Engineer/ Manage/ Deliver/

FLOOD RISK AND DRAINAGE ASSESSMENT FOR A PROPOSED AGRICULTURAL STORAGE SHED AT "RENNISON", CARR LANE, NEWPORT, EAST YORKSHIRE

PROJECT NO. JAG/AD/JF/50159-Rp001

Alan Wood & Partners

JANUARY 2024

Issuing Office

341 Beverley Road HULL HU5 1LD

Telephone: 01482 442138

Email: eng@alanwood.co.uk Website: www.alanwood.co.uk

FLOOD RISK AND DRAINAGE ASSESSMENT FOR A PROPOSED AGRICULTURAL STORAGE SHED AT "RENNISON", CARR LANE, NEWPORT, EAST YORKSHIRE

Prepared by:	A Dunn	
Signed: Date:	17 th January 2024	
Approved by:	J Gibson, MEng (Hons), CEng, CWEM MCIWEM Director	
	Fili	
Signed:		
Date:	17 th January 2024	

Issue	Revision	Revised by	Approved by	Revised Date

For the avoidance of doubt, the parties confirm that these conditions of engagement shall not and the parties do not intend that these conditions of engagement shall confer on any party any rights to enforce any term of this Agreement pursuant of the Contracts (Rights of third Parties) Act 1999.

The Appointment of Alan Wood & Partners shall be governed by and construed in all respects in accordance with the laws of England & Wales and each party submits to the exclusive jurisdiction of the Courts of England & Wales.

TABLE OF CONTENTS

1.0	Introduction	3
2.0	Existing Site Description	10
3.0	Proposed Development	14
4.0	Surface Water Drainage	15
5.0	Operation and Maintenance	21
6.0	Flood Risk Assessment	23
7.0	Flood Mitigation Measures	31
8.0	Summary	34

APPENDICES

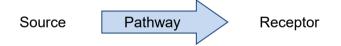
Appendix	A :	Layout Drawing
Appendix	B:	Ouse & Humber Drainage Board Correspondence
Appendix	C:	Hydraulic Calculations
Appendix	D:	Drainage Strategy and SuDS Details Drawings
Appendix	E:	Surface Water Exceedance Flood Routing Drawing
Appendix	F:	Environment Agency Flood Data

1.0 INTRODUCTION

1.1 Background

- 1.1.1 Alan Wood & Partners were commissioned by JW Beaumont Ltd to prepare a Flood Risk and Drainage Assessment for a proposed agricultural storage shed at "Rennison", Carr Lane, Newport, Brough, East Yorkshire in support of an application for planning consent.
- 1.1.2 A Flood Risk and Drainage Assessment (FRDA) for the proposed development is required to assess the development's risk from flooding and the suitability of the site in terms of drainage.

1.2 Layout of Report


- 1.2.1 Section 1 provides an introduction to the FRDA, explains the layout of this FRDA and provides an introduction to flood risk and the latest guidance on development and flood risk in England.
- 1.2.2 Section 2 provides an introduction to the site. The site description is based upon a desktop study and information provided by the developer. In order to obtain further information on flood risk, consultation was undertaken with the Environment Agency.
- 1.2.3 Section 3 of this report details the development proposals and considers the development proposals in relation to the current planning policy on development and flood risk in England (and what type of development is considered appropriate in different flood risk zones). National Planning Policy Framework (NPPF): and its associated Technical Guidance (Communities and Local Government, July 2021) is the current planning policy on flood risk in England, and an introduction to NPPF is provided below.
- 1.2.4 Section 4 considers the surface water drainage arrangements for the proposed development.
- 1.2.5 Section 5 considers the operation and maintenance arrangements for the SuDS components of the proposed development.

- 1.2.6 Section 6 of this report considers the flood risk to site, and the potential for the development proposals to impact on flood risk. The assessment of flood risk is based on the latest planning policy and utilises all the information gathered in the preparation of the report.
- 1.2.7 Section 7 of this report provides details of any recommendations for further work to mitigate against possible flooding.
- 1.2.8 Section 8 of this report provides a summary of the report.

1.3 Flood Risk

- 1.3.1 Flood risk takes account of both the probability and the consequences of flooding.
- 1.3.2 Flood risk = probability of flooding x consequences of flooding
- 1.3.3 Probability is usually interpreted in terms of the return period, e.g. 1 in 100 and 1 in 200 year event, etc. In terms of probability, there is a 1 in 100 (1%) chance of one or more 1 in 100 year floods occurring in a given year. The consequences of flooding depends on how vulnerable a receptor is to flooding. The components of flood risk can be considered using a source-pathway-receptor model.

1.3.4 Sources constitute flood hazards, which are anything with the potential to cause harm through flooding (e.g. rainfall extreme sea levels, river flows and canals). Pathways represent the mechanism by which the flood hazard would cause harm to a receptor (e.g. overtopping and failure of embankments and flood defences, inadequate drainage and inundation of floodplains). Receptors comprise the people, property, infrastructure and ecosystems that could potentially be affected should a flood occur.

1.4 National Planning Policy Framework

1.4.1 General

- 1.4.1.1 NPPF and its associated Technical Guidance replaces Planning Policy Statement 25 and provides guidance on how to evaluate sites with respect to flood risk.
- 1.4.1.2 A summary of the requirements of the NPPF is provided below.

1.4.2 Sources of Flooding

1.4.2.1 The NPPF requires an assessment to flood risk to consider all forms of flooding and lists six forms of flooding that should be considered as part of a flood risk assessment. These forms of flooding are listed in Table 1, along with an explanation of each form of flooding.

Table 1: Forms of flooding

Flooding from Rivers (Fluvial Flooding)

Watercourses flood when the amount of water in them exceeds the flow capacity of the river channel. Flooding can either develop gradually or rapidly, depending on the characteristics of the catchment. Land use, topography and the development can have a strong influence on flooding from rivers.

Flooding from the Sea (Tidal Flooding)

Flooding to low-lying land from the sea and tidal estuaries is caused by storm surges and high tides. Where tidal defences exist, they can be overtopped or breached during a severe storm, which may be more likely with climate change.

Flooding from Land (Pluvial Flooding)

Intense rainfall, often of short duration, that is unable to soak into the ground or enter drainage systems can run quickly off land and result in local flooding. In developed areas this flood water can be polluted with domestic sewage where foul sewers surcharge and overflow. Local topography and built form can have a strong influence on the direction and depth of flow. The design of development down to a micro-level can influence or exacerbate this. Overland flow paths should be taken into account in spatial planning for urban developments. Flooding can be exacerbated if development increases the percentage of impervious area.

Flooding from Groundwater

Groundwater flooding occurs when groundwater levels rise above ground levels (i.e. groundwater issues). Groundwater flooding is most likely to occur in low-lying areas underlain by permeable rocks (aquifers). Chalk is the most extensive source of groundwater flooding.

Flooding from Sewers

In urban areas, rainwater is frequently drained into sewers. Flooding can occur when sewers are overwhelmed by heavy rainfall and become blocked. Sewer flooding continues until the water drains away.

Flooding from Other Artificial Sources (i.e. reservoirs, canals, lakes and ponds)

Non-natural or artificial sources of flooding can include reservoirs, canals and lakes. Reservoir or canal flooding may occur as a result of the facility being overwhelmed and /or as a result of dam or bank failure.

1.4.3 Flood Zones

1.4.3.1 For river and sea flooding, the NPPF uses four Flood Zones to characterise flood risk. These Flood Zones refer to the probability of river and sea flooding, ignoring the presence of defences, and are detailed in Table 2.

Flood Zone	Definition
1	Low probability (less than 1 in 1,000 annual probability of river
•	or sea flooding in any year (<0.1%).
	Medium probability (between 1 in 100 and 1 in 1,000 annual
2	probability of river flooding (1%-0.1%) or between 1 in 200 and
2	1 in 1,000 annual probability of sea flooding (0.5%-0.1%) in
	any year).
	High probability (1 in 100 or greater annual probability of river
3a	flooding (>1%) in any year or 1 in 200 or greater annual
	probability of sea flooding (>0.5%) in any given year).
	This zone comprises land where water has to flow or be stored
	in times flood. Land which would flood with an annual
3b	probability of 1 in 20 (5%) or is designed to flood in an extreme
	flood (0.1%) should provide a starting point for discussions to
	identify functional floodplain.

Table 2: Flood zones

1.4.4 Vulnerability

1.4.4.1 NPPF classifies the vulnerability of developments to flooding into five categories. These categories are detailed in Table 3.

Flood Risk Vulnerability Classification	Examples of Development Types		
Essential Infrastructure	 Essential utility infrastructure including electricity generating power stations and grid and primary substations Wind turbines 		
Highly Vulnerable	 Police stations, ambulance stations, fire stations, command centres and telecommunications installations required to be operational during flooding. Emergency dispersal points. Basement dwellings. Caravans, mobile homes and park homes intended for permanent residential use. Hospitals. Residential institutions such as residential care homes, children's homes, social services homes, prisons and hostels. Buildings used for dwelling houses, student halls of residence, drinking establishments, nightclubs and hotels. Non-residential uses for health services, nurseries and educational establishments. Sites used for holiday or short-let caravans and camping. 		
More Vulnerable			
Less Vulnerable	 Building used for shops, financial, professional and other services, restaurants and cafes, hot foot takeaways, offices, general industry, storage and distribution, non-residential institutions not included in "more vulnerable" and assembly and leisure. Land and buildings used for agriculture and forestry. 		
Water Compatible	 Docks, marinas and wharves. Water based recreation (excluding sleeping accommodation). Lifeguard and coastguard stations. Amenity open space, nature conservation and biodiversity, outdoor sports and recreation and essential facilities such as changing rooms. 		

1.4.4.2 Based on the vulnerability of a development, NPPF states within what Flood Zones(s) the development is appropriate. The flood risk vulnerability and Flood Zone 'compatibility' of developments is summarised in Table 4.

Flood F Vulnera Classific	bility	Essential Infrastructure	Water Compatible	Highly Vulnerable	More Vulnerable	Less Vulnerable
	1	\checkmark	\checkmark	\checkmark	\checkmark	✓
Flood	2	\checkmark	\checkmark	Exception Test	\checkmark	✓
Zone	3a	Exception Test	\checkmark	х	Exception Test	✓
	3b	Exception Test	\checkmark	х	х	х

 Table 4: Flood risk vulnerability and flood zone compatibility

1.4.5 The Sequential Test, Exception Test and Sequential Approach

- 1.4.5.1 The Sequential Test is a risk-based test that should be applied at all stages of development and aims to steer new development to areas with the lowest probability of flooding (Zone 1). This is applied by the Local Planning Authority by means of a Strategic Flood Assessment (SFRA).
- 1.4.5.2 The SFRA and NPPF may require the Exception Test to be applied to certain forms of new development. The test considers the vulnerability of the new development to flood risk and, to be passed, must demonstrate that:
 - There are sustainability benefits that outweigh the flood risk and;
 - The new development is safe and does not increase flood risk elsewhere.
- 1.4.5.3 The Sequential Approach is also a risk-based approach to development. In a development site located in several Flood Zones or with other flood risk, the sequential approach directs the most vulnerable types of development towards areas of least risk within the site.

1.4.6 Climate Change

1.4.6.1 There is a planning requirement to account for climate change in the proposed design. The recommended allowances should be based on the most relevant guidance from the Environment Agency and the Lead Local Flood Authority.

1.4.7 Sustainable Drainage

1.4.7.1 The key planning objectives in NPPF are to appraise, manage and where possible, reduce flood risk. Sustainable Drainage Systems (SuDS) provide an effective way of achieving some of these objectives, and NPPF and Part H of the Building Regulations (2015 Edition) direct developers towards the use of SuDS wherever possible.

2.0 EXISTING SITE DESCRIPTION

2.1 Location

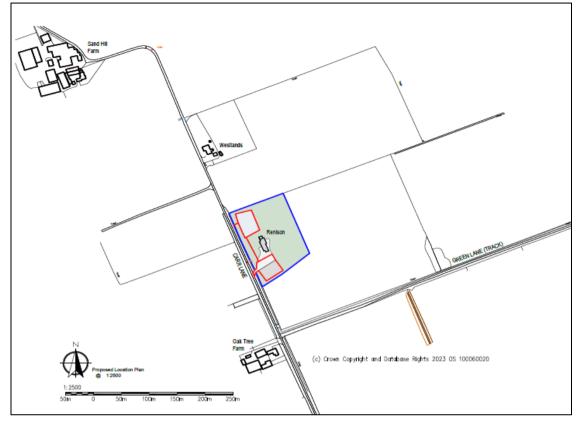

- 2.1.1 The proposed development site is located at "Rennison", Carr Lane, Newport, East Yorkshire.
- 2.1.2 The application site lies to the east of Carr Lane and to the north of Green Lane.
- 2.1.3 The site lies approximately 2.2km to the north of the village of Newport, approximately 2.8km to the north east of the village of Gilberdyke and approximately 10km to the south west of Market Weighton.
- 2.1.4 An aerial photograph and location plan are included in Figures 1 and 2 below, which identify the location of the site.

Figure 1: Aerial Photograph

Figure 2: Site Location Plan

2.1.5 The Ordnance Survey grid reference for the centre of the site development is approximately 484205, 431960.

2.2 Site Description

2.2.1 The area of the proposed development currently comprises a dilapidated storage shed and an area of former undergrowth.

2.3 Surrounding Features

- 2.3.1 The site lies in an area of extensive agricultural land.
- 2.3.2 The existing farm house lies immediately to the north of the application site, with an extensive area of agricultural land and the River Foulness beyond.
- 2.3.3 Agricultural land lies to the east of the site, extending to Market Weighton Canal and beyond.

- 2.3.4 Agricultural land lies to the south, extending to the M62 Motorway and beyond.
- 2.3.5 There is an extensive area of agricultural land to the west of the site.
- 2.3.6 The River Foulness is situated approximately 0.7km to the north of the site.
- 2.3.7 Market Weighton Canal is situated approximately 0.8km to the east of the site.
- 2.3.8 The River Ouse is situated approximately 7.8km to the south of the site.
- 2.3.9 The River Humber is situated approximately 9.7km to the south east of the site.
- 2.3.10 There are a number of ponds located approximately 1.6km to the south east of the site.
- 2.3.11 There are a number of ponds located approximately 5km to the south east of the site.
- 2.3.12 There are a number of ponds located approximately 3.7km to the north east of the site.

2.4 Topography

2.4.1 LIDAR data has been obtained which shows that the existing ground levels over the area of the new development vary from approximately 0.92m to 1.85m OD(N). The average existing ground level over the footprint of the new building has been calculated at approximately 1.34m OD(N).

2.5 Ground Conditions

2.5.1 A desktop study of the British Geological Survey map shows that the local geology comprises superficial deposits of Alluvium – Clay, silt, sand and gravel overlaying a bedrock of Mercia Mudstone Group – Mudstone.

- 2.5.2 A study of the local groundwater maps show that the site overlays a Secondary B Aquifer and lies in an area where the groundwater vulnerability classification is 'Medium High'.
- 2.5.3 A borehole record in the local region shows the presence of clays extending to 3m below ground level.
- 2.5.4 The local ground conditions are therefore unsuitable for soakaways / infiltration methods to be used as the means for disposal of the surface water run-off from the development.

3.0 PROPOSED DEVELOPMENT

3.1 The Development

- 3.1.1 The proposed development comprises the construction of a new agricultural storage building.
- 3.1.2 A drawing showing details of the proposed development is included in Appendix A.

3.2 Flood Risk

- 3.2.1 In terms of flood risk vulnerability, the construction of buildings for agricultural use is classed as 'Less Vulnerable' development (Table 3).
- 3.2.2 In terms of flood zone compatibility, the construction of 'Less Vulnerable' development is considered to be appropriate in Flood Zone 3 (Table 4).
- 3.2.3 All of the land under the ownership of the applicant is shown to lie in Flood Zone 3 and consequently there is no opportunity to re-locate the proposed development into a lower flood risk area.

4.0 SURFACE WATER DRAINAGE

4.1 General

4.1.1 The surface water drainage has been designed in accordance with current CIRIA C753 SuDS Manual guidelines.

4.2 Existing Site

4.2.1 From the aerial photograph included in Figure 3 below, it can be seen that the area of the development comprises a dilapidated storage shed and cleared undergrowth with no positive drainage.

Figure 3: Aerial Photograph

4.3 Run-off Destination

4.3.1 Requirement H3 of the Building Regulations establishes a preferred hierarchy for disposal of surface water. Consideration should firstly be given to soakaway, infiltration, watercourse and sewer in that priority order.

- 4.3.2 The underlying strata in the vicinity of the development is considered to be unsuitable for soakaways to be used as the means for disposal of surface water run-off from the new development (see Section 2.5 of this report).
- 4.3.3 The second preferred option would be to discharge the surface water run-off from the development to a watercourse.
- 4.3.4 There is an open drainage ditch situated along the western boundary of the site which is the obvious point of discharge for the surface water run-off from the development. It is therefore proposed that the run-off from the development discharges to this drainage ditch.
- 4.3.5 This drainage ditch is not shown to lie under the jurisdiction of the Ouse and Humber Drainage Board who are the local internal drainage board in this area.
- 4.3.6 They have, however, been consulted regarding this proposal and they have confirmed that the ditch does not lie under their control, They have advised that a Land Drainage Consent will be required prior to the construction works being undertaken.

4.4 Flood Risk

4.4.1 For new developments, the current design criteria required for the surface water drainage will need to be based upon the critical 1 in 100 year storm event, with an additional allowance to account for climate change resulting from global warming. There should be no above ground flooding for the 1 in 30 year return period and no property flooding or off site flooding from the critical 1 in 100 year storm event, with the additional allowance to account for climate change.

4.5 Climate Change

4.5.1 An additional allowance of 30% has been included in the preliminary surface water drainage design to account for the anticipated increase in peak rainfall due to climate change resulting from global warming in accordance with East Riding of Yorkshire Council guidelines.

4.6 Peak Flow Control

- 4.6.1 Based upon the site layout drawing included in Appendix A, the new impermeable area created by the development which will need to be positively drained has been calculated at approximately 892m^{2.}
- 4.6.2 The uncontrolled surface water run-off from the new development could be approximately 12l/s based on BS EN 752 calculations, using a rainfall intensity of 50mm/hour. However, to meet the flood risk planning requirements, it is normally unacceptable to discharge flows freely from the proposed development site at an unrestricted rate.
- 4.6.3 SuDS Guidance advises that flows from the proposed development should be limited to the greenfield run-off rate.
- 4.6.4 However, based on an agricultural discharge rate of 1.4l/s/ha and the contributing area of the site, this would only equate to approximately 0.12l/s for this development which cannot be achieved in practical terms.
- 4.6.5 It is considered that the lowest discharge rate which can be achieved in order to avoid blockages and future maintenance issues is 2l/s, and consequently this discharge rate has been used for design purposes.
- 4.6.6 The Ouse and Humber Drainage Board have confirmed that this discharge rate is acceptable. A copy of the correspondence received is included in Appendix B.

4.7 Design Output

- 4.7.1 Based upon the design criteria set out above, hydraulic model calculations have been undertaken in order to assess the pipe sizes and pipe gradients and to determine the volume of surface water storage which will need to be provided.
- 4.7.2 The model output shows that the pipe sizes required will be 225mm in diameter.

- 4.7.3 The design work undertaken has shown that a gravity outfall can be achieved and consequently the required restriction to the discharge rate will be achieved by means of an appropriate vortex flow control.
- 4.7.4 A summary of the storage volumes required is set out in Table 5 below.

Storm Event	1 in 1 Probability Storm Event	1 in 30 Probability Storm Event	1 in 100 Probability Storm Event + 30%
Storage Volume Required	37m ³	40m ³	46m ³
Additional Storage Volume Required	Nil	3m ³	6m ³

Table 5: Volume of Surface Water Storage Required

- 4.7.5 For this development, it is proposed that the volume of storage required to accommodate the peak flow from the 1 in 100 probability storm event, including climate change, will be stored within the existing attenuation pond located to the north of the farm house, which will be enlarged to accommodate the storage volume required for the development.
- 4.7.6 A copy of the hydraulic calculations is included in Appendix C.

4.8 Drawing

4.8.1 Drawings showing the proposed surface water drainage strategy and SuDS details for the development are included in Appendix D.

4.9 Volume Control

- 4.9.1 SuDS guidance advises that the run-off volume from the developed site for the 1 in 100 year 6-hour rainfall event should not exceed the greenfield runoff volume for the same event.
- 4.9.2 However, as detailed above, for this development a discharge rate of 2l/s has been used for design purposes.

- 4.9.3 Whilst the greenfield run-off rate will be marginally exceeded at times of peak flow, it is considered that such a small discharge rate will not have any detrimental effect on the drainage network or other parties downstream of the development.
- 4.9.4 The impact on the receiving watercourse is therefore considered to be acceptable.

4.9 Pollution Control

- 4.9.1 It is a requirement to ensure that the quality of any receiving body is not adversely affected by the development.
- 4.9.2 Adequate pollution control measures will consequently need to be incorporated in the detailed design of the drainage network.
- 4.9.3 Investigations have revealed that the development site overlays a Secondary B Aquifer and lies within a Groundwater Vulnerability Zone classified as 'Medium High'.
- 4.9.4 In order to minimise the risk of pollution to the final watercourse, clean roof water drainage should discharge directly into the sealed drainage network and then directly towards the watercourse.
- 4.9.5 On this basis the risk of pollutants entering the watercourse is considered to be extremely remote.

4.10 Designing for Exceedance

- 4.10.1 Flood risk from overland exceedance flows from the new surface water drainage network and from off-site sources should be mitigated to a large extent by the new surface water drainage system.
- 4.10.2 The ground floor construction level of the building will be raised above external ground levels to shed water away from the building.

- 4.10.3 The existing overland flow routes should generally be maintained within the final layout of the development site without increasing the flood risk to off-site parties.
- 4.10.4 Any existing flood risk may reduce by the creation of a formal surface water drainage system but cannot be entirely removed.
- 4.10.5 A drawing showing the existing and anticipated overland surface water exceedance flood routing resulting from the development is included in Appendix E.

