

Independent Acoustic Consultancy Practice

Building Regulations Sound Insulation Test Report

Independent Acoustic Consultancy Practice

Henstaff Court Business Centre Llantrisant Road, Cardiff CF72 8NG

- t: +44(0)2920 891020
- e: enquiries@hunteracoustics.co.uk
- w: www.hunteracoustics.co.uk

Building Regulations Sound Insulation Test Report

Project: Former Riva Bingo Site

Site Address: Agate Street

Adamsdown

Cardiff

CF24 1PF

HA Reference: 7132/SI1

ANC Report No: 130/97551

ANC Password: G9EFP2

Date: 05/01/2024

Client: Interstrand Ltd

19 Windsor Place

Cardiff

CF10 3BY

Contact: tony@interstrand.co.uk

ISSUE / REVISION

Rev	Date				
		Filename	23.7132_SI1		
		Description	First issue		
			Prepared by:	Checked by:	
0 05 Ja	05 January 2024	Name	Matthew Hunter AMIOA	Sam Shapley BSc(Hons) MIOA	
		Signature			

DOCUMENT CONTROL

Hunter Acoustics has prepared this report for Interstrand Ltd ("the Client"), under the agreed terms of appointment for acoustic consultancy services. This report is for the sole and specific use of the Client, and Hunter Acoustics shall not be responsible for any use of this report or its contents for any purpose other than that for which it was prepared and provided.

Should the Client wish to distribute copies of this report to other parties for information, the whole report should be copied, however no professional liability or warranty shall be extended to other parties by Hunter Acoustics in this connection without the explicit written agreement thereto by Hunter Acoustics.

ACCESSIBILITY HELP

- Zoom in or out by holding down CTRL and turning the mouse wheel.
- CTRL and click on the table of contents or references to tables/figures/sections to navigate.
- Press CTRL and Home key to return to the top of the document.
- Press Alt-left arrow to return to your previous location.

TABLE OF CONTENTS

1.	INTRODUCTION	4
2.	BUILDING REGULATIONS REQUIREMENTS	4
3.	PERSONNEL & EQUIPMENT	5
4.	DETAILS OF SEPARATING CONSTRUCTIONS	6
4.1	Separating Wall Construction Details	6
4.2	Separating Floor Construction Details	6
5.	PROCEDURE	7
5.1	Airborne Sound Insulation	8
5.2	Impact Sound Insulation	10
6.	RESULTS	12
7.	DISCUSSION	14
8.	CONCLUSION	14
API	PENDIX A - ACOUSTIC TERMINOLOGY	15
API	PENDIX A - ANC CERTIFICATION OF TEST RESULTS	16
API	PENDIX C - SOUND INSULATION TEST FORMS	17
	- Wall Airborne Sound Insulation Test Results	
	- Floor Airborne Sound Insulation Test Results	
C.3	s - Floor Impact Sound Insulation Test Results	27
ΛDI	PENDIX A - TEST FOLLIPMENT CALIBRATION CERTIFICATES	33

1. INTRODUCTION

This report is an Association of Noise Consultants (ANC) registered report with the unique registration number 130/97551.

Hunter Acoustics has been commissioned to carry out Building Regulations sound insulation tests at Former Riva Bingo Site, Agate Street, Adamsdown, Cardiff, CF24 1PF.

This report details results of airborne sound insulation tests carried out across 8no separating walls and airborne and impact sound insulation tests carried out across 8no separating floors to determine their sound insulation performances. They are then assessed in line with the requirements of Building Regulations Approved Document E 2003 Edition (ADE2003) Requirement E1 "Protection against sound from other parts of the building and adjoining building".

It is understood that Building Regulations performance standards for "Purpose built dwelling-houses and flats" apply. The performance standards are given in Section 2 and sound insulation test results are compared against them as appropriate in Section 6.

Tests were carried out in completed but unfurnished rooms and all cupboards in kitchens were open during testing.

Acoustic terminology and test forms are given in Appendix A and Appendix C respectively.

2. BUILDING REGULATIONS REQUIREMENTS

Building Regulations ADE2003 separating wall and floor sound insulation performance requirements for "Purpose built dwelling-houses and flats" are quoted below.

Table 2.1 - Building Regulations Part E Performance Requirements

Separating Construction Airborne Sound Insulation Minimum Performance Requirement $D_{nT,w} + C_{tr}$ (dB)		Impact Sound Insulation Maximum Performance Requirement L'nT,w (dB)
Wall	45	-
Floor	45	62

Therefore, the above quoted minimum airborne and maximum impact sound insulation performance values must be met to satisfy the requirements of ADE2003.

3. PERSONNEL & EQUIPMENT

Personnel present: Meirion Townsend of Hunter Acoustics

Matthew Hunter of Hunter Acoustics

Note: All testers were on the ANC register at the time of testing.

Test date: 08 December 2023

04 January 2024

The following test equipment was used during our sound insulation tests;

Table 3.1 – Equipment List

Make	Description	Model	Serial Number	Last Calibrated	Certificate No.
Norsonic	Type 1 - Integrating - averaging Sound Level Meter	140	1403003	26 October 2023	U45770
AS	Preamplifier	1209	12403	26 October 2023	Included
	Microphone	1225	91797	26 October 2023	45769
Norsonic AS	Calibrator (114.06dB @ 999.54)	1251	31429	09 March 2023	U43629
Sennheiser	Bodypack Transmitter 606-648 MHz	SK100	1427385553	-	-
Sennheiser	Bodypack Receiver 606- 648 MHz	EK100	1427312753	-	-
RCF	Amplifier & Loudspeaker	ART310A			
	Loudspeaker Tripod				
Lieca	Laser Measure	DISTO D2	1282650627	01 July 2018	1282650627
DeWALT	Laser Measure	DWHT77100- XJ	79018	-	-
Sound Solutions	Standard Tapping Machine	-	TP02032	15 February 2023	TP02032/02/23

Equipment calibration certificates are included in Appendix D.

Project: Former Riva Bingo Site, Cardiff

4. DETAILS OF SEPARATING CONSTRUCTIONS

4.1 Separating Wall Construction Details

RSD E-WT-2: 12.5mm plasterboard, 19mm plank on 89mm timber studs with 60mm rock fibre insulation between, 9mm OSB board, cavity, 9mm OSB board, 89mm timber studs with 60mm rock fibre insulation, 19mm plank, 12.5mm plasterboard

4.2 Separating Floor Construction Details

RSD E-FT-5: Cellecta Screedboard 28 on 18mm wood based board on 235mm timber joists with 100mm mineral wall between. 2no layers of 15mm plasterboard on resilient bars, MF ceiling with 1no layer 12.5mm plasterboard and 150mm clear void

Third floor apartments had carpets laid on top of floor, vinyl was laid at first floor during 04 January 2024 visit

Note: There was a 1.5m horizontal stagger at 3rd floor between T04 & T05

5. PROCEDURE

The tests detailed in this report have been carried out in full accordance with ISO140-4 and/or ISO140-7. All the procedures in Annex B of the Approved Document to the Building Regulations have been followed, with exception of;

Table 5.1 - Table of Non-Compliance

Section of Annex B	Annex B Requirement	Reason for Non- Compliance	Procedure Carried Out
B2.13	Impact sound insulation	Flats at the third	Impact tests at 3 rd
	tests should be conducted on a floor without a soft	floor were carpeted at the time of	floor conducted on soft floor covering.
	covering (e.g. carpet, foam	testing.	Impact tests at all
	backed vinyl etc.) except in	testing.	other floor levels
	the case of (a) separating		conducted on vinyl
	floor type 1, as described		which provides a
	in the Approved		level of the floor
	Document, or (b) a		performance
	concrete structural floor		without carpet.
	base which has a soft		
	covering as an integral part		
	of the floor.		
B2.14	If a soft floor covering has		
	been installed on any other		
	type of floor, it should be		
	taken up. If that is not		
	possible, at least half of		
	the floor should be		
	exposed and the tapping		
	machine should be placed		
	only on the exposed part of the floor		

5.1 Airborne Sound Insulation

Airborne sound insulation tests were carried out in <u>full</u> accordance with the requirements of BS EN ISO140 (1998): "Acoustics – Measurements of sound insulation in buildings and of building elements" - Part 4: "Field measurements of airborne sound insulation between rooms".

Broadband pink noise was generated in the source room using a pink noise generator and a high performance amplifier/loudspeaker system. Two loudspeaker positions were used. Loudspeaker was placed on tripod – two different heights were used. 1/3-octave band sound pressure levels were measured in both the source (L_1) and receiver (L_2) rooms between 100Hz and 3150Hz. Sound levels were measured across 10 positions in each room (5 positions for each loudspeaker position – 6s measurement period at each position). The sound level meter is paused between each measurement and moved to the next location. All five measurements for each loudspeaker position are stored in the sound level meter which calculates an overall $L_{\rm eq,30secs}$ value of all five measurement periods.

Reverberation times at six microphone positions in the receiver room were measured using steady state noise excitation from one loudspeaker position.

Reverberation times were measured employing interrupted noise method (refs. BS EN ISO 3382-2:2008 "Acoustics — Measurement of room acoustic parameters — Part 2: Reverberation time in ordinary rooms" and BS EN ISO 140-7: 1998 "Acoustics – Measurement of sound insulation in buildings and of building elements").

Background noise levels were measured in the receiver room (5 positions, 6s measurement period at each position). The sound level meter is paused between each measurement and moved to the next location. All five measurements are stored in the sound level meter which calculates an overall $L_{\rm eq,30secs}$ value of all five measurement periods. Background noise was controlled by distant road traffic noise.

