Building Regulations England Part L (BREL) Compliance Report

Approved Document L1 2021 Edition, England assessed by Array SAP 10 program, Array

Date: Thu 26 Oct 2023 12:16:22

Project Information			
Assessed By	Harry Davey	Building Type	Flat, Semi-detached
OCDEA Registration	EES/020345	Assessment Date	2023-10-26

Dwelling Details			
Assessment Type	As designed	Total Floor Area	103 m ²
Site Reference	6408-2	Plot Reference	Green
Address	23 Flat 5 Crescent Eas	st, London, EN4 0EY	•

Client Details	
Name	Igli Salillari
Company	PK Developments
Address	66 The Transmitting Station, Hatfield, AL9 6NE

This report covers items included within the SAP calculations. It is not a complete report of regulations compliance.

1a Target emission rate and dwelling emission	rate	
Fuel for main heating system	Heat network	
Target carbon dioxide emission rate	11.83 kgCO ₂ /m ²	
Dwelling carbon dioxide emission rate	3.78 kgCO ₂ /m ²	OK
1b Target primary energy rate and dwelling pri	mary energy	
Target primary energy	62.03 kWh _{PE} /m ²	
Dwelling primary energy	39.87 kWh _{PE} /m ²	ОК
1c Target fabric energy efficiency and dwelling	g fabric energy efficiency	
Target fabric energy efficiency	39.2 kWh/m ²	
Dwelling fabric energy efficiency	36.8 kWh/m ²	OK

2a Fabric U-values	•			
Element	Maximum permitted average U-Value [W/m²K]	Dwelling average U-Value [W/m²K]	Element with highest individual U-Value	
External walls	0.26	0.18	Walls (1) (0.18)	OK
Party walls	0.2	0	Party Wall (1) (0)	N/A
Curtain walls	1.6	0	N/A	N/A
Floors	0.18	0.15	Heatloss Floor 1 (0.15)	OK
Roofs	0.16	0.13	Roof (1) (0.13)	OK
Windows, doors,	1.6	1.22	Opening (1.4)	OK
and roof windows			-	
Rooflights	2.2	N/A	N/A	N/A

2b Envelope elements (better than typically expected values	are flagged with a subsequent (!)	
Name	Net area [m ²]	U-Value [W/m ² K]
Exposed wall: Walls (1)	65.6	0.18
Exposed wall: Walls (2)	23.41	0.18
Party wall: Party Wall (1)	10.53	0 (!)
Party floor: Heatloss Floor 1, Heatloss Floor 1	3.68	0.15
Exposed roof: Roof (1)	5.5	0.13
Exposed roof: Roof (2)	23.23	0.13

2c Openings (better than typically exp	ected values are fla	gged with a subseq	uent (!))	
Name	Area [m ²]	Orientation	Frame factor	U-Value [W/m ² K]
Opening, DTC	1.89	West	N/A	1.4
Opening, window	1.26	North	0.7	1.2
Opening, window	3.91	North	0.7	1.2
Opening, window	3.91	North	0.7	1.2
Opening, window	1.75	South	0.7	1.2
Opening, window	1.75	South	0.7	1.2
Opening, window	1.75	South	0.7	1.2
Opening, window	1.26	East	0.7	1.2
Opening, window	1.26	East	0.7	1.2
Opening, window	1.26	East	0.7	1.2
Opening, window	1.26	East	0.7	1.2

Name Area [m²] Orientation Frame factor U-Value [W/m²K]

	dging (better than typically expect			
Building part 1 -	Main Dwelling: Thermal bridging ca	lculated from linear thermal transmit	tances for eacl	h junction
Main element	Junction detail	Source	Psi value [W/mK]	Drawing / reference
External wall	E2: Other lintels (including other steel lintels)	Calculated by person with suitable expertise	0.05	
External wall	E3: Sill	Calculated by person with suitable expertise	0.05	
External wall	E7: Party floor between dwellings (in blocks of flats)	Calculated by person with suitable expertise	0.07	
External wall	E10: Eaves (insulation at ceiling level)	Calculated by person with suitable expertise	0.06	
External wall	E20: Exposed floor (normal)	SAP table default	0.32	
External wall	E24: Eaves (insulation at ceiling level - inverted)	Calculated by person with suitable expertise	0.08	
External wall	E12: Gable (insulation at ceiling level)	Calculated by person with suitable expertise	0.06	
External wall	E14: Flat roof	SAP table default	0.16	
External wall	E16: Corner (normal)	Calculated by person with suitable expertise	0.09	
External wall	E17: Corner (inverted - internal area greater than external area)	Calculated by person with suitable expertise	-0.09	
External wall	E25: Staggered party wall between dwellings	Calculated by person with suitable expertise	0.06	
Party wall	P8: Exposed floor (inverted)	SAP table default	0.48	
Party wall	P4: Roof (insulation at ceiling level)	SAP table default	0.48	

3 Air permeability (better than typically expecte	ed values are flagged with a subsequent (!)	
Maximum permitted air permeability at 50Pa	8 m³/hm²	
Dwelling air permeability at 50Pa	3.5 m ³ /hm ² , Design value (!)	OK
Air permeability test certificate reference		·

