

Consulting Civil Engineers

Foul and Surface Water Drainage Report

111 Commercial Road, Poole, Dorset BH14 0JD

Planning Ref: APP/20/00660/F

For

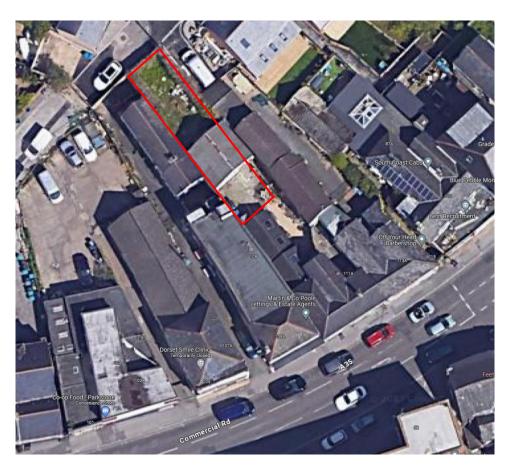
Watts Holt

Rev - **P**

Reference C2903

Date 10th November 2023

Revision	Date of Issue	Comments	Prepared By	Checked By
Р	10/11/2023	Initial Issue	LH	CS


Contents

1		3
2	EXECUTIVE SUMMARY:	4
3	SITE GEOLOGY	4
4	EXISTING DRAINAGE	4
5	PROPOSED DRAINAGE STRATEGY	5
6	SUMMARY AND CONCLUSIONS1	.0
7	APPENDICES1	.1

1 Introduction

- 1.1.1 CGS Civils Ltd has been appointed to undertake a drainage strategy report for a proposed development at 111 Commercial Road in Poole.
- 1.1.2 The purpose of this drainage strategy is to demonstrate how the development area can be satisfactorily drained without increasing flood risk onsite and elsewhere in order to clear Condition 7. The condition is in place on Decision Notice from June 2021, with the planning reference: **APP/20/00660/F.** The condition requires the following to be included:
 - The results of an assessment into the potential for disposing of surface water by means of Sustainable Drainage System (SuDS).
 - Details of a management and maintenance plan for the drainage scheme
 - The appropriate design standard for the surface water drainage scheme must be the 1 in 100 year return period with a 45% allowance for climate change.
- 1.1.3 The existing site consists of a warehouse located adjacent to the existing 111 Commercial Road. The proposed development will consist of the severing of the plot in two, the demolition of the existing warehouse and construction of a 4-bedroom dwelling with amenity space and on-plot parking. The proposed development is located as OS Grid Reference SZ 03455 91560 and has the post code BH14 0JD.

Fig 1. Site Location

2 Executive Summary:

- 2.1.1 The Surface water will be discharged to a local surface water sewer via a new saddle connection on an existing sewer, this connection is to be made downstream of an existing hydro-brake chamber. All roof areas are to be collected into a positive drainage network before discharging into the sewer at a restricted rate of 1.0l/s. whilst all hard paved areas are to be constructed from permeable surface to allow runoff to freely drain to ground via infiltration. This connection is subject to Wessex Water approval under a Section 106 agreement.
- 2.1.2 The foul water will discharge to the local foul water sewer via a direct connection into an existing manhole. This connection is subject to Wessex Water approval under a Section 106 agreement.

3 Site Geology

-

3.1 British Geological Survey information

- 3.1.1 The British Geological Survey confirms the bedrock geology to be made up of Parkstone Clay Member. The BGS website confirms the superficial deposits on site to be made up of Head Formation which is comprised of Clay, Silt, Sand and Gravel.
- 3.1.2 The British Geological survey also holds records of historical boreholes near the site which give some insight into the ground geology.
 - Borehole SZ09SW1510 (Located approx. 72m North West of the site) Sand and Clay

Fig 2. British Geological Survey

4 Existing Drainage

4.1.1 It is not currently known how the existing warehouse discharges surface water runoff, however, it is presumed to discharge into an existing foul water chamber located on site as a combined discharge.

5 Proposed Drainage Strategy

5.1 SuDS Hierarchy

5.1.1 All options for the destination of run-off generated on site have been assessed in line with the SuDS hierarchy as set out in Building Regulations Part H document and DEFRA's Draft National Standards for SuDS.

Table 1. SuDS Hierarchy

Discharge Destination	
Rainwater Harvesting	There is scope for rainwater harvesting in the form of water butts.
Discharge to Ground	Despite favourable ground conditions, the use of conventional soakaways is not viable due to lack of space. Hard paved areas will be permeable to allow as much infiltration as possible.
Discharge to Watercourse	N/A None nearby
Discharge to Surface Water Sewer	Yes – Discharge into existing surface water manhole located within Chalice Close. Discharge restricted to 1.0l/s.
Discharge to Other Sewer	N/A due to above

5.2 **Proposed Hydraulic Calculation Specifications:**

Table 2. SuDS Hierarchy

Hydraulic Calculations Settings:					
Rainfall Methodology	FEH-22				
Volumetric Run-off Coefficient Cv	1				
CV Winter and Summer	1				
Additional Storage (m ³ / ha)	0.0				
Flow Control	0.725m Head @ 1l/s discharge				

5.3 Surface Water Drainage

- 5.3.1 Despite the favourable ground conditions on site confirmed by local borehole logs. The use of conventional soakaways is not deemed viable due to the lack of space present on site. It is therefore proposed that all surface water runoff from roof areas is to be discharged into a local surface water sewer located within Chalice Close. It is imperative that this connection is made downstream of the existing Hydro-Brake chamber as a connection onto this will potentially result in flooding upstream within Chalice Close. The surface water discharge is to be restricted down to 1.0l/s through the use of an orifice flow control chamber. Due to the small area of runoff that is to be discharged, there is no requirement for any SuDS features apart from permeable paving. The network has sufficient capacity to cater for the 1 in 100-year +45% storm. All hard paved runoff is to be discharged to ground via a permeable constructed surface, this has been designed to cater for the 1 in 100-year +45% storm and to infiltrate at an assumed rate of 1x10⁻⁵m/s.
- 5.3.2 Hydraulic calculations have been carried out which can be found at Appendix C.

Fig 3. Existing Hydro-Brake chamber

5.4 Water Quality

- 5.4.1 A key requirement of any SuDS system is that it protects the receiving water body from the risk of pollution.
- 5.4.2 Frequent and short duration rainfall events are those that are most loaded with potential contaminants (silts, fines, heavy metals, and various organic and inorganic contaminants) Therefore the first 5-10mm of rainfall should be adequately treated with SuDS.
- 5.4.3 The new SuDS Manual (Ciria C753, November 2015) introduces slightly different approach compared to the previous version for the water quality management of surface water. The Manual describes risks posed by the surface water runoff to the receiving environment as a function of:
 - The pollution hazard at a particular site (i.e., the pollution source)
 - The effectiveness of SuDS treatment components in reducing levels of pollutants to environmentally acceptable levels
 - The sensitivity of the receiving environment
- 5.4.4 The recommended approaches for water quality risk management are given in the SuDS Manual Table 26.1.

