

Structural Civil Building Engineers

Structural Calculations

Project Ref: Site:

Client: Project Overview: Prepared By: Checked By: Revision History: 212480-CCL-XX-XX-CA-S-0002-P01 Clematis House, Sandy Lane, Aylmerton, Norfolk. NR11 8QE Mr & Mrs Hobart Calculations and details for structural elements. Nigel Evans EngTech TIStructE C.Build E MCABE Jack Powell BEng (Hons) IEng AMIStructE June 2023 – First Issue

Design Information

 Project Overview
 Calculations and details for structural elements

Intended Building Usage		Residential		
Subsoil Conditions	From BGS website assumed to be Briton's Lane Sand and Gravel Member - Sand and gravel. Assumed allowable ground bearing pressure of 100kN/m ² TBC on site by L.A.B.C officer.	S.I Report by	None	

Specialist Design by Others		Engineered timber floor joists,		
Relevant British Standards, Codes of Practice and Design Standards Used In This Project				
BS 648:1964 - Weights of Materials	\boxtimes	BS 5268 Pt 2:1996 - Timber	\boxtimes	
BS 6399 Pt 1:1996 - Building Loads	\boxtimes	BS 5628 Pt 1: 1992 - Masonry	\boxtimes	
BS 6399 Pt 2:2002 - Wind Loading	\boxtimes	Building Regs Approved Doc. A: 2004		
	\boxtimes	edition incorporating 2004, 2010 and	\boxtimes	
BS 6399 Pt 3:1988 - Snow Loading		2013 amendments.		
BS 5950 Pt 1:2000 - Steelwork	\boxtimes	NHBC Standards	\boxtimes	
BS 8110 Pt 1:1997 - Concrete	\boxtimes	Product and Material Data Sheets	\boxtimes	

 CDM 2015 Design Considerations
 Principal Designer:
 Others

 This design has been considered under CDM 2015 - to eliminate, reduce or control foreseeable risks that may arise during construction, and the maintenance and use of a building once it is built.
 Others

 Risks - Consider those difficult to manage, unusual, or not likely to be obvious to a suitably-experienced contractor or designer

Area of Harard	Assessed	Method of Hazard	Residual Risk	
Area or nazaru	(Yes No N/A)	Elimination/Reduction	Risk	Significant
Access to work area	Yes	To be arranged by Client	\boxtimes	
Demolition	Yes	Demolition of existing structure	\boxtimes	
Services	Yes	Contractor to identify services prior to construction	\square	
Installation	Yes	Design elements as light as possible. Deliver elements as close as possible to installation point. Use mechanical plant for lifting were possible		
Excavation	Yes	Contractor to provide all req'd shoring and propping	\square	
Sequencing	Yes	Contractor's choice	\boxtimes	
Falls from height	Yes	Contractor to provide scaffold, fall arrest and edge protection where required		
Post-tensioning/ pre-tensioning	No			
Materials	Yes	Contractor to adopt safe working practices. Wear PPE to prevent contact with hazardous materials.		
Hotworks	Yes	Prefabricate elements offsite where possible	\square	
Future Maintenance	No			
Final Demolition	No			
Does this project r	equire a separate D	esigners Risk Assessment?	Yes	□ No ⊠

Client and Contractor Notices

The following calculations and details should be read in conjunction with any available architectural drawings.

All dimensions within these calculations are for design purposes only. These are used in place of site derived dimensions and may vary from actual dimensions of structural members. The design dimensions <u>must not</u> be used for the procurement of any structural elements. Accurate on-site measurements for overall element sizes must be carried out prior to fabrication of any structural elements, by the contractor or specialist supplier. This must include the bearing lengths specified within this calculations package.

Design Statement

Canham Consulting (CCL) have been appointed to provide structural calculations in relation to the proposed works at the above address.

Within this calculation package are structural calculations for the proposed steelwork, as identified by the Architect, and listed below:

1) For calculations and details for support beam(s) and bearings in the following locations:

- a. Over new openings in extension
- b. Over opening in existing external wall into dining area extension
- c. Over opening between dining room and boot room
- d. Over glazing to dining room extension external walls
- e. Support post to item d. above
- 2) Foundations to extension assumed to be mass concrete traditional strip or trench fill
- 3) Overall stability appraisal

Please refer to architectural drawings by SMG Architects, and the following structural calculations and CCL drawing numbers 212480-CCL-XX-XX-DR-S-1000, 2500 & 0050

Contents

Section	Title	Start	End	Rev
1	Conceptual			
2	Gravity loading	01	01	P01
3	Wind loading	01	02	P01
4	Superstructure	01	20	P01
5	Substructure			
6	Stability			
7	Temporary Works			
8	Sketches			

Project Name:	CCL Ref:	By:	Checked:	Rev:	Date:
Clematis House, Sandy Lane,	212480	NTE		P01	07-2023
Aylmerton, Norfolk. NR11 8QE	Section:	2	Sheet:	01	

Loading Schedule:

Pitched Roof	
Tiles =	0.60
Battens =	0.02
Rafters =	0.10
Felt =	0.02
Insulation =	0.05
	0.79
Roof Angle =	30
Plan Dead =	0.91 kN/m ²
Plan Live =	0.60 kN/m ²

Ceiling	
Joists =	0.07
Insulation =	0.05
Plaster & Skim =	0.18
Plan Dead =	0.30 kN/m ²
Plan Live =	0.25 kN/m ²

9" Solid Brick	
Plaster & Skim =	0.18
9" Brickwork =	4.50
Plan Dead =	4.68 kN/m ²

Cavity Walls	
Plaster & Skim =	0.18
100mm Blockwork =	1.50
Insulation =	0.05
Facing Brick =	2.25
Plan Dead =	3.98 kN/m ²

Timber Floor	
Finishes/Services =	0.17
Boarding =	0.10
Joists =	0.10
Insulation =	0.05
Plaster & Skim =	0.18
Plan Dead =	0.60 kN/m ²
Plan Live =	1.50 kN/m ²

Flat Roof	
Ply Membrane =	0.10
22mm Ply =	0.20
Insulation =	0.05
Firring =	0.10
Joists =	0.15
Plaster & Skim =	0.18
Plan Dead =	0.78 kN/m ²
Plan Live =	0.75 kN/m ²

	3.36 kN/m ²
200mm Blockwork =	3.00
Plaster & Skim =	0.36

Project Name:	
Clematis House, Sandy Lane,	
Aylmerton, Norfolk. NR11 8QE	

CCL ref:	By:	Checked:	Rev:	Date:
212480			P01	06.2023
Section:	3	Sheet:	1	

WIND LOADING TO BS 6399 - PART 2 Results for site at SD320379 - Altitude 28 m Wind Reference 1 Using the Standard Method

Canham	Project Name:	CCL ref:	By:	Checked:	Rev:	Date:
Consulting	Clematis House, Sandy Lane, Avimerton, Norfolk, NR11 80F	212480			P01	06.2023
Consulting		Section:	3	Sheet:	2	
Site Basic Data						
Location and Base wind speed	BREVe site data for SD320379 - Base v	vind speed, Vb 23	3.2 m/s			
Site Range	500 m Site altitude 28 m Shelter effect from	obstructions is in	cluded			
Seasonal factor, Ss	Season length is All year - Seasonal fac	tor, Ss 1.000	ICIUUEU			
Annual risk and probability factor	Design annual risk 0.02 - Probability fa	ctor, Sp 1.000				
lopographic Increments Heights and Diagonals (m)	Heights above ground 3, Diagonals 5	arameters				
Direction Factors - Usin	q UK direction Factors					
Direction (°N)	0 30 60 90 12	20 150 180	210	240 270	300	33
Direction factor, Sd	0.780 0.730 0.730 0.740 0.730	0.800 0.850	0.930 1.00	0 0.990 0	0.910 0.82	0
Topography						
Crest Height (m)	16.0 8.0 8.0 13.0 7.	0 11.0 9.0) 1.0	25.5 28.0	5.0	8.
Site Location (m)	700.0 0.0 0.0 0.0 800.0	0 0.0 999.0	999.0 22	5.0 100.0	999.0 999	9.0
Upwind Length (m)	800.0 1600.0 10000 1560.0 700.0	1650.0 386.0	40.0 1275.	0 1400.0 2	86.0 433.0	
Base Altitude (m)	12.0 15.0 15.0 15.0 15.0 21.0	10000 10000 1	22.0	0.0 0.0	23.0 2	23.0
Upwind Slope	0.020 0.005 0.001 0.008 0.010	0.007 0.023	0.025 0.02	0 0.020 0	0.017 0.02	0
	Standard M	ethod				
Site description	Site is in country, nearest distance to s	ea = 2.50km.				
Height Above Ground =	= 3.0 m - Ve 32.9 m/s - o	ן 665.5 N/	m²			
He 2.000 a Sa 1.028, Sb 1.382 Ca	5.0 1.000					
		RESSURE	ALUES			
Wind Direction to X Axis	$p_{0} = p_{0} = p_{0$					
$q (N/m^2)$ for H = 3	665.5 620.5 390.3 499.3					