4.11 Highways Drainage

4.11.1 The development does not incorporate any formal highway drainage.

5.0 OPERATION AND MAINTENANCE

- 5.1 The drainage pipework is designed with self-cleansing gradients and consequently the network should require little or no maintenance.
- 5.2 All road gullies or drainage channel systems serving areas of hardstanding will need to be regularly inspected to ensure the system remains operable. See Table 6 below.
- 5.3 The inspection chambers should be regularly inspected to ensure the system is free flowing. See Table 6 below.

Table 6: Operation and Maintenance Requirements for Silt Traps/Trapped Gullies (Based on CIRIA C753 Table 14.2)

Maintenance schedule	Required action	Typical frequency	
Routine maintenance	Remove litter and debris and inspect for sediment, oil and grease accumulation	6 monthly	
	Change the filter media	As recommended by manufacturer	
	Remove sediment, oil, grease and floatables	As necessary – indicated by system inspections or immediately following significant spill	
Remedial actions	Replace malfunctioning parts or structures	As required	
Monitoring	Inspect for evidence of poor operation	6 monthly	
	Inspect filter media and establish appropriate replacement frequencies	6 monthly	
	Inspect sediment accumulation rates and establish appropriate removal frequencies	Monthly during first half year of operation, then every 6 months	
*During the first year of operation, inspections should be carried out at least monthly (and after			

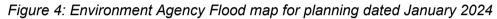
*During the first year of operation, inspections should be carried out at least monthly (and after significant storm events) to ensure that the system is functioning as designed and that no damage is evident.

5.4 Operation and maintenance requirements for the attenuation lagoon are set out in Table 7 below.

Maintenance schedule	Required action	Typical frequency*
Routine maintenance	Remove litter and debris	6 monthly
	Vegetation management	As required
Occasional maintenance	Clean inlet/outlet pipe	As required
Remedial actions	Repair/re-construct damaged component/structure	As required
	Remove silt and debris	As required
Monitoring	Inspect for evidence of damage or 6 monthly erosion	
	Inspect sediment accumulation	Yearly

Table 7:	Operation and Maintenance Re	equirements for the Attenuation Lagoon
	operation and maintenance re	quirements for the Attendution Eugeon

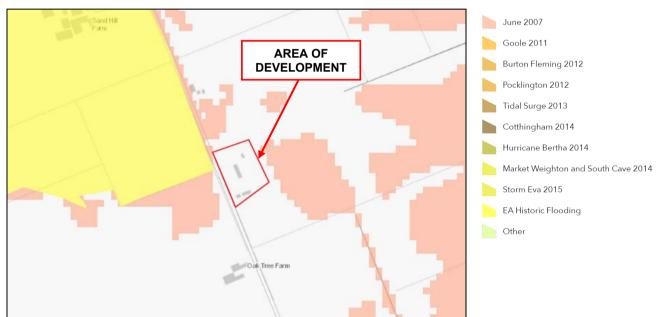
*During the first year of operation, inspections should be carried out at least monthly (and after significant storm events) to ensure that the system is functioning as designed and that no damage is evident.


- 5.5 Operation and maintenance requirements of the drainage components, as listed above, should be undertaken in accordance with Chapter 32 of the CIRIA SuDS Manual, along with the relevant tables and any relevant manufacturer's recommendations. See also BS 8582:2013 Code of Practice for Surface Water Management for Development Sites Section 11 and Susdrain Fact Sheet on SuDS Maintenance and Adoption Options (England) dated September 2015.
- 5.6 The personnel undertaking the maintenance should have appropriate experience of SuDS and drainage maintenance and should be capable of keeping sufficiently detailed records of any inspections. An example of a checklist for SuDS maintenance can be found within Appendix B of the CIRIA C753 SuDS Manual v2. If personnel do not have appropriate experience, then specific inspection visits may be necessary. During the first year of operations of SuDS, inspections should usually be carried out at monthly intervals (and after significant storm events).
- 5.7 The responsibility for the operation and maintenance of the drainage and SuDS will lie with JW Beaumont Ltd, or any subsequent landowner of the site.

6.0 FLOOD RISK ASSESSMENT

6.1 Flood Zone

6.1.1 A copy of the Environment Agency Flood Map for Planning is included in Figure 4 below, which identifies the development site to be located within an area designated as Flood Zone 3, (high probability of flooding), comprising land assessed as having a 1 in 100 or greater annual probability of river flooding or a 1 in 200 year or greater annual probability of flooding from the sea.



6.2 Historical Flooding

6.2.1 An abstract from the historical flood extent map incorporated in the East Riding of Yorkshire Council Strategic Flood Risk Assessment is included in Figure 5 below.

Figure 5: East Riding of Yorkshire Council's SFRA map showing the Extent of Historical Flooding

6.22 The map shows that the site has not been affected by historical flood events. The land to the west and to the east of the site is shown to have flooded in the 2007 flood event.

6.3 Fluvial Flooding

- 6.3.1 The River Foulness is situated approx. 0.7km to the north of the application site. Due to the scale of this watercourse and its` distance from the site it is not considered to pose any risk of flooding to the development.
- 6.3.2 The River Ouse lies approximately 7.8km to the south of the site. The river outfalls into the River Humber which is a tidal estuary. The River Ouse is therefore tidally influenced.

6.4 Tidal Flooding

- 6.4.1 When tidal levels in the River Humber are high the discharge of water from the River Ouse is restricted and consequently there is a risk of potential flooding should the river waters breach or overtop the river defences during an extreme rainfall event.
- 6.4.2 The application site is shown to be prone to flooding during a flood event. However, this is a residual risk as the river defences are the responsibility of the Environment Agency who carry out any required maintenance or repair works.
- 6.4.3 A copy of the flood map produced from the Environment Agency showing the extent of flooding from rivers or the sea is included in Figure 6 below.

Figure 6: Environment Agency map dated January 2023 showing the extent of Flooding from rivers or the sea

6.4.4 The map shows the site lies in an area classed as being at 'medium risk' from flooding.

- 6.4.5 Flood data previously obtained from the Environment Agency shows that for the Upper End Epoch 2071 scenario, which is appropriate for the lifetime of the development, the predicted flood level for the River Humber for the 1 in 200 probability event including climate change is 6.20m OD(N).
- 6.4.6 With the nearest potential source of the flooding being at a distance of approximately. 8km, the flood waters would dissipate as they spread out from the source of the flood over a large area of the land. The Hull to Selby railway lines and the A63 roadway which lie to the south of the site form natural flood barriers and will prevent flood waters reaching the site in all but extreme flood events. The likely flood depth at the location of the application site would therefore not be significant.
- 6.4.7 The breach mapping previously obtained shows that for the 2115 scenario the extent of flooding beyond the A63 is minimal. On this basis it is considered that the site is unlikely to be affected by flooding during the lifetime of the development.
- 6.4.8 A copy of the flood data previously received from the Environment Agency is included in Appendix F.
- 6.4.9 However, as the site is shown to lie in Flood Zone 3, flood mitigation measures will need to be considered within the design of the development.
- 6.4.10 Details of any such measures are included in Section 7 of this report.

6.5 Surface Water Flooding

6.5.1 A copy of the Environment Agency map showing the extent of flooding from surface water is included in Figure 7 below.

Figure 7: Environment Agency map dated January 2024 showing the extent of flooding from surface water

- 6.5.2 The map shows that the site lies in an area which is considered to be at 'very low risk' from overland surface water flooding (the areas highlighted in blue are the existing pond and watercourses).
- 6.5.3 The risk of flooding from this potential flood source is therefore considered to be low and acceptable.

6.6 Flooding from Open Drainage Ditches

- 6.6.1 There are a large number of open drainage ditches within the surrounding agricultural land which drain the low-lying land towards the River Ouse / River Humber. Due to their small scale and localised catchment areas these drainage ditches are not shown to pose any risk of flooding to the development should they overtop during an extreme rainfall event.
- 6.6.2 The risk of flooding from this potential flood source is therefore considered to be low and acceptable.

6.7 Groundwater Flooding

- 6.7.1 Groundwater flooding can occur when the sub-surface water levels are high and emerges above ground level.
- 6.7.2 The site is shown to overlay a Secondary B Aquifer and to lie in an area where the groundwater vulnerability classification is 'medium-high'.
- 6.7.3 The map produced with the East Riding of Yorkshire Council Strategic Flood Risk Assessment showing areas susceptible to groundwater flooding is included in Figure 8 below.

Figure 8: Abstract from East Riding of Yorkshire Council's SFRA Groundwater Flooding map

- 6.7.4 The map shows that the area of the development has a >= 50% <75% risk of groundwater flooding.
- 6.7.5 It is not anticipated that the proposed development will involve deep excavation works and consequently the risk to the development from this potential flood source is considered to be low and acceptable.

6.8 Flood Risk from Existing Water Mains

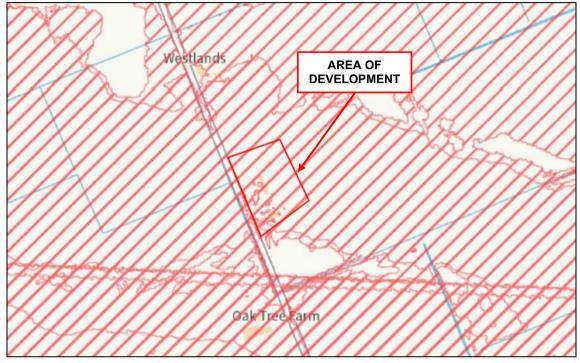
- 6.8.1 There are no existing water mains in the location of the proposed development.
- 6.8.2 The risk to the development from this potential flood source is therefore considered to be low and acceptable.

6.9 Flood Risk from Existing Drainage Services/Sewers

- 6.9.1 There are no existing sewers in the location of the proposed development.
- 6.9.2 The risk to the development from this potential flood source is therefore considered to be low and acceptable.

6.10 Flood Risk from New Drainage Services

- 6.10.1 The drainage will be designed to the required standard and therefore the risk of flooding to the development or to other parties beyond the curtilage of the site will be adequately addressed.
- 6.10.2 The risk of flooding to the development from this potential flood source is therefore considered to be low and acceptable.


6.11 Flooding from Reservoirs, Canals and Other Artificial Sources

- 6.11.1 There are a large number of ponds present within the surrounding area. Due to their small scale and their distance from the site these water features are not considered to pose any risk of flooding to the development should they overtop during an extreme rainfall event.
- 6.11.2 Market Weighton Canal is situated approximately 0.8km to the east of the site. Water levels in the canal are controlled by a series of lock gates and the volume of water in the canal is low. Should the canal overtop its` banks during an extreme rainfall event any flood waters arising from such a situation would not extend as far as the application site.

6.11.3 A copy of the map produced by the Environment Agency showing the extent of flooding from reservoirs is included in Figure 9 below.

Figure 9: Environment Agency map dated January 2024 showing the extent of flooding from reservoirs

when river levels are normal 🥢 when there is also flooding from rivers

- 6.11.4 The map shows that the development site is not considered to be at risk from reservoir flooding during normal river conditions but is at risk if there is a combined failure of the local reservoir defences when there is a major fluvial flood event in the local region. However, the likelihood of both these events occurring concurrently is extremely remote and consequently the risk to the development from reservoir flooding is considered to be low and acceptable.
- 6.11.5 The risk to the development from reservoir flooding is considered to be low and acceptable.
- 6.11.6 The risk to the development from any such potential flood source is therefore considered to be low and acceptable.

7.0 FLOOD MITIGATION MEASURES

7.1 Passive Flood Protection

- 7.1.1 For new developments lying within Flood Zone 3, the normal requirement is to elevate the ground floor by a minimum of 600mm above the existing ground level or above the predicted flood level where that information is available.
- 7.1.2 The average existing ground level over the footprint of the new building has been calculated at approximately 1.34m OD(N).
- 7.1.3 The minimum floor level for the new building should therefore be set at 1.94m OD(N).
- 7.1.4 At this level of construction, it is considered that the risk of flooding to the storage building has been adequately addressed.

7.2 Flood Resilience

- 7.2.1 For developments lying within Flood Zone 3(a), the normal requirement is to provide flood resilient construction up to a height of 300mm above the elevated ground floor construction level in order to minimise the extent of flood damage, should flood waters enter the building and to enable ease of reconstruction and minimise the timescale of any repair works.
- 7.2.2 For this development, this would result in a flood resilient construction level of 2.24m OD(N).
- 7.2.3 The building is to be used for agricultural general storage and will not have any internal finishes which could be damaged should flood waters affect the site.

- 7.2.4 However, the following measures should be incorporated within the new development construction:-
 - The floor should be constructed from concrete on a waterproof membrane.
 - There should be no voids within the external walls, other than doorways, within 300mm of the adjacent ground level which could allow flood waters to enter the building.
 - All electrical apparatus or other food sensitive equipment should be elevated to a minimum height of 300mm above floor level in order to prevent damage occurring should flood waters enter the buildings.
 - All cables should be routed at high level with vertical drops to the fittings.

7.3 Safe Refuge

- 7.3.1 For new developments which lie in Flood Zone 3, it is a requirement to provide safe refuge to ensure there is no reliance on evacuation measures by the Emergency Services should a more severe flood event occur and flood waters affect the building.
- 7.3.2 The building will not be permanently occupied and therefore the likelihood of personnel being present within the building during a major flood situation is low.
- 7.3.3 However, the adjacent farm house building is of two-storey construction and therefore incorporates accommodation at first floor level which can easily be accessed by any occupants of the new storage building in the event of a flood situation should the need arise.
- 7.3.4 The requirement for safe refuge provision is therefore considered to be satisfactory.

7.4 Management

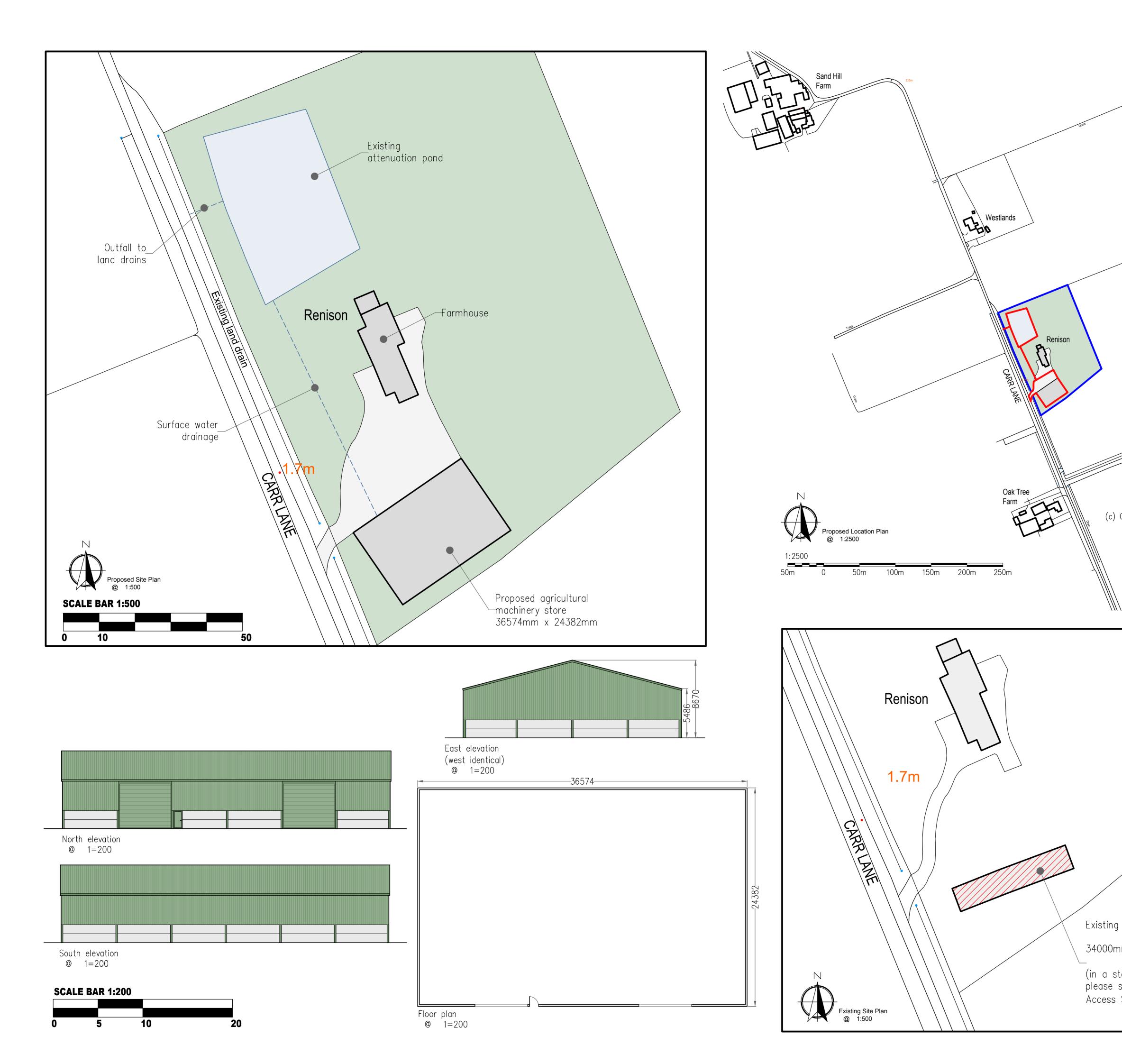
7.4.1 If it is not already registered, the development should subscribe to the Environment Agency's early 'Flood Direct' warning service which will alert the development of any likely flood situations. This will then enable a safe evacuation of the storage building should the need arise.

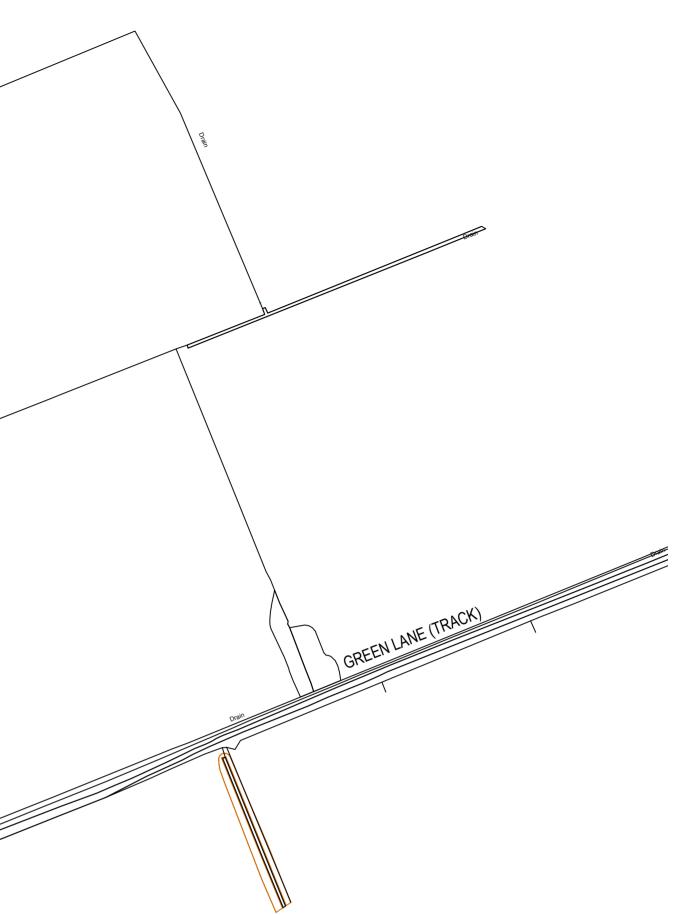
7.5 Access/Egress

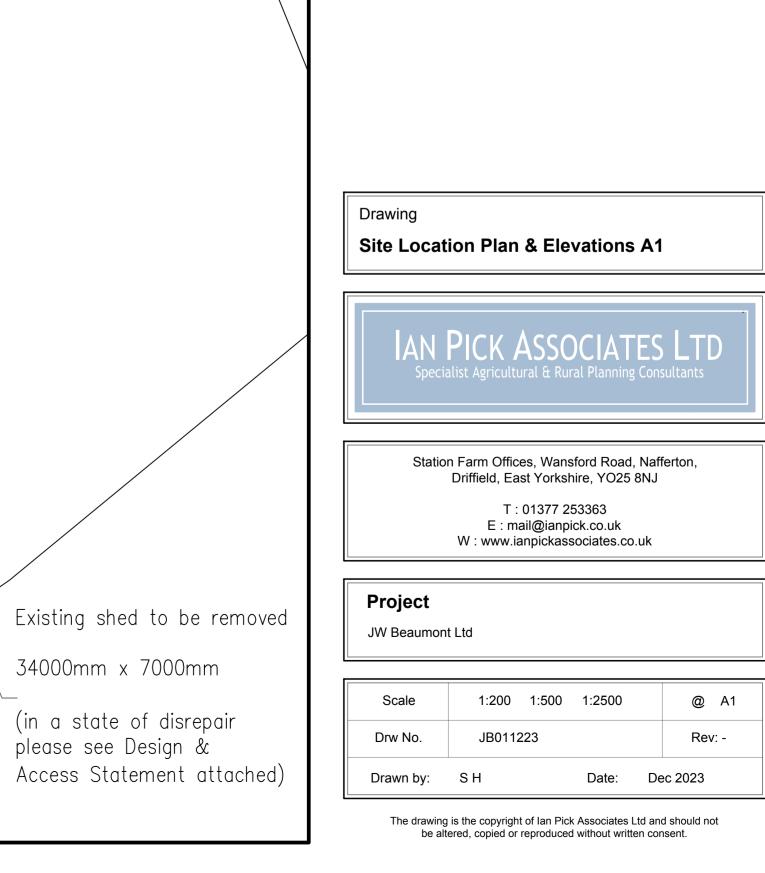
- 7.5.1 The adjacent public road network is shown to lie in Flood Zone 3 (high probability of flooding) and consequently access to / egress from the development could be affected during a major flood situation.
- 7.5.2 However, this situation already exists in respect of the existing development and therefore the new building will not create any additional access issues.
- 7.5.3 The flooding in this area is tidal and consequently restrictions will not be for an extensive period of time. Access will therefore be predominantly available.
- 7.5.4 The site will be made aware of any likely flood event which will enable safe evacuation measures and travel arrangements to be put in place as necessary.

