

STRUCTURAL ENGINEERS REPORT

Subject	Spring Lane Farm Shop Mapperley Plains Nottingham NG3 5RQ
Client	Spring Lane Farm Shop Ltd
Our Ref.	P21229
Inspection Date Report Date	14 September 2023 19 September 2023
Prepared by	

Giles Ward MA CEng MICE Director giles.ward@hwaconsulting.co.uk

ith when

For and on behalf of Howard Ward Associates Ltd

Version History

	Date	Reason	Ву
1.0	19/09/2023	First issue	GRW

Contents

Ver	sion History	. 2
Con	tents	. 3
Sun	imary	. 4
1.	General/Background	. 5
2.	Topography/Geology	. 5
3.	Inspection	. 6
4.	Numerical Appraisal	. 7
5.	Discussion/Recommendations	. 8
Арр	endix A – Building Identification	11
Арр	endix B - Calculations	12

Summary

- Purpose of report:To advise on the structural condition of an existing agricultural building, with a view to its
possible conversion to a retail coffee shop
- Conclusion:Subject to some minor improvements as noted below, the building is structurally sound
and capable of conversion as proposed.

1. General/Background

- 1.1 For the avoidance of doubt, this report relates to the building outlined in red on the extract from the Mapmatic topographical survey of the site dated 12 October 2021, attached as Appendix A . Surrounding/attached buildings have not been inspected in detail and are excluded from our scope.
- 1.2 The age of the building is not known, although it does not appear to be especially recent.
- 1.3 In describing the building, all references to front, rear, left and right are as viewed from Spring Lane.

2. Topography/Geology

- 2.1 The site slopes downwards from front to rear. The gradient is however insufficient to give rise to any concerns relating to slope stability and there are no other relevant topographical features nearby.
- 2.2 Data from the British Geological Survey indicates the underlying bedrock is from the Gunthorpe Member, consisting of mudstone from the Triassic period. No superficial strata are recorded and it is therefore probable that material close to the surface consists of weathered mudstone. Such material would be expected to include a substantial clay content and to have a satisfactory bearing capacity for foundations.

3. Inspection

- 3.1 The building superstructure comprises a series of steel portal frames spaced at approximately 4.6m centres and spanning around 13.5m. Timber purlins span between the steel frames and support fibre cement sheeting. Given the age of the building, the sheeting is assumed to contain asbestos fibres which are hazardous to health, although it is stressed that no testing has been undertaken to confirm this.
- 3.2 The steelwork appears generally straight and true, with columns vertical (within normal tolerances) where accessible. There are occasional very minor and localised areas of impact damage to the steel rafters and some slight surface corrosion, but nothing that might compromise structural integrity.
- 3.3 Most of the timber purlins exhibit a degree of sagging. This is typical of agricultural construction where timbers are unlikely to be generously sized and hence will be relatively highly stressed, with sagging progressing over time due to the natural "creep" of timber, especially at times of high loading due to snow etc. None however appeared to be in any immediate danger of collapse.
- 3.4 The concrete floor was only partially visible at the time of inspection due to the materials and other items stored in the building. It appeared to be somewhat uneven, consistent with agricultural usage, but to be reasonably intact with no significant cracking.

NOTES

- 3.5 Towards the rear, floor level within the building is above that of the surrounding ground due to the sloping site. Along the rear part of the side elevation, the floor and fill material beneath it is constrained by brickwork between ground level and floor level. At the rear, block work walls fulfil the same function, some parts of which extend above ground with only a small section of fibre cement cladding above them. There is a slight outwards lean on the central section of the blockwork of around 1:60.
- 3.6 The attached photographs illustrate the above.

4. Numerical Appraisal

4.1 In order to confirm the adequacy of both the steel frames and the purlins, check calculations have been prepared based on measurements and observations taken on site. These are attached as Appendix B.

5. Discussion/Recommendations

- 5.1 It is assumed that a new roof would be required as part of the conversion, in conjunction with which it would be straightforward to replace and upgrade the existing purlins, hence eliminating any concerns in relation to sagging.
- 5.2 The outwards lean on the rear blockwork is relatively minor. It might nonetheless be prudent to re-clad this localised section of the building such that the affected blockwork could be taken down to avoid any residual concerns in this regard.
- 5.3 All other aspects of the building are structurally suitable to provide a sound basis for the proposed conversion, although it is assumed that other changes/upgrades would in any event be required as part of the conversion process.