Ground level

Ground Level has been set by the user as always being at the bottom of the model

Project Name:	CCL ref:	By:	Checked:	Rev:	Date:	Canham
Clematis House, Sandy Lane, Aylmerton,	212480	NTE		P01	06.2023	Consulting
Nortolk. NR11 8QE	Section:	4	Sheet:	1		Structural Civil Building Engineers Engineers Surveyors

Design of New Timber Flat Roof Joists - Ref Span 01:				
Section properties:	$L_1 \coloneqq 3.80 \ m$ $B \coloneqq \boxed{\text{Width: 50}} \ mm$	$\begin{bmatrix} D \\ K_7 \end{bmatrix} \coloneqq \boxed{\text{Depth: 170}} mm$	Centres: $s \coloneqq 0.4 \ m$	
$\begin{bmatrix} \sigma_b \end{bmatrix}$	[7.50]	Load duration factor: $K_3 \coloneqq \Box$	Duration: Medium \checkmark = 1.25	
$ \begin{vmatrix} \sigma_{t\parallel} \\ \sigma_{c\parallel} \\ \sigma_{c;mean} \end{vmatrix} = Timber C $	$\begin{array}{c c} 4.50 \\ 7.90 \\ 2.40 \\ N \\ \end{array}$	Exposure factor: $K_2 \coloneqq Expo$	sure: Internal \checkmark = 1.00	
$\begin{bmatrix} \sigma_{c;min} \\ \tau_{\parallel} \\ F \end{bmatrix}$	$\begin{bmatrix} 1.90 \\ 0.71 \\ 10800.00 \end{bmatrix} mm^2$	Depth factor:	$K_7 = 1.06$	
$\begin{bmatrix} E_{mean} \\ E_{min} \end{bmatrix}$	7200.00	Load sharing system factor:	$K_8 := 1.1$	
Therefore permissibl	e bending stress: $\sigma_{b;adm} \coloneqq \sigma_b \cdot K_2 \cdot R_2$	$K_3 \cdot K_7 \cdot K_8$	$\sigma_{b;adm} = 10.93 \frac{N}{mm^2}$	
Loading:	Dead Loads	Live Loads		
Flat Roof:	$G_{k1} \coloneqq 0.78 \ \frac{kN}{m^2} \cdot s = 0.31 \ \frac{kN}{m}$	$Q_{k1} \coloneqq 0.75 \ \frac{kN}{m^2} \cdot s = 0.30 \ \frac{kN}{m}$		
Total Dead Load:	$G_k \coloneqq \sum G_k$		$G_k = 0.31 \ \frac{kN}{m}$	
Total Live Load:	$Q_k \coloneqq \sum Q_k$		$Q_k = 0.30 \ \frac{kN}{m}$	
Service UDL:	$w_s\!\coloneqq\!\left(G_k+Q_k\right)$		$w_s\!=\!0.61\frac{kN}{m}$	
Check section for be	nding:			
Moment:	$M \coloneqq \frac{w_s \cdot {L_1}^2}{8}$		$M = 1.10 \ kN \cdot m$	
Zxx Required:	$Z_{xxreq} \coloneqq \frac{M}{\sigma_{b;adm}}$		$Z_{xxreq} = 101.06 \ cm^3$	
Zxx Provided:	$Z_{xxprov} \coloneqq rac{\left(B \cdot D^2 ight)}{6}$		$Z_{xxprov} = 240.83 \ cm^3$	
Check section for de	flection:			
Limiting Deflectio	n: $\delta \coloneqq \frac{L_1}{333}$		$\delta = 11.41 \ mm$	
Ixx Required:	$I_{xxreq} \coloneqq \frac{5 \cdot w_s \cdot {L_1}^4}{384 \cdot E_{mean} \cdot \delta}$		$I_{xxreq} = 1348.22 \ cm^4$	
Ixx Provided:	$I_{xxprov} \coloneqq \frac{\left(B \cdot D^3 \right)}{12}$		$I_{xxprov} = 2047.08 \ cm^4$	
Bending:	$Z_{xxprov} = 240.83 \ cm^3$ > $Z_{xxreq} = 10$	01.06 cm^3 $U_b = 0.42$	Bending = "OK"	
Deflection:	$I_{xxprov} = 2047.08 \ cm^4 > \qquad I_{xxreq} = 13$	$348.22 \ cm^4 U_d = 0.66$	Deflection = "OK"	

Therefore provide 50 x 170 C24 Flat Roof Joists at max 400mm c/c

Project Name:	CCL ref:	By:	Checked	Rev:	Date:	Canham
Clematis House, Sandy Lane, Aylmerton,	212480	NTE		P01	06.2023	Consulting
NOTTOIK. NR11 8QE	Section:	4	Sheet:	2		Structural Civil Building Engineers Engineers Surveyors

Trimmers to Short S	ides of Rooflights:	
Span: <i>L</i> ₂ := 1.00 <i>m</i>	Number of: $\begin{bmatrix} N_o \\ K_9 \end{bmatrix} \coloneqq \boxed{\text{Number of}}$	$f: 2 \checkmark$ Multiple member factor: $K_9 = 1.14$
Therefore permissible bend	ing stress: $\sigma_{adm} \coloneqq \sigma_b \cdot K_3 \cdot K_7$	$\sigma_{adm} = 9.94 \ \frac{N}{mm^2}$
Loading:	Dead Loads	Live Loads
Flat Roof:	$G_{k1} \coloneqq 0.78 \ \frac{kN}{m^2} \cdot \frac{L_1}{2} = 1.48 \ \frac{kN}{m}$	$Q_{k1} \coloneqq 0.75 \frac{kN}{m^2} \cdot \frac{L_1}{2} = 1.43 \frac{kN}{m}$

Total Dead Load:	$G_k \coloneqq \sum G_k$	$G_k = 1.48 \ \frac{kN}{m}$
Total Live Load:	$Q_k \coloneqq \sum Q_k$	$Q_k \!=\! 1.43 \; \frac{kN}{m}$
Service UDL:	$w_{s}\!\coloneqq\!\left(\boldsymbol{G}_{k}+\boldsymbol{Q}_{k}\right)$	$w_s = 2.91 rac{kN}{m}$

Check section for bending:

Moment:	$M \coloneqq \frac{w_s \cdot L_2^2}{8}$	$M \!=\! 0.36 \ k\! N \boldsymbol{\cdot} m$
Zxx Required:	$Z_{xxreq} \coloneqq rac{M}{\sigma_{adm}}$	$Z_{xxreq} = 36.57 \ cm^3$
Zxx Provided:	$Z_{xxprov} \coloneqq N_o \cdot \frac{\left(B \cdot D^2\right)}{6}$	$Z_{xxprov} = 481.67 \ cm^3$

Check section for deflection:

Limiting Deflection:	$\delta \coloneqq \frac{L_2}{333}$	$\delta = 3.00 \ mm$
Ixx Required:	$I_{xxreq} \coloneqq \frac{5 \cdot w_s \cdot {L_2}^4}{384 \cdot E_{min} \cdot K_9 \cdot \delta}$	$I_{xxreq} = 153.56 \ cm^4$
Ixx Provided:	$I_{xxprov} := N_o \cdot \frac{\left(B \cdot D^3\right)}{12}$	$I_{xxprov} = 4094.17 \ cm^4$

Utilisation ratios:

Bending:	$Z_{xxprov} = 481.67 \ cm^3$ >	$Z_{xxreq} = 36.57 \ cm^3$	$U_{b} {=} 0.08$	Bending = "OK"
Deflection:	$I_{xxprov} = 4094.17 \ cm^4$ >	$I_{xxreq} = 153.56 \ cm^4$	$U_d {=} 0.04$	Deflection = "OK"

Therefore provide 2No. 50 x 170 C24 Flat Roof Joists bolted together with M10 bolts at maximum 600mm c/c staggered vertically at 1/3 heights

Project Name:	CCL ref:	By:	Checked:	Rev:	Date:		Can	ham
Clematis House, Sandy Lane, Aylmerton,	212480	NTE		P01	06.2023		Cons	ulting
Norfolk. NR11 8QE	Section:	4	Sheet:	3		Structural Engineers	Civil Engineers	Building Surveyors

Trimmers to Long Sides of Rooflights:						
Span: L ₁	= 3.80 <i>m</i>	Number of:	$\begin{bmatrix} N_o \\ K_9 \end{bmatrix} \coloneqq \boxed{\text{Number of: } 2 \checkmark}$	Multiple member factor:	$K_9 = 1.14$	
Therefore pe	ermissible bending stress:	$\sigma_{adm} \coloneqq \sigma_b \cdot K_3$	•K ₇		$\sigma_{adm}\!=\!9.94$	$\frac{N}{mm^2}$

