

230021 Uppingham School - Meadhurs Drainage Strategy

Design Settings

Rainfall Methodology	FEH-22	Minimum Velocity (m/s)	1.00
Return Period (years)	2	Connection Type	Level Soffits
Additional Flow (%)	0	Minimum Backdrop Height (m)	0.200
CV	1.000	Preferred Cover Depth (m)	0.600
Time of Entry (mins)	4.00	Include Intermediate Ground	\checkmark
Maximum Time of Concentration (mins)	30.00	Enforce best practice design rules	\checkmark
Maximum Rainfall (mm/hr)	50.0		

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
SW01	0.017	4.00	144.625	450	486564.004	299947.313	0.750
SW02	0.017	4.00	144.700	450	486580.147	299945.960	1.062
SW03			144.750	450	486583.660	299949.160	1.140
SA01	0.003		144.750		486583.849	299951.403	1.153
SW05	0.017	4.00	144.810	450	486571.082	299925.170	0.750
SW06	0.017	4.00	144.810	450	486561.727	299925.945	0.844
SA02			144.900		486561.511	299923.362	0.960
PP01	0.021	4.00	144.840		486585.893	299920.309	0.350
SW10	0.022	4.00	144.100	450	486608.388	299925.308	0.750
SW11	0.003	4.00	143.300	450	486602.117	299958.681	0.750
SW12	0.002	4.00	143.350	450	486606.428	299958.319	0.843
SA03	0.000		143.350		486606.260	299956.326	0.863
PP02	0.010		144.500		486593.284	299937.115	0.300

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
2.000	SW01	SW02	16.200	0.600	143.875	143.713	0.162	100.0	150	4.27	50.0
2.001	SW02	SW03	4.752	0.600	143.638	143.610	0.028	170.0	225	4.35	50.0
2.002	SW03	SA01	2.251	0.600	143.610	143.597	0.013	170.0	225	4.39	50.0
1.000	SW10	SW11	33.957	0.600	143.350	142.550	0.800	42.4	150	4.37	50.0
3.000	SW05	SW06	9.387	0.600	144.060	143.966	0.094	99.9	150	4.16	50.0
3.001	SW06	SA02	2.592	0.600	143.966	143.940	0.026	99.7	150	4.20	50.0
1.001	SW11	SW12	4.326	0.600	142.550	142.507	0.043	100.6	150	4.44	50.0
1.002	SW12	SA03	2.000	0.600	142.507	142.487	0.020	100.0	150	4.47	50.0

Name	Vel (m/s)	Cap (l/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (I/s)	Pro Depth (mm)	Pro Velocity (m/s)
2.000	1.005	17.8	3.1	0.600	0.837	0.017	0.0	42	0.751
2.001	1.000	39.7	6.1	0.837	0.915	0.034	0.0	59	0.727
2.002	1.000	39.7	6.1	0.915	0.928	0.034	0.0	59	0.727
1.000	1.549	27.4	4.0	0.600	0.600	0.022	0.0	38	1.104
3.000	1.005	17.8	3.1	0.600	0.694	0.017	0.0	42	0.752
3.001	1.006	17.8	6.1	0.694	0.810	0.034	0.0	61	0.914
1.001	1.002	17.7	4.5	0.600	0.693	0.025	0.0	52	0.841
1.002	1.005	17.8	4.9	0.693	0.713	0.027	0.0	54	0.858