The measured 1/3-octave band sound pressure levels (incl. source, receive and background levels) and reverberation times were then analysed following the guidance given in BS EN ISO717 (1997) "Acoustics – Rating of sound insulation in buildings and of building elements" – Part 1: "Airborne sound insulation" as follows:

- i). Level difference 'D' across the separating partition ($D = L_1 L_2$) is calculated.
- ii). Measured receive room noise levels are corrected for the background noise as follows;
 - a). Where the difference between the signal level and background is 10dB or higher, the effect on the signal level is considered insignificant and no correction is required. Therefore:

$$L = L_{s,b}$$

b). Where the difference between the signal level and background is less than 10dB but more than 6dB, the signal level is calculated by subtracting the background noise level on an energy basis. Therefore:

$$L = 10 \log(10^{L_s} \, \text{/s}^{10} - 10^{L_b/10}) \, \text{dB}$$

c). Where the difference between the signal level and background is less than or equal to 6 dB, the measurement is not considered reliable and is deemed to be 'the limit of measurement' so the signal level is estimated by applying a fixed correction of -1.3dB. Therefore:

$$L = L_{s} b - 1.3$$

Where L is the background-corrected receiver room level, L_b is the background noise level and L_{sb} is the receiver room level, as measured, *including* the background noise.

iii). Standardised level difference D_{nT} corresponding to a reference value of the reverberation time in the receiver room is calculated from:

$$E_{nT} = E + 10 \log{(\frac{T}{T_0})}$$
 where;

T is the measured reverberation time in the receiver room The calculation is based on the T_{20} T_0 is the reference reverberation time (for habitable rooms, $T_0 = 0.5$ s)

- iv). 1/3-octave D_{nT} levels are converted to a single 'weighted standardised level difference' figure $D_{nT,w}$.
- v). Spectrum adaptation curve No.2 is applied to obtain C_{tr} value as follows:

$$D_{\text{tr}} = \{-10 \log \sum (10^{(L_i - D_{\text{n}T,i})}/10)\} - E_{\text{n}T,\text{w}}[d] \Gamma$$
 where;

 L_i is the corresponding values for BS EN ISO 717: Part1, No.2 spectrum; $D_{nT,i}$ is the corresponding 1/3 octave band standardised level difference; $D_{nT,w}$ is the single number 'weighted standardised level difference';

vi). Finally, $D_{nT,w}+C_{tr}$ dB value is obtained by adding calculated $D_{nT,w}$ (dB) and C_{tr} (dB) values.

Other acoustic terminology is included in Appendix A.

5.2 Impact Sound Insulation

Tests were carried out in line with the requirements of BS EN ISO140 (1998) "Acoustics – measurement of sound insulation in buildings and of building elements" - Part 7: "Field measurement of impact sound insulation of floors."

- i) A standard tapping machine is placed at four different positions on the floor above:
- ii). 1/3-octave $L_{\rm eq}$ sound pressure levels between 100Hz and 3150Hz are measured across the receive room below and the results are averaged; Sound levels were measured at two different positions for each tapping machine position. For each tapping machine position 12 seconds sample time was used (corresponding to 6 seconds at each measurement position). The sound level meter is paused between each measurement and moved to the next location. Both measurements for each tapping machine position are stored in the sound level meter which calculates an overall $L_{\rm eq,12secs}$ value of both measurement periods.
- iii). 1/3-octave band background levels are measured in the receiver room (5 positions, 6s measurement period at each position). The sound level meter is paused between each measurement and moved to the next location. All five measurements are stored in the sound level meter which calculates an overall $L_{\text{ed.30secs}}$ value of all five measurement periods.
- iv). 1/3-octave band receive room sound pressure levels are corrected for the background noise (L) as follows;
 - a). Where the difference between the signal level and background is 10dB or higher, the effect on the signal level is considered insignificant and no correction is required. Therefore:

$$L = L_{s b}$$

b). Where the difference between the signal level and background is less than 10dB but more than 6dB, the signal level is calculated by subtracting the background noise level on an energy basis. Therefore:

$$L = 10 \log(10^{L_s} / 10 - 10^{L_b/10}) \text{ dB}$$

c). Where the difference between the signal level and background is less than or equal to 6 dB, the measurement is not considered reliable and is deemed to be 'the limit of measurement' so the signal level is estimated by applying a fixed correction of -1.3dB. Therefore:

$$L = L_{s} b - 1.3$$

Where L is the background-corrected receiver room level, L_b is the background noise level and L_{sb} is the receiver room level, as measured, *including* the background noise.

Background noise levels were controlled by rain noise.

- v). 1/3-octave band reverberation time levels are measured using steady state noise excitation at six microphone positions and one loudspeaker position.
- vi). Standardised impact sound pressure level L'_{nT} corresponding to a reference value of the reverberation time in the receive room is calculated from:

$$L'_{nT} = L' + 10 \log {T \choose T_0}$$
 where;

T is the measured reverberation time in the receive room The calculation is based on the T_{20} T_0 is the reference reverberation time (for dwellings, $T_0 = 0.5$ seconds)

vii). 1/3-octave L'_{nT} levels are converted to a single 'weighted standardised level $L'_{nT,w}$ following the procedure defined in BS EN ISO 717 (1997) "Acoustics – Rating of sound insulation in buildings and of building elements" – Part 2: "Impact sound insulation."

Other acoustic terminology is included in Appendix A.

05/01/2024

6. RESULTS

The following table summarises test results and compares them with the airborne and impact sound insulation performance requirements of Building Regulations (ADE2003) for "Purpose built dwelling-houses and flats" as appropriate. Appendix C includes test forms.

Table 6.1 - Summary of Sound Insulation Test Results

ANC Test Reference	Partition Test	Room	Description	Approx Vol. (m³)	Measured	Criteria	Result
97551/01	Wall Airborne 01	Source	T04 Kitchen / Dining Room	56	51 dP D .C	\ 4E 4D D C	PASS
97551/01	Wall Allborne 01	Receiver	T03 Kitchen / Dining Room	51	51 dB $D_{nT,w}+C_{tr}$	\geq 45 dB $D_{nT,w}+C_{tr}$	
97551/02	Wall Airborne 02	Source	T04 Bedroom	30	57 dP D	> 45 dP D C	PASS
97551/02	Wall Allborne 02	Receiver	T05 Bedroom	30	57 dB $D_{nT,w}+C_{tr}$	\geq 45 dB $D_{nT,w}+C_{tr}$	PASS
07554/02	Floor Airborne 01	Source	T04 Kitchen / Dining Room	56	E2 4D D	> 45 dD DC	DACC
97551/03	Floor Airborne 01	Receiver	S05 Kitchen / Dining Room	56	53 dB $D_{nT,w}+C_{tr}$	\geq 45 dB $D_{nT,w}+C_{tr}$	PASS
07554/04	Floor Airborno 02	Source	T04 Bedroom	30	EE 4D D	> 45 dD DC	DACC
97551/04	Floor Airborne 02	Receiver	S05 Bedroom	30	55 dB $D_{nT,w}+C_{tr}$	\geq 45 dB $D_{nT,w}+C_{tr}$	PASS
07554/05	Floor Impact 01	Source	T04 Kitchen / Dining Room	56	E2 4D 11	≤ 62 dB <i>L</i> ' _{nT,w}	DACC
97551/05		Receiver	S05 Kitchen / Dining Room	56	53 dB <i>L</i> ' _{n<i>T</i>,w}		PASS
07554/06	Fl I 1 00	Source	T04 Bedroom	30	E2 4D 11	≤ 62 dB <i>L</i> ' _{nT,w}	PASS
97551/06	Floor Impact 02	Receiver	S05 Bedroom	30	53 dB <i>L</i> ' _{n<i>T</i>,w}		
07554/07	14/all 4: who a war a 02	Source	S02 Living Room / Kitchen	56	E4 dD D	\geq 45 dB $D_{nT,w}+C_{tr}$	DACC
97551/07	Wall Airborne 03	Receiver	S03 Bedroom	30	51 dB $D_{nT,w}+C_{tr}$		PASS
07554/00	Mall Airbarna 04	Source	S02 Bedroom	30	50 dD D . O	\geq 45 dB $D_{nT,w}+C_{tr}$	DAGG
97551/08	Wall Airborne 04	Receiver	S01 Bedroom	30	59 dB $D_{nT,w}+C_{tr}$		PASS
07554/00	Floor Airborno 02	Source	S02 Living Room / Kitchen	56	E2 4D D	> 45 dD DC	DACC
97551/09	Floor Airborne 03	Receiver	F02 Living Room / Kitchen	56	52 dB $D_{nT,w}+C_{tr}$	\geq 45 dB $D_{nT,w}+C_{tr}$	PASS
07554/40	Floor Airborno 04	Source	S02 Bedroom	30	E2 4D D	> 45 dD DC	PASS
97551/10	Floor Airborne 04	Receiver	F02 Bedroom	30	53 dB $D_{nT,w}+C_{tr}$	\geq 45 dB $D_{nT,w}+C_{tr}$	