Loading:	Dead Loads	Live Loads	
Flat roof:	$G_{k1} \coloneqq 0.78 \frac{kN}{m^2} \cdot \frac{L_2 + s}{2} = 0.55 \frac{kN}{m}$	$Q_{k1} \coloneqq 0.75 \frac{kN}{m^2} \cdot \frac{L_2 + s}{2} = 0.53 \frac{kN}{m}$	
Total Dead Load:	$G_k \coloneqq \sum G_k$		$G_k = 0.55 \frac{kN}{m}$
Total Live Load:	$Q_k \coloneqq \sum Q_k$		$Q_k \!=\! 0.53 \frac{kN}{m}$
Service UDL:	$w_{s}\!\coloneqq\!\left(G_{k}+Q_{k}\right)$		$w_s = 1.07 \frac{kN}{m}$
Check section for bending			
Moment:	$M \coloneqq \frac{w_s \cdot {L_1}^2}{8}$		$M = 1.93 \ kN \cdot m$
Zxx Required:	$Z_{xxreq} \coloneqq rac{M}{\sigma_{adm}}$		$Z_{xxreq} = 194.53 \ cm^3$
Zxx Provided:	$Z_{xxprov} \coloneqq N_o \cdot \frac{\left(B \cdot D^2\right)}{6}$		$Z_{xxprov} = 481.67 \ cm^3$
Check section for deflectio	<u>n:</u>		
Limiting Deflection:	$\delta \coloneqq \frac{L_1}{333}$		$\delta = 11.41 \ mm$
Ixx Required:	$I_{xxreq} \coloneqq \frac{5 \cdot w_s \cdot {L_1}^4}{384 \cdot E_{min} \cdot K_9 \cdot \delta}$		$I_{xxreq} = 3104.46 \ cm^4$
Ixx Provided:	$I_{xxprov} \coloneqq N_o \cdot \frac{\left(B \cdot D^3\right)}{12}$		$I_{xxprov} = 4094.17 \ cm^4$
Utilisation ratios:			
Bending: Z _{xxpro}	$_{v} = 481.67 \ cm^{3} > Z_{xxreq} = 194.53 \ cm^{3}$	$U_b = 0.40$	Bending = "OK"
Deflection: I_{xxprot}	$= 4094.17 \ cm^4 $ > $I_{xxreq} = 3104.46 \ cm^4$	$U_d {=} 0.76$	Deflection = "OK"

Therefore provide 2No. 50 x 170 C24 Flat Roof Joists bolted together with M10 bolts at maximum 600mm c/c staggered vertically at 1/3 heights.

Project Name:	CCL ref:	By:	Checked:	Rev:	Date:	Canham
Clematis House, Sandy Lane, Aylmerton,	212480	NTE		P01	06.2023	Consulting
Norfolk. NR11 8QE	Section:	4	Sheet:	4		Structural Civil Building Engineers Engineers Surveyors

Design of New Lintel - Ref L1:

Span	between	supports:
------	---------	-----------

 $L \coloneqq 0.85 \ m$

Loading:	Dead Loads	Live Loads	
Flat Roof:	$G_{k1} \coloneqq 0.78 \ \frac{kN}{m^2} \cdot 1.0 \ m \cdot L = 0.66 \ kN$	$Q_{k1} \coloneqq 0.75 \frac{kN}{m^2} \cdot 1.0 m \cdot L = 0.64 kN$	
200mm Wall:	$G_{k10} \coloneqq 3.36 \; \frac{kN}{m^2} \cdot 0.60 \; m \cdot L = 1.71 \; kN$		
Total Dead Load:	$G_k \coloneqq \sum G_k$		$G_k = 2.38 \ kN$
Total Live Load:	$Q_k \coloneqq \sum Q_k$		$Q_k = 0.64 \ kN$
Service Load:	$w_s \coloneqq \left(G_k + Q_k\right)$		$w_s = 3.01 \ kN$
From IG Lintel Guide:	Lintel := L9 ~		
Safe working load:			$swl = 6.00 \ kN$
Utilisation ratios:			
Loading: swl = 0	6.00 kN > $w_s = 3.01 \ kN$	$U_L \coloneqq \frac{w_s}{swl} = 0.50$	Loading = "OK"
Therefore provide IG Li	ntel = "L9" . Minimum 150mm end bea	arings.	

Project Name:	CCL roft	But	Chackad	Pov	Data	Canham
Clematis House, Sandy Lane, Aylmerton,	212480	NTE	Checked.	P01	06.2023	Consulting
Norfolk. NR11 8QE	Section:	4	Sheet:	5		Structural Civil Building Engineers Engineers Surveyors

Design of New Lintel - Ref L2:

 $L \coloneqq 1.20 \ m$

Loading:	Dead Loads	Live Loads	
Flat Roof:	$G_{k1} \coloneqq 0.78 \ \frac{kN}{m^2} \cdot 0.40 \ m \cdot L = 0.37 \ kN$	$Q_{k1} \coloneqq 0.75 \ \frac{kN}{m^2} \cdot 0.40 \ m \cdot L = 0.36 \ kN$	
Cavity Wall:	$G_{k10} \coloneqq 3.98 \; \frac{kN}{m^2} \cdot 0.66 \; m \cdot L = 3.15 \; kN$		
Total Dead Load:	$G_k \coloneqq \sum G_k$		$G_k = 3.53 \ kN$
Total Live Load:	$Q_k \coloneqq \sum Q_k$		$Q_k = 0.36 \ kN$
Service Load:	$w_s \coloneqq \left(G_k + Q_k\right)$		$w_s = 3.89 \ kN$
From IG Lintel Guide:	$Lintel \coloneqq L1/S \ 110 \checkmark$		
Safe working load:			<i>swl</i> = 13.00 <i>kN</i>
Utilisation ratios:			
Loading: $swl = 1$	$13.00 \ kN$ > $w_s = 3.89 \ kN$	$U_L \coloneqq \frac{w_s}{swl} = 0.30$	Loading = "OK"

Therefore provide IG Lintel = "L1/S 110". Minimum 150mm end bearings.

							Can	ham
Project Name:	CCL ref:	By:	Checked:	Rev:	Date:			IIdIII
Clematis House, Sandy Lane, Aylmerton,	212480	NTE		P01	06.2023		Cons	ulting
Norfolk. NR11 8QE	Section:	4	Sheet:	6		Structural Engineers	Civil Engineers	Building Surveyors

Design of New Lintel - Ref L3:

Span	between	supports:
------	---------	-----------

 $L \coloneqq 0.60 \ m$

Loading:	Dead Loads	Live Loads	
Flat Roof:	$G_{k1} \coloneqq 0.78 \ \frac{kN}{m^2} \cdot \frac{2.40 \ m}{2} \cdot L = 0.56 \ kN$	$Q_{k1} \coloneqq 0.75 \ \frac{kN}{m^2} \cdot \frac{2.40 \ m}{2} \cdot L = 0.54 \ kN$	V
Cavity Wall:	$G_{k10} \coloneqq 3.98 \; \frac{kN}{m^2} \cdot 0.66 \; m \cdot L = 1.58 \; kN$		
Total Dead Load:	$G_k \coloneqq \sum G_k$		$G_k\!=\!2.14~k\!N$
Total Live Load:	$Q_k \coloneqq \sum Q_k$		$Q_k = 0.54 \ kN$
Service Load:	$w_s \coloneqq \left(G_k + Q_k \right)$		$w_s \!=\! 2.68 \; kN$
From IG Lintel Guide:	$Lintel \coloneqq L1/S \ 110 \lor$		
Safe working load:			<i>swl</i> = 13.00 <i>kN</i>
Utilisation ratios:			
Looding		w_s and	
	$13.00 \text{ kin} > w_s = 2.68 \text{ kin}$	$U_L \coloneqq \frac{1}{swl} \equiv 0.21$	Loaaing = "OK"
Therefore provide IG Li	ntel = ``L1/S 110'' . Minimum 150mm ei	nd bearings.	