Flow+ v10.7 Copyright © 1988-2023 Causeway Technologies Ltd

JSE\			an Conist	oee & Assoc	ciates Ltc			-	23 Ui	age 2 30021 ppingham rainage Str	School - Me rategy	eadhurs
					<u>Pipeline</u>	<u>Schedule</u>						
Link	Length	Slope	Dia	Link	US CL	US IL	US Depth	DS C			OS Depth	
2 000	(m)	(1:X)	(mm)	Туре	(m)	(m)	(m)	(m)		(m)	(m)	
2.000	16.200	100.0			144.625	143.875	0.600	144.70		13.713	0.837	
2.001	4.752	170.0			144.700	143.638	0.837	144.7		43.610	0.915	
2.002	2.251	170.0			144.750	143.610	0.915	144.75		13.597	0.928	
1.000	33.957	42.4			144.100	143.350	0.600	143.30		12.550	0.600	
3.000 3.001	9.387 2.592	99.9 99.7			144.810 144.810	144.060 143.966	0.600 0.694	144.8: 144.9(13.966 13.940	0.694 0.810	
1.001	4.326	100.6			144.810	142.550	0.694	144.90		+3.940 12.507	0.810	
1.001	2.000	100.0			143.300 143.350	142.550	0.600	143.3		+2.307 12.487	0.893	
1.002											017 10	
	Link	US Node	Dia (mm)	Node Type	МН Туре	DS Node	Dia e (mm)	Node Type		МН Туре		
	2.000	SW01	450	Manhole	Adoptal		• •	Manhol		optable		
	2.000	SW01		Manhole	Adoptal			Manhol		optable		
	2.001	SW02		Manhole	Adoptal			Junction		optable		
	1.000	SW05 SW10		Manhole	Adoptal			Manhol		optable		
	3.000	SW10	450 450	Manhole	Adoptal			Manhol		optable		
	3.000	SW05		Manhole	Adoptal			Junction		optable		
	1.001	SW00	450 450	Manhole	Adoptal			Manhol		optable		
	1.001	SW11		Manhole	Adoptal			Junction		optuble		
		0										
					<u>Manhole</u>							
Node	Eastin (m)	g ľ	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connecti	ions	Link	IL (m)	Dia (mm)	
SW01	486564.	004 29	99947.31							()		
							\bigcirc					
							(\rightarrow))				
							\bigcirc					
								0	2.000	143.875	150	
SW02	486580.	147 29	99945.960	0 144.700) 1.062	450			2.000	143.875 143.713		
SW02	486580.	147 29	99945.960	0 144.700) 1.062	450	17 ⁰					
SW02	486580.	147 29	99945.960	0 144.700) 1.062	450	1	1	2.000	143.713	150	
							1	1 0	2.000	143.713 143.638	150 225	
SW02 SW03	486580. 486583.		99945.960 99949.160					1 0	2.000	143.713	150 225	
							1 - 0 ⁴⁰	1 0	2.000	143.713 143.638	150 225	
							1	1 0 1	2.000 2.001 2.001	143.713 143.638 143.610	150 225 225	
SW03	486583.	660 29	99949.160	0 144.750) 1.140			1 0 1 0	2.000 2.001 2.001 2.002	143.713 143.638 143.610 143.610	225 225 225 225	
		660 29		0 144.750) 1.140			1 0 1 0	2.000 2.001 2.001	143.713 143.638 143.610	225 225 225 225	
SW03	486583.	660 29	99949.160	0 144.750) 1.140		1 - O ^r	1 0 1 0	2.000 2.001 2.001 2.002	143.713 143.638 143.610 143.610	225 225 225 225	
SW03	486583.	660 29	99949.160	0 144.750) 1.140			1 0 1 0	2.000 2.001 2.001 2.002	143.713 143.638 143.610 143.610	225 225 225 225	
SW03	486583. 486583.	660 29 849 29	99949.160	0 144.750 3 144.750) 1.140) 1.153	450		1 0 1 0	2.000 2.001 2.001 2.002	143.713 143.638 143.610 143.610	225 225 225 225	
SW03 SA01	486583. 486583.	660 29 849 29	99949.160 99951.403	0 144.750 3 144.750) 1.140) 1.153	450		1 0 1 0	2.000 2.001 2.001 2.002	143.713 143.638 143.610 143.610	225 225 225 225	
SW03 SA01	486583. 486583.	660 29 849 29	99949.160 99951.403	0 144.750 3 144.750) 1.140) 1.153	450		1 0 1 0	2.000 2.001 2.001 2.002	143.713 143.638 143.610 143.610	225 225 225 225	
SW03 SA01	486583. 486583.	660 29 849 29	99949.160 99951.403	0 144.750 3 144.750) 1.140) 1.153	450		1 0 1 0 1	2.000 2.001 2.001 2.002	143.713 143.638 143.610 143.610	225 225 225 225 225 225	
SW03 SA01	486583. 486583.	660 29 849 29 082 29	99949.160 99951.403	 D 144.750 B 144.750 D 144.810) 1.140) 1.153) 0.750	450		1 0 1 0 1	2.000 2.001 2.001 2.002 2.002	143.713 143.638 143.610 143.610 143.597	225 225 225 225 225 225 225	
SW03 SA01 SW05	486583. 486583. 486571.	660 29 849 29 082 29	99949.160 99951.403 99925.170	 D 144.750 B 144.750 D 144.810) 1.140) 1.153) 0.750	450		1 0 1 0 1	2.000 2.001 2.002 2.002 3.000	143.713 143.638 143.610 143.610 143.597 143.597	 150 225 225 225 225 225 225 150 	
SW03 SA01 SW05	486583. 486583. 486571.	660 29 849 29 082 29	99949.160 99951.403 99925.170	 D 144.750 B 144.750 D 144.810) 1.140) 1.153) 0.750	450		1 0 1 0 1 0 1	2.000 2.001 2.001 2.002 2.002 3.000 3.000	143.713 143.638 143.610 143.610 143.597 144.060 143.966	150 225 225 225 225 225 225 225 225 225 2	
SW03 SA01 SW05 SW06	486583. 486583. 486571. 486561.	660 29 849 29 082 29 727 29	99949.160 99951.403 99925.170	 D 144.750 B 144.750 D 144.810 5 144.810 	 1.140 1.153 0.750 0.844 	450	1 - 0 = 0 $1 - 0 = 0$ $1 - 0 = 0$ $0 = -0$ $0 = -0$		2.000 2.001 2.002 2.002 3.000 3.000 3.001	143.713 143.638 143.610 143.610 143.597 143.597 143.966	 150 225 225 225 225 225 225 150 150 150 	
SW03 SA01 SW05	486583. 486583. 486571. 486561.	660 29 849 29 082 29 727 29	99949.160 99951.403 99925.170	 D 144.750 B 144.750 D 144.810 5 144.810 	 1.140 1.153 0.750 0.844 	450			2.000 2.001 2.001 2.002 2.002 3.000 3.000	143.713 143.638 143.610 143.610 143.597 144.060 143.966	 150 225 225 225 225 225 225 150 150 150 	
SW03 SA01 SW05 SW06	486583. 486583. 486571. 486561.	660 29 849 29 082 29 727 29	99949.160 99951.403 99925.170	 D 144.750 B 144.750 D 144.810 5 144.810 	 1.140 1.153 0.750 0.844 	450	$1 \longrightarrow 1^{0}$		2.000 2.001 2.002 2.002 3.000 3.000 3.001	143.713 143.638 143.610 143.610 143.597 143.597 143.966	 150 225 225 225 225 225 225 150 150 150 	
SW03 SA01 SW05 SW06	486583. 486583. 486571. 486561.	660 29 849 29 082 29 727 29	99949.160 99951.403 99925.170	 D 144.750 B 144.750 D 144.810 5 144.810 	 1.140 1.153 0.750 0.844 	450	$1 \longrightarrow 1^{0}$		2.000 2.001 2.002 2.002 3.000 3.000 3.001	143.713 143.638 143.610 143.610 143.597 143.597 143.966	 150 225 225 225 225 225 225 150 150 150 	