8.0 <u>SUMMARY</u>

- 8.1 This report has been prepared to assess the flood risk implications for a proposed agricultural storage building which is located at "Rennison", Carr Lane, Newport, East Yorkshire.
- 8.2 The site falls in Flood Zone 3 (high probability of flooding) on the Environment Agency Flood Map for Planning. The proposed development is classified as 'Less Vulnerable' in terms of flood risk vulnerability, which is appropriate in this location.
- 8.3 This report has considered potential sources of flooding to the site, including fluvial, tidal, surface water, groundwater, existing sewers, water mains and other artificial sources.
- 8.4 The main potential risk of flooding to the development which has been identified in the preparation of this report is considered to be from tidal flooding from the River Ouse / River Humber during an extreme flood event.
- 8.5 Mitigation measures are proposed, which it is considered will reduce the risk of flooding to the development to an acceptable level, will ensure the building is safe for the lifetime of the development and will not increase the risk of flooding to others.
- 8.6 Overall, this report demonstrates that the flood risk to the proposed development is reasonable and acceptable providing any mitigation measures detailed in Section * of this report are incorporated into the design of the development.
- 8.7 This report also demonstrates that the site can be suitably drained, with the drainage network serving the development designed and constructed to the required standards in compliance with local and national planning policies.
- 8.8 Surface water run-off from the development will be discharged to the existing open drainage ditch to the west of the site at a restricted rate of discharge with adequate storage provided by enlarging the existing attenuation pond situated to the north of the existing farmhouse building.




- 8.9 The sewers will be designed and constructed to meet the requirements of the Building Regulations.
- 8.10 Based on the findings of this report, it is considered that planning consent for the development can be granted in terms of the flood risk and drainage implications of this application.



Layout Drawing

(c) Crown Copyright and Database Rights 2023 OS 100060020

APPENDIX B

Ouse & Humber Drainage Board Response

From: Liam Plater <Liam.Plater@yorkshirehumberdrainage.gov.uk>
Sent: Wednesday, January 3, 2024 12:34 PM
To: Alan Dunn <alan.dunn@alanwood.co.uk>
Subject: [Pending]Ref 50159 Proposed Agricultural Building at "Rennison", Carr Lane, Newport

Dear Alan,

Thank you for your email regarding the proposed development at Carr Lane, Newport.

I can confirm that we are happy with the discharge rate of 2I/s. While the outfall is not to a Board maintained watercourse, it will still require Land Drainage Consent before construction begins. I have attached the relevant application form for your information.

If you require anything further from us at this stage please let me know.

Kind regards,

Liam

Liam Plater Senior Development Control Officer

From:	Alan Dunn alan.dunn@alanwood.co.uk
Sent on:	Tuesday, January 2, 2024 11:13:24 AM
To:	Info@yorkshirehumberdrainage.gov.uk
Subject:	Ref 50159 Proposed Agricultural Building at "Rennison", Carr Lane, Newport

Attachments: JB011223 - Site Location Plan A1.pdf (338.15 KB)

Dear Sirs,

We have been appointed to prepare a flood risk and drainage assessment in support of an application for planning consent for a new agricultural storage building which lies at "Rennison", to the east of Carr Lane, Newport, East Yorkshire. The development is centred at approx. O.S. grid reference 484205, 431960.

We attach a copy of the site plan and location plan for your information.

It is proposed that the surface water run-off from the new building will be discharged to an existing open drainage ditch fronting the site on Carr Lane. We are proposing a discharge rate of 2l/s ,with storage provided to accommodate the 1 in 100 probability storm plus 30% climate change.

We have checked your asset map which doesn't show this drainage ditch to lie under your jurisdiction. However, this may outfall to your assets which lie to the north and to the south of the site, lying between Carr Lane and Market Weighton Canal.

We would be grateful if you could advise whether any consents are required from yourselves for this proposal and if so whether our proposed discharge rate will be acceptable.

We wait to hear back from you regarding this matter at your earliest convenience.

Alan Dunn

e: alan.dunn@alanwood.co.uk | t: 01482 442138
a: 341 Beverley Road | Hull | HU5 1LD
w: www.alanwood.co.uk

Alan Wood & Partners is the trading name of Alan Wood Partnership Ltd. Registered in England No. 1988349. Registered/Head Office: 341 Beverley Road, Hull, HU5 1LD

This email may contain confidential and/or privileged information for the sole use of the intended recipient. Any views or distribution by other is strictly prohibited. If you have received this email in error, please contact the sender and delete all copies. Opinions, conclusions or other information expressed or contained in this email are not given or endorsed by the sender unless otherwise affirmed independently by the sender.

Office locations:

?

Hull Leeds Lincoln Scarborough Sheffield York

Hydraulic Calculations

	Wood a	nd Pa	rtners	5							Pa	ge 1	
341 Be	everle	y Roa	d		Ca	arr La	ane, i	Newpo	rt				
Hull													
HU5 11	LD										N/	licco	
		2024			De	sign	ed by	HD				licro	
File 1	Networ	k 2.M	DX			-	d by .					rainac	Je
Innov	yze							0.1.3					
		STO	RM SEW	ER DESI	GN by	the	Modif	ied R	ational	Metho	od		
					ign Cr								
			Di										
			PI	FSR Rain					STANDARD				
		Ret	urn Pei	riod (yea		1 1	Eligia	na ana	Wales		PIMP	(%) 10	00
				-	(mm) 19	.300			Flow / Cl:		2		0
					lor 0				nimum Bacl	-	2		
Mavim	um Time			fall (mm/ ation (mi		50 30 N	lin Dea		kimum Bacl epth for (-	2		
naxtil	ιαπι ⊥⊥III€			age (l/s/				-	or Auto De	-			
				unoff Coe		.750	M	in Slop	be for Opt	cimisat	tion (1	:X) 50	00
				_									
				De	signed	with I	level S	Soffits	3				
				<u>Networ</u>	k Desi	ign T	able	for S	torm				
				« – In	dicates	s pipe	capac	ity <	flow				
PN	-		-	I.Area			ise	k				ion Type	
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SE	CT (mm	1)		Desi
				2 0.045	1.00			0.600			-	(Conduit	
31.001	29.450	0.196	150.3	3 0.000	0.00		0.0	0.600		o 22	5 Pipe/	'Conduit	ď
32.000	30.813	0.434	71.0	0.045	1.00		0.0	0.600		o 22	5 Pipe/	'Conduit	6
-1 000		0 500	110									(~	
	6.125			3 0.000 1 0.000	0.00			0.600			- 1 - /	'Conduit 'Conduit	
	28.139				0.00		0.0	0.000	0.017 →\			ond/Tank	
	5.997				0.00			0.600	0.01/ /(<u> </u>		Conduit	
31.006	5.339	0.005	1000.0	0.000	0.00			0.600			-	'Conduit	ē
				N	etwork	Resi	<u>ilts 1</u>	<u>[able</u>					
	PN I	Rain					Base		Add Flow		Cap	Flow	
1	1		(mins)	(m)	(ha)	E TOM	(1/5)	(1/s)		(m/s)			
1	(m	m/hr)						~ ~			42.3	6.0	
S1.	.000	50.00		1.100	0.045		0.0	0.0	0.0				
S1.	.000			1.100 0.862	0.045 0.045		0.0	0.0	0.0				
S1. S1.	.000	50.00	2.02					0.0		1.06	42.3	6.0	
S1. S1.	.000	50.00 50.00	2.02 1.33	0.862 1.100	0.045 0.045		0.0	0.0	0.0	1.06	42.3	6.0	
S1 . S1 . S2 . S1 .	.000 .001 .000	50.00 50.00 50.00 50.00	2.02 1.33 2.99	0.862 1.100 0.666	0.045		0.0	0.0 0.0 0.0	0.0 0.0 0.0	1.06 1.55 1.20	42.3 61.8 47.8	6.0 6.0	
S1 . S1 . S2 . S1 . S1 .	.000 .001 .000 .002 .003	50.00 50.00 50.00 50.00 50.00	2.02 1.33 2.99 3.10	0.862 1.100 0.666 0.072	0.045 0.045 0.089 0.089		0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.06 1.55 1.20 0.94	42.3 61.8 47.8 37.4	6.0 6.0 12.1 12.1	
S1 . S1 . S2 . S1 . S1 .	.000 .001 .000 .002 .003 .004	50.00 50.00 50.00 50.00 50.00 50.00	2.02 1.33 2.99 3.10 3.47	0.862 1.100 0.666 0.072 0.040	0.045 0.045 0.089 0.089 0.089		0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	1.06 1.55 1.20 0.94 1.27	42.3 61.8 47.8 37.4 3690.9	6.0 6.0 12.1 12.1 12.1	
S1 . S2 . S1 . S1 . S1 . S1 .	.000 .001 .000 .002 .003 .004 .005	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	2.02 1.33 2.99 3.10 3.47 3.60	0.862 1.100 0.666 0.072 0.040 0.600	0.045 0.045 0.089 0.089 0.089 0.089		0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.06 1.55 1.20 0.94 1.27 0.76	42.3 61.8 47.8 37.4 3690.9 13.5	6.0 6.0 12.1 12.1 12.1 12.1 12.1	
S1 . S2 . S1 . S1 . S1 . S1 .	.000 .001 .000 .002 .003 .004 .005	50.00 50.00 50.00 50.00 50.00 50.00	2.02 1.33 2.99 3.10 3.47 3.60	0.862 1.100 0.666 0.072 0.040	0.045 0.045 0.089 0.089 0.089		0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	1.06 1.55 1.20 0.94 1.27 0.76	42.3 61.8 47.8 37.4 3690.9 13.5	6.0 6.0 12.1 12.1 12.1 12.1	
\$1. \$2. \$1. \$1. \$1. \$1. \$1.	.000 .001 .000 .002 .003 .004 .005	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	2.02 1.33 2.99 3.10 3.47 3.60	0.862 1.100 0.666 0.072 0.040 0.600	0.045 0.045 0.089 0.089 0.089 0.089		0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.06 1.55 1.20 0.94 1.27 0.76	42.3 61.8 47.8 37.4 3690.9 13.5	6.0 6.0 12.1 12.1 12.1 12.1 12.1	
\$1. \$2. \$1. \$1. \$1. \$1. \$1.	.000 .001 .000 .002 .003 .004 .005	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	2.02 1.33 2.99 3.10 3.47 3.60	0.862 1.100 0.666 0.072 0.040 0.600 0.565	0.045 0.045 0.089 0.089 0.089 0.089		0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.06 1.55 1.20 0.94 1.27 0.76	42.3 61.8 47.8 37.4 3690.9 13.5	6.0 6.0 12.1 12.1 12.1 12.1 12.1	

		Page 2
341 Beverley Road	Carr Lane, Newport	
Hull		
HU5 1LD		Micco
Date 15/01/2024	Designed by HD	
File Network 2.MDX	Checked by AD	Drainage
Innovyze	Network 2020.1.3	
<u>Area</u>	<u>Summary for Storm</u>	
Pipe PIMP PIMP PI Number Type Name (IMP Gross Imp. Pipe Total %) Area (ha) Area (ha) (ha)	
Number Type Name (o, Alea (na) Alea (na) (na)	
	100 0.045 0.045 0.045	
	100 0.000 0.000 0.000 100 0.045 0.045 0.045	
2.000 User - 1 1.002 1		
1.002 - 1		
1.004 1		
1.005 1		
1.006 1	100 0.000 0.000 0.000	
	Total Total Total	
	0.089 0.089 0.089	
Free Flowing	Outfall Details for Storm	
_		
Outfall Outfall C Pipe Number Name	C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm)	
-	(m)	
S1.006 S	1.000 0.560 0.000 0 0	
Simulati	on Criteria for Storm	
Volumetric Runoff Coeff Areal Reduction Factor		
Hot Start (mins)	0 Inlet Coeffieci	2
Hot Start Level (mm)		
Manhole Headloss Coeff (Global)		
Foul Sewage per hectare (l/s)	0.000 Output Interval (mi	ns) 1
Number of Trout Undergr	and a Number of Changes Structures 1	
	raphs 0 Number of Storage Structures 1 crols 0 Number of Time/Area Diagrams 0	
	crols 0 Number of Real Time Controls 0	
Synthet	ic Rainfall Details	
Rainfall Model	FSR Profile Type Su	mmer
Return Period (years)		.750
-		.840
M5-60 (mm)	19.300 Storm Duration (mins)	30
Ratio R	0.402	

Alan Wood and Partners		Page 3
341 Beverley Road	Carr Lane, Newport	
Hull		
HU5 1LD		Mirro
Date 15/01/2024	Designed by HD	
File Network 2.MDX	Checked by AD	Digitige
Innovyze	Network 2020.1.3	1

Storage Structures for Storm

Tank or Pond Pipe: S1.004

Manning's N 0.017 Invert Level (m) 0.040

Depth (m) Area (m²) Depth (m) Area (m²)

0.000	40.0	0.960	130.6

	a ana	Partners					E	Page 4
341 Beve	rley	Road		Carı	Lane, Newpo	ort	r	
Hull								
HU5 1LD								Micco
Date 15/0	01/20	24		Desi	lgned by HD			Micro
File Nety					cked by AD			Drainage
Innovyze	12				vork 2020.1.3	}		
<u>1 year F</u>	Retur	n Period S	Summary	of Crit	tical Results	s by Maxim	um Level	(Rank 1)
					Storm			
				Cimulat	ion Critoria			
	A	real Reduct:			<u>ion Criteria</u> Additional F	'low - % of	Total Flow	0.000
					MADD Fac			
		Hot Start 1		,			effiecient	
		adloss Coef: age per hect			Flow per Perso	n per Day (1/per/day)	0.000
rOt	AT DEW	age per neci	CUIC (1/3	, 0.000				
	Ν				0 Number of Sto	-		
					0 Number of Tir 0 Number of Rea		, ,	
		Number of U	TITIUE CC	MULTOIS	o Number of Rea	ar rrine cont	TOT2 0	
				thetic R	ainfall Details			
		Rainfal	l Model			Ratio R 0.40		
		M5-	Region H 60 (mm)	sng⊥and	and Wales Cv (19.300 Cv (
		110	- (11111)		10.000 CV (I			
	Marq	gin for Floc		-		_	300.0	
			Analys:	is Times DTS Sta	tep 2.5 Second	Increment	(Extended) OFF	
				DVD Sta				
				DVD Sta	tus		ON	
			Ine	rtia Sta			ON ON	
			Ine					
		Pro	Ine: ofile(s)			Summer		er
		Pro Duration(s)	ofile(s)	rtia Sta 15,	tus 30, 60, 120, 18	30, 240, 360	ON and Winte), 480, 600),
			ofile(s)	rtia Sta 15,	tus	30, 240, 360 2160, 2880,	ON and Winte 0, 480, 600 4320, 5760),),
	Return		ofile(s) (mins)	rtia Sta 15,	tus 30, 60, 120, 18	30, 240, 360 2160, 2880,	ON and Winte), 480, 600),), 30
		Duration(s)	ofile(s) (mins) (years)	rtia Sta 15,	tus 30, 60, 120, 18	30, 240, 360 2160, 2880,	ON and Winte , 480, 600 4320, 5760 8640, 1008),), 30)0
		Duration(s) n Period(s)	ofile(s) (mins) (years)	rtia Sta 15,	tus 30, 60, 120, 18	30, 240, 360 2160, 2880,	ON c and Winte), 480, 600 4320, 5760 8640, 1008 1, 30, 10),), 30)0
		Duration(s) n Period(s)	ofile(s) (mins) (years) ange (%)	rtia Sta 15, 72	tus 30, 60, 120, 18 0, 960, 1440, 2	30, 240, 360 2160, 2880, 7200,	ON and Winter 4320, 5760 8640, 1008 1, 30, 10 0, 0, 3	D, D, 30 00 30
PN		Duration(s) n Period(s)	ofile(s) (mins) (years) ange (%) Return	rtia Sta 15,	tus 30, 60, 120, 18 0, 960, 1440, 2 First (X)	30, 240, 360 2160, 2880, 7200,	ON c and Winte), 480, 600 4320, 5760 8640, 1008 1, 30, 10),), 30 00 30
PN	US/MH Name	Duration(s) n Period(s) Climate Cha Storm	ofile(s) (mins) (years) ange (%) Return Period	rtia Sta 15, 72 Climate Change	tus 30, 60, 120, 18 0, 960, 1440, 2 First (X) Surcharge	30, 240, 360 2160, 2880, 7200, First (Y)	ON 5 and Winte 0, 480, 600 4320, 5760 8640, 1008 1, 30, 10 0, 0, 3 First (Z)	0, 0, 00 30 Overflow
PN S1.000	US/MH Name S1	Duration(s) n Period(s) Climate Cha Storm 15 Summe	ofile(s) (mins) (years) ange (%) Return Period r 1	rtia Sta 15, 72 Climate Change +0%	tus 30, 60, 120, 18 0, 960, 1440, 2 First (X) Surcharge	30, 240, 360 2160, 2880, 7200, First (Y) Flood	ON 5 and Winte 0, 480, 600 4320, 5760 8640, 1008 1, 30, 10 0, 0, 3 First (Z)	0, 30 30 Overflow
PN	US/MH Name	Duration(s) n Period(s) Climate Cha Storm	ofile(s) (mins) (years) ange (%) Return Period r 1 r 1	rtia Sta 15, 72 Climate Change +0% +0%	tus 30, 60, 120, 18 0, 960, 1440, 2 First (X) Surcharge 100/15 Summe:	30, 240, 360 2160, 2880, 7200, First (Y) Flood	ON 5 and Winte 0, 480, 600 4320, 5760 8640, 1008 1, 30, 10 0, 0, 3 First (Z)	0, 30 30 Overflow
PN \$1.000 \$1.001 \$2.000 \$1.002	US/MH Name S1 S2 S3 S3	Duration(s) n Period(s) Climate Cha Storm 15 Summe 15 Summe 15 Summe 15 Summe	<pre>ofile(s) (mins) (years) ange (%) Return Period r 1 r 1 r 1 r 1 r 1</pre>	rtia Sta 15, 72 Climate Change +0% +0% +0% +0%	tus 30, 60, 120, 18 0, 960, 1440, 2 First (X) Surcharge 100/15 Summe: 100/15 Summe:	30, 240, 360 2160, 2880, 7200, First (Y) Flood	ON 5 and Winte 0, 480, 600 4320, 5760 8640, 1008 1, 30, 10 0, 0, 3 First (Z)	0, 30 30 Overflow
PN \$1.000 \$1.001 \$2.000 \$1.002 \$1.003	US/MH Name S1 S2 S3 S3 S3 S4	Duration(s) n Period(s) Climate Cha 15 Summe 15 Summe 15 Summe 15 Summe 15 Summe	<pre>ofile(s) (mins) (years) ange (%) Return Period r 1 r 1 r 1 r 1 r 1 r 1 r 1</pre>	rtia Sta 15, 72 Climate Change +0% +0% +0% +0% +0% +0% +0% +0%	tus 30, 60, 120, 18 0, 960, 1440, 2 First (X) Surcharge 100/15 Summe: 1/360 Winte:	30, 240, 360 2160, 2880, 7200, First (Y) Flood	ON 5 and Winte 0, 480, 600 4320, 5760 8640, 1008 1, 30, 10 0, 0, 3 First (Z)	0, 30 30 Overflow
PN \$1.000 \$1.001 \$2.000 \$1.002 \$1.003 \$1.004	US/MH Name S1 S2 S3 S3 S4 S5	Duration(s) n Period(s) Climate Cha 15 Summe 15 Summe 15 Summe 15 Summe 10080 Winte	<pre>ofile(s) (mins) (years) ange (%) Return Period r 1 r 1 r 1 r 1 r 1 r 1 r 1 r 1</pre>	rtia Sta 15, 72 Climate Change +0% +0% +0% +0% +0% +0% +0% +0%	tus 30, 60, 120, 18 0, 960, 1440, 2 First (X) Surcharge 100/15 Summe: 1/360 Winte:	30, 240, 360 2160, 2880, 7200, First (Y) Flood	ON 5 and Winte 0, 480, 600 4320, 5760 8640, 1008 1, 30, 10 0, 0, 3 First (Z)	0, 30 30 Overflow
PN \$1.000 \$1.001 \$2.000 \$1.002 \$1.003	US/MH Name S1 S2 S3 S3 S4 S5	Duration(s) n Period(s) Climate Cha 15 Summe 15 Summe 15 Summe 15 Summe 15 Summe	<pre>cfile(s) (mins) (years) ange (%) Return Period r 1 r 1 r 1 r 1 r 1 r 1 r 1 r 1 r 1 r 1</pre>	rtia Sta 15, 72 Climate Change +0% +0% +0% +0% +0% +0% +0% +0%	tus 30, 60, 120, 18 0, 960, 1440, 2 First (X) Surcharge 100/15 Summe: 1/360 Winte:	30, 240, 360 2160, 2880, 7200, First (Y) Flood	ON 5 and Winte 0, 480, 600 4320, 5760 8640, 1008 1, 30, 10 0, 0, 3 First (Z)	0, 30 30 Overflow
PN \$1.000 \$1.001 \$2.000 \$1.002 \$1.003 \$1.004 \$1.005	US/MH Name S1 S2 S3 S3 S3 S4 S5 S6	Duration(s) n Period(s) Climate Cha Storm 15 Summe 15 Summe 15 Summe 15 Summe 10080 Winte 10080 Winte	<pre>cfile(s) (mins) (years) ange (%) Return Period r 1 r 1 r 1 r 1 r 1 r 1 r 1 r 1 r 1 r 1</pre>	rtia Sta 15, 72 Climate Change +0% +0% +0% +0% +0% +0% +0% +0%	tus 30, 60, 120, 18 0, 960, 1440, 2 First (X) Surcharge 100/15 Summe: 1/360 Winte:	30, 240, 360 2160, 2880, 7200, First (Y) Flood	ON 5 and Winte 0, 480, 600 4320, 5760 8640, 1008 1, 30, 10 0, 0, 3 First (Z)	0, 30 30 Overflow
PN \$1.000 \$1.001 \$2.000 \$1.002 \$1.003 \$1.004 \$1.005	US/MH Name S1 S2 S3 S3 S3 S4 S5 S6	Duration(s) n Period(s) Climate Cha 15 Summe 15 Summe 15 Summe 15 Summe 10080 Winte 10080 Winte 10080 Winte 7200 Winte	<pre>ofile(s) (mins) (years) ange (%) Return Period r 1 r 1 r 1 r 1 r 1 r 1 r 1 r 1 r 1 r 1</pre>	rtia Sta 15, 72 Climate Change +0% +0% +0% +0% +0% +0% +0% +0%	tus 30, 60, 120, 18 0, 960, 1440, 2 First (X) Surcharge 100/15 Summe: 1/360 Winte:	30, 240, 360 2160, 2880, 7200, First (Y) Flood	ON 5 and Winte 0, 480, 600 4320, 5760 8640, 1008 1, 30, 10 0, 0, 3 First (Z) Overflow	0, 30 30 Overflow
PN \$1.000 \$1.001 \$2.000 \$1.002 \$1.003 \$1.004 \$1.005	US/MH Name S1 S2 S3 S3 S3 S4 S5 S6	Duration(s) n Period(s) Climate Cha 15 Summe 15 Summe 15 Summe 15 Summe 10080 Winte 10080 Winte 10080 Winte 7200 Winte	<pre>ofile(s) (years) ange (%) Return Period r 1 r 1 r 1 r 1 r 1 r 1 r 1 r 1 r 1 r 1</pre>	rtia Sta 15, 72 Climate Change +0% +0% +0% +0% +0% +0% +0% +0%	tus 30, 60, 120, 18 0, 960, 1440, 2 First (X) Surcharge 100/15 Summe: 1/360 Winte:	30, 240, 360 2160, 2880, 7200, First (Y) Flood	ON 5 and Winte 0, 480, 600 4320, 5760 8640, 1008 1, 30, 10 0, 0, 3 First (Z) Overflow	0, 30 30 Overflow
PN \$1.000 \$1.001 \$2.000 \$1.002 \$1.003 \$1.004 \$1.005	US/MH Name S1 S2 S3 S3 S4 S5 S6 S7	Duration(s) n Period(s) Climate Cha Storm 15 Summe 15 Summe 15 Summe 10080 Winte 10080 Winte 10080 Winte 2000 Winte 7200 Winte	<pre>ofile(s) (mins) (years) ange (%) Return Period r 1 r 1 r 1 r 1 r 1 r 1 r 1 r 1 r 1 r 1</pre>	rtia Sta 15, 72 Climate Change +0% +0% +0% +0% +0% +0% +0% +0%	tus 30, 60, 120, 18 0, 960, 1440, 2 First (X) Surcharge 100/15 Summe: 1/360 Winte: 100/180 Winte:	30, 240, 360 2160, 2880, 7200, First (Y) Flood	ON and Winte 4320, 5760 8640, 1008 1, 30, 10 0, 0, 3 First (Z) Overflow n Pipe Flow	0, 30 30 Overflow
PN \$1.000 \$1.001 \$2.000 \$1.002 \$1.003 \$1.004 \$1.005 \$1.006	US/MH Name S1 S2 S3 S3 S4 S5 S6 S7 US/MH	Duration(s) n Period(s) Climate Cha Storm 15 Summe 15 Summe 15 Summe 15 Summe 10080 Winte 10080 Winte 10080 Winte 10080 Winte 7200 Winte Water Sur (m)	ofile(s) (mins) (years) ange (%) Return Period r 1 r 1 r 1 r 1 r 1 r 1 r 1 r 1 r 1 r 1	rtia Sta 15, 72 Climate Change +0% +0% +0% +0% +0% +0% Flooded Volume (m ³)	<pre>tus 30, 60, 120, 18 0, 960, 1440, 2 First (X) Surcharge 100/15 Summe: 1/360 Winte: 100/180 Winte: Flow / Overflog Cap. (1/s)</pre>	30, 240, 360 2160, 2880, 7200, First (Y) Flood r r Half Drain w Time	ON and Winte 4320, 5760 8640, 1008 1, 30, 10 0, 0, 3 First (Z) Overflow n Pipe Flow	0, 30 30 Overflow Act.
PN \$1.000 \$1.001 \$2.000 \$1.002 \$1.003 \$1.004 \$1.005 \$1.006	US/MH Name S1 S2 S3 S3 S4 S5 S6 S7 US/MH Name	Duration(s) n Period(s) Climate Cha Storm 15 Summe 15 Summe 15 Summe 1080 Winte 10080 Wi	ofile(s) (mins) (years) ange (%) Return Period r 1 r 1 r 1 r 1 r 1 r 1 r 1 r 1 r 1 r 1	rtia Sta 15, 72 Climate Change +0% +0% +0% +0% +0% +0% +0% +0%	<pre>tus 30, 60, 120, 18 0, 960, 1440, 2 First (X) Surcharge 100/15 Summe: 1/360 Winte: 100/180 Winte: 100/180 Winte:</pre>	30, 240, 360 2160, 2880, 7200, First (Y) Flood r r Half Drain w Time	ON and Winter (4320, 5760 8640, 1008 1, 30, 10 0, 0, 3 First (Z) Overflow n Pipe Flow (1/s)	0, 30 Overflow Act. Status