Project Name:	CCL ref:	By:	Checked	Rev:	Date:	Canha
Clematis House, Sandy Lane, Aylmerton,	212480	NTE		P01	06.2023	Consulti
Norfolk. NR11 8QE	Section:	4	Sheet:	7		Structural Civil Build Engineers Engineers Surv

Design of New Strip Foundations:

Length: $B \coloneqq 1 m$	Width: $D \coloneqq 600 \ mm$	Thickness: $t = 300 mm$
Loading:	Dead Loads	Live Loads
Flat Roof:	$G_{k1} \coloneqq 0.78 \frac{kN}{m^2} \cdot \frac{2.40 m}{2} = 0.94 \frac{kN}{m}$	$Q_{k1} \coloneqq 0.75 \ \frac{kN}{m^2} \cdot \frac{2.40 \ m}{2} = 0.90 \ \frac{kN}{m}$
Cavity Wall:	$G_{k5} \coloneqq 3.98 \ \frac{kN}{m^2} \cdot 3.0 \ m = 11.94 \ \frac{kN}{m}$	
S/W:	$G_{k10} \coloneqq 24 \ \frac{kN}{m^3} \cdot D \cdot t = 4.32 \ \frac{kN}{m}$	
Total Dead Load:	$G_k \coloneqq \sum G_k$	$G_k = 17.20 \ \frac{kN}{m}$
Total Live Load:	$Q_k \coloneqq \sum Q_k$	$Q_k = 0.90 \; rac{kN}{m}$
Service UDL:	$w_{s}\!\coloneqq\!\left(G_{k}\!+\!Q_{k}\right)$	$w_s = 18.10 \ \frac{kN}{m}$
From British Geological Survey	website:	
Superficial Deposits Descripti	on: Briton's Lane Sand and Gravel Member	- Sand and gravel. Sedimentary superficial deposit

formed between 2.588 million and 11.8 thousand years ago during the Quaternary period. $q_{adm} \coloneqq 100 \, rac{kN}{m^2}$ Assumed allowable ground bearing pressure equals: $q_{aMax} = 30 \ \frac{kN}{m^2}$ $q_{aMax} \coloneqq \frac{w_s}{D}$

Max applied bearing pressure:

Bearing Pressure Check:

 $q_{aMax} = 30 \frac{kN}{m^2}$ > $q_{adm} = 100 \frac{kN}{m^2}$ $U_b := \frac{q_{aMax}}{q_{adm}} = 0.30$ $BP_{app} = "OK"$ Applied Bearing Pressure:

Therefore provide new strip foundations $D = 0.60 \ m$ wide x $t = 0.30 \ m$ thick GEN3 concrete.

Foundation formation level to be a minimum of 200mm into natural competent material, capable of providing a minimum of 100 kN/m² allowable bearing pressure. The formation level is to be to the approval and satisfaction of the Local Authority Building Control Inspector.

Project Name:	CCL ref:	By:	Checked:	Rev:	Date:	Canham
Clematis House, Sandy Lane, Aylmerton,	212480	NTE		P01	06.2023	Consulting
	Section:	4	Sheet:	8		Structural Civil Building Engineers Engineers Surveyors

Beam Ref B1 -	Padstone Desig	n Ref PS1 - Ream	Parallel to Wall
	i ausione Desiu		

Block Strength:	$f_k \coloneqq 3.50 \frac{N}{mm^2}$	Material Safety Factor:	$\gamma_m\!\coloneqq\!3.50$
Allowable bearing stress:	$\sigma_p \coloneqq 1.25 \cdot \frac{f_k}{\gamma_m}$		$\sigma_p \!=\! 1.25 \frac{N}{mm^2}$
Padstone size:	Length: Width: Depth:		$b := 440 \ mm$ $t := 100 \ mm$ $d := 215 \ mm$

Bearing length of beam:	$b_b \coloneqq 250 \ mm$			
Bearing length of load:	$b_l = 440.00 \ mm$	Therefore	Padstone_Size = "Fu	ll spread"
Beam reaction:	$F \coloneqq 37.53 \ kN$			$F = 37.53 \ kN$
Applied Bearing Stress:	$\sigma_a \! \coloneqq \! \frac{F}{t \cdot b_l}$			$\sigma_a \!=\! 0.85 \frac{N}{mm^2}$
	$Bearing_Stress \coloneqq \mathbf{if} \left(\sigma_p \! > \! \sigma_a , \text{``OK''} , \right.$	"FAIL")		$Bearing_Stress = "OK"$

Therefore provide $b = 440 \ mm$ Long x $t = 100 \ mm$ Wide x $d = 215 \ mm$ Deep engineering brick padstones, in class M12 Mortar.

Minimum end bearing: $b_b = 250.00 \ mm$

Beam Ref B3 - Padstone Design Ref PS2 - Beam Perpendicular to Wall:

Block Strength:	$f_k \coloneqq 3.50 \ \frac{N}{mm^2}$	Material Safety Factor:	$\gamma_m\!\coloneqq\!3.50$
Allowable bearing stress:	$\sigma_p \coloneqq 1.25 \boldsymbol{\cdot} \frac{f_k}{\gamma_m}$		$\sigma_p \!=\! 1.25 \frac{N}{mm^2}$
Padstone size:	Length:		$b \coloneqq 330 \ mm$
	Width:		$t \coloneqq 100 \ mm$
	Depth:		$d \coloneqq 150 \ mm$
Load spread length:	$b_l = 330.00 \ mm$	Therefore Padstone_Size = "Fu	ıll spread"
Beam reaction:	$F \coloneqq 12.95 \ kN$		$F = 12.95 \ kN$
Applied Bearing Stress:	$\sigma_a \coloneqq \frac{F}{t \cdot b_l}$		$\sigma_a \!=\! 0.39 \frac{N}{mm^2}$
	$Bearing_Stress \coloneqq \mathbf{if} \left(\sigma_p > \sigma_a , \text{``OK''} \right)$	"FAIL")	$Bearing_Stress = ``OK"$

Therefore provide $b = 330 \ mm$ Long x $t = 100 \ mm$ Wide x $d = 150 \ mm$ Deep engineering brick padstones, in class M12 Mortar. Minimum 100mm end bearing.

Project Name:	CCL ref:	By:	Checked:	Rev:	Date:		Can	ham
Clematis House, Sandy Lane, Aylmerton,	212480	NTE		P01	06.2023		Consi	ulting
Norfolk. NR11 8QE	Section:	4	Sheet:	9		Structural Engineers	Civil Engineers	Building Surveyors

Roam Pof R/	Dadetono	Decian Dof DS	2 - Roam Da	rallal to Wall
Dealli Nei D4	- rausione	Desiult Rel Po	oo - Dealli Fa	i allei lu vvali.

Block Strength:	$f_k \coloneqq 3.50 \ \frac{N}{mm^2}$	Material Safety Factor:	$\gamma_m\coloneqq 3.50$
Allowable bearing stress:	$\sigma_p \coloneqq 1.25 \cdot \frac{f_k}{\gamma_m}$		$\sigma_p = 1.25 \frac{N}{mm^2}$
Padstone size:	Length: Width: Depth:		$b := 330 \ mm$ $t := 100 \ mm$ $d := 150 \ mm$
Bearing length of beam:	$b_b \coloneqq 250 mm$		
Bearing length of load:	$b_l = 330.00 \ mm$	Therefore Padstone_Size =	= "Full spread"
Beam reaction:	$F \coloneqq 7.60 \ kN$		$F = 7.60 \ kN$
Applied Bearing Stress:	$\sigma_a \coloneqq \frac{F}{t \cdot b_l}$		$\sigma_a \!=\! 0.23 \frac{N}{mm^2}$
	$Bearing_Stress \coloneqq \mathbf{if} \left< \sigma_p > \sigma_a , \text{``OK''} \right>$, "FAIL")	$Bearing_Stress = "OK"$

Therefore provide $b=330 \ mm$ Long x $t=100 \ mm$ Wide x $d=150 \ mm$ Deep engineering brick padstones, in class M12 Mortar.

Minimum end bearing: $b_b = 250.00 \ mm$

roject Name:	CCL ref:	By:	Checked:	Rev:	Date:
lematis House, Sandy Lane,	212480			P01	06.2023
yillerton, Norloik. NR11 8QE	Section:	4	Sheet:	10	

Frame Geometry - Full Frame - X+030 Y-135 Z+000

Frame Geometry - Full Frame - X+030 Y-135 Z+000

roject Name:	CCL ref:	By:	Checked:	Rev:	Date:
lematis House, Sandy Lane,	212480			P01	06.2023
yinterton, Noriok. NRTI oQE	Section	4	Shooti	11	

X

XZ

Load Case 002 : Dead plus Live (Ultimate) Shear Force Diagram - Full Frame - X+030 Y-135 Z+000 Shear Force Values (kN)

Load Case 002 : Dead plus Live (Ultimate) Bending Moment Diagram - Full Frame - X+030 Y-135 Z+000 Bending Moment Values (kN.m)

oject Name:	CCL ref:	By:	Checked:	Rev:	Date:
ematis House, Sandy Lane,	212480			P01	06.2023
AIMERTON, NOTIOK. NRTI 8QE	Section:	4	Sheet:	12	

Load Case 001 : Dead Plus Live (Serviceability) Frame Geometry - Full Frame - X+030 Y-135 Z+000 X Z Y

Load Diagram - 001 : Dead Plus Live (Serviceability) - All Groups Frame Geometry - Full Frame - X+030 Y-135 Z+000

Load Case 001 : Wind Pressures (Serviceability) Frame Geometry - Full Frame - X+030 Y-135 Z+000 X Y N Z