Flow+ v10.7 Copyright © 1988-2023 Causeway Technologies Ltd

PP01	Easting	Northing	CL	Depth	Dia	Connections	Link	IL	Dia
PP01	(m)	(m)	(m)	(m)	(mm)			(m)	(mm)
1101	486585.893	299920.309	144.840	0.350					
						o			
SW10	486608.388	299925.308	144.100	0.750	450	° 1			
						(
						0	-	143.350	150
SW11	486602.117	299958.681	143.300	0.750	450	1	1.000	142.550	150
						1 0		142.550	150
SW12	486606.428	299958.319	143.350	0.843	450	1	1.001	142.507	15(
						1-()			
						0		142.507	150
SA03	486606.260	299956.326	143.350	0.863			1.002	142.487	150
						4			
PP02	496502 294	200027 115	144 500	0 200					
PPUZ	486593.284	299937.115	144.500	0.300					
						0			
	Methodology Summer CV Winter CV	FEH-22 1.000	Skip	nalysis Sp Steady S			ck Discha	age (m³/ha) vrgo Bato(c)	20.
		1.000	Drain Dow	n Time (n	nins) 2			rge Volume	
15	30 60		S	Storm Du	rations	240 Chec	ck Dischai	rge Volume	
15	1 1	0 120 eturn Period	5 180 2 Climate Ch	Storm Du 40 3	rations 60 dditiona	240 Chec 480 600 -	ck Dischai 720 1 a l Flow	rge Volume	х
15	1 1	0 120	5 180 2	Storm Du 40 3 hange A	rations 60	240 Chec 480 600 -	ck Dischar 720 S al Flow %)	rge Volume	х
15	1 1	0 120 eturn Period (years)	5 180 2 Climate Ch	Storm Du 40 3 hange A) 0 35	rations 60 dditiona	240 Chec 480 600 - al Area Addition 6) (Q S	ck Dischai 720 1 a l Flow	rge Volume	х
15	1 1) 120 eturn Period (years) 2	5 180 2 Climate Ch	Storm Du 40 3 hange A) 0	rations 60 dditiona	240 Chec 480 600 600 al Area Addition 6) (Q 9	ck Dischar 720 S al Flow %) 0	rge Volume	х
15	1 1	0 120 eturn Period (years) 2 30 100	S 180 2 Climate Ch (CC %)	Storm Du 40 3 iange A) 0 35 40	rations 60 dditiona (A %	240 Chec 480 600 5 al Area Addition 6) (Q 9 0 0	ck Dischar 720 9 al Flow %) 0 0	rge Volume	х
Base	Re Inf Coefficient	0 120 eturn Period (years) 2 30 100 <u>No</u> 5 (m/hr) 0.07	5 180 2 Climate Ch (CC %) Ode SA01 D	Storm Dur 40 3 hange A) 0 35 40 epth/Are	rations 60 dditiona (A % <u>a Storag</u> or 2.0	240 Chec 480 600 6 al Area Addition 6) (Q 9 0 0 0 0 2 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1	tk Dischar 720 1 al Flow %) 0 0 0 0 0 vert Leve	rge Volume 960 14	.450
Base	Re	0 120 eturn Period (years) 2 30 100 <u>No</u> 5 (m/hr) 0.07	5 180 2 Climate Ch (CC %) Ode SA01 D	Storm Du 40 3 hange A) 0 35 40 epth/Are	rations 60 dditiona (A % <u>a Storag</u> or 2.0	240 Chec 480 600 6 al Area Addition 6) (Q 9 0 0 0 0 2 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1	tk Dischar 720 1 al Flow %) 0 0 0 0 0 vert Leve	rge Volume 960 14	.450
Base	Re Inf Coefficient Inf Coefficient Depth	2 120 eturn Period (years) 2 30 100 <u>No</u> (m/hr) 0.07 (m/hr) 0.07 (m/hr) 0.07	S 180 2 Climate Ch (CC %) Dde SA01 D 700 Sa 700 Sa a Dept	Storm Du 40 3 iange A 0 35 40 epth/Are fety Facto Porosi th Area	rations 60 dditiona (A % <u>a Storag</u> or 2.0 ty 0.99 Inf Au	240 Chec 480 600 4 al Area Addition 6) (Q 9 0 0 0 2 <u>ce Structure</u> 5 Time to half rea Depth A	k Dischar 720 al Flow %) 0 0 0 0 vert Leve empty (r wrea Inf	rge Volume 960 14 91 (m) 143 91 (m) 536 Area	.450
Base	Re Inf Coefficient Inf Coefficient Depth (m)	2 120 eturn Period (years) 2 30 100 <u>No</u> (m/hr) 0.07 (m/hr) 0.07	S 180 2 Climate Ch (CC %) Dede SA01 D 700 Sa 700 Sa 700 (m)	Storm Du 40 3 hange A 0 35 40 epth/Are Porosi th Area) (m ²)	rations 60 .dditiona (A % <u>a Storag</u> or 2.0 ty 0.9! Inf Au (m ²	240 Chec 480 600 4 al Area Addition 6) (Q 9 0 0 0 2 <u>ce Structure</u> 5 Time to half rea Depth A	k Dischar 720 al Flow %) 0 0 0 0 vert Leve empty (r wrea Inf	rge Volume 960 14 el (m) 143 mins) 536	.450
Base	Re Inf Coefficient Inf Coefficient Depth (m)	D 120 eturn Period (years) 2 30 100 <u>No</u> (m/hr) 0.07 (m/hr) 0.07 Area Inf Are (m ²) (m ²) 31.5 31.	5 180 2 Climate Ch (CC %) 0 0 0 0 0 0 0 0 0 0 0 0 0	Storm Dur 40 3 hange A) 0 35 40 epth/Are fety Factor Porosi th Area) (m ²) 00 31.5	rations 60 dditiona (A % a Storag or 2.0 ty 0.99 Inf Au (m ² 5)	240 Chec 480 600 6 al Area Addition 6) (Q 9 0 0 0 2 5 Time to half rea Depth A (m) (k Dischar 720 al Flow %) 0 0 0 0 vert Leve empty (r wrea Inf m²) (rge Volume 960 14 960 143 mins) 536 Area m²)	.450
Base Side	Re Inf Coefficient Inf Coefficient Depth (m)	0 120 eturn Period (years) 2 30 100 <u>No</u> (m/hr) 0.07 (m/hr) 0.07 (m/hr) 0.07 Area Inf Are (m ²) (m ²) 31.5 31.	S 180 2 Climate Ch (CC %) Dede SA01 De 700 Sa 700 Sa 700 Sa 700 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Storm Dur 40 3 hange A) 0 35 40 epth/Are fety Factor Porosi th Area) (m ²) 00 31.5	a Storag Inf Au (m ² (m ² (m ² (m ² 5)	240 Chec 480 600 600 al Area Addition 6) (Q 9 0 0 0 0 0 0 0 0 0 0 0 0 0	k Dischar 720 al Flow %) 0 0 0 0 vert Leve empty (r wrea Inf m²) (rge Volume 960 14 961 143 mins) 536 Area m²) 51.5	.450