3.– Underside of roof, note purlin distortions

Appendix A – Building Identification

Appendix B - Calculations

	Project				Job Ref.		
	Spring	JLane Farm Sho	F	P21229			
CONSULTING ENGINEERS	ONSULTING ENGINEERS Section						
Howard Ward Associates	Check Calculations					1	
Brewery House, Walkers Yard	Calc. by	Date	Chk'd by	Date	App'd by	Date	
Radcliffe-on-Trent	GRW	19/09/2023					
					•		

ROOF LOADING (PITCHED SHEETED ROOF)

Roof slope θ = 15.0 $^{\circ}$

Dead load	
Sheeting	Roofp1 = 0.20 kN/m ²
Purlins	Roof _{D4} = 0.08 kN/m ²
Steelwork	Roofb5 = 0.05 kN/m ²
Services	Roof _{D6} = 0.10 kN/m ²
Total dead load on slope	
RoofDL_sroof = sum(RoofD1,RoofD4,RoofD5,RoofD6) =	0.43 kN/m ²
Total dead load on plan	Roof _{DL} = Roof _{DL_sroof} / $cos(\theta) = 0.44$ kN/m ²

SNOW LOADING (EN1991)

SNOW LOADING

In accordance with EN1991-1-3:2003+A1:2015 incorporating corrigenda dated December 2004 and March 2009 and the UK national annex NA+A1:2015 to BS EN 1991-1-3:2003+A1:2015 incorporating Corrigendum No.1

Tedds calculation version 1.0.13

Characteristic ground snow load	
Location	Nottingham
Site altitude above sea level (user modified value)	A = 108 m
Zone number	Z = 3.0
Density of snow	γ = 2.00 kN/m ³
Characteristic ground snow load	$s_k = ((0.15 + (0.1 \times Z + 0.05)) + ((A - 100m) / 525m)) \times 1kN/m^2 = 0.52$ kN/m ²
Exposure coefficient (Normal)	Ce = 1.0
Thermal coefficient	Ct = 1.0
Snow fence	Not present
Building details	
Roof type	Duopitch
Width of roof (left on elevation)	b1 = 7.00 m
Width of roof (right on elevation)	b ₂ = 7.00 m
Slope of roof (left on elevation)	α1 = 15.00 deg
Slope of roof (right on elevation)	α2 = 15.00 deg
Shape coefficients	
Shape coefficient roof (Table 5.2)	μ2_α1_T52 = 0.80
Shape coefficient roof (Table 5.2)	μ2_α2_T52 = 0.80
Shape coefficient roof (Table UK NA.2)	μ1_α1_NA2 = 0.80
Shape coefficient roof (Table UK NA.2)	μ1_α2_NA2 = 0.80

	Project				Job Ref.	
	Spring	Lane Farm Sho	P21229			
CONSULTING ENGINEERS	Section		Sheet no./rev.			
Howard Ward Associates	Check Calculations				2	
Brewery House, Walkers Yard Radcliffe-on-Trent	Calc. by GRW	Date 19/09/2023	Chk'd by	Date	App'd by	Date
		•	•			

Shape coef	Coef	Loading (kN/m ²)
$\mu_{2_{a}1_{52}}$	0.800	0.41
$\mu_{2_{-x}2_{-}T52}$	0.800	0.41
$\mu_{1_{\infty}1_{NA2}}$	0.800	0.41
μ	0.800	0.41

Loadcase 1 Table 5.2

Loading to roof 1 (LHS) Loading to roof 2 (RHS)

Loadcase 2 UK NA.2

Loading to roof 1 (LHS) Loading to roof 2 (RHS)

Loadcase 3 UK NA.2

Loading to roof 1 (LHS) Loading to roof 2 (RHS)
$$\begin{split} s_{1_1} &= \mu_{2_\alpha 1_T52} \times C_e \times C_t \times s_k = \textbf{0.41} \ kN/m^2 \\ s_{2_1} &= \mu_{2_\alpha 2_T52} \times C_e \times C_t \times s_k = \textbf{0.41} \ kN/m^2 \end{split}$$

 $s_{1_2} = 0 \times C_e \times C_t \times s_k = \textbf{0.00} \text{ kN/m}^2$

 $s_{2_2} = \mu_{1_\alpha 2_NA2} \times C_{e} \times C_{t} \times s_{k} = \textbf{0.41} \ kN/m^{2}$

$$\begin{split} s_{1_3} &= \mu_{1_\alpha 1_NA2} \times C_e \times C_t \times s_k = \textbf{0.41} \ kN/m^2 \\ s_{2_3} &= 0 \times C_e \times C_t \times s_k = \textbf{0.00} \ kN/m^2 \end{split}$$

	Project				Job Ref.	
	Spring	Lane Farm Sho	P21229			
CONSULTING ENGINEERS	Section				Sheet no./rev.	
Howard Ward Associates		Check Calculations				3
Brewery House, Walkers Yard	Calc. by	Date	Chk'd by	Date	App'd by	Date
Radcliffe-on-Trent	GRW	19/09/2023				