Alan Wood and Partners		Page 5
341 Beverley Road	Carr Lane, Newport	
Hull		
HU5 1LD		Micro
Date 15/01/2024	Designed by HD	Drainage
File Network 2.MDX	Checked by AD	Diamage
Innovyze	Network 2020.1.3	1

<u>1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)</u> <u>for Storm</u>

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m ³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status
S1.002	s3	0.760	-0.131	0.000	0.29			13.6	OK
S1.003	S4	0.582	0.285	0.000	0.01			0.2	SURCHARGED
S1.004	S5	0.582	-0.418	0.000	0.00			0.2	OK
S1.005	S6	0.582	-0.168	0.000	0.00			0.0	OK
S1.006	s7	0.567	-0.068	0.000	0.00			0.0	OK

PN	US/MH Name	Level Exceeded
S1.000	S1	
S1.001	S2	
S2.000	S3	
S1.002	s3	
S1.003	S4	
S1.004	S5	
S1.005	S6	
S1.006	s7	

©1982-2020 Innovyze

lan Woo	d and	Partners	3						Page 6
41 Beve	rley 1	Road		Car	r Lane, N	lewpoi	ct		
ull									
US 1LD									Micco
ate 15/	01/202	24		Des	igned by	HD			Micro
'ile Net	work 2	2.MDX			cked by A				Drainag
nnovyze	-				work 2020				
Manho	A: Dle Hea 11 Sewa N	real Reduc Hot S Hot Start adloss Coe age per he Number of I Number of	tion Facto tart (mins Level (mm ff (Global ctare (l/s nput Hydr Online C Offline C	<u>for</u> <u>Simulat</u> or 1.000 s) 0 0 0.0.500 s) 0.000 ographs ontrols ontrols	<u>ion Criter:</u> Addition MADI Flow per D 0 Number o 0 Number o 0 Number o	<u>ia</u> nal Fl D Fact Person of Stor of Time of Real	.ow - % of .or * 10m³/ Inlet Cc a per Day (rage Struct e/Area Diac	Total Flow ha Storage effiecient l/per/day tures 1 grams 0	e 0.000 z 0.800
	Març		ll Model Region -60 (mm) Dod Risk W Analys	England Tarning (and Wales 19.300 mm) tep 2.5 Se tus tus	Ra Cv (Su Cv (W	inter) 0.8	50 40 300.0	
		Pr Duration(s n Period(s) Climate Ch	(years)		30, 60, 12 0, 960, 14), 240, 360 160, 2880,		0, 0, 80 00
PN	US/MH Name	Storm		Climate Change	First (Surchar		First (Y) Flood	First (Z) Overflow	Overflow Act.
S1.000	S1	15 Summe	er 30	+0%					
S1.000	S2	15 Summe		+0%		ummer			
S2.000	S3	15 Summe		+0%					
S1.002	S3	15 Summe		+0%					
		2880 Winte 2880 Winte		+0% +0%		inter			
S1.003				+0% +0%					
S1.003 S1.004		2880 Winte			100/180 W				
S1.003	S6	2880 Winte 2880 Winte	er 30	+0%		inter			
S1.003 S1.004 S1.005 S1.006	s6 s7 us/мн	2880 Winte Water Su Level	rcharged Depth	Flooded Volume	Flow / Ove	erflow		Flow	0 1-1
S1.003 S1.004 S1.005	S6 S7	2880 Winte	rcharged	Flooded	Flow / Ove			-	Status
S1.003 S1.004 S1.005 S1.006	s6 s7 us/мн	2880 Winte Water Su Level (m)	rcharged Depth	Flooded Volume	Flow / Ove	erflow	Time	Flow	Status OK
S1.003 S1.004 S1.005 S1.006	S6 S7 US/MH Name	2880 Winte Water Su Level (m) 1.226 0.980	rcharged Depth (m)	Flooded Volume (m³)	Flow / Ove Cap. ()	erflow	Time	Flow (1/s)	

Alan Wood and Partners		Page 7
341 Beverley Road	Carr Lane, Newport	
Hull		
HU5 1LD		Micro
Date 15/01/2024	Designed by HD	Drainage
File Network 2.MDX	Checked by AD	Diamage
Innovyze	Network 2020.1.3	

<u>30 year Return Period Summary of Critical Results by Maximum Level (Rank 1)</u> <u>for Storm</u>

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m ³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status
S1.002	S3	0.823	-0.068	0.000	0.73			34.0	OK
S1.003	S4	0.619	0.322	0.000	0.03			0.8	SURCHARGED
S1.004	S5	0.619	-0.381	0.000	0.00			0.8	OK
S1.005	S6	0.619	-0.131	0.000	0.04			0.4	OK
S1.006	s7	0.592	-0.043	0.000	0.33			0.4	OK

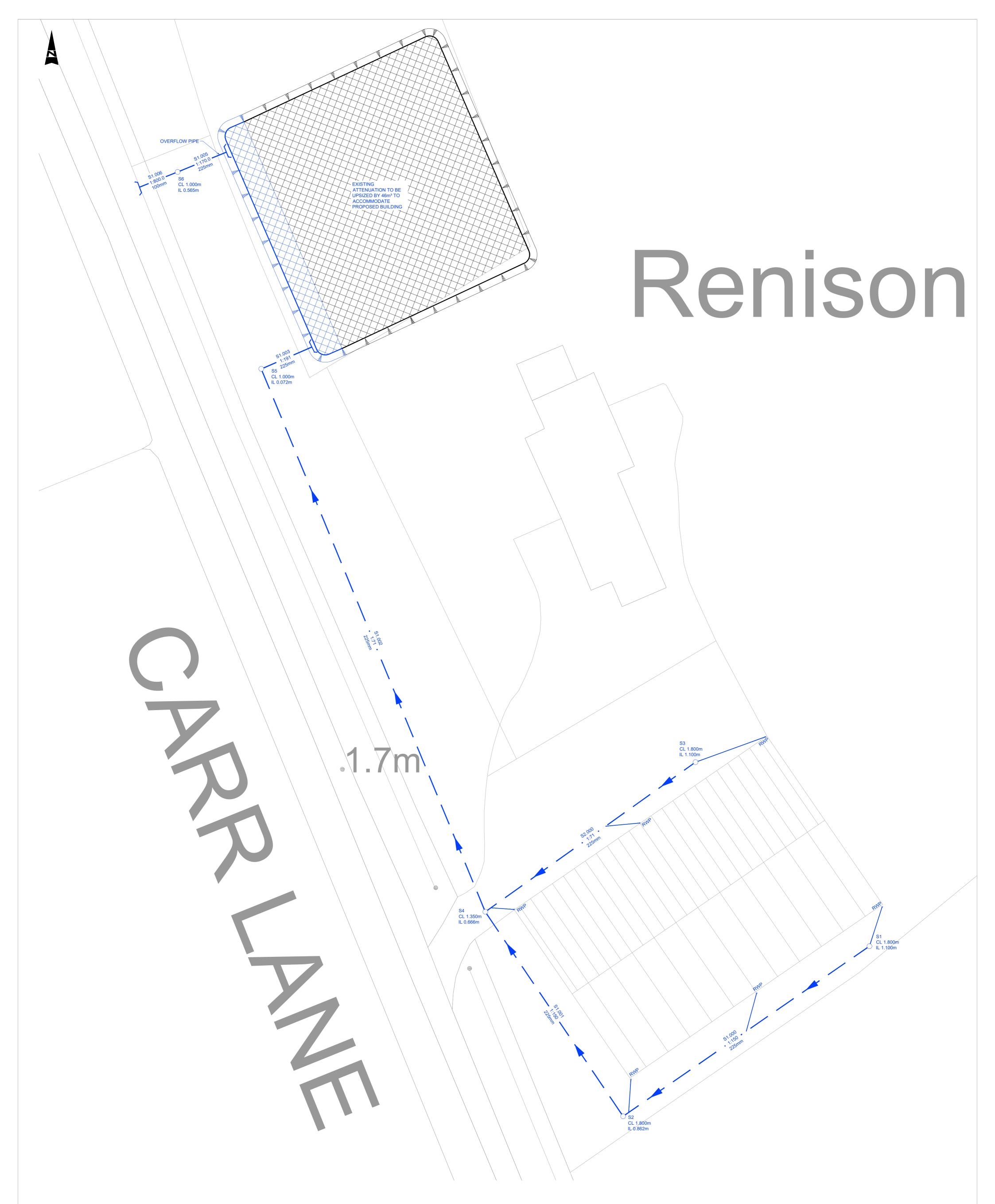
PN	US/MH Name	Level Exceeded
S1.000	S1	
S1.001	S2	
S2.000	S3	
S1.002	S3	
S1.003	S4	
S1.004	S5	
S1.005	S6	
S1.006	S7	