ANC Test Reference	Partition Test	Room	Description	Approx Vol. (m³)	Measured	Criteria	Result
07554/44	FI 1 100	Source	S02 Living Room / Kitchen	56	E4 4D / I	4 00 dD 41	PASS
97551/11	Floor Impact 03	Receiver	F02 Living Room / Kitchen	56	54 dB <i>L</i> ' _{nT,w}	≤ 62 dB <i>L</i> ' _{nT,w}	
07554/40	Floor Immost 04	Source	S02 Bedroom	30	55 8 P'nT,w+Ctr	≤ 62 dB $P_{nT,w}^{nT,w+C_{tr}}$	DAGG
97551/12	Floor Impact 04	Receiver	F02 Bedroom	30	55 GB L "it"; " "	≤ 62 dB L "nt", w "	PASS
07554/40	Mall Airbarra OF	Source	F08 Bedroom 1	30	55 8 8 Bn7;w‡ Etr	≥ 45 dB Bn7;w‡€tr	DACC
97551/13	Wall Airborne 05	Receiver	F07 Bedroom 1	30	55	≥ 45 dB D'n't',₩+Ctr	PASS
07554/44	Mall Airbarra OC	Source	F02 Bedroom 1	30	54 8B Bn7;₩‡€tr	≥ 45 dB Bn7;w‡€tr	DACC
97551/14	Wall Airborne 06	Receiver	F01 Bedroom 1	30	54 dB <i>D</i> _{n7} ;w+C _{tr}	≥ 45 dB D'' _n †;₩+Ctr	PASS
07554/45	Floor Airbonno OF	Source	F08 Lounge/Kitchen	56	53 8 ₺ ₺ n т; w + C tr	≥ 45 dB ⊅'n7;₩+C _{tr}	PASS
97551/15	Floor Airborne 05	Receiver	G07 Lounge/Kitchen	56	53 dB <i>D</i> ''n†',\w\+Ctr	≥ 45 dB <i>D</i> '' _n †',₩+C _{tr}	
07554/40	Fl A :	Source	F08 Bedroom 1	30	52 8 6 5 n 7; W+Ctr	≥ 45 dB ⊅'n7;w+Ctr	PASS
97551/16	Floor Airborne 06	Receiver	G07 Bedroom 1	30			
97551/17	Floor Impact 05	Source	F08 Lounge/Kitchen	56	54 ØB ₽ _{R₹;₩} +C _{tr}	≤ 62 dB <i>P</i> _R F;₩ ⁺ C _{tr}	PASS
97331/17	1 loor impact oo	Receiver	G07 Lounge/Kitchen	56			
97551/18	Floor Impact 06	Source	F08 Bedroom 1	30	56 dB b 'n <i>∓</i> ,₩+C _{tr}		PASS
		Receiver	G07 Bedroom 1	30	GD 2111 144 . O(1		
97551/19	Wall Airborne 07	Source Receiver	G09 Lounge/Kitchen G08 Lounge/Kitchen	56 56	54 $\underset{nT,w^+}{dB} B_{nT,w^+}^{nT,w^+} \mathcal{E}_{tr}^{tr}$	\geq 45 dB $B_{nT,w}^{nT,w} + S_{tr}^{tr}$	PASS
		Source	G03 Lounge/Kitchen	56			
97551/20	Wall Airborne 08	Receiver	G04 Lounge/Kitchen	56	50 dB $D_{nT,w}+C_{tr}$	\geq 45 dB $D_{nT,w}+C_{tr}$	PASS
97551/21	Floor Airborne 07	Source	F02 Bedroom 1	30	dB D _{IIT,w} +C _{II}	$\frac{D_{nT,w}+C_{tr}}{\geq 45 \text{ dB } D_{nT,w}+C_{tr}}$	PASS
9/551/21	Floor Allborne 07	Receiver	G01 Bedroom 1	30	52 dB $D_{nT,w}+C_{tr}$		
97551/22	Floor Airborne 08	Source	F02 Lounge/Kitchen	56	53 dB <i>D</i> _{n<i>T</i>,w} + <i>C</i> _{tr}	\geq 45 dB $D_{nT,w}+C_{tr}$	PASS
07001722	1 1001 7 111001110 00	Receiver	G01 Lounge/Kitchen	56	oo ab bhi,wi ou	= 10 dB Bn7,w10tr	
97551/23	Floor Impact 07	Source	F02 Bedroom 1	30	56 dB <i>L</i> ' _{nT,w}	≤ 62 dB <i>L</i> ' _{nT,w}	PASS
3.33.,23		Receiver	G01 Bedroom 1	30		= 02 UD L n1,w	1 7.00
97551/24	Floor Impact 08	Source	F02 Lounge/Kitchen	56	53 dB <i>L</i> ' _{nT,w}	≤ 62 dB <i>L</i> ' _{nT,w}	PASS
37 33 1/24	1 1001 IIIIpaot 00	Receiver	G01 Lounge/Kitchen	56	OO GD E N7,W	= 32 33 2 nr,w	

Partition areas are given on the forms in Appendix C.

7. DISCUSSION

Results of our airborne sound insulation tests carried out across separating walls have achieved between 51dB $D_{nT,w}+C_{tr}$ and 59dB $D_{nT,w}+C_{tr}$ compared with 45dB $D_{nT,w}+C_{tr}$ Building Regulations minimum performance requirement.

Results of our airborne sound insulation tests carried out across separating floors have achieved between 52dB $D_{nT,w}+C_{tr}$ and 55dB $D_{nT,w}+C_{tr}$ compared with 45dB $D_{nT,w}+C_{tr}$ Building Regulations minimum performance requirement.

Results of our impact sound insulation tests carried out across separating floors have achieved between 53dB $L'_{nT,w}$ and 56dB $L'_{nT,w}$ compared with 62dB $L'_{nT,w}$ Building Regulations maximum performance requirement.

Note: The limit of measurement was reached due to background noise levels on tests 01, 02, 03, 07, 08, 11, 12, 13, 14, 19 & 20

8. CONCLUSION

Airborne and impact sound insulation tests have been carried out across 8no separating walls and 8no separating floors at Former Riva Bingo Site, Agate Street, Adamsdown, Cardiff, CF24 1PF in accordance with the requirements of Building Regulations Approved Document E 2000 '2003 Edition' (ADE2003) and relevant standards. Tests were carried out on 08 December 2023 & 04 January 2024.

Separating walls and floors are covered under "Purpose built dwelling-houses and flats" of Building Regulations ADE2003.

Results of wall airborne, floor airborne and floor impact sound insulation tests have satisfied "Requirement E1" of Building Regulations ADE2003.

Appendix A gives acoustic terminology. Sound insulation forms are given in Appendix C. Test equipment calibration certificates are given in Appendix D.

Project: Former Riva Bingo Site, Cardiff

APPENDIX A - ACOUSTIC TERMINOLOGY

Human response to noise depends on a number of factors including loudness, frequency content and variations in level with time. Various frequency weightings and statistical indices have been developed in order to objectively quantify 'annoyance'.

The following units have been used in this report:

dB(A)	The sound pressure level A-weighted to correspond with the frequency response of the human ear and therefore a persons' subjective response to frequency content.
$L_{ m eq}$	The equivalent continuous sound level is a notional steady state level which over a quoted time period would have the same acoustic energy content as the actual fluctuating noise measured over that period.
D_{nT}	Standardised level difference corresponding to a reference value of the reverberation time in a receiver room.
$D_{nT,w}$	Single number 'weighted standardised level difference'.
C_{tr}	Correction factor used in level difference calculation to take into account low frequency sounds.
$R_{ m w}$	Weighted Sound Reduction Index. $R_{\rm w}$ is a single number (dB) referring to the ability of a wall or other building structure to provide sound insulation. The higher the number, the better the sound insulation. $R_{\rm w}$ refers to sound insulation achieved in an acoustic testing laboratory.
L'nT,w	Single number 'weighted standardised impact sound pressure level'.
T ₆₀	Reverberation time - the time taken for a steady state sound to drop by 60 dB. A reference reverberation time of T_0 = 0.5 second is used during sound insulation calculations representing average room reverberation time.

APPENDIX B - ANC CERTIFICATION OF TEST RESULTS

Notice to Building Control Officer

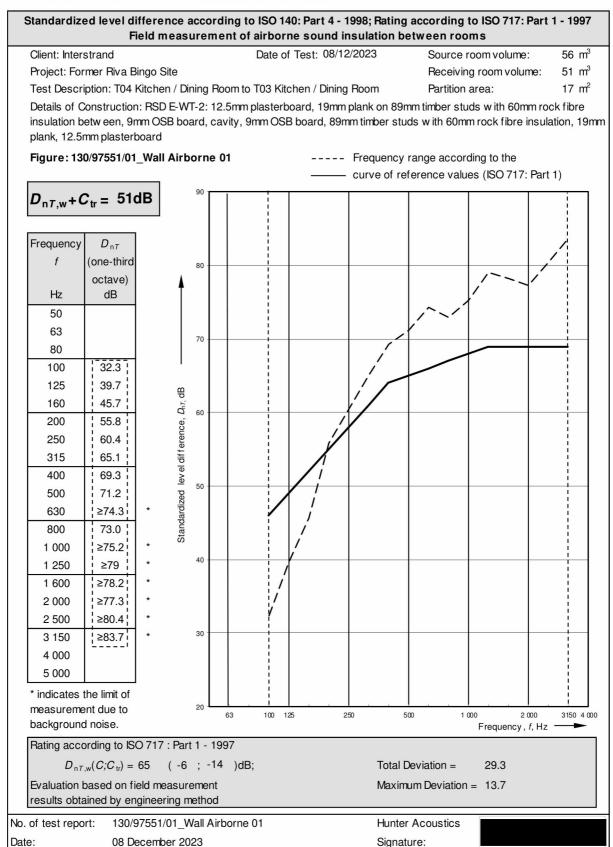
Certification of Test Results

The ANC operates an online, secure, paperless certification system for sound insulation tests.

The online verification (certification) system means that Building Control Bodies will need to follow the steps below to verify the results quoted in the relevant test report:

- 1. Go to the ANC secure server at www.theanc.co.uk
- 2. Navigate to the ADVANCE page which links to the ANC site available for use by BCOs.
- 3. Enter the following in the spaces provided:

Task Number: 97551 Task Password: G9EFP2

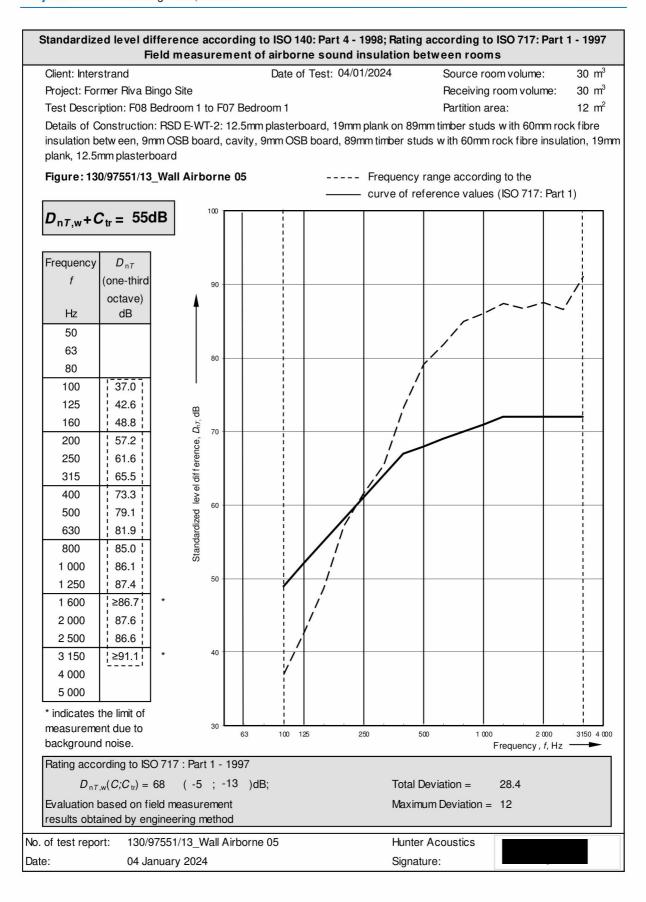

- 4. Select role "Building Control Officer" and press "Login"
- 5. You will then see a summary list of results of all the Tests undertaken to date for this project (Task) as held on the secure primary server and you can print this table for your records.

