Land off Gannow I ane, Burnley

858233 Noise Assessment

NOISE IMPACT ASSESSMENT

REF: 2204t-Land off Gannorv Lane-NIA-V2 DATE: 6tr'January 2023 2023

CONTENTS

\mathbf{f}_{z}	Introduction
F	levision Changes
2.	Criteria
F	Planning Conditions & Guidance
	English Planning Policy on Noise Impact -The NPPF and NPSE
	Noise Levels within Residential uilding and External Amenity Areas - BS 8233 / WHO
3.	Site9
4.	Environmental Noise
	Equipment and Site Notes
5.	Bui Iding t'aqade Calculations
I	Residential Dwellings
I	Suilding Fabric
	Glazing and Ventilation Treatment
	Night-Time Lnru' Exposure
	General Glazing Notes
	General Ventilation Notes
6-	Extenral arnenity area s
7.	Vibration Assessmellt
8.	Conclusions
Glo	ossary
AP	PENDIX A - Survey Data 22
I	Position 1 (P1)
Ap	pendix B – Calculations
	Propagation Calculations 26

G reen condition LAeq, Daytime Calculation	
Green condition Lnr,,Night-time Calculation	
Appendix c - Vibration Survey Data	

Content Author: Stuart Cumming MIOA

Contend Checker: Craig Williams

I.INTRODUCTION

Audio Labs has been instructed to assess noise levels affecting the proposed change of use development site at the formel Dexter Paints site on the Land off Gannorv Lane. Bumley.

The assessment aims to evaluate tl.re eristing noise levels at the site and cornrnent n the development site's suitability for use in residential purposes.

If the development is not curently suitable for use, this report will piovide recommendatrons for mitigation l.neasures. The mitigatioll measures ivill be designed to achieve a comfortable intental and e.rternal acoLrstic environment. in line with the British Standards and Planning Policy.

The scope of the assessment is based on good practice techniques and extensive experience rvith similar'

p^rol ec ts.

REVISION CHANGES

 V2: Acldition of a vibration noise assessment: inclucing amendments to the guidance section and a rvhole new section on viblation iu

2. CRITERIA

PLANNING CONDITIONS & GUIDANCE

To ensure that the above criteria is adheled to, this report is to be primarily based on the following standards:

- The National Planning Policy Francervork (2012)
- The Noise Policy Statement for England (2010)
- BS 82-13:2()14.'Gr.ridance on sound insulatit'rn and noise reduction in buildines'

ENGLISH PLANNING POLICY ON NOISE IMPACT - THE NPPF AND NPSE

The NPPF is the over-arching planning policy document that applies to all new developments in England. The guidance and assessment criteria given (or referred to) in this document can therefore be applied to all other standards in tenns of assessing the suitability of granting planning pennission with respect to noise impact.

The NPPF states that planning policies and decisions should aim to:

- Avoid noise from giving rise to significant adverse impacts on health and girality of life as a result of new development;
- Mitigate and reduce to a mrnimurn other adverse impacts on health and quality of life arising from noise filom new development, including through the use of conditions;
- Recognise that development will often create some noise and existing businesses war.rting to develop in continuance oftheir business should not have unreasonable restrictions put on them because of changes in nearby land uses since they were established; and
- Identify and protect areas oftranquillity which have remained relatively undisturbed by noise and are prized fol their recreational arnenity value for this reason.

With specific reference to noise impact. the NPPF document refers to the Noise Policy Statement for England (NPSE). The NPSE provides guidance whicl.r er.rables decisions to be made regarding the acceptable noise burden to place on society, using three key phases -the No Observable Effect Level (NOEL), the Lorvest Observed Adverse Effect Level (LOAEL) and the Significant Observed Adverse Effect Level (SOAEL)

In order to provide a consistent frame of reference (and to allow a view to be taken on the suitability of the application with reference to the relevant planning guidance). the levels or criteria given in other relevant documents used in assessment will be re-framed in terms of the following:

No Observuble Elfect Level (NOEL)

The NOEL is the level of noise impact below which no effect can be detected, and there roould be no discernible negative effect on health or quality of life.

Lov'est Obsen'ecl Ath'erse Elfect Let,el (LOAEL)

The LOAEL is the lorvest level of noise impact above which adverse effects on health ol quality of life can be detected.

Designing noise impacts to be equalto-or-less {han the LOAEL should see that any adverse effects on health or quality ol lile a negligible.

Signdicunt Ob.served Adverse Elfect Leyel (SOAEL)

The SOAEL is the level above rvhich significant adverse effects on health and quality of life occur. Designs should ahvays seek to avoid a noise irnpact rvhich rvould be categorised as SOAEL.

NOISE LEVELS WITHTN RESTDENTTAL BULLDING AND EXTERNAL AMENITY AREAS - BS 8233 / WHO

Figure 2.1 shows the recommended internal noise levels for residential dwellings, as prescribed in BS 8233:2014:

Table 2-1: 858233:2014 IANL for

Dwellings Area	Day Level	Night Level
	(07:00 - 23:00) dB(A)	(23:00 - 07:00) dB(A)
Living Roorns	35	N/A
Dining Rooms	40	N/A
Bedroorns	35	30

It is therefore recommended that (in order to provide a comfortable environment within habitable rooms). the extemal building fabric be generally designed to achieve the internal night-time noise level of 3OdB(A) and daytime level of 35dB(A).

Tl.re figures given rvould be considered the LOAEL, and levels below tl.re figures above would be considered the NOEL. Levels significantly greater tl.ran the figures would be considered the SOAEL. and should be avoided.