PURLIN

Spacing estimated on site at 1.35m, check for 1.4m: Roof_{\text{D1}} \times 1.4m = 0.28 kN/m

s1_1 × 1.4m = **0.58** kN/m

TIMBER BEAM ANALYSIS & DESIGN TO EN1995-1-1:2004

In accordance with EN1995-1-1:2004 + A2:2014 and Corrigendum No.1 and the UK National Annex incorporating National Amendment No.1

Project Job Ref.						
	Spring I	ane Farm Sho	p - Proposed Co	onversion	P2 ²	1229
CONSULTING ENGINEERS	Section				Sheet no./rev.	
Howard Ward Associates		Check C	alculations			4
Brewery House, Walkers Yard	Calc. by	Date	Chk'd by	Date	App'd by	Date
Radcliffe-on-Trent	GRW	19/09/2023				
		Support B		Perman	ent \times 1.35	
				Variable	e × 1.50	
Analysis results						
Maximum moment		M _{max} = 3 4	36 kNm	$M_{min} = 0$	000 kNm	
Design moment		M = max(a	hs(M _{max}) ahs(M _n	(in)) = 3436 kNm		
Maximum shear		$F_{max} = 2.98$	8 kN	$F_{\min} = -2$	988 kN	
Design shear		F = max(ab)	s(Fmax) abs(Fmir	(1) = 2.988 kN		
Total load on beam		$W_{tot} = 5.97$	6 kN			
Reactions at support A		$R_{A} max = 2$	988 kN	RA min =	2.988 kN	
Unfactored permanent load read	ction at support	A RA Permanent	= 0.731 kN			
Unfactored variable load reaction	n at support A	RA Variable =	1.334 kN			
Reactions at support B		$R_{B max} = 2$	988 kN	R _B min =	2.988 kN	
Unfactored permanent load read	ction at support	B RB Permanent	= 0.731 kN			
Unfactored variable load reactio	n at support B	RB_Variable =	1.334 kN			
T N A						
≅ X				\sim		
<u>•</u> ()						
4 -63- b	\sim					
	■ 100 — ■					
Timber section details						
Breadth of timber sections		b = 63 mm				
Depth of timber sections		h = 175 mr	n			
Number of timber sections in me	ember	N = 1				
Overall breadth of timber memb	er	$b_{\text{b}} = N \times b$	= 63 mm			
Inclination of section		θ = 15.0 de	g			
Timber strength class - EN 338:	2016 Table 1	C24				
Member details						
Load duration - cl.2.3.1.2		Short-tern	ı			
Service class of timber - cl.2.3.1	.3	1				
Length of span		Ls1 = 4600	mm			
Length of bearing		L _b = 100 m	m			
Section properties						
Cross sectional area of member		$A = N \times h$	h = 11025 mm	2		
Section modulus		$W_{\rm v} = N \times h$	$\times h^2 / 6 = 32150$	63 mm ³		
		$W_7 = h \vee (N_7)$	$1 \times b)^2 / 6 - 115$	763 mm ³		
Second moment of area		$\int u = N \vee h \vee h$	$h^3 / 12 = 28126$	719 mm ⁴		
			$(-1)^{-1} = 20130$	5510 mm^4		
Podiuo of surption		$z = 11 \times (1N)$	$\sim 0^{-7} = 3040$			
Radius of gyration		Iy = V(Iy / A)) = 30.3 mm			
	1 2	$r_z = \sqrt{I_z / A}$) = 18.2 mm		100100 ·	
Second moment of area of rotat	ed section	$I_{\theta} = (I_{y} + I_{z})$	$/2 + (I_y - I_z) \times Co$	$\operatorname{os}(2 \times \theta) / 2 = 26$	496186 mm⁴	
Partial factor for material prop	erties and resi	stances				
Partial factor for material proper	ties - Table 2.3	γм = 1.300				