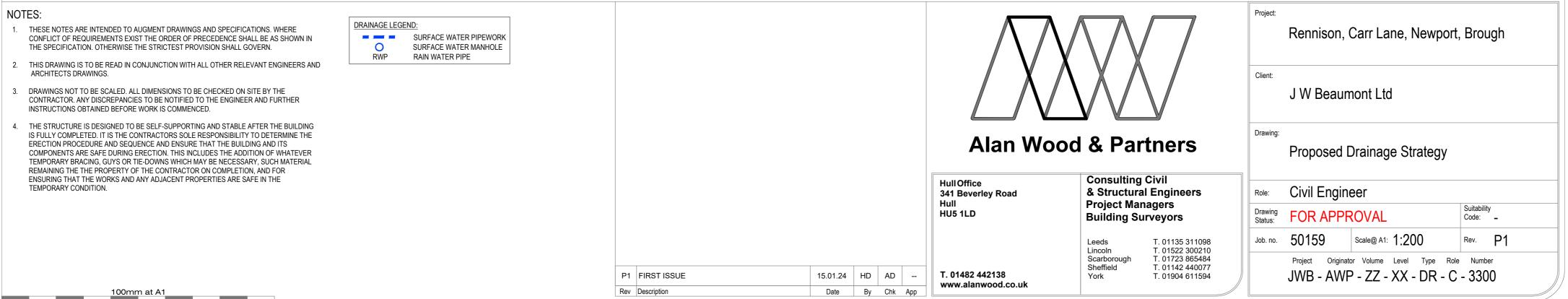
©1982-2020 Innovyze

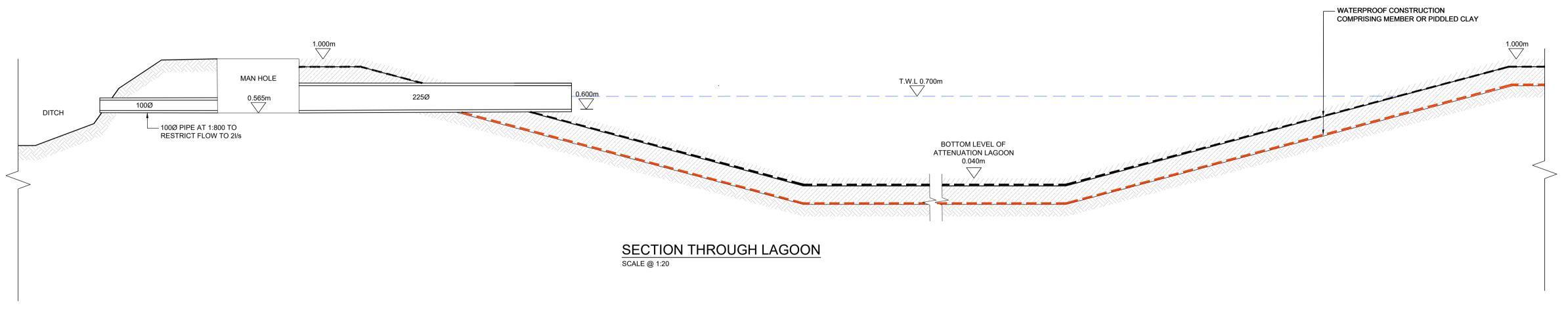
341 Beverley Road Carr Lane, Newport	Alan Woo	od a	nd Partn	ers							Page 8
Hull HUS ILD Date 15/01/2024 File Network 2.MDX Innovyze Network 2020.1.3 100 year Return Period Summary of Critical Results by Maximum Level (Rank L) for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - 6 of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * 10m*/ha Storage 0.000 Hot Start Jevel (em) 0 HADD Factor * 10m*/ha Storage 0.000 Hot Start Jevel (em) 0 HADD Factor * 10m*/ha Storage 0.000 Hot Start Jevel (em) 0 HADD Factor * 10m*/ha Storage 0.000 Hot Start Jevel (em) 0 HADD Factor * 10m*/ha Storage 0.000 Number of Online Controls 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Region England and Wales Cv (Summer) 0.750 MS=60 (mn) 19.300 Cv (Winter) 0.940 Margin for Flood Risk Warning (mn) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status OFF Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, Return Period(s) (years) Climate Change (8) 0, 120, 180, 240, 360, 480, 600, 600 Storage Flood Coverilov Act. (0) Storage Flood Coverilov Act. (1.30, 100 Storage Flood (9, 100/15 Summer Storm Feriod Change Surcharge Flood Overilov Act. (1.30) Storage Storm Feriod Change Storage Flood Overilov Act. (1.30) Storage Storage Flood Half Drain Flow Level PEN Name Storm Feriod Change Storage	341 Beve	erle	y Road			Carr La	ne, Ne	ewport			
HUS 1LD Date 15/01/2024 Pesigned by HD Date 15/01/2024 Pesigned by HD Date 15/01/2024 Pesigned by HD Date 15/01/2024 Innovyze Network 2.020.1.3 100 year Return Period Summary of Critical Results by Maximum Level (Rank L) for Storm 100 year Return Period Summary of Critical Results by Maximum Level (Rank L) for Storm Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Fool Start (enn) 0 Muncher of Tapts 1.000 Number of Input Mydrographs 0 Number of Starsge Strutures 1 Number of Online Controls 0 Number of Tapts 1.000 Number of Input Mydrographs 0 Number of Starsge Strutures 1 Number of Online Controls 0 Number of Real Time Controls 0 Number of Starsge Strutures 1 Number of Starsge Nate Number of Starsge Strutures Nate Nate 100 Number of Starsge Nate Nate Nate Nate Nate Nate Nate Nate	Hull		-				-	-			
Date 15/01/2024 Designed by HD Operation File Network 2.ADX Checked by AD Checked by AD Innovyze Network 2020.1.3 100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Not Start (mins) 0 MADD Factor * 100*/hs Storage 0.000 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Online Controls 0 Number of Storage Structures 1 Number of Online Controls 0 Number 0.000 Number of Online Controls 0 Number of Storage Structures 1 Number of Online Controls 0 Number 0.000 Margin for Flood Risk Warning (mm) 19.300 CV (Winter) 0.840 200.0 Margin for Flood Risk Warning (mm) 200.0 720, 960, 1460, 2160, 280, 420, 600, 200, 420, 600, 1028 Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 200, 420, 600, 1008 200, 030 Profile(s) Summer and Winter 1, 230, 100 Climate Change (s) 0, 0, 30 210, 200, 480, 600, 600, 600, 600, 600 Storm Period Change	HU5 1LD										Micco
File Network 2.MDX Checked by AD Innovyze Network 2020.1.3 100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm Info Storm 100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm Info Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Plow - % of Total Plow 0.000 Bot Start Level (mm) 0 Intel Coefficient 0.680 Manhole Readioss Coeff (Global) 0.500 Plow per Person per Day (Uper/day) 0.000 Foul Sewage per hectare (U/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Real Time Controls 0 Number of Ofline Controls 0 Number of Real Time Controls 0 Number of Online Controls 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Real Time Controls 0 Number of Ofline Controls 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Real Time Controls 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Input Hydrographs 0 Number of Input Pydrographs 0 Number of Input Status 0N Profile(s) Summer and Ninter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 4820, 5760, 720, 960, 1440, 2160, 2880, 4320, 5760, 720, 960, 1440, 2160, 2880, 4320, 5760, 720, 960, 1440, 2160, 2880, 4320, 5760, 720, 960, 1440, 2160, 2880, 4320, 5760, 720, 960, 1440, 2160, 2880, 4320, 5760, 720, 960, 100/15 Numer Number of Change Surcharge Flood Over		/01/	2024			Desiane	d bv F	HD			
Innovyze Network 2020.1.3 100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm 100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start Level (min 0) Mathematical Storm (Maximum Level (Rank 1) for Storm Simulation Criteria Manhole Headloss Coeff (Slobal) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectre (1/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Offline Contrals 0 Number of Real Time/Area Diagrams 0 Number of Offline Contrals 0 Number of Real Time Controls 0 Synthetic Rainfall Details Region England and Wales Cv (Summer) 0.750 MS-60 (mm) 300.0 Margin for Flood Risk Warning (mm) Analysis Timestep 2.5 Second Increment (Extended) DFS Status 300.0 Profile(s) Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 420, 560, 720, 960, 1440, 2160, 2880, 4320, 5760, 720, 960, 1440, 2160, 2880, 4320, 5760, 720, 960, 1440, 2160, 2880, 4320, 5760, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 1000 Profile(s) Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 410, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 960, 140, 2160, 280, 4320, 5760, 7200, 960, 140, 2160, 280, 4320, 5760, 7200, 960, 140, 2160, 280, 4320, 5760, 7200, 960, 140, 7160, 1308 Name Symmer 1,335 Name Symmer 1,335 Name						-	_				Drainago
100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteria Areal Reduction Factor 1.000 Marcin Return China D MADD Factor * 10m'/ha Storage 0.000 Hot Start Level (mina) 0 Manbole Headlors Coeff (Global) 0.500 Flow Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000 Number of Online Controls 0 Number of Time/Ares Diagrams 0 Number of Online Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR Ratio R 0.402 Region Ergland and Wales CV (Summer) 0.750 NS-60 (mn) Margin for Flood Risk Warning (mn) 300.0 300.0 Analysis Timestep 2.5 Second Increment (Extended) Toro Status ON Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 1200, 960, 1440, 2260, 260, 430, 560, 400, 600, 1200, 960, 1440, 2260, 260, 430, 560, 400, 600, 1200, 960, 1440, 2260, 260, 430, 600, 1200, 960, 1440, 2260, 260, 430, 600, 1200, 83 15 Summer 1.335 Sl.000 Sl Summer 100 +308 1.305 1.30, 100 Sl.001 Sl Summer 100 +308 1.335 1.335 Sl.003 Sl Summer 100 +308 1.355 1.355 Sl.003 Sl Summer 100 +308 1.355 1.358 Sl.003 Sl Summer 100 +308											5
I) for storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Not Start Level (mins) 0 MDD Pactor * 10m²/ha Storage 0.000 Number of Looping Additional Flow - % of Total Flow 0.000 Poul Sewage per hectare (1/s) 0.000 Inlet Coefficient 0.800 Number of Online Controls 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Real Time Controls 0 Number of Online Controls 0 Number of Real Time Controls 0 Number of 0.402 Region England and Males CV (Summer) 0.730 MS-60 (mm) Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 430, 660, 720, 8640, 1000 Totation(s) (mins) 15, 30, 60, 120, 180, 240, 360, 430, 660, 720, 8640, 1000 Return Period(s) (years) 0, 0, 30 Climate Change (s) 0, 0, 30 Stormer 100 Stormer 100 Stormer 1.303 Stormer 1.303 Stormer 1.303 Margin for Flood Risk Warning (mm) 300.0 Return Period(s) (mins) 15, 30, 60, 120, 180, 240, 560, 430, 560, 720, 720, 86440, 10000 Stormer 100 Mander Change (s)	TIIIOVYZE					NECWOIN	2020	• 1 • 3			
I) for storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Not Start Level (mins) 0 MDD Pactor * 10m²/ha Storage 0.000 Number of Looping Additional Flow - % of Total Flow 0.000 Poul Sewage per hectare (1/s) 0.000 Inlet Coefficient 0.800 Number of Online Controls 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Real Time Controls 0 Number of Online Controls 0 Number of Real Time Controls 0 Number of 0.402 Region England and Males CV (Summer) 0.730 MS-60 (mm) Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 430, 660, 720, 8640, 1000 Totation(s) (mins) 15, 30, 60, 120, 180, 240, 360, 430, 660, 720, 8640, 1000 Return Period(s) (years) 0, 0, 30 Climate Change (s) 0, 0, 30 Stormer 100 Stormer 100 Stormer 1.303 Stormer 1.303 Stormer 1.303 Margin for Flood Risk Warning (mm) 300.0 Return Period(s) (mins) 15, 30, 60, 120, 180, 240, 560, 430, 560, 720, 720, 86440, 10000 Stormer 100 Mander Change (s)	<u>100 yea</u>	ar F	Return Pe	eriod Su	mmary d	of Crit	ical F	Results	by Max	kimum Le	<u>evel (Rank</u>
Areal Reduction Factor 1.000 Additional Flow - % of Total Plow 0.000 Hot Start (mins) 0 MADD Factor * 10m²/ha Storage 0.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hetter (1/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR Ratio R 0.402 Region England and Wales Cv (Summer) 0.750 M5-60 (mm) 19.300 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status ON Inertia Status ON Frofile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 280, 4820, 5760, 7200, 8640, 100808 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 30 Keturn Period(s) (years) 1, 30, 100 Si.000 S1 15 Summer 100 +30% 100/15 Summer 1, 325 Si.001 S2 15 Summer 100 +30% 100/15 Summer 1, 0.438 Si.002 S3 15 Summer 100 +30% 100/15 Summer 1, 0.438 Si.003 S1 4600 Winter 100 +30% 100/15 Summer 1, 0.438 Si.004 S5 600 Winter 100 +30% 100/15 Summer 1, 0.438 Si.005 S7 600 Winter 100 +30% 100/15 Summer 2, 0.678 Si.006 S7 600 Winter 100 +30% 100/15 Summer 2, 0.673 Si.005 S7 600 Winter 100 +30% 100/15 Summer 2, 0.673 Si.005 S7 600 Winter 100 +30% 100/150 Winter 0, 673 Si.006 S7 600 Winter 100 +30% 100/150 Winter 0, 678 Si.005 S7 600 Winter 100 +30% 100/150 Winter 0, 673 Si.006 S7 600 Winter 100 +30% 100/150 Winter 0, 673 Si.005 S7 600 Winter 100 +30% 100/150 Winter 0, 673 Si.005 S7 600 Winter 100 +30% 100/150 Winter 0, 673 Si.005 S7 600 Winter 100 +30% 100/150 Winter 0, 673 Si.005 S7 600 Winter 100 +30% 100/150 Winter 0, 673 Si.005 S7 600 Winter 100 +30% 100/150 Winter 0, 673 Si.005 S7 600 Winter 100 +30% 100/150 Winter 0, 673 Si.005 S7 600 Winter 100 +30					-				_		
Areal Reduction Factor 1.000 Additional Flow - % of Total Plow 0.000 Hot Start (mins) 0 MADD Factor * 10m²/ha Storage 0.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hetter (1/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR Ratio R 0.402 Region England and Wales Cv (Summer) 0.750 M5-60 (mm) 19.300 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status ON Inertia Status ON Frofile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 280, 4820, 5760, 7200, 8640, 100808 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 30 Keturn Period(s) (years) 1, 30, 100 Si.000 S1 15 Summer 100 +30% 100/15 Summer 1, 325 Si.001 S2 15 Summer 100 +30% 100/15 Summer 1, 0.438 Si.002 S3 15 Summer 100 +30% 100/15 Summer 1, 0.438 Si.003 S1 4600 Winter 100 +30% 100/15 Summer 1, 0.438 Si.004 S5 600 Winter 100 +30% 100/15 Summer 1, 0.438 Si.005 S7 600 Winter 100 +30% 100/15 Summer 2, 0.678 Si.006 S7 600 Winter 100 +30% 100/15 Summer 2, 0.673 Si.005 S7 600 Winter 100 +30% 100/15 Summer 2, 0.673 Si.005 S7 600 Winter 100 +30% 100/150 Winter 0, 673 Si.006 S7 600 Winter 100 +30% 100/150 Winter 0, 678 Si.005 S7 600 Winter 100 +30% 100/150 Winter 0, 673 Si.006 S7 600 Winter 100 +30% 100/150 Winter 0, 673 Si.005 S7 600 Winter 100 +30% 100/150 Winter 0, 673 Si.005 S7 600 Winter 100 +30% 100/150 Winter 0, 673 Si.005 S7 600 Winter 100 +30% 100/150 Winter 0, 673 Si.005 S7 600 Winter 100 +30% 100/150 Winter 0, 673 Si.005 S7 600 Winter 100 +30% 100/150 Winter 0, 673 Si.005 S7 600 Winter 100 +30% 100/150 Winter 0, 673 Si.005 S7 600 Winter 100 +30											
Areal Reduction Factor 1.000 Additional Flow - % of Total Plow 0.000 Hot Start (mins) 0 MADD Factor * 10m²/ha Storage 0.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hetter (1/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR Ratio R 0.402 Region England and Wales Cv (Summer) 0.750 M5-60 (mm) 19.300 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status ON Inertia Status ON Frofile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 280, 4820, 5760, 7200, 8640, 100808 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 30 Keturn Period(s) (years) 1, 30, 100 Si.000 S1 15 Summer 100 +30% 100/15 Summer 1, 325 Si.001 S2 15 Summer 100 +30% 100/15 Summer 1, 0.438 Si.002 S3 15 Summer 100 +30% 100/15 Summer 1, 0.438 Si.003 S1 4600 Winter 100 +30% 100/15 Summer 1, 0.438 Si.004 S5 600 Winter 100 +30% 100/15 Summer 1, 0.438 Si.005 S7 600 Winter 100 +30% 100/15 Summer 2, 0.678 Si.006 S7 600 Winter 100 +30% 100/15 Summer 2, 0.673 Si.005 S7 600 Winter 100 +30% 100/15 Summer 2, 0.673 Si.005 S7 600 Winter 100 +30% 100/150 Winter 0, 673 Si.006 S7 600 Winter 100 +30% 100/150 Winter 0, 678 Si.005 S7 600 Winter 100 +30% 100/150 Winter 0, 673 Si.006 S7 600 Winter 100 +30% 100/150 Winter 0, 673 Si.005 S7 600 Winter 100 +30% 100/150 Winter 0, 673 Si.005 S7 600 Winter 100 +30% 100/150 Winter 0, 673 Si.005 S7 600 Winter 100 +30% 100/150 Winter 0, 673 Si.005 S7 600 Winter 100 +30% 100/150 Winter 0, 673 Si.005 S7 600 Winter 100 +30% 100/150 Winter 0, 673 Si.005 S7 600 Winter 100 +30% 100/150 Winter 0, 673 Si.005 S7 600 Winter 100 +30					Cim	ilation (riteri	a			
Hot Start (mins) 0 MADD Factor * 10m*/ha Storage 0.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hettare (1/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Feal Time Controls 0 <u>Synthetic Rainfall Details</u> Rainfall Model FSR Ratic R 0.402 Region England and Wales Cv (Summer) 0.750 MS-60 (mm) 19.300 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status ON Inertia Status ON Thertia Status ON Entrie Status ON Return Period(s) (years) 1, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2800, 480, 5760, 720, 8640, 10080 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 30 Sti 15 Summer 100 +30% Sti.001 S1 15 Summer 100 +30% Sti.001 S2 15 Summer 100 +30% Sti.001 S2 35 Summer 100 +30% Sti.001 S2 55 Summer 100 +30% Sti.002 S3 15 Summer 100 +30% Sti.002 S3 55 Summer 100 +30% Sti.002 S3 55 Summer 100 +30% Sti.003 S1 60 Winter 100 +30% Sti.004 S5 600 Winter 100 +30% Sti.005 S7 600 Winter 100 +30% Sti.005 S7 600 Winter 100 +30% Sti.005 S7 600 Winter 100 +30% Sti.005 S1 0.000 0.62 32.6 0K Sti.001 S2 0.5 Summer 100 +30% Sti.001 S2 0.000 0.62 32.6 0K Sti.001 S2 0.000 0.62 35.7 0K			Areal Red	duction F					- % of !	Fotal Flo	ow 0.000
Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FR Ratio R 0.402 Region England and Wales CV (Summer) 0.750 MS-60 (mm) 19.300 CV (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status ON Inertia Status ON Frofile(s) Summer and Winter DUD Status ON Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 30 Silond Si 15 Summer 100 +30% Silond Si 5 Summer 100 +30% Silond Si 15 Summer 100 +30% Silond Si 15 Summer 100 +30% Silond Si 10 Summer 100 +30% Silond Si 10 Summer 100 +30% Silond Si 5 Summer 100 +30% Silond Si 10 Colo Ninter 100 +30% Silond Si 600 Winter 100 +30% Silond Si 0.000 Niter 100 +30% Silond Si 0			Hot	t Start ((mins)	0		Factor	* 10m³/ł	na Storag	ge 0.000
Foul Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Real Time Cantarols 0 Number of Offline Controls 0 Number of Real Time Cantarols 0 Number of Offline Controls 0 Number of Real Time Cantarols 0 Synthetic Rainfall Details Rainfall Model FSR Ratio R 0.402 Region England and Wales Cv (Numer) 0.750 MS-60 (mm) 19.300 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status OFF UD Status ON There is the status ON There is the status ON Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, T200, 8640, 10080 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 30 Numer Storm Period Change Surcharge Flood Overflow Act. (m) S1.000 Si 15 Summer 100 +30% S1.001 Si 2 15 Summer 100 +30% S1.002 S3 15 Summer 100 +30% S1.001 S3 15 Summer 100 +30% S1.001 S3 5 600 Winter 100 +30% S1.005 S7 600 Winter 100 +30% 100/15 Summer US/MH Depth Volume Flow / Overflow Time Flow Level N Name (m) (m ³) Cep. (1/s) (mins) (1/s) Status Exceeded S1.001 S1 0.000 0.000 0.62 32.6 OK		¹									
Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Real Time Controls 0 Sumber of Offline Controls 0 Number of Real Time Controls 0 Sumber of Offline Controls 0 Number of Real Time Controls 0 Sumber of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Summer and Winter D.750 M5-60 (mm) 19.300 Cv (Winter) 0.840 Margin for Floda Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status 0N Frofile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 960, 1440, 2160, 2880, 480, 600, Return Period Change % 100/15 Summer 1.313 1.240 S1.000 \$1 15 Summer 100 +308 1.040 \$5 600 Winter 100 +308 1.040 \$5 600 Winter 100 +308 1.040 \$5 600 Winter 100 +308 1.041 \$5 600 Winter 100 +308 1.041 \$5 600 Winter 100 +308 1.045 \$5 600 Winter 100 +308 1.046 \$5 600 Winter 100 +308 1.041 \$5 600 Winter 100 +308 1.045 \$5 600 Winter 100 +308 1.041 \$5 600 Winter 100 +308 1.045 \$5 600 Winter 100 +308 1.045 \$5 600 Winter 100 +308 1.046 \$5 600 Winter 100 +308 1.045 \$5 600 Winter 100 +308 1.041 \$5 600 Winter 100 +308 1.045 \$5 600							w per P	erson pe	r Day (1	⊥/per/day	Z) U.UUU
Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 Surthetic Rainfall Details Rainfall Model FSR Ratio R 0.402 Region England and Wales Cv (Summer) 0.750 M5-60 (mm) 19.300 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status ON Thertia Status ON Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 30 Silono Si 15 Summer 100 +30% Silono Si 56 Sol Winter 100 +30% Silono Si 65 Sol Winter 100 +30% Silono Si 60 Winter 100 +30% Sil					(1, 5) 0.						
Number of Offline Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR Ratio R 0.402 Region England and Wales Cv (Summer) 0.750 M5-60 (mm) 19.300 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status DVD Status ON Thertia Status ON Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 30 S1.001 S1 15 Summer 100 S1.001 S2 15 Summer 103 S1.001 S2 15 Summer 100 S1.001 S2 15 Summer 100 S1.001 S2 15 Summer 10.4308 1				-		-		-			
Surthetic Rainfall Details Rainfall Model FSR Ratio R 0.402 Region England and Wales CV (Summer) 0.750 M5-60 (mm) 19.300 CV (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status OFF OFF DVD Status ON Inertia Status ON Return Period (s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period (s) (years) 1, 30, 100 Climate Change (%) 0, 0, 30 S1.000 S1 15 Summer 100 +30% S1.001 S2 15 Summer 100 +30% S1.002 S3 15 Summer 100 +30% S1.003 S4 600 Winter 100 +30% S1.004 S7 600 Winter 100 +30% S1.005 S6 600 Winter 100 +30% S1.006 S7 600 Winter 100 +30% S1.005 S6 600 Winter 100 +30% S1.006 S7											
Rainfall Model FSR Ratio R 0.402 Region England and Wales CV (Summer) 0.750 M5-60 (mm) N300 CV (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status 300.0 ON DTS Status OFF DVD Status ON Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 30 S1.000 S1 15 Summer 100 S1.01 S2 15 Summer 100 S2.000 S3 15 Summer 100 S1.003 S4 600 Winter 100 S1.004 S7 600 Winter 100 S1.005 S6 600 Winter 100 S1.006 S7 600 Winter 100 S1.006 S7 600 Winter 100 S1.006 S7 600 Winter 100 S1.000 S1 0.000 S1.000 S6 600 Winter 100 S1.005 S6 600 Winter 100 S1 Summer 100 S1.000 S1 Summer 100 <			MUNDET	OF OFFER	CONCE	ULU U 11U	under 01	L NGAL I.	LINC COIL	1013 0	
Region England and Wales Cv (Summer) 0.750 MS-60 (mm) 300.0 Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status OFF DVD Status ON Inertia Status ON Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 280, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 30 X1.000 S1 15 Summer 100 + 30% S1.001 S1 15 Summer 100 + 30% S1.002 S3 15 Summer 100 + 30% S1.002 S3 15 Summer 100 + 30% S1.004 S5 600 Winter 100 + 30% S1.005 S6 600 Winter 100 + 30% S1.004 S5 600 Winter 100 + 30% S1.005 S7 600 Winter 0.678 S1.004 S5 600 Winter 0.678 S1.005 S6 600 Winter 100 + 30% S1.005 S6 600 Winter 100 + 30% S1.006 S7 600 Winter<						ic Rainf					
M5-60 (mm) 19.300 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) Analysis Timestep 2.5 Second Increment (Extended) DTS Status DVD Status DVD Status DVD Status DVD Status OFF Profile(s) Duration(s) (mins) Summer and Winter Duration(s) (mins) Summer and Winter T20, 960, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) Climate Change (%) Water VS/MH Return Climate Profide(s) First (Y) First (Z) Overflow Act. Water (n) S1.000 S1 15 Summer 100 +30% 1.001 1.325 S1.001 S2 15 Summer 100 +30% 1.026 1.240 S1.002 S3 15 Summer 100 +30% 1.038 1.240 S1.005 S5 600 Winter 100 +30% 1.038 0.678 S1.005 S5 600 Winter 100 +30% 1.038 0.678 S1.005 S7 600 Winter 100 +30% 1.030 0.678 S1.005 S1 600 Winter 100 +30% 1.030 0.678 S1.005 S1 0.000 0.000 0.82 32.6 0K S1.005 S1 0.000 0.000 0.62 </td <td></td> <td></td> <td>Rai</td> <td></td> <td></td> <td>and and</td> <td></td> <td></td> <td></td> <td></td> <td></td>			Rai			and and					
Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status OFF DVD Status ON Inertia Status ON Profile(s) Summer and Winter ON Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Tervision (S) Return Period(s) (years) 1, 30, 100 0, 0, 30 Climate Change (%) 0, 0, 30 0, 0, 30 S1.000 S1 15 Summer 100 +30% 1.240 S1.001 S1 15 Summer 100 +30% 1.240 S1.002 S3 15 Summer 100 +30% 1.240 S1.004 S5 600 Winter 100 +30% 100/15 Summer 1.240 S1.005 S6 600 Winter 100 +30% 1.039 0.678 S1.006 S7 600 Winter 100 +30% 100/15 Summer 0.678 S1.005 S6 600 Winter 100 +30% 100/180 Winter 0.678 S1.006 S7 600 Winter 100 +30% 100/180 Winter 0.678 S1.005 S6 600 Winter 100 +30% 1.010 0.678 S1.006 S7 600 Winter 100 +30% 1.0130 0.678 <tr< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>				-	-						
Analysis Timestep 2.5 Second Increment (Extended) DTS Status OFF DVD Status OFF DVD Status ON Inertia Status ON Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 30 S1.000 S1 15 Summer 100 +30% S1.001 S2 15 Summer 100 +30% S1.002 S3 15 Summer 100 +30% S1.003 S4 600 Winter 100 +30% S1.004 S5 600 Winter 100 +30% S1.005 S7 600 Winter 0.678 S1.005 S7 600 Winter 0.678 S1.006 S7 600 Winter 100 +30% S1.006 S7 600 Winter 0.673 S1.006 S7 600 Winter 0.673 S1.000 S1 0.000 0.82 S2.000 S1 0.000 0.82 S2.000 S1 0.000 0.82 S2.000 S1 0.000 0.69 S1.001 </td <td></td> <td>_</td>											_
DTS Status DVD Status OFF ON Non Inertia Status ON Profile(s) Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) Climate Change (%) 1, 30, 100 0, 0, 30 V5/MH Return Climate First (X) First (Y) First (Z) Overflow Act. Keverl Level PN Name Stommer 100 +30% 100/15 Summer 1.325 S1.000 S1 15 Summer 100 +30% 100/15 Summer 1.329 S1.001 S2 15 Summer 100 +30% 1/360 Winter 0.680 S1.002 S3 15 Summer 100 +30% 1/360 Winter 0.678 S1.003 S4 600 Winter 100 +30% 100/180 Winter 0.678 S1.005 S7 600 Winter 100 +30% 10/360 Winter 0.678 S1.005 S7 600 Winter 100 +30% 10/360 Winter 0.678 S1.005 S7 600 Winter 100 +		Μ	largin for			-	2 5 500	rond That	comont (
Inertia Status ON Profile(s) Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 720, 960, 1440, 2160, 2880, 4320, 5760, 0, 0, 30 Keturn Period(s) (years) Climate Change (%) I, 30, 100 0, 0, 30 VS/MH Return Climate First (X) Sunmer First (Z) Flood Overflow Act. Name S1.000 \$1 15 Summer 100 +30% 100/15 Summer 1.325 S1.001 \$2 15 Summer 100 +30% 100/15 Summer 1.039 S1.002 \$3 15 Summer 100 +30% 100/15 Summer 1.039 S1.002 \$3 15 Summer 100 +30% 100/180 Winter 0.680 S1.005 \$5 600 Winter 100 +30% 100/180 Winter 0.678 S1.005 \$5 600 Winter 100 +30% 10/180 Winter 0.678 S1.005 \$5 600 Winter 100 +30% 10/180 Winter 0.678 </td <td></td> <td></td> <td></td> <td>AII</td> <td></td> <td></td> <td>2.5 500</td> <td></td> <td>- cinciic (</td> <td></td> <td></td>				AII			2.5 500		- cinciic (
Profile(s) Duration(s) (mins) Summer and Winter 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) Climate Change (%) 1, 30, 100 0, 0, 30 VS/MH Return Climate Period Change First (X) Surcharge First (Y) First (Z) First (Z) Overflow Act. Mater Level Name Storm Period Change Surcharge Flood Overflow Act. (m) \$1.000 \$1 15 Summer 100 +30% 1.240 \$1.001 \$2 15 Summer 100 +30% 1.240 \$1.002 \$3 15 Summer 100 +30% 1.240 \$1.002 \$3 15 Summer 100 +30% 1.039 \$1.004 \$5 600 Winter 0.0 +30% 0.678 \$1.005 \$6 600 Winter 100 +30% 0.678 \$1.002 \$3 15 Summer 10.675 Summer 0.678 \$1.003<											
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) Climate Change (%) name Name Name Keturn Climate First (X) First (Y) First (Z) Overflow Keture FN Name Storm Period Change Surcharge Flood Overflow Act. (m) S1.000 S1 15 Summer 100 +30% 100/15 Summer 1.325 S1.001 S2 15 Summer 100 +30% 100/15 1.339 S1.002 S3 15 Summer 100 +30% 100/15 1.339 S1.003 S4 600 Winter 100 +30% 1/360 Winter 0.680 S1.004 S5 600 Winter 100 +30% 0.678 0.678 S1.005 S6 600 Winter 100 +30% 0.678 S1.005 S6 600 Winter 100					Inertia	Status				0	N
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) Climate Change (%) name Name Name Keturn Climate First (X) First (Y) First (Z) Overflow Keture FN Name Storm Period Change Surcharge Flood Overflow Act. (m) S1.000 S1 15 Summer 100 +30% 100/15 Summer 1.325 S1.001 S2 15 Summer 100 +30% 100/15 1.339 S1.002 S3 15 Summer 100 +30% 100/15 1.339 S1.003 S4 600 Winter 100 +30% 1/360 Winter 0.680 S1.004 S5 600 Winter 100 +30% 0.678 0.678 S1.005 S6 600 Winter 100 +30% 0.678 S1.005 S6 600 Winter 100											
720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 30 Water Water US/MH Return Climate PN Name Storm Period Change S1.000 S1 S1 15 S1.001 S2 S2 55 S1.002 S3 S3 15 S1.002 S3 S3 15 S1.003 S4 S4 100/15 S1.003 S4 S4 00 S1.004 S5 S5 S3 S4 100/15 S1.003 S4 S4 00 S1.004 S5 S5 600 Winter 100 S1.005 S6 S7 600 Winter 100 S1.005 S6 S7 600 Winter 100 S1.0			D			15 20	60 100) 100 7			
7200, 8640, 10080 Return Period(s) (years) Climate Change (%) Water US/MH Return Climate First (X) First (Y) First (Z) Overflow Mater IS/MH Return Climate First (X) First (Y) First (Z) Overflow Level PN Name Storm Period Change Surcharge Flood Overflow Act. (m) Summer 100 +30% Summer 100/15 Summer 1.0325 Summer 100/155 Summer 1.039 Summer 100 +30% 100/150 Summer 100 +30% 1.039 1.039 1.039 1.039 1.039 <td< td=""><td></td><td></td><td>Duratio</td><td>(S) (M1</td><td>115)</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			Duratio	(S) (M1	115)						
O, 0, 30 US/MH Return Climate First (X) First (Y) First (Z) Overflow Act. Level FN Name Storm Period Change Surcharge Flood Overflow Act. (m) \$1.000 \$1 15 Summer 100 +30% 100/15 Summer 1.325 \$1.001 \$2 15 Summer 100 +30% 1.00/15 Summer 1.039 \$2.000 \$3 15 Summer 100 +30% 1/360 Winter 0.680 \$1.002 \$3 15 Summer 100 +30% 1/360 Winter 0.680 \$1.002 \$3 15 Summer 100 +30% 1/360 Winter 0.680 \$1.004 \$5 600 Winter 100 +30% 0.678 0.678 \$1.005 \$6 600 Winter 100 +30% 100/180 Winter 0.678 \$1.006 \$7 600 Winter 100 +30%										8640, 10	080
US/MH Return Climate First (X) First (Y) First (Z) Overflow Level PN Name Storm Period Change Surcharge Flood Overflow Act. (m) \$1.000 \$1 15 Summer 100 +30% 100/15 Summer 1.325 \$1.001 \$2 15 Summer 100 +30% 100/15 Summer 1.325 \$1.002 \$3 15 Summer 100 +30% 100/15 Summer 1.039 \$1.002 \$3 15 Summer 100 +30% 1/360 Winter 1.039 \$1.003 \$4 600 Winter 100 +30% 0.678 \$1.004 \$5 600 Winter 100 +30% 0.678 \$1.006 \$7 600 Winter 100 +30% 100/180 Winter \$2.006 \$7 600 Winter 100 +30%		Ret									
US/MI PN Name Storm Return Climate Priod First (X) Surcharge First (Y) Flood First (Z) Overflow Overflow Act. Level (m) \$1.000 \$1 15 Summer 100 +30% 100/15 Summer 1.325 \$1.001 \$2 15 Summer 100 +30% 100/15 Summer 1.325 \$2.000 \$3 15 Summer 100 +30% 100/15 Summer 1.326 \$1.002 \$3 15 Summer 100 +30% 100/15 Summer 1.320 \$1.003 \$4 600 Winter 100 +30% 1/360 Winter 0.680 \$1.004 \$5 600 Winter 100 +30% 0.678 0.678 \$1.005 \$56 600 Winter 100 +30% 100/180 Winter Pieze Level PN Name (m) (m³) Cap. (1/s) Time Flow			Climate	e Change	(8)					υ, υ,	30
US/MI PN Name Storm Return Climate Priod First (X) Surcharge First (Y) Flood First (Z) Overflow Overflow Act. Level (m) \$1.000 \$1 15 Summer 100 +30% 100/15 Summer 1.325 \$1.001 \$2 15 Summer 100 +30% 100/15 Summer 1.325 \$2.000 \$3 15 Summer 100 +30% 100/15 Summer 1.326 \$1.002 \$3 15 Summer 100 +30% 100/15 Summer 1.320 \$1.003 \$4 600 Winter 100 +30% 1/360 Winter 0.680 \$1.004 \$5 600 Winter 100 +30% 0.678 0.678 \$1.005 \$56 600 Winter 100 +30% 100/180 Winter Pieze Level PN Name (m) (m³) Cap. (1/s) Time Flow											
PN Name Storm Period Change Surcharge Flood Overflow Act. (m) \$1.000 \$1 15 Summer 100 +30% 100/15 Summer 1.325 \$1.001 \$2 15 Summer 100 +30% 100/15 Summer 1.325 \$2.000 \$3 15 Summer 100 +30% 100/15 Summer 1.240 \$1.002 \$3 15 Summer 100 +30% 100/15 Summer 1.039 \$1.002 \$3 15 Summer 100 +30% 1/360 Winter 0.680 \$1.003 \$4 600 Winter 100 +30% 0.678 0.678 \$1.005 \$6 600 Winter 100 +30% 100/180 Winter 0.673 VS/MH Depth Volume Flow / Overflow Time Flow Level PN Name (m)		. /		Data	61 i		(77)		W) D ime	- (T) O	
S1.000 S1 15 Summer 100 +30% 1.325 S1.001 S2 15 Summer 100 +30% 100/15 Summer 1.113 S2.000 S3 15 Summer 100 +30% 100/15 Summer 1.240 S1.002 S3 15 Summer 100 +30% 100/15 Summer 1.039 S1.002 S3 15 Summer 100 +30% 1/360 Winter 1.039 S1.003 S4 600 Winter 100 +30% 1/360 Winter 0.680 S1.004 S5 600 Winter 100 +30% 0.678 0.678 S1.005 S6 600 Winter 100 +30% 100/180 Winter 0.673 Surcharged Flooded Half Drain Pipe US/MH Depth Volume Flow / Overflow Time Flow Level PN Name (m) (m³) Cap. (1/s) (mins) (1/s) Status <td></td> <td></td> <td>Storm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			Storm								
S1.001 S2 15 Summer 100 +30% 100/15 Summer 1.113 S2.000 S3 15 Summer 100 +30% 100/15 Summer 1.240 S1.002 S3 15 Summer 100 +30% 100/15 Summer 1.039 S1.002 S3 15 Summer 100 +30% 1/360 Winter 0.680 S1.003 S4 600 Winter 100 +30% 1/360 Winter 0.680 S1.004 S5 600 Winter 100 +30% 0.678 0.678 S1.005 S6 600 Winter 100 +30% 100/180 Winter 0.678 S1.006 S7 600 Winter 100 +30% 100/180 Winter 0.673 VS/MH Depth Volume Flow / Overflow Time Flow Level FN Name (m) (m³) Cap. (1/s) (mins) (1/s) Status Exceeded S1.001 <td>-1 -0.0</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td>	-1 -0.0				-		2				
S2.000 S3 15 Summer 100 +30% 1.240 S1.002 S3 15 Summer 100 +30% 1/360 Winter 1.039 S1.003 S4 600 Winter 100 +30% 1/360 Winter 0.680 S1.004 S5 600 Winter 100 +30% 0.678 S1.005 S6 600 Winter 100 +30% 0.678 S1.006 S7 600 Winter 100 +30% 100/180 Winter 0.678 S1.006 S7 600 Winter 100 +30% 100/180 Winter 0.673 VS/MH Depth Volume Flow / Overflow Time Flow Level PN Name (m) (m³) Cap. (1/s) (mins) (1/s) Status Exceeded S1.000 S1 0.000 0.000 0.62 32.6 OK S1.001 S2 0.026 0.000 0.62 35.7 OK S2						100/15	Summer				
S1.003 S4 600 Winter 100 +30% 1/360 Winter 0.680 S1.004 S5 600 Winter 100 +30% 0.678 0.678 S1.005 S6 600 Winter 100 +30% 100/180 Winter 0.678 S1.006 S7 600 Winter 100 +30% 100/180 Winter 0.673 Surcharged Flooded Half Drain Pipe Level PN Name (m) (m³) Cap. (1/s) (mins) (1/s) Status Exceeded S1.000 S1 0.000 0.82 32.6 OK S1.001 S2 0.026 0.000 0.62 35.7 OK						T00/T0	Samuer				
S1.004 S5 600 Winter 100 +30% 0.678 S1.005 S6 600 Winter 100 +30% 0.678 S1.006 S7 600 Winter 100 +30% 0.678 S1.006 S7 600 Winter 100 +30% 0.678 VS/MH Depth Volume Flow / Overflow Time Flow Level PN Name (m) (m³) Cap. (1/s) (mins) (1/s) Status Exceeded S1.000 S1 0.000 0.82 32.6 OK S1.001 S2 0.026 0.000 0.62 35.7 OK	S1.002	S 3	15 Summer	r 100	+30%						1.03
S1.005 S6 600 Winter 100 +30% 0.678 S1.006 S7 600 Winter 100 +30% 100/180 Winter 0.673 Surcharged Flooded Half Drain Pipe Level VS/MH Depth Volume Flow / Overflow Time Flow Level PN Name (m) (m³) Cap. (1/s) (mins) (1/s) Status Exceeded S1.000 S1 0.000 0.82 32.6 OK S1.001 S2 0.026 0.000 0.62 35.7 OK S2.000 S3 -0.085 0.000 0.62 35.7 OK						1/360	Winter				
S1.006 S7 600 Winter 100 +30% 100/180 Winter 0.673 VS/MH Depth Flooded Half Drain Pipe VS/MH Depth Volume Flow / Overflow Time Flow Level PN Name (m) 0.000 0.82 32.6 OK S1.001 S2 0.026 0.000 0.69 27.3 SURCHARGED S2.000 S3 -0.085 0.000 0.62 35.7 OK											
US/MH Depth Volume Flow / Overflow Time Flow Level PN Name (m) (m³) Cap. (1/s) (mins) (1/s) Status Exceeded \$1.000 \$1 0.000 0.000 0.82 32.6 OK \$1.001 \$2 0.026 0.000 0.69 27.3 SURCHARGED \$2.000 \$3 -0.085 0.000 0.62 35.7 OK						100/180	Winter				
US/MH Depth Volume Flow / Overflow Time Flow Level PN Name (m) (m³) Cap. (1/s) (mins) (1/s) Status Exceeded \$1.000 \$1 0.000 0.000 0.82 32.6 OK \$1.001 \$2 0.026 0.000 0.69 27.3 SURCHARGED \$2.000 \$3 -0.085 0.000 0.62 35.7 OK											
US/MH Depth Volume Flow / Overflow Time Flow Level PN Name (m) (m³) Cap. (1/s) (mins) (1/s) Status Exceeded \$1.000 \$1 0.000 0.000 0.82 32.6 OK \$1.001 \$2 0.026 0.000 0.69 27.3 SURCHARGED \$2.000 \$3 -0.085 0.000 0.62 35.7 OK			Surchar	and Floor	ded		Ha	lf Drain	Pine		
PN Name (m) (m³) Cap. (1/s) (mins) (1/s) Status Exceeded \$1.000 \$1 0.000 0.000 0.82 32.6 0K \$1.001 \$2 0.026 0.000 0.69 27.3 SURCHARGED \$2.000 \$3 -0.085 0.000 0.62 35.7 0K		us/I		-		/ Overf			-		Level
S1.001 S2 0.026 0.000 0.69 27.3 SURCHARGED S2.000 S3 -0.085 0.000 0.62 35.7 OK	PN		-							Status	
S1.001 S2 0.026 0.000 0.69 27.3 SURCHARGED S2.000 S3 -0.085 0.000 0.62 35.7 OK	S1 000		s1 0	000 0	000 0	82			32 6	C)K
S2.000 S3 -0.085 0.000 0.62 35.7 OK											
©1982-2020 Innovyze											
					©1982	2-2020	Innovy	ze			

