| 9201         | C                |                                                                                                                  | 0               | 0            |
| 9202         | C                | 16.64                                                                                                            | 14.89           | 1.75         |
| 9300         | C                | 0                                                                                                                | 0               | 0            |
| 9501         | С                | 16.62                                                                                                            | 14.72           | 1.9          |
| 9502         | С                | 16.47                                                                                                            | 14.64           | 1.83         |
| 9503         | С                |                                                                                                                  | 0               | 0            |
|              | F                |                                                                                                                  | 0               | 0            |
|              |                  | and the second |                 | 0            |
|              | F<br>F           |                                                                                                                  | 0               | 0            |

| 2110 311 312 313 313 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 314 </th <th>Manhole Reference</th> <th>e Liquid Type</th> <th>Cover Level</th> <th>Invert Level</th> <th>Depth to Invert</th> <th>Manhole Reference Liquid Type Cover</th> <th>· Level Invert Level</th> <th>Depth to Invert</th> <th>Manhole Reference</th> <th>Liquid Type</th> <th>Cover Level</th> <th>Invert Level Depth to Invert</th> <th>Manhole Reference</th> <th>Liquid Type Cover Level</th> <th>Invert Level</th> <th>Depth to Invert</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Manhole Reference | e Liquid Type | Cover Level | Invert Level | Depth to Invert | Manhole Reference Liquid Type Cover | · Level Invert Level | Depth to Invert | Manhole Reference | Liquid Type | Cover Level | Invert Level Depth to Invert | Manhole Reference | Liquid Type Cover Level | Invert Level | Depth to Invert |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|-------------|--------------|-----------------|-------------------------------------|----------------------|-----------------|-------------------|-------------|-------------|------------------------------|-------------------|-------------------------|--------------|-----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | F             |             | 0            |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | F             |             | 0            | 0               |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | F             |             | 0            | -               |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | F             |             | 0            |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| 「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「四「□「□「□「□「□「□「□「□「□「□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | F             |             | 0            | 0               |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | F             |             | 0            |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | F             |             | 0            | 0               |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | F             |             | 0<br>0       | 0               |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | F             |             | 0            | 0               |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | F             |             | 0            | 0               |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| Note Note<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | F             |             | 0            | •               |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0102              | F             |             | 0            | -               |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | F             |             | 0            | -               |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1100              | F             |             | 0            | 0               |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| 1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | F             |             | 0            | -               |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1153              | F             |             | 0            | 0               |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| P:1 V:1 <td></td> <td>F</td> <td>16.39</td> <td>0<br/>14.71</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | F             | 16.39       | 0<br>14.71   |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| shee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2106              | F             | 16.03       | 15.35        | 0.68            |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | F             |             |              |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2204              |               | 16.17       | 14.61        | 1.56            |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| b) <th>2206<br/>2207</th> <th></th> <th></th> <th></th> <th>2.36</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2206<br>2207      |               |             |              | 2.36            |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| image         image <t< th=""><th>2210</th><th>F</th><th>16.03</th><th>15.01</th><th>1.02</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2210              | F             | 16.03       | 15.01        | 1.02            |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| Net <th>3353</th> <th>F</th> <th>0</th> <th>0</th> <th>0</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3353              | F             | 0           | 0            | 0               |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| 900     91     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94     94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4501<br>4502      |               |             |              |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| desc i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4504              | F             | 14.44       | 12.79        | 1.65            |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| <td< th=""><th>4505<br/>4525</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4505<br>4525      |               |             |              |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| bit     bit </th <th>4526</th> <th>F</th> <th>16.84</th> <th>14.23</th> <th>2.61</th> <th></th> <th>_</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4526              | F             | 16.84       | 14.23        | 2.61            |                                     |                      |                 |                   |             |             |                              |                   |                         |              | _               |
