

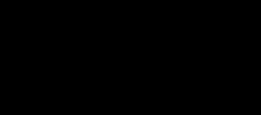
GEO-ENVIRONMENTAL AND GEOTECHNICAL SITE INVESTIGATION REPORT

TOWN FARM
HARRISONS LANE
HALESWORTH
SUFFOLK
IP19 8PZ

Reference Number 2954/Rpt 1v2 January 2024

Prepared for

Badger Building (E Anglia) Ltd Stanley House Stanley Street Lowestoft NR32 2DZ


Ву

Brown 2 Green Associates Ltd Suite 1, Wenden Court Station Road, Wendens Ambo Saffron Walden, Essex CB11 4LB

Tel: 01799 542473 Web address: www.brown2green.co.uk

Client	Badger Building (E Anglia) Ltd	
	Stanley House, Stanley Street, Lowestoft NR32 2DZ	
Report Title	Geo-environmental and Geotechnical Site Investigation Report:	
	Town Farm, Harrisons Lane, Halesworth, Suffolk	
Reference Number	2954/Rpt 1v2	
Date	January 2024	

Prepared By	Radu-Mihai Ilie
	MSc, PhD, F Geol
	(Geo-environmental Consultant)
Reviewed and	Philip Miles
Approved By	BSc, MSc, C Geol
	(Director)

TABLE OF CONTENTS

1	INT	RODUCTION	3
	1.1 1.2 1.3 1.4	Background Proposed Development Objectives Sources of Information	3 3 4 4
2	SIT	E LOCATION AND SETTING	5
	2.4	Site Location Historic Land Use Geology and Hydrogeology Hydrology Industrial Setting	5 5 5 6
3	PR	EVIOUS CONTAMINATION ASSESSMENT	7
4	СО	NTAMINATED LAND INITIAL CONCEPTUAL MODEL	8
		Potential Sources of Contamination Potential Pathways Potential Receptors Discussion of Potential Pollutant Linkages	10 10 10 10
5	SIT	E INVESTIGATION	12
	5.1 5.2	Exploratory Fieldwork Chemical Analysis	12 13
6	RE:	SULTS	14
	6.1 6.2 6.3 6.4	Summary of Site Investigation Observations Geotechnical Laboratory Results Chemical Laboratory Results Gas Monitoring	14 14 14 14
7	GE	OTECHNICAL ASSESSMENT	16
	7.1 7.1 7.2 7.3 7.4 7.5 7.6 7.7	Proposed Development Ground Conditions Site Preparation Foundations Ground Floor Slabs Pavement Construction Excavations Buried Concrete	16 16 16 16 16 17 17
8	СО	NTAMINATED LAND RISK ASSESSMENT	18
	8.1 8.1. 8.1. 8.1. 8.1.	2 Risk from Soil3 Risk from Asbestos Containing Materials	18 18 18 18 19

	nental and Geotechnical Site Investigation Iarrisons Lane, Halesworth, Suffolk	January 2024 2954/Rpt 1v2
8.4 Risk 8.5 Risk 8.6 Risk 8.7 Risk	to Controlled Water to Planting to Construction Materials to Water Supply Pipe to Sensitive Ecological Receptors to Historical Structures and Monuments	20 20 21 21 21 21
9 REVISE	D CONCEPTUAL MODEL	22
10 RE-US	SE OF SOILS AND WASTE CLASSIFICATION	23
	se of Suitable Soils te Classification	23 23
11 GEO-	ENVIRONMENTAL CONCLUSIONS AND RECOMMENDATIONS	S 25
	clusions ommendations	25 25
	FIGURES	
Figure 1 Figure 2	Site Location Plan Exploratory Hole Locations Plan	
	APPENDICES	
Appendix I Appendix III Appendix IV Appendix V Appendix VI Appendix VIII Appendix VIII	Limitation and Constraints Proposed Development Layout Previous Ground Investigation Report Prepared by ASL Geological Logs Geotechnical Results Chemical Analysis Report Gas Monitoring Results Asbestos Risk Assessment Remediation Method Statement	

EXECUTIVE SUMMARY

This report describes the findings of a Combined Geotechnical and Geo-environmental Site Investigation of land at Town Farm, Harrisons Lane, Halesworth, Suffolk. It is proposed to redevelop the site for residential usage.

At the time of the walk-over the site was occupied agricultural land with a series of former poultry sheds on the south end of the site.