Alan Wood and Partners		Page 9
341 Beverley Road	Carr Lane, Newport	
Hull		
HU5 1LD		Micro
Date 15/01/2024	Designed by HD	Drainage
File Network 2.MDX	Checked by AD	Diamage
Innovyze	Network 2020.1.3	

100 year Return Period Summary of Critical Results by Maximum Level (Rank <u>1) for Storm</u>


PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
S1.002	S3	0.148	0.000	1.01			46.8	SURCHARGED	
S1.003	S4	0.383	0.000	0.15			4.4	SURCHARGED	
S1.004	S5	-0.322	0.000	0.00			4.4	OK	
S1.005	S6	-0.072	0.000	0.18			2.0	OK	
S1.006	S7	0.038	0.000	1.53			2.0	SURCHARGED	


©1982-2020 Innovyze

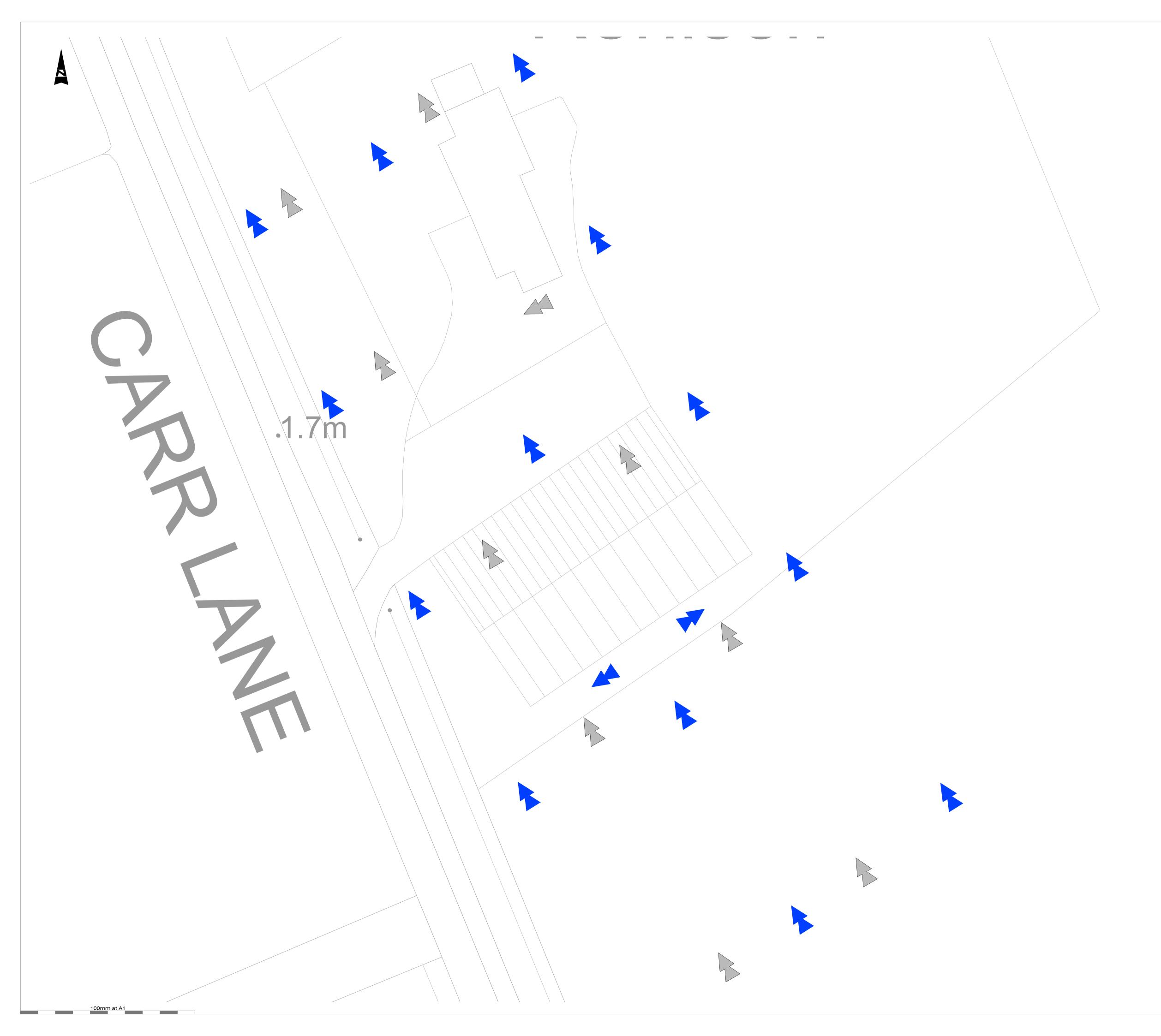


APPENDIX D

Drainage Strategy and SuDS Details Drawings

NOTES:

1. THESE NOTES ARE INTENDED TO AUGMENT DRAWINGS AND SPECIFICATIONS. WHERE CONFLICT OF REQUIREMENTS EXIST THE ORDER OF PRECEDENCE SHALL BE AS SHOWN IN THE SPECIFICATION. OTHERWISE THE STRICTEST PROVISION SHALL GOVERN.


- 2. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL OTHER RELEVANT ENGINEERS AND ARCHITECTS DRAWINGS.
- DRAWINGS NOT TO BE SCALED. ALL DIMENSIONS TO BE CHECKED ON SITE BY THE CONTRACTOR. ANY DISCREPANCIES TO BE NOTIFIED TO THE ENGINEER AND FURTHER INSTRUCTIONS OBTAINED BEFORE WORK IS COMMENCED.
- 4. THE STRUCTURE IS DESIGNED TO BE SELF-SUPPORTING AND STABLE AFTER THE BUILDING IS FULLY COMPLETED. IT IS THE CONTRACTORS SOLE RESPONSIBILITY TO DETERMINE THE ERECTION PROCEDURE AND SEQUENCE AND ENSURE THAT THE BUILDING AND ITS COMPONENTS ARE SAFE DURING ERECTION. THIS INCLUDES THE ADDITION OF WHATEVER TEMPORARY BRACING, GUYS OR TIE-DOWNS WHICH MAY BE NECESSARY, SUCH MATERIAL REMAINING THE THE PROPERTY OF THE CONTRACTOR ON COMPLETION, AND FOR ENSURING THAT THE WORKS AND ANY ADJACENT PROPERTIES ARE SAFE IN THE TEMPORARY CONDITION.