BS 8233:2014 also recommends than individual noise events at night can be disturbing to sleep pattems, and that a guideline level should be set in tenns of SEL or Lnp.6a1

BS 8233:2014 does not give a definitive level for internal rnax levels, or define an appropriate number of erceedances pel night. Florvever'. the Wolld Flealth Organisation's (luidelines lor Conrmunity Noise' r'et'crences a stud). h1 Vallet & Veruct. 199 I. u, hich conclucied that "For a good sicep. it is believed that indool sonnd pressure levels should uot exceed approximately 45 dB L.rp.,o., more than IO- I 5 times per night."

For the purposes of assessment. less than IO exceedances per night would be considered the NOEL, with I5 exceedances considered the LOAEL. Numbers significantly in excess of this rvould be considered the SOAEL.

858233 also states that it is desirable that the steady noise level in external arnenity areas (such as gardens or outcloor living areas) does not exceed 50dB L1*.1, with 55dB La", l.1 being acceptable in noisier environmetrts. This is in line with recommendations given in the WHO Guiclelir.res for Community Noise.

However. in the period since the original issue of the WHO guidelines, the Government has set all English Local Planning Authorities specific five-year housing supply targets. This has places greater ernpl.rasis on making efficient use of land resource earmarked fol residential development. BS 8233:2014 recognises this, and states that it should be accepted that these values are not achievable in all circumstances rvhere development wor.rld be otherwise desirable. The docurnerrt goes o11 to suggest that in areas such as city cerltres. or urban areas adjoining the transpofi network. a comprornise (betrveen elevated external noise levels and ensuring development needs) is warranted.

On this basis, levels lorver than 50dB(A) rvill be considered the Ir-OEL, with a level of 55dB(A) considered the LOAEL. Levels significantly greater than this would be considered the SOAEL. but would be addressed on a case-by-case basis, and would not necessarily be considered a barrier to development.

BS 6-172-1:2008 - (Assessment of building vibration rvith respect to human response)

People who are inside buildings can be adversely affected by excessive levels of vibration. This adverse level is often assessed by finding the vibration dose in the building. Current understanding indicates that the vibration dose value (VDV) is the most useful parameter for this type of assessment.

Values are presented in section 6 of BS 64'72-1:2008. rvhich can be used to assess human responses to vibration. These levels are shown in Table 2-2 below:

Place and time	Low probability of	Adverse comment adverse	Adverse comment
	comment	possible	probable
	ms-l' 75	ms-l' 75	nls-1.75
Residential buildings 16hr day	0.2 -0.4	0.4-0.8	0.8-1.6
Residential buildings 8hr night	0.1 - 02	0.2 -0.4	0.4-0.8

Table 2-2: BS 6472-1:2008 - Vibration dose value ranges in residential buildings

Based on the values shorvn in rable2-2 above, levels measured below those in tlie table should be considered

NOEL. Levels that have a 'lol' probabilin' ql udterse comtnent 'or where '., Idyer.se con, thent is possible 'should be considered the LOAEI-. Where levels are high enough that 'rIrA'erse comnen! i.s probable '(or higher), they should be considered the SOAEL.

BS 5228-2:2009 Code of practice for noise and vibration control on construction and open sites

Although not completely relevant, BS 5228 provides limit levels lor vibration in residences with regards to Peak particle velocity (PPV). Table B.I shows guidance values on the effects of vibration levels:

Table 8.1 Guidance on effeds of vibration levels

Vibration levelA)'B)'cl	Effed
0.14 mm.s-'	Mbration might be just perceptible in the most sensitive situations for most vibration frequences associated with construction. At lower frequencies, people are les sensitive to vibration.
0.3 mm.s-r	Vibration might be just perceptible in residential environments.
'1.0 mm's-r	tt is likely that vibration of this level in residential environments will cause complaint, but can be tolerated if prior warning and explanation has been given to residents.
'10 mm.s-t	Vibration is likely to be intolerable for any more than a very brief exposure to this level F in most building environments @
ts	

a The magnitudes of the values prerented apply to a measurement position that is representative of the poim of entry into the recipient.

Using this infonnation. we can show the likely impact of annoyance at nearby receptors.

Table 2-3: Peak Particle Velocity (PPV) effect on receptors

Place and time	Low probability of	Adverse comment	Adverse comment '
	adverse comment	possible	probable
	m ^{§-1}	nts-1	m ^{8*1}
Residential	< 0.3	0.3-1.0	>1.0

Based on the values shown in Table 2-3 above, levels measured below those in the table should be considered

NOEL, Levelsthathar, ea'lou'probabilin'ofutlversecomne, rt' orwhere'...Ith, erseconrmentispossible'sl-rould be considered the I-OAEL. Where levels ale h igh enou-eh that 'JrIr'erse contite nt i.s prohub le' 1or higher'), they should be considered the SOAEL.

B) A transfer function (which relates an external level to an internal level) needs to be applied if only external measurements are available.

a Single or infrequent occurrences of these levels do not necessarily correspond to the stated effect in ewry case. The values are provided to give an initial indication of potential effects, and where these values are routinely measured or exp€ted then an assessment in accordance with BS 6472-1 or -2, and/or other available guidance, might be appropriate to determine whether the time varying expoiure is likely to give rise to any degree of adverse

Line (see Figurc 8.1)	Tlpe of building	Peak component particle velocitlr in frequency range of predominant pulse		
		4Hzto15Hz	15 Hz and above	
1	Reinforced or framed structures	50 mm/s at 4 Hz and	50 mm/s at 4 Hz and	
	Industrial and heavy commercial buildings	above	above	
2	Unreinforced or light framed structures Residential or light commercial huildings	15 mm/s at 4 Hz increasing to 20 mm/s at 15 Hz	20 mm/s at 15 Hz increasing to 50 mm/s at 40 Hz and above	

Table 8.2 Transient vibration guide values for cosmetic damage

NOTE 2 For line 2, at freguencies below 4 Hz, a maximum displacement of 0.6 mm (zero to peak) is not to be exceeded.