A previous phase of geotechnical and contaminated land site investigation has been undertaken. From this work it was recommended that additional site investigation should be undertaken in order to delineate the extent of the two areas where soft clays were identified. The report also recommended that gas protection measures should be included within the proposed residential properties to be developed in the south west corner of the site. A review completed by Brown 2 Green Associates concluded that additional monitoring was required to provide a better understanding of the ground gas regime before recommendations for gas protection measures should be made. A recommendation was also made to address the risk from asbestos that had been identified. This report provides the findings of the additional site investigation and contaminated land assessment. A remediation strategy is also presented.

The investigation consisted of the excavation of trial pits, drilling of boreholes and the installation of gas monitoring wells. During the drilling soil samples were obtained and submitted for chemical analysis and geotechnical testing. Gas monitoring was also undertaken.

The following conclusions were made:

Geoenvironmental

The investigation identified the of presence of fragments of cement based asbestos containing product across the ground surface of the land currently occupied by the poultry houses. The Tier I Human Health Risk Assessment has determined that the asbestos may potentially pose an unacceptable level of risk should the asbestos be released. In their current form the level of risk is considered to be very low. Across the rest of the site the concentrations of contaminants within the underlying made ground and natural soils are at levels that would not pose an unacceptable level of risk to human health of future site occupants and site users.

The Tier I Controlled Water Risk Assessment has determined that there are no concentrations of contaminants within the underlying soils that would pose an unacceptable level of risk to controlled waters.

The monitoring and risk assessment for bio-genic ground gas concluded that ground gas would not pose an unacceptable level of risk to future site users and the development.

The risk assessment in respect to the future planting and towards sensitive ecological receptors identified that there are no concentrations of determinants at levels that would pose an unacceptable level of risk to future planting and sensitive ecological receptors.

The risk assessment in respect to water supply infrastructure identified that the determinants at the site would not pose an unacceptable level of risk to the integrity of PE or PVC pipework.

From the results of the site investigation recommendations for remediation have been made.

Geotechnical

The additional investigation did not identify the presence of localised soft clay. Based on the ground conditions encountered it is recommended that foundations found within the firm clay at a minimum depth of 1.0m bgl. At this depth an allowable bearing capacity of 100kN/m² may be used with settlements estimated to be less than 25mm.

Based on this it is considered that a CBR of 3% is likely to be required.

1 INTRODUCTION

1.1 Background

Brown 2 Green Associates Ltd have been commissioned by Badger Building (E Anglia) Ltd to undertake additional combined Geotechnical and Phase 2 Geo-environmental Site Investigation of land at Town Farm, Harrisons Lane, Halesworth, Suffolk, IP19 8PZ. The site is located at National Grid Reference 639466, 278134. The site location is presented in Figure 1.

A desk study was previously completed by Create Consulting Engineers Ltd in September 2017. The desk study report recommended that a Phase 2 intrusive site investigation should be undertaken. A ground investigation was completed by ASL. The findings are presented in the reports titled:

Land Off Harrisons Lane, Halesworth – Phase 1 Contaminated Land Assessment, report prepared by Create Consulting Engineers Ltd; dated September 2017; Ref: CB/CS/P17-1228/02; and

Ground Investigation Land Off Harrisons Lane, Halesworth, prepared by ASL; dated August 2019; Ref 450-18-087-10.

The site investigation undertaken by ASL provided an initial assessment of the geotechnical and contaminated land constraints of the site. Based on the findings of the investigation ASL recommended that additional site investigation should be undertaken in order to delineate the extent of the two areas where soft clays were identified. The report also recommended that gas protection measures should be included within the proposed residential properties that were proposed for the south west corner of the site. A recommendation was also made to address the risk from asbestos fibres that had been identified within the soils.

A review of the report prepared by ASL by Brown 2 Green Associates Ltd identified a number of data gaps. These being:

Additional investigation of the two soft area that were identified. The areas that were defined surrounded boreholes BH103 and BH104. Within both boreholes, soft clays were identified to a maximum depth of 3.0m.

The report contains limited laboratory testing data to determine the plasticity and the natural moisture contact of the underlying soils.