P1 FIRST ISSUE Rev Description	12.01.24TGADDateByChkApp
Alan Wood	& Partners
Hull Office 341 Beverley Road Hull HU5 1LD	Consulting Civil & Structural Engineers Project Managers Building Surveyors
T. 01482 442138 www.alanwood.co.uk	Leeds T. 01135 311098 Lincoln T. 01522 300210 Scarborough T. 01723 865484 Sheffield T. 01142 440077 York T. 01904 611594
Project: Rennison, Carr Lan	ie, Newport, Brough
Client: J W Beaumont Ltd	
Drawing: Drainage Detail Dra	awing
Role: Civil Engineer	
Drawing Status: FOR APPROVAL	Suitability Code: –
Job. no. 50159 Scale@ A1:	
Project Originator Volume L JWB - AWP - ZZ - X	

APPENDIX E

Surface Water Exceedance Flood Routing Drawing

2. THE ANE 3. DRA	SPECIFICATIO	N. OTHERWISE	ST THE ORDER OF F		OVERN.
ANE 3. DRA	S DRAWING IS 7	TO BE READ IN C			
	ARCHITECTS		CONJUNCTION WITH	ALL OTHER REL	EVANT ENGINEERS
	ITRACTOR. AN	Y DISCREPANCI	L DIMENSIONS TO E	TO THE ENGINEE	
			E WORK IS COMMEN BE SELF-SUPPORTI		AFTER THE
DET	ERMINE THE E	RECTION PROCE	IS THE CONTRACT	NCE AND ENSUR	E THAT THE
ADE NEC	DITION OF WHA	TEVER TEMPOR	ARY BRACING, GUY AINING THE THE PF	S OR TIE-DOWNS ROPERTY OF THE	WHICH MAY BE
		FOR ENSURING	G THAT THE WORKS NDITION.	AND ANY ADJAC	ENTPROPERTIES
			D SURFACE WAT	ER	
		EXCEEDANC	E FLOW PATH R	OUTE	
			SURFACE WATER		
	TISSUE			10.01.24	HD AD -
P1 FIRS Rev Descri				10.01.24 Date	HD AD - By Chk A
Rev Descri	ption			Date	By Chk A
Rev Descri	ption		od & P	Date	By Chk A
Rev Descri	Alan			Date	By Chk A
Rev Descri	Alan		Consult	Date	By Chk A
Rev Descri	ption Alan lice verley Road		Consult & Struc Project	Date	By Chk A
Rev Descri	ption Alan lice verley Road		Consult & Struc Project Building	Date	By Chk A
Rev Descri Hull Off 341 Ber Hull	ption Alan lice verley Road		Consult & Struc Project Building Leeds Lincoln	Date	By Chk A By Chk A P S S S S S S S S S S S S S S S S S S
Rev Descri HullOff 341 Ber Hull HU5 1L	ption Alan ice verley Roac D	1	Consult & Struc Project Building	Date Date	By Chk A By Chk A
Rev Descri HullOff 341 Ber Hull HU5 1L	ption Alan ice verley Roac	1	Consult & Struc Project Building Leeds Lincoln Scarboroug Sheffield	Date Date	By Chk A By Chk A F S T S T S T S T S T S T S T S T
Rev Descri HullOff 341 Ber Hull HU5 1L	ption Alan ice verley Roac D	1	Consult & Struc Project Building Leeds Lincoln Scarboroug Sheffield	Date Date	By Chk A By Chk A F S T S T S T S T S T S T S T S T
Rev Descri Hull Off 341 Ber Hull HU5 1L T. 0148 www.al	ption Alan ice verley Road D 2 442138 anwood.co	d b.uk	Consult & Struc Project Building Leeds Lincoln Scarboroug Sheffield York	Date	By Chk A By Chk A F S TS neers rs 35 311098 22 300210 23 865484 42 440077 04 611594
Rev Descri Hull Off 341 Ber Hull HU5 1L T. 0148 www.al	ption Alan ice verley Road D 2 442138 anwood.co	d b.uk	Consult & Struc Project Building Leeds Lincoln Scarboroug Sheffield	Date	By Chk A By Chk A F S TS neers rs 35 311098 22 300210 23 865484 42 440077 04 611594
Rev Descri Hull Off 341 Ber Hull HU5 1L T. 0148 www.al	ption Alan ice verley Road D 2 442138 anwood.co	d b.uk	Consult & Struc Project Building Leeds Lincoln Scarboroug Sheffield York	Date	By Chk A By Chk A F S TS neers rs 35 311098 22 300210 23 865484 42 440077 04 611594
Rev Descri Hull Off 341 Bev Hull HU5 1L T. 0148 www.al	ption Alan Alan ice verley Roac D 2 442138 anwood.co Rennisc	d b.uk	Consult & Struc Project Building Leeds Lincoln Scarboroug Sheffield York	Date	By Chk A By Chk A F S TS neers rs 35 311098 22 300210 23 865484 42 440077 04 611594
Rev Descri Hull Off 341 Bev Hull HU5 1L T. 0148 www.al	ption Alan Alan ice verley Roac D 2 442138 anwood.co Rennisc	o.uk Don, Carr L	Consult & Struc Project Building Leeds Lincoln Scarboroug Sheffield York	Date	By Chk A By Chk A F S TS neers rs 35 311098 22 300210 23 865484 42 440077 04 611594
Rev Descri Hull Off 341 Bev Hull HU5 1L T. 0148 www.al	ption Alan Alan ice verley Roac D 2 442138 anwood.co Rennisc	o.uk on, Carr L aumont L	Leeds Lincoln Scarboroug Sheffield York	Date Date	By Chk A By Chk A PrS rs 35 311098 22 300210 23 865484 42 440077 04 611594
Rev Descri Hull Off 341 Ber Hull HU5 1L T. 0148 www.al	ption Alan Alan Alan 2 442138 anwood.co Renniso J W Be Propose	on, Carr L aumont L ed and E	Consult & Struc Project Building Leeds Lincoln Scarboroug Sheffield York	Date Date	By Chk A By Chk A PrS rs 35 311098 22 300210 23 865484 42 440077 04 611594
Rev Descri Hull Off 341 Ber Hull HU5 1L T. 0148 www.al	ption Alan Alan ice verley Roac D 2 442138 anwood.co Rennisc	on, Carr L aumont L ed and E	Leeds Lincoln Scarboroug Sheffield York	Date Date	By Chk A By Chk A PrS rs 35 311098 22 300210 23 865484 42 440077 04 611594
Rev Descri Hull Off 341 Ber Hull HU5 1L T. 0148 www.al	ption Alan Alan Alan 2 442138 anwood.co Renniso J W Be Propose	on, Carr L aumont L ed and E ance	Leeds Lincoln Scarboroug Sheffield York	Date Date	By Chk A By Chk A PrS rs 35 311098 22 300210 23 865484 42 440077 04 611594
Rev Descri Rev Descri Hull Off 341 Ber Hull HU5 1L T. 0148 www.al Client: Client: Drawing: Role: Drawing	ption Alan Alan Alan 2 442138 anwood.co Rennisc J W Be Propose Exceed Civil En	a o.uk on, Carr L aumont L ed and E lance ngineer	Consult & Struc Project Building Leeds Lincoln Scarboroug Sheffield York	Date Date	By Chk A By Chk A PTS Preers rs 35 311098 22 300210 23 865484 42 440077 04 611594 gh
Rev Descri Rev Descri Hull Off 341 Ber Hull HU5 1L T. 0148 www.al Project: Client: Drawing: Role:	ption Alan Alan Alan 2 442138 anwood.co Rennisc J W Be Propose Exceed Civil En	a o.uk on, Carr L aumont L aumont L lance ngineer PPROVA	Consult & Struc Project Building Leeds Lincoln Scarboroug Sheffield York	Date Date	By Chk A By Chk A PTS Preers rs 35 311098 22 300210 23 865484 42 440077 04 611594 gh

APPENDIX F

ENVIRONMENT AGENCY FLOOD DATA

														20	20 Hun	nber Tr	ibs - M	arket V	Veighto	n defe	ended mo	delled me	asuremer	nts												
																		Α	nnual E	xceed	ance Pro	bability (A	EP)													
											25+	25+								10	100+2	100+2	100+3	100+3	100+5	100+5		20	200+2	200+2	200+3	200+3	200+5	200+5	100	10
	2	2	5	5	10	10	20	20	25	25	CC	CC	30	30	50	50	75	75	100	0	0%CC	0%CC	0%CC	0%CC	0%CC	0%CC	200	0	0%CC	0%CC	0%CC	0%CC	0%CC	0%CC	0	00
											4% AI	•	3.3				1.3																	,		ļ
	50%			AEP		AEP	5% A	•	4% A	•	in 2		AEP	•	2% A	•	AEP	•	1% A	•		P (1 in		EP (1 in		P (1 in	0.5%		0.5% A	•		EP (1 in		EP (1 in	0.1%	
Node Point	(1 ir	/	(1 i		(1 ir	<u>10)</u>	in	20)	in		+50%	<u>6 CC</u>	30	/	in (75	/	in 1	/	100) +2	20% CC	100) +:	<u>30% CC</u>	100) +5	50% CC	(1 in	200)	200) +2	20% CC	200) +3	30% CC	200) +	50% CC	(1 in 1	-
		Flo		Flo		Flo		Flo		Flo				Flo		Flo		Flo		Flo								Flo								Flo
	Lev	w	Lev	w	Lev	w	Lev	w	Lev	w	Lev	Flo	Lev	w	Lev	w	Lev	w	Lev	w							Lev	w					I		Lev	w
	el	(m	el	(m	el	(m	el	(m	el	(m	el	W	el	(m	el	(m	el	(m	el	(m	Level	_	Level	_	Level	-	el	(m	Level	-	Level		Level		el	(m
	(mA	3/s	(mA	3/s	(mA	3/s	(mA	3/s	(mA	3/s	(mA	(m3	(mA	3/s	(mA	3/s	(mA	3/s	(mA	3/s	(mAO	Flow	(mAO	Flow	(mAO	Flow	(mA	3/s	(mAO	Flow	(mAO	Flow	(mAO	Flow	(mA	3/s
E140004445 14	OD))	OD)		OD)		OD)		OD)		OD)	/s)	OD)		OD)		OD)		OD))	D)	(m3/s)	D)	(m3/s)	D)	(m3/s)	00)		D)	(m3/s)	D)	(m3/s)	D)	(m3/s)	OD))
EA12321445e_M	0.0	13.	0.00	15.	1 00	17.	4.00	18.	4.07	19.	4.04	26.	4.04	20.		21.	4 40	22.	4 55	23.	4 70	00.07	40.0	07.07	4.00		1.7	25.	4.00		4.00	00.74	4.05	24.05	10	32.
KWC01_4815	0.8		0.96	32	1.08	_	1.23	65	1.27	52	1.84	22	1.31	06	1.41	27	1.49	51	1.55	46	1.73	26.07	12.2	27.67	1.86	29.9	1.7	89	1.82	28.38	1.86	29.71	1.95	34.05	1.9	
EA12321445e_M	0.04	13.	0.00	15.		17.	4.04	18.	4.00	19.	4.05	26.	4.00	19.	4 40	21.	4 5 4	22.	4 57	23.	4.74	05.07	40.07	07.57	1.00	00.75	4 74	25.	4.04	00.05	4.00	00.05	1.00	00.00	4 00	32.
KWC01_5252i	0.81	19	0.98	18	1.1	23	1.24		1.29	32	1.85	07	1.33	96	1.43	25	1.51	47	1.57	34	1.74	25.87	12.07	27.57	1.88	29.75	1.71	8/	1.84	28.35	1.88	29.65	1.98	33.99	1.93	18
EA12321445e_M	0.00	13.		15.	1 40	17.	4.07	18.	1 32	19.	4 07	25.	4.05	19.	4 45	21.	4 50	22.	1	23.	4 77	05.00	44.00	07.5	10	00.7	4 74	25.	4.07	00.40	10	00.55	0.04	22.05	1.00	32.
KWC01_5670i	0.83	14	1	07	1.12	22	1.27	45	1.32	29	1.87	92	1.35	97	1.45	19	1.53	35	1.6	19	1.77	25.83	11.99	27.5	1.9	29.7	1.74	85	1.87	28.18	1.9	29.55	2.01	33.95	1.96	15

	2020 Humber Tribs - Market Weighton defences removed measurements Annual Exceedance Probability (AEP) Annual Exceedance Probability (AEP) 2 2 5 10 10 20 25 26 27 27 100 100 200+20 200+20 200+20 200+20 200+20 200+30 200+30 200+50 200+50 200+50 200+50 200+50 200+50 200+50																																			
																			Annual	Exceed	dance Prob	ability (AE	P)													
	2	2	5	5	10	10	20	20	25	25	25+ CC		30	30	50	50	75	75	100	100	100+20 %CC						200	200							1000	
Node Point	50% A	EP (1	20% A	EP (1	10% A	EP (1	5% A	EP (1	4% A	EP (1	4% Al in 25)		3.33%	AEP	2% A	EP (1	1.33%	AEP	1% AB	EP (1	1% AEP	(1 in 100)	1% AEP	(1 in 100)	1% AEP	(1 in 100)	0.5%	AEP	0.5% A	EP (1 in	0.5% A	EP (1 in	0.5% A	EP (1 in	0.1%	AEP
	in	2) `	in	5)	in 1	0) `	in 2	20) `	in		ć	С	(1 in	30)	in 5	io) `	(1 in	75)	in 1	00)	+20	°∾ CC ′́	+304	<u>`</u> сс ́	+50%	à CC ((1 in	200)	200) +2	20% [`] CC	200) +3	30% CC	200) +5	50% CC	(1 in ⁻	1000)
	Leve	Flo	Leve	Flo	Leve	Flo	Leve	Flo	Leve	Flo	Leve	Flo	Leve	Flo	Leve	Flo	Leve	Flo	Leve	Flo							Leve	Flo						ſ, ,	Leve	Flo
	1	w	I	w	1	w	I	w	I I	w	I	w	I	w	I	w	I	w	I	w	Level		Level		Level		1	w	Level		Level		Level	1 1	1	w
	(mA	(m3	(mA	(m3	(mA	(m3	(mA	(m3	(mA	(m3	(mA	(m3/	(mA	(m3	(mA	(m3	(mA	(m3	(mA	(m3	(mAOD	Flow	(mAOD	Flow	(mAOD	Flow	(mA	(m3	(mAOD	Flow	(mAOD	Flow	(mAOD	Flow	(mA	(m3
	OD)	/s)	OD)	/s)	OD)	/s)	OD)	/s)	OD)	/s)	OD)	s)	OD)	/s)	OD)	/s)	OD)	/s)	OD)	/s))	(m3/s))	(m3/s))	(m3/s)	OD)	/s))	(m3/s))	(m3/s))	(m3/s)	OD)	/s)
EA12321445e_MK		12.		14.		15.		17.		17.		23.6		18.		19.		20.		21.								23.						1 /		31.
WC01_4815	0.74	2	0.89	09	0.99	52	1.1	04	1.14	56	1.73	6	1.17	04	1.26	33	1.34	32	1.39	18	1.56	23.82	1.65	25.51	1.77	29.01	1.53	26	1.71	26.94	1.77	28.91	1.89	33.58	1.84	6
EA12321445e_MK		12.		14.		15.		16.		17.		23.5		17.		19.		20.		21.								23.						\square		31.
WC01_5252i	0.75	07	0.9	01	1	44	1.12	95	1.16	47	1.73	5	1.19	94	1.28	24	1.36	24	1.41	09	1.58	23.73	1.66	25.43	1.79	28.98	1.55	18	1.73	26.85	1.78	28.89	1.91	33.54	1.86	55
EA12321445e_MK		11.		13.		15.		16.		17.		23.4		17.		19.		20.		21.								23.						\square		31.
WC01_5670i	0.77	99	0.92	94	1.03	37	1.14	88	1.18	39	1.74	5	1.22	86	1.31	16	1.38	18	1.44	02	1.61	23.65	1.68	25.34	1.8	28.96	1.57	1	1.74	26.77	1.8	28.89	1.94	33.52	1.88	51

2020 Humber Strategy Modelling – Extreme Water Levels

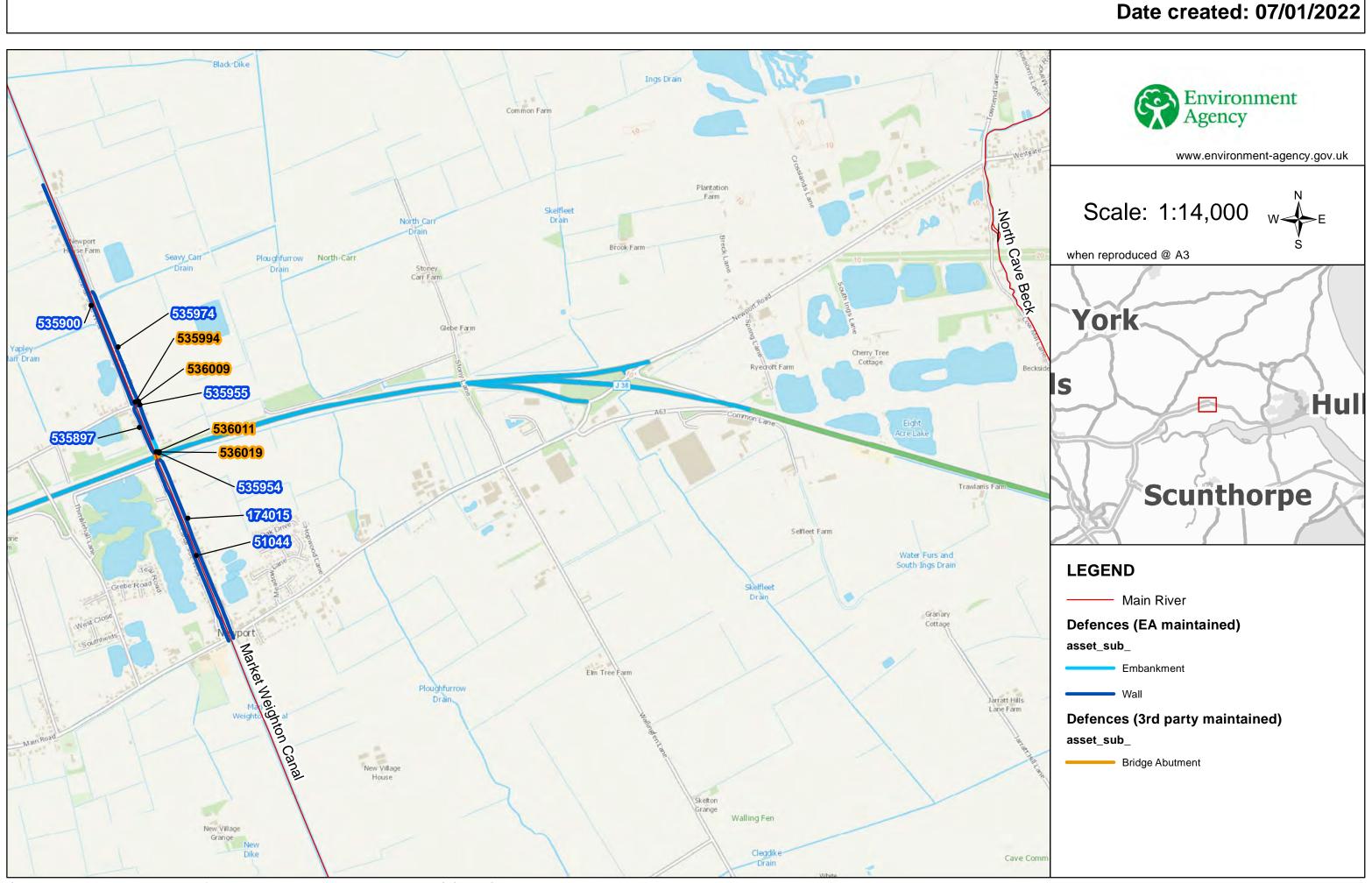
Emission Scenario: Extreme

(H++)

. ,			Emissio	n Scenari	o: Extrem	e (H++)	- -					Emissio	on Scenari	o: Extrem	e (H++)				Emissio	n Scenari	o: Extrem	e (H++)
		Epoch	: 2021			Epoch	: 2040				Epoch	: 2046			Epoch	: 2071				Epoch	: 2121	
	% flow	increase a (SL		vel rise	% flow	increase a	and sea le	vel rise		% flow		and sea le LR)	vel rise	% flow	increase a	and sea le	vel rise		% flow	increase a (SI		vel rise
	20% f	low increa	ase, 0.03 r	n SLR	35% f	low incre	ase, 0.28 r	n SLR		35% f	low increa	ase, 0.37 r	m SLR	65% f	low increa	ase, 0.97 r	n SLR		65% f	low increa	ase, 2.64 r	n SLR
	Annua	al Exceeda (AB		ability	Annua		ance Proba EP)	ability		Annua		ance Proba EP)	ability	Annua	al Exceeda (AE		ability		Annua	al Exceeda	ance Proba EP)	ability
			0.5%	0.1%			0.5%	0.1%			(-)	0.5%	0.1%		(^(0.5%	0.1%				0.5%	0.1%
	5% (1	1% (1	(1 in	(1 in	5% (1	1% (1	(1 in	(1 in		5% (1	1% (1	(1 in	(1 in	5% (1	1% (1	(1 in	(1 in		5% (1	1% (1	(1 in	(1 in
	in 20)	in 100)	200)	1000)	in 20)	in 100)	200)	1000)		in 20)	in 100)	200)	1000)	in 20)	in 100)	200)	1000)		in 20)		200)	1000)
Node	Max level	Max level	Max level	Max level	Max level	Max level	Max level	Max level	Node	Max level	Max level	Max level	Max level	Max level	Max level	Max level	Max level	Node	Max level	Max level	Max level	Max level
points		(mAOD)	(mAOD)	. ,	(mAOD)	. ,			points	(mAOD)	(mAOD)	(mAOD)		(mAOD)		(mAOD)	(mAOD)	-	(mAOD)	, ,		(mAOD)
HU_0_008	5.49	5.79	5.95	6.13	5.74	5.98	6.09	6.23	HU_0_008	5.82	6.03	6.13	6.26	6.17	6.28	6.37	6.49	HU_0_008	6.87	6.97	7.04	7.17
HU_0_009	5.47	5.78	5.94	6.13	5.72	5.97	6.09	6.23	HU_0_009	5.81	6.03	6.13	6.26	6.17	6.29	6.36	6.49	HU_0_009	6.9	7.01	7.08	7.21
HU_0_010	5.45	5.76	5.92	6.11	5.7	5.96	6.08	6.23	HU_0_010	5.79	6.01	6.12	6.26	6.17	6.29	6.34	6.49	HU_0_010	6.91	7.03	7.1	7.23
HU_0_011	5.44	5.74	5.91	6.12	5.69	5.95	6.07	6.24	HU_0_011	5.78	6.01	6.12	6.27	6.18	6.3	6.36	6.5	HU_0_011	6.97	7.1	7.17	7.32