	Project					Job Ref.			
	Spring	g Lane Far	F	P21229					
CONSULTING ENGINEERS	Section	-				Sheet no./rev			
Howard Ward Associates		Cł	neck Ca	alculations			5		
Brewery House, Walkers Yard	Calc. by	Date		Chk'd by	Date	App'd by	Date		
Radcliffe-on-Trent	GRW	19/09/2	2023						
		•		•		l			
Modification factors									
Modification factor for load dura	tion and moist	ure conten	t - Tab	le 3.1					
		k mod	= 0.90	0					
Deformation factor for service c	lasses - Table	3.2 kdef :	= 0.600)					
Depth factor for bending - exp.3	3.1	k h.m	= 1.00	D					
Depth factor for tension - exp.3.	1	k h.t =	= 1.000						
Bending stress re-distribution fa	Bending stress re-distribution factor - cl.6.1.6(2)								
Crack factor for shear resistance - cl.6.1.7(2)			0.670						
Load configuration factor - exp.6.4			= 1.00	0					
System strength factor - cl.6.6		ksys :	= 1.000)					
Lateral buckling factor - cl.6.3.3	(5)	kcrit =	= 1.000)					
Compression perpendicular to	o the grain - c	l.6.1.5							
Design compressive stress		σ c.90	.d = RB_	$_{max}$ / (N $ imes$ b	\times Lb) = 0.474 N/	/mm²			
Design compressive strength	Design compressive strength			$\mathbf{i} \times \mathbf{k}_{sys} \times \mathbf{k}_{c.9}$	90 × fc.90.к / үм = 1	.731 N/mm ²			
		σ c.90	$\sigma_{c.90.d}$ / fc.90.d = 0.274						
	PASS - Desig	gn compre	essive	strength e	xceeds design	compressive st	ress at bearing		
Biaxial bending - cl 6.1.6									
Design bending stress in major	(v-v) axis	σmv	н = М ×	cos(θ) / W	v = 10.321 N/mm	n ²			
Design bending stress in minor	(7-7) axis	Ωm z	d = M ×	sin(A) / W ₇	= 7.682 N/mm ²				
Design bending strength	(2 2) and	fm d =	= k hm x	kmod x keve	\times k crit \times fm k / γ M =	16 615 N/mm ²			
Combined bending checks - eq	6 11 & eq 6 13	лі Стан	- Kii ^		$/ f_{m,d} = 0.945$				
Combined bending checks - eq	.0.11 & eq.0.12	- Only.							
		κm × D/	PASS - Design hending strength exceeds design hending stress						
		Γ /	433 - L	Jesign ben	ung strengtrie	exceeds design	bending stress		
Shear - cl.6.1.7			/						
Applied shear stress		$\tau d =$	3 × F /	$(2 \times k_{cr} \times A)$.) = 0.607 N/mm ²	2			
Permissible shear stress		fv.d =	k mod ×	$k_{sys} \times f_{v.k} / \gamma$	үм = 2.769 N/mm	1 ²			
		τd / f	v.d = 0.	219					
			PA	SS - Desigr	n shear strengt	h exceeds desig	gn shear stress		
Deflection - cl.7.2									
Deflection limit		δlim =	= 0.005	5 × Ls1 = 23.	000 mm				
Instantaneous deflection due to	permanent loa	ad õinstG	= 6.49	90 mm					
Final deflection due to permane	ent load	δfinG	= δinstG	× (1 + k _{def})	= 10.385 mm				
Instantaneous deflection due to	variable load	δinstC	a = 11.8	344 mm					
Factor for quasi-permanent vari	able action	₩2 =	0						
Final deflection due to variable	load	δfinO	= SinstO	$\times (1 + w_2 \times$	k _{def}) = 11 .844 m	nm			
Total final deflection		Sfin -	· Sting +	δfino - 22 2	28 mm				
		Se_ /	δlim – Γ	966					
		Ofin 7		SS - Total f	inal dofloction	is loss than the	deflection limit		
			PA	JJ - TUIALL					

	Project				Job Ref.	
	Spring	Lane Farm Sho	P21229			
CONSULTING ENGINEERS	Section		Sheet no./rev.			
Howard Ward Associates	Check Calculations					6
Brewery House, Walkers Yard Radcliffe-on-Trent	Calc. by GRW	Date 19/09/2023	Chk'd by	Date	App'd by	Date

PORTAL FRAME ANALYSIS & DESIGN (EN1993)

STEEL MEMBER ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

ANALYSIS

Tedds calculation version 1.0.37

Tedds calculation version 4.4.08

Geometry

Materials

Name		Der (ka	nsity /m³)	Youngs Modulus kN/mm ²		Shear Modulus kN/mm ²		Thermal Coefficient			
Steel (EC3)		78	350	210		80.8		0.000012]	
Sectio	(<u>_</u> 00)						00.0]	
Name		Area	N	Ioment o	f inertia	Shear	area paral	lel to			
110		7.104	Ma	ajor	Minor	Minor	M	ajor			
		(cm ²)	(ci	m ⁴)	(cm ⁴)	(cm ²)	(c	m²)			
UB 254	x102x22	28	28	841	119.3	14.5	1	2.4			
UB 254	x102x25	32	34	14.6	148.7	15.4	1	5.4			
Nodes	5										
Node	Co-ord	linates		Freedon	n	Coordina	Coordinate system		Spring		
	Х	Z	Х	Z	Rot.	Name	Angle	Х	Z	Rot.	
	(m)	(m)					(°)	(kN/m)	(kN/m)	kNm/°	
1	0	0	Fixed	Fixed	Free		0	0	0	0]
2	0	2.9	Free	Free	Free		0	0	0	0	
3	6.75	4.709	Free	Free	Free		0	0	0	0	
4	13.5	2.9	Free	Free	Free		0	0	0	0	
5	13.5	0	Fixed	Fixed	Free		0	0	0	0	
Eleme	ents										
Element Length Nodes		Section		Material			Releases		Rotated		
	(m)	Start	End					Start moment	End moment	Axial	
1	2.9	1	2	UB 25	4x102x22	Steel	(EC3)	Fixed	Fixed	Fixed	
2	6.988	2	3	UB 25	4x102x25	Steel	(EC3)	Fixed	Fixed	Fixed	
3	6.988	3	4	UB 25	4x102x22	Steel	(EC3)	Fixed	Fixed	Fixed	

