

1st Floor, Bevan House 9-11 Bancroft Court Hitchin Hertfordshire SG5 1LH

Telephone: 01462 632012 Email: office@mnp.co.uk www.mnp.co.uk

FLOOD RISK ASSESSMENT AND

SURFACE WATER DRAINAGE STRATEGY

AT

23 Crescent East, Hadley Wood EN4 0EY

REF: 223377-MNP-XX-XX-RP-C-0001

REV:P04

Directors | David Mason BEng (Hons) CEng MIStructE MICE | Frank Navarro BSc (Eng) CEng MIStructE | Stuart Pledge BEng (Hons) CEng MIStructE Martin King MCIOB | Stephen Vernon BEng (Hons) CEng MICE MIStructE

Mason Navarro Pledge Ltd. Established in 1999. Offices in London, Hitchin and Manchester. Registered Office: Invision House, Wilbury Way, Hitchin, Hertfordshire, SG4 oTY. Reg No. 3729171. Consulting Civil and Structural Engineers

DOCUMENT CONTROL

Document number:	223377-MNP-XX-XX-RP-C-0001		
Status:	S2	Reason for issue:	For Planning
Date:	03.11.23	Revision:	P04

REVISION HISTORY

Issue Date	Status	Revision	Author	Reviewer	Description
25.08.23	S2	P01	AGD	RJ	For Comment
12.10.23	S2	P02	AGD	RJ	For Planning
13.10.23	S2	P03	AGD	RJ	For Planning
03.11.23	S2	P04	AGD	RJ	For Planning

CONTENTS

1.	INTRODUCTION	3
2.	POLICY CONTEXT	4
3.	DEVELOPMENT DESCRIPTION	.10
4.	GEOLOGY & HYDROLOGY	.12
5.	FLOOD RISK	.13
6.	SURFACE AND FOUL WATER DRAINAGE DESIGN	.14
7.	SUDS MAINTENANCE AND MANAGEMENT	.18
8.	RECOMMENDATIONS AND CONCLUSIONS	.23

FIGURES

FIGURE 1	- RISK OF FLOODING FROM RIVERS OR SEA
FIGURE 2	- SURFACE WATER FLOOD RISK
FIGURE 3	- EXTENT OF FLOODING FROM RESERVOIRS

APPENDICES

APPENDIX A- EXISTING SITE LAYOUTAPPENDIX B- PROPOSED SITE LAYOUTAPPENDIX C- BGS GEOTECHNICAL INFORMATIONAPPENDIX D- THAMES WATER SEWER RECORDSAPPENDIX E- GREENFIELD RUNOFF RATE AND EXISTING RUNOFF RATESAPPENDIX F- MICRODRAINAGE CALCULATIONSAPPENDIX G- PROPOSED DRAINAGE STRATEGY AND DETAILSAPPENDIX H- PRE-DEVELOPMENT CAPACITY LETTERAPPENDIX I- SUDS PROFORMA	
--	--

Report prepared by:

Andrew G Dushyanthan Project Engineer

1. INTRODUCTION

- 1.1. Mason Navarro Pledge Ltd have been commissioned to produce a Flood Risk Assessment (FRA) and Drainage Strategy for the proposed development at 23 Crescent East, Hadley Wood.
- 1.2. The proposed works comprise of the demolition of and existing residential dwelling and erection of 7 apartments (use class C4) together with associated access, parking, amenity space and landscaping.
- 1.3. Based on the guidance in the National Planning Policy Framework (NPPF, July 2021) and associated Planning Practice Guidance (PPG, updated June 2021), developments should include an appropriate Flood Risk Assessment if any or all of the following criteria are met:
 - Site is greater than 1 hectare
 - Potentially located in Flood Zone 2 or 3
 - Less than 1 hectare in Flood Zone 1, including a change of use in development type.
 - Considered a major planning application (as defined by local planning authority)
- 1.4. In this case, the site is less than 1 hectare and is shown to lie within Flood Zone 1, therefore a flood risk assessment is not required to support the planning application however this report provides details of the proposed drainage strategy for the development including detailing compliance with Enfield policy DM SE8, DM SE10 and the London Plan.
- 1.5. This report has been prepared in accordance with the NPPF, local planning policies and the accompanying Technical Guidance.
- 1.6. This report has been prepared by Richard James BEng (Hons) IEng MICE.

2. POLICY CONTEXT

NATIONAL PLANNING POLICY FRAMEWORK (NPPF)

2.1 The latest NPPF was adopted in July 2021, one of the overarching objectives of the NPPF is the encouragement of growth and acknowledgement that decision-makers should adopt a presumption in favour of sustainable development. Paragraph 11 of the document states:

"For **decision-taking** this means:

- approving development proposals that accord with an up-to-date development plan without delay; or
- where there are no relevant development plan policies, or the policies which are most important for determining the application are out of date, granting permission unless:
 - the application of policies in this Framework that protect areas or assets of particular importance provides a clear reason for refusing the development or
 - any adverse impacts of doing so would significantly and demonstrably outweigh the benefits, when assessed against the policies in this Framework taken as a whole."
- 2.2 Section 14 of the NPPF seeks to address the issues of climate change, flooding and coastal change. In paragraph 155 it states: "Inappropriate development in areas at risk of flooding should be avoided by directing development away from areas at highest risk, but where development is necessary, making it safe without increasing flood risk elsewhere."

PLANNING PRACTICE GUIDANCE TO THE NATIONAL PLANNING POLICY FRAMEWORK

- 2.3 The Planning Practice Guidance (PPG) was first published in March 2014 and at the same time the Technical Guidance to the NPPF was withdrawn. The key difference with the new PPG is that it is a web-based resource, and each section is updated as needed.
- 2.4 Section 7 covers "Flood Risk and Coastal Change" and was last updated in June 2021.
- 2.5 The assessment of flood risk is based on the definitions in Table 1 of the PPG. This information is replicated below for ease of reference.

TABLE 1: FLOOD ZONE DEFINITIONS

Flood Zone	Annual probability of river or sea flooding	
Zone 1 Low Probability	 Land having less than 1 in 1000 annual probability of river or sea flooding (<0.1%) 	
Zone 2 Medium Probability	 Land having between a 1 in 100 and 1 in 1,000 annual probability of river flooding; or 	
	 Land having between a 1 in 200 and 1 in 1,000 annual probability of sea flooding. 	
Zone 3a High Probability	 Land having a 1 in 100 or greater annual probability of river flooding; or 	
	 Land having a 1 in 200 or greater annual probability of sea flooding. 	
	This zone comprises land where water has to flow or be stored in times of flood.	
Zone 3b The Functional Floodplain	 Local planning authorities should identify in their Strategic Flood Risk Assessments areas of functional floodplain and its boundaries accordingly, in agreement with the Environment Agency. 	

2.6 The NPPF classifies the Flood Risk Vulnerability of various land uses in Table 2 (reproduced below). The More Vulnerable Classification encompasses usages such as hospitals and buildings used for dwellings. Less Vulnerable applies to buildings used for general industry, storage and distribution.

Classification	Land Use
	 Essential transport infrastructure (including mass evacuation routes) which has to cross the area at risk.
Essential Infrastructure	 Essential utility infrastructure which has to be located in a flood risk area for operational reasons, including electricity generating power stations and grid and primary substations; and water treatment works that need to remain operational in times of flood. Wind turbines.
	 Police stations, ambulance stations and fire stations and command centres and telecommunications installations required to be operational during flooding.
Highly Vulnerable	 Emergency dispersal points.
	 Basement dwellings.
	 Caravans, mobile homes and park homes intended for

TABLE 2: LAND USE CLASSIFICATION

Classification	Land Use
	 permanent residential use. Installations requiring hazardous substances consent (Where there is a demonstrable need to locate such installations for bulk storage of materials with port or other similar facilities, or such installations with energy infrastructure or carbon capture and storage installations, that require coastal or water-side locations, or need to be located in other high flood risk areas, in these instances the facilities should be classified as "essential infrastructure").
More Vulnerable	 Hospitals. Residential institutions such as residential care homes, children's homes, social services homes, prisons and hostels. Buildings used for dwelling houses, student halls of residence, drinking establishments, nightclubs and hotels. Non-residential uses for health services, nurseries and educational establishments. Landfill and sites used for waste management facilities for hazardous waste. Sites used for holiday or short-let caravans and camping, subject to a specific warning and evacuation plan.
Less Vulnerable	 Buildings used for shops; financial, professional and other services, restaurants and cafes, hot food takeaways, offices, general industry, storage and distribution and assembly and leisure. Land and buildings used for agriculture and forestry. Waste treatment (except landfill and hazardous waste facilities). Minerals working and processing (except for sand and gravel working). Water treatment plants and sewage treatment plants (if adequate pollution control measures are in place).

2.8 The table below, replicated from Table 3 of the PPG, indicates which Flood Zones are considered to be appropriate for different land uses based upon the Sequential Test.

Flood Zone	Essential Infrastructure	Water Compatible	Highly Vulnerable	More Vulnerable (Residential)	Less Vulnerable
Zone 1	✓	✓	V	✓	✓
Zone 2	✓	✓	Exception Test Required	✓	~
Zone 3a	Exception Test Required	✓	×	Exception Test Required	✓
Zone 3b Functional Floodplain	Exception Test Required	~	×	×	×

TABLE 3: FLOOD RISK VULNERABILITY CLASSIFICATION

- ✓ Development is appropriate
- **x** Development should not be permitted
- 2.9 As the site lies within Flood Zone 1, the NPPF finds the development proposal does not require the application of the Exception Test; this is in accordance with Flood risk vulnerability and flood zone 'compatibility' (extract above).
- 2.10 The Sequential Test is required to ensure that any other potential sites for development, in lower flood risk areas, have been considered for the development. The NPPF states that the purpose of the Sequential Test is to direct development towards areas of lowest flood risk, from all sources. The site is already in Flood Zone 1 and therefore deemed not required.
- 2.11 Further detail on the lifetime of development is also given in the PPG, which advises for residential development that a period of 100 years should be considered whilst for non-residential this is dependent upon the development characteristics.
- 2.12 The use of sustainable drainage systems is considered by the PPG to offer the following benefits:
 - Reduce the causes and impacts of flooding
 - Remove pollutants from urban run-off at source
 - Combine water management with green space with benefits for amenity, recreation and wildlife

- 2.13 In the consideration of major developments, sustainable drainage should be provided unless it can be demonstrated that this would be inappropriate. Major developments are defined in the Town and Country Planning Order 2015; some of these definitions encompass the following:
 - Development site area of 1 hectare or more
 - Provision of 10 or more residential dwellings
 - Development of residential dwellings on a site having an area of 0.5 hectares or more and where the proposed no. of dwellings is not known to fall into the above criterion or not
 - Provision of buildings where the floor space to be created by the development is 1,000m² or greater
- 2.14 The aim of sustainable drainage systems is to dispose of surface water using the following hierarchy were reasonably practicable.

2.15 The assessment of what is considered to be reasonably practicable in terms of sustainable drainage system provision should consider the costs associated with the design, construction, operation and maintenance of the system, and whether these are economically proportionate in relation to the consumer costs for an effective drainage system that instead connects directly to a public sewer.

LONDON BOROUGH OF ENFIELD - STRATEGIC FLOOD RISK ASSESSMENT (SFRA)

- 2.16 The main purpose of the SFRA is to provide sufficient flood risk information to enable an update of any flooding policies within the Borough. In achieving this, the SFRA will achieve the objectives of:
 - Influencing Council policy regarding decisions that are made
 - Aiding the Council's response to proposed developments
 - Recognising means of reducing flood risk
 - Inform the emergency flood plans

2.17 Enfield Level 1 Strategic Flood Risk Assessment was prepared in December 2021 and Enfield Level 2 Strategic Flood Risk Assessment was prepared in July 2013.

ADDITIONAL POLICY / GUIDANCE

- 2.18 The following documents were consulted to inform the drainage strategy for the site:
 - Enfield Level 1 Flood Risk Assessment December 2021.
 - Enfield Level 2 Flood Risk Assessment July 2013.
 - Enfield Local Flood Risk Management Strategy March 2016
 - London Plan 2021 SI13
 - London Borough of Enfield Policy DM SE8
 - London Borough of Enfield Policy DM SE10
- 2.19 **Policy DM SE8: Flood Risk Management** essentially sets out the aims to minimise the risk of flooding within the borough and to incorporate SuDS into developments to reduce surface water flood risk.
- 2.20 **Policy DM SE10: Managing Surface Water** sets out the requirements for all developments to demonstrate how proposed measures manage surface water as close to its source as possible and follow the drainage hierarchy in the London Plan.
- 2.21 The London Plan **Policy SI 13: Sustainable Drainage** Development should utilise sustainable urban drainage systems (SUDS) unless there are practical reasons for not doing so, and should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible in line with the drainage hierarchy.
- 2.22 The drainage assessment in this report will ensure that any proposals for additional drainage are assessed and mitigated, against flood risk, and incorporate good SuDS practices where possible.

3. DEVELOPMENT DESCRIPTION

EXISTING SITE

3.1 The site is located at 23 Crescent East Hadley Wood, EN4 0EY. Please refer to images below for the site location and for an areial view of the site.

Site location Map

Site Ariel View

- 3.2 The site currently consists of one detached residential property with an approximate site area of 0.21 hectares.
- 3.3 Hadley Wood is situated in the Borough of Enfield and sits just East of the village of Monken on the northern outskirts of London. It is surrounded by a Green Belt of open land to the west, north and east. The site is located approximately 3½ miles west of Enfield town centre. The site is located upon the eastern side of the railway (Crescent East) and surrounded by large luxury homes.

PROPOSED DEVELOPMENT

- 3.4 The proposed works comprise of the demolition of and existing residential dwelling and erection of 7 apartments (use class C4) together with associated access, parking, amenity space and landscaping.
- 3.5 Refer to Appendix A for a copy of the existing site layout and Appendix B for a copy of the proposed site layout.

4 GEOLOGY & HYDROLOGY

- 4.1 The British Geological Survey (BGS) maps and online data for the area shows the underlying geology to comprise of solid geology of London Clay. Refer to appendix C for details on nearest borehole data.
- 4.2 A geotechnical site investigation was undertaken in November 2020 by Clancy Consulting for the adjacent property.
- 4.3 The investigation confirmed the ground conditions are as follows:

Depth	Ground
00.00m to 0.80m	Made ground / topsoil
0.8 to 5.45m	London Clay

- 4.4 No groundwater was encountered within the intrusive works or any borehole records close to the site and therefore shallow groundwater is unlikely to be encountered.
- 4.5 The geotechnical information confirms that the near surface ground conditions will consist of clay to a greater depth than that of the lower ground floor.
- 4.6 Clay is considered a non-aquifer, that is to say it does not store or transmit significant volumes of groundwater.
- 4.7 Given the likely depth to groundwater in the vicinity of the site and that the lower ground floor will be constructed entirely within the clay non aquifer, the impact of the construction on the local groundwater regime is assessed as being negligible.
- 4.8 Falling head tests were undertaken at the site and these confirmed that infiltration drainage is not viable.
- 4.9 The site is located within an Unproductive aquifer in superficial deposits.
- 4.10 The site is located within an Unproductive aquifer within the bedrock.
- 4.11 The sites groundwater vulnerability zone designation is unproductive.
- 4.12 The site is not located within a groundwater source protection zone.