CAUSEWAY 🛟	Alan Conisbee & A	Ne An		STAGE 3a (FEH) - rm Network hall		am School - Meadhurs Strategy
Depth (m) 0.000	Area Inf Area (m²) (m²) 24.0 24.0	DepthArea(m)(m²)0.80024.0	Inf Area (m²) 41.6	Depth Area (m) (m²) 0.801 0.0	Inf Area (m²) 41.6	
	<u>Node P</u>	P01 Depth/Area S	Storage Stru	<u>ucture</u>		
Base Inf Coefficien Side Inf Coefficien		Safety Factor Porosity	2.0 0.30	Invert L Time to half empt	• •	144.490 23
(m)	Area Inf Area (m²) (m²) 100.8 100.8	DepthArea(m)(m²)0.280100.8	Inf Area (m²) 100.8	Depth Area (m) (m²) 0.281 0.0	Inf Area (m²) 100.8	
	<u>Node S</u>	A03 Depth/Area S	Storage Stru	<u>ucture</u>		
Base Inf Coefficien Side Inf Coefficien		Safety Factor Porosity		Invert L Time to half empt	• •	142.050 465
Depth (m) 0.000	Area Inf Area (m²) (m²) 17.0 17.0	Depth Area (m) (m²) 0.800 17.0	Inf Area (m²) 33.8	Depth Area (m) (m²) 0.801 0.0	Inf Area (m²) 33.8	
	Node SV	N11 Depth/Area	Storage Str	<u>ucture</u>		
Base Inf Coefficien Side Inf Coefficien		Safety Factor Porosity	2.0 0.30	Invert L Time to half empt		142.550 132
Depth (m) 0.000	Area Inf Area (m²) (m²) 7.2 7.2	Depth Area (m) (m²) 0.600 7.2	Inf Area (m²) 22.0	Depth Area (m) (m²) 0.601 0.0	Inf Area (m²) 22.0	
	<u>Node P</u>	P02 Depth/Area S	Storage Stru	<u>ucture</u>		
Base Inf Coefficien Side Inf Coefficien		Safety Factor Porosity	2.0 0.30	Invert L Time to half empt		144.200 23
(m)	Area Inf Area (m²) (m²) 100.0 100.0	Depth Area (m) (m²) 0.225 100.0	Inf Area (m²) 100.0	Depth Area (m) (m²) 0.226 0.0	Inf Area (m²) 100.0	