2020 Humber Strategy Modelling –

Extreme Water Levels

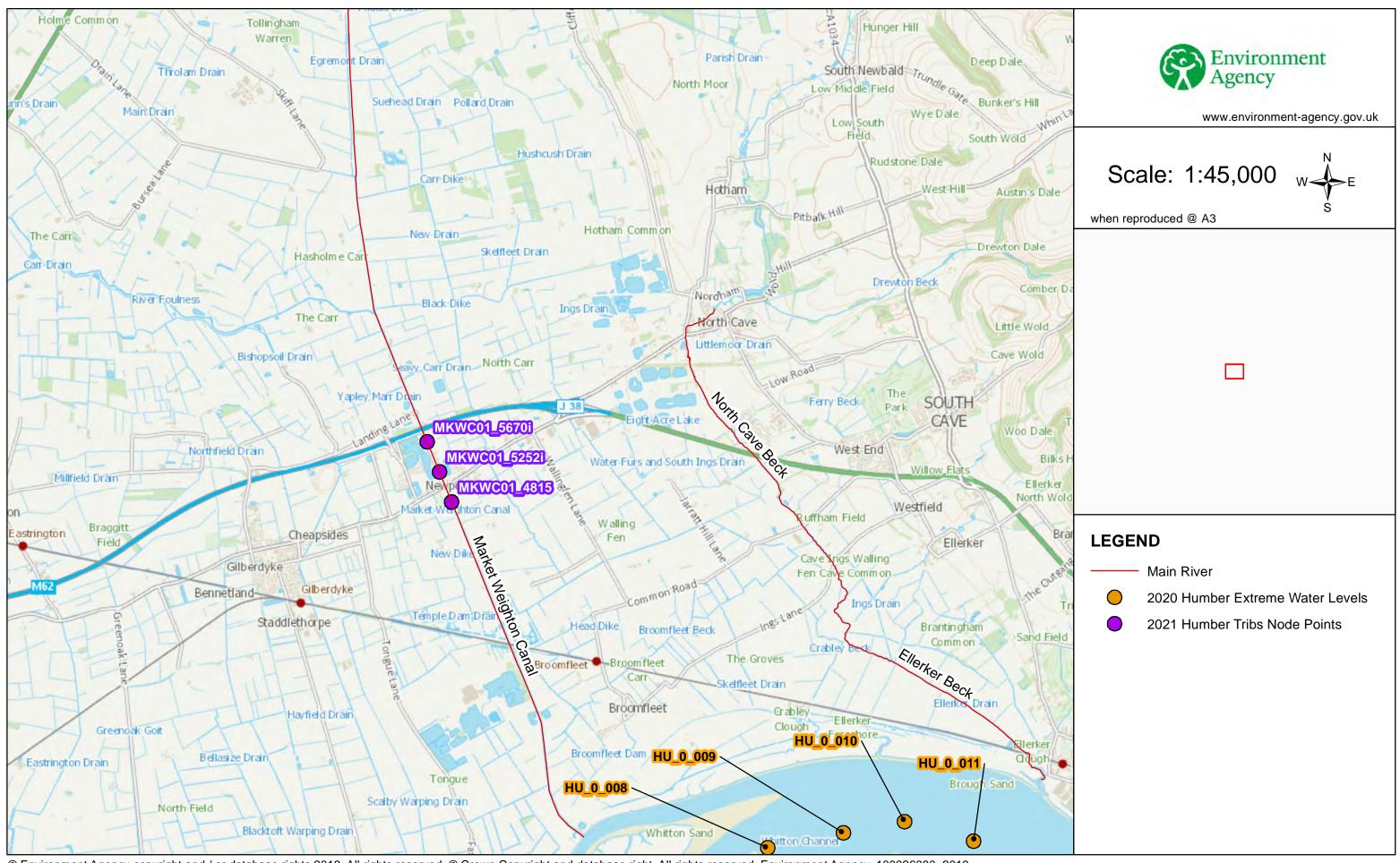

			Emission	Scenario	: High (Up	per End)						Emission	Scenario	: High (Up	per End)				Emissi	on Scenai En	[.] io: High (d)	Upper
		Epoch	: 2021			Epoch	: 2040				Epoch	: 2046			Epoch	: 2071				Epoch	: 2121	
	% flow	increase a (SL		vel rise	% flow	increase a	and sea le	vel rise		% flow	increase a (SI	and sea le _R)	vel rise	% flow	increase a	and sea le	vel rise		% flow	increase a (SL	and sea le .R)	vel rise
	20% f	low increa		n SLR		low increa				30% 1	low increa	-	n SLR			ase, 0.54 r			50% f		, ase, 1.38 r	n SLR
	Annua	al Exceeda		ability	Annua	al Exceeda	ince Prob	ability		Annua	al Exceeda		ability	Annua	I Exceeda	nce Proba	ability		Annua	l Exceeda	nce Prob	ability
		(AE				(Al	EP)				(Al	· ·			(AE	-				(AE	-	
			0.5%	0.1%			0.5%	0.1%				0.5%	0.1%			0.5%	0.1%					0.1%
	5% (1	1% (1	(1 in	(1 in	5% (1	1% (1	(1 in	(1 in		5% (1	1% (1	(1 in	(1 in	5% (1	1% (1	(1 in	(1 in		5% (1	1% (1	(1 in	(1 in
	in 20)	in 100)	200)	1000)	in 20)	in 100)	200)	1000)		in 20)	in 100)	200)	1000)	in 20)	in 100)	200)	1000)		in 20)	,	200)	1000)
Node	Max level	Max level	Max level	Max level	Max level	Max level	Max level	Max level	Node	Max level	Max level	Max level	Max level	Max level	Max level	Max level	Max level		Max	Max level	Max	Max
points	(mAOD)	(mAOD)	(mAOD)	(mAOD)	(mAOD)	(mAOD)	(mAOD)	(mAOD)	points	(mAOD)	(mAOD)	(mAOD)	(mAOD)	(mAOD)	(mAOD)	(mAOD)			level (mAOD)		level (mAOD)	level (mAOD)
HU_0_008	5.49	5.79	5.95	6.13	5.64	5.91	6.04	6.19	HU_0_008	5.69	5.95	6.07	6.21	5.95	6.12	6.2	6.31	1	6.34	6.46	6.51	6.59
HU_0_009	5.47	5.78	5.94	6.13	5.63	5.9	6.03	6.19	HU_0_009	5.68	5.94	6.06	6.21	5.94	6.12	6.2	6.32	2	6.33	6.46	6.52	6.59
HU_0_010	5.45	5.76	5.92	6.11	5.61	5.88	6.02	6.18	HU_0_010	5.66	5.92	6.05	6.21	5.92	6.11	6.2	6.32	3	6.32	6.45	6.51	6.6
HU_0_011	5.44	5.74	5.91	6.12	5.6	5.88	6.01	6.19	HU_0_011	5.64	5.91	6.04	6.22	5.92	6.11	6.21	6.34	4	6.34	6.46	6.52	6.62

		Em	ission Sce	nario: Me	edium (Hig	gher Centi	ral)				Em	ission Sce	enario: Me	edium (Hi	gher Cent	ral)			Emission		: Medium tral)	(Higher
				Epo	och								Epo	och						Epo	och	
		Baseline	e - 2021			20	40				20	46			20	71				21	21	
	% flow	· · · ·			% flow	increase a	and sea le	vel rise		% flow	increase a (SI	and sea le .R)	vel rise	% flow	increase a	and sea le	vel rise		% flow	increase a (SL	and sea le .R)	vel rise
	15% f	15% flow increase, 0.02 m Annual Exceedance Proba (AEP)			20% f	low increa	ase, 0.14 r	n SLR		20% f	low incre	ase, 0.19 ı	m SLR	30% f	low incre	ase, 0.42 r	n SLR		30% f	low increa	ase, 1.02 r	n SLR
	15% flow increase, 0.02 m s Annual Exceedance Probab (AEP) 0.5% 0			ability	Annua	al Exceeda	nce Prob	ability		Annua	al Exceeda	nce Prob	ability	Annua	al Exceeda	nce Proba	ability		Annua	al Exceeda	ince Proba	ability
		(AE	,			(Al					(A)				(A)	-				(Al	-	
	50/ /4	404.44		0.1%	50/ /4	40/ /4	0.5%	0.1%		50/ /4	40/ /4	0.5%	0.1%	50/ /4		0.5%	0.1%		50/ /4	404.44		0.1%
	•		•	(1 in 1000)	5% (1	1% (1	(1 in	(1 in		5% (1	1% (1 in 100)	(1 in	(1 in	5% (1	1% (1	(1 in	(1 in		5% (1	1% (1	(1 in 200)	(1 in
ſ	in 20) Max	in 100) Max	200) Max	Max	in 20) Max	in 100) Max	200) Max	1000) Max		in 20) Max	in 100) Max	200) Max	1000) Max	in 20) Max	in 100) Max	200) Max	1000) Max		in 20) Max	in 100) Max	200) Max	1000) Max
Node	level	level	level	level	level	level	level	level	Node	level	level	level	level	level	level	level	level	Node	level	level	level	level
points	(mAOD)	(mAOD)	(mAOD)	(mAOD)	(mAOD)	(mAOD)	(mAOD)	(mAOD)	points	(mAOD)	(mAOD)	(mAOD)	(mAOD)	(mAOD)	(mAOD)	(mAOD)	(mAOD)	points	(mAOD)	(mAOD)	(mAOD)	(mAOD)
HU_0_008	5.48	5.78	5.94	6.12	5.6	5.88	6.02	6.18	HU_0_008	5.65	5.92	6.04	6.2	5.86	6.06	6.16	6.28	HU_0_008	6.2	6.3	6.39	6.5
HU_0_009	5.46	5.77	5.93	6.12	5.59	5.87	6.01	6.18	HU_0_009	5.64	5.91	6.04	6.2	5.85	6.05	6.15	6.28	HU_0_009	6.2	6.3	6.38	6.51
HU_0_010	5.44	5.75	5.91	6.11	5.56	5.85	5.99	6.17	HU_0_010	5.62	5.89	6.02	6.19	5.83	6.04	6.14	6.28	HU_0_010	6.19	6.3	6.36	6.5
HU_0_011	5.43	5.73	5.9	6.11	5.55	5.84	5.98	6.17	HU_0_011	5.6	5.88	6.02	6.2	5.82	6.04	6.15	6.29	HU_0_011	6.2	6.32	6.38	6.52

														20	20 Hun	nber Tr	ibs - M	arket V	Veighto	n defe	ended mo	delled me	asuremer	nts												
																		Α	nnual E	xceed	ance Pro	bability (A	EP)													
											25+	25+								10	100+2	100+2	100+3	100+3	100+5	100+5		20	200+2	200+2	200+3	200+3	200+5	200+5	100	10
	2	2	5	5	10	10	20	20	25	25	CC	CC	30	30	50	50	75	75	100	0	0%CC	0%CC	0%CC	0%CC	0%CC	0%CC	200	0	0%CC	0%CC	0%CC	0%CC	0%CC	0%CC	0	00
											4% AI	•	3.3				1.3																	,		ļ
	50%			AEP		AEP	5% A	•	4% A	•	in 2		AEP	•	2% A	•	AEP	•	1% A	•		P (1 in		EP (1 in		P (1 in	0.5%		0.5% A	•		EP (1 in		EP (1 in	0.1%	
Node Point	(1 ir	/	(1 i		(1 ir	<u>10)</u>	in	20)	in		+50%	<u>6 CC</u>	30	/	in (75	/	in 1	/	100) +2	20% CC	100) +:	<u>30% CC</u>	100) +5	50% CC	(1 in	200)	200) +2	20% CC	200) +3	30% CC	200) +	50% CC	(1 in 1	-
		Flo		Flo		Flo		Flo		Flo				Flo		Flo		Flo		Flo								Flo								Flo
	Lev	w	Lev	w	Lev	w	Lev	w	Lev	w	Lev	Flo	Lev	w	Lev	w	Lev	w	Lev	w							Lev	w					I		Lev	w
	el	(m	el	(m	el	(m	el	(m	el	(m	el	W	el	(m	el	(m	el	(m	el	(m	Level	_	Level	_	Level	-	el	(m	Level	-	Level		Level		el	(m
	(mA	3/s	(mA	3/s	(mA	3/s	(mA	3/s	(mA	3/s	(mA	(m3	(mA	3/s	(mA	3/s	(mA	3/s	(mA	3/s	(mAO	Flow	(mAO	Flow	(mAO	Flow	(mA	3/s	(mAO	Flow	(mAO	Flow	(mAO	Flow	(mA	3/s
E140004445 14	OD))	OD)		OD)		OD)		OD)		OD)	/s)	OD)		OD)		OD)		OD))	D)	(m3/s)	D)	(m3/s)	D)	(m3/s)	00)		D)	(m3/s)	D)	(m3/s)	D)	(m3/s)	OD))
EA12321445e_M	0.0	13.	0.00	15.	1 00	17.	4.00	18.	4.07	19.	4.04	26.	4.04	20.		21.	4 40	22.	4 55	23.	4 70	00.07	40.0	07.07	4.00		1.7	25.	4.00		4.00	00.74	4.05	24.05	10	32.
KWC01_4815	0.8		0.96	32	1.08	_	1.23	65	1.27	52	1.84	22	1.31	06	1.41	27	1.49	51	1.55	46	1.73	26.07	12.2	27.67	1.86	29.9	1.7	89	1.82	28.38	1.86	29.71	1.95	34.05	1.9	
EA12321445e_M	0.04	13.	0.00	15.		17.	4.04	18.	4.00	19.	4.05	26.	4.00	19.	4 40	21.	4 5 4	22.	4 57	23.	4.74	05.07	40.07	07.57	4.00	00.75	4 74	25.	4.04	00.05	4.00	00.05	1.00	00.00	4 00	32.
KWC01_5252i	0.81	19	0.98	18	1.1	23	1.24		1.29	32	1.85	07	1.33	96	1.43	25	1.51	47	1.57	34	1.74	25.87	12.07	27.57	1.88	29.75	1.71	8/	1.84	28.35	1.88	29.65	1.98	33.99	1.93	18
EA12321445e_M	0.00	13.		15.	1 40	17.	4.07	18.	1 32	19.	4 07	25.	4.05	19.	4 45	21.	4 50	22.	1	23.	4 77	05.00	44.00	07.5	10	00.7	4 74	25.	4.07	00.40	10	00.55	0.04	22.05	1.00	32.
KWC01_5670i	0.83	14	1	07	1.12	22	1.27	45	1.32	29	1.87	92	1.35	97	1.45	19	1.53	35	1.6	19	1.77	25.83	11.99	27.5	1.9	29.7	1.74	85	1.87	28.18	1.9	29.55	2.01	33.95	1.96	15

	2020 Humber Tribs - Market Weighton defences removed modelled measurements																																			
																			Annual	Exceed	dance Prob	ability (AE	P)													
	2	2	5	5	10	10	20	20	25	25	25+ CC	25+ CC	30	30	50	50	75	75	100	100	100+20 %CC	100+20 %CC	100+30 %CC	100+30 %CC	100+50 %CC	100+50 %CC	200	200	200+20 %CC	200+20 %CC	200+30 %CC	200+30 %CC	200+50 %CC	200+50 %CC	1000	100 0
Node Point	50% A	EP (1	20% A	EP (1	10% A	EP (1	5% A	EP (1	4% A	EP (1	4% Al in 25)		3.33%	AEP	2% A	EP (1	1.33%	AEP	1% AB	EP (1	1% AEP	(1 in 100)	1% AEP	(1 in 100)	1% AEP	(1 in 100)	0.5%	AEP	0.5% A	EP (1 in	0.5% A	EP (1 in	0.5% A	EP (1 in	0.1%	AEP
	in	2) `	in	5) `	in 1	0) `	in 2	20) `	in		ć	С	(1 in	30)	in 5	io) `	(1 in	75)	in 1	00)	+20	λ CC ΄	+304	<u>``</u> сс ́	+50%	ò cc í	(1 in	200)	200) +2	20% [`] CC	200) +3	30% CC	200) +5	50% CC	(1 in ⁻	1000)
	Leve	Flo	Leve	Flo	Leve	Flo	Leve	Flo	Leve	Flo	Leve	Flo	Leve	Flo	Leve	Flo	Leve	Flo	Leve	Flo							Leve	Flo							Leve	Flo
	1	w	I	w	I I	w	I	w	I I	w	I	w	I	w	I	w	I	w	I	w	Level		Level		Level		1	w	Level		Level		Level		I I	w
	(mA	(m3	(mA	(m3	(mA	(m3	(mA	(m3	(mA	(m3	(mA	(m3/	(mA	(m3	(mA	(m3	(mA	(m3	(mA	(m3	(mAOD	Flow	(mAOD	Flow	(mAOD	Flow	(mA	(m3	(mAOD	Flow	(mAOD	Flow	(mAOD	Flow	(mA	(m3
	OD)	/s)	OD)	/s)	OD)	/s)	OD)	/s)	OD)	/s)	OD)	s)	OD)	/s)	OD)	/s)	OD)	/s)	OD)	/s))	(m3/s))	(m3/s))	(m3/s)	OD)	/s))	(m3/s))	(m3/s))	(m3/s)	OD)	/s)
EA12321445e_MK		12.		14.		15.		17.		17.		23.6		18.		19.		20.		21.								23.								31.
WC01_4815	0.74	2	0.89	09	0.99	52	1.1	04	1.14	56	1.73	6	1.17	04	1.26	33	1.34	32	1.39	18	1.56	23.82	1.65	25.51	1.77	29.01	1.53	26	1.71	26.94	1.77	28.91	1.89	33.58	1.84	6
EA12321445e_MK		12.		14.		15.		16.		17.		23.5		17.		19.		20.		21.								23.								31.
WC01_5252i	0.75	07	0.9	01	1	44	1.12	95	1.16	47	1.73	5	1.19	94	1.28	24	1.36	24	1.41	09	1.58	23.73	1.66	25.43	1.79	28.98	1.55	18	1.73	26.85	1.78	28.89	1.91	33.54	1.86	55
EA12321445e_MK		11.		13.		15.		16.		17.		23.4		17.		19.		20.		21.								23.								31.
WC01_5670i	0.77	99	0.92	94	1.03	37	1.14	88	1.18	39	1.74	5	1.22	86	1.31	16	1.38	18	1.44	02	1.61	23.65	1.68	25.34	1.8	28.96	1.57	1	1.74	26.77	1.8	28.89	1.94	33.52	1.88	51

RFI/2021/240379 Assets Map centred on your site at Newport, East Yorkshire



© Environment Agency copyright and / or database rights 2019. All rights reserved. © Crown Copyright and database right. All rights reserved. Environment Agency, 100026380, 2019. Contact Us: National Customer Contact Centre, PO Box 544, Rotherham, S60 1BY. Tel: 03708 506 506(Mon-Fri 8-6). Email: enquiries@environment-agency.gov.uk

	Defences (EA Maintained) - RFI/2021/240379									
ASSET ID	DESCRIPTION	ASSET MAINTAINER	ASSETS TYPE	LENGTH (m)	ACTUAL Downstream Crest Level (mAOD)	ACTUAL Upstream Crest Level (mAOD)	PROTECTION	TARGET CONDITION	OVERALL CONDITION	DESIGN STANDARD OF PROTECTION (SOP)
174015		Environment Agency	Wall	816.71	3.22	1.90	Fluvial	2	4	50
51044		Environment Agency	Wall	826.41	3.00	3.00	Fluvial	2	4	50
535897		Environment Agency	Wall	217.07			Fluvial	2	4	50
535900		Environment Agency	Wall	1009.09			Fluvial	2	4	50
535954		Environment Agency	Embankment	61.18			Fluvial	2	4	
535955		Environment Agency	Wall	155.76			Fluvial	2	5	50
535974		Environment Agency	Wall	510.54			Fluvial	2	5	50

				Defences (3	Brd Party Maintai	ned) - RFI/2021	/240379			
ASSET ID	DESCRIPTION	ASSET MAINTAINER	ASSETS TYPE	LENGTH (m)	ACTUAL Downstream Crest Level (mAOD)	ACTUAL Upstream Crest Level (mAOD)	PROTECTIO N	TARGET CONDITION	OVERALL CONDITION	DESIGN STANDARD OF PROTECTION (SOP)
505004			Bridge	40.70			Thursday			
535994		Local Authority	Abutment	10.76			Fluvial			
536009		Local Authority	Bridge Abutment	10.96			Fluvial			
536011		Local Authority	Bridge Abutment	34.68			Fluvial			
536019		Local Authority	Bridge Abutment	35.19			Fluvial			

RFI/2021/240379 Node Point Map centred on your site at Newport, East Yorkshire

© Environment Agency copyright and / or database rights 2019. All rights reserved. © Crown Copyright and database right. All rights reserved. Environment Agency, 100026380, 2019. Contact Us: National Customer Contact Centre, PO Box 544, Rotherham, S60 1BY. Tel: 03708 506 506(Mon-Fri 8-6). Email: enquiries@environment-agency.gov.uk

Alan Wood & Partners

Hull Office	Leeds Office	Lincoln Office
(Registered Office)	18 Howley Park Business Village	Unit H
341 Beverley Road	Pullan Way	The Quays
Hull	Leeds	Burton Waters
HU5 1LD	LS27 0BZ	Lincoln LN1 2XG
Telephone	Telephone	Telephone
01482.442138	0113. 5311098	01522.300210
Scarborough Office	Sheffield Office	York Office
Kingsley House	Hallamshire House	Omega 2
7 Pickering Road	Meadow Court	Monks Cross Drive
West Ayton	Hayland Street	York
Scarborough YO13 9JE	Sheffield S9 1BY	YO32 9GZ
Telephone	Telephone	Telephone
01723.865484	01142.440077	01904 611594
Email	Website	
eng@alanwood.co.uk	www.alanwood.co.uk	

Our Services

BIM Processes Blast Design **Boundary Disputes** BREEAM **Building Regulations Applications** Building & Structural Surveyors CDM – Principal Designer **Civil Engineering** Contaminated Land/Remediation **Contract Administration** Demolition **Disabled Access Consultants** Energy from Waste Expert Witness Services Form Finding Flood Risk Assessments Foundation Design Geo-technical Investigations & Design Geo-environmental Investigations **Historic Building Services**

Quality Assurance Accreditation

ISO 9001 Registered firm Certificate no. GB.02/07 Highway Design Land Remediation Advice Land Surveying Marine Works Mining Investigations Modular Design Parametric Modelling Party Wall Surveyors Planning Applications Project Managers Renewable Energy Risk Assessments & Remediation Road & Drainage Design Site Investigations Site Supervision Structural Engineering Sulphate Attack Specialists Temporary Works Topographic & Measured Surveys Traffic Assessments

Environmental Accreditation

ISO 14001Registered firm Certificate no. GB.09/277b

www.alanwood.co.uk

Alan Wood & Partners