4 Space heating	
Main heating system 1: Heat network -	Heat network
Efficiency	
Emitter type	
Flow temperature	
System type	
Manufacturer	
Model	
Commissioning	
Secondary heating system: N/A	
Fuel	N/A
Efficiency	N/A
Commissioning	

5 Hot water	
Cylinder/store - type: N/A	
Capacity	N/A
Declared heat loss	N/A
Primary pipework insulated	N/A
Manufacturer	
Model	
Commissioning	
Waste water heat recovery system 1 -	type: N/A
Efficiency	
Manufacturer	
Model	

linked to use of heat	ting, programmer, and at least two room the	nermostats
75 lm/W		
80 lm/W		OK
N/A		
echanical ventilation	with heat recovery	
	Will float food of y	
<u> </u>		OK
73%		-1
90%		OK
MRXBOXAB-ECO3	3	
	Space and water heating	
	Space and water heating	
ored heat	New heat network	
ered heat	New heat network 0.043 kgCO ₂ /kWh	
ered heat	New heat network	
ered heat	New heat network 0.043 kgCO ₂ /kWh	
ered heat	New heat network 0.043 kgCO ₂ /kWh	
ered heat	New heat network 0.043 kgCO ₂ /kWh	
ered heat	New heat network 0.043 kgCO ₂ /kWh	
	New heat network 0.043 kgCO ₂ /kWh	
onfirmation that the c	New heat network 0.043 kgCO ₂ /kWh 0.455 kWh _{PE} /kWh ontents of this BREL Compliance Report information submitted for this dwelling for	
onfirmation that the c led upon the design i esigned" assessmen	New heat network 0.043 kgCO ₂ /kWh 0.455 kWh _{PE} /kWh ontents of this BREL Compliance Report nformation submitted for this dwelling for t, and that the supporting documentary	
onfirmation that the c led upon the design i esigned" assessment ix 1 (documentary ev	New heat network 0.043 kgCO ₂ /kWh 0.455 kWh _{PE} /kWh ontents of this BREL Compliance Report information submitted for this dwelling for t, and that the supporting documentary vidence) schedules the minimum	
onfirmation that the c led upon the design i esigned" assessment ix 1 (documentary ev	New heat network 0.043 kgCO ₂ /kWh 0.455 kWh _{PE} /kWh ontents of this BREL Compliance Report nformation submitted for this dwelling for t, and that the supporting documentary	
onfirmation that the c led upon the design i esigned" assessment ix 1 (documentary ev	New heat network 0.043 kgCO ₂ /kWh 0.455 kWh _{PE} /kWh ontents of this BREL Compliance Report information submitted for this dwelling for t, and that the supporting documentary vidence) schedules the minimum	
onfirmation that the c led upon the design i esigned" assessment ix 1 (documentary ev	New heat network 0.043 kgCO ₂ /kWh 0.455 kWh _{PE} /kWh ontents of this BREL Compliance Report information submitted for this dwelling for t, and that the supporting documentary vidence) schedules the minimum	
onfirmation that the c led upon the design i esigned" assessment ix 1 (documentary ev	New heat network 0.043 kgCO ₂ /kWh 0.455 kWh _{PE} /kWh ontents of this BREL Compliance Report information submitted for this dwelling for t, and that the supporting documentary vidence) schedules the minimum e course of preparing this BREL	
onfirmation that the c led upon the design i esigned" assessment ix 1 (documentary ev	New heat network 0.043 kgCO ₂ /kWh 0.455 kWh _{PE} /kWh ontents of this BREL Compliance Report information submitted for this dwelling for t, and that the supporting documentary vidence) schedules the minimum	
onfirmation that the c led upon the design i esigned" assessment ix 1 (documentary ev	New heat network 0.043 kgCO ₂ /kWh 0.455 kWh _{PE} /kWh ontents of this BREL Compliance Report information submitted for this dwelling for t, and that the supporting documentary vidence) schedules the minimum e course of preparing this BREL	
onfirmation that the c led upon the design i esigned" assessment ix 1 (documentary ev	New heat network 0.043 kgCO ₂ /kWh 0.455 kWh _{PE} /kWh ontents of this BREL Compliance Report information submitted for this dwelling for the thing and that the supporting documentary vidence) schedules the minimum is course of preparing this BREL Assessor ID:	
onfirmation that the c led upon the design i esigned" assessment ix 1 (documentary ev	New heat network 0.043 kgCO ₂ /kWh 0.455 kWh _{PE} /kWh ontents of this BREL Compliance Report information submitted for this dwelling for t, and that the supporting documentary vidence) schedules the minimum e course of preparing this BREL	
onfirmation that the c led upon the design i esigned" assessment ix 1 (documentary ev	New heat network 0.043 kgCO ₂ /kWh 0.455 kWh _{PE} /kWh ontents of this BREL Compliance Report information submitted for this dwelling for the thing and that the supporting documentary vidence) schedules the minimum is course of preparing this BREL Assessor ID:	
	75 lm/W 80 lm/W N/A echanical ventilation 1.5 W/(l/s) 0.53 W/(l/s) 73%	80 lm/W N/A echanical ventilation with heat recovery 1.5 W/(l/s) 0.53 W/(l/s) 73%