Page 5 230021 Uppingham School - Meadhurs Drainage Strategy

Results for 2 year Critical Storm Duration. Lowest mass balance: 99.35%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	SW01	10	143.921	0.046	3.4	0.0279	0.0000	ОК
15 minute summer	SW02	10	143.707	0.069	6.8	0.0332	0.0000	ОК
15 minute summer	SW03	10	143.677	0.066	6.8	0.0106	0.0000	ОК
360 minute summer	SA01	248	143.627	0.030	1.7	5.2915	0.0000	ОК
15 minute summer	SW05	10	144.104	0.044	3.4	0.0272	0.0000	ОК
15 minute summer	SW06	10	144.035	0.069	6.8	0.0387	0.0000	ОК
360 minute summer	SA02	232	143.775	-0.165	1.6	3.9957	0.0000	ОК
120 minute summer	PP01	72	144.535	0.045	1.9	1.4014	0.0000	ОК
15 minute summer	SW10	10	143.391	0.041	4.4	0.0303	0.0000	OK
15 minute summer	SW11	10	142.609	0.059	5.0	0.1408	0.0000	ОК
15 minute summer	SW12	10	142.566	0.059	5.1	0.0121	0.0000	ОК
360 minute summer	SA03	240	142.277	-0.210	1.1	3.6583	0.0000	ОК
60 minute summer	PP02	39	144.222	0.022	1.2	0.6596	0.0000	OK

US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)
SW01	2.000	SW02	3.4	0.765	0.191	0.0718
SW02	2.001	SW03	6.8	0.674	0.171	0.0478
SW03	2.002	SA01	6.8	0.721	0.170	0.0212
SA01	Infiltration		0.4			
SW05	3.000	SW06	3.4	0.559	0.191	0.0574
SW06	3.001	SA02	6.8	0.903	0.382	0.0195
SA02	Infiltration		0.5			
PP01	Infiltration		1.0			
SW10	1.000	SW11	4.4	0.902	0.161	0.1738
SW11	1.001	SW12	4.7	0.738	0.266	0.0276
SW11	Infiltration		0.1			
SW12	1.002	SA03	5.0	0.829	0.283	0.0122
SA03	Infiltration		0.2			
ΡΡΩ2	Infiltration		0.5			
	Node SW01 SW02 SW03 SA01 SW05 SW06 SA02 PP01 SW10 SW11 SW11 SW11 SW12	Node SW01 2.000 SW02 2.001 SW03 2.002 SA01 Infiltration SW05 3.000 SW06 3.001 SA02 Infiltration PP01 Infiltration SW10 1.000 SW11 1.001 SW12 1.002 SA03 Infiltration	NodeNodeSW012.000SW02SW022.001SW03SW032.002SA01SA01InfiltrationSW06SW053.000SW06SW063.001SA02SA02InfiltrationSW06SA02InfiltrationSW11PP01InfiltrationSW11SW101.000SW11SW111.001SW12SW121.002SA03SA03Infiltration	Node Node (I/s) SW01 2.000 SW02 3.4 SW02 2.001 SW03 6.8 SW03 2.002 SA01 6.8 SW03 2.002 SA01 6.8 SA01 Infiltration 0.4 SW05 3.000 SW06 3.4 SW06 3.001 SA02 6.8 SA02 Infiltration SA02 6.8 SA02 Infiltration 1.0 5 PP01 Infiltration 1.0 1.0 SW10 1.000 SW11 4.4 SW11 1.001 SW12 4.7 SW11 Infiltration 0.1 5.0 SA03 Infiltration 0.2 5.0	Node Node (I/s) (m/s) SW01 2.000 SW02 3.4 0.765 SW02 2.001 SW03 6.8 0.674 SW03 2.002 SA01 6.8 0.721 SA01 Infiltration 0.4 0.759 SW05 3.000 SW06 3.4 0.559 SW06 3.001 SA02 6.8 0.903 SA02 Infiltration 0.5 0.55 PP01 Infiltration 1.0 1.0 SW10 1.000 SW11 4.4 0.902 SW11 1.001 SW12 4.7 0.738 SW11 Infiltration 0.1 SW12 1.02 SA03 Infiltration 0.2 0.829 0.829	Node Node (l/s) (m/s) SW01 2.000 SW02 3.4 0.765 0.191 SW02 2.001 SW03 6.8 0.674 0.171 SW03 2.002 SA01 6.8 0.721 0.170 SA01 Infiltration 0.4 0.4 0.191 SW05 3.000 SW06 3.4 0.559 0.191 SW06 3.001 SA02 6.8 0.903 0.382 SA02 Infiltration 0.5 0.5 0.191 SW10 1.000 SW11 4.4 0.902 0.161 SW11 1.001 SW12 4.7 0.738 0.266 SW11 Infiltration 0.1 0.1 0.283 0.283 SA03 Infiltration 0.2 0.283 0.283