Project Name:	CCL ref:	By:	Checked:	Rev:	Date:
Clematis House, Sandy Lane,	212480	_		P01	06.2023
Ayimerton, Nortok. NK11 oQL	Section:	4	Sheet:	14	

AXIAL WITH MOMENTS (MEMBER) Member SBL1Id 12 @ Level 1 in Load Case 2

Member Loading and Member Forces Loading Combination : 1 UT + 1.4 D1 + 1.6 L1

0.624		(kN/m)
0.600		(kN/m)
7.010		(kN/m³)
1.680		(kN/m)
1.110		(kN/m)
0.560		(kN/m)
0.460		(kN/m)
2.170		(kN/m)
5.400		(kN/m)
3.370		(kN/m)
	0.624 0.600 7.010 1.680 1.110 0.560 0.460 2.170 5.400 3.370	0.624 0.600 7.010 1.680 1.110 0.560 0.460 2.170 5.400 3.370	0.624 (0.600 (7.010 (1.680 (1.110 (0.560 (0.460 (2.170 (5.400 (3.370 (0.624 (kN/m 0.600 (kN/m 7.010 (kN/m ³ 1.680 (kN/m 1.110 (kN/m 0.560 (kN/m 0.460 (kN/m 2.170 (kN/m 5.400 (kN/m 3.370 (kN/m

	Member Forces in Load Case 2 and Maximum Deflection from Load Case 1										
Mem	Node	Axial	al Torque Shea		Shear Force Bending Moment			Maximum	n Moment	Maximum	
ber	End1	Force	Moment	(k	N)	(kN	.m)	(kN.m	ı @ m)	Deflection	
No.	End2	(kN)	(kN.m)	x-x	у-у	x-x	у-у	x-x	у-у	(mm @ m)	
16	11	0.00C	0.00	93.70	0.00	-73.37	0.00	41.26		2.84	
	18	0.00C	0.00	-56.22	0.00	0.00	0.00	@ 2.427		@ 2.271	

Section (29.99 kg/m)	2 No. 203x133 UB 30 [S 355]		
Class = Fn(b/T,d/t,py,F,Mx,My)	6.97, 26.94, 355, 0, 73.37, 0	(Axial: Non-Slender)	Plastic
Auto Design Load Cases	2, 4, 6, 8, 12, 14, 16, 18, 20, 22, 24, 26, 28,	30, 32, 34, 36, 38, 40, 42, 44,	
-	46, 48, 50, 52, 54, 56 & 58		
Moment Capacity Chec	k Mc - Fully Restrained Bear	n	
Fv/Pv	93.704 / 563.82 =	0.166	Low Shear
Mc = py.Sxx≤1.2 py.Zxx	355 x 628.8≤1.2 x 355 x 560.26 =	223.224 kN.m	
MA/Mc	-73.37 / 223.224 =	0.329	OK
Deflection Check - Loa	d Case 1		
In-span δ ≤ Span/500	2.84 ≤ 3915 / 500	2.84 mm	OK

Project Name:	CCL ref:	By:	Checked:	Rev:	Date:
Clematis House, Sandy Lane,	212480			P01	06.2023
Ayimerton, Norrok, NKII öQL	Section:	4	Sheet:	15	

AXIAL WITH MOMENTS (MEMBER) Member SBL1Id 6 @ Level 1 in Load Case 2

Member Loading and Member Forces Loading Combination : 1 UT + 1.4 D1 + 1.6 L1

D1	TRY	-001.502	1.100	2.100	(kN,m,m)
L1	TRY	-001.386	1.100	2.100	(kN,m,m)
D1	D	077.010			(kN/m³)

	Member Forces in Load Case 2 and Maximum Deflection from Load Case 1										
M	lem ber	em Node Axial Torque Shear Force B er End1 Force Moment (kN)		Bending (kN	Bending Moment (kN.m)		Maximum Moment (kN.m @ m)				
1	No.	End2	(kN)	(kN.m)	х-х	у-у	X-X	у-у	x-x	у-у	(mm @ m)
	7	13	0.00C	0.00	2.58	0.00	0.00	0.00	2.55	0.00	0.65
		14	0.00C	0.00	-2.58	0.00	0.00	0.00	@ 1.600	@ 0.000	@ 1.600

Section (19.04 kg/m)	178x102 UB 19 [S 355]		
Class = Fn(b/T,d/t,py,F,Mx,My)	6.41, 30.58, 355, 0, 2.55, 0	(Axial: Non-Slender)	Plastic
Auto Design Load Cases	2, 4, 6, 8, 12, 14, 16, 18, 20, 22, 24, 26, 28, 46, 48, 50, 52, 54, 56 & 58	30, 32, 34, 36, 38, 40, 42, 44,	
Shear Capacity Check			
Fvx/Pvx	2.581 / 181.783 =	0.014	OK
Moment Capacity Check	Mc - Fully Restrained Bean	n	
Fv/Pv	0.002 / 181.783 =	0	Low Shear
Mc = py.Sxx≤1.2 py.Zxx	355 x 171.3≤1.2 x 355 x 152.63 =	60.812 kN.m	
MA/Mc	2.55 / 60.812 =	0.042	OK
Deflection Check - Load	Case 1		
In-span δ ≤ Span/500	0.65 ≤ 3200 / 500	0.65 mm	OK

Project Name:	
Clematis House, Sandy Lane,	
Aylmerton, Norfolk. NR11 8QE	

CCL ref:	By:	Checked:	Rev:	Date:
212480			P01	06.2023
Section:	4	Sheet:	16	

AXIAL WITH MOMENTS (MEMBER) Member SBL1Id 11 @ Level 1 Between 1.090 and 3.290 m, in Load Case 2

Member Loading and Member Forces

Loading Combination : 1 UT + 1.4 D1 + 1.6 L1

D1	D	077.010			(kN/m³)
D1	PTRY	-001.872	0.000	1.090	-001.872
L1	PTRY	-001.800	0.000	1.090	-001.800
D1	PTRY	-000.624	1.090	3.289	-000.624
L1	PTRY	-000.600	1.090	3.289	-000.600
D1	PTY2	-000.393	1.090	2.190	(kN,m,m)
D1	PTY1	-000.393	2.190	3.289	(kN,m,m)
L1	PTY2	-000.363	1.090	2.190	(kN,m,m)
L1	PTY1	-000.363	2.190	3.289	(kN,m,m)
D1	PDLY	-000.390	3.290	3.915	(kN,m,m)
D1	PDLY	-000.260	3.915	4.545	(kN,m,m)
L1	PDLY	-000.375	3.290	3.915	(kN,m,m)
L1	PDLY	-000.250	3.915	4.545	(kN,m,m)
D1	PTRY	-001.248	3.290	4.544	-001.248
L1	PTRY	-001.200	3.290	4.544	-001.200

Member Forces in Load Case 2 and Maximum Deflection from Load Case 1										
lem	Node	Axial	Torque	Shear	Force	Bending	Moment	Maximum	n Moment	Maximum
ber	End1	Force	Moment	(k	N)	(kN	.m)	(kN.m	@ m)	Deflection
No.	End2	(kN)	(kN.m)	x-x	у-у	x-x	y-y	x-x	у-у	(mm @ m)
-	8	0.44T	0.00	12.73	0.00	0.00	0.00	13.06	0.00	7.01
	16	0.44T	0.00	-12.42	0.00	0.00	0.00	@ 2.300	@ 0.000	@ 2.278

Section (19.04 kg/m) Class = Fn(b/T,d/t,py,F,Mx,My) Auto Design Load Cases	178x102 UB 19 [S 355] 6.41, 30.58, 355, 0, 13.05, 0 2, 4, 6, 8, 12, 14, 16, 18, 20, 22, 24, 26, 28, 3 46, 48, 50, 52, 54, 56 & 58	(Axial: Non-Slender) 0, 32, 34, 36, 38, 40, 42, 44,	Plastic
Shear Capacity Check			
Fvx/Pvx	6.452 / 181.783 =	0.035	OK
Local Capacity Check			
Fvx/Pvx	0.09 / 181.783 =	0	Low Shear
Mcx = py.Sxx≤1.2 py.Zxx	355 x 171.3≤1.2 x 355 x 152.63 =	60.812 kN.m	
Ae = Fn(Ag,A.net,py,Us)	24.26,24.26,355,470	24.26 cm ²	
Pz = Ae.py	24.26x355	861.23 kN	
n = F/Pz	-0.438 / 861.23 =	0.001	OK
Srx = Fn(Sxx, n)	171.3, 0.001	171.3 cm ³	
Mrx = Srx.py	171.3 x 355	60.811 kN.m	01/
(Mx/Mrx) ²¹ +(My/Mry) ²²	$(13.052/60.811)^2 + (0)^1 =$	0.046	OK
Lateral Buckling Chec	k Mb		
Mb = Mc	Fully Restrained	60.812 kN.m	
Simplified Approach			
py.Zx	355x152.63	54.184 kN.m	
F/Pc+mx.Mx/py.Zx	0+0.963x13.1/54.2	0.232	OK
F/Pcy+m _{LT} .M _{LT} /Mb	0+0.985x13.1/60.8	0.211	OK
More Exact Approach			
Max=Mcx/(1+.5F/Pcx)	60.8/(1+.5x0/718.5)	60.812 kN.m	
F/Pcx+mx.Mx/Max	0/718.5+0.963x13.1/60.8	0.207	OK
F/Pcy+mLT.MLT/Mb	0/861.2+0.985x13.1/60.8	0.211	OK
Deflection Check - Loa	ad Case 1		
In-span $\delta < \text{Span}/500$	7.01 < 4545 / 500	7.01 mm	ОК
· · · · · · · · · · · · · · · · · · ·			•