5 FLOOD RISK

- 5.1 The NPPF and the SFRA identifies several potential sources of flooding that must be considered when assessing flood risk, these are considered below in the following order:-
 - Flooding from rivers (fluvial flooding)
 - Flooding from the sea (tidal flooding)
 - Flooding from land
 - Flooding from sewers
 - Flooding from groundwater
 - Flooding from reservoirs, canals, and other artificial sources

FLODING FROM RIVERS (FLUVIAL FLOODING) & SEA (TIDAL FLOODING)

5.2 The indicative flood maps published by the Environment Agency (EA) identify that the entirety of the site is outside an area at risk of fluvial/tidal flooding i.e. located in Flood Zone 1.

FLOODING FROM LAND & SEWERS

5.3 Maps Contained in the SFRA and Maps published by the Environment Agency indicate that the site is at Very Low risk of flooding from Surface Water. Refer to Figure 2 for a copy of the surface water food map data.

FLOODING FROM GROUNDWATER

5.4 Given the underlaying ground conditions at the site it is unlikely that the site is at risk of flooding due to groundwater.

FLOODING FROM RESERVOIRS, CANALS & OTHER ARTIFICIAL SOURCES

- 5.5 Environment Agency Reservoir Flood Mapping shows that flooding from reservoir failure in this area would not extend into the development site.
- 5.6 Also, with reference to the OS Map of the area, there are no canals or other artificial sources likely to cause flooding at the site.

6 SURFACE AND FOUL WATER DRAINAGE DESIGN

EXISTING

- 6.1 A Thames Water asset plan has been sourced the water authority responsible for the public sewers in this area. Refer to Appendix D for the Thames Water Asset Plan.
- 6.2 The public sewer records indicate a 225mm diameter public foul water sewer in Crescent East and a public surface water sewer in Crescent East.
- 6.3 The records also indicate a public foul and surface water sewer running into the property boundary serving number 23.

A topographical survey of the site indicates the positions of gullies and manholes within the site boundary and it is anticipated that the site is positively drained to the public sewer in the road.

EXISTING RUNOFF RATES

6.4 In Table 5 below, is a summary of the approximate greenfield run off rates for the entire developable site (0.21Ha). Refer to Appendix E for calculations.

Event	Greenfield Run Off Rate		
QBar	0.98 l/s		
1 in 1 year	0.83 l/s		
1 in 30 year	2.25 l/s		
1 in 100 year	3.12 l/s		

TABLE 5: GREENFIELD RUN OFF RATES

- 6.5 As the site is already developed (brownfield) the greenfield runoff rates above do not give a true representation of the current surface water discharge rates from the site. The total site area is 0.21 Ha of which it is calculated that 456sqm of the site is impermeable.
- 6.6 The existing development does not present any form of SuDS or attenuation systems or flow controls. The existing runoff rates are assumed as calculated with MicroDrainage (See Appendix E) and shown in the table below as existing rates. The below table outlines the existing run off rates for a number of events.

Event	Existing Rates (l/s)	Proposed Mitigated Rates (l/s)	Reduction (%)
1 in 1 year	6.6	1.0	-84.8%
1 in 30 year	14.6	1.0	-93.2%
1 in 100 year	17.7	1.0	-94.4%

TABLE 6 - EXISTING AND PROPOSED MITIGATED SURFACE WATER RUNOFF RATES

CLIMATE CHANGE ALLOWANCES

6.7 The guidance by the EA is replicated below in Table 7 where the drainage system is to be designed to accommodate a 20% climate change allowance on top of the 1 in 100-year storms. Applicants should apply a sensitivity test against the 40% climate change allowance to ensure that the additional runoff is wholly contained within the site and that there is no increase in the rate of runoff discharged from the site.

TABLE 7: PEAK RAINFALL INTENSITY CLIMATE CHANGE ALLOWANCE

Applies across all of England	Total potential change anticipated for the '2020s' (2015 to 2039)	Total potential change anticipated for the '2050s' (2040 to 2069)	Total potential change anticipated for the '2080s' (2070 to 2115)
Upper End	10%	20%	40%
Central	5%	10%	20%

LOCAL GUIDANCE

- 6.8 Policy DM SE8: Flood Risk Management sets out the aims to minimise the risk of flooding within the borough and to incorporate SuDS into developments to reduce surface water flood risk.
- 6.9 The London Plan Policy SI 13: Sustainable Drainage Developments should utilise sustainable urban drainage systems (SUDS) unless there are practical reasons for not doing so, and should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible in line with the drainage hierarchy.
- 6.10 We reviewed the selection of drainage/attenuation and SuDS components in line with the drainage hierarchy listed in the London Plan policy SI 13 and the table below provides the justification of the SuDS measures:

SUDS technique	Adopted	Not	Reason
		Adopted	
Store Rainwater for later use		×	Rainwater harvesting is not proposed on the scheme due to the provision of biodiverse roofs to the proposed buildings. In addition, the high initial installation cost does not make the provision of RWH economically viable.
Use infiltration technics		*	Not adopted because the site is underlain by London Clay and therefore infiltration drainage is not viable.
Attenuate rainwater in ponds or open water features i.e. Filter Strips / swales	×		The proposed drainage schemed includes Biodiverse roofs to the proposed building and lined permeable paving to proposed car park. In addition, raingardens are proposed to external landscaping. It is not possible to provide ponds and open water features on the site due to the difference in levels across the site.
Attenuate rainwater in sealed tanks	×		Below ground attenuation is proposed to supplement the SuDS measures on site.
Discharge direct to a watercourse		×	There are no watercourses surrounding the site.
Discharge to a surface water drain	×		A connection to the public surface water sewer is proposed as per the existing site.
Discharge to a combined sewer		×	There are no combined sewers surrounding the site.

PROPOSED SURFACE WATER STRATEGY

- 6.11 The site is already developed and considered a brownfield site. The measured greenfield rate for the site as per Table 5 is 0.98l/s. Therefore, the proposed discharge rate post development from the site is to be 1l/s for all events including up to and including the 1 in 100-year event plus an allowance of 40% for climate change. This is a significant reduction in comparison to the calculated existing discharge rates shown in Table 6.
- 6.12 Restricting the surface water discharge from the site to 1l/s results in the requirement for attenuation. The attenuation size shall be able to accommodate all events up to an including the 1 in 100-year event plus an allowance of 40% for climate change to ensure no flooding on the site occurs.
- 6.13 Based on a proposed impermeable area of 1051m² and a restricted discharge rate of 1l/s there is a requirement for 60m³ of surface water attenuation. See appendix F for a copy of the microdrainage calculations
- 6.14 The proposed attenuation for the development will be provided through a combination of below ground attenuation, lined permeable paving to the proposed 300m² new car park area, a 77m² green roof to the new building and raingardens to landscaped areas which ensures that in addition to reducing the volume and rate of surface water discharge from the site the surface water runoff is suitably treated before it enters the drainage system.

- 6.15 In order to ensure water quality, it is proposed that the RWP's within the site will discharge into the permeable sub-base storage layer via a series of catchpit manholes, as well as additional RWP's will connect into the raingardens prior to discharging into the site wide drainage network.
- 6.16 The surface water discharge will connect to the existing surface water sewer on site which in turn connects to the public surface water sewer in Crescent East.
- 6.17 Drawings showing the proposed SuDS Features are included in Appendix G.
- 6.18 A Thames Water pre-development enquiry was submitted, in which it was confirmed that there is sufficient capacity within the public sewer network to accommodate the post development flows from the site. Refer to Appendix H for TW confirmation letter.
- 6.19 As part of Enfield Councils' requirements, a proforma has been completed which outlines the SUDS information. Refer to appendix I.

PROPOSED FOUL WATER STRATEGY

- 6.20 It is proposed to utilise as much of the existing foul drainage infrastructure postdevelopment, this includes utilising the connections to the public foul sewer. This is subject to confirmation from an onsite drainage survey.
- 6.21 Any new foul water pop ups post development will be connected in to the existing foul system either through utilising existing connections or providing new pop ups and connections where practical in to the existing network.
- 6.22 A Thames Water pre-development enquiry was submitted, in which it was confirmed that there is sufficient capacity within the public sewer network to accommodate the post development flows from the site. Refer to Appendix H for TW confirmation letter.

7 SUDS MAINTENANCE AND MANAGEMENT

7.1 The responsibility for the enacting of this SuDS Maintenance and Management Plan will be the responsibility of the property owner.

GULLIES

7.2 Gullies provide a degree of pollution control in preventing silt and debris passing into the sewer network.

GULLY MAINTENANCE

MAINTENANCE SCHEDULE	REQUIRED ACTION	RECOMMENDED FREQUENCY
Regular maintenance	Clean and empty gullies.	Quarterly.

CATCHPITS

- 7.3 Catchpit chambers and manholes provide a degree of pollution control in preventing silt and debris passing forwards into the drainage network.
- 7.4 The operation and maintenance requirements are given in the table below:

CATCHPIT MAINTENANCE

MAINTENANCE SCHEDULE	REQUIRED ACTION	RECOMMENDED FREQUENCY
Regular maintenance	Clean and empty catchpits.	Quarterly.

BELOW GROUND MANHOLES AND DRAINAGE - GENERAL

7.5 Manholes and Catchpit Inspections should be frequent and regular, depending on local conditions, but at least annually. The drainage system should be cleaned / jetted as necessary.

PERMEABLE PAVING

- 7.6 Permeable block paving allows water to infiltrate through gaps between the blocks into a lined layer of granular material, from which it is collected and discharges into the below ground drainage network.
- 7.7 The operation and maintenance requirements are given the table below:

MAINTENANCE SCHEDULE	REQUIRED ACTION	RECOMMENDED FREQUENCY
Regular maintenance	Sweeping. Note: Any jointing material between the blocks that is lost or displaced as a result of sweeping must be replaced. New jointing material must be the same type as that removed or a suitable replacement.	Three times a year at the end of winter, mid- summer and after autumn lead fall. Also as required based on site-specific observations.
Occasional maintenance	Stabilise and mow contributing and adjacent areas to prevent excess sediment being washing into the paving. Removal of weed.	As required
Remedial actions	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users. Rehabilitation of surface and underlying sand and geotextile.	As required
Monitoring	Inspect for evidence of poor operation and/or weed growth. If required take remedial action.	Monthly for three months after installation, then during regular maintenance visits.

PERMEABLE PAVING MAINTENANCE

- 7.8 Over time the ability of the permeable paving to infiltrate and convey surface water run-off may degrade due to clogging of the joints by silt and other sediments.
- 7.9 All areas of permeable pavement should be regularly inspected by those responsible, preferably during and after heavy rainfall to check effective operation and to identify any areas of ponding.

ATTENUATION STORAGE TANKS

7.10 The operation and maintenance requirements are given the table below:

ATTENUATION TANK MAINTENANCE

MAINTENANCE SCHEDULE	REQUIRED ACTION	RECOMMENDED FREQUENCY
	Inspect and identify any areas that are not operating correctly. If required, take remedial action.	Monthly for 3 months, then annually.
	Remove debris from the catchment surface (where it may cause risks to performance.	Monthly.
Regular maintenance	For systems where rainfall infiltrates into the tank from above, check surface of filter for blockage by sediment, algae or other matter; remove and replace surface infiltration medium as necessary.	Annually.
	Remove sediment from pre-treatment structures and/or internal forebays.	Annually, as required.
Remedial actions	Repair/rehabilitate inlets, outlets, overflows and vents.	As required.
Monitoring	Inspect/check all inlets, outlets, vents and overflows to ensure that they are in good condition and operating as designed.	Annually.
	Survey inside of tank for sediment build-up and remove if necessary	Every 5 years or as required.

RAINWATER PLANTERS/GARDENS

- 7.11 Water vegetation immediately after planting and weekly during initial establishment if it does not rain.
- 7.12 If plants appear to be wilting, water 2-3 times per week until they return to good health.
- 7.13 Keep the overflow free and clear of debris such as dead leaves or trash and check it after. Keep soil and debris off of the top of the stone mulch so floatable material does not clog the overflow device.

- 7.14 Remove weeds as needed.
- 7.15 Check drainage of planter after rainstorms to make sure that the planter drains and/or water evaporates within 24 hours. If water is not draining, ensure that the underdrain valve is open sufficiently.
- 7.16 Inspect plants to evaluate health and replace if necessary.
- 7.17 Cut back or remove dead vegetation in Autumn.
- 7.18 Check to ensure that roof gutters leading to the downspout are free of leaves and other debris.
- 7.19 Check to ensure that downspout leading to the planter is properly connected to roof gutter.
- 7.20 In winter, check to make sure that overflow is clear of debris and snow. Periodically inspect planter to ensure ice is not accumulating.

GREEN ROOFS

7.21 The operation and maintenance requirements are given the table below:

MAINTENANCE SCHEDULE	REQUIRED ACTION	RECOMMENDED FREQUENCY
	Inspect all components including soil substrate, vegetation, drains, membranes and roof structure for proper operation, integrity of waterproofing and structural stability.	Annually and after severe storms.
Regular inspections	Inspect soil substrate for evidence of erosion channels and identify any sediments sources.	Annually and after severe storms.
	Inspect drain inlets to ensure unrestricted runoff form the drainage layout to the conveyance or roof drainage system.	Annually and after severe storms.
	Inspect underside of roof for evidence of leakage.	Annually and after severe storms.
Regular	Remove debris and litter to prevent clogging of inlet drains and interference with plant growth.	Six monthly and annually or as required.
maintenance	During establishment replace dead plants as required.	Monthly.

	Post establishment replace dead plants as required.	Annually (in autumn).
	Remove fallen leaves and debris from deciduous plant foliage.	Six monthly or as required.
	Remove nuisance vegetation including weeds.	Six monthly or as required.
	Mow grass, prune shrubs and manage other planting.	Six monthly or as required.
Remedial Actions.	If erosion channels are evident these should be stabilised with extra soil substrate similar to the original material, and sources or erosion damage should be identified and controlled.	As required.
	If drain inlet has settled, cracked or moved, investigate and repair as appropriate.	As required.

8 RECOMMENDATIONS AND CONCLUSIONS

- 8.1 The proposed works comprise of the demolition of and existing residential dwelling and erection of 7 apartments (use class C4) together with associated access, parking, amenity space and landscaping.
- 8.2 Geological conditions at the site are based on the British Geological Survey Viewer, there is no identified superficial deposits present but the site is underlain by bedrock deposits of London Clay Formation.
- 8.3 Shallow groundwater is unlikely to be encountered at the site and therefore the lower ground floor will not have any impact on groundwater flow routes.
- 8.4 The proposed site is not located in a groundwater source protection zone. Bedrock deposits are a 'unproductive' aquifer designation and the site is also located over a 'Unproductive' groundwater vulnerability zone.
- 8.5 The proposed development site is located entirely within Flood Zone 1 land classified as Land having less than 1 in 1000 annual probability of river or sea flooding. The site is classified as 'More Vulnerable' (Flood Risk Vulnerability Classification) and therefore, the development is classified as 'appropriate'.
- 8.5 Given the underlying geology it is considered unlikely that surface water from the development is disposed of by means of infiltration. The site is currently positively drained to the public sewer in Crescent East.
- 8.6 The site is already developed and considered a brownfield site. The measured greenfield rate for the site as per Table 5 is 0.98l/s. Therefore, the proposed discharge rate post development from the site is to be 1l/s for all events including up to and including the 1 in 100-year event plus an allowance of 40% for climate change. This provides a significant betterment over the existing situation
- 8.7 The proposed drainage scheme includes the provision of raingardens, a green roof, lined permeable paving to the proposed car park areas and below ground attenuation.
- 8.8 In order to ensure water quality, it is proposed that the RWP's within the site will discharge into the permeable sub-base storage layer via a series of catchpit manholes, as well as additional RWP's will connect into the raingardens prior to discharging into the site wide drainage network.
- 8.9 Given the fact that groundwater was not encountered in any boreholes on or near the site, the impact of the development on the local groundwater regime is assessed as being negligible.
- 8.10 It is proposed that all surface water will be conveyed through a gravity fed surface water system to the outfall location. In order to satisfy the proposed restricted discharge a vortex flow control device will be placed upstream of the discharge

location. As a result of the restricted discharge rate surface water attenuation will be required on the development.