Furthermore Table B.2 from B55228-2 shows the transient vibration guide for cosmetic damage. This is the level of vibration that is likely to cause stluctural damage to a property.

3. SITE

The proposed development is located at Land off Cannow Lane, Bulnley The site is in a mixed-use area, sunounded by industrial. commercial and residential properties.

Tl.re main sources of noise affecting tlie noise clirnate at the site are from:

- a Local road traffic along Gannorv Lane
- ^a Distant road traffic noise from sunounding roacl network
- Some contribution from nearby commercial I industrial units

Figure 3-1: Site Area

Figure 3-2: Site Boundary

4. ENVIRONMENTAL NOISE

Attended and unattended site rneasurements olenvironmental noise affecting the site lvere taken on the 13th 14th September 2022. Full 24-hour rnonitoring was taken at one extenlal locations as shown in figure 4.1 below:

Figure 4-1 - External Monitoring Locations

Measuretnent location I (NiIPI) r,vas unattended and left on site for 24hrs.30 minute spot rleasurements were also taken at MP2 and MP3. [t is r.rnderstood from the engineer on site that the rnain noise source is from road traffic along Gannow Road.

Note that i5-rninute lneasurelnent peliod rvas used for daytirne measurements and a 5-rninute period during the night so that a worst-case scenario could be obtained. Full logging data was also obtained usir.rg the fast tirneweighting.

Table 4-1 below provides a list of the monitoring positions used during the survey.

Date	Period	Time	t\lonitoring Position Surveved
13th - 14'h September	Night (8:00hrs)	23:00 - 07:00	t\lonitoring Position Surveved MP1 M P2 MP3
2022	Day (16:00lirs)	07:00 - 2-j:00	IVIPL
l4tr'september 2022	Spot Measurernen	13:12 - 13:42	M P2
l4'r'september 2022	t (30mins) Spot Measulement (30rnins)	13:45 - l4:15	MP3

Table 4-1: Monitoring Periods

Full trcise ntottitoring ,ileasrrrentailts cutr be fountl itr .4ppetuli,r .1.

EQU IPM ENT AN D SITE NOTES

Noise rneasurements rvere obtained using the follorving equipurent which lias been calibrated in accordance with BS EN 60651:1994 and BS 7445:1993:

- Class I 01dB Solo sound level rneter (serial number: 065396)
- Vibrock V9000 Seisrnograph (serial number: 2210)

The sound level meter rvas calibrated before and after use at each penod. No significant drift was rvitnessed and calibration certificates for the equipment can be rnade available upon request.

The arnbient temperature during the survey was noted to be between 10-14'C during the survey. Conditior.rs were noted to be dry. Wind speeds were noted to be <5rns-r on average.

Position	Illonitoring Period	Average Lreq,r (dB)	Highest LAF,n,". (dB)	Highest Lrro (dB)	Lorvest L,rso (dB)
1104	Day	44.1	67.6	46.4	38.8
MP1	Night	40.7	53.1	42.9	33.9
MP2	Spot	40.0	63.2	50.7	45.9
MP3	Measure Spot Measure	49.0	64.4	57.5	473

Table 4-2: Monitoring Data Summary

Drscu ssroN

Subjective inpressions on site and results above suggest that the site is subject to rnoderately-low levels of environmental noise during the claytime and night-time periods. Road traffic noise along Gannow Road and a116 some industrial noise from acljacent site contribute to the overall noise climate.

ThehighestLer.n,". levelsexceeding4SdBdidsolessthan l0tirnesanightatMPI.Comectingfordistancefrorr a moving point source gives the highest Lar.mar ?t the closest residences as being 68dB at 10rn. This is broadly in line with the rneasurements at MP3, although it is slightly louder and istherefore considered a worst-case

scenano.

5. BUTLDING FAQADE CALCULATIONS

RESIDENTIAL DWELLINGS

Cuidance provided in BS 823,1:2014 states that the extelnal building fabric for residential dwellings should be designer'l sothatthe maximum steady-state internal daytirne level of 35 dB L.asq.1 arid niglit-time level of 30 dB LnEq,1 can be achieved within habitable rooms.

With reference to cunent govemrnental planning policies. these levels would be considered the LOAEL, and therefore using these levels as maximum values (and generally providing internal levels less than these) would be providing the NOEL level of impact.

A reasonable standard in bedroorns should also consider individual noise events, so that sleep patterns are not disturbed. The WHO guidelirres interpret this as an internal level of Lep., n., 45 dB being exceeded no more than 1-5 tirnes per night.

BUILDING FABRIC

The weakest elements in the building fabric acoustically are usually noted to be natural ventilators and glazing systems. In this case, there are no ventilators, but they will be included in the follorving section as they may be installed as part of the building refurbishment.

As such it is considered that suitable glazing and ventilation attenuation can be provided to habitable roolns, such that internal avel'age noise levels roould be within acceptable limits, as per BS 8233.

The following calculations are based upon the averaged La.o,1 values. It is then anticipated that if the recommended glazing and ventilation specification are installed as set out herein, internal average noise levels would be within acceptable limits, as per B58233 critelia. The "mole rigolous calculation method" outlinecl in BS 8233:2014 has been used.

1"q,2= L"q,rrt10to9r6(f rol#+f ro*+arot#+ f ro*'; itltosro(i)*,

It is typical that tricklc ventilattrrs are located either in sindorv heads or..through-s'all' and thar thcse at'e designecl to provide the miuimtrm background ventilatiorl rates under Builcling Regulation Part F. It is therefore critical that the internal arnbient noise level targets are rnet with such ventilators in their fu[y-open position.