Table 26.1 from SuDS manual. Approaches to Water Quality Risk Management

Table 26.1 Approaches to Water Quality Risk Management						
Design method	Hazard Characterisation	Risk Reduction				
		For Surface Water	For Groundwater			
Simple Index Approach	Simple pollution hazard indices based on land use (Table 26.2)	Simple SuDS hazard mitigation indices (Table 26.3)	Simple SuDS hazard mitigation indices (Table 26.4)			
Risk Screening	Factors characterising traffic density and extent of infiltration likely to occur (Table 26.5)	N/A	Factors characterising unsaturated soil depth and type, and predominant flow type through the soils (Table 26.5)			
Detailed Risk Assessment	Site specific information used to define likely pollutants and their significanceMore detailed, component specific performance information to demonstrate that the proposed SuDS components red hazard to acceptable levels		•			
Process-based treatment modelling	Time series rainfall used with generic pollution characteristics to determine statistical distributions of likely concentrations and loadings in the runoff	rainfall used with ution characteristics Models that represent the treatment processes in the proposed e statistical SuDS components give estimates of reductions in even mean s of likely discharge concentrations and total annual load reductions deliv				

- 5.4.5 As per Table 26.1 Simple Index approach will be used as a design method for this site.
- 5.4.6 Table 26.2 will provide hazard classification of different land uses. The land uses for the surface water drainage for this site are.
 - Residential Roofs
 - Individual Property driveways and residential car parks
 - Low traffic roads
- 5.4.7 To deliver adequate treatment, the selected SuDS components should have a total pollution mitigation index for each contaminant type that equals or exceeds the pollution hazard index for each contaminant type. Therefore, the following must be achieved for the surface running off the site.

Total SuDS mitigation index >=pollution hazard index

5.4.8 Pollution Hazard Indices are given for different land uses in Table 26.2 of the SuDS manual;

Table 26.2 from SuDS manual. Pollution Hazard Indices for Different Land Use Classifications

Table 26.2 Pollution hazard indices for different land use classifications						
Land Use	Pollution Hazard Level	Total Suspended solids (TSS)	Metals	Hydro-Carbons		
Residential roofs	Very Low	0.2	0.2	0.05		
Other roofs (Typically commercial/industrial roofs)	Low	0.3	0.2 (up to 0.8 where there is potential for metals to leach from the roof)	0.05		
Individual property driveways, residential car parks, low traffic roads (e.g., cul-de-sacs, homezones and general access roads) and non- residential car parking with infrequent change (e.g., schools, offices) i.e., < 300 traffic movements/day	Low	0.5	0.4	0.4		
Commercial yard and delivery areas, non- residential car parking with frequent change (e.g., hospitals, retail), all roads except low traffic roads and trunk roads/motorways	Medium	0.7	0.6	0.7		
Sites with heavy pollution (e.g., haulage yards, lorry parks, highly frequented lorry approaches to industrial estates, waste sites), sites where chemicals and fuels (other than domestic fuel oil) are to be delivered, handled, stored, used or manufactured; industrial sites; trunk roads and motorways	High	0.8	0.8	0.9		

5.4.9 From Table 26.2 the following information is tabulated in Table 1

Table 3: Pollution Hazard Index and Destination of runoff for the proposed Site						
Land Use	Destination of Runoff	Pollution Hazard Level	Total Suspended Solids	Metals	Hydrocarbons	
Residential Roof	Ground Water	Very Low	0.2	0.2	0.05	
Individual driveways, residential car parks and low traffic roads	Ground water	Low	0.5	0.4	0.4	

5.4.10 The SuDS mitigation index will be obtained from Table 26.4 (for groundwater) of the SuDS manual.

Table 26.4 from SuDS manual. Indicative SuDS Mitigation Indices for discharges to ground waters.

5.4.11 SuDS mitigation index are tabulated in Table 5 as followed.

Table 26.4 Indicative SuDS mitigation indices for discharges to gr	oundwater		
Characteristics of the material overlying the proposed infiltration surface, through which the runoff percolates	TSS	Metals	Hydrocarbons
A layer of dense vegetation underlain by a soil with good containment attenuation potential of at least 300mm in depth	0.6	0.5	0.6
A soil with good contaminant attenuation potential of at least 300mm in depth	0.4	0.3	0.3
Infiltration trench (where a suitable depth of filtration material is included that provides treatment, i.e., graded gravel with sufficient smaller particles but not single size coarse aggregate such as 20mm gravel) underlain by a soil with good contaminant attenuation potential of at least 300mm in depth.	0.4	0.4	0.4
Constructed permeable pavement (where a suitable filtration later is included that provides treatment, and including a geotextile at the base separating the foundation from the subgrade) underlain by a soil with good contaminant attenuation potential of at least 300mm in depth	0.7	0.6	0.7
Bioretention underlain by a soil with good contaminant attenuation potential of at least 300mm in depth	0.8	0.8	0.8
Proprietary treatment systems	contaminant type	nstrate that they can s to acceptable levels levant to the contribu	for inflow

Table 4: SuDS mitigation index

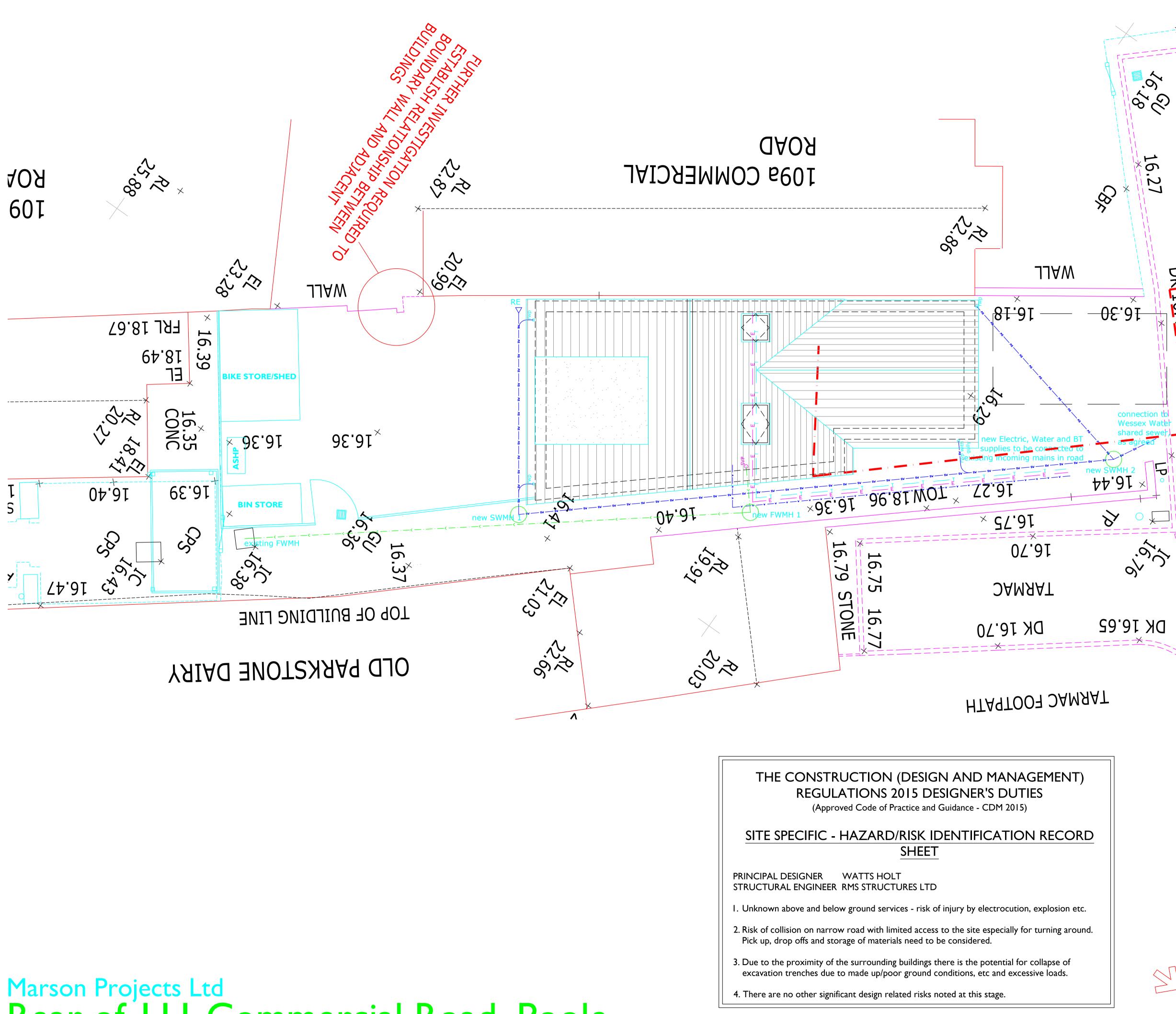
Table 4 Mitigation Indices						
Runoff Source	Destination of Runoff	Mitigation Index Source	Type of SuDS Component	Total Suspended Solids (TSS)	Metals	Hydrocarbons
Individual driveways, residential car parks and low traffic roads	Ground water	Table 26.4	Permeable Pavement	0.7	0.6	0.7