- 8.11 The surface water drainage design principles set out in this document will ensure that the development does not increase the risk of flooding to the surrounding area.
- 8.12 The proposed surface water drainage and SuDS design principles set out in this document will ensure that the development does not increase the risk of flooding to the surrounding area and will mimic the pre-development site.
- 8.13 Taking into account the flood risks to the site from all sources following the proposed development, the overall post-development flood risk is deemed to remain low.

FIGURES

FIGURE 1

Risk of Flooding from Rivers or Sea

Environment Agency Website

FIGURE 2

Surface Water Flood Risk

Environment Agency Website

Extent of flooding from surface water

● High ● Medium ● Low ○ Very low ↔ Location you selected

FIGURE 3

Extent of Flooding from Reservoirs

Environment Agency Website

Extent of flooding from reservoirs

 \bigcirc Maximum extent of flooding \oplus Location you selected

APPENDICES

APPENDIX A

Existing Site Layout

APPENDIX B

Proposed Site Layout

APPENDIX C

Geotechnical Information

GEOLOGY KENILWOTH (VS H) AG518 (Casing Date Client : Banner Nomes Ltd. BH Tei 01282 851113 Fax: 01282 8511394 Date Date Dilling Crew Logged By. Casing Dilling Crew Logged By. Casing Dilling Crew Scale Scale Dia (mm) 150 Cord Ground Level m. Drilling Crew Logged By. Casing Dilling Crew Diaged By. Casing Dilling Crew Diaged By. Casing Dilling Crew Diaged By. Casing Dilling Crew Diaged By. Casing Dilling Crew Dilling Crew Diaged By. Casing Dilling Crew Diaged By. Casing Dilling Crew Dilling Crew Diaged By. Casing Dilling Crew Dilling Crew Diaged By. Casing Dilling Crew Diaged By. Casing Dilling Crew Dilling Crew Diaged By. Casing Dilling Crew Diaged By. Casing Dilling Crew Dilling Crew	APPL	ED 11 Talis	nan House sman Souar	Job No	. Sit	e	: 4 Duchy	Road, Hadley Wood BOREHO	LE
Tet: 01926 851113 Fax: 01926 8511394 Engineer: Shet 1 Mathod Light Cable Percussion. 21/12/06 Drilling Crew Logged By an Gendal Scale Scale Dia (mm) 10 Coord Ground Level Drilling Crew D priedding Dia (mm) Dia (mm) 10 Coord Ground Level Drilling Crew Description of Strate Date 0.50 D Ground Level M. M/C Depth Description of Strate 0.50 D 0.50 D 0.30 ToPSOIL (drillers' description) Firm proon CLAY with nots and gravel. 1.50 1.20 - 1.60 U(60) 0.30 Firm proon CLAY with nots and gravel. Firm orange brown grey charge stightig 1.50 2.00 - 2.45 SPT 11N Firm orange brown grey CLAY with occasional gravel. 1.50 3.00 - 3.45 SPT 11N Firm orange brown grey CLAY with occasional gravel. 1.50 5.00 - 5.45 SPT 11N Firm orange brown grey CLAY with occasional gravel. 1.50 5.00 - 5.45 SPT 11N	GEOL		ILWORTH	AG5	18 Clie	ent	: Banner	Homes Ltd. BH	1
Mathod Date Date Date Date Dise	Tel: 01926 8	51113 Fax: 019	26 851394	+	Eng	gineer	:	Sheet 1	
Dis min Coord Ground Level m. Ground Level m. Ground Level m. Description of Strata Date & Casing Depth Depth m. Sample m. Water Type SPT N Level M/C or Cu Depth m. Description of Strata 0.50 D D 0.30 D Firm brown CLAY with roots and gravel for liters' description). TOPSOIL (drillers' description) 1.50 1.20 - 1.60 U(60) 0.70 Soft to find for our get of protocal state subangular, maining quartifie with some flint. 1.50 1.20 - 2.45 SpT 11N 1.60 1.50 2.00 - 2.45 SpT 11N Firm orange brown grey CLAY with occasional gypsum crystals. (LONON CLAY) 1.50 3.00 - 3.45 SpT 10N Firm orange brown grey CLAY with occasional gypsum crystals. (LONON CLAY) 1.50 5.00 - 5.45 SpT 11N Firm orange brown grey CLAY with occasional gypsum crystals. (LONON CLAY) 1.50 5.00 - 5.45 SpT 11N Firm orange brown grey CLAY with occasional gypsum crystals. (LONON CLAY) 1.50 5.00 - 5.45 SpT 14N Firm orange brown grey CLAY with occasional gypsum crystals. (LONON CLAY) 1.50 5.00 - 5.45 SpT 14N Firm orange brown grey CLAY with occasional gypsum crystals. (LONON CLAY) 1.50 6.00	Method Ligh	t Cable Percus	sion.	Date 21/	12/06	- 21/	12/06	D Fielding HF	1:5
Date & Casing Depth Depth m. Sample Type Water Level SPT N or Cu M/C Depth m. Description of Strate 0.50 p 0.50 p 0.30 0.30 0.30 0.30 0.80 p 0.30 p 0.30 0.70 Firm brown CLAY with roots and gravel (drillers' description) 1.50 1.20 - 1.60 U(60) 1.60 U(60) 1.60 Firm brown grey orange slightly gravel V CLAY. Gravel is fire to coarse ubenguary description gravel coarse ubenguary from brown grey orange slightly gravel V CLAY. Gravel is fire to coarse ubenguary from brown grey clay with occasional gypsum crystals. (LONON CLAY) 1.50 2.00 2.45 SPT 11N 1.60 1.50 3.00 3.45 SPT 10N Firm orange brown grey CLAY with occasional gypsum crystals. (LONON CLAY) 1.50 5.00 - 3.45 SPT 11N Firm orange brown grey CLAY with occasional gypsum crystals. (LONON CLAY) 1.50 5.00 - 3.45 SPT 11N Firm orange brown grey CLAY with occasional gypsum crystals. (LONON CLAY) 1.50 5.00 - 5.45 SPT 14N Firm orange brown grey charge clay with occasional gypsum crystals. 1.50 5.50 - 6.95 SPT 18N Hint 1.50 5.50 - 6.95	Dia (mm)	Coord			Gro m.	ound L	evei 32.00		
0.50 D	Date & Casing Depth	Depth m.	Sample Type	Water Level	SPT N or Cu	M/C %	Depth m.	Description of Strata	
0.50 D 0.30 D 0.80 D 1.50 1.20 - 1.60 U(60) 1.70 D 1.70 D 1.70 D 1.70 D 1.50 2.00 - 2.45 SPT 11N Britsh delogical Sume Britsh delogical Sume 1.50 3.00 - 3.45 D D 1.50 5.00 - 4.45 SPT 11N 1.50 5.00 - 5.45 D D 1.50 5.50 - 6.95 D D 1.50 6.50 - 6.95 D D Britsh delogical Suney <	-							TOPSOIL (drillers' description)	
0.80 D 0.70 1.50 1.20 1.60 D 1.50 1.20 1.60 U(60) Strict String Strict Strict String Strict Strict String Strict Str		0.50	D				0.30	Firm brown CLAY with roots and gravel (drillers' description), (POSSIBLE REWORKED	_
1.50 1.20 - 1.60 U(60) Image: Comparison of the comparison of		0.80	D					Soft to firm brown grey orange slightly gravelly CLAY. Gravel is fine to coarse, subangular, mainly quartzite with some flint.	
1.70 D Firm orange brown grey CLAY with occasional gypeum crystals. (LONDON CLAY) 1.50 2.00 - 2.45 SPT 11N British Geological Survey British Geological Survey 1.50 3.00 - 3.45 SPT 1.50 3.00 - 3.45 SPT 10N 1.50 4.00 - 4.45 SPT 11N 1.50 5.00 - 5.45 SPT 14N Hitsh Geological Survey 1.50 5.00 - 5.45 SPT 14N Hitsh Geological Survey 1.50 6.00 D British Geological Survey British Geological Survey 1.50 5.00 - 5.45 SPT 14N Hitsh Geological Survey 1.50 6.50 - 6.95 SPT 18N Hitsh Geological Survey 1.50 6.50 - 6.95 SPT 18N Hitsh Geological Survey 1.50 6.50 - 6.95 SPT 18N Hitsh Geological Survey 1.50 6.50 - 6.95 SPT 18N Hitsh Geological Survey 1.50 6.50 D.95 <td>1.50</td> <td>1.20 - 1.60</td> <td>U(60)</td> <td></td> <td></td> <td></td> <td>1 60 -</td> <td>(REWORKED OR DISTURBED LONDON CLAY)</td> <td></td>	1.50	1.20 - 1.60	U(60)				1 60 -	(REWORKED OR DISTURBED LONDON CLAY)	
1.50 $\overline{2.00} - 2.45$ \overline{SPT} 11N British Geological Survey British Geological Survey British Geological Survey British Geological Survey 1.50 $\overline{3.00} - 3.45$ \overline{SPT} 10N 1.50 $\overline{3.00} - 4.45$ \overline{SPT} 11N 1.50 $\overline{4.00} - 4.45$ \overline{SPT} 11N 1.50 $\overline{5.00} - 5.45$ \overline{SPT} 14N 1.50 $\overline{5.00} - 5.45$ \overline{SPT} 14N Eaological Survey British Geological Survey British Geological Survey 1.50 $\overline{5.00} - 5.45$ \overline{SPT} 14N Eaological Survey 6.00 D British Geological Survey 1.50 $\overline{6.50} - 6.95$ \overline{SPT} 18N Encoming stiff from 6.50m bgl. 7.00 D D D Encoming stiff from 6.50m bgl.		1.70	D				1.00	Firm orange brown grey CLAY with occasional gypsum crystals. (LONDON CLAY)	
Eeological Survey British Geological Survey British Geological Survey 1.50 3.00 - 3.45 Spr 10N 1.50 4.00 - 4.45 Spr 11N 1.50 5.00 - 5.45 Spr 14N 1.50 6.00 D British Geological Survey British Geological Survey 1.50 6.00 D British Geological Survey British Geological Survey 1.50 6.50 - 6.95 Spr 18N Image: State of the state of	1.50	2.00 - 2.45	SPT		11N				
1.50 $3.00 - 3.45$ 9 10N 1.50 $4.00 - 4.45$ 9 11N 1.50 $4.00 - 4.45$ 9 11N 1.50 $5.00 - 5.45$ 9 14N 1.50 $5.00 - 5.45$ 9 $14N$ 1.50 6.00 0 8 thish Geological Survey 1.50 $6.50 - 6.95$ 9 9 1.50 $6.50 - 6.95$ 9 9 1.50 $6.50 - 6.95$ 9 9 1.50 $6.50 - 6.95$ 9 9 1.50 7.00 0 0	ieological Surve :					2010910	al Survey	British Geological Survey	
1.50 $4.00 - 4.45$ B_{PT} 11N 1.50 $5.00 - 5.45$ B_{PT} 14N 1.50 $5.00 - 5.45$ B_{PT} 14N British Geological Survey British Geological Survey British Geological Survey 1.50 $6.50 - 6.95$ B_{PT} 18N Image: Survey 1.50 $6.50 - 6.95$ B_{PT} 18N Image: Survey 7.00 D D D D	1.50	3.00 3.00 - 3.45	D SPT		10N		-		
1.50 $4.00 - 4.45$ B_{PT} 11N 1.50 $5.00 - 5.45$ B_{PT} 14N 1.50 $5.00 - 5.45$ B_{PT} 14N Geological Survey 6.00 D British Geological Survey 1.50 $6.50 - 6.95$ B_{PT} 18N Image: Constraint of the constrai									
1.50 5.00 5.45 D SPT 14N 1.50 5.00 - 5.45 SPT 14N British Geological Survey 6.00 D British Geological Survey British Geological Survey British Geological Survey 1.50 6.50 - 6.95 SPT 18N Image: Second Survey Image: Second Survey 7.00 D D Image: Second Survey Image: Second Survey Image: Second Survey	1 50	4.00	D		11N				
1.50 5.00 5.00 5.45 D_{SPT} $14N$ H_{N} 6.00 D $British Geological Survey$ $British Geological Survey$ 1.50 6.50 6.50 6.95 D_{SPT} $18N$ $becoming stiff from 6.50m bgl.$ 7.00 D D D D	1.50	4.00 4.45	J J				-		
1.50 5.00 - 5.45 SPT 14N Seological Survey 6.00 D British Geological Survey British Geological Survey 1.50 6.50 - 6.95 D D British Geological Survey 1.50 6.50 - 6.95 D D IBN becoming stiff from 6.50m bgl. 7.00 D D IBN becoming stiff from 6.50m bgl.		5.00							
6.00 D British Geological Survey British Geological Survey 1.50 6.50 - 6.95 D 7.00 D British Geological Survey Image: Survey Survey Survey	1.50	5.00 - 5.45	SPT		14N				
6.00 D British Geological Survey British Geological Survey British Geological Survey 1.50 6.50 - 6.95 Br 18N becoming stiff from 6.50m bgl. 7.00 D becoming stiff from 6.50m bgl.	•								
6.50 6.50 SPT 18N -	eological Surve	6.00	D			eologic	al Survey	Brilish Geological Survey	
7.00 D	1.50	6.50 6.50 - 6.95	D SPT		18N			becoming stiff from 6.50m bgl.	
		7.00	D				-		
	,	e I					-		
		8.00	D						ļ
1.50 8.45 SPT 20N -	1.50	8.00 8.00 - 8.45	SV SPT		>120 20N				
9.00 D 9.00 SV >120 Stiff grey CLAY with occasional gypsum crystals. (LONDON CLAY)	-	9.00 9.00	D SV		>120		9.00 -	Stiff grey CLAY with occasional gypsum crystals. (LONDON CLAY)	
9.50 D 1.50 9.50 - 9.95 SPT 25N	1.50	9.50 9.50 - 9.95	D SPT		25N				
Seological Survey = British Geological Survey = British Geological Survey	Jeological Survi	10.00	D		British (eologic	al Sunrey	British Geological Survey	
Remarks GROUNDWATER	Remarks	a sit band due	. A. 1 7-	hal				GROUNDWATER	

APPENDIX D

Thames Water Public Sewer Records

Residential CON29DW Drainage & Water Search Sewer Map-DWS/DWS Standard/2019_4033213

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

APPENDIX E

Greenfield Runoff Rate and Existing Runoff Rates

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Aug 18 2023 16:22

Calculated by:	Andrew Dushyanthan	Site Details	6
Site name:	23 Crescent East	Latitude:	51.66774° N
Site location:	Enfield	Longitude:	0.17052° W
This is an estimatic	n of the greenfield runoff rates that	are used to meet normal best practice poforonce :	3668177223

This is an estimation of the greenfield runoff rates that are used to meet normal best practice **Reference:** criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis **Date:**

for setting consents for the drainage of surface water runoff from sites.