05/01/2024

APPENDIX C - SOUND INSULATION TEST FORMS

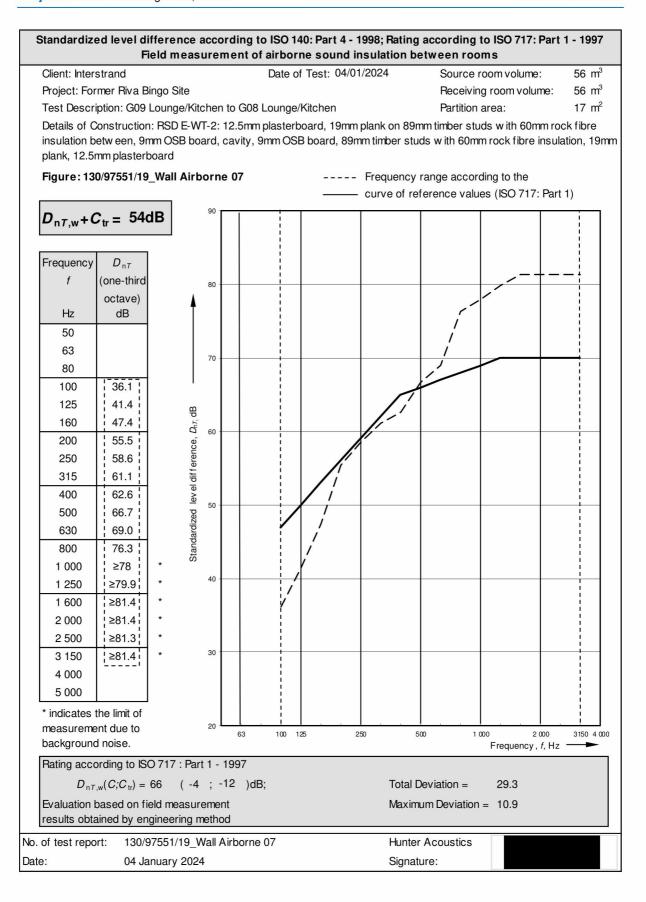
C.1 Wall Airborne Sound Insulation Test Results

Standardized level difference according to ISO 140: Part 4 - 1998; Rating according to ISO 717: Part 1 - 1997 Field measurement of airborne sound insulation between rooms Client: Interstrand Date of Test: 08/12/2023 30 m³ Source room volume: Project: Former Riva Bingo Site Receiving room volume: 30 m³ Test Description: T04 Bedroom to T05 Bedroom Partition area: 8 m² Details of Construction: RSD E-WT-2: 12.5mm plasterboard, 19mm plank on 89mm timber studs with 60mm rock fibre insulation between, 9mm OSB board, cavity, 9mm OSB board, 89mm timber studs with 60mm rock fibre insulation, 19mm plank, 12.5mm plasterboard Figure: 130/97551/02_Wall Airborne 02 ---- Frequency range according to the curve of reference values (ISO 717: Part 1) $D_{nT,w} + C_{tr} = 57dB$ Frequency D_{nT} (one-third octave) dB Hz 50 63 80 80 100 38.0 45.6 125 8 50.5 160 D_{nT} 70 200 58.0 Standardized level difference, 250 63.8 315 67.5 400 73.2 60 500 79.3 630 84.4 800 88.3 1 000 89.5 90.4 1 250 1 600 88.3 2 000 87.7 2 500 89.9 40 3 150 ¦≥91.1 4 000 5 000 * indicates the limit of measurement due to 250 500 1 000 2 000 3150 4 000 background noise. Frequency, f, Hz Rating according to ISO 717: Part 1 - 1997 $D_{nT,w}(C;C_{tr}) = 70$ (-5; -13)dB; Total Deviation = 29.9 Evaluation based on field measurement Maximum Deviation = 13 results obtained by engineering method No. of test report: 130/97551/02_Wall Airborne 02 **Hunter Acoustics** Date: 08 December 2023 Signature:

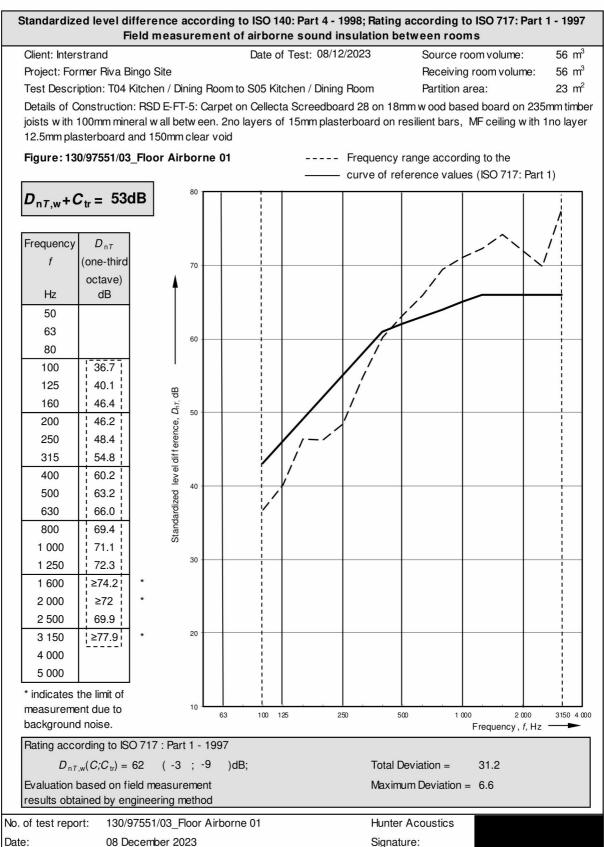


Standardized level difference according to ISO 140: Part 4 - 1998; Rating according to ISO 717: Part 1 - 1997 Field measurement of airborne sound insulation between rooms Date of Test: 08/12/2023 Client: Interstrand 56 m³ Source room volume: Project: Former Riva Bingo Site Receiving room volume: 30 m³ Test Description: S02 Living Room / Kitchen to S03 Bedroom 12 m² Partition area: Details of Construction: RSD E-WT-2: 12.5mm plasterboard, 19mm plank on 89mm timber studs with 60mm rock fibre insulation between, 9mm OSB board, cavity, 9mm OSB board, 89mm timber studs with 60mm rock fibre insulation, 19mm plank, 12.5mm plasterboard Figure: 130/97551/07_Wall Airborne 03 ---- Frequency range according to the curve of reference values (ISO 717: Part 1) $D_{nT,w} + C_{tr} = 51dB$ Frequency D_{nT} (one-third octave) dB Hz 50 63 70 80 100 35.4 35.8 125 8 37.3 160 D_{nT} 60 200 48.7 Standardized level difference, 250 61.2 315 66.5 400 70.7 50 500 76.2 630 78.0 800 81.0 ¦ 1 000 82.8 83.3 1 250 1 600 84.4 2 000 85.1 2 500 ≥88.1 30 3 150 ¦≥88.4¦ 4 000 5 000 * indicates the limit of 20 measurement due to 250 500 1 000 2 000 3150 4 000 background noise. Frequency, f, Hz Rating according to ISO 717: Part 1 - 1997 $D_{nT,w}(C;C_{tr}) = 61$ (-4; -10)dB; Total Deviation = 28.8 Evaluation based on field measurement Maximum Deviation = 10.7 results obtained by engineering method No. of test report: 130/97551/07_Wall Airborne 03 **Hunter Acoustics** Date: 08 December 2023 Signature:

Standardized level difference according to ISO 140: Part 4 - 1998; Rating according to ISO 717: Part 1 - 1997 Field measurement of airborne sound insulation between rooms Client: Interstrand Date of Test: 08/12/2023 30 m³ Source room volume: Project: Former Riva Bingo Site Receiving room volume: 30 m³ Test Description: S02 Bedroom to S01 Bedroom 12 m² Partition area: Details of Construction: RSD E-WT-2: 12.5mm plasterboard, 19mm plank on 89mm timber studs with 60mm rock fibre insulation between, 9mm OSB board, cavity, 9mm OSB board, 89mm timber studs with 60mm rock fibre insulation, 19mm plank, 12.5mm plasterboard Figure: 130/97551/08_Wall Airborne 04 ---- Frequency range according to the curve of reference values (ISO 717: Part 1) $D_{nT,w} + C_{tr} = 59dB$ Frequency D_{nT} (one-third octave) dB Hz 50 63 60 80 100 40.2 49.6 125 8 54.7 160 D_{nT} 50 200 56.2 Standardized level difference, 250 58.9 315 62.9 400 64.9 40 500 68.0 630 69.9 800 73.7 1 000 74.8 1 250 74.6 1 600 ≥75.6 ! 2 000 ≥75.1 2 500 ≥74.8¦ 20 3 150 ¦≥77.3 4 000 5 000 * indicates the limit of 10 measurement due to 250 500 1 000 2 000 3150 4 000 background noise. Frequency, f, Hz Rating according to ISO 717: Part 1 - 1997 $D_{nT,w}(C;C_{tr}) = 69$ (-3; -10)dB; Total Deviation = 26.7 Evaluation based on field measurement Maximum Deviation = 9.8 results obtained by engineering method No. of test report: 130/97551/08_Wall Airborne 04 **Hunter Acoustics** Date: 08 December 2023 Signature:



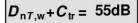
Standardized level difference according to ISO 140: Part 4 - 1998; Rating according to ISO 717: Part 1 - 1997 Field measurement of airborne sound insulation between rooms Client: Interstrand Date of Test: 04/01/2024 30 m³ Source room volume: Project: Former Riva Bingo Site Receiving room volume: 30 m³ Test Description: F02 Bedroom 1 to F01 Bedroom 1 Partition area: 12 m² Details of Construction: RSD E-WT-2: 12.5mm plasterboard, 19mm plank on 89mm timber studs with 60mm rock fibre insulation between, 9mm OSB board, cavity, 9mm OSB board, 89mm timber studs with 60mm rock fibre insulation, 19mm plank, 12.5mm plasterboard Figure: 130/97551/14_Wall Airborne 06 ---- Frequency range according to the curve of reference values (ISO 717: Part 1) $D_{nT,w} + C_{tr} = 54dB$ Frequency D_{nT} (one-third octave) dB Hz 50 63 70 80 100 35.3 45.1 125 8 46.7 160 D_{nT} 60 200 58.6 Standardized level difference, 250 62.2 315 65.2 400 70.2 50 500 74.0 630 77.6 800 82.1 ¦ 1 000 82.7 79.4 1 250 1 600 80.6 2 000 ≥82.2 2 500 79.1 30 3 150 84.5 4 000 5 000 * indicates the limit of 20 measurement due to 250 500 1 000 2 000 3150 4 000 background noise. Frequency, f, Hz Rating according to ISO 717: Part 1 - 1997 $D_{nT,w}(C;C_{tr}) = 68$ (-6; -14)dB; Total Deviation = 28.9 Evaluation based on field measurement Maximum Deviation = 13.7 results obtained by engineering method No. of test report: 130/97551/14_Wall Airborne 06 **Hunter Acoustics** 04 January 2024 Signature: Date:



Standardized level difference according to ISO 140: Part 4 - 1998; Rating according to ISO 717: Part 1 - 1997 Field measurement of airborne sound insulation between rooms Date of Test: 04/01/2024 Client: Interstrand 56 m³ Source room volume: Project: Former Riva Bingo Site Receiving room volume: 56 m³ Test Description: G03 Lounge/Kitchen to G04 Lounge/Kitchen Partition area: 17 m² Details of Construction: RSD E-WT-2: 12.5mm plasterboard, 19mm plank on 89mm timber studs with 60mm rock fibre insulation between, 9mm OSB board, cavity, 9mm OSB board, 89mm timber studs with 60mm rock fibre insulation, 19mm plank, 12.5mm plasterboard Figure: 130/97551/20_Wall Airborne 08 ---- Frequency range according to the curve of reference values (ISO 717: Part 1) $D_{nT,w} + C_{tr} = 50dB$ Frequency D_{nT} (one-third 70 octave) dB Hz 50 63 60 80 100 36.8 35.9 125 8 35.8 160 D_{nT} 50 200 50.9 Standardized level difference, 250 57.6 315 62.3 400 67.3 40 500 69.6 630 68.6 800 66.4 1 000 70.4 1 250 72.2 1 600 73.1 2 000 77.2 2 500 78.1 20 3 150 ≥79 4 000 5 000 * indicates the limit of 10 measurement due to 250 500 1 000 2 000 3150 4 000 background noise. Frequency, f, Hz Rating according to ISO 717: Part 1 - 1997 $D_{nT,w}(C;C_{tr}) = 62$ (-6; -12)dB; Total Deviation = 30.6 Evaluation based on field measurement Maximum Deviation = 13.2 results obtained by engineering method No. of test report: 130/97551/20_Wall Airborne 08 **Hunter Acoustics** 04 January 2024 Signature: Date:

C.2 Floor Airborne Sound Insulation Test Results

Date of Test: 08/12/2023 Client: Interstrand 30 m³ Source room volume:


Project: Former Riva Bingo Site Receiving room volume: 30 m³ Test Description: T04 Bedroom to S05 Bedroom Partition area: 13 m²

Details of Construction: RSD E-FT-5: Carpet on Cellecta Screedboard 28 on 18mm wood based board on 235mm timber joists with 100mm mineral wall between. 2no layers of 15mm plasterboard on resilient bars, MF ceiling with 1no layer

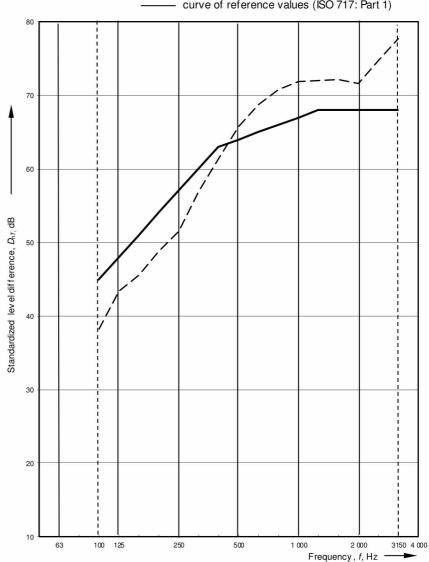

12.5mm plasterboard and 150mm clear void

Figure: 130/97551/04_Floor Airborne 02 ---- Frequency range according to the

curve of reference values (ISO 717: Part 1)

Frequency	D_{nT}
f	(one-third
	octave)
Hz	dB
50	
63	
80	
100	38.3 ¦
125	43.4
160	45.6
200	48.8
250	51.6
315	57.0
400	61.5
500	65.8
630	68.8
800	70.8
1 000	71.9
1 250	72.1
1 600	72.2
2 000	71.7
2 500	74.8
3 150	77.8
4 000	
5 000	

Rating according to ISO 717: Part 1 - 1997

 $D_{nT,w}(C;C_{tr}) = 64$ (-3; -9)

Evaluation based on field measurement results obtained by engineering method Maximum Deviation = 6.7

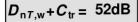
31.8

Total Deviation =

No. of test report: 130/97551/04_Floor Airborne 02 Hunter Acoustics 08 December 2023 Signature: Date:

HA Ref: 7132/SI1 ANC Report No: 130/97551

Date of Test: 08/12/2023 Client: Interstrand 56 m³ Source room volume:


56 m³ Project: Former Riva Bingo Site Receiving room volume: Test Description: S02 Living Room / Kitchen to F02 Living Room / Kitchen 23 m² Partition area:

Details of Construction: RSD E-FT-5: Cellecta Screedboard 28 on 18mm wood based board on 235mm timber joists with 100mm mineral w all between. 2no layers of 15mm plasterboard on resilient bars, MF ceiling with 1no layer 12.5mm

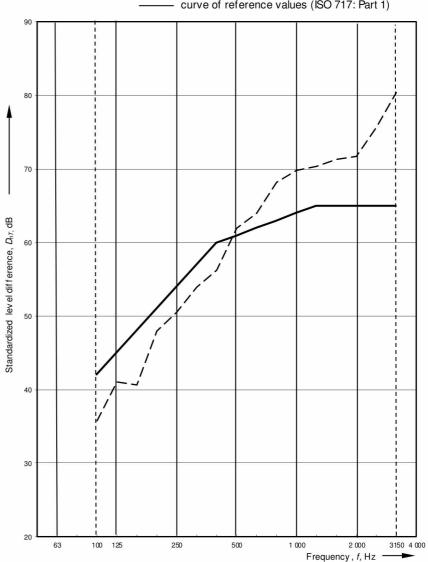

plasterboard and 150mm clear void

Figure: 130/97551/09_Floor Airborne 03 ---- Frequency range according to the

curve of reference values (ISO 717: Part 1)

Frequency	D_{nT}
f	(one-third
	octave)
Hz	dB
50	
63	
80	
100	35.8 ¦
125	41.0
160	40.6
200	48.0
250	50.5
315	54.0
400	56.3
500	62.0
630	64.0
800	68.2
1 000	69.8
1 250	70.4
1 600	71.3
2 000	71.7
2 500	75.6 ¦
3 150	80.4
4 000	
5 000	

Rating according to ISO 717: Part 1 - 1997

 $D_{nT,w}(C;C_{tr}) = 61$ (-3; -9)

Evaluation based on field measurement results obtained by engineering method Total Deviation = 30.8

Maximum Deviation = 7.4

No. of test report: 130/97551/09_Floor Airborne 03 Hunter Acoustics

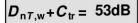
Date: 08 December 2023 Signature:

Client: Interstrand Date of Test: 08/12/2023 Source room volume: 30 m³

Project: Former Riva Bingo Site

Receiving room volume: 30 m³

Test Description: S02 Bedroom to F02 Bedroom


Partition area: 13 m²

Details of Construction: RSD E-FT-5: Cellecta Screedboard 28 on 18mm wood based board on 235mm timber joists with 100mm mineral wall between. 2no layers of 15mm plasterboard on resilient bars, MF ceiling with 1no layer 12.5mm


plasterboard and 150mm clear void

Figure: 130/97551/10_Floor Airborne 04 ---- Frequency range according to the

— curve of reference values (ISO 717: Part 1)

Frequency	D_{nT}
f	(one-third
	octave)
Hz	dB
50	
63	
80	
100	36.5 ¦
125	43.5
160	42.9
200	45.1
250	50.0
315	54.3
400	59.0
500	63.3
630	67.3
800	69.5
1 000	69.5
1 250	68.5
1 600	67.9
2 000	66.5
2 500	72.2
3 150	75.6
4 000	
5 000	

Total Deviation =

Hunter Acoustics

Maximum Deviation = 5.9

25.7

Rating according to ISO 717 : Part 1 - 1997

 $D_{nT,w}(C;C_{tr}) = 61$ (-2; -8) dB;

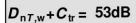
Evaluation based on field measurement

results obtained by engineering method

No. of test report: 130/97551/10_Floor Airborne 04

Date: 08 December 2023 Signature:

Date of Test: 04/01/2024 Client: Interstrand 56 m³ Source room volume: 56 m³ Project: Former Riva Bingo Site Receiving room volume:


Test Description: F08 Lounge/Kitchen to G07 Lounge/Kitchen 23 m² Partition area:

Details of Construction: RSD E-FT-5: Cellecta Screedboard 28 on 18mm wood based board on 235mm timber joists with 100mm mineral w all between. 2no layers of 15mm plasterboard on resilient bars, MF ceiling with 1no layer 12.5mm

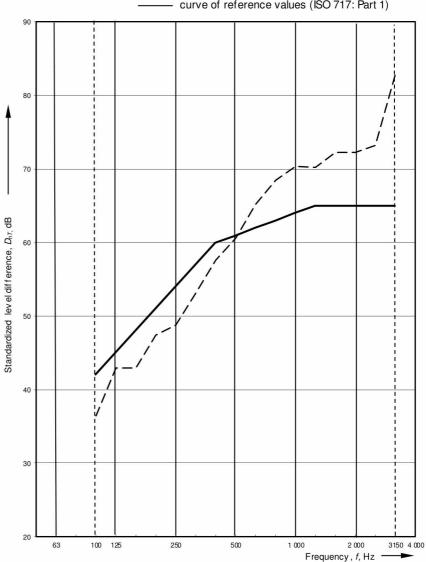

plasterboard and 150mm clear void

Figure: 130/97551/15_Floor Airborne 05 ---- Frequency range according to the

curve of reference values (ISO 717: Part 1)

2	
Frequency	D_{nT}
f	(one-third
	octave)
Hz	dB
50	
63	
80	
100	36.4
125	43.0
160	42.9
200	47.4
250	48.8
315	53.1
400	57.6
500	60.6
630	65.2
800	68.5
1 000	70.4
1 250	70.2
1 600	72.3
2 000	72.3
2 500	73.2
3 150	82.9
4 000	'
5 000	