5.4.12 The above analysis demonstrates that the SuDS devices within the design will mitigate any pollution present within the surface water system.

5.5 Foul water drainage

5.5.1 The foul water will discharge into the local foul water sewer via a new direct connection into an existing private chamber located on site.

6 Summary and Conclusions


- 6.1.1 CGS Civils has been instructed by Watts Holt to produce a Drainage statement under National Planning Policy Framework (NPPF) to support the Planning Application APP/20/00660/F which is for the demolition of an existing warehouse and development of a single 4-bedroom dwelling with associated access and parking.
- 6.1.2 The Surface Water runoff from roof areas is to be discharged into a local surface water sewer via a direct connection into an existing sewer located with Chalice Close. It is proposed that the discharge rate is to be restricted down to 1.0l/s whilst having sufficient capacity within the network to cater for the 1 in 100-year +45% storm. All hard paved areas are to be constructed from a permeable construction to allow all runoff to discharge directly to ground via infiltration at an assumed infiltration rate of 1x10-5m/s and is designed to cater for the 1 in 100-year +45% storm.
- 6.1.3 The Foul water will discharge into an existing foul water chamber located on site which ultimately discharges into an existing foul water sewer located within Commercial Road.
- 6.1.4 The report has demonstrated that the proposed drainage measures ensure that suitable means of surface water and foul drainage can be achieved for the proposed development.

7.1 Appendix A – Site Plan

Marson Projects Ltd Rear of 111 Commercial Road, Poole

\$ 02.01

8T'91 16.27 DK σ

40

R

(Å

イ

16.64

F

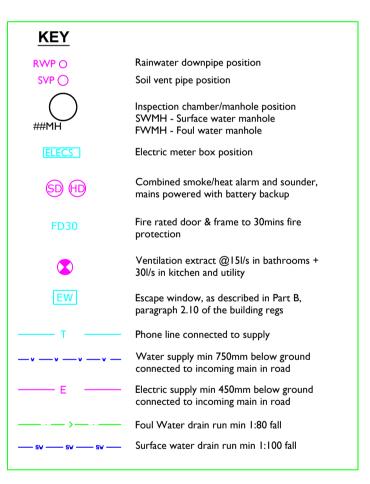
stance from fire tender to furthest point

× 8

Ú

.5m)

Fire


ender

NOTES

1. The contents of this drawing are copyright of Watts Hol

- 2. It may not be copied, reproduced or altered in anyway without th written authority
- 3. Do not scale. Figured dimensions only to be use
- 4. Check dimensions on site before work proceeds, report a
- 5. If in doubt please ask