| biol     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i     i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |               |             |              |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| bit     bit </th <th>6600</th> <th>F</th> <th></th> <th>0</th> <th>0</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6600              | F             |             | 0            | 0               |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| 9684 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 </th <th></th> <th>F</th> <th>17.09</th> <th>14.93<br/>0</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | F             | 17.09       | 14.93<br>0   |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| object ob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6603              | F             |             | 0            |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| Name     Final     Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6605              | F             |             | 0            |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7304              | F             |             | <u> </u>     |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| 111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111 </th <th>7404</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7404              |               |             |              |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | F             | 1           |              |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| Nome Nome<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |               | 16.43       | 14.49        | 1.94            |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| 1010     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0105              |               | 16.39       | 14.46<br>0   |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| 1010 S- <td>0106</td> <td>S</td> <td></td> <td>0</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0106              | S             |             | 0            |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| 1104 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0107              |               |             | 0            |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| 1101 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1107              |               |             | 0            |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| 1402     S     16.56     14.41     2.43       1502     16.70     14.74     2.25       2204     S     16.85     14.74     3.26       2204     S     16.86     14.24     14.24       2205     S     16.26     14.24     2.36       2204     S     16.26     14.14     2.36       2205     S     16.26     14.14     2.36       2206     S     16.26     14.14     2.36       2208     S     16.26     1.41     2.36       2080     S     16.26     1.41     2.36       2080     S     16.18     1.42     2.46       2080     S     16.18     1.41     2.46       2080     S     1.51     3.47       2080     S     1.51     3.47       2080     S     1.51     3.41       2080     S     1.51     3.41       2080     S     1.51     1.51       4060     S     1.51       4070     S     1.51       4081     1.51     1.51       4050     S     1.51       4050     S     1.51       4050     S     1.51   <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1109              |               |             | 0            | 0               |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| 1502 5.4 1.4.2 2.2.4 2.2.4 1.4.2 2.2.4 1.4.2 2.2.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 1.4.4 <t< td=""><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |               |             | •            |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| 2202     S     16.40     14.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     16.40     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1502              | S             | 16.47       | 14.22        | 2.25            |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| 2203     S     16.03     14.74     1.56       2205     S     16.27     14.14     2.13       2206     S     16.27     14.01     2.60       2207     S     16.27     14.01     2.60       2008     S     16.27     1.61     2.60       2009     S     1.62     1.62     3.70       2000     S     1.62     1.62     3.70       2000     S     1.62     1.62     S       3000     S     1.62     1.62     S       4500     S     1.62     1.62       4500     S     1.62     1.62       4500     S     1.62     1.62       4500     S     1.62 <tr< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |               |             |              |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| 220863.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.64.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2203              | S             | 16.03       | 14.47        | 1.56            |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| S10     6.18     1.24     3.74       4206     5     1.25     5.13       4506     5.31     1.34     1.46       4507     5.31     1.34     1.34       4507     5.31     1.37       4508     1.44     1.63     1.34       4509     1.44     1.63     1.64       4509     1.44     1.64     1.64       4509     1.41     1.54       4509     1.41     1.54       4509     1.41     1.54       4509     1.41     1.54       4509     1.41     1.54       4509     1.41     1.54       4509     1.41     1.54       4509     1.41       4509     1.41       4509     1.41       4509     1.41       4509     1.41       4509     1.41       4509     1.41       4509     1.41       4509     1.41       4509     1.41       4509     1.41       4509     1.41       4509     1.41       4509     1.41       4509     1.41       4509     1.41       500     1.51       501 <th>2205<br/>2208</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2205<br>2208      |               |             |              |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| 4206S116.3e1.2.5e5.1.3e1.4.1.4e4507S11.5.1e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e1.4.1.4e </th <th>2209</th> <th></th> <th>16.39</th> <th>13.79</th> <th>2.6</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2209              |               | 16.39       | 13.79        | 2.6             |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| 4575.01.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4206              | S             | 16.38       | 11.25        | 5.13            |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| 4508S 14.413.612.812.913.1612.913.1614.112.915.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.115.1 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |               |             |              |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| 45356.16.6516.6516.6516.7240550.712.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4508              | S             | 14.44       | 13.16        | 1.28            |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| 4605S112.1915.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1015.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |               |             |              |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| 6902       S       17.15       15.36       1.79         7302       S       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4605              | S             | 13.7        | 12.19        | 1.51            |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| 7302       S       O       O       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |               |             |              |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7302              | S             |             | 0            | 0               |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| Image: |                   | S             |             | 0            | 0               |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| Image: Problem index inde |                   |               |             |              |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| Image: state in the state i |                   |               |             |              |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| Image: Problem index inde |                   |               |             |              |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |               |             |              |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| AndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAndAn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |               |             |              |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| Image: Construct of the |                   |               |             |              |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| AABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |               |             |              |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| Image: Normal strain |                   |               |             |              |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
| Image: A problemImage: A problemImage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |               |             |              |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |               |             |              |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |               |             |              |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |               |             |              |                 |                                     |                      |                 |                   |             |             |                              |                   |                         |              |                 |