Page 6
 230021
 Uppingham School - Meadhurs
 Drainage Strategy

Results for 30 year +35% CC Critical Storm Duration. Lowest mass balance: 99.35%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
240 minute summer	SW01	232	143.998	0.123	2.8	0.0753	0.0000	ОК
240 minute summer	SW02	232	143.998	0.360	5.6	0.1726	0.0000	SURCHARGED
240 minute summer	SW03	232	144.001	0.390	5.3	0.0621	0.0000	SURCHARGED
240 minute summer	SA01	228	143.997	0.400	5.5	16.3847	0.0000	ОК
180 minute winter	SW05	172	144.213	0.153	2.3	0.0935	0.0000	SURCHARGED
180 minute winter	SW06	172	144.213	0.247	4.6	0.1387	0.0000	SURCHARGED
180 minute winter	SA02	172	144.213	0.273	4.6	13.9705	0.0000	ОК
60 minute summer	PP01	51	144.684	0.194	8.7	6.0855	0.0000	ОК
15 minute summer	SW10	10	143.429	0.079	14.8	0.0586	0.0000	ОК
240 minute winter	SW11	224	142.746	0.196	2.7	0.4711	0.0000	SURCHARGED
240 minute winter 240 minute winter	SW12 SA03	224 224	142.746 142.746	0.239 0.259	2.8 2.8	0.0493 11.2455	0.0000 0.0000	SURCHARGED OK
60 minute summer	PP02	42	144.278	0.078	4.2	2.3893	0.0000	ОК

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)
15 minute summer	SW01	2.000	SW02	11.5	1.040	0.648	0.1791
15 minute summer	SW02	2.001	SW03	23.0	0.902	0.578	0.1211
15 minute summer	SW03	2.002	SA01	23.0	0.997	0.578	0.0607
240 minute summer	SA01	Infiltration		0.5			
15 minute summer	SW05	3.000	SW06	11.3	0.687	0.637	0.1567
15 minute summer	SW06	3.001	SA02	22.8	1.294	1.280	0.0445
180 minute winter	SA02	Infiltration		0.7			
15 minute summer	PP01	Infiltration		1.1			
15 minute summer	SW10	1.000	SW11	14.8	1.157	0.541	0.4527
15 minute summer	SW11	1.001	SW12	15.9	0.944	0.897	0.0725
240 minute winter	SW11	Infiltration		0.1			
15 minute summer	SW12	1.002	SA03	17.0	1.098	0.956	0.0309
240 minute winter	SA03	Infiltration		0.3			
15 minute summer	PP02	Infiltration		1.1			

Page 7
 230021
 Uppingham School - Meadhurs
 Drainage Strategy

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 99.35%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
360 minute winter	SW01	344	144.203	0.328	1.8	0.2010	0.0000	SURCHARGED
360 minute winter	SW02	336	144.204	0.566	3.6	0.2710	0.0000	SURCHARGED
360 minute winter	SW03	360	144.204	0.594	3.4	0.0945	0.0000	SURCHARGED
360 minute winter	SA01	344	144.203	0.606	3.6	22.5569	0.0000	ОК
240 minute winter	SW05	228	144.548	0.488	2.4	0.2988	0.0000	FLOOD RISK
240 minute winter	SW06	228	144.548	0.582	4.8	0.3272	0.0000	FLOOD RISK
240 minute winter	SA02	228	144.548	0.608	4.5	18.2514	0.0000	ОК
60 minute winter	PP01	59	144.770	0.280	8.1	8.8002	0.0000	ОК
15 minute summer	SW10	10	143.443	0.093	19.3	0.0693	0.0000	ОК
180 minute winter	SW11	176	143.203	0.653	4.4	1.4531	0.0000	FLOOD RISK
180 minute winter	SW12	176	143.203	0.696	4.7	0.1434	0.0000	FLOOD RISK
180 minute winter	SA03	176	143.202	0.715	4.4	12.9281	0.0000	OK
60 minute summer	PP02	44	144.312	0.112	5.5	3.4279	0.0000	ОК

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)
15 minute summer	SW01	2.000	SW02	14.9	1.091	0.839	0.2211
15 minute summer	SW02	2.001	SW03	29.8	0.951	0.749	0.1806
15 minute summer	SW03	2.002	SA01	29.8	1.054	0.749	0.0894
360 minute winter	SA01	Infiltration		0.5			
15 minute summer	SW05	3.000	SW06	14.8	0.843	0.835	0.1653
15 minute summer	SW06	3.001	SA02	29.7	1.688	1.671	0.0452
180 minute summer	SA02	Infiltration		0.7			
15 minute summer	PP01	Infiltration		1.1			
15 minute summer	SW10	1.000	SW11	19.3	1.218	0.705	0.4932
15 minute summer	SW11	1.001	SW12	20.2	1.145	1.139	0.0762
180 minute winter	SW11	Infiltration		0.2			
15 minute summer	SW12	1.002	SA03	21.8	1.243	1.231	0.0342
120 minute summer	SA03	Infiltration		0.4			
15 minute summer	PP02	Infiltration		1.1			