All of the glazing and ventilation in the building should meet the values provided fol single-glazed or doubleglazed treatment conditions as coloured belorv as a minimum requirement:

Figure 5-1: Glazing Conditions

GLAZING AND VENTILATION TREATMENT

condition 1 (Red)

Calculations sho'uv that the following glazing and ventilation specification can be used to achieve the required ir.rternal ambient noise level:

Double-Gla:.ed

- a 8rnrn Glass pane
- a 6-l6mm air gap
- a 4rnm Laminated pane

This construction should be rated at a rninimurn of R" (C; Cn) 33(-1: -4) dB.

Ventilation

In the event that natural ventilation is to be used; ventilators should be rated at a lninimurn of D,,,",,,(C:Cr,) 55dB. Airbrick type ventilators are recommendeci.

Condition 2 (Green)

Calculations show that the follorving glazing and ventilation specification can be used to achieve the required internal arnbient noise level:

Double-Gla:.ed

- 4rnrn Glass pane
- 6-l6rnrn Air gap
- 4mrn Glass pane

This construction should be rated at a rninimtnn of R,, (C; f,,) 29(-1: -4) dB.

Ventilation

In the event that natural ventilation is to be used; standard trickle ventilators should be rated at a rninimr.un of Dn."'r' (C;C'J 27dB.

N IGHT-TI M E Lar,r',rnx EXPOSU RE

As stated above. rvithin beclrooms, BS 8233:2014 recommends that individual noise events should not disturb sleep patterns. The WHO guiclelines interpret this an internal level of 45dB Lrr.", being exceeded no rnore tharl i5 tirnes a night.

The tagade specit'ications stated above should ensure that impulsive noise levels should not exceed 45dB more than 15 times inside bedrooms during the night.

GENERAL GLAZING NOTES

All rvindows should be well sealed rvhen closed. It is irnperative that the frame does not compromise the performance of the glazing. [t is thelefore recommended that the frames be of uPVC, hardrvood or aluminium constructions and be well sealed into the aperlures.

Softrvood windows could also be used. providing guarantees are given by the manufacturer that acoustic pt'operties will be rnaintarned for the life of the windorvs.

No gaps should be visible around the frame from the exterior.

All glazing should meet with rninirnum requirements under Part L of Building Requirements.

GENERAL VENTILATION NOTES

The ventilators should be capable of providing the backgroiurd ventilation rates given in Part F of the Building Regulations. Calculations have been based upon ploviding one such vent per habitable roorn. Shoukl there be a reqr.tiretnent for an increased number of ventilators per room, the specification of the glazing and ventilation may need to be uplifted accordingly.

Although opening windorvs should not be necessary in order to provide background ventilation. the windorvs may still be opelable for purge ventilation as defined in Parl F (for example following painting or accidental burning ol'ftxrdl or at the occupants' choice.

In this instance, internal alnoient noise levels may exceed the limits given in Table 2.1. however this wor.rld be consideled acceptable due to the short dulation and infrequent occurrence of this situation. where the requirement to purge airborne toxins temporarily takes precedence over low internal ambient noise levels.

6. EXTERNAL AMENITY AREAS

BS 823i:2014, the NPPF and the NPSE all indicate that a balanced approach should be taken rvhen detennining the acceptability oisuch external amenity noise levels.

Specifically the guidance given in BS 8233:2014 states:

'For tradition c\ternal arc'as that are used for annenity space, such as garden and patios. it is desirable that the external noise level does not erceed 50dB La*.1. rvith an upper guideline value of 55dB L,1.q.1 which would be acceptable in noisier environments. However. it is also recognised that these guideline valLles are not achievable in all circurnstances where development might be desirable.

In higher noise areas, such as city centres or urban areas adjoining the strategic transport netrvork, a cotnpromise betweeu elevated noise levels and other factors. such as the convenience ol living in these locations or making efficient use ofland resources to ensure development needs can be rnet.

might be warranted. In Such a situation, development sl.rould be designed to achieve the lowest practica[rle levels in these external anrenit.v spaces. but should not be plohibited.'

The predicted noise levels in garden/arnenity areas at the rear of the properties are exposed to levels between 5055dB(A), with sorne areas predicted to have lower levels. This is considered to be the LOAEL.

7. VIBRATION ASSESSMENT

A vibration assessment has been requested by the local authority. due to the proxirnity of the site to nearby industrial land to the east. As discussed in section 2 of this report. the vibration dose value (VDV) and peak particle velocity (PPV) on the site have been assessed as part of this survey.

It rvas uoted subjectively by the engineel on site that no vibration rvas f-elt on the floor of the site. No soirrces of vibration rvere obvious near to the site and tl.rat there was no re-radiated noise corning frorr any nearby structures.

The PPV was collected during the vibration survey between the 7th and 8'r'of December'2022. VDV was not collected by the equipment due to a hardrvare enor. It is noted that a very low level of vibration has been tneasured in tertns of PPV. As such, it is not thought to be productive to carry out a further survey as it will likely show there is no impact.

The results in Table 7-1 show the maximurn rneasured PPV dtrring the daytime and night-time on each axis. Fufthermole, we can look at the number of events per period which exceed 0.300mms-r.

Table 7-1: Vibration assessment results - Maximum PPV recorded during survey

Period	L Axis mms-1	V Aris mms-1	T Axis mms-l
Day	0.400	0.475	0.125
Night	0.075	0.375	0.075

Table 7-2: Number of PPV events greater than 0.3 mms'1 Period

L Axis		V Axis mms-1	T Axis mms-1
	(Events > 0.300 mms-1)	(Events > 0.300 mms-1)	(Events > 0.300 mms-l)
Day	1	2	С
Night	Ĩ		

0

С

Discussion

It can be seen that the probability of adverse colnrnent is lorv. The highest value for PPV is noted to be 0.475 thtns-I rvl.rich is noted to be just perceivable to humans (0.300 rnrns-r is the threshold of perception). Furthermore, the number of events that are greater than the threshold of perception rvas noted to be 4, when all of the axis are summed.