Runoff estimation	approach	IH124	
Site characteristi	cs		Notes
Total site area (ha): 0.21			(1) $\ln \Omega_{\rm pup} < 2.0 l/c/ha2$
Methodology			(1) 13 QBAR < 2.0 1/ 3/114 :
Q _{BAR} estimation method:	Calculate from S	PR and SAAR	When Q _{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.
SPR estimation method:	Calculate from S	OIL type	
Soil characteristic	CS Default	Edited	(2) Are flow rates < 5.0 l/s?
SOIL type:	4	4	Where flow rates are less than 5.0.1/s consent
HOST class:	N/A	N/A	for discharge is usually set at 5.0 l/s if blockage
SPR/SPRHOST:	0.47	0.47	from vegetation and other materials is possible. Lower consent flow rates may be set where the
Hydrological			blockage risk is addressed by using appropriate
characteristics	Default	Edited	drainage elements.
SAAR (mm):	679	679	
Hydrological region:	6	6	(3) Is SPR/SPRHOST ≤ 0.3?
Growth curve factor 1 year	0.85	0.85	Where groundwater levels are low enough the
Growth curve factor 30 years:	2.3	2.3	use of soakaways to avoid discharge offsite
Growth curve factor 100 years:	3.19	3.19	surface water runoff.
Growth curve factor 200 years:	3.74	3.74	

Q _{BAR} (I/s):	0.98	0.98
1 in 1 year (l/s):	0.83	0.83
1 in 30 years (l/s):	2.25	2.25
1 in 100 year (l/s):	3.12	3.12
1 in 200 years (l/s):	3.66	3.66

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

ancroft Court itchin Existing Flow Rates Existing Flow Rates Existing Flow Rates Existing Rates.MDX Attend 19/08/2023 16:54 ite Existing Rates.MDX Checked by Network 2020.1.3 STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm Fige Sizes STANDARD Manhole Sizes STANDARD FSR Rainfall Model - England and Wales Return Freid (years) Not Not 80 (m) 20:000 Maximum Rainfall (mm/hr) 50 Maximum Rainfall Rainfall (mm/hr) 50 Maximum Rainfall Rainfall Rainfall Rainfall (mm/hr) 50 Maximum Rainfall Rain	Mason Navarro Pledge		Page 1	
<pre>itchin Existing Flow Rates iertfordshire, SG5 LLH iertfordshire, SG5 LLH iertfordshire, SG5 LLH itle Existing Rates.MDX nnovyze Network 2020.1.3 STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm Pipe Sizes STANDARD Manhole Sizes STANDARD SS Ratinfall Model - England and Wales Return Period (years) 100 Add Flow / Climate Change (%) 100 Ratin R 20.000 Add Flow / Climate Change (%) 100 Ratin R 20.000 Add Flow / Climate Change (%) 100 Ratin R 20.000 Add Flow / Climate Change (%) 100 Ratin R 20.000 Add Flow / Climate Change (%) 100 Ratin R 20.000 Add Flow / Climate Change (%) 100 Ratin R 20.000 Add Flow / Climate Change (%) 100 Ratin R 20.000 Add Flow / Climate Change (%) 100 Ratin R 20.000 Add Flow / Climate Change (%) 100 Ratin R 20.000 Add Flow / Climate Change (%) 100 Ratin R 20.000 Add Flow / Climate Change (%) 100 Ratin R 20.000 Add Flow / Climate Change (%) 100 Ratin R 20.000 Add Flow / Climate Change (%) 100 Ratin R 20.000 Min Vel for Auto Design only (m/s) 1.00 Yolumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits Time Area Diagram for Storm Time Area Contributing (ha) = 0.046 Total Pipe Volume (m³) = 0.147 Network Design Table for Storm PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m) (m) (1:X) (ha) (mine) Flow (J/e) (mm) SECT (mm) Design 1.000 7.500 0.350 21.4 0.046 5.00 0.00 0.00 0.100 Flope/Conduit 1.001 5.000 0.063 79.4 0.000 0.00 0.00 0.00 0.100 pipe/Conduit Change (ma/hr) (mine) (m) (ha) Flow (J/e) (J/e) (J/e) (J/e) (J/e) 1.001 50.00 5.019 9.100 0.046 0.0 0.0 0.0 0.00 0.00 1.08 13.2 6.2 1.001 50.00 5.019 9.100 0.046 0.0 0.0 0.0 0.0 0.00 1.13 20.0 6.2 </pre>	Bancroft Court	23 Crescent East		
Interfordshire, SGS 1LH Designed by AGD Official ile Existing Rates.MDX Checked by Designed by AGD innovyze Network 2020.1.3 STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm Fige StanDARD Manhole Sizes STANDARD Design Criteria for Storm Fige StanDARD Manhole Sizes STANDARD Metwork 2020.1.3 Design Criteria for Storm Fige StanDARD Manhole Sizes STANDARD Design Criteria for Storm Maximum Backdrop Height (n) 0.200 Maximum Backdrop Height (n) 1.200 National Rates (1/s/ha) 0.000 Maximum Backdrop Height (n) 1.200 Poul Sewage (1/s/ha) 0.000 Nume Area Diagram for Storm Time Area (mine) (ha) Of concentration (mine) Flow (1/s) (m) SECT (me) Design Table for Storm Network Design Table for Storm Network Results Table Network Results Table Network Results Table	Hitchin	Existing Flow Rates		
ate 18/08/2023 16:54 Designed by AGD ile Existing Rates.MDX Checked by Network 2020.1.3 STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm Pipe Sizes STANDARD Manhole Sizes STANDARD FER Rainfall Model - England and Nales Return Period (years) 100 Maximum Rainfall (mohr) 30 Maximum Rainfall (mohr) 30 Maximum File of Concentration (mins) 30 Min Design Depth for Optimisation (1:X) 500 Network 2020.13 Maximum Rainfall (mohr) 30 Maximum File of Concentration (mins) 30 Min Design Depth for Optimisation (1:X) 500 Volume Area Diagram for Storm Time Area [Time Area (mins) (ha) Maximum Rainfall (mohr) Flow (1/s) (min) ECT (mo) Design Table for Storm Time Area [Time Area (mins) (ha) Design Table for Storm Network Design Table for Storm <td co<="" td=""><td>Hertfordshire, SG5 1LH</td><td></td><td>Micro</td></td>	<td>Hertfordshire, SG5 1LH</td> <td></td> <td>Micro</td>	Hertfordshire, SG5 1LH		Micro
Tile Existing Rates.MDX Checked by nnovyze Network 2020.1.3 STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm Time StanDARD Manhole Sizes STANDARD Design Criteria for Storm FINE (%) 100 Model - England and Wales Return Period (years) 100 Model - England and Wales Return Period (years) 100 Maximum Rainfall (mm/hr) S0 Min Stope Info Optimisation (no. 0.200 Maximum Rainfall (mm/hr) S0 Min Stope Info Optimisation (1.20) Foul Sewage (1/a/ha) 0.000 Maximum Rainfall (mm/hr) Designed with Level Soffits Time Area Time Area (mins) (ha) Out of Act Optimisation (1/a) (m/s) Out of Act Optimisation (No.200 Design Table for Storm Min Stope I.Area T.E. Base k HYD DIA Section Type Auto Design Table for Storm N Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m/m) (1/	Date 18/08/2023 16:54	Designed by AGD		
nnovyze Network 2020.1.3 <u>STORM SEWER DESIGN by the Modified Rational Method</u> <u>Design Criteria for Storm</u> Pipe Sizes STANDARD Manhole Sizes STANDARD FSR Rainfall Model - England and Wales Return Period (years) 100 Maximum Rainfall (mo/hr) 50 Maximum Rainfall (mm/hr) 50 Maximum Rainfall (mm/hr) 50 Maximum Time of concentration (mina) 30 Min Design Depth for Optimisation (1:X) 500 Volumetric Runoff Coeff. 0.750 Min Stope for Optimisation (1:X) 500 Designed with Level Soffits Time Area Diagram for Storm Time Area Diagram for Storm Time Area Diagram for Storm Time Area Contributing (ha) = 0.046 Total Pipe Volume (m ³) = 0.147 Network Design Table for Storm PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design 1.000 7.500 0.350 21.4 0.046 5.00 0.0 0.0 0.00 0 0 100 Pipe/Conduit Network Results Table PN Rain T.C. US/LL S I.Area E Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (m/s) (1/s)	File Existing Rates.MDX	Checked by	Diamaye	
STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm Pipe Sizes STANDARD Manhole Sizes STANDARD FSR Rainfall Model - England and Wales FIMP (%) 100 MS FGG (mm) 20.000 Add Flow / Climate Change (%) 0 Ratio R 0.448 Minimum Backdrop Height (m) 0.200 Maximum Backdrop Height (m) 0.200 Maximum Time of Concentration (mins) Maximum Time of Concentration (mins) Maximum Time of Concentration (mins) Min Wol for Auto Design only (m/s) 1.00 Volumetric Runoff Coeff. 0.750 Min Supe for Optimisation (1:X) 500 Designed with Level Soffits Time Area (mins) (ha) Outo Design Table for Storm Network Design Table for Storm Network Results Table Network Leone Fow (1/e) (1/e) (1/e) (1/e) (Innovyze	Network 2020.1.3		
Total Pipe Volume (m³) = 0.147 Network Design Table for Storm PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design 1.000 7.500 0.350 21.4 0.046 5.00 0.0 0.000 0.00 0.000 0 100 Pipe/Conduit Network Results Table Network Results Table PN Rain T.C. US/IL 2 I.Area 2 Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (1/s) (1/s) (1/s) (1/s) 1.000 50.00 5.07 99.100 0.046 0.0 0.0 0.0 0.0 0.0 1.68 13.2 6.2 0.000 5.00 5.15 98.700 0.046	<u>STORM SEWER DESIG</u> <u>Desid</u> Pipe Sizes : FSR Rainf. Return Period (year M5-60 (m Ratio Maximum Rainfall (mm/h Maximum Time of Concentration (min Foul Sewage (1/s/h Volumetric Runoff Coef Desi <u>Time i</u> (mi	Network 2020.1.3 N by the Modified Rational Methor gn Criteria for Storm STANDARD Manhole Sizes STANDARD all Model - England and Wales s) 100 n) 20.000 Add Flow / Climate Cl R 0.448 Minimum Backdrop Her s) 30 Min Design Depth for Optimisation a) 0.000 Min Vel for Auto Design of f. 0.750 Min Slope for Optimisation gned with Level Soffits area Diagram for Storm me Area Time Area (mins) (ha) 0-4 0.035 4-8 a Contributing (ha) = 0.046	<u>d</u> PIMP (%) 100 hange (%) 0 eight (m) 0.200 eight (m) 1.500 ation (m) 1.200 nly (m/s) 1.00 ion (1:X) 500	
Network Design Table for Storm PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m) (m) (1:x) (ha) (mins) Flow (1/s) (mm) SECT (mm) DEsign 1.000 7.500 0.350 21.4 0.046 5.00 0.0 0.600 o 100 Pipe/Conduit Image: Conduit 1.001 Section 79.4 Image: Conduit 1.001 Image:	Total	Pipe Volume $(m^3) = 0.147$		
PN Length (m) Fall (m) Slope (1:x) I.Area (ha) T.E. (mins) Base Flow (1/s) k (mm) HYD SEC DIA (mm) Section Type (mm) Auto Design 1.000 7.500 0.350 21.4 0.046 5.00 0.0 0.600 0 100 Pipe/Conduit Image: Conduit 1.001 5.000 0.063 79.4 0.000 0.00 0.0 0.600 0 100 Pipe/Conduit Image: Conduit	Network	Design Table for Storm		
(m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design 1.000 7.500 0.350 21.4 0.046 5.00 0.0 0.600 o 100 Pipe/Conduit Image: state s	PN Length Fall Slope I Area	T.E. Base k HYD DIA Secti	ion Type Auto	
1.000 7.500 0.350 21.4 0.046 5.00 0.0 0.600 0 100 Pipe/Conduit Image: Conduit 1.001 5.000 0.063 79.4 0.000 0.00 0.0 0.600 0 150 Pipe/Conduit Image: Conduit Image: Co	(m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm)	Design	
Network Results Table PN Rain (mm/hr) T.C. US/IL E I.Area (ha) E Base Foul (l/s) Foul (l/s) Vel (l/s) Cap (l/s) Flow (l/s) 1.000 50.00 5.07 99.100 0.046 0.0 0.0 1.68 13.2 6.2 1.001 50.00 5.15 98.700 0.046 0.0 0.0 1.113 20.0 6.2	1.000 7.500 0.350 21.4 0.046 1.001 5.000 0.063 79.4 0.000	5.00 0.0 0.600 o 100 Pipe/ 0.00 0.0 0.600 o 150 Pipe/	/Conduit 💣 /Conduit 💣	
PN Rain (mm/hr) T.C. (mins) US/IL (m) Figure (ha) Flow (l/s) Foul (l/s) Add Flow (l/s) Vel (m/s) Cap (l/s) Flow (l/s) 1.000 50.00 5.07 99.100 0.046 0.0 0.0 0.0 1.68 13.2 6.2 1.001 50.00 5.15 98.700 0.046 0.0 0.0 0.0 1.13 20.0 6.2	Net	work Results Table		
1.000 50.00 5.07 99.100 0.046 0.0 0.0 0.0 1.68 13.2 6.2 1.001 50.00 5.15 98.700 0.046 0.0 0.0 0.0 1.13 20.0 6.2	PN Rain T.C. US/IL Σ (mm/hr) (mins) (m)	.Area Σ Base Foul Add Flow Vel ha) Flow (1/s) (1/s) (1/s) (m/s)	Cap Flow (l/s) (l/s)	
@1002_2020_Tage	1.000 50.00 5.07 99.100 1.001 50.00 5.15 98.700	0.0460.00.00.01.680.0460.00.00.01.13	13.2 6.2 20.0 6.2	
@1000_0000_Terr				
		982-2020 Innowing		

Mason Navarro Pledge		Page 2							
Bancroft Court	23 Crescent East								
Hitchin	Existing Flow Rates								
Hertfordshire, SG5 1LH		Micro							
Date 18/08/2023 16:54	Designed by AGD								
File Existing Rates.MDX	Checked by	Digiliga							
Innovyze	Network 2020.1.3								
1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for									
	Storm								
Sir	nulation Criteria								
Areal Reduction Factor 1	1.000 Additional Flow - % of Total Flow	• 0.000							
Hot Start (mins) Hot Start Level (mm)	0 MADD Factor * 10m³/ha Storage	• 2.000 • 0.800							
Manhole Headloss Coeff (Global)	0.500 Flow per Person per Day (1/per/day)	0.000							
Foul Sewage per hectare (l/s) (0.000								
Number of Input Hydrographs 0 Number Number of Online Controls 0 Number o:	of Offline Controls 0 Number of Time/Ard f Storage Structures 0 Number of Real Tin	ea Diagrams O ne Controls O							
Syntne Rainfall Model	FSR Ratio R 0.448								
Region Eng	land and Wales Cv (Summer) 0.750								
M5-60 (mm)	20.000 Cv (Winter) 0.840								
Margin for Flood Risk W	Marning (mm) 300.0 DVD Status OFF								
Analys	sis Timestep Fine Inertia Status OFF								
	DTS Status ON								
Profile(s)	Summer and Wint	ter							
Duration(s) (mins) 15,	30, 60, 120, 180, 240, 360, 480, 600, 73	20,							
960	, 1440, 2160, 2880, 4320, 5760, 7200, 86 10	40,)80							
Return Period(s) (years)	1, 30, 1	100							
Climate Change (%)	0, 0,	, 0							
		Water							
US/MH Return Climate	First (X) First (Y) First (Z) Overf	low Level							
PN Name Storm Period Change	Surcharge Flood Overflow Act	:. (m)							
1.000 1 15 Winter 1 +0%	30/15 Summer	99.154							
1.001 2 15 Winter 1 +0%	100/15 Summer	98.768							
Surcharged Flooded	Half Drain Pipe								
US/MH Depth Volume F	low / Overflow Time Flow	Level							
PN Name (m) (m ³) (Cap. (l/s) (mins) (l/s) Status E	xceeded							
	0.55 6.6 0¥								
1.001 2 -0.082 0.000	0.42 6.6 OK								
©198	32-2020 Innovyze								