APPENDIX F - SUDS MAINTENANCE PLAN

_

Consulting Structural Engineers Consulting Civil Engineers

• Cambridge 16 Signet Court Swann Road Cambridge CB5 8LA Telephone 01223 656 058

London 1-5 Offord Street London N1 1DH Telephone 020 7700 6666

Norwich 6 Upper King Street

Norwich NR3 1HA Telephone 01603 628 074

Colchester 35 Mayfly Way Colchester CO7 7WX Telephone 01206 581 950

design@conisbee.co.uk www.conisbee.co.uk

Directors

Tom Beaven BEng (Hons) CEng MIStructE Allan Dunsmore BEng (Hons) CEng FIStructE MICE Richard Dobson MEng CEng MIStructE Paul Hartfree IEng MICE MCIHT FGS Ben Heath BEng CEng MIStructE Kevin Clark BSc (Hons) PhD DIC CEng MICE FRSA, Conservation Accredited Engineer (CARE) Denis Kealy BEng (Hons) CEng MIEI MIStructE

Associate Directors

David Richards BEng (Hons) ACGI CEng MIStructE Tom Lefever BEng (Hons) CEng C.WEM MICE MCIWEM Nigel Nicholls IEng AMIStructE

Associates

Gary Johns Christina Kennedy MEng (Hons) CEng MIStructE Joel Waugh Tech Eng MICE Adam Crump BSc (Hons) Civil Engineering Beena Doal Head of Finance & Operations Andrew Marshall BEng Robert Frostick MEng CEng MSc MIStructE FRSA Gavin McLachlan MEng MIStructE Jonathan Little MEng MIStructE

Consultants

Alan Conisbee BA BAI CEng MIStructE Conservation Accredited Engineer (CARE) Chris Boydell BSc CEng MIStructE FICE Bob Stagg BSc (Hons) CEng FIStructE MICE Terry Girdler BSc (Hons) Eng MSc CEng FICE MIStructE Conservation Accredited Engineer (CARE) Tim Attwood BSc CEng MIStructE

Conisbee is a trading name of Alan Conisbee and Associates Limited Registered in England No. 3958459

Uppingham School - Meadhurst Refurb

Sustainable Drainage Maintenance Plan

Ref: 230021/A Marshall Approved By: A. Marshall Date: 8 Dec 2023 Version: 1

INVESTORS IN PEOPLE We invest in people Silver

Table of Contents

_

1.0	Introduction	3
2.0	Organisation Responsible	3
3.0	Conventional Drainage Systems	3
4.0	SuDS Features	4
5.0	SuDS Programme	9
6.0	Operation and Maintenance Manual Records	9

1.0 INTRODUCTION

The purpose of this document is to outline the proposed maintenance schedule for the drainage system and all SuDS features for the proposed new boarding house at Uppingham School.

The maintenance schedule set out here complies with the CIRIA SuDS Manual (C753), which is identified as providing current best practice in the industry. The report does not replace manufacturers' requirements and these should be followed for each product in addition to the information in this document.

For the proposed extents of SuDS features on a plan drawing, please refer to the separate drainage layout plans and drainage strategy report.

2.0 ORGANISATION RESPONSIBLE

The client, Uppingham School, will be responsible for undertaking maintenance of the proposed drainage for the whole life of the site.

3.0 CONVENTIONAL DRAINAGE SYSTEMS

3.1 Gullies, Silt Traps, Manholes, Catchpits & Pipework

On completion of construction, the internal surfaces of the sewers and manholes shall be thoroughly cleansed to remove all deleterious matter, without such matter being passed forward into the existing sewers.

All trapped gullies, silt traps, manholes and catchpits are to be regularly inspected every three months and cleared out on a regular frequency for the first nine months. After this period, the frequency can be reduced to every six months.

All drainage runs will be inspected once a year. The system is to be jetted clear if/when necessary.

4.0 SUDS FEATURES

4.1 Introduction

The following SuDS measures are proposed for the proposed new boarding house at Uppingham School.

- Permeable Paving
- Soakaway
- Filter drains

During the first year of the operation of all types of SuDS should be inspected at least monthly and after significant storm events to ensure that the system is functioning as designed and that no damage or faults are evident.

It is recommended that a report on the condition of the SuDS is undertaken further to an inspection at least once annually.

4.2 Permeable pavements

The pavement should be inspected regularly for clogging, litter, weeds and water ponding, preferably during and after heavy rainfall to check effective operation. Permeable pavements need to be regularly cleaned of silt and other sediments to preserve their infiltration capacity. The SuDS Manual indicates that sweeping once per year is sufficient for most sites, however the sweeping frequency should be adjusted to suit site specific conditions and should also be informed by annual inspection reports.

Care should be taken in adjusting vacuuming equipment to avoid removal of joining material. Any lost material should be replaced.

Table 1 outlines the proposed operation and maintenance regime for permeable pavements. This is adapted from The SuDS Manual (C753).