It is likely that the vibration noted on site was due to the close proximity of animals or pedestlians as the adjacent industrial site is not though to operate during the night. If vibration from the site is causing these events, further reduction in vibration wor.rld be expected with distance from the site boundary and also within the fotLndation of the residences. As such it is llot thought that viblation on site will cause a significar-rt issue.

8. CONCLUSIONS

Prevailing noise levels at a proposetl redevelopment of the Land off Ganno., v Road, Burnley have been assessed in accordance rvith Local and National Planning Policy.

The main sources of road traffic noise occur along Gannow Road. with sorne industrial cleliveries noted at nearby industlial / commercial units.

The assessment has shown that suitable internal noise levels rvithin habitable roorns can be achieved by specifying appropriate glazing and ventilation systems.

Bl providing the appropliate glazing and ventilatiou constructions to the proposed tagades. calculations indicate that the internal arnbient noise levels rvithir.r proposed residential areas would be less than 35dB(A) and 30dB(A) fol daytime/night-tirne respectively.

Garden and amenity areas are expected to have external noise levels betrveen 50-55dB L.q.q.roro.

The in-situ levels would therefore be considered the NOEL, and noise due to road traffic on the adjacent network should have no perceptible adverse effect on health or quality of life providing the design guidance given in this report is followed.

Kind regalds

Mr S Cr.unrning BSc(Hons), MSc, MIOA

Audio Labs Lirnited

Ernai I : stuart(Z audio-labs.co.uk

GLOSSARY

A-weighting: The A-rveighting filter covers the full audio range - 20 Hz to 20 kHz and the shape is similar to the response of the human ear at the lower levels.

Background Noise: The noise at a given location and tirne, measuretl in the absence of any alleged noise nuisance sources, also known as Residual Noise.

Decibel: dB :a relative unit of measurement widely used in acoustics, electronics and communications. The dB is a Logarithmic unit used to describe a ratio between the measured level and a reference or thleshold level of OdB-

Dnr.,,: Weighted standardized level clifference. Single-nLrmber quantity that chalacterizes the ailborne sound insulation betrveen rooms.

Impact: Short dr-rration noise(s), usually associated in acoustics rvith an object in Inotion hitting another object.

Lrro: Is the noise level just exceeded for 10% of the rneasuremert period. A-rveighted and calculated by Statistical Analysis.

Lrqn: Is the noise level exceeded for 90% ofthe measurement period. A-weighted and calculated by Statistical Analysis.

Lr"q: A-weighted. equivalent soulld level. A rvidely used noise parameter describing a sound level with the same Energy content as the varying acoustic signal measured.

L,rF-u*i A-weighted. Fast. Maximurn. Sound Leve[.

R,,: Weighted sound reduction index. single-number quantity which characterizes the airborne sound insulating properties of a rnaterial or building element over a rarlge of frequencies

Sound Pressure Level: SPL is the RMS value of the Instantaneous Sound Pressures measured over a specified period of time, measured in decibels (dB).

APPENDIX A - SURVEY DATA

POSTTTON 1(P1)

IIPI	- External Logger 1	T:lSmin Daytime)		
Date / Time	L.r"q (dB)	Lrn,-"* (dB)	LAIO	LA90
13109/2022 1.4	441	668	42.3	38.3
131091202 1 5 14	404	495	41 7	38.4
2 20+4	407	-03	42.9	20.4
13/09/2022	427	\$83	441	39.2
45.15	428	563	50.2	38.8
13/09/2022 00 15	492	646	48.8	43
+3/09/2022 15:15	473	629	45.8	2
13/05/2022 30 15	463	613	15.8	41.3
1 2109/202 /5 16	454	590	44.9	<i>A</i> ± 6
1.5109/202 4510	454	590	43.6	403
2 00.16	444	630	45.2	42.3 413
13/0912022 15:16	430	567	17.1	40.8
13/0e/2022 30:16	438	540	455	422
t3/os/2022 45 17	453	556	466	442
731091202	436	563	446	40,5
₹37/8€/2022	142	505	110	385
13/05/2022 1517	442	582	460	383
13/09/2022 30,t7	423	590	457	385
13/09/2022 45 18	463	66252	448	205
t3l09/2022 0018	428	5496	435	595
t3/0s/2022 15 18	435	525	427	39s
t3lo9/2022 30.18	432	525	/36	40-1
131091202	443	60,1	43.4	403
45,19	4L6 440	618	434	393
13/09/2A22 00 19	424	647	440	396
t3lo9/2022 1519	/11.2	497	447	202
BI09/2022 30 t9	41.2	498	425	595
7310s/2022 45 20	407	492	427	393
73/09/2022 00.20	41.9	400	422	392
13/09/2022 15 20	40Ż	498	422	388
13/09/2022	398	473	432	394
73/09/2022	390	481	4L3	385
45 21	207	431	41.3	277
B34992022 00 2L	334	4t0.	407	5//
1346000 1.5.27	389	440	4t2	362
20.2t	428	470	402	377
45 22	423	4/3		369
45 22	443	510	451	39 1