Project Name:	CCL ref:	l
Clematis House, Sandy Lane,	212480	
ylmerton, Norfolk. NR11 8QE	Section:	

CCL ref:	By:	Checked:	Rev:	Date:
212480			P01	06.2023
Section:	4	Sheet:	17	

Warning

AXIAL WITH MOMENTS (MEMBER) (FAIL) Includes Design for Torsion with Span Warping , Ends Free to Warp Member SBL1Id 4 @ Level 1 Between 1.670 and 4.870 m, in Load Case 2

Member Loading and Member Forces

Loading Combination : 1 UT + 1.4 D1 + 1.6 L1

D1	D	077.010		(kN/m³)	
D1	UDLY	-000.760		(kN/m)	
D1	Torq	ex +0.150	ey -0.150	(m, m)	
D1	UDLY	-001.490		(kN/m)	

	Member Forces in Load Case 2 and Maximum Deflection from Load Case 1									
Mem ber	Node End1	Axial Force	Torque Moment	Shear (k	Force N)	Bending (kN	Moment .m)	Maximum (kN.m	Moment	Maximum Deflection
No.	End2	(kN)	(kN.m)	х-х	у-у	x-x	у-у	x-x	у-у	(mm @ m)
-	9	0.69C	-0.93	23.58	-0.05	-2.63	-0.01	32.99	0.33	4.64
	19	0.69C	-0.92	-25.71	-0.31	-2.08	0.00	@ 2.630	@ 4.870	@ 2.950

Classification and Properties (BS 5950: 2000)

Section (64.22 kg/m)	254
Class = Fn(b/T,d/t,py,F,Mx,My)	6.7
Auto Design Load Cases	2,4
-	46.

54x146 UB 37 + 346.4x10 B Plate 64.22 [S 355]		
.72, 34.76, 355, 0.69, 32.99, 0.33	(Axial: Non-Slender)	Plastic
, 4, 6, 8, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32	, 34, 36, 38, 40, 42, 44,	
6, 48, 50, 52, 54, 56 & 58		
er avis - Check classification < - flange classificati	ion	

Bottom plate in compression along member axis - Check classification < = flange classification Greater than Plastic - Increase plate thickness or reduce plate projection

Shear Capacity Check

Fvx/Pvx	16.85 / 343.526 =	0.049	OK
Fvy/Pvy	0.307 / 611.814 =	0.001	OK
Local Capacity Check			
Fvx/Pvx	1.078 / 343.526 =	0.003	Low Shear
Mcx = py.Sxx≤1.2 py.Zxx	355 x 617.9≤1.2 x 355 x 492.2 =	209.677 kN.m	
Fvy/Pvy	0.13 / 611.814 =	0	Low Shear
Mcy = py.Syy≤1.2 py.Zyy	355 x 419.4≤1.2 x 355 x 232.9 =	99.215 kN.m	
Pz = Ag.py	81.81 x 355 =	2904.255 kN	
n = F/Pz	0.693 / 2904.255 =	0.000	OK
Srx = Fn(Sxx, n)	617.9, 0	617.9 cm ³	
Mrx = Srx.py	617.9 x 355	209.677 kN.m	
Sry = Fn(Syy, n)	419.4, 0	419.4 cm ³	
Mry = Sry.py	419.4 x 355	99.215 kN.m	
(Mx/Mrx) ²¹ +(My/Mry) ²²	$(32.845/209.677)^2 + (0.069/99.215)^1 =$	0.025	OK
Compression Resistance	e Pc		
$\lambda x = Lex/rxx$	100x1x5.93/10.53 =	56.3	OK
Pcx = Area.pcx	81.81x306.402/10 =	2506.674 kN	Table 24 a
Lateral Buckling Check	Mb		
Mb = Mc	Fully Restrained	209.677 kN.m	
Simplified Approach			
py.Zx	355x492.2	174.731 kN.m	
py.Zy	355x232.9	82.68 kN.m	
F/Pc+mx.Mx/py.Zx+my.My/py.Zy	0.693/2506.674+0.961x33/174.7+0.542x0.1/82.7	0.182	OK
F/Pcy+mLT.MLT/Mb+my.My/py.Zy	0.693/2904.255+0.969x32.8/209.7+0.542x0.1/82.7	0.152	OK
More Exact Approach			
Max=Mcx/(1+.5F/Pcx)	209.7/(1+.5x0.7/2506.7)	209.648 kN.m	
May=Mcy/(1+F/Pcy)	99.2/(1+0.7/2904.3)	99.192 kN.m	
F/Pcx+mx.Mx/Max+.5myx.My/Mcy	0.7/2506.7+0.961x33/209.6+.5x0.667x0.3/99.2	0.153	OK
F/Pcy+mLT.MLT/Mb+my.My/May	0.7/2904.3+0.969x32.8/209.7+0.542x0.1/99.2	0.152	OK
Max=Mcx(1-F/Pcx)/(1+.5F/Pcx)	209.7(1-0.7/2506.7)/(1+.5x0.7/2506.7)	209.59 kN.m	
May=Mcy(1-F/Pcy)/(1+F/Pcy)	99.2(1-0.7/2904.3)/(1+0.7/2904.3)	99.168 kN.m	

Cannam	Project Name:	CCL ref:	By:	Checked:	Rev:	Date:
Conculting	Clematis House, Sandy Lane,	212480			P01	06.2023
	Ayimerton, Norroik. NK11 8QE	Section:	4	Sheet:	18	
m.Mx/Max+m.My/May	0.961x32.845/209.59+0.542x0.069/99.	168		0.152		OK
Torsion Design						
J, H, a, Q _f , Q _w W _{n0} , S _{w1}	26.88 cm ⁴ , 0.1719 dm ⁶ , 1290 mm, 93.5 173.3 cm ² , 357.9 cm ⁴	7 cm³, 242.9 cm	3			
K _v = 1+0.5 m.Mx/Mb	1 + 0.5 • 0.961 • 32.99 / 209.7			1.076		
Torsion Bending Design	@ 2.901					
$M_{yt} = M_{xb}. \theta$	32.85 • 45.23•10 ⁻³			1.486 kN.m		
$\sigma_{byt} = M_{yt}/Z_y$	1.486 / 551.2			2.70 N/mm ²		
$\sigma_w = E \cdot W_n \cdot \theta''$	205 • 173.3 • 11.81•10 ⁻⁹		4	11.95 N/mm²		
Modified Local Capacity Check	0.188 + (2.70 + 41.95) / 355			0.314		OK
Modified Buckling Check	0.153 + (2.70 + 41.95) • 1.076 / 355			0.288		OK
Torsion Shear Design @	4.870					
$\tau_{bw} = F_v. Q_w / (I_x. t)$	21.44 • 242.9 / (5471 • 6.3)		1	15.11 N/mm ²		
$\tau_{tw} = G \cdot t \cdot \theta'$	78.85 • 6.3 • 20.26•10 ⁻⁶		1	10.06 N/mm ²		
$\tau_{bf} = F_v. Q_f / (I_x.T)$	21.44 • 93.57 / (5471 • 10.9)			3.36 N/mm ²		
$\tau_{tf} = G \cdot T \cdot \theta'$	78.85 • 10.9 • 20.26 • 10 ⁻⁶		1	17.41 N/mm²		
$\tau_{wf} = E \cdot S_{w1} \cdot \theta'' / T$	205.0 • 357.9 • 4.733•10 ⁻¹² / 10.9			0.32 N/mm ²		
Web Shear = $(\tau_{bw} + \tau_{tw}.K_v) / p_v$	$15.11 + 10.06 \bullet 1.076 = 25.93 \text{ N/mm}^2$	/ 213		0.122		OK
$Flange = (\tau_{bf} + (\tau_{tf} + \tau_{wf}) \cdot K_v) / p_v$	$3.36 + (17.41 + 0.32) \bullet 1.076 = 22.43$	N/mm² / 213		0.105		OK
Deflection Check - Load	Case 1					
In-span δ ≤ Span/1000	4.64 ≤ 5930 / 1000			4.64 mm		OK
Torq in Case 1 @ 2.965 m	θ_{max} = 32.33•10 ⁻³ Radian = 1.853° \leq 2.0	0°		1.853°		OK