Maintenance Schedule	Required Action	Frequency	
Regular maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface)	Once a year, after autumn leaf fall or reduced frequency as required, based on site- specification observations of clogging - pay particular attention to areas where water runs onto pervious surface from adjacent impermeable areas as this area is most likely to collect the most sediments	
	Stabilise and mow contributing and advancement areas	As required	
Occasional maintenance	Removal of weeds or management using glyphosphate applied directly into the weeds by an applicator rather than spraying	As required –once per year on less frequently used pavements	
Remedial actions	Remediate any landscaping which through vegetation maintenance or soil slip, has been raised to within 50 mm of the level of the paving	As required	
	Remedial work to any depressions rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost jointing material	As required	
	Rehabilitation of surface and upper structure by remedial sweeping.	Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging)	
Monitoring	Initial inspection	Monthly for three months after installation	
	Inspect for evidence of poor operation and/or weed growth- if required, take remedial action	Three-monthly, 48h after large storms in first six months	
	Inspect silt accumulation rates and establish appropriate brushing frequencies	Annually	
	Monitor inspection chambers	Annually	

Table 1: Operation and maintenance requirements for permeable pavements

_

4.3 Soakaway

The useful life and effective operation of an infiltration component is related to the frequency of maintenance and the risk of sediment being introduced into the system.

Maintenance will usually be carried out manually, although a suction tanker can be used for sediment/ debris removal for large systems. If maintenance is not undertaken for long periods, deposits can become hard-packed and require considerable effort to remove.

Replacement of the geocellular units will be necessary if the system becomes blocked with silt. Effective monitoring will give information on changes in infiltration rate and provide a warning of potential failure in the long term.

Roads and/or parking areas draining to infiltration components should be regularly swept to prevent silt being washed off the surface. This will minimise the need for maintenance.

Table outlines the proposed operation and maintenance regime for soakaways. This is adapted from The SuDS Manual (C753).

Maintenance Schedule	Required Action	Frequency
Regular maintenance	Inspect for sediment and debris in pre-treatment components and floor of inspection tube or chamber and inside of concrete manhole rings	Annually
	Cleaning of gutters and any filters on downpipes	Annually (or as required based on inspections)
	Trimming any roots that may be causing blockages	Annually (or as required)
Occasional maintenance	Remove sediment and debris from pre-treatment components and floor of inspection tube or chamber and inside of concrete manhole rings	As required, based on inspections
Remedial actions	Reconstruct soakaway and/or replace or clean void fill, if performance deteriorates or failure occurs	As required
	Replacement of clogged geotextile (will require reconstruction of soakaway)	As required
Monitoring	Inspect silt traps and note rate of sediment accumulation	Monthly in the first year and then annually
	Check soakaway to ensure emptying is occurring	Annually

Table 2: Operation and maintenance requirements for soakaway

4.4 Filter Drains

Filter drains are shallow trenches filled with stone/gravel that create temporary subsurface storage for the attenuation, conveyance and infiltration, of surface water runoff. Filter drains will require ongoing regular maintenance to ensure continuing operation to design performance standards.

Litter (including leaf litter) and debris removal should be undertaken as part of general landscape maintenance for the site and before any other SuDS management task. All litter should be removed from site.

The main risk to the performance of a filter drain is from sediment clogging the filter drain. This is dealt with by an upstream treatment train removing the sediment first. However if, due to unforeseen reasons, exception sediment loads affect the filter drain then this could necessitate digging out and replacing the gravel fill in a filter drain.

Table3 outlines the proposed operation and maintenance regime for swales. This is adapted from The SuDS Manual (C753). Specific maintenance needs of the bioretention area should be monitored, and maintenance schedules adjusted to suit requirements.

Maintenance Schedule	Required Action	Typical Frequency
Regular maintenance	Remove litter (including leaf litter) and debris from filter drain surface, access chambers and pre-treatment devices	Monthly (or as required)
	Inspect filter drain surface, inlet/outlet pipework and control systems for blockages, clogging, standing water and structural damage	Monthly
	Inspect pre-treatment systems, inlets and perforated pipework for silt accumulation, and establish appropriate silt removal frequencies	Six monthly
	Remove sediment from pre-treatment devices	Six monthly, or as required
Occasional maintenance	Remove or control tree roots where they are encroaching the sides of the filter drain, using recommended methods (eg NJUG,2007 or BS 3998:2010)	As required
	At locations with high pollution loads, remove surface geotextile and replace, and wash or replace overlying filter medium	Five yearly, or as required
	Clear perforated pipework of blockages	As required

Table 3: Operation and maintenance requirements for filter drains

_

5.0 SUDS PROGRAMME

The proposed SuDS for the site will come on-line approximately Summer 2025.

The contractor should ensure that during the construction phase (or in any other phasing associated with the site coming on line) that SuDS are not damaged by construction works.

6.0 OPERATION AND MAINTENANCE MANUAL RECORDS

6.1 Documents to be handed over

Conisbee will provide this document to Uppingham School, who will provide the document to the construction contractor, and Uppingham School will also include it in the Operation and Maintenance Manual.

Uppingham School will have copies of the drainage design drawings which show locations of the proposed SuDS and any 'as-builts' provided by the contractor.

6.2 Maintenance Records

Uppingham School will be provided with the standard proforma in Appendix B of The SuDS Manual to enable them to record the outcomes of inspections.