22

422

1.4/09/2022 07:15	445	535	45.8	42.1
1.4/09/2022	430	s08	44.2	412
01:30	131	566	453	410
L4/091202207:45	420	500	433	410
1.4/09/2022	429	510	441	417
08:00	451	5s0	469	426
MIO9/202208:15	447	s93	47-	406
14109/202208:30	443	610	1. *	40°1
la/091202208:a5	426	55 1	457	397
14/09/2022 09:00	438	584	440	4t9
t4/o91202209:15	441	562	441	427
t4l09/202209:30	166	604	447	422
La/09/202209:45	400	505	447	722
74109/2022 L0:00	433	585	495	396
ta/091202210:15	413	55.1	455	394
14/09/202210:30	441 423	493	423	399
1.4109/2022	•	57.0	438	473
L0:a5	429	54.4	472	404
M/0912022L1.:O	424	s0.9	456	402
O La/09/202211:t5	422	66.8	447	406
7a10912022 LL:30	502	55.4	447	404
t4/0912022 11.:45	486	560	436	404
La/o9/2022 t2:00	400	60.4	436	428
la/09/202212:15	429	00.4	524	423
1.410912022	425	55.6	518	399
t2:3o L4/O9/2022	426	53.4	443	40Ö
t2:45	439	57.2	44	398
u/09/2022L3:00	442	54.1	1	40.4
14/09/2022 t3:1.5	452		1.	41.2
14109/2022 73:30 NIPI	- External Logger (T= 446	-Smin Night-time)	42.9	4L5
M/09/2022208:aS	L.r"q (dB)	L.rr.n'" (dB)	453 LA10	41.9 LA90
MI09/2022u:00			454	425
13109/202223:00	43.8	46.8	479	42.
t3/091202223:o5	43.4	47	4570	0
13/09/202223:L0	42.9	4 <i>)</i> .	44 5	41.2
t3/09/2022 23:15	42.0	0	44.5	4L.3
!3/09/202223:20	4t.t	47.4	42.5	40.4
t3/091202223:25	39.s	46.9	41.5	39.2
13109/2022 23:30	37.6	44.3	39.s	36.8
t3/091202223:35	38.2	42.2	39.6	35.1
t3/09/2o22T:aO	38.7	43.9	40.6	36.1
t3/o9/202223:45	40.0	44.2	417	35.6
t3/09/202223:50	20.2	50.0	10.8	25.0
	39.2	50.0	40.0	55.7
	40.9	44.2	42.7	3s.8

L3/09/2022 23:55	43.0	527	46.8	39.7
'J.4/09/202 00'00	40.2	458	419	36.8
2 00.0s	40.0	126	4L.3	38.1
t4/oe/2022	37.5	450	20.4	33.9
14/09/2022	37.5	473	57.4	33.2
14/09/2022 00:15	37.r	474	39.2	34.0
14/09/2022 00:20	37.4	41.0	39.0	34.4
L4/09/2022 00 ²⁵	38.0	434	39.8	34.8
L4/09/2022 00 30	38.7	455	39:7	35.9
14/0e12022_00.3s	40.3	435	42.4	37.r
t4/0912022 00.33	38.8	435	411	34.7
1.4/0s/202	37.5	450	20.2	3s.2
0045	35.4	395	39.2	32.3
00 50	33.3	335	33:5	31.0
t4/0012022 00 55	33.7	384	36.1	29.6
(4/0912022	34.3	207	36.9	30.8
1410e/2022 01.00	3s.8	397	28.0	32.1
14109/2022 01:03	35.7	41.5	38.0	32.4
t410912022 0110	36.3	420	37.8	30.7
14109/2022 0115	36.9	478	38.7	33.7
14/09/2022 01:20	37.L	42.t 428	39.3	33.8
14/09/2022 01 25	39.s	47.1	39.9	35.4
1,4/09/202	38.7	46.3	41.8	33.1
2 0130	36.4	43.6	39.6	31.6
1.4/09/202 0135	37.6	44.0	40.4	33.0
2 0140	37.2	44.9	395	33.0
t4/09/2022 01 45	39.3	45.7	41:9	35.1
L4I0e/2022 74/09/2022 01 50	39.4	44.9	41.8	36.s
L4I0e/2022 1,4/09/202 01.55	37.9	43.6	39.9	34.r
2 02.00	35.5	4t.9	37.4	32.7
14/09/2022 02:00	35.8	20.4	374	33.7
14109/2022 0205 2	36.5	33.4	383	335
t4/os/2022 02 10 74/0s12022	3/2	38.9	389	337
1,4/Oe1202 02 15	337	43.3	351	3'1.7
2 02.20	378	45%	404	329
1.4/091202	377	426	101	337
2	372	476	404	222
14/09/2022	260	45t	392	332
t4/09/2022 02 35	505	124	400	329
t4/09/2022 02 40	361	424	388	320
L4/oe/2022 0245	358	425	383	313
1.4/0s/2022 02 50	376	423	396	345
1,410e/202 0255	341	408	275	304
2 02.55	370	41.5	3/5	223
03 00 74/0e/2022	300	436	391	332
03 05	389	420	4t0	338
03 10	376	450	393	348