Project Name:	CCL ref:	By:	Checked:	Rev:	Date:
Clematis House, Sandy Lane,	212480			P01	06.2023
Ayimerton, Norroik. NKII SQL	Section:	4	Sheet:	19	

AXIAL WITH MOMENTS (MEMBER) Member SCL1Id 15 @ Level 1 in Load Case 2

Member Loading and Member Forces Loading Combination : 1 UT + 1.4 D1 + 1.6 L1

	Member Forces in Load Case 2 and Maximum Deflection from Load Case 1										
	Mem ber	MemNodeAxialTorqueberEnd1ForceMoment		Shear Force (kN)		Bending Moment (kN.m)		Maximum Moment (kN.m @ m)		Maximum Deflection	
	No.	End2	(kN)	(kN.m)	x-x	у-у	х-х	у-у	х-х	у-у	(mm @ m)
Γ	22	2	30.17C	0.00	-0.69	0.01	0.00	0.00			1.43
		9	29.56C	0.00	-0.69	0.01	-2.06	0.04			@ 1.740

Section (14.7 kg/m)	100x100x5 SHS 14.7 [S 355]		
Class = Fn(b/t,d/t,py,F,Mx,My)	17, 17, 355, 30.168, 2.056, 0.041	(Axial: Non-Slender)	Plastic
Auto Design Load Cases	2, 4, 6, 8, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32,	34, 36, 38, 40, 42, 44,	
	46, 48, 50, 52, 54, 56 & 58		
Local Capacity Check			
Fvx/Pvx	0.685 / 199.475 =	0.003	Low Shear
Mcx = py.Sxx≤1.2 py.Zxx	355 x 66.36≤1.2 x 355 x 55.89 =	23.558 kN.m	
Fvy/Pvy	0.014 / 199.475 =	0	Low Shear
Mcy = py.Syy≤1.2 py.Zyy	355 x 66.36≤1.2 x 355 x 55.89 =	23.558 kN.m	
Pz = Ag.py	18.73 x 355 =	664.915 kN	
n = F/Pz	30.168 / 664.915 =	0.045	OK
Srx = Fn(Sxx, n)	66.36, 0.045	66.18 cm ³	
Mrx = Srx.py	66.18 x 355	23.494 kN.m	
Sry = Fn(Syy, n)	66.36, 0.045	66.18 cm ³	
Mry = Sry.py	66.18 x 355	23.494 kN.m	
(Mx/Mrx) ^{z1} +(My/Mry) ^{z2}	$(2.056/23.494)^{1.667} + (0.041/23.494)^{1.667} =$	0.017	OK
Compression Resistan	ce Pc		
$\lambda x = Lex/rxx$	100x1x3/3.86 =	77.7	ОК
Pcx = Area.pcx	18.73x243.427/10 =	455.939 kN	Table 24 a
$\lambda y = Ley/ryy$	$100 \times 1 \times 3 / 3.86 =$	77.7	OK
Pcy = Area.pcy	18.73x243.43/10 =	455.939 kN	Table 24 a
Equivalent Uniform Mo	oment Factors mLT, mx, my and r	nvx	
$m_{1T}=0.2+(.15M_{2}+.5M_{3}+.15M_{4})/M_{max}$	0.2+(.15x1+.5x1+.15x2)/2 = 0.44	0.6	Table 18
$m_v = 0.2 + (.1M_2 + .6M_3 + .1M_4)/M_{max}$	0.2 + (.1x0 + .6x0 + .1x0)/0 = .8x0/0	0.6	Table 26
$m_{x}=0.2+(.1M_{2}+.6M_{3}+.1M_{4})/M_{max}$	0.2 + (.1x - 1 + .6x - 1 + .1x - 2)/2 = .8x 2/2	0.6	Table 26
$m_{yx}=0.2+(.1M_2+.6M_3+.1M_4)/M_{max}$	0.2+(.1x0+.6x0+.1x0)/0 = .8x0/0	0.588	Table 26
Lateral Buckling Check	(Mh		
Mb = Mc	Section not suscentible to lateral torsional buckling	23 558 kN m	
	Section not susceptible to lateral torsional backing	23.330 KN.III	
Simplified Approach			
py.Zx	355x55.89	19.841 kN.m	
py.zy	355X55.89	19.841 KN.M	01/
F/PC+mx.mx/py.Zx+my.My/py.Zy	30.168/455.939+0.6x2.1/19.8+0.6x0/19.8	0.130	UK OK
F/PCy+mLT.MLT/MD+my.My/py.Zy	30.168/455.939+0.6x-2.1/23.6+0.6x0/19.8	0.120	UK
More Exact Approach			
Max=Mcx/(1+.5F/Pcx)	23.6/(1+.5x30.2/455.9)	22.803 kN.m	
May=Mcy/(1+.5F/Pcy)	23.6/(1+.5x30.2/455.9)	22.803 kN.m	
F/Pcx+mx.Mx/Max+.5myx.My/Mcy	30.2/455.9+0.6x2.1/22.8+.5x0.588x0/23.6	0.121	OK
F/Pcy+.5mLT.MLT/Mcx+my.My/May	30.2/455.9+.50.6x-2.1/23.6+0.6x0/22.8	0.093	OK
Max=Mcx(1-F/Pcx)/(1+.5F/Pcx)	23.6(1-30.2/455.9)/(1+.5x30.2/455.9)	21.295 kN.m	
May=Mcy(1-F/Pcy)/(1+.5F/Pcy)	23.6(1-30.2/455.9)/(1+.5x30.2/455.9)	21.295 kN.m	
m.Mx/Max+m.My/May	0.6x2.056/21.295+0.6x0.041/21.295	0.059	OK
Deflection Check - Loa	d Case 1		
In-span $\delta \le$ Span/360	1.43 ≤ 3000 / 360	1.43 mm	OK

roject Name:	CCL ref:	By:	Checked:	Rev:	Date:
Ilematis House, Sandy Lane,	212480			P01	06.2023
Simerton, Norroik. NR11 8QE	Section:	4	Sheet:	20	

PAD @ END OF COLUMN SCL1ID 15

Basic Properties

Design to Fy, Fcu, Covers T, B, S Area, Area1, Z zz, Z xx Den, Surcharge, LFsrv, LFult, SWP23.4,	BS 8110: 1997 500 N/mm ² , 30 N/mm ² , 50 mm, 50 mm, 50 mm 1.0, 0.01, 0.167, 0.167 2.5, 1.0, 1.0, 100			Gross: Conc
Mass Concrete Pad Desi	ian			
x-x projections	450. 450	450 mm	ОК	
z-z projections	450, 450	450 mm	OK	
C	Critical Serviceability : 5 : De	ead+Live		
1.00D0+1.00D1-	+0.80L1+0.80W1+0.80W2+	+0.80W3+0.80W	4 (a=!	5)
Fpad = Den•d•Area•LF	23.4 x 0.45 x 1.0 x 1.00	10.5 kN	•	Fsur =
Sur•(Area-Area1)•LF	2.5 x (1.0 - 0.01) x 1.00	2.5 kN		Fcol =
F10.6 +	10.6 kN		Fre	s = F +
Fpad + Fsur	10.6 + 10.5 + 2.5	23.6 kN		Mzz =
$Mzz + Vx \bullet D + Fcol \bullet ezz$	0.0 + (-1.9 x 0.45) + (10.6 x 0.0)	-0.8 kN.m		Mxx
$res = Mxx + Vz \cdot D + Fcol \cdot exx$	0.0 + (4.2 x 0.45) + (10.6 x 0.0)	1.9 kN.m		
Effective L (Le) = $Fn(Mzz,Fres,L)$	-0.8, 23.6, 1000	1000 mm		
Effective B (Be) = $Fn(Mzz, Fres, B)$	1.9, 23.6, 1000	1000 mm		
Pressure				
Pmax = Fn(Pa, Pzz, Pxx, p1-4)	23.6, ±5.1, ±11.3, 29.9, 7.3, 17.4, 40.0	40.0 kN/m ²	OK	
Check for up-lift	Le 1000 >=1000 Be 1000 >=1000		OK	
FOS Overturning				
Mzz Rest = $(F) \cdot e + (pad + sur) \cdot L/2$	$(11) \times 0.500 + (11 + 2) \times 0.500$	12 kN.m		FOS
OT zz = Mzz Rest / Mzz ot	12 / 1	13.97 > 1.5	OK	
Mxx Rest = $(F) \cdot e + (pad + sur) \cdot L/2$	$(11) \times 0.500 + (11 + 2) \times 0.500$	12 kN.m		FOS
OT xx = Mxx Rest / Mxx ot	12/2	6.29 > 1.5	OK	
FOS Slidina				
Resultant Shear = $Sar(Fyxx^2+Fyzz^2)$	$Sar(-1.88^2 + 4^2)$	4 58 kN		FOS
Sliding = $0.30 \cdot F / Fv$	$(0.30 \times 24) / 5$	1.55 > 1.5	OK	
Combined Axial & Horiz	ontal loads			
$F/D_{\perp} = F_{\nu}/D_{\nu} < 1$ (BS 8004 · 2 3 2 4 7)	$23.6 / 100.0 \pm 4.6 / 7.1 = 0.24 \pm 0.65$	0.88	OK	
·/····································	23.0/ 100.0 7.0//.1 - 0.27 0.03	0.00	UN	

The Building Regulations

Building Regulations apply to most new buildings and many alterations of existing buildings in England and Wales, whether for domestic, commercial, and industrial use. Compliance is a legal requirement.