	Project		Job Ref.				
	Spring	Lane Farm Sho	P21229				
CONSULTING ENGINEERS	Section		Sheet no./rev.				
Howard Ward Associates		Check C	9				
Brewery House, Walkers Yard	Calc. by	Date	Chk'd by	Date	App'd by	Date	
Radcime-on-Trent	GRW	19/09/2023					
Member1 design Section details Section type Steel grade - EN 10025-2:2004 Nominal thickness of element Nominal yield strength Nominal ultimate tensile strengt Modulus of elasticity	h	UB 254x10 S235 tnom = max(fy = 235 N/ fu = 360 N/ E = 210000 UB 254x1 Section br Mass of as Plange thi Web thick Root radiu Area of se Radius of Elastic sec Plastic sec Second m Second m	2x25 (BS4-1) itr, tw) = 8.4 mm mm ² mm ² D N/mm ² 02x25 (BS4-1) with, h, 257.2 mm eadth, b, 101.9 mm relion, Mass, 25.2 kg/m chness, t, 8.4 mm ress, t, 6 mm s, r, 7.6 mm ction, A, 3204 mm ³ gyration about y-axis, 1, - gyration about y-axis, 1, - dion modulus about y-axi tion modu	103.235 mm 21.542 mm 5, W _{els} , 255518 mm ⁵ 5, W _{els} , 29182 mm ⁵ 5, W _{els} , 305527 mm ⁵ 5, U ₂ , 46008 mm ⁵ 15, L, 34145528 mm ⁵ 15, L, 24145528 mm ⁴			
Lateral restraint Upper flange has full lateral rest Lower flange has lateral restrair	traint ht at supports or	ly					
Classification of cross section	ns - Section 5.5	;					
		ε = √[235 Ν	J/mm ² / f _y] = 1.0	D			
Internal compression parts su	ibiect to bendir	ng and compre	ssion - Table 5.	2 (sheet 1 of 3)			
Width of section	,	c = d = 225	5.2 mm	(
		$\alpha = min([h$	$\alpha = min([h / 2 + N_{Ed} / (2 \times t_w \times f_y) - (t_f + r)] / c, 1) = 0.543$				
		c / t _w = 37.5	5 = 37.5 × ε <= 3	$396 \times \epsilon / (13 \times \alpha \cdot$	- 1) Class	1	
Outstand flanges - Table 5.2 (sheet 2 of 3)						
Width of section		c = (b - t _w -	$2 \times r)/2 = 40.3$	mm			
		c = (b + c)	= 4 8 × ε <= 9 ×	ε Class 1			
		07 11 - 110 -			Secti	on is class 1	
	~~ /				0000		
Check compression - Section	6.2.4	N 37 3	LNI				
Design resistance of section	a 6 10		$KIN = A \times f / ana =$	752 0 KN			
Design resistance of section - e	q 0.10	Nc.Ra = Npi,F	α = A × Iy / γmu = - 0.036	132.3 KN			
		PASS - Desig	- 0.000 n compression	resistance exc	eeds design (compression	
Clandowness ratis former '	flavoral kard "				esas acorgin	00000	
Critical buckling longth		ing - Section 6					
		$\mathbf{L} \operatorname{cr}, \mathbf{y} = \mathbf{L} \operatorname{m1}_{\mathbf{s}}$	F = 0.300 mm	110 2 LNI			
Slandernoss ratio for buckling	og 6 50	$\frac{1}{2} = \frac{1}{2} - \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}$	$L \times iy / Lcr, y^{-} = 10$	773.2 NIN 1			
Siendemess ratio for buckling -	ed 0.20	$\Lambda y = \mathcal{V}(A \times$	$1y / 1Ncr, y) = 0.72^{\circ}$	1			