4/0912022 03

L4/0s/2022 03 20

03 25

24

t4/09/2022o3:40	36.8	42.2	386	346
t4/09/202203:45	36.7	40.1	383	343
M/091202203:50	27.4	/3.0	20'1	25.1
1.4/09/2022	57.4	43.0	391	551
03:55	38.9	44.L	408	362
t4/09/202204:00	37.0	42.6	39,1	339
La/09/202204:05	36.9	41.0	384	3s0
741091202204:t0	36.8	42.0	387	332
L4/09/2022o4:15	36.2	43.5	383	329
1.4109/2022	27.2	45.9	200	220
0a:20	57.2	47.5	333	555
1.410912022	39.8	46.4	425	350
04.25	4t.o	46.L	439	361
M/09/20220a30	40.4	46.2	428	360
14109/20220430	40.4	42.7	429	363
1 44004202204.55	421.	48.1	45.L 436	383
1.410912022	406	46.3	424	383
04:40	39.3 402	42.7	407 413	373
la/09/202204:45	AI A	44.4	428	206
t4/09/202204:50	40	41.2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	390
L4I0912022Oa:55	4(9	s0.3	455	398
1.4109/2022	418	45.6	428	398
05:00	424	44.8	441.	407
L4/09/202205:05	41.9	45.9	429	40'7
1,4109/2022	424	48.0	432	413
O5:L0	/28	49.2	445	400
1,4/0912022	420	49.0	115	409
05:t5 05:t5	428	46.5	440	410
1.410912022	420	46.7	441	392
ta/09/202206:05 0s:20	41_t	49.0	436	382
lal09/202206:10 1a109120220s:25	408	46.6	420	390
MI09/202206:1.5 14/09/202205:30	424	51.4	430 444	209
L4109/202206:20 ul09/202205:35	424	45.0	43Ľ	550
74109/202206:25	426	46.3	448	405
14109/202206:30 t4/09/202205:35	4L4	45.9	440	393
7a109/202206:35	4L7	47.3	100	40 *
lal09/2022 06:40	432	40.0	430	1.
M/09/2022o6:45	429	55.1	435	4t3
MIO9/202206:50	421	52.9	462	41.2
L4IO9I2022O6:55	42Ľ	J2.4	480	41.2
	425		489	409
	439			411
	459			4t4
	466			430
				435

APPENDIX B _ CALCULATTONS

PROPAGATION CALCULATIONS

GreE

AFa.tafuA-OcfavaE.rd Calculation SfEt

Edh	ru1 h nWaz2							
PEId tb	trddc€'rh Su*t		enllr- \$		tu			
	m		0		tyts	6		
L			10					
	Wlafrtha	f F B d f	fiEa6ry.E					
	bA	n B ta 2	Pssttt&l					
Δ*1tuσ		(a /l? 0.6	I-' 0u 12	1 -11				
in reas		(u),,,, 0.0		2 10				
TEUt Eb					æ			
TrftS9d					c			
Lbv@Vdb					-			
,								
th								
UI0.rArOlhhRd	87.f S	n n D s	3335rŚ		r00m			
I r{. IE O loi is Bd		s.7t1 \$nsaf 451	a 9 0			2		
Xlhhl 4trolonfrmRod		t 5 a s E g 9 g 0 a 7	7 s Q a 1					
bbd*bffit		-t0 -io .t0 .r0		0 -10 -t0				
tuffivre		E. f 3 1 J E A 7 S 9 1 7 4 a 1	3 3					
70n								
Otu -h		{ f f f	£ .8 4	4 5	70.0m	Q=2		
hd.tsh-hilrb.'td		5 -5 6	-5 6 F	11				
U!0,1& O 7On frsRd	713 A	ta fi fi 51	3 .3 4	3 tf				
U.q,tAr e ton frD.n Rod	n3 a7t	n g s a9	U 41 3E	\$ 5				
XtffiUqeOThimRd	8.3	113AS.7p!6?14						
1G								
h - h		.to -10 -10 .10	-t0 .lo -t0	-r0 -10	rmo r	n O{		
holqtn-ffirffi		-5 £ £ -5	6 5 -5	,5 S				
uto.lftotGhb	n.TaatTt	{ 5 5 s { 4 ! ! 6 3 5						
rAq.I€Ir € rGn fr6 Rd	m7s	n & s 17	a f 5	tl 3				
xirriF uatY alon frn Rd	6 r . 9 l 9 t a	lgaaOx3l29a						

RED CON DITION Lare, or vrrve CALCULATION

err+c

AFgd(A-b.Std Cakulation 9-

									_			
	u l						11rqd&				EE	I
hi€r								\$				1
	U F.pd.											6
	talffr	1			hHc.fr	F	. F					
	La IIII			×				1				
				Х	. t o t	a B S	r i i *	1			L	
		3.	-2'-		AB	2			Q	r	<u> </u>	
brF*d. {L{')	n7@		n	n		1	\$	Ş	51			
		-									±6	
bri/p/6t		-									7\$	
brithtor		-										
		-									6.0	
		-									X8	
Ih (.j											g	
Eqtr b4)											tf	
											r0.0	
Tdgfub{a}			Tr								g	
											rl	
		-									**	
F(D.		-									-0	
TIE(KIII						ć c -					au	
					r 9 9	221	rE				g	
tsrrq\$Jr0I		1G4	2ff	284	tG4	tGd	LH	L-4	tEo	3G4		
			Z	n	21	а	t	4 a ,			3tr)	
tsrlq.HI01		tfr	3*d	* 4	alg	IEG	are	5tr	i IEd	3*@		
			a			4	V	а	6			
tsr1aff0)		2 - d	5.84	qGd	9ro	t€a	t F s	tg	1E4f	2 f,S	1	
fak			P	r c	€ F	9 9						
(crrafflo)		4.464	45.11	C ++	- C 1:	10.44	6.6.44	46.0.1	+Enl	4.4-4		
(SII4II:0)		T.FE4	T, E 11	G.tt	a 6-1t	IG.tt	T, E. TT	T,EN 1	LEUI	t tgt		
						-	1				<u> </u>	
ffig(€)	gag		а	8	Q	а	1t	rO				
		_										
		1										
		1										
		-									<u> </u>	
		-										
		-									<u> </u>	
		-									<u> </u>	
		_										
		1										
		1										
		-										
		-									<u> </u>	
		-										
		-									<u> </u>	
		1										
		1										
		1										
		-										
		-									<u> </u>	
		-									<u> </u>	
		-										
		1										
		1										