Rating according to ISO 717: Part 1 - 1997

 $D_{nT,w}(C;C_{tr}) = 61$ (-2; -8

Maximum Deviation = 5.6

Total Deviation =

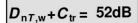
Evaluation based on field measurement results obtained by engineering method

130/97551/15_Floor Airborne 05 Date: 04 January 2024

28.2

No. of test report:

Date of Test: 04/01/2024 Client: Interstrand 30 m³ Source room volume:


Project: Former Riva Bingo Site Receiving room volume: 30 m³ Test Description: F08 Bedroom 1 to G07 Bedroom 1 13 m² Partition area:

Details of Construction: RSD E-FT-5: Cellecta Screedboard 28 on 18mm wood based board on 235mm timber joists with 100mm mineral w all between. 2no layers of 15mm plasterboard on resilient bars, MF ceiling with 1no layer 12.5mm

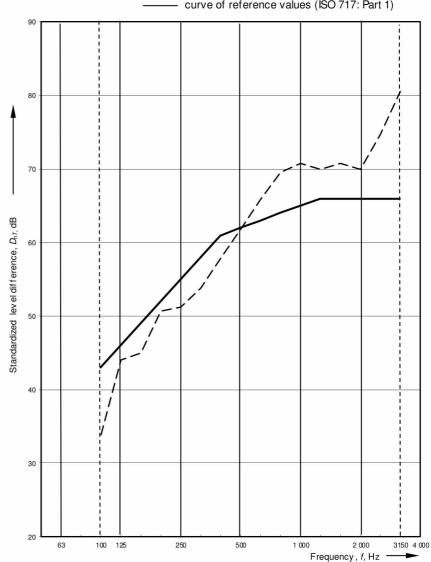

plasterboard and 150mm clear void

Figure: 130/97551/16_Floor Airborne 06 ---- Frequency range according to the

curve of reference values (ISO 717: Part 1)

Frequency	D_{nT}
f	(one-third
	octave)
Hz	dB
50	
63	
80	
100	33.9
125	44.0
160	45.0
200	50.7
250	51.2
315	53.8
400	57.9
500	61.8
630	65.9
800	69.5
1 000	70.8
1 250	70.0
1 600	70.8
2 000	69.9
2 500	74.7
3 150	80.6
4 000	'
5 000	

Rating according to ISO 717: Part 1 - 1997

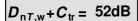
 $D_{nT,w}(C;C_{tr}) = 62$ (-3; -10)dB;

Evaluation based on field measurement results obtained by engineering method Total Deviation = 27.7

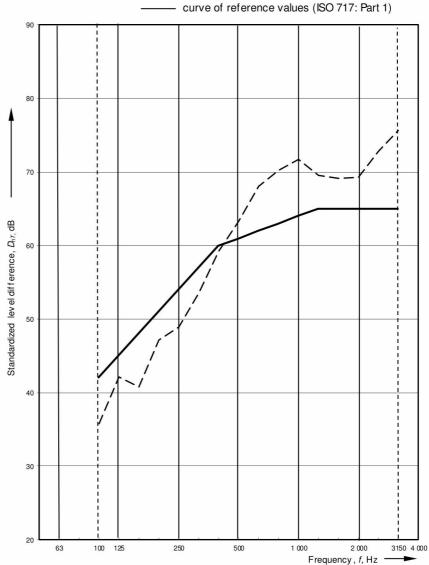
Maximum Deviation = 9.1

No. of test report: 130/97551/16_Floor Airborne 06

Date: 04 January 2024 Hunter Acoustics Signature:


Date of Test: 04/01/2024 Client: Interstrand 30 m³ Source room volume: Project: Former Riva Bingo Site Receiving room volume: 30 m³

Test Description: F02 Bedroom 1 to G01 Bedroom 1 13 m² Partition area:


Details of Construction: RSD E-FT-5: Cellecta Screedboard 28 on 18mm wood based board on 235mm timber joists with 100mm mineral w all between. 2no layers of 15mm plasterboard on resilient bars, MF ceiling with 1no layer 12.5mm

plasterboard and 150mm clear void

Figure: 130/97551/21_Floor Airborne 07 ---- Frequency range according to the

Frequency	D_{nT}
f	(one-third
	octave)
Hz	dB
50	
63	
80	
100	35.7
125	42.1
160	40.8
200	47.2
250	48.9
315	53.6
400	59.3
500	63.3
630	68.0
800	70.3
1 000	71.7
1 250	69.6
1 600	69.1
2 000	69.3
2 500	72.8
3 150	75.6
4 000	'
5 000	

Total Deviation =

Rating according to ISO 717: Part 1 - 1997

 $D_{nT,w}(C;C_{tr}) = 61$ (-3; -9)

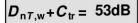
Evaluation based on field measurement Maximum Deviation = 7.2

results obtained by engineering method

No. of test report: 130/97551/21_Floor Airborne 07 Hunter Acoustics Date: 04 January 2024 Signature:

29.4

Date of Test: 04/01/2024 Client: Interstrand 56 m³ Source room volume:


56 m³ Project: Former Riva Bingo Site Receiving room volume: Test Description: F02 Lounge/Kitchen to G01 Lounge/Kitchen 23 m² Partition area:

Details of Construction: RSD E-FT-5: Cellecta Screedboard 28 on 18mm wood based board on 235mm timber joists with 100mm mineral w all between. 2no layers of 15mm plasterboard on resilient bars, MF ceiling with 1no layer 12.5mm

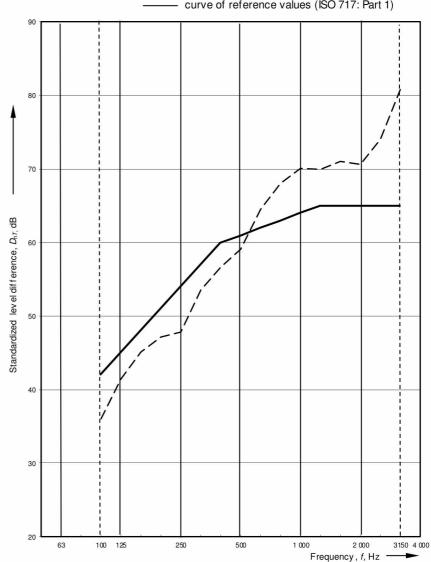

plasterboard and 150mm clear void

Figure: 130/97551/22_Floor Airborne 08 ---- Frequency range according to the

curve of reference values (ISO 717: Part 1)

Frequency	D_{nT}
f	(one-third
	octave)
Hz	dB
50	
63	
80	
100	36.0
125	41.5
160	45.1
200	47.1
250	47.9
315	53.5
400	56.6
500	59.1
630	64.5
800	68.1
1 000	70.1
1 250	69.9
1 600	71.0
2 000	70.7
2 500	74.0 ¦
3 150	80.8
4 000	
5 000	

Rating according to ISO 717: Part 1 - 1997

 $D_{nT,w}(C;C_{tr}) = 61$ (-2; -8

Evaluation based on field measurement results obtained by engineering method

Hunter Acoustics

Total Deviation =

Maximum Deviation = 6.1

31.2

No. of test report: 130/97551/22_Floor Airborne 08 Date: 04 January 2024 Signature:

C.3 Floor Impact Sound Insulation Test Results

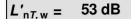
Standardized impact sound pressure levels according to ISO 140 : Part 7 - 1998 Field measurements of impact sound insulation of floors

Client: Interstrand Date of Test: 08/12/2023 Source room volume: 56 m³

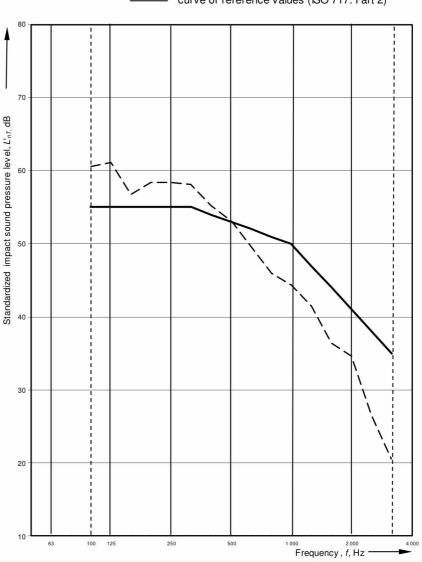
Project: Former Riva Bingo Site

Receiving room volume: 56 m³

Test Description: T04 Kitchen / Dining Room to S05 Kitchen / Dining Room


Partition Area: 23 m²

Details of Construction: RSD E-FT-5: Carpet on Cellecta Screedboard 28 on 18mm wood based board on 235mm timber joists with 100mm mineral wall between. 2no layers of 15mm plasterboard on resilient bars, MF ceiling with 1no layer


12.5mm plasterboard and 150mm clear void Figure: 130/97551/05_Floor Impact 01

---- Frequency range according to the

curve of reference values (ISO 717: Part 2)

Frequency	L' _{nT}
f	(one-third
	octave)
Hz	dB
50	
63	
80	
100	60.6
125	61.1
160	56.8 ¦
200	58.4
250	¦ 58.4 ¦
315	58.1
400	55.3
500	53.0
630	49.5
800	46.0
1 000	44.3
1 250	41.5 ¦
1 600	36.4
2 000	¦ 34.6 ¦
2 500	26.6 ¦
3 150	20.6
4 000	
5 000	

Rating according to ISO 717: Part 2 - 1997

 $L'_{nT,w} = 53 \text{ dB}$

Evaluation based on field measurement results obtained in one-third octave bands by an engineering method

Maximum deviation = 6.1

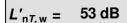
No. of test report: 130/97551/05_Floor Impact 01 Hunter Acoustics

Date: 08 December 2023 Signature:

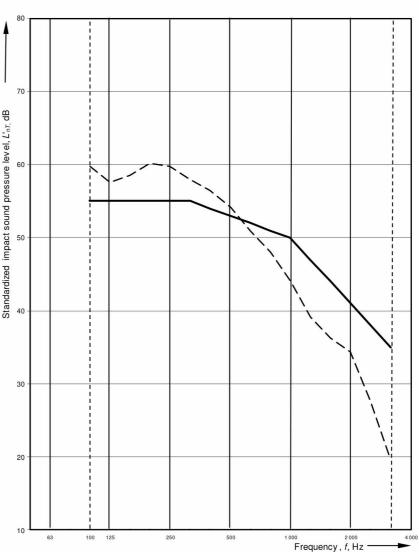
Standardized impact sound pressure levels according to ISO 140 : Part 7 - 1998 Field measurements of impact sound insulation of floors