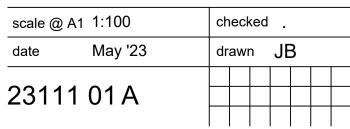
N.B. Drainage to specialist design

T: 01202 461586 E: hello@wattsholt.com

А	Fire travel distances				13.07	JB	_		
No.	Revi	sion.		Date		Ву	_		
Project									

Rear of 111 Commercial Road, Poole

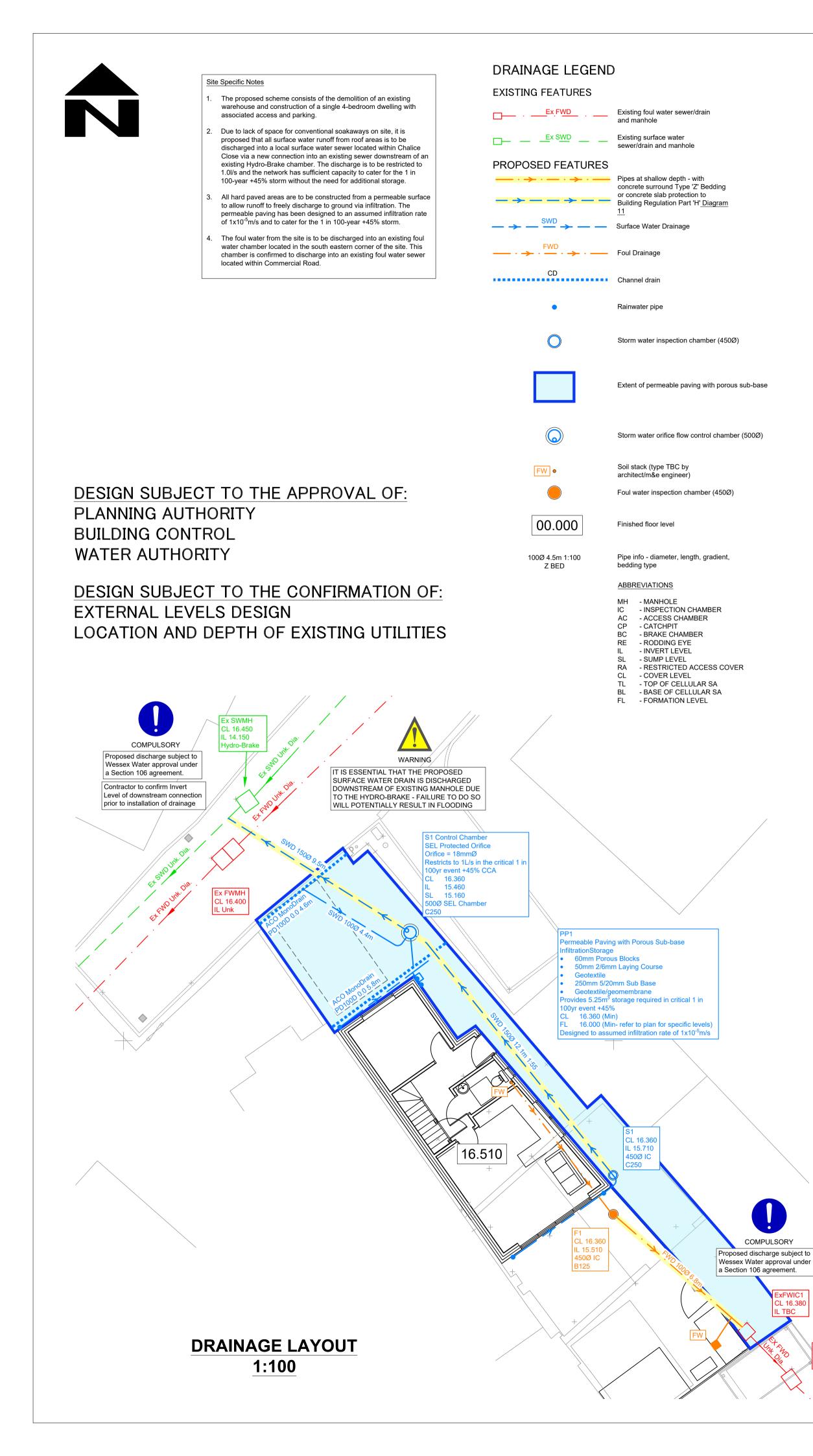
Client / Brand

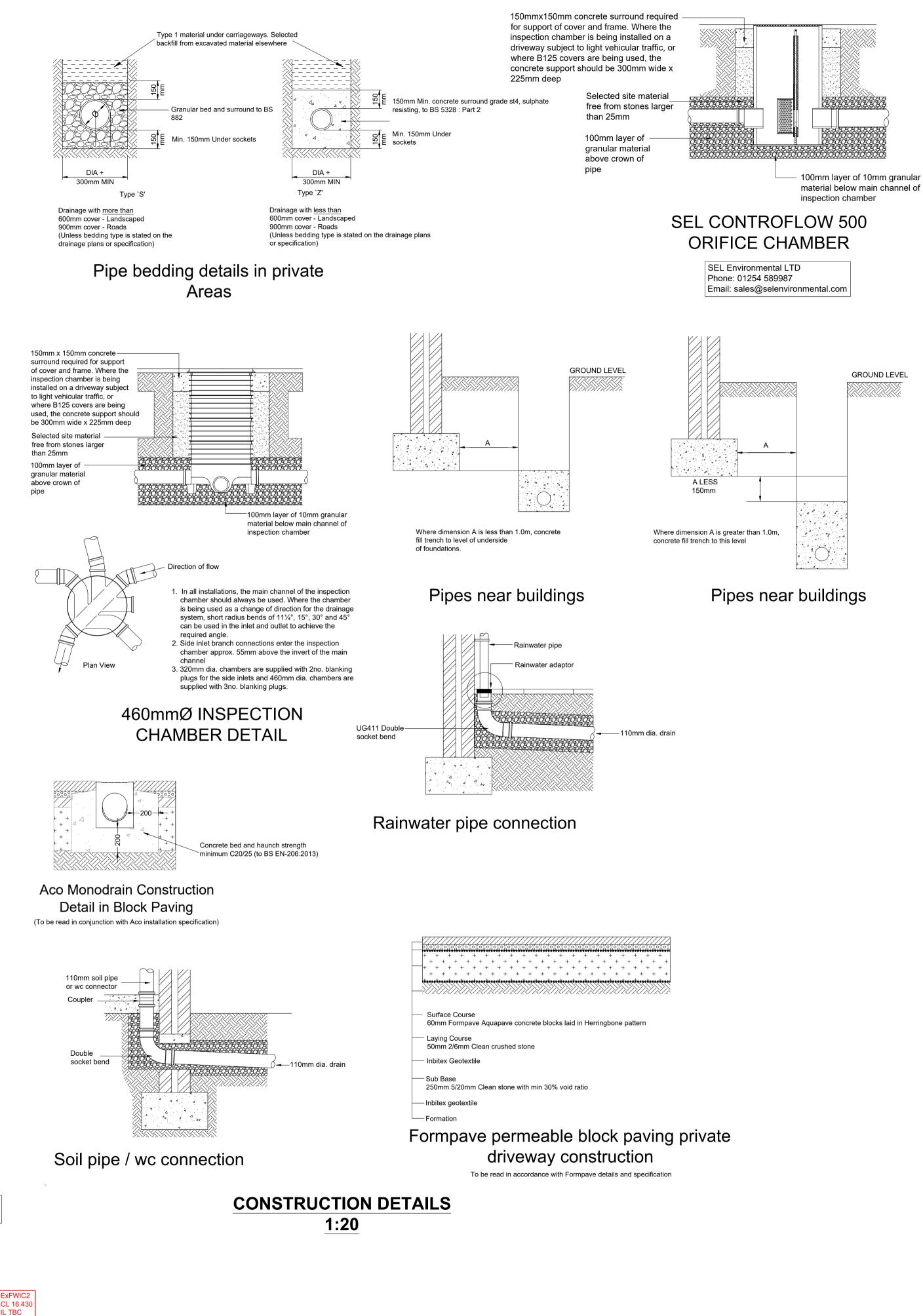

Marson Projects Ltd

Drawing Title

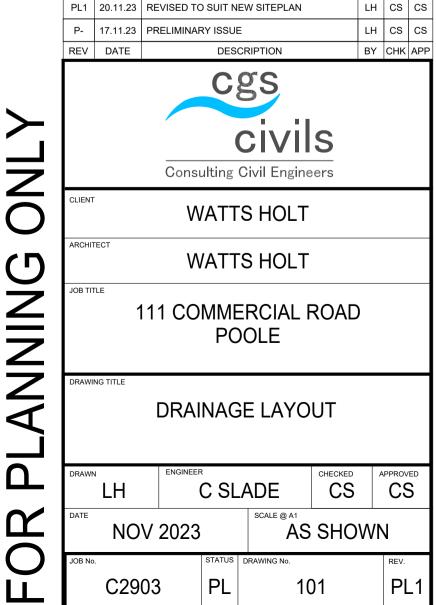
DORSET, BH14 9EX

Scale 100mm @ A1

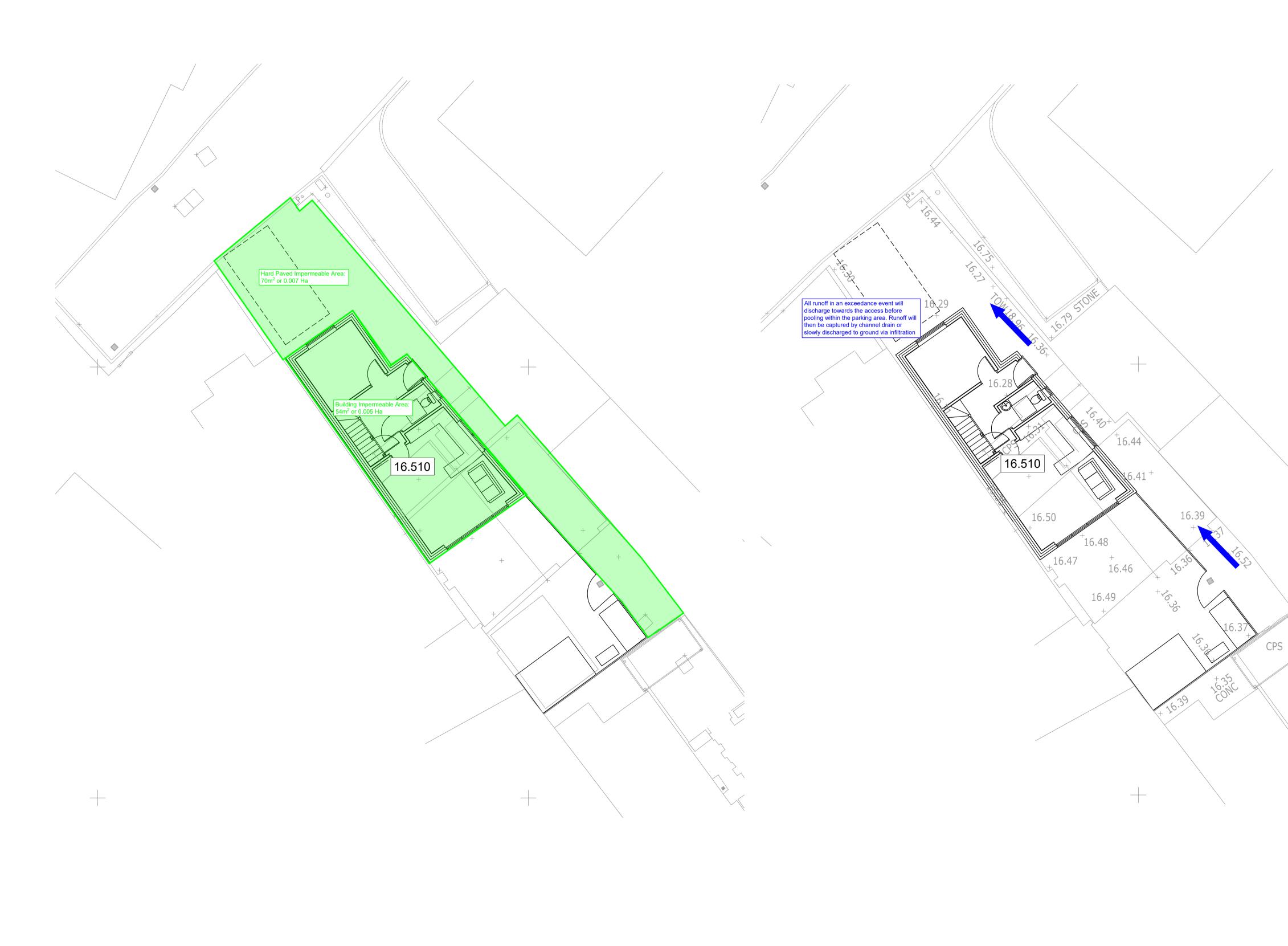

```
Site Plan
```

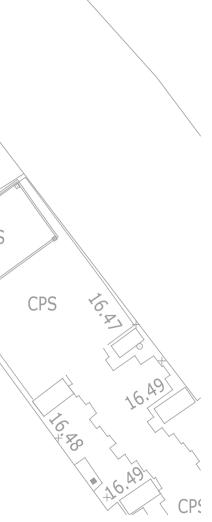


7.2 Appendix B – Drainage Layout



STANDARD DRAINAGE NOTES


- 1. DO NOT SCALE FROM THIS DRAWING, REFER TO FIGURED DIMENSIONS ONLY. THE CONTRACTOR SHOULD CHECK ALL DIMENSIONS ON SITE.
- 2. ALL DIMENSIONS IN MILLIMETRES AND ALL LEVELS ARE IN METERS UNLESS NOTED OTHERWISE.
- 3. THIS DRAWING SHOULD BE READ IN CONJUNCTION WITH ALL OTHER RELEVANT ARCHITECT AND ENGINEERING DETAILS, DRAWINGS AND SPECIFICATIONS.
- 4. ANY DISCREPANCIES SHOULD BE REPORTED TO THE ARCHITECT AND/OR ENGINEER IMMEDIATELY, SO THAT CLARIFICATION CAN BE SOUGHT PRIOR TO THE COMMENCEMENT OF WORK.
- 5. BEFORE COMMENCING CONSTRUCTION THE CONTRACTOR MUST CHECK THE INVERT LEVELS OF EXISTING SEWERS TO WHICH CONNECTIONS ARE MADE. IN ADDITION THE CONTRACTOR MUST LOCATE AND DETERMINE INVERT LEVELS OF THE EXISTING SPURS TO WHICH CONNECTIONS ARE PROPOSED. ANY DISCREPANCIES ARE TO BE NOTIFIED TO THE ENGINEER IMMEDIATELY, PRIOR TO CONSTRUCTION
- ALL DRAINAGE WORKS SHOULD COMMENCE AT THE PROPOSED DOWNSTREAM CONNECTION POINT, THE WORKS CONTINUING UPSTREAM FOLLOWING CONFIRMATION OF THE TIE-IN INVERT LEVELS TO THE ENGINEER. CONNECTIONS TO MANHOLES OR LARGER SIZED PIPES ETC. SHOULD BE SOFFIT TO SOFFIT UNLESS OTHERWISE INSTRUCTED BY THE ENGINEER, IF THIS IS NOT POSSIBLE INFORM THE ENGINEER IMMEDIATELY.
- 7. COVER LEVELS SHOWN ARE APPROXIMATE. COVERS AND FRAMES SHALL BE SET TO FINISHED GROUND LEVELS AND FALLS.