Bancroft Court 23 Crescent East Hitchin Existing Flow Rates Hertfordshire, SG5 1LH Designed by ACD Checked by Checked by Innovyze Network 2020.1.3 30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteris Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 EGG Start Level (mins) 0 Manble Beadloss Coeff (Global) 0.500 Flow per Person per Day (L/per/day) 0.000 Foul Seage per hectare (1/4) 0.000 Intel Coefficient 0.800 Number of Online Controls 0 Number of Strage Structures 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Strage Structures 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR Rainfall Model FSR Ratio B 0.448 Region England and Rales CV (Summer) 0.840 Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF Duration(s) (mins) 15, 30, 60, 120, 180, 240, 350, 7200, 8600, 720, 960, 1440, 2160, 2880, 4320, 5760, 720, 8600, 720, 960, 1440, 2160, 2880, 4320, 5760, 720, 8600, 720, 960, 1440, 2160, 2880, 4320, 5760, 720, 8600, 720, 960, 1440, 2160, 2880, 4320, 5760, 720, 8600, 720, 960, 1440, 2160, 2880, 4320, 5760, 720, 8600, 720, 960, 1440, 2160, 2880, 4320, 5760, 720, 8600, 720, 960, 1440, 2160, 2880, 4320, 5760, 720, 8600, 720, 960, 1440, 2160, 2880, 4320, 5760, 720, 8600, 720, 960, 1440, 2160, 2880,	Mason Navarro Pledge			Page 3							
Hitchin Existing Flow Rates Designed by AGD Checked by Checked by Designed by AGD File Existing Rates.MDX Network 2020.1.3 Jord State	Bancroft Court	23 Cres	cent East								
Hertfordshire, SGS 11H Designed by AGD Date 18/08/2023 16:54 Designed by AGD Checked by Innovyze Network 2020.1.3 30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteria Simulation Criteria Mater Storm Simulation Criteria MADD Factor 1.000 Namber of Critical Results by Maximum Level (Rank 1) MADD Factor 1.000 MADD Factor 1.000 MADD Factor 1.000 Mater Beduction Factor 1.000 Mater Beduction Factor 1.000 Nambor for Lipst Address Cx (Numer) 0.750 Mater Beduction Factor 10.60 Mater Beduction Factor 10.60	Hitchin	Existin	ıg Flow Rates								
Date 18/08/2023 16:54 Designed by AGD Checked by Determined the substitution of the set	Hertfordshire, SG5 1LH			Micco							
File Existing Rates.MDX Checked by Checked by Innovyze Network 2020.1.3 30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm 30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteria And Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteria Nather Store 1:000 Nather Store of Store of Store * 10m/ha Storage 2:000 Nather Storage 2:00 Number of Input Hydrographs 0 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Flow Region Ball Store Storage 2:00 Nation for Flood Risk Warning (mm) 30:0.0 DVD Status OFF Nation for Flow Region Region Status Status ON Nation for Store Feriod Change Surcharge Flood Overflo	Date 18/08/2023 16:54	Designe	ed by AGD								
Innovyze Network 2020.1.3 30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * 10m/ha Storage 2.000 Number of att Level (m) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Real Time Controls 0 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Real Time Controls 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls 0 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls 0 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Real Time Controls 0 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Real Time Controls 0 Number of Input Hydrographs 0 Number of Status ON Profile(s) Summar and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 120, 960, 1440, 2160, 2880, 4320, 5760, 720, 8640, 10080 Return Period(s) (years) 1, 30, 100 Climate Change (s) 0, 0, 0 No no store Period Change Surcharge Flood Overflow Act. (m) Nome Storm Period Change Surcharge Flood Overflow Act. (m) Nome Storm Period Change Surcharge Flood Overflow Act. (m) None Store Period Change Surcharge Flood Overflow Act. (m) None Store Period Change Surcharge Flood Overflow Act. (m) None Store Period Change Surcharge Fl	File Existing Rates.MDX	Checked	l by	Drainage							
30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) For Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * 10m'/ha Storage 2.000 Hot Start (mins) 0 MADD Factor * 10m'/ha Storage 2.000 Manhole Heddos Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Real Time Controls 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Start Level (min) 20.000 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10000 Return Period(s) (years) Climate Change (%) 1, 30, 100 Climate Change (%) 1, 30, 100 1,000 1 15 Winter 20 +0% 30/15 Summer 99.372 1,001 2 15 Winter 20 +0% 30/15 Summer 99.372 1,001 2 15 Winter 30 +0% 100/15 Summer PN Name (m) (m) Cop. (1/s) (mins) (1/s) Status Exceeded 1.000 1 0.172 0.000 1.21 1.001 2 -0.036 0.000 0.93 14.6 OK	Innovyze	Networł	2020.1.3								
30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteria Areal Reduction Pactor 1.000 Additional Flow - \$ of Total Flow 0.000 Bot Start Level (mm) 0 MaD Factor * 10m*/ha Storage 2.000 Bot Start Level (mm) 0 Inlet Coefficient 0.800 Foul Sewage per hectare (1/a) 0.000 Number of Input Bydrographs 0 Number of Storage Structures 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls 0 Marfall Model FSR Ratio R 0.448 Region England and Wales CV (Simmer) 0.750 Mission for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DIS Status Profile(a) Summer and Winter Duration(a) (min) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10000 Return Period(s) (years) 1, 30, 100 0, 0, 0 VS/MH Return Climate First (X) First (X) First (X) Name Storm Period Change Surcharge Flood Overflow Act. (m) 1.001 1 15 Winter 30 +0% 30/15 Summer 99.372 98.814 FN Name (m) (m) (m) (a) 99.372 98.814											
Simulation Criteria Simulation Criteria Additional Flow - % of Total Flow 0.000 Not Start Level (mm) 0 MADD Factor * 10m*/he Storege 2.000 Start Level (mm) 0 MADD Factor * 10m*/he Storege 2.0000 Start Level (mm) 0 MADD Factor * 10m*/he Storege 2.0000 Start Level (0) Start Level (0) Start Level (1/) 0.000 Synthetic Rainfall Details Number of Input Hydrographs 0. Number of Storage Structures 0 Number of Real Time Controls 0 Synthetic Rainfall Details Marifall Model FSR Synthetic Rainf	<u>30 year Return Period S</u>	ummary of Critic	al Results by Max	imum Level (Rank 1)							
Simulation Criteria Areal Reduction Factor 1.000 Additional Flow : 0 of Total Flow 0.000 Not Start Level (mm) 0 Inlet Coefficient 0.800 Rot Reduction Factor (1/s) 0.000 Inlet Coefficient 0.800 Start Level (mm) 0 Inlet Coefficient 0.800 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Time/Area Diagrams 0 Symbet of Online Controls 0 Number of Storage Structures 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Time/Area Diagrams 0 Symbet of Online Controls 0 Number of Storage Structures 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Time/Area Diagrams 0 Symbet of Online Controls 0 Number of Storage Structures 0 Number of Storage Structures 0 Margin for Flood Risk Warning (mm) 300.0 DVD Status OF Status 001 Status 001 Charge Structures 0 Status 001 Status 01 1, 30, 100 Charge Status 01 1, 30, 100 Name Status 01 1, 30, 100 Name Status 01 1, 30, 100 </td <td></td> <td>for St</td> <td>orm</td> <td></td>		for St	orm								
Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - 6 of Total Flow 0.000 Not Start Level (mm) 0 Intel Coefficient 0.800 Manbole Headloss Coeff (610bal) 0.500 Flow per Person per Day (1/per/day) 0.000 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Real Time Controls 0 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Real Time Controls 0 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Real Time Controls 0 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Real Time Controls 0 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Real Time Controls 0 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Real Time Controls 0 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Real Time Controls 0 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Real Time Controls 0 Margin for Flood Risk Warning (mm) 300.0 Dot Status OF Number of Storage Status Profile(s)											
Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR Ratio R 0.448 Region England and Wales Cv (Summer) 0.750 M5-60 (mm) 20.000 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DITS Status ON Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 0 Vog Vog Status ON Name Storm Period Change Surcharge Flood Overflow Act. (m) 1.000 1 15 Winter 30 +0% 30/15 Summer 99.372 1.001 2 15 Winter 30 +0% 100/15 Summer 98.814 Surcharged Flooded Half Drain Pipe US/MH Depth Volume Flow / Overflow Time Flow Level PN Name (m) (m') Cap. (1/s) (mins) (1/s) Status Exceeded 1.000 1 0.172 0.000 1.21 14.5 SURCHARGED 1.001 2 -0.036 0.000 0.93 14.6 OK	Areal Reducti Hot Sta Hot Start L Manhole Headloss Coeff Foul Sewage per hect	Simulation on Factor 1.000 A rt (mins) 0 evel (mm) 0 (Global) 0.500 Flo are (1/s) 0.000	<u>Criteria</u> dditional Flow - % of MADD Factor * 10m [:] Inlet (w per Person per Day	f Total Flow 0.000 3/ha Storage 2.000 Coeffiecient 0.800 (l/per/day) 0.000							
Synthetic Rainfall Details Rainfall Model FSR Ratio R 0.448 Region England and Wales CV (Summer) 0.750 M5-60 (mm) 20.000 CV (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF Duration (s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8660, 10080 Return Period(s) (years) 1, 30, 100 Climate Change (%) Vater VS/MH Return Climate First (X) First (Y) First (Z) Overflow Level PN Name Storm Period Change Surther 99.372 1.001 2 15 Winter 30 +0% 30/15 Summer 98.814 Surcharged Flooded Half Drain Pipe US/MH Depth Volume Flow / Overflow Level PN Name (m) (m ³) Cap. (1/s) (mins) (1/s) Status Exceeded 1.001 2 -0.036 0.000 0.93 14.6 0K	Number of Input Hydrographs Number of Online Controls	0 Number of Offli 0 Number of Storage	ne Controls 0 Number Structures 0 Number	of Time/Area Diagrams 0 of Real Time Controls 0							
Rainfall Model FSR Ratio R 0.448 Region England and Wales CV (Summer 0.750 M5-60 (mm) 20.000 CV (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 0 Water US/MH Return Climate First (X) First (Y) First (Z) Overflow Level PN Name Storm Period Change Surcharge Flood Overflow Act. (m) 1.000 1 15 Winter 30 +0% 30/15 Summer 99.372 1.001 2 15 Winter 30 +0% 100/15 Summer 98.814 Surcharged Flooded Half Drain Pipe US/MH Depth Volume Flow / Overflow Time Flow Level PN Name (m) (m ³) Cap. (1/s) (mins) (1/s) Status Exceeded 1.000 1 0.172 0.000 1.21 14.5 SURCHARGED 1.001 2 -0.036 0.000 0.93 14.6 OK		Synthetic Rain	fall Details								
MS-60 (mm) 20.000 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 0 Water Water VS/MH Return Climate First (X) First (Y) First (Z) Overflow Level PN Name Storm Period Change Surcharged Flooded Half Drain Pipe 99.372 1.001 1 1.512 0.000 Name (m ²) Cap. (1/s) Name (m ²) Cap. (1/s) 1.001 0.172 0.000 1.21 1.001 0.172 0.000 1.21 1.001 1 0.172 0.000 1.001 2 -0.036 0.000 0.93 1.001 2 -0.036 0.000 0.93 1.001 2	Rainfall	Model	FSR Ratio R 0.	448							
Margin for Flood Risk Warning (mm) 300.0 DV Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) Climate Change (%) 1, 30, 100 0, 0, 0 Water Water VS/MH Return Climate First (X) First (Y) PN Name Storm Period Change Surcharged Flooded Half Drain Pipe VS/MH Surcharged Flooded Half Drain Pipe VS/MH (m) (m ³) Cap. (1/s) (mins) 1.001 1 15 Winter 30 +0% 100/15 Summer 99.372 VS/MH Guy Volume Flow / Overflow Time Flow Level PN Name 30 +0% 100/15 Summer 99.372 1.001 1 0,172 0.000 1.21 14.5 SURCHARGED 1.001 1 0,172 0.000 0.93 14.6 0K	м5-е	Region England and 50 (mm)	Wales CV (Summer) 0. 20.000 Cv (Winter) 0.	840							
Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 0 Water Water US/MH Return Climate First (X) First (Z) Overflow Level PN Name Storm Period Change Surcharge Flood Overflow Act. (m) 1.000 1 15 Winter 30 +0% 30/15 Summer 99.372 99.372 1.001 2 15 Winter 30 +0% 100/15 Summer 98.814 Surcharged Flooded PN Name (m') (m') Cap. (1/s) (mins) (1/s) Status Exceeded 1.001 0.172 0.000 1.21 14.5 OK OK		,									
Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 1, 30, 100 Climate Change (%) 1, 30, 100 Water Water US/MH Return Climate First (X) First (Y) PN Name Status 0, 0, 0 VS/MH Return Climate First (X) First (Y) PN Name Status 0, 0, 0 US/MH Return Climate Surcharge Flood Overflow Act. Mater 99,372 1.001 1 15 Winter 30 +0% 30/15 Summer 98.814 98.814 Surcharged Flooded Half Drain Pipe US/MH Depth Volume Flow / Overflow Time PN Name (m) (m³) Cap. 1.001 0.172 0.000 1.21 14.5 1.001 2 -0.036 0.000 0.93 14.6 <	Margin for F	lood Risk Warning (nm) 300.0 DVD Sta	atus OFF							
Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 1, 30, 100 Climate Change (%) 1, 30, 100 VS/MH Return Climate First (X) PN Name Storm Storm Period Change Surcharge Flood Overflow Act. 1.000 1 15 Winter 30 +0% 30/15 Summer 1.001 2 15 Winter 30 +0% 100/15 Summer VS/MH Depth Volume Flow Level Name (m) (m ³) Cap. (1/s) (mins) (1/s) Surcharged Flooded Half Drain Pipe US/MH Depth Volume Flow Level PN Name (m) (m ³) Cap. (1/s) Mins) (1/s) 1.001 2 -0.036 0.000 0.93 14.6 OK		Analysis Times DTS Sta	tep Fine Inertia Sta tus ON	atus OFF							
Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 1, 30, 100 Climate Change (%) 1, 30, 100 VS/MH Return Climate First (X) PN Name Storm Period Change Surcharge Flood Overflow Act. (m) 1.000 1 15 Winter 30 1.001 2 15 Winter 30 VS/MH Depth Volume Flow Level PN Name (m) (m ³) Cap. (1/s) (mins) 1.001 2 15 Vinter 30 -0.21 14.6 OK PN Name (m) (m ³) Cap. (1/s) mins Exceeded 1.001 1 0.172 0.000 0.93 14.6 OK		510 000									
Duration (s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period (s) (years) 1, 30, 100 Climate Change (%) 0, 0, 0 Water US/MH Return Climate Change (%) 0, 0, 0 Name Storm Period Change Succharge Flood Overflow Act. (m) 1.000 1 15 Winter 30 +0% 30/15 Summer 99.372 98.814 Surcharged Flooded Half Drain Pipe US/MH Depth Volume Flow / Overflow Time Flow Level PN Name (m) (m) 2 15 Winter 30 +0% 100/15 Summer 98.814 Surcharged Flooded Half Drain Pipe US/MH US/MH Depth Volume Flow / Overflow Time Flow Level PN Name (m) (m) Cap. 1.001	Prof		Cum	mor and Wintor							
960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) Climate Change (%) 1, 30, 100 0, 0, 0 Mater US/MH Return Climate First (X) First (Y) First (Z) Overflow Level FN Name Storm Period Change Succharge Flood Overflow Act. (m) 1.000 1 15 Winter 30 +0% 30/15 Summer 1.001 2 15 Winter 30 +0% 100/15 Summer 99.372 1.001 2 15 Winter 30 +0% 100/15 Summer 98.814 Surcharged Flooded Half Drain Pipe US/MH Depth Volume Flow / Overflow Time Flow Level FN Name (m) (m ³) Cap. (1/s) (mins) (1/s) Status Exceeded 1.000 1 0.172 0.000 1.21 14.5 SURCHARGED 1.001 2 -0.036 0.000 0.93 14.6 OK	Duration(s)	(mins) 15, 30, 60,	120, 180, 240, 360,	480, 600, 720,							
Return Period(s) (years) Climate Change (%) 1, 30, 100 0, 0, 0 Water US/MH Return Climate PN Name Storm Period Change Surcharge Flood Overflow Act. (m) 1.000 1 15 Winter 30 +0% 30/15 Summer 99.372 1.001 2 15 Winter 30 +0% 100/15 Summer Surcharged Flooded Half Drain Pipe VS/MH Depth Volume Flow Level PN Name (m) (m³) Cap. (1/s) (mins) (1/s) Status Exceeded 1.000 1 0.172 0.000 1.21 14.5 SURCHARGED 1.001 2 -0.036 0.000 0.93 14.6 OK		960, 1440, 2	160, 2880, 4320, 576	0, 7200, 8640,							
Return Period(s) (years) Climate Change (%) 1, 30, 100 0, 0, 0 Water US/MH Return Climate First (X) First (Z) Overflow Level PN Name Storm Period Change Surcharge Flood Overflow Act. (m) 1.000 1 15 Winter 30 +0% 30/15 Summer 99.372 1.001 2 15 Winter 30 +0% 100/15 Summer 98.814 Surcharged Flooded Half Drain Pipe VS/MH Depth Volume Flow Level PN Name (m) (m³) Cap. (1/s) (mins) (1/s) Status Exceeded 1.001 2 -0.036 0.000 0.93 14.6 OK	Deturn Deried(c) (10080							
Water Water US/MH Return Climate First (X) First (Y) First (Z) Overflow Level PN Name Storm Period Change Surcharge Flood Overflow Act. (m) 1.000 1 15 Winter 30 +0% 30/15 Summer 99.372 1.001 2 15 Winter 30 +0% 100/15 Summer 98.814 Surcharged Flooded Half Drain Pipe US/MH Depth Volume Flow / Overflow Time Flow Level PN Name (m) (m³) Cap. (l/s) (mins) (l/s) Status Exceeded 1.000 1 0.172 0.000 1.21 14.5 SURCHARGED 1.001 2 -0.036 0.000 0.93 14.6 OK	Climate Chan	gears) ge (%)		0, 0, 0							
US/MH Return Climate First (X) First (Y) First (Z) Overflow Level PN Name Storm Period Change Surcharge Flood Overflow Act. (m) 1.000 1 15 Winter 30 +0% 30/15 Summer 99.372 1.001 2 15 Winter 30 +0% 100/15 Summer 98.814 Surcharged Flooded Half Drain Pipe US/MH Depth Volume Flow / Overflow Time Flow Level PN Name (m) (m³) Cap. (l/s) (mins) (l/s) Status Exceded 1.000 1 0.172 0.000 1.21 14.5 SURCHARGED 1.001 2 -0.036 0.000 0.93 14.6 OK											
Water US/MH Return Climate First (X) First (Y) First (Z) Overflow Level NN Name Storm Period Change Surcharge Flood Overflow Act. (m) 1.000 1 15 Winter 30 +0% 30/15 Summer 99.372 1.001 2 15 Winter 30 +0% 100/15 Summer 98.814 Surcharged Flooded Half Drain Pipe US/MH Depth Volume Flow Level PN Name (m) (m³) Cap. (l/s) (mins) (l/s) Status Exceeded 1.000 1 0.172 0.000 1.21 14.5 SUCHARGED 1.001 2 -0.036 0.000 0.93 14.6 OK											
PN Name Storm Period Change Surcharge Flood Overflow Act. (m) 1.000 1 15 Winter 30 +0% 30/15 Summer 99.372 1.001 2 15 Winter 30 +0% 100/15 Summer 98.814 Surcharged Flooded Half Drain Pipe US/MH Depth Volume Flow / Overflow Time Flow Level PN Name (m) (m³) Cap. (1/s) (mins) (1/s) Status Exceeded 1.000 1 0.172 0.000 1.21 14.5 SURCHARGED 1.001 2 -0.036 0.000 0.93 14.6 OK	US/MH Retu	rn Climate First	(X) First (Y) First	water st (Z) Overflow Level							
1.000 1 15 Winter 30 +0% 30/15 Summer 99.372 1.001 2 15 Winter 30 +0% 100/15 Summer 98.814 Surcharged Flooded Half Drain Pipe US/MH Depth Volume Flow / Overflow Time Flow Level PN Name (m) (m³) Cap. (1/s) (mins) (1/s) Status Exceeded 1.000 1 0.172 0.000 1.21 14.5 SURCHARGED 1.001 2 -0.036 0.000 0.93 14.6 OK	PN Name Storm Peri	od Change Surch	arge Flood Ove	rflow Act. (m)							
1.000 1 15 Winter 30 +0% 30/15 Summer 99.3/2 1.001 2 15 Winter 30 +0% 100/15 Summer 98.814 Surcharged Flooded Half Drain Pipe US/MH Depth Volume Flow / Overflow Time Flow Level PN Name (m) (m³) Cap. (1/s) (mins) (1/s) Status Exceeded 1.000 1 0.172 0.000 1.21 14.5 SURCHARGED 1.001 2 -0.036 0.000 0.93 14.6 OK	1 000 1 15 22 1	20 .00 20/15	~	00.070							
Surcharged Flooded Half Drain Pipe US/MH Depth Volume Flow / Overflow Time Flow Level PN Name (m) (m ³) Cap. (l/s) (mins) (l/s) Status Exceeded 1.000 1 0.172 0.000 1.21 14.5 SURCHARGED 1.001 2 -0.036 0.000 0.93 14.6 OK	1.000 1 15 Winter	30 + 0% 30/15 30 + 0% 100/15	Summer	99.372 98.814							
Surcharged Flooded Half Drain Pipe US/MH Depth (m) Volume Flow / Overflow Time Flow Flow Image PN Name (m) (m³) Cap. (l/s) (mins) (l/s) Status Exceeded 1.000 1 0.172 0.000 1.21 14.5 SURCHARGED 1.001 2 -0.036 0.000 0.93 14.6 OK											
Surcharged Flooded Half Drain Pipe US/MH Depth Volume Flow / Overflow Time Flow Level PN Name (m) (m³) Cap. (1/s) (mins) (1/s) Status Exceeded 1.000 1 0.172 0.000 1.21 14.5 SURCHARGED 1.001 2 -0.036 0.000 0.93 14.6 OK											
OS/MA Depth Volume Flow Level PN Name (m) (m ³) Cap. (l/s) (mins) (l/s) Status Exceeded 1.000 1 0.172 0.000 1.21 14.5 SURCHARGED 1.001 2 -0.036 0.000 0.93 14.6 OK	Surcharged F	looded	Half Drain Pipe	T arr-1							
1.000 1 0.172 0.000 1.21 14.5 SURCHARGED 1.001 2 -0.036 0.000 0.93 14.6 OK	DS/MH Depth V PN Name (m)	(m ³) Cap. (1/	TIME FIOW 5) (mins) (1/s)	Level Status Exceeded							
1.000 1 0.172 0.000 1.21 14.5 SURCHARGED 1.001 2 -0.036 0.000 0.93 14.6 OK		, <u>-</u> (1)	, (, ()								
1.001 2 −0.030 0.000 0.93 14.6 OK		0.000 1.21	14.5	SURCHARGED							
@1982-2020 Tapowyzo	1.001 2 -0.036	0.000 0.93	14.0	JU							
@1982-2020 Inpowere											
@1982-2020 Tapovyzo											
@1982-2020 Innowyze											
		©1982-2020	Innovvze								