Client: Interstrand Date of Test: 08/12/2023 Source room volume: 30 m³

Project: Former Riva Bingo Site Receiving room volume: 30 m³


Test Description: T04 Bedroom to S05 Bedroom Partition Area: 13 m²

Details of Construction: RSD E-FT-5: Carpet on Cellecta Screedboard 28 on 18mm w ood based board on 235mm timber joists w ith 100mm mineral w all betw een. 2no layers of 15mm plasterboard on resilient bars, MF ceiling w ith 1no layer


12.5mm plasterboard and 150mm clear void Figure: 130/97551/06_Floor Impact 02

----- Frequency range according to the

— curve of reference values (ISO 717: Part 2)

Frequency	L' _{nT}
f	(one-third
	octave)
Hz	dB
50	
63	
80	
100	59.8
125	57.5
160	58.5
200	60.1
250	59.7
315	58.0
400	56.5
500	54.2 ¦
630	¦ 50.9 ¦
800	48.0
1 000	44.1
1 250	¦ 39.1 ¦
1 600	36.3
2 000	34.3
2 500	27.7
3 150	19.8
4 000	
5 000	

Rating according to ISO 717: Part 2 - 1997

 $L'_{nT,w} = 53 \text{ dB}$

Evaluation based on field measurement results obtained in one-third octave bands by an engineering method

Maximum deviation = 5.1

No. of test report: 130/97551/06_Floor Impact 02 Hunter Acoustics

Date: 08 December 2023 Signature:

Standa	rdized impact sound pressi					
Field measurements of impact sound insulation of floors Client: Interstrand Date of Test: 08/12/2023 Source room volume: 56 m³						
Project: Former Riva E		1 1651. 00/12/2020	Receiving room volume:	56 m ³		
•	Living Room / Kitchen to F02 Liv	ving Room / Kitchen	Partition Area:	23 m²		
1	n: RSD E-FT-5: Cellecta Screedk					
	all between. 2no layers of 15m			4		
12.5mm plasterboard	and 150mm clear void					
Figure: 130/97551/11	_Floor Impact 03	Frequency	y range according to the			
	_	——— curve of r	eference values (ISO 717: Par	t 2)		
$L'_{nT,w} = 54 dI$	B . 80	1				
- 117, W -	─			i		
	i			1		
Frequency L'_{nT}				i i		
f (one-third	70			<u> </u>		
Hz dB						
50	n., d			!		
63	Standardized impact sound pressure level, L'n, dB					
80	<u>8</u> 60					
100 64.0	Ssort I	\ \\		1		
125 60.7	d pre		₹.	į l		
160 59.5	unos					
200 58.4	50 det					
250 57.4	<u> </u>					
315 57.8	dizec		/ /	i l		
400 58.2	ndar		\ \			
500 54.8	ets 40		 			
630 52.4			'-\			
800 48.7						
1 000 45.1						
1 250 40.0	30					
1 600 38.1				\setminus		
2 000 37.5 2 500 29.5				N I		
20.0	* 20			-		
3 150 23.8 4 000	20					
5 000						
* indicates the limit of						
measurement due to	10			i J		
background noise. 63 100 125 250 500 1000 2000 4000 Frequency, f, Hz						
Rating according to ISO 717: Part 2 - 1997						
L', =	$L'_{nT,w} = 54 \text{ dB}$					
Evaluation based on field measurement results obtained Maximum deviation = 8.0						
in one-third octave bands by an engineering method						
No. of test report:	130/97551/11_Floor Impact 03	Hunto	er Acoustics			
Date:	08 December 2023	Signa	ature:			

	Standar	-		sound pressu				rt 7 - 1998	
Field measurements of impact sound insulation of floors Client: Interstrand Date of Test: 08/12/2023 Source room volume: 30 m³									
Project: Form		nao Site		24.0 01				ng room volume:	30 m
Test Descrip			F02	Bedroom			Partition	-	13 m²
17					oard 28 on 1	8mm w ood h		on 235mm timber j	
	mineral waterboard a	all betw eer and 150mm	n. 2nd clear	o layers of 15mr void		rd on resilien - Frequency	nt bars, MF co	eiling w ith 1no lay	er
								(/
<i>L'</i> _{n<i>T</i>, w} =	55 dB	· .	80 -	!					1
	,, 1								i 1
Frequency	L' _{nT}			1					1
^^	one-third	ļ	70 -						Ŷ
	octave)		- 3103						ĺ
Hz	dB	9							-
50		7.5			\ \				
63		evel			\				-
80		Standardized impact sound pressure level L'. r dB	60 -		\	L			
100	62.8 ¦	essi				—	1		
125	65.9	d D					1		
160	60.5	uno					1,7		
200	60.8	act s	50 -	<u> </u>			 	\vdash	i
250	58.5	ed H					`,	 	
315	i	pe						,-7	
	58.3	ırdiz						1	İ
400	57.7	anda							
500	55.9	ξ.	40 -					1,	
630 ¦	53.6							'	\
800	50.9								$\setminus \mid \mid$
1 000	48.2								1
1 250	46.0 ¦		30 -	!					→ ¦
1 600	45.3								į
2 000	43.9								
2 500	36.0								
3 150	28.9	*	20 -	1					- !
4 000									
5 000				į					
	na limit =f			!					
* indicates the measurement			,,						į
background			10 -	63 100	125	250	500 1	2000 2000 Eroquonov f Hz =	4 00
Rating accor) 717· Part	2 - 1	997				Frequency, f, Hz	
. amig accor	$L'_{nT,w} = \frac{1}{2}$								
Evaluation be	NAME OF THE PARTY		man	t results obtaine	od.	Movie	mum devietien	_ 80	
				t results obtaine eering method	eu .	iviaxir	num deviatior	= 0.9	
o. of test repor	rt:	130/97551/	12_F	Toor Impact 04		Hunte	er Acoustics		
ite:		08 Decemb		-		Signa	ature:		
		OO DOOGIIID	U1 Z	,20		Jigi la	aturo.		

Standardized impact sound pressure levels according to ISO 140: Part 7 - 1998 Field measurements of impact sound insulation of floors Date of Test: 04/01/2024 Client: Interstrand 56 m³ Source room volume: Project: Former Riva Bingo Site Receiving room volume: 56 m³ Test Description: F08 Lounge/Kitchen to G07 Lounge/Kitchen Partition Area: 23 m² Details of Construction: RSD E-FT-5: Cellecta Screedboard 28 on 18mm wood based board on 235mm timber joists with 100mm mineral wall between. 2no layers of 15mm plasterboard on resilient bars, MF ceiling with 1no layer 12.5mm plasterboard and 150mm clear void Figure: 130/97551/17_Floor Impact 05 ----- Frequency range according to the curve of reference values (ISO 717: Part 2) 54 dB $L'_{nT,w} =$ L'_{nT} Frequency (one-third 70 octave) dB Hz Standardized impact sound pressure level, L'nT, dB 50 63 80 100 63.0 125 56.7 160 57.1 200 58.8 250 58.5 315 58.5 400 57.8 57.2 500 630 55.2 800 51.9 1 000 49.0 1 250 45.0 30 1 600 42.5 2 000 41.6 2 500 35.2 3 150 24.8 4 000

Rating according to ISO 717: Part 2 - 1997

5 000

 $L'_{nT,w} = 54 \text{ dB}$

Evaluation based on field measurement results obtained in one-third octave bands by an engineering method

10

Maximum deviation = 7.0

Frequency, f, Hz

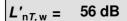
05/01/2024

No. of test report: 130/97551/17_Floor Impact 05 Hunter Acoustics

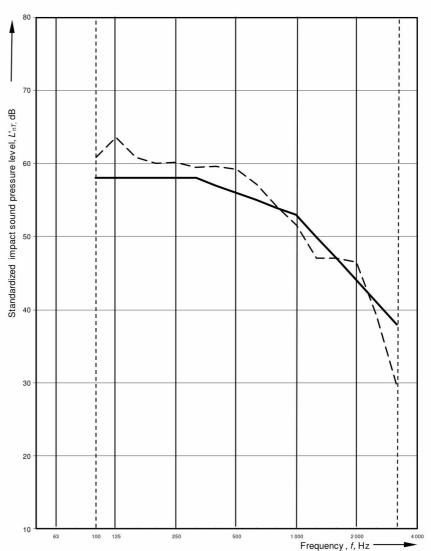
Date: 04 January 2024 Signature:

Standardized impact sound pressure levels according to ISO 140 : Part 7 - 1998 Field measurements of impact sound insulation of floors

Client: Interstrand Date of Test: 04/01/2024 Source room volume: 30 m³ Project: Former Riva Bingo Site Receiving room volume: 30 m³


Test Description: F08 Bedroom 1 to G07 Bedroom 1 Partition Area: 13 m²

Details of Construction: RSD E-FT-5: Cellecta Screedboard 28 on 18mm wood based board on 235mm timber joists with 100mm mineral wall between. 2no layers of 15mm plasterboard on resilient bars, MF ceiling with 1no layer 12.5mm plasterboard and 150mm clear void


Figure: 130/97551/18_Floor Impact 06

---- Frequency range according to the

— curve of reference values (ISO 717: Part 2)

Frequency	L'_{nT}
f	(one-third
	octave)
Hz	dB
50	
63	
80	
100	60.8
125	63.6
160	60.8
200	60.0
250	60.1
315	59.5
400	59.6
500	59.2
630	57.2
800	54.1
1 000	51.6
1 250	47.1
1 600	47.0
2 000	46.5 ¦
2 500	39.2
3 150	29.8
4 000	
5 000	

Rating according to ISO 717: Part 2 - 1997

 $L'_{nT,w} = 56 \text{ dB}$

Evaluation based on field measurement results obtained in one-third octave bands by an engineering method

Maximum deviation = 5.6

No. of test report: 130/97551/18_Floor Impact 06 Hunter Acoustics

Date: 04 January 2024 Signature:

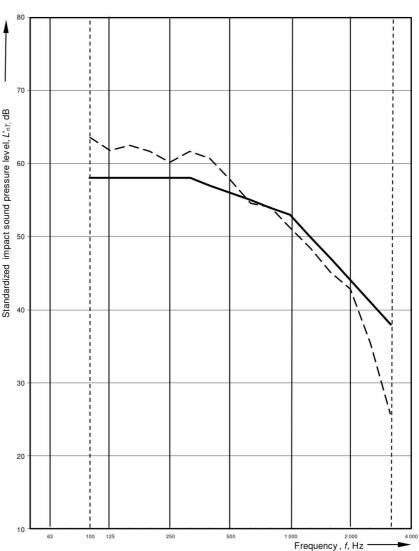
Standardized impact sound pressure levels according to ISO 140 : Part 7 - 1998 Field measurements of impact sound insulation of floors