- 8. ALL UN-REFERENCED PIPES ARE TO BE 100mm DIA 9. ALL PIPES TO BE ADOPTED, OR CONNECTING TO ADOPTED SEWERS, TO BE VITRIFIED CLAY TO BS EN 295 AND BS65 (SWS
- ONLY), OR CONCRETE PIPES TO BE EN 1916 AND BS5911:PART 1. 10. ROAD GULLY OUTLET PIPES ARE TO BE 150mm DIA. WITH CONCRETE SURROUND AND FLEXIBLE JOINTS. ALL GULLIES
- SHALL BE FITTED WITH GRADE D400 GRATINGS AND FRAMES TO BS EN124, UNLESS OTHERWISE STATED. 11. ALL ADOPTABLE SEWERS SHALL BE CONSTRUCTED TO THE
- STANDARDS AND SPECIFICATION LAID DOWN DOWN IN `SEWERS FOR ADOPTION' 6th EDITION, WITH A VIEW TO ADOPTION UPON COMPLETION OF WORKS.
- 12. ALL PRIVATE DRAINAGE TO BE IN ACCORDANCE WITH THE BUILDING REGULATIONS APPROVED DOCUMENT PART-H, AND TO THE SATISFACTION OF THE BUILDING CONTROL INSPECTOR
- 13. THE CONTRACTOR IS TO KEEP A RECORD OF ANY VARIATIONS MADE ON SITE, INCLUDING THE RELOCATION OF SEWERS OR DRAINS, SO THAT AN AS CONSTRUCTED DRAWING CAN BE PREPARED UPON COMPLETION OF THE PROJECT.
- 14. STUB CONNECTIONS TO ADOPTABLE MANHOLES SHALL BE MADE FROM VITRIFIED CLAY AND CONSIST OF TWO ROCKER PIPES LAID AT THE SAME GRADIENT AS THE UP OR DOWNSTREAM PIPE.
- 15. IF ANY SUB SOIL DRAINAGE SYSTEMS ARE UNCOVERED DURING THE WORKS CONTACT THE ENGINEER FOR INSTRUCTIONS. SUB SOIL DRAINS ARE TO BE DIVERTED AROUND NEW WORKS AND CONNECTED INTO THE SURFACE WATER.
- 16. NO PRIVATE AREAS ARE TO DRAIN ONTO ADOPTABLE AREAS AND VICE VERSA.
- 17. ALL EXISTING MANHOLE COVER'S, GULLIES, ETC, ARE TO BE RAISED/LOWERED TO SUIT NEW LEVELS. 18. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO CONFIRM
- THE LOCATION AND DEPTH OF ALL EXISTING SERVICES AND UTILITIES THAT MAY BE PRESENT
- 19. UPON COMPLETION BUT PRIOR TO HANDOVER, CONTRACTOR TO CARRY OUT FULL CCTV SURVEY OF DRAINAGE SYSTEM WHICH IS TO BE REVIEWED BY ENGINEER TO ENSURE SATISFACTORY INSTALLATION
- 20. MANHOLE AND CHAMBER COVER GRADES:
- 'A15' IN ALL LANDSCAPED AREAS AND ON FOOTPATHS
- 'B125' IN ALL DRIVEWAYS
- 'C250' IN PRIVATE PARKING AREAS - 'D400' IN CARRIAGEWAY/ACCESS ROAD