Mason Navarro Pledge	Page 4								
Bancroft Court	23 Crescent East								
Hitchin	Existing Flow Rates								
Hertfordshire, SG5 1LH	Micro								
Date 18/08/2023 16:54	Designed by AGD								
File Existing Rates.MDX	Checked by								
Innovyze	Network 2020.1.3								
100 year Return Period Summary o	of Critical Results by Maximum Level (Rank 1) for Storm								
Simulation CriteriaAreal Reduction Factor 1.000Additional Flow - % of Total Flow 0.000Hot Start (mins)0MADD Factor * 10m³/ha Storage 2.000Hot Start Level (mm)0Inlet Coefficient 0.800Manhole Headloss Coeff (Global)0.500 Flow per Person per Day (l/per/day)0.000Foul Sewage per hectare (l/s)0.000Number of Input Hydrographs0Number of Offline Controls0									
Number of Online Controls 0 Number o	I Storage Structures 0 Number of Real lime Controls 0								
<u>Synth</u> Rainfall Model Region Eng M5-60 (mm)	Etic Rainfall Details FSR Ratio R 0.448 Gland and Wales Cv (Summer) 0.750 20.000 Cv (Winter) 0.840								
Margin for Flood Risk Analy	Warning (mm) 300.0 DVD Status OFF sis Timestep Fine Inertia Status OFF DTS Status ON								
Profile(s) Duration(s) (mins) 15, 960	Summer and Winter 30, 60, 120, 180, 240, 360, 480, 600, 720, 0, 1440, 2160, 2880, 4320, 5760, 7200, 8640,								
Return Period(s) (years) Climate Change (%)	1, 30, 100 0, 0, 0								
US/MH Return Climate PN Name Storm Period Change	Water 9 First (X) First (Y) First (Z) Overflow Level Surcharge Flood Overflow Act. (m)								
1.000 1 15 Winter 100 +0 ³ 1.001 2 15 Winter 100 +0 ³	\$ 30/15 Summer 99.636 \$ 100/15 Summer 98.859								
Surcharged Flooded US/MH Depth Volume Flo PN Name (m) (m3) Ca	Half Drain Pipe w / Overflow Time Flow Level								
1.000 1 0.436 0.000 1 1.001 2 0.009 0.000 1	P. (1/3) (1/3) Status Exceeded .48 17.7 SURCHARGED .13 17.7 SURCHARGED								
©19	82-2020 Innovyze								

APPENDIX F

Microdrainage Surface Water Calculations

Mason Navarro Pledge	Page 1										
Bancroft Court											
Hitchin											
Hertfordshire, SG5 11	н			Micco							
Date 25/08/2023 12.43		Desi	aned h	V AGD							
File CASCADE CASY		Chas	wheel how	Y AOD			Drainage				
FILE CASCADE.CASA			cked by		1 2						
Innovyze		Sour	ce Con	tro1 2020).1.3						
Cascade Summary of Results for Proposed Volume.SRCX											
Upstream Outflow To Overflow To Structures											
Vol	lume Required	(PP).S	RCX	(None)	(None))					
	Half D	rain Ti	.me : 476	6 minutes.							
Storm	Max Max	м	lax	Max	Max	Max	Status				
Event	Level Depth	Infilt	tration	Control S	Outflow	Volume					
	(m) (m)	(1	/s)	(l/s)	(l/s)	(m³)					
15 min Summer	98.973 0.473		0.0	1.0	1.0	27.0	ок				
30 min Summer	99.105 0.605		0.0	1.0	1.0	34.5	ОК				
60 min Summer	99.223 0.723		0.0	1.0	1.0	41.2	ОК				
120 min Summer	99.316 0.816		0.0	1.0	1.0	46.5	ОК				
180 min Summer	99.348 0.848		0.0	1.0	1.0	48.4	ОК				
240 min Summer	99.355 0.855		0.0	1.0	1.0	48.8	O K				
360 min Summer	99.336 0.836		0.0	1.0	1.0	47.6	O K				
480 min Summer	99.307 0.807		0.0	1.0	1.0	46.0	O K				
600 min Summer	99.280 0.780		0.0	1.0	1.0	44.5	ОК				
720 min Summer	99.254 0.754		0.0	1.0	1.0	43.0	O K				
960 min Summer	99.204 0.704		0.0	1.0	1.0	40.1	ОК				
1440 min Summer	99.112 0.612		0.0	1.0	1.0	34.9	0 K				
2160 min Summer	98.991 0.491		0.0	1.0	1.0	28.0	OK				
4320 min Summer	98.886 0.386		0.0	1.0	1.0	22.0 13 0	OK				
	90.720 0.220		0.0	1.0	1.0	13.0	U K				
	Storm	Rain	Flooded	Discharge	Time-Pe	ak					
	Event (mm/hr)	Volume	Volume	(mins))					
			(m ³)	(m ³)	,						
15	min Summer 1	43.730	0.0	28.1		26					
30	min Summer	92.556	0.0	36.3		40					
60	min Summer	56.713	0.0	44.5		70					
120	min Summer	33.608	0.0	52.7	1	28					
180	min Summer	24.451	0.0	57.6	1	86					
240	min Summer	19.415	0.0	61.0	2	44					
360	min Summer	13.949	0.0	65.7	3	60					
480	min Summer	11.040	0.0	69.3	4	10					
600	min Summer	9.202	0.0	72.3	4	/0					
720	min Summer	1.927	0.0	74.7	5	30					
960	min Summer	0.261	0.0	/8./	6	130					
	min Summer	4.484	0.0	84.5 an c	1 3	24					
2100	min Summer	2 527	0.0	20.0 Q5 7	13	04					
4320	min Summer	1.803	0.0	101.8	2.3	88					
					20	-					
	©1	982-20	020 Inn	ovyze							