Unless specifically requested, we assume that the Lead Consultant, Contractor or Client will communicate and coordinate with Building Control or an Approved Inspector throughout the project. This will include the timely issue of information.

Planning Permission

Most projects will require Planning Permission.

Unless specifically requested, we assume that the Lead Consultant, Contractor or Client will communicate and coordinate with the Planning Authority.

There will be instances when we communicate with the Planning Officers, for example on projects which may be sensitive in terms of conservation. However, unless specifically stated the lead will be taken by others.

The Party Wall etc Act 1996

The Party Wall etc Act 1996 provides a framework for preventing and resolving disputes in relation to party walls, boundary walls and excavations near neighbouring buildings.

A building owner proposing to start work covered by the Act must give adjoining owners notice of their intentions in the way set down in the Act. Adjoining owners can agree or disagree with what is proposed. Where they disagree, the Act provides a mechanism for resolving disputes. The Act is separate from obtaining planning permission or building regulations approval.

The CDM Regulations 2015

The Construction (Design and Management) 2015 regulations set out what people involved in construction work need to do to protect themselves from harm and anyone the work affects, improving health and safety in the construction industry.

The role of CDM Co-ordinator from CDM 2007 has been removed within CDM 2015 with those duties being placed on other members of the project team, namely the Client, Principal Contractor and the new role of the Principal Designer. In effect the structure of the new regulations has been simplified and introduces early participation and additional duties from the appointed professionals and client in respect to Health and Safety matters on construction projects.

Domestic clients not previously encompassed by CDM must also take on duties, although domestic clients may discharge their duties onto the contractor or agreeing with the designer that they coordinate and manage the project through the construction phase rather than the role automatically passing to the contractor.

When working with domestic clients and being the only designer involved in the project, Canham Consulting will have fulfilled their duties as a Principal Designer under the CDM 2015 Regulations on completion of our appointment. On appointment of either a Contractor or Principal Contractor under The CDM Regulations 2015, they will become responsible for carrying out the Client's duties.

Extract from CDM 2015 - Table 1: A summary of roles and duties under CDM Dutyholders*

Clients - are organisations or individuals for whom a construction project is carried out.

- Roles/Duties Make suitable arrangements for managing a project. This includes making sure:
 - other dutyholders are appointed;
 - sufficient time and resources are allocated;

Making sure:

- relevant information is prepared and provided to other dutyholders;
- the principal designer and principal contractor carry out their duties;
- welfare facilities are provided.

Domestic clients - are people who have construction work carried out on their own home, or the home of a family member that is not done as part of a business, whether for profit or not.

Domestic clients are in scope of CDM 2015, but their duties as a client are normally transferred to:

- the contractor, on a single contractor project; or;
- the principal contractor, on a project involving more than one contractor.

However, the domestic client can choose to have a written agreement with the principal designer to carry out the client duties.

Designers – are those, who as part of a business, prepare or modify designs for a building, product or system relating to construction work.

Roles/Duties - When preparing or modifying designs, to eliminate, reduce or control foreseeable risks that may arise during construction; and the maintenance and use of a building once it is built. Provide information to other members of the project team to help them fulfil their duties.

Principal designers – are designers appointed by the client in projects involving more than one contractor. They can be an organisation or an individual with sufficient knowledge, experience and ability to carry out the role.

Roles/Duties - Plan, manage, monitor and coordinate health and safety in the pre-construction phase of a project. This includes:

- identifying, eliminating or controlling foreseeable risks;
- ensuring designers carry out their duties;

Prepare and provide relevant information to other dutyholders;

Liaise with the principal contractor to help in the planning, management, monitoring and coordination of the construction phase.

Principal contractors – are contractors appointed by the client to coordinate the construction phase of a project where it involves more than one contractor.

Roles/Duties - Plan, manage, monitor and coordinate the construction phase of a project. This includes:

- liaising with the client and principal designer;
- preparing the construction phase plan;

- organising cooperation between contractors and coordinating their work.

Ensure:

- suitable site inductions are provided;
- reasonable steps are taken to prevent unauthorised access;
- workers are consulted and engaged in securing their health and safety; and
- welfare facilities are provided

Contractors - Are those who do the actual construction work and can be either an individual or a company

Roles/Duties - Plan, manage and monitor construction work under their control so that it is carried out without risks to health and safety;

For projects involving more than one contractor, coordinate their activities with others in the project team – in particular, comply with directions given to them by the principal designer or principal contractor;

For single-contractor projects, prepare a construction phase plan.

Workers - Are the people who work for or under the control of contractors on a construction site Roles/Duties - They must:

- be consulted about matters which affect their health, safety and welfare;
- take care of their own health and safety and others who may be affected by their actions;
- report anything they see which is likely to endanger either their own or others' health and safety;
- cooperate with their employer, fellow workers, contractors and other dutyholders.

For more information on CDM 2015 please follow the link:

http://www.hse.gov.uk/construction/cdm/2015/index.htm

* Organisations or individuals can carry out the role of more than one dutyholder, provided they have the skills, knowledge, experience and (if an organisation) the organisational capability necessary to carry out those roles in a way that secures health and safety.

Temporary Works

We frequently design structures which are classified as 'Temporary Works'.

Temporary works (TW) are the parts of a construction project that are needed to enable the permanent works to be built. Usually the TW are removed after use - e.g. access scaffolds, props, shoring, excavation support, falsework and formwork, etc. Sometimes the TW is incorporated into the permanent works - e.g. haul road foundations and crane or piling platforms may be used for hardstanding or road foundations.

It is very important that the same degree of care and attention is given to the design and construction of temporary works (TW) as to the design and construction of the permanent works. As TW may be in place for only a short while there is a tendency to assume they are less important. This is incorrect. Lack of care with design, selection, assembly, etc leaves TW liable to fail or collapse. This places people at risk of injury and can cause the project to be delayed.

British Standard 5975 sets out one way of managing temporary works (TW) that has been found to work well on medium and large projects and uses the job title Temporary Works Coordinator (TWC). There is no legal requirement to use this job title or the BS recommended process, but you should remember that BS5975 provides an industry consensus view on what is considered to be good practice. The legal requirement is that the party in control must ensure that work is allocated and carried out in a manner that does not create unacceptable risk of harm to workers or members of the public. On projects with relatively simple TW needs, you may choose not to appoint a TWC. However, you must still make sure that TW are properly managed to ensure safety.

Unless specifically instructed to do so, Canham Consulting Ltd will not undertake the role of Temporary Works Coordinator.

Design Assumptions

Most designs will carry a certain degree of assumptions. As designers we will ensure that these are reasonable assumptions and frequently ask that these assumptions are verified by the Contractor on site.

In the absence of information regarding ground conditions we will often make educated assumptions which must be verified on site. It is the Clients and Contractors responsibility to ensure that our recommendations concerning investigation and verification of our assumptions are followed through. A typical example of this is as follows:

A modest residential project, incorporating an extension to an existing property. Our brief is to design a series of steel beams and supports. We will design the supports and foundation requirements, assuming a certain stratum. This is often stated as "assume medium dense / dense granular material with a net allowable bearing pressure of 100kN/m² or greater, all to be confirmed by Contractor and Building Control on site, refer to Engineer for further information".

Where ground investigations have been undertaken, it is imperative to note that any investigation will only determine the ground conditions at the very location investigated. Differing ground conditions can and do exist elsewhere on the site and no assurance can be given this that is not the case. We will, however, make reasonable design assumptions and design with a degree of robustness and redundancy to accommodate slight variations in ground conditions.

We will typically make certain assumptions regarding forms of construction and existing materials, which must be confirmed and verified on site. This is particularly relevant with existing buildings; assumptions can be made with regards to wall construction, floor span and depth and roof construction. It is not always feasible for us to visit the site prior to undertaking our design and as such we will state any assumption which must be verified on site by the Client and Contractor.

Structural Civil Building Engineers

Canham Consulting Ltd

The Old School, School Lane, Thorpe St Andrew, Norwich, Norfolk, NR7 0EP

> Tel: 01603 430650 Email: mail@canhamconsulting.co.uk www.canhamconsulting.co.uk