Prefixed to drawing numbers shall signify the following:-PL = PLANNING Shall not be used for contract or construction purposes P = PRELIMINARY Shall not be used for contract or construction purposes T = TENDER Shall not be used for construction purposes C = CONSTRUCTION These are the <u>only</u> drawings that shall be used for construction purposes

R = RECORD Record of actual completed work

P- 17.11.23 PRELIMINARY ISSUE REV DATE DESCRI LH CS CS DESCRIPTION BY CHK APP cgs civils \succ ONL Consulting Civil Engineers CLIENT WATTS HOLT RCHITEC WATTS HOLT ANNING JOB TITLE 111 COMMERCIAL ROAD POOLE IMPERMEABLE AREAS & OVERLAND FLOW ROUTE PLAN ם CHECKED APPROVED C SLADE LH FOR SCALE @ A1 NOV 2023 1:100 REV. 401 PL-C2903 PL

PL = PLANNING	Shall <u>not</u> be used for contract or construction purposes
P = PRELIMINARY	Shall <u>not</u> be used for contract or construction purposes
T = TENDER	Shall not be used for construction purposes
C = CONSTRUCTION	These are the <u>only</u> drawings that shall be used for construction purposes
R = RECORD	Record of actual completed work

LH CS CS

Prefixed to drawing numbers shall signify the following:-

PL1 20.11.23 REVISED TO SUIT NEW SITEPLAN

7.3 Appendix C – Surface Water Calculations

Page 1 C2903 111 Commercial Road Poole

Design Settings

Rainfall Methodology	FEH-22	Minimum Velocity (m/s)	1.00
Return Period (years)	2	Connection Type	Level Soffits
Additional Flow (%)	0	Minimum Backdrop Height (m)	0.200
CV	1.000	Preferred Cover Depth (m)	0.350
Time of Entry (mins)	5.00	Include Intermediate Ground	\checkmark
Maximum Time of Concentration (mins)	30.00	Enforce best practice design rules	\checkmark
Maximum Rainfall (mm/hr)	50.0		

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level (m)	Node Type	Manhole Type	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
S1	0.002	5.00	16.360	Manhole	Adoptable	450	40400.746	9113.548	0.600
S2	0.003		16.360	Manhole	Adoptable	500	40391.585	9124.251	0.900
PP		5.00	16.380	Manhole	Adoptable	100	40406.235	9107.896	0.360
PP1	0.007		16.360	Manhole	Adoptable	100	40390.400	9126.300	0.360

<u>Links (Input)</u>

	Node	Node	Length (m) 14.088	(m)	(m)	(m)	(1:X)	(mm)	
2.000	PP	PP1	24.279	16.020	16.000	0.020	1213.9	100	

Simulation Settings

Rainfall Methodology Summer CV Winter CV	1.000	Analysi: Skip Stead Drain Down Time	ly State x	Additional Storage (m³/ha Check Discharge Rate(s Check Discharge Volume) x
	120		Durations		40
15 30 60) 120	180 240	360 480	600 720 960 14	140
Re	turn Period	Climate Change	Additional Area	Additional Flow	
	(years)	(CC %)	(A %)	(Q %)	
	2	0	0	0	
	10	0	0	0	
	30	0	0	0	

Node S2 Online Orifice Control

45

0

0

100

Flap Valve Replaces Downstream Link Invert Level (m)	\checkmark	Design Depth (m) Design Flow (l/s) Diameter (m)	2.0	Discharge Coefficient	0.650	
	Node	PP1 Carpark Storage	Structure			

Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr)		Invert Level (m) Time to half empty (mins)		Slope (1:X) Depth (m)	
Safety Factor	2.0	Width (m)	3.500	Inf Depth (m)	
Porosity	0.30	Length (m)	20.000		

Page 2 C2903 111 Commercial Road Poole

Results for 2 year Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	S1	10	15.772	0.012	0.4	0.0020	0.0000	OK
120 minute summer	S2	72	15.601	0.141	0.5	0.0277	0.0000	ОК
120 minute summer	PP	78	16.035	0.015	0.0	0.0001	0.0000	ОК
120 minute summer	PP1	78	16.034	0.034	0.7	0.5400	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute summer	S1	1.000	S2	0.4	0.149	0.014	0.1192	
120 minute summer	S2	Orifice		0.3				0.7
120 minute summer	PP	2.000	PP1	0.0	-0.047	-0.028	0.0375	
120 minute summer	PP1	Infiltration		0.2				

Page 3 C2903 111 Commercial Road Poole

Results for 10 year Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute summer	S1	23	15.788	0.028	0.6	0.0045	0.0000	OK
30 minute summer	S2	24	15.789	0.329	1.5	0.0644	0.0000	ОК
120 minute summer	PP	78	16.059	0.039	0.1	0.0003	0.0000	ОК
120 minute summer	PP1	78	16.059	0.059	1.2	1.0423	0.0000	ОК

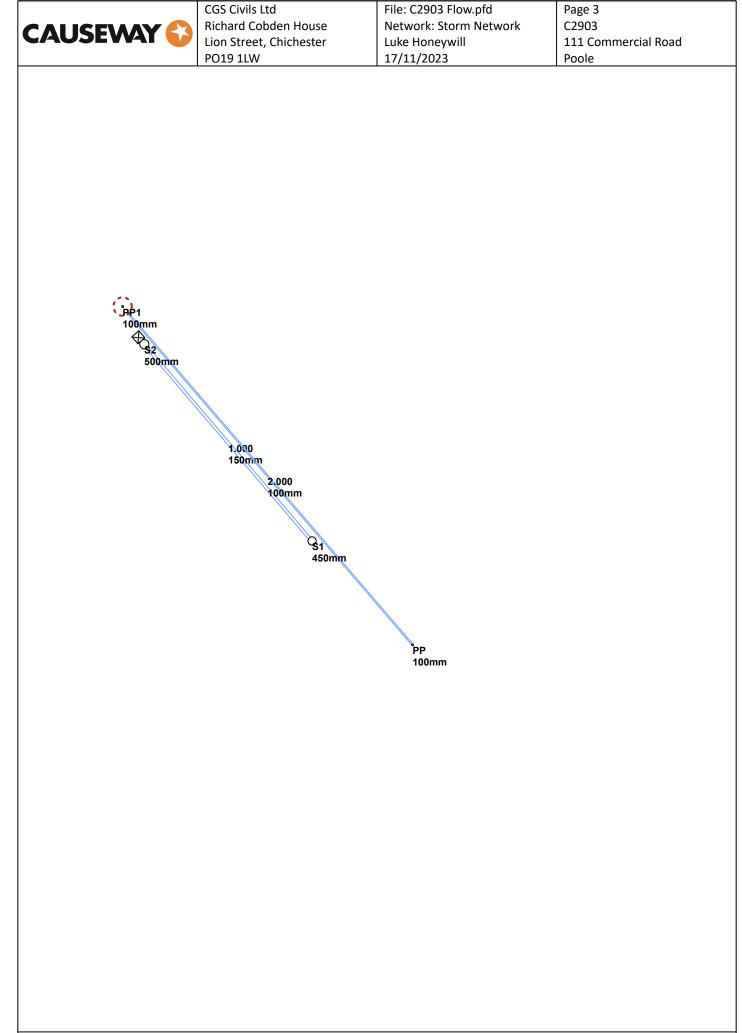
Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
30 minute summer	S1	1.000	S2	0.6	0.149	0.023	0.1403	
30 minute summer	S2	Orifice		0.4				1.0
120 minute summer	PP	2.000	PP1	-0.1	-0.056	-0.059	0.0926	
120 minute summer	PP1	Infiltration		0.4				