-

Mason Navarro Pledge							Page 2
Bancroft Court			23 Crescen				
Hitchin							
Hertfordshire, SG5	1LH						Micco
$D_{2} = 25/08/2023 = 12$	• 13		Designed b				
Date 23/00/2023 12	• 40		Designed b	y AGD			Drainar
File CASCADE.CASX			Checked by				
Innovyze			Source Con	trol 202	0.1.3		
Casc	ade Summar	ry of	Results for	Proposed	d Volume	e.SRCX	
Storm	Max	Max	Max	Max	Max	Max	Status
Event	Level	Depth	Infiltration	Control S	Outflow	Volume	
	(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
5760 min Su	mmer 98.634	0.134	0.0	1.0	1.0	7.7	ОК
7200 min Su	mmer 98.597	0.097	0.0	1.0	1.0	5.5	ОК
8640 min Su	mmer 98.585	0.085	0.0	0.8	0.8	4.8	ОК
10080 min Su	mmer 98.575	0.075	0.0	0.7	0.7	4.3	ОК
15 min Wi	nter 99.033	0.533	0.0	1.0	1.0	30.4	O K
30 min Wi	nter 99.181	0.681	0.0	1.0	1.0	38.8	O K
60 min Wi	nter 99.317	0.817	0.0	1.0	1.0	46.6	O K
120 min Wi	nter 99.428	0.928	0.0	1.0	1.0	52.9	O K
180 min Wi	nter 99.471	0.971	0.0	1.0	1.0	55.3	O K
240 min Wi	nter 99.485	0.985	0.0	1.0	1.0	56.2	O K
360 min Wi	nter 99.475	0.975	0.0	1.0	1.0	55.6	ОК
480 min Wi	nter 99.446	0.946	0.0	1.0	1.0	53.9	ОК
600 min Wi	nter 99.408	0.908	0.0	1.0	1.0	51.8	ОК
720 min Wi	nter 99.375	0.875	0.0	1.0	1.0	49.9	ОК
960 min Wi	nter 99.308	0.808	0.0	1.0	1.0	46.1	ОК
1440 min Wi	nter 99.174	0.674	0.0	1.0	1.0	38.4	ОК
2160 min Wi	nter 98.991	0.491	0.0	1.0	1.0	28.0	ОК
2880 min Wi	nter 98.836	0.336	0.0	1.0	1.0	19.2	ОК
4320 min Wi	nter 98.630	0.130	0.0	1.0	1.0	7.4	ОК

St	orm	Rain	Flooded	Discharge	Time-Peak	
Ev	ent	(mm/hr)	Volume	Volume	(mins)	
			(m³)	(m³)		
5760 mi	n Summer	1.419	0.0	106.7	3056	
7200 mi	n Summer	1.177	0.0	110.6	3680	
8640 mi	n Summer	1.010	0.0	113.9	4408	
10080 mi	n Summer	0.888	0.0	116.6	5144	
15 mi	n Winter	143.730	0.0	31.5	26	
30 mi	n Winter	92.556	0.0	40.6	40	
60 mi	n Winter	56.713	0.0	49.8	68	
120 mi	n Winter	33.608	0.0	59.1	126	
180 mi	n Winter	24.451	0.0	64.5	182	
240 mi	n Winter	19.415	0.0	68.3	240	
360 mi	n Winter	13.949	0.0	73.6	352	
480 mi	n Winter	11.040	0.0	77.7	458	
600 mi	n Winter	9.202	0.0	80.9	542	
720 mi	n Winter	7.927	0.0	83.7	570	
960 mi	n Winter	6.261	0.0	88.1	720	
1440 mi	n Winter	4.484	0.0	94.7	1016	
2160 mi	n Winter	3.208	0.0	101.5	1428	
2880 mi	n Winter	2.527	0.0	106.6	1792	
4320 mi	n Winter	1.803	0.0	114.1	2384	
	©	1982-20	20 Inno	vyze		

Mason Navarro Pledge		Page 3
Bancroft Court	23 Crescent East	
Hitchin		
Hertfordshire, SG5 1LH		Micro
Date 25/08/2023 12:43	Designed by AGD	Dcainago
File CASCADE.CASX	Checked by	Diamage
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for Proposed Volume.SRCX

	Storm	ı	Max	Max	Max	Max	Max	Max	Status
	Event	:	Level	Depth	Infiltration	Control D	Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
5760	min N	Winter	98.587	0.087	0.0	0.9	0.9	4.9	ОК
7200	min N	Winter	98.572	0.072	0.0	0.7	0.7	4.1	ОК
8640	min N	Winter	98.562	0.062	0.0	0.6	0.6	3.5	ΟK
10080	min N	Winter	98.555	0.055	0.0	0.5	0.5	3.1	ОК

Storm Event	Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m ³)	Time-Peak (mins)
5760 min Winter	1.419	0.0	119.6	2952
7200 min Winter	1.177	0.0	124.0	3680
8640 min Winter	1.010	0.0	127.6	4408
10080 min Winter	0.888	0.0	130.7	5144

Mason Navarro Pledge		Page 4								
Bancroft Court	23 Crescent East									
Hitchin										
Hertfordshire, SG5 1LH		Micco								
Date 25/08/2023 12:43	Designed by AGD									
File CASCADE.CASX	Checked by	Dialitacje								
Innovyze	Source Control 2020.1.3									
Cascade Rainfall De	stails for Proposed Volume SRCX									
cascade Rainiall Details for Proposed Volume.SRCK										
Rainfall Model	FSR Winter Storms Yes	3								
Return Period (years)	100 Cv (Summer) 0.750)								
M5-60 (mm)	20.000 Shortest Storm (mins) 15	5								
Ratio R	0.448 Longest Storm (mins) 1008)								
Summer Storms	Yes Climate Change % +40)								
Tir	ne Area Diagram									
Tota	al Area (ha) 0.075									
Time (mins) Area Ti	ime (mins) Area Time (mins) Area									
From: To: (ha) Fr	om: To: (ha) From: To: (ha)									
0 4 0.025	4 8 0.025 8 12 0.025									
	I									
©1982-2020 Innovyze										

Mason Navarro Pledge Page 5										
Bancroft Court 23 Crescent East										
Hitchin										
Hertfordshire, SG5 1L	Н				Micco					
Date 25/08/2023 12:43		Desig	ned by AGI	D						
File CASCADE.CASX		Checke	ed by		Didilidy					
Innovyze		Source	e Control	2020.1.3						
-										
Cascade Model Details for Proposed Volume.SRCX										
Stanara in Online Course Lough (r) 100,000										
	Storage is Unline Cover Level (m) 100.000									
	Cellula	ar Stor	age Struc	ture						
	Thue	rt Level	(m) 98 5	00 Safety F	actor 20					
Infiltrati	on Coefficient	Base (n	n/hr) 0.000	00 Salecy r 00 Por	cosity 0.95					
Infiltrati	on Coefficient	Side (n	n/hr) 0.000	00						
Depth (m) Are	a (m²) Inf. Ar	ea (m²)	Depth (m)	Area (m²)	Inf. Area (m²)					
0.000	60 0	60 0	1 001	0 0	91 0					
1.000	60.0	91.0	1.001	0.0	91.0					
			I							
	Pump	Outfl	ow Contro	01						
	Inve	rt Level	l (m) 98.50	0						
Depth (m) Flow (l/s)	Depth (m) Flo	w (l/s)	Depth (m)	Flow (l/s)	Depth (m) Flow (l/s)					
0.100 1.0000	0.900	1.0000	1.700	1.0000	2.500 1.0000					
0.200 1.0000	1.000	1.0000	1.800	1.0000	2.600 1.0000					
0.300 1.0000	1.100	1.0000	1.900	1.0000	2.700 1.0000					
0.400 1.0000	1.200	1.0000	2.000	1.0000	2.800 1.0000					
0.500 1.0000	1.300	1.0000	2.100	1.0000	2.900 1.0000					
	1.400	1 0000	2.200	1.0000	3.000 1.0000					
0.800 1.0000	1.600	1.0000	2.300	1.0000						
	1.000	1.0000	21100	1.00000						
©1982-2020 Innovyze										

Mason Navarro Pledge		Page 1			
Bancroft Court	23 Crescent East				
Hitchin					
Hertfordshire, SG5 1LH		Micco			
Date 25/08/2023 16:32	Designed by AGD				
File CASCADE CASX	Checked by	Drainage			
	Source Control 2020 1 3				
Cascade Summary of Res	ults for Volume Required (PP).SR	CX			
Upstream	Outflow To Overflow To				
Structures					
(Nana) Pro	record Velume (DCV (Nere)				
(None) Pro	posed volume.skck (None)				
Half Dr	rain Time : O minutes.				
Storm Max Max	Max Max Max S	Status			
Event Level Depth In	filtration Control Σ Outflow Volume				
(m) (m)	(1/s) (1/s) (1/s) (m ³)				
15 min Summer 99 731 0 331	0 0 1 0 4 1 0 4 0 3 FI	ood Bisk			
30 min Summer 99.745 0.345	0.0 10.7 10.7 0.3 Flo	ood Risk			
60 min Summer 99.681 0.281	0.0 9.4 9.4 0.3	ОК			
120 min Summer 99.575 0.175	0.0 6.9 6.9 0.2	ОК			
180 min Summer 99.527 0.127	0.0 5.4 5.4 0.1	O K			
240 min Summer 99.511 0.111	0.0 4.4 4.4 0.1	ОК			
360 min Summer 99.492 0.092	0.0 3.3 3.3 0.1	OK			
600 min Summer 99.473 0.073	0.0 2.7 2.7 0.1 0.0 2.3 2.3 0.1	OK			
720 min Summer 99.465 0.065	0.0 1.9 1.9 0.1	0 K			
960 min Summer 99.457 0.057	0.0 1.5 1.5 0.1	ОК			
1440 min Summer 99.449 0.049	0.0 1.1 1.1 0.0	ОК			
2160 min Summer 99.442 0.042		ОК			
2880 min Summer 99.437 0.037		OK			
4520 milli Summer 99.451 0.051	0.0 0.4 0.4 0.0	0 K			
	Dein Blanded Dieskeums Wine Deek				
Event (m	m/hr) Volume Volume (mins)				
	(m ³) (m ³)				
15 min Summer 14	3.730 0.0 7.9 15				
30 min Summer 9	2.556 0.0 10.3 22 6.713 0.0 12.6 20				
120 min Summer 3	3 608 0 0 15 0 66				
180 min Summer 2	4.451 0.0 16.3 98				
240 min Summer 1	9.415 0.0 17.3 126				
360 min Summer 1	3.949 0.0 18.7 188				
480 min Summer 1	1.040 0.0 19.7 248				
600 min Summer	9.202 0.0 20.5 308 7.027 0.0 21.2 200				
120 min Summer 960 min Summer	1.921 0.0 21.2 366 6.261 0.0 22.3 489				
1440 min Summer	4.484 0.0 24.0 722				
2160 min Summer	3.208 0.0 25.7 1092				
2880 min Summer	2.527 0.0 27.0 1464				
4320 min Summer	1.803 0.0 28.8 2200				

©1982-2020 Innovyze

Mason Navar	ro Pledge									Page 2
Bancroft Co	ourt			23 C	resce	nt Eas	t			
Hitchin										
Hertfordshi	re, SG5 1	LH								Micco
Date 25/08/	, 2023 16:3	2		Desi	aned	bv AGD)			
File CASCAD	E CASX	_		Check	ked h	W				Urainage
Throwww.				Sour		ntrol	2020	1 3		
111100 y 2 e				SOUL		IICIOI	2020.	.1.5		
	Cagaada	11mm - r.1	of Po		for J	70 Jumo	Pogu	irod		CDCV
	cascade s	ounniary	OI KE	suits	101 \	/orume	кеqu	ITeu	([[]).	JACA
	Storm	Max	Max	Max		Max	Ma	x	Max	Status
	Event	Level	Depth	Infiltra	ation	Control	Σ Out	flow	Volume	
		(m)	- (m)	(1/s)	(l/s)	(1/	/s)	(m³)	
5760	min Summer	99.427	0.027		0.0	0.4		0.4	0.0	O K
7200	min Summer	99.425	0.025		0.0	0.3		0.3	0.0	OK
10080	min Summer	99.423	0.023		0.0	0.3		0.3	0.0	O K
15	min Winter	99 806	0.022		0.0	11 7		11 7	0.0	Flood Risk
30	min Winter	99.795	0.395		0.0	11.5		11.5	0.4	Flood Risk
60	min Winter	99.654	0.254		0.0	8.9		8.9	0.3	0 K
120	min Winter	99.536	0.136		0.0	5.7		5.7	0.1	O K
180	min Winter	99.508	0.108		0.0	4.2		4.2	0.1	O K
240	min Winter	99.494	0.094		0.0	3.4		3.4	0.1	O K
360	min Winter	99.478	0.078		0.0	2.5		2.5	0.1	O K
480	min Winter	99.466	0.066		0.0	2.0		2.0	0.1	O K
600	min Winter	99.459	0.059		0.0	1.7		1.7	0.1	O K
720	min Winter	99.455	0.055		0.0	1.4		1.4	0.1	ОК
960	min Winter	99.450	0.050		0.0	1.2		1.2	0.0	OK
1440	min Winter	99.442	0.042		0.0	0.8		0.8	0.0	O K
2160	min Winter	99.435 99.435	0.035		0.0	0.0		0.0	0.0	OK
4320	min Winter	99.426	0.031		0.0	0.3		0.3	0.0	O K
		Storm		Rain	Flood	ed Disc	harge	Time-	-Peak	
		Event		(mm/hr)	Volum	ne Vol	Lume	(mi	ns)	
					(m³)	(n	n³)			
	570	60 min 8	Summer	1.419	0	.0	30.1		2920	
	720	00 min S	Summer	1.177	0	.0	31.2		3552	
	864	40 min S	Summer	1.010	0	.0	32.0		4384	
	1008	80 min 8	Summer	0.888	0	.0	32.8		5104	
	:	15 min V	Vinter 3	143.730	0	.0	8.9		15	
		30 min V	∛inter	92.556	0	.0	11.5		22	
	(60 min V	∛inter	56.713	0	.0	14.1		36	
	12	20 min V	Vinter	33.608	0	.0	16.8		66	
	18	su min V 40 min T	vinter	24.451	0	.0	18.3		96 124	
	24	40 MIIN V 60 min T	vinter	13 010	0	.0	19.4 20 0		124 186	
	۵۱ ۵۷	80 min 1	Vinter	11.040	0	.0	22.1		2.42	
		00 min V	Vinter	9.202	0	.0	23.0		312	
	72	20 min V	Vinter	7.927	0	.0	23.8		366	
	90	60 min V	Vinter	6.261	0	.0	25.0		484	
	144	40 min V	Vinter	4.484	0	.0	26.9		750	
	210	60 min 🛛	Vinter	3.208	0	.0	28.8		1116	

0.0

0.0

©1982-2020 Innovyze

30.2

32.3

1444

2128

2880 min Winter 2.527

4320 min Winter 1.803

Mason Navarro Pledge		Page 3
Bancroft Court	23 Crescent East	
Hitchin		
Hertfordshire, SG5 1LH		Mirro
Date 25/08/2023 16:32	Designed by AGD	
File CASCADE.CASX	Checked by	Diamage
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for Volume Required (PP).SRCX

	Storm Event	1 :	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control Σ (l/s)	Max Outflow (l/s)	Max Volume (m³)	Status
5760	min 1	Winter	99.423	0.023	0.0	0.3	0.3	0.0	ОК
7200	min 1	Winter	99.421	0.021	0.0	0.2	0.2	0.0	ΟK
8640	min N	Winter	99.420	0.020	0.0	0.2	0.2	0.0	ΟK
10080	min 1	Winter	99.418	0.018	0.0	0.2	0.2	0.0	ОК

	Stori Eveni	m E	Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m ³)	Time-Peak (mins)
5760	min	Winter	1.419	0.0	33.8	2992
7200	min	Winter	1.177	0.0	35.0	3680
8640	min	Winter	1.010	0.0	36.0	4384
10080	min	Winter	0.888	0.0	36.8	5008