	Project				Job Ref.				
	Lane Farm Sho	p - Proposed	P2	P21229					
CONSULTING ENGINEERS			Sheet no./rev.						
Howard Ward Associates		Check C	alculations		10				
Brewery House, Walkers Yard	Calc. by Date Chk'd by Date				App'd by	Date			
Radeline-on-frent	GRW	19/09/2023							
	• .								
Check y-y axis flexural bucklin	ng resistance -	Section 6.3.1.1							
Imperfection factor - Table 6.1		a a. - 0 21							
Buckling reduction determination	o factor	dy = 0.21	1 + aux ()	$-0.2) + \overline{0.2} - 0.9$	21/				
Buckling reduction factor - eq.6	$\psi_y = 0.3 \times (0.0)$	$\psi_{y} = 0.5 \times (1 + \alpha_{y} \times (\lambda_{y} - 0.2) + \lambda_{y}^{2}) = 0.8714$							
Design buckling resistance - eq	6 47	Nb y Bd - 2y	ν (φυ ι ν(φυ ν Δ ν f _v / νμαι·	-630.8 kN					
Design bucking resistance eq	0.47	NEd / Nev Ro	= 0.043	- 000.0 Kiv					
		PASS - D	esign buckl	ing resistance ex	ceeds design	compression			
Check torsional and torsional	-flexural buckli	ng - Section 6	314	0	0				
Torsional buckling length		$L_{crT} = L_{m1}$	s1 seg1 R = 698	38 mm					
Distance from shear centre to ce	entroid in y axis	y ₀ = 0.0 mr	n						
Distance from shear centre to ce	entroid in z axis	zo = 0.0 mr	n						
Radius of gyration		$i_0 = \sqrt{i_y^2 + i_y^2}$	z²) = 105.5 m	nm					
Elastic critical torsional buckling	force	$N_{cr,T} = 1 / ic$	N _{cr,T} = 1 / io ² × (G × It + π^2 × E × Iw / L _{cr,T} ²) = 554 kN						
Torsion factor		β⊤ = 1 - (y₀	$\beta T = 1 - (y_0 / i_0)^2 = 1$						
Elastic critical torsional-flexural	buckling force								
Ncr	$T_{\rm TF} = N_{\rm cr,y} / (2 \times f_{\rm cr,y})$	Зт) × [1 + N сг,т /	Ncr,y - √[(1 - N	Icr,⊤ / Ncr,y)² + 4 × (y0 / i0) ² × Nсг,т /	N _{cr,y}]] = 554 kN			
Elastic critical buckling force		$N_{cr} = min(N_{cr})$	$I_{cr,T}, N_{cr,TF}) = $	554 kN					
Slenderness ratio for torsional b	2 λ̄⊤ = √[A ×	fy / Ncr] = 1.1	66						
Design resistance for torsiona	al and torsional	-flexural buckl	ing - Sectior	n 6.3.1.1					
Buckling curve - Table 6.2		b							
Imperfection factor - Table 6.1	ατ = 0.34								
Buckling reduction determination	n factor	φτ = 0.5 × (1 + ατ × (λτ	$(-0.2) + \overline{\lambda} \tau^2 = 1.$	344				
Buckling reduction factor - eq 6.	49	χ⊤ = min(1	/ (фт + √(фт² -	$\overline{\lambda}_{T^2})), 1) = 0.497$,				
Design buckling resistance - eq	6.47	$N_{b,T,Rd} = \chi T$	$ imes$ A $ imes$ fy / γ M1	= 374.2 kN					
		NEd / Nb,T,R	a = 0.073						
		PASS - D	esign buckl	ing resistance ex	ceeds design	compression			
Check design at start of span									
Check shear - Section 6.2.6									
Height of web		hw = h - 2 >	< tf = 240.4 m	η η = 1 .	000				
		hw / tw = 40	.1 = 40.1 × ε	/ η < 72 × ε / η					
				Shear bucklin	g resistance c	an be ignored			
Design shear force		V _{y,Ed} = 27.8	3 kN						
Shear area - cl 6.2.6(3)		$A_v = \max(A)$	$-2 \times b \times t_{f} +$	$(t_w + 2 \times r) \times t_f, \eta$	\times hw \times tw) = 167	'0 mm²			
Design shear resistance - cl 6.2.6(2)			$V_{c,y,Rd} = V_{pl,y,Rd} = A_v \times (f_y / \sqrt{3}) / \gamma_{M0} = 226.6 \text{ kN}$						
		V _{y,Ed} / V _{c,y,F}	d = 0.123						
		PAS	S - Design s	snear resistance	exceeds desig	in shear force			
Check bending moment - Sect	tion 6.2.5								
Design bending moment	My,Ed = 55.	$M_{y,Ed} = 55.5 \text{ kNm}$							
Design bending resistance mor	IVIc,y,Rd = Mp	$vv_{p,y,kd} = vv_{p,y,kd} = vv_{p,y} \times v_{y} / \gamma M_0 = 71.8 \text{ Kinifi}$							
	ΡΔςς	Wy,Ed / Mc,y, - Design bendi	rd = U.//4 ng resistanc	e moment excee	ds design her	iding moment			
			ng i coiotailt		as acsign Del	any noment			
Signature for the formation fo	orsional bucklii	ng k = 0.590							
		NC = U.308							