Page 4 C2903 111 Commercial Road Poole

Results for 30 year Critical Storm Duration. Lowest mass balance: 100.00%

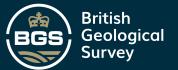
Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
60 minute summer	S1	40	15.861	0.101	0.7	0.0161	0.0000	ОК
60 minute summer	S2	42	15.862	0.402	1.5	0.0789	0.0000	ОК
120 minute summer	PP	82	16.075	0.055	0.1	0.0004	0.0000	OK
120 minute summer	PP1	82	16.075	0.075	1.5	1.3730	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
60 minute summer	S1	1.000	S2	0.6	0.126	0.023	0.2133	
60 minute summer	S2	Orifice		0.5				1.7
120 minute summer	PP	2.000	PP1	-0.1	-0.051	-0.066	0.1302	
120 minute summer	PP1	Infiltration		0.4				

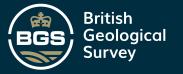

Page 5 C2903 111 Commercial Road Poole

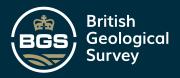
Results for 100 year +45% CC Critical Storm Duration. Lowest mass balance: 100.00%

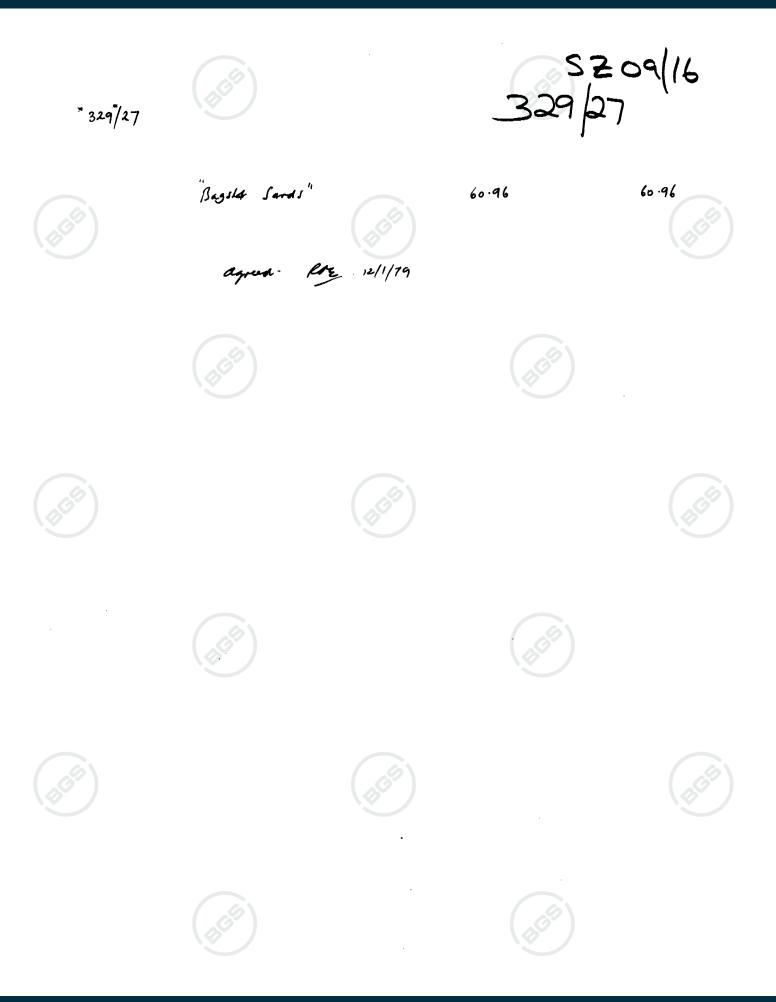
Node Event		US ode	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	St	atus
60 minute summe	r Si	L	43	16.298	0.538	1.4	0.0856	0.0000	FLO	DD RISK
60 minute summe	r S2	2	43	16.298	0.838	1.9	0.1642	0.0000	ОК	
120 minute summ 120 minute summ		5 91	96 96	16.157 16.157	0.137 0.157	0.2 2.6	0.0011 3.0561	0.0000 0.0000	<mark>FLO(</mark> OK	DD RISK
Link Event (Upstream Depth)	US Node		Link	DS Node	Outflow (I/s)	Velocity (m/s)	y Flow/C	•	nk (m³)	Discharge Vol (m³)
60 minute summer	S1	1.0	000	S2	0.7	0.149	9 0.0	0.2 0.2	2480	
60 minute summer	S2	Or	ifice		0.7					3.0
120 minute summer 120 minute summer	PP PP1		000 filtration	PP1	-0.2 0.4	-0.036	5 -0.1	.18 0.1	1900	


CAUSEWAY 🔂	CGS Civils Ltd Richard Cobden House Lion Street, Chichester	File: C2903 Flo Network: Stor Luke Honeywi	m Network	Page 1 C2903 111 Commercial Road		
	PO19 1LW	17/11/2023		Poole		
Node Name		S1	S2			
		0				
A4 drawing						
Hor Scale 500						
Ver Scale 100						
Datum (m) 6.000		1.000				
Link Name		1.000				
Section Type Slope (1:X)		150mm 47.0				
Cover Level (m)			0			
		16.360	16.360			
		16	16			
Invert Level (m)		0	0			
		15.760	15.460			
		4	10			
Length (m)		14.088				
	Elouu v10.7 Comunicate @ 400		Tachnalacias ! +			
	Flow+ v10.7 Copyright © 198	ss-2023 Causeway	rechnologies Lt	a		

	CGS Civils Ltd Richard Cobden House		File: C2903 Flow.pfd Network: Storm Network		Page 2 C2903
	Lion Street, Chichester PO19 1LW		Luke Honeywill 17/11/2023		111 Commercial Road Poole
Node Name		РР		PP1	
A4 drawing Hor Scale 500 Ver Scale 100					
Datum (m) 6.000					
Link Name			2.000 100mm		
Section Type Slope (1:X)			1213.9		
Cover Level (m)		16.380		16.360	
Invert Level (m)		16.020	16.000 16.000		
Length (m)			24.279		
	Flow+ v10.7 Copyright © 1	988-2	023 Causeway Technologies	Ltd	