RED CO N DITI O N Lar.rvrax, N IG HT-TIME CALCU LATION

erlae

A F - e A - b i 8 t n Calculation Strt

													_
	8 1							t1btl&					2
hldE									\$				
	b Ft	d.											q
	*ICftE					hao	icfrF q	ry.E					
					t	. t 6	t ! a S	ttlt	1				
			g	1	5! €	t s		t2					
								1	1	1			
b h d * n	1												
biEad e')	a7 d	0			F	r		8	\$	1		5	
birdu. ,e j	a/ u	_0		u	-		I U	0.	Ş				
												40	
h = -F(-)			-									400	
DISF(II)			-									24	
rbdrqh(il)			-									<u>a@</u>	
			-									10	
th {rl												0.6	
E{dr bG)												ff	
												to!	
ldsfub(st												S	
												ta	
												f0	
												ao	
					F	Pg	S O r	t f S				g	
(errqsjol			384	a c \$	tG4	i*4	r G d	L@	2_ro	trg	3 E d		
						t r n	t t ł	{af				3 tt:a)	
{sr1qtu\$}	1		tE&	!E4	tg	a{g	tEs	am	5.84	r.tEo	5ff		
				4			6	V	&	a			
(srig.Fr0)			2*ir	5*6	9 S d	0*d	t€4	a E	7*0	IEO	2*41		
C.th						r s l	= 9 a	P *					
(sfla&r0)			t rF4	ac-Ir	a* rl	aGrl	iF-tt	acii	a E. I	IGU	t lør		
(51.44.6)			<u></u>	40.11	u .m	1 001.					1.181		
	Q† .	rl		r	+	6	3	i i	13	3	1		
	51				L.		5	<u> </u>		1 5			
			1										
			1										
			+									<u> </u>	
			+									<u> </u>	
			+										
			+										
			+										
		_	-										
		_	-										
			-										
			-										
			-										
			1										
			I										
			1										
			1										
			1										
1			1										
			1										
		_	1										
			-										
	1											1	

GREEN CONDITION Laee, oayrrue CALCULATION

errae

AF?ffA.Od{h Calculation tu

	4 r						11lqdM				u	3
hldft						EE-		ŝ				
	h h h E n d .											ct
						-					-	
	lr rtrr				hadcri	11-	, E					
				tl	.5€	rtEs	rlt	t I				
a i-re		8.1	.42			.t?		2				
		1										
											1	
h d r.ga. (144	Śr 6.1		S	al	a2	37	S	p		<u> </u>		
Contraction of the second seco							÷					
1											dill	
D n H q n (c)											- 84	
											06	
											х6	
											0.5	
E { d											đ	
											io.0	
											3 !	
											11	
		1									ft	
C-rh(h)											AN	
					n n r		n r				n	
10××××××××××××××××××××××××××××××××××××		254		404	50-	10.4	11 11	500		204		_
(terry&u0)		310	sg	tGa	Sud	164	ag	568	atg	360	1.01 12	
				2	2 1 A 1	t 1 6 !	r 3 !				AGt:{)	
rsrrquo)		5*@	a.g	H.	i 1E4	IE4	tEs	rts	444	aE&		
			4	4	4	4	g	@	6			
(5)'1o(ff0)		2t4	5F6	94d	9f4	5GS	9!g	1fa	1 E4t	714		
- i b					t * +	€€€	€r					
{srrger0,		t rEot	i*-t I	r-!t	aE.rt	i€.!r	iE-t I	tG-lt	!4-t!	t tE4r		
lfrs(o)	et it		g	V	В	ť	12	9	f		1	
		-										
		-										
		-										
											ļ	
											-	
		1									<u> </u>	
											-	

G REE N CON DITIO N Lar, vax, N IG HT-TI ME CALCU LATION

E II UE	0	a	0	
the second se	c			

AftA.OA.ES Calculation tu

	8 1						h	11FAe?'	El				
hldr							z4F.t	\$					
	h	Fgd.											g
						_			_				0
												_	
	fttrt	ot				bbcfr		, b					
	hA				! t	. t€	taas	rtt					
A W4rs			4t	U	l_t {		N	/ 12					
brE*dOfE o	Gt r	41		0	P	-4	12	6	2	r .		5	
DIF GOIL.0	01.1	41		0	r	a	12		a			5	
b n * F (i)												14	
b L q a (E)			1									fo	
												16	
												05	
Color h(A)			-									600	
Lati II(A)			-									1000	
												10.0	
												3t	
												tt	
			1									f.t	
-9&r(tu)			1									to	
						n n i	n n T	n 2				zf	
Abrigstrol			IES	c F /I	5.C.g	584	tni	a f A	5.6g	c /l	3.60	-	
TABIIQ31CI				314	41		uu	014	- J.OS	34	5.04	44410)	
te el e eutre à			4-0	A	u	71	A	-	u	10	54.0	(LLL.d)	
tsriqryto)			ts&	3€4	a.a	ITEO	r.Ed	rre	T TEB	346	5π&		
				£		u	Ş	g	@	6			
(\$t1tx&lo)			2 *4t	5F4	9&S	944	t€4	a*4	rtm	ltd	2 for		
C!k						e g	F9r	99					
(sriq&iO'			ttEs	f, E - I	IF.tt	l€-t I	IE-!t	iGtt	ec{t	tc-ti	trs		
frW/-(41	4.7	tt		&	?		r	t7	(t2			
						<u> </u>							
			1										
			+										
			-										
			-										
			-										
			1										
			1										
			1										
			1										
			+										
			-										
			-										
			1										
			1										
			T										
			1										
			1										
			1										
	-		-										
			-										
			1										
			1										
			1										
			1										_
			1										