Mason Navarro Pledge		Page 4						
Bancroft Court	23 Crescent East							
Hitchin								
Hertfordshire, SG5 1LH		Micco						
Date 25/08/2023 16:32	Designed by AGD							
File CASCADE.CASX	Checked by	Digitigh						
Innovyze	Source Control 2020.1.3							
Cascade Rainfall Deta	ils for Volume Required (PP).SRCX							
Deinfell Medel	ECD Minton Storma Vo							
Return Period (years)	100 Cv (Summer) 0.75	0						
Region Engl	and and Wales Cv (Winter) 0.84	C						
M5-60 (mm) Batio B	20.000 Shortest Storm (mins) 1. 0.448 Longest Storm (mins) 1008	5 n						
Summer Storms	Yes Climate Change % +4	0						
	ne Area Diagram							
Tot	al Area (ha) 0.030							
Time (mins) Area T	ime (mins) Area Time (mins) Area							
From: To: (ha) Fr	rom: To: (ha) From: To: (ha)							
0 4 0.010	4 8 0.010 8 12 0.010							
©198	82-2020 Innovyze							

Mason Navarro Pledge		Page 5
Bancroft Court	23 Crescent East	
Hitchin		
Hertfordshire, SG5 1LH		Mirro
Date 25/08/2023 16:32	Designed by AGD	Nrainane
File CASCADE.CASX	Checked by	Diamage
Innovyze	Source Control 2020.1.3	
Cascade Model Detai	ls for Volume Required (PP).SRCX	
Storage is On	line Cover Level (m) 100.000	
Porous	Car Park Structure	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m)	10.0
Membrane Percolation	(mm/hr) 1000 Length (m)	3.0
Max Percolation Safetv	Factor 2.0 Depression Storage (Mm)	5
Pe	prosity 0.30 Evaporation (mm/day)	3
Invert Lev	vel (m) 99.400 Membrane Depth (m)	600
Pipe	Outflow Control	
Diameter (m) 0.10 Slope (1:X) 100. Length (m) 5.00 Roughness k (mm) 0.60	00 Entry Loss Coefficient 0.500 0 Coefficient of Contraction 0.600 00 Upstream Invert Level (m) 99.400 00	
©193	82-2020 Innovyze	

APPENDIX G

Proposed Drainage Strategy

2020 Mason Navarro Pledge

General Drainage Specification

- 1. All private drains shall be constructed and commissioned in accordance with the relevant sections of the Building Regulations Approved Documents and relevant British Standards.
- 2. All pipework to be 100Ø minimum unless noted otherwise.
- 3. Private surface water drains shall be laid at a minimum gradient of 1 in 100 or to the gradients and invert levels shown.
- 4. Private foul water drains shall be laid at a minimum gradient of 1 in 80 or to the gradients and invert levels shown
- 5. Foul pipework connections to first access point shall be laid at a minimum gradient of 1 in 40 or to the levels shown.
- 6. All connections to be made soffit to soffit unless noted otherwise.
- 7. Pipe bedding to be Class 'B' bedding for rigid pipes and Class 'T' bedding for flexible pipes (100 mm granular bed and surround).
- 8. Where cover to soffit of pipe is less than 600 mm in private areas, the following shall apply:
 - a) Vitrified clay pipes provide a 100 mm min. thick concrete bed and surround (instead of class 'B' & 'T' bedding) and a 13 mm thick compressible filler at each joint.
 - b) uPVC pipes provide a concrete bridging (in addition to class 'B' or 'T' bedding) in accordance with appendix A15, Building Regulations part 'H'.
- 9. All concrete indicated in the construction of drainage infrastructure (pipe bedding, bridging, manholes etc) shall be standardised prescribed concrete ST2 and is to conform to BS EN 206-1 and BS 8500-2. The maximum aggregate size shall be 20mm.
- 10. Foundations adjacent to pipe runs or manholes are to have their formation level set above the invert level no higher than the equivalent of the horizontal distance between the pipe/excavation trench and the foundation, minus 500mm.
- 11. Excavations for manholes, pipe runs etc located within a 45 degree load distribution splay from any adjoining existing foundations, are to be adequately supported for the duration of the works and pipe runs protected as note 8 above.
- 12. Where excavations for pipe runs are parallel and in close proximity to each other and/or other service trenches, The Contractor shall ensure that adequate safety measures, including temporary shoring, are provided in line with current health & safety legislation and good practice. Particular attention is to be paid to adjacent trenches of differing invert levels.
- 13. All existing drainage found on site during the works shall be investigated, its operational status confirmed and the following applied:-
- a) Inoperative drainage shall be cut back and pipe runs filled with concrete grout.

b) 'Live' drainage shall be advised to the engineer

inistrator for com All materials to co	ment before work begins. Somply with the relevant British Standard.
Surface Water	Description
	Permeable Paved Surfacing
	New surface water drain
—	New shallow inspection chamber (typ. 225mmØ) upto 600mm deep
	New shallow inspection chamber (typ. 450mmØ)
	New surface water manhole (Size indicated on Manhole Schedule)
	New modular storage tank
Р	Surface water pump chamber (Size indicated on Manhole Schedule)
RWP •	New rain water down pipe
	New surface water rising main
	Existing surface water sewer
	Green Roof Area
	Raingarden
	Flow route direction arrow
	Linear drainage channel
Foul	Description
	New foul water drain
—	New shallow foul inspection chamber (typ. 225mmØ) upto 600mm deep
	New shallow foul inspection chamber (typ. 450mmØ)
	New foul water manhole (Size indicated on Manhole Schedule)
	Existing foul water sewer

23 CRESCENT EAST

PROJECT

DRAWING TITLE OUTLINE DRAINAGE STRATEGY

tef No.							
223377	S2	P03					
INP No.	STATUS CODE	REV					
1:200 @ A1	AGD	November 2023					
SCALE @ A1	DRAWN BY	DATE					

Modular Storage Detail with Catchpit Chamber (Scale 1:50)

Modular Storage Section B-B

for arrangement of units

Permeable Block Pavers — In accordance with SHW Clause 1104 & 1107 & BS 7533-3, on 50mm thick compacted laying course to BS 7533-3, D.1.1. Refer to landscape architects drawings for specification & location.

> 50mm Laying Course (See Table 1 for material grading)

Sharp sand blinding layer if risk of

Formation in accordance with SHW

Clause 601, 616 & 617

Bulk Fill (Where required) in accordance with SHW Clause 601 & 602, Table 6/1, Class 6Q (1A. 1B or 1C). Laid & compacted to Clause 612.

> Sub-formation in accordance with SHW Clause 601, 602, 603, 613 & 617

Sedum Blanket Roof Structure ELA XEELA XEELA

Typical Sedum Blanket Green Roof Detail (Scale 1:25)

Drainage/Attenuation Layer - Waterproofing System

General

1.1 This drawing is to be read in conjunction with all Architect's, Engineer's and Services Engineer's drawings and specifications. 1.2 Do not scale from any of the structural drawings. All dimensions to be verified on site and any discrepancies should be highlighted.

1.3 The contractor is responsible for the stability of the building and adjoining structures during construction and shall design, install, adapt and maintain all necessary propping and temporary works. A method statement for the temporary works must be submitted to the contractor

administrator for comment before work begins.

1.4 All materials to comply with the relevant British Standard.

DATE CHK REV COMMENTS STATUS PRELIMINARY mason navarro pledge

25.08.23 RJ

Consulting Civil and Structural Engineers LONDON · MANCHESTER · HITCHIN 0203 9265613 0161 8701197 01462 632012 Email: office@mnp.co.uk www.mnp.co.uk

Alan Cox Associates

CLIENT

PROJECT

P01 Preliminary Issue

23 Crescent East

DRAWING TITLE SUDS Drainage Details Sheet 1

223377-MNP-XX-XX-DR-C-2800						
223377	S2	₽ 01				
MNP No.	STATUS CODE	REV				
1:25	AGD	August 2023				
SCALE @ A1	DRAWN BY	DATE				

APPENDIX H

PRE-DEVELOPMENT CAPACITY LETTER

Mr Andrew Gnanakumar Dushyanthan **Mason Navarro Pledge** 1st Floor, Bevan House 9-11 Bancroft Court Hitchin Hertfordshire SG5 1LH Wastewater pre-planning Our ref DS6108406

09 October 2023

Pre-planning enquiry: Confirmation of sufficient capacity

Site: 23 Crescent East, Hadley Wood, Barnet, EN4 0EY

Dear Mr Dushyanthan,

Thank you for Pre-planning application for the construction of 7 residential flats.

We have completed the assessment of the foul water flows and surface water run-off based on the information submitted in your application with the purpose of assessing sewerage capacity within the existing Thames Water sewer network.

This confirmation is valid for 12 months or for the life of any planning approval that this information is used to support, to a maximum of three years.

You'll need to keep us informed of any changes to your design – for example, an increase in the number or density of homes. Such changes could mean there is no longer sufficient capacity.

If your proposals progress in line with the details you've provided, we're pleased to confirm that there will be sufficient sewerage capacity in the adjacent foul and surface water sewer network to serve your development.

Foul Water

Proposed foul water to discharge via gravity flow into an existing 225mm foul water sewer downstream from existing manhole chamber referenced TQ2698 located within Crescent East.

Surface Water

Proposed surface water to discharge via gravity flow into an existing assumed 305mm surface water sewer upstream from existing manhole chamber referenced TQ2698 6102B located within Crescent East.

In accordance with the Building Act 2000 Clause H3.3, positive connection of surface water to a public sewer will only be consented when it can be demonstrated that the hierarchy of disposal methods have been examined and proven to be impracticable.

Before we can consider your surface water needs, you'll need written approval from the lead local flood authority that you have followed the sequential approach to the disposal of surface water and considered all practical means.

The disposal hierarchy being:

- 1. store rainwater for later use.
- 2. use infiltration techniques where possible.
- 3. attenuate rainwater in ponds or open water features for gradual release.
- 4. attenuate rainwater by storing in tanks or sealed water features for gradual release.
- 5. discharge rainwater direct to a watercourse.
- 6. discharge rainwater to a surface water sewer/drain.
- 7. discharge rainwater to the combined sewer.
- 8. discharge rainwater to the foul sewer

Where connection to the public sewerage network is still required to manage surface water flows, we will accept these flows at a discharge rate in line with CIRIA's best practice guide on SuDS or that stated within the sites planning approval.

If the above surface water hierarchy has been followed and if the flows are restricted to a total of **2.0 litres/sec** for all storm events up to and including 1:100yr+40%CC, then Thames Water would not have any objections to the proposal.

Please see the attached 'Planning your wastewater' leaflet for additional information.

Diversion

From our records we don't anticipate that any wastewater assets need to be diverted to accommodate your proposals.

What happens next?

Please make sure you submit your **S106 Connection Application**, giving us at least 21 days' notice of the date you wish to make your new connection(s).

If you've any further questions, please do not hesitate to contact me.

Yours sincerely, Mana

Colins Akemche Clean & Waste Pre-Planning Engineer Adoption Team - Service Delivery

Thames Water - Developer Services - Ground Floor West - Clearwater Court - Vastern Road Reading -Berkshire - RG1 8DB - Tel: 0800 009 3921 Email: <u>developer.services@thameswater.co.uk</u> - Web: <u>www.developerservices.co.uk</u>

APPENDIX I

SUDS Proforma

GREATER LONDON AUTHORITY

	Project / Site Nar catchment / stag appropriate)	ne (including sub- e / phase where	23 Crescent East			
	Address & post c	ode	23 Crescent	East, Hadley Wo	ood, EN4 OEY	
	OS Grid ref. (East	ing, Northing)	E 526616 N 198133	5		
S	LPA reference (if	applicable)				
Project & Site Detail	Brief descriptio wo	on of proposed ork	Demolition of and existing residential dwelling and erection of 7 apartments (use class C4) together with associated access, parking, amenity space and landscaping			
1.	Total site Area				2100 m^2	
	Total existing imr				$\frac{156}{100}$ m ²	
	Total proposed in					
	Total proposed ir	npervious area			1051 m ⁻	
	ls the site in a sui risk catchment (r Water Managem	rface water flood ef. local Surface ent Plan)?	No			
	Existing drainage and location	connection type	Connection into existing public sewer (TW)			
	Designer Name		Andrew G Dus	hyanthan		
	Designer Positior	1	Project Engine	er		
	Designer Compar	ηγ	Mason Navarro	o Pledge		
	3a. Discharge Ra	tes & Required St	torage	-		
		Greenfield (GF) runoff rate (l/s)	Existing discharge rate (I/s)	Required storage for GF rate (m ³)	Proposed discharge rate (I/s)	
	Obar	0.98				
	1 in 1	0.83	6.6	9	1	
	1 in 30	2 25	14.6	21	1	
	1 in 100	3 12	17.7	27	1	
	1 in 100 + CC			<u> </u>	1	
	Climate change a	allowance used	40%			
Strategy	3b. Principal Met Control	hod of Flow	Pump Chamber			
; əgu	3c. Proposed Sul	DS Measures				
3. Draina			Catchment area (m²)	Plan area (m ³)	Storage vol. (m ³)	
'n	Rainwater harves	sting	0	\geq	0	
	Infiltration syster	ns	0	\leq	0	
	Green roofs		77	0	0	
	Blue roofs		0	0	0	

	2a. Infiltration Feasibility					
	Superficial geology classification		Made Ground			
	Bedrock geology classification		London Clay			
	Site infiltration rate			m/s		
	Depth to groundwater level		N/A	m belov	v ground level	
	Is infiltration feasible?			No		
	2b. Drainage Hierarchy					
ents				Feasible (Y/N)	Proposed (Y/N)	
gem	1 store rainwater for later use			Y	Y	
ge Arran	2 use infiltration techniques, such surfaces in non-clay areas	as poro	us	Ν	Ν	
Dischar	3 attenuate rainwater in ponds or features for gradual release	open w	ater	Ν	Ν	
oposed	4 attenuate rainwater by storing ir sealed water features for gradual r	n tanks elease	or	Y	Y	
2. Pr	5 discharge rainwater direct to a w	vaterco	urse	Ν	Ν	
	6 discharge rainwater to a surface sewer/drain	water		Y	Y	
	7 discharge rainwater to the comb	oined se	wer.	N	Ν	
	2c. Proposed Discharge Details					
	Proposed discharge location	isting TW sewer. Refer to drawing				
	Has the owner/regulator of the discharge location been consulted?	evelopment enquiry to be completed.				
	4a. Discharge & Drainage Strategy	,	Page	e/section of drai	nage report	
	Infiltration feasibility (2a) – geotecl factual and interpretive reports, including infiltration results	Section 4, page 12				
	Drainage hierarchy (2b)			Section 6, pa	ge 16	
	Proposed discharge details (2c) – u plans, correspondence / approval f owner/regulator of discharge locat	Section 6, page 17				
nformation	Discharge rates & storage (3a) – de hydrologic and hydraulic calculatio	Appendix E and F				
orting l	Proposed SuDS measures & specifications (3b)		Section 7			
Supp	4b. Other Supporting Details		Page/section of drainage report			
4.	Detailed Development Layout			Appendix	G	
	Detailed drainage design drawings, including exceedance flow routes	,	Appendix G			
	Detailed landscaping plans		Appendix B			
	Maintenance strategy			Section	7	
	Demonstration of how the propose SuDS measures improve:	ed				
	a) water quality of the runoff?			Section (6	
	b) biodiversity?			Section	5	
c) amenity?			Section 6			

		_	_	_
	Filter strips	0	0	0
	Filter drains	0	0	0
	Bioretention / tree pits	0	0	0
	Pervious pavements	300	0	0
	Swales	0	0	0
	Basins/ponds	0	0	0
	Attenuation tanks	674	\langle	60
	Total	1051	0	60