7.4 Appendix D – Borehole Logs



WELL BORING at Tarkotone County Ho Well BORING at Tarkotone County Ho Well BORING at Tarkotone Series 329 County Ho Made by Dake Dockenden Date 1983 County Hor Sank feet. Communicated by Dake +Ockenden Height above Ordnance Datum feet. Bored , J.O.O. SZ 09 54 Rest level of water 38 feer 10 Yo Kield 4000 g.p.h.* Quality (with sopy of analysis on separate sheet) SZ 034 alb THICKNESS BEOLOGICAL PORMATION. NATURE OF STRATA. as Pices 4 Feet. | Inches. er wegete 3S Nug weel 22 ng Sand a Brown sand (like nock 20 Hard blane + Sand 5 Hard white clay Berden Herd white and red clay 623 Hard rock turi a Hand pink clay * Haura white clay Dask clay Rock The Sand c clay 2-1 Sand rock weins of day 201 500 Sand + rock 14 Site at premises of Parkstone States 的大大大 Driver Da Dire + /hil Part Parko a sa a sa فالمداني في تركيم ال * yield lested at rate of 4000 ge 22. 14 functed at this i silt, a tulues were with drawn an the abandoned. Nisited and sted & on Dorset 44 SW/W. New Humphries Products Ltd. (Engineering Works, Shey have been there since 1939. On Southy incating & Ob. C. 60. Works) 14 A.44 GROLOGICAL SURVEY AND MUSHUM. JREMYN STREET, LONDON, S.W. 1 (B10619); Wi

520952/1648 County WELL BORING at Tarkstone Geol. map 329 N.S. 1 in. map New Series 329 Made by Duke & Ockenden 6 in. map Date 198 Bored feet. Sunk Communicated by Duke Dockenden 38 feet Rest level of 40 Height above Ordnance Datum Yield 4000 g.p.h. # Quality (with copy of analysis on separate sheet) sz 034 alb THICKNESS. Inches. Feet. Inches. Feet. NATURE OF STRATA. GEOLOGICAL FORMATION. 38 8-E PARKSTONELA Jug well 22 60 PARKSTONE Beowing Sand ۴_ Hard Grown sand (like <u>୫</u>ଇ 20 SAND 82 5 9 G_{4} Hard white clay OAKDALE Hard white and red clay 89 Poore Hard rock CLAY En Hand punk clay Here white clay Dark clay *3 145 Rock Ż-1 166 OAKDALE Sine Sand a clay SAND . 20¥ Sand rock evening of ilse 200 14 Sand & +ock Statio mile N.W. of Parketo Site premises of at up fort + Mi k A * yield lested at rate of 4000 ge rate eek, ped at this th. Leavily was so cr ĽÅ d would not clear e silt, a tubes were withdrawn an l the abandoned. Nisited and sited & on Dorset 44 SW/W. New Solumphries Products Itd. (Engineering meening works) New Oscimpances there since 1939. are slotty vacaling the Skey have been there since 1939. are slotty vacaling the Rm. OD. C.6C. 014 dified GEOLOGICAL SURVEY AND MUSEUM, (B10619). Wt. 15824-S123. 2500. 11 25. Gp. 160. O.A. JERMYN STREET, LONDON. S.W. 1.

7.5 Appendix E – Maintenance Schedule

Consulting Civil Engineers

Maintenance Schedule

111 Commercial Road, Poole, Dorset BH14 0JD

Planning Ref: APP/20/00660/F

For

Watts Holt

Rev - **P**

Reference C2903

Date 10th November 2023

Revision	Date of Issue	Comments	Prepared By	Checked By
Р	10/11/2023	Initial Issue		

Contents

1	MAINTENANCE	3
---	-------------	---

1 Maintenance

1.1 Introduction

- 1.1.1 During construction, the Contractor will be responsible for maintaining the drainage and SuDS (Sustainable Drainage Systems). Upon handover, the occupier will take on the responsibility of these duties as laid out in this report.
- 1.1.2 The maintenance schedule for the proposed development will be split down into two separate categories; SuDS features and regular private drainage.

1.2 SuDS at 111 Commercial Road, Poole

- 1.2.1 As listed above, in section 5.1.2, the SuDS features used on site will be **Permeable Paving**
- 1.2.2 The SuDS features have been designed for easy maintenance and comprise:
 - Regular Day-to-Day care litter collection, regular gardening to control vegetation growth and checking inlets where water enters the SuDS features
 - Occasional tasks checking the SuDS features and removing any silt that builds up in the SuDS feature
 - Remedial work repairing damage where necessary

1.3 SuDS Drainage Maintenance Specification

1.3.1 Permeable Paving

In order to maintain the functioning of the permeable paving, the following maintenance requirements should be adhered to:

Table 21.3 Operation and maintenance requirements for permeable paving						
Maintenance Schedule	Required Action	Typical Frequency				
Regular Maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface)	Once a year, after autumn leaf fall, or reduced frequency as required, based on site-specific observations of clogging or manufacturer's recommendations – pay particular attention to areas where water runs onto pervious surface from adjacent impermeable areas as this area is most likely to collect the most sediment				
	Stabilise and mow contributing and adjacent areas	As required				
Occasional maintenance	Removal of weeds or management using glyphosate applied directly into the weeds by an applicator rather than spraying	As required – once per year on less frequently used pavements				
	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50mm of level of the paving	As required				
Remedial Actions	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost jointing material	As required				
	Rehabilitation of surface and upper substructure by remedial sweeping	Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging)				
	Initial inspection	Monthly for three months after installation				
Monitoring	Inspect for evidence of poor operation and/or weed growth – if required take remedial action	Three-monthly, 48h after large storms in first six months				
	Inspect silt accumulation rate and establish appropriate brushing frequencies	Annually				
	Monitor inspection chambers	Annually				

1.4 General Drainage Maintenance Specification

- 1.4.1 Inlet Structures and Inspection Chambers
 - Inlet structures such as rainwater downpipes, road gullies and channel drains should be free from obstruction at all times to all free flow through the SuDS
 - Inspection Chambers and Rodding Eyes are used on bends or where pipes come together. They allow access and cleaning to the system if necessary.

Inlet Structures and Inspection Chambers	
Regular Maintenance	Frequency
Inlet Structures	
Inspect rainwater downpipes, channel drains and road gullies, removing obstructions and silt as necessary. Check that there is no physical damage.	Monthly
Strim vegetation 1m min surround to structures and keep area free from silt and debris	
Inspections Chambers and below ground control chambers. Remove cover and inspect, ensuring that the water is flowing freely and that the exit route for water is unobstructed. Remove debris and silt. Undertake inspection after leaf fall in Autumn	Annually
Occasional Maintenance Check topsoil levels are 20mm above edges of chambers to avoid mower damage.	As necessary
Remedial Work	
Repair physical damage if necessary	As required

1.4.2 Below ground drainage pipes

• Below ground drainage pipes convey water to the SuDS system. They should always be free from obstruction to allow free flow.

Below Ground Drainage Pipes	
Regular Maintenance	Frequency
Inspect and identify any areas that are not operating correctly. If required, take remedial action.	Monthly for 3 months then annually
Remove debris from the catchment surface (where it may cause risks to performance)	Monthly
Remove sediment from pre-treatment inlet structures and inspection chambers.	Annually or as required
Maintain vegetation to designed limits within the vicinity of below ground drainage pipes and tanks.	Monthly or as required
Remedial Work	
Repair physical damage if necessary	As required
Monitoring Inspect all inlets, outlets and vents to ensure that they are in good conditions and operating as designed.	Annually
Survey inside of pipe runs for sediment build up and remove if necessary.	Every 5 years or as required