Client: Interstrand Date of Test: 04/01/2024 Source room volume: 30 m³

Project: Former Riva Bingo Site Receiving room volume: 30 m³

Test Description: F02 Bedroom 1 to G01 Bedroom 1 Partition Area: 13 m²

Details of Construction: RSD E-FT-5: Cellecta Screedboard 28 on 18mm w ood based board on 235mm timber joists w ith 100mm mineral w all betw een. 2no layers of 15mm plasterboard on resilient bars, MF ceiling w ith 1no layer


12.5mm plasterboard and 150mm clear void Figure: 130/97551/23_Floor Impact 07

----- Frequency range according to the

— curve of reference values (ISO 717: Part 2)

 $L'_{nT,w} = 56 dB$

Frequency	L' _{nT}
f	(one-third
	octave)
Hz	dB
50	
63	
80	
100	63.5
125	¦ 61.8 ¦
160	62.5 ¦
200	61.7
250	60.1
315	61.6
400	60.7
500	57.7
630	¦ 54.5 ¦
800	54.0
1 000	51.2
1 250	48.4
1 600	45.1
2 000	¦ 42.8 ¦
2 500	35.5
3 150	25.8
4 000	
5 000	

Rating according to ISO 717: Part 2 - 1997

 $L'_{nT,w} = 56 \text{ dB}$

Evaluation based on field measurement results obtained in one-third octave bands by an engineering method

Maximum deviation = 5.5

No. of test report: 130/97551/23_Floor Impact 07 Hunter Acoustics

Date: 04 January 2024 Signature:

Standardized impact sound pressure levels according to ISO 140 : Part 7 - 1998 Field measurements of impact sound insulation of floors

Client: Interstrand Date of Test: 04/01/2024 Source room volume: 56 m³

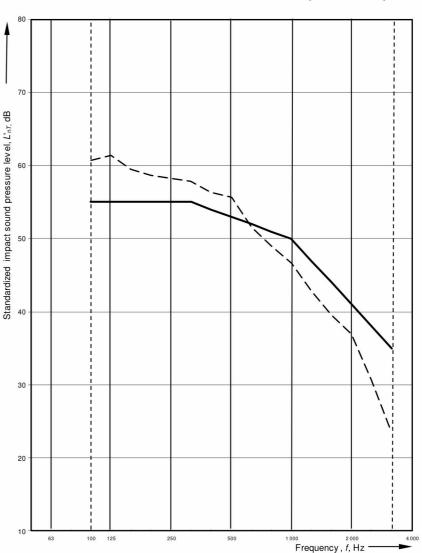
Project: Former Riva Bingo Site

Receiving room volume: 56 m³

Test Description: F02 Lounge/Kitchen to G01 Lounge/Kitchen

Partition Area: 23 m²

Details of Construction: RSD E-FT-5: Cellecta Screedboard 28 on 18mm wood based board on 235mm timber joists with 100mm mineral wall between. 2no layers of 15mm plasterboard on resilient bars, MF ceiling with 1no layer


12.5mm plasterboard and 150mm clear void Figure: 130/97551/24_Floor Impact 08

----- Frequency range according to the

— curve of reference values (ISO 717: Part 2)

 $L'_{nT,w} = 53 dB$

Frequency	L' _{nT}
f	(one-third
Hz	octave) dB
50	
63	
80	
100	60.7
125	61.4
160	59.5
200	58.7
250	58.2
315	57.8
400	56.3
500	55.7
630	51.5
800	48.9
1 000	46.7
1 250	42.8
1 600	39.5
2 000	36.9
2 500	30.7
3 150	23.6
4 000	
5 000	

Rating according to ISO 717: Part 2 - 1997

 $L'_{nT,w} = 53 \text{ dB}$

Evaluation based on field measurement results obtained in one-third octave bands by an engineering method

Maximum deviation = 6.4

No. of test report: 130/97551/24_Floor Impact 08 Hunter Acoustics

Date: 04 January 2024 Signature:

Project: Former Riva Bingo Site, Cardiff

APPENDIX D - TEST EQUIPMENT CALIBRATION CERTIFICATES

Figure 1 - Norsonic 140 SLM Calibration Certificate (serial no. 1403003)

Laboratory Location

Campbell Associates Ltd

5b Chelmsford Road Industrial Estate GREAT DUNMOW, Essex, GB-CM6 1HD Phone 01371 871030

Certificate of Calibration and Conformance

Certificate number: U45770

Test Object: Sound Level Meter, BS EN IEC 61672-1:2003 Class 1

Associated Frequency Analyser to BS EN IEC 61260:1996 Class 1

Producer: Norsonic AS.

Type: 140 Serial number: 1403003

Customer: Hunter Acoustics

Address: Henstaff Court Business Centre,

Llantrisant Road, Pontyclun, Cardiff. CF72 8NG.

Contact Person: Matthew Hunter

Order No: HUN001

Introduction:

Calibration has been performed as set out in CA Technical Procedures which are based on the procedures for periodic verification of sound level meters as per the **Test Object** listed above. Results and conformance statement are overleaf and detailed results, where appropriate, are provided in the attached Measurement Report

Tested:	Producer	Type	Serial No	Certificate No
Microphone	Norsonic	1225	91797	45769
Calibrator*	Norsonic	1251	30873	U43256
Preamplifier	Norsonic	1209	12403	Included

^{*} The calibrator was complete with any required coupler for the microphone specified.

Additional items that have also been submitted for verification:

Wind shield Norsonic Nor1451 (60mm)

Attenuator N/A Extension cable N/A

These items have been taken into account wherever appropriate.

Instruction Manual: Im140_1Ed8R0En Firmware Version: v2.1.670 The test object is a single channel instrument

Conditions	Pressure kPa	Temperature °C	Humidity %RH
Reference conditions	101.325	23	50
Measurement conditions	98.42 ±0.02	22.08 ±0.45	52.60 ±2.9

Calibration Dates:

Received date: 18/10/2023 Reviewed date: 27/10/2023 Calibration date: 26/10/2023 Issued date: 27/10/2023

Technicians: (Electronic certificate)

Calibrated by: Palanivel Marappan B.Eng (Hons), M.Sc

Reviewed by: Jenny Crawford

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Doc ref: SIm-Cert-Master-V3-07

Project: Former Riva Bingo Site, Cardiff

Figure 2 – Norsonic 1251 Calibrator Calibration Certificate (serial no. 31429)

Laboratory Location

Campbell Associates Ltd

5b Chelmsford Road Industrial Estate GREAT DUNMOW, Essex, GB-CM6 1HD Phone 01371 871030

Certificate of Calibration and Conformance

Certificate number: U43629

Test Object: Sound Calibrator

Producer: Norsonic AS. Type: 1251 Serial number: 31429

Customer: Hunter Acoustics

Address: Henstaffe Court Business Centre, Llantrisant Road,

Pontyclun, Cardiff, CF72 8NG

Contact Person: Jane Griffiths
Order No: 2023/MT01

Measurement Results	Level dB	Level Stability dB	Frequency Hz	Distortion %
Measurement 1	114.06	0.05	999.54	0.35
Measurement 2	114.05	0.05	999.54	0.35
Measurement 3	114.06	0.05	999.53	0.35
Result (Average):	114.06	0.05	999.54	0.35
Expanded Uncertainty:	0.1	0.02	1	0.1
Degree of Freedom:	>100	>100	>100	>100
Coverage Factor:	2	2	2	2

The stated level is relative to 20µPa. The level is traceable to National Standards. The stated level is valid at reference conditions. The following correction factors have been applied during the measurement

 Pres:0.0005 dB/kPa
 Temp:0.003 dB/°C
 Humi:0 dB/%RH
 Load volume: 0.0003 dB/mm3

 Conditions
 Pressure kPa
 Temperature °C
 Humidity %RH

 Reference conditions
 101.325
 23
 50

 Measurement conditions
 98.814 ±0.045
 23 ±0.1
 35.5 ±0.9

The reported expanded uncertainty of measurements is based on a standard uncertainty multiplied by the coverage factor of k=2, providing a level of confidence of approximately 95%. Where the degrees of freedom are insufficient to maintain this confidence level, the coverage factor is increased to maintain this confidence level. The uncertainty has been determined in accordance with UKAS requirements.

Records: K:\C A\Calibration\Nor-1504\Nor-1018 CalCal\Current Year\NOR1251_31429_M1.nmf

Preconditioning

The equipment was preconditioned for more than 4 hours in the specified calibration environment.

Method

Calibration has been performed as set out in the current version of CA Technical procedure TP01

Calibration Dates:

 Received date:
 03/03/2023
 Reviewed date:
 09/03/2023

 Calibration date:
 09/03/2023
 Issued date:
 09/03/2023

Technicians: (Electronic certificate)
Calibrated by: Katie Braum
Reviewed by: Jenny Crawford

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Doc ref: Calb-Cert-Master-V3-05

05/01/2024

Figure 3 – Tapping Machine Calibration Certificate (serial no. TP02032)

MANUFACTURER'S CERTIFICATE OF CONFORMANCE RENEWAL

Tapping Machine

Certificate No: TP02032/02/23

Serial No: TP02032

This is to certify that the tapping machine, identified above, has been tested before dispatch and conforms to the requirements of the following Standards:

BS EN ISO 140-7:1998 BS EN ISO 140-8:1998

The results of the above test are retained on file and can be inspected upon request. The following items were checked for conformance with the requirements of the Standards:

Mass of hammers complies Strike velocity of hammers complies Diameter of hammer heads complies Radius of curvature of hammer heads complies complies Falling direction of hammers Strike rate of hammers complies Time between successive hammer impacts complies Average time between impacts complies

Equipment supplied by: Sound Solutions Products Ltd.

Test carried out by: Simon Barrett

Signature:

Date of Test: 15/02/2023

Sound Solutions Products Ltd, 8 Highdown House, Shoreham Airport, West Sussex BN43 5PB Tel: 01273 455074 Fax: 01273 455075 e-mail: info@aasussex.co.uk Company Registration No. 5299317