Design bending moment		$M_{y,Ed} = 26.$	9 kNm						
Check bending moment - Sect	tion 6.2.5								
Check design 5919 mm along	span								
		FA33-C		my and comple					
		Ned / (χz ×	Nrk / γм1) + kzy : ombined bong	× $M_{y,Ed}$ / (χ_{LT} × $M_{y,Ed}$	rk / γм1) = 0.9 0	64			
Interaction formulae - eq 6.61 &	eq 6.62	Ν Ed / (χy ×	$N_{Ed} / (\chi_y \times N_{Rk} / \gamma_{M1}) + k_{yy} \times M_{y,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) = 0.432$						
		$k_{zy} = 1 - 0.7$	$1 \times \min(1, \overline{\lambda}z) >$	< NEd / ((CmLT - 0.2	25) $\times \chi_z \times N_{Rk}$	/ үм1) = 0.976			
Interaction factors		$k_{yy} = C_{my} \times$	$k_{yy} = C_{my} \times (1 + min(\overline{\lambda}_{y} - 0.2, 0.8) \times N_{Ed} / (\chi_{y} \times N_{Rk} / \gamma_{M1})) = 0.409$						
Characteristic resistance to norr	nal force	$N_{Rk} = A \times f$	$N_{Rk} = A \times f_y = 752.9 \text{ kN}$						
Characteristic moment resistance	e	$M_{z,Rk} = W_{pl}$.z × fy = 10.8 kN	Im					
Characteristic moment resistance	e .	$M_{y,Rk} = W_{pl}$.y × fy = 71.8 kN	Im					
Interaction factors kij for mem	bers susceptib	ole to torsional	deformations	- Table B.2					
		CmLT = max	κ(0.2 + 0.8 × αι	т, 0.4) = 0.400					
		αιτ = 13.03	αιτ = 13.03 kNm / -55.54 kNm = -0.235						
		ψιτ = 24.1	74 kNm / -55.54	4 kNm = -0.435					
		C _{my} = max	(0.2 + 0.8 × α _y ,	0.4) = 0.400					
		α _y = 13.03	kNm / -55.54 k	Nm = -0.235					
Equivalent uniform moment fact	ors - Table B.3	ψ _y = 24.17	4 kNm / -55.54	kNm = -0.435					
Check combined bending and	compression	- Section 6.3.3							
Allowance need not be mad	de for the effec	t of the axial fo	orce on the pla	stic resistance r	noment abou	ut the y-y axis			
	1	NEd / Ny,lim	= 0.161		, , <u></u> N				
Bending and axial force check -	eq.6.33 & eq.6	.34 Ny,lim = min	$(0.25 imes N_{pl,Rd}, C)$	$0.5 \times h_w \times t_w \times f_y / f_w$	γмо) = 169.5 k	N			
Check bending and axial force	e - Section 6.2.	9			-				
	PASS -	Design buckli	ng resistance	moment exceed	s design ber	nding moment			
		$M_{y,Ed} / M_{b,y}$	Rd = 0.774						
Design buckling resistance mon	nent - ea 6.55	$M_{\rm b.v.Rd} = \gamma_1$	$M_{b,y,Rd} = \chi_{LT,mod} \times W_{pl,y} \times f_y / \gamma_{M1} = 71.8 kNm$						
Modified LTB reduction factor -	eq 6.58	$\gamma_{\text{LT.mod}} = \mathbf{m}$	in(γ _{LT} / f. 1. 1 /	$\bar{\lambda}_{LT^2}$) = 1.000	·, ., .,				
Modification factor		f = min(1 - 1)	0.5 × (1 - k _c) ×	[1 - 2 × (λιτ - 0.8	$(3)^2], 1) = 0.797$	7			
LTB reduction factor - eq 6.57		$\gamma_{LT} = \min(1)$	/ [φLT + √(φLT ² ·	· β × λιτ²)]. 1. 1 /	$\bar{\lambda}_{LT^2}$) = 0.813				
LTB reduction determination fac	tor	φιτ = 0.5 ×	[1 + αLT × (λ. Τ	· - λιτ.ο) + β × λι·	⁻²] = 0.773				
Correction factor for rolled section	ons	β = 0.75							
Imperfection factor - Table 6.3		αιτ = 0.49							
Buckling curve - Table 6.5		с							
Check buckling resistance	action 6 2 2 1								
			$\overline{\lambda}$ LT > $\overline{\lambda}$ LT.0 - LA	teral torsional b	uckling canr	not be ignored			
Limiting slenderness ratio		$\bar{\lambda}_{LT.0} = 0.4$							
Slenderness ratio for lateral tors	ional buckling	λιτ = √(W	$p_{\rm LV} \times f_{\rm V} / M_{\rm cr} = 0$).72					
Elastic childar buckling moment		kNm	λ- × ⊑ × Iz / L- >	< (IW / IZ + L- × G	× It / (n- × E >	(iz)) = 130.4			
Flastic critical buckling moment		$L = 0.3 \times L$ $M_{ex} = C_{4} \times L$	$\pi^2 \checkmark \mathbf{F} \checkmark \mathbf{I}_{-} / \mathbf{I}_{2} \checkmark$	√(_₩ / _→ ⊥ 2 ∨ ⊂	× I+ / (π ² ∨ ⊑ ∖	(₇)) – 138 /			
Unrestrained effective length			$m_1 = 007$	94 mm					
Shear modulus		v = 0.3	x (1 + ۱۱) – ۲۵۲	69 N/mm ²					
Poissons ratio		$U_1 = 1 / K_{c^2}$	= 2.009						
		0 4/17	2 000						
Radcliffe-on-Trent	GRW	19/09/2023							
Brewery House, Walkers Yard	Calc. by	Date	Chk'd by	Date	App'd by	Date			
Howard Ward Associates		Check C	alculations	11					
CONSULTING ENGINEERS	Section		Sheet no/re						
	Spring	ane Farm Shop - Proposed Conversion				P21229			
	Project				Job Ref.				

	Project		Job Ref.					
	Spring	Lane Farm Sho	P21229					
CONSULTING ENGINEERS	Section		Sheet no./rev.					
Howard Ward Associates		Check C	alculations		12			
Brewery House, Walkers Yard	Calc. by	Date	Chk'd by	Date	App'd by	Date		
Radcliffe-on-Trent	GRW	19/09/2023						
Design handing registered more	ant or 6.12	M - M	· - · · · · · · · · · · · · · · · · · ·	/ 71.9 [/h]m				
Design bending resistance mon	ienit - eq 6.13		$p_{i,y,Rd} = VVp_{i,y} \times Iy$	$7 \gamma M0 = 7 1.0 KINITI$				
	DASS	IVIy,Ed / IVIc,y,	Rd = U.3/4	momenteveed	o doolan hon	ding moment		
	PASS	- Design benui	ng resistance	moment exceed	s design ben	ang moment		
Check combined bending and	compression	- Section 6.3.3						
Equivalent uniform moment fact	ors - Table B.3	ψ _y = 24.17	4 kNm / -55.54	kNm = -0.435				
		α _y = 13.03	kNm / -55.54 k	Nm = -0.235				
	C _{my} = max	$C_{my} = max(0.2 + 0.8 \times \alpha_y, 0.4) = 0.400$						
	ψιτ = 24.1 ΄	ψι⊤ = 24.174 kNm / -55.54 kNm = -0.435						
	αlt = 13.03	αιτ = 13.03 kNm / -55.54 kNm = -0.235						
	CmLT = max	$C_{\text{mLT}} = max(0.2 + 0.8 \times \alpha_{\text{LT}}, 0.4) = 0.400$						
Interaction factors kij for mem	bers susceptik	ole to torsional	deformations	- Table B.2				
Characteristic moment resistance	e .	$M_{y,Rk} = W_{pl}$.y × fy = 71.8 kN	m				
Characteristic moment resistance	e	$M_{z,Rk} = W_{pl}$	M _{z,Rk} = W _{pl.z} × f _y = 10.8 kNm					
Characteristic resistance to norr	nal force	$N_{Rk} = A \times f$	NRk = A × fy = 752.9 kN					
Interaction factors	$k_{yy} = C_{my} \times$	$k_{yy} = C_{my} \times (1 + min(\overline{\lambda}_y - 0.2, 0.8) \times N_{Ed} / (\chi_y \times N_{Rk} / \gamma_{M1})) = 0.407$						
		$k_{zy} = 1 - 0.$	$1 \times min(1, \overline{\lambda}_z) \times$	NEd / ((CmLT - 0.2	25) × χz × Nrk /	γм1) = 0.982		
Interaction formulae - eq 6.61 &	eq 6.62	NEd / ($\chi_y \times$	Ned / ($\chi_y \times N_{Rk}$ / γ_{M1}) + k _{yy} × M _{y,Ed} / ($\chi_{LT} \times M_{y,Rk}$ / γ_{M1}) = 0.184					
		NEd / (χ_z ×	N rk / γм1) + k zy >	$<$ My,Ed / (χ LT \times My,	кк / γм1) = 0.39	4		
		PASS - C	ombined bend	ing and compre	ssion checks	are satisfied		