The recommendations for gas protection measures are based on the results of only three gas monitoring rounds. The data records slightly elevated level of carbon dioxide within the part of the site where gas protection measures are recommended. Flows were also recorded. However, from the review it was considered that the flows recorded were artificial created during the monitoring programme and occurred as the wells were flooded, sealing off the response zone. No sources of ground gas that could result in the generation of significant levels of ground gas and gas flow are present within the local area. Brown 2 Green consider further gas monitoring and a revised ground gas risk assessment should be undertaken to determine the true level of risk from ground gas.

1.2 Proposed Development

It is proposed to redevelop the site for residential usage consisting of up to 190 dwelling with associated landscaping and open space. The proposed development is shown on drawing number n1142 004 rev D prepared by nineteen47 Ltd. The proposed development layout is presented in

Appendix II.

1.3 Objectives

The objectives of the Geo-environmental Site Investigation are to provide an Environmental Risk Assessment to inform about potential re-development of the site, address the requirements of the National Planning Policy Framework¹ and Planning Practice Guidance. These objectives are achieved by:

Undertaking a site inspection to identify any current areas of potential environmental concern;

Reviewing historical plans, geology, hydrogeology, site sensitivity, flood-plain issues, mining records and any local authority information available in order to complete a Desk Study in line with the Environment Agency Contaminated Land Risk Management.

Investigation of any identified pollution linkages to determine any potential environmental risks, liabilities and development constraints associated with the site in relation to the future use of the site and in relation to off-site receptors;

Provide geotechnical recommendations in relation to foundations and infrastructure; and,

Provide a factual and interpretive report and recommendations on any potential development issues.

The information obtained in this study has been used to develop an initial Conceptual Site Model (CSM) and outline potential risks from contamination at the site. This CSM examines potential Source-Pathway-Receptor contaminant linkages in relation to identified or potential contamination issues at the site and vicinity, incorporating them into a Preliminary Risk Assessment. This report has been completed in accordance with Environment Agency Contaminated Land Risk Management.

The Preliminary Risk Assessment seeks to establish firstly whether unacceptable risk as defined in Part 2A of the Environmental Protection Act 1990 is present and secondly whether a possibility of harm to controlled waters, human health or property is present and further investigation is therefore needed to better inform about risk assessment.

The objective of the Geotechnical Site Investigation is to assess the geological conditions beneath the site to provide geotechnical recommendations in relation to foundation and infrastructure.

1.4 Sources of Information

Background information relating to the site was acquired and referenced from the following sources:

Land Off Harrisons Lane, Halesworth – Phase 1 Contaminated Land Assessment, report prepared by Create Consulting Engineers Ltd; dated September 2017; Ref: CB/CS/P17-1228/02; and

Ground Investigation Land Off Harrisons Lane, Halesworth, prepared by ASL; dated August 2019; Ref 450-18-087-10.

A copy of the ground investigation report prepared by ASL is containing in Appendix III.

1 . .

¹ National Planning Policy Framework, Department for Communities and Local Government, July 2021.

2 SITE LOCATION AND SETTING

This section presents a summary of the site location and setting. A detailed description can be found in the previous report. Where changes have been identified, these have been noted.

2.1 Site Location

The site is located on the southern side of Harrisons Lane. The site location is presented in Figure 1.

The site is irregular of shape and covers approximately 7.5 hectares. Access to the site is via a Loam Pit Lane. At the time of the work, the site was composed of three fields and five disused poultry sheds. The former poultry sheds are located within the southern end of the site. The sheds are of wooden construction with sloping corrugated cement bonded sheeting roofs. The sheds are generally surrounded by areas of concrete hardstanding that is locally in a poor state of repair and grassed soft landscaping. Fragments and sheets of corrugated cemented bonding sheeting are present at the surface surrounding the sheds. The report prepared by ASL recorded two above ground fuel storage tanks (AST) being present in this portion of the site. At the time of the work undertaken by Brown 2 Green Associates these tanks had been removed. A small area that was used for burning was also noted. This area contained fragments of tiles suspected to contain asbestos.

The topography of the site slopes down towards the north-east.

2.2 Historic Land Use

The Desk Study identified that the site had been used as a farm in the past. The poultry sheds located within the southern end of the site were constructed in the late 1960's or early 1970's.

2.3 Geology and Hydrogeology

The British Geological Survey website indicates that the site is underlain by the following geology:

Drift/Solid	Geological Unit	Geological Unit Description	
Drift/Superficial	Lowestoft Formation	Diamicton	Secondary (undifferentiated)
Solid	Bagshot Formation	Sand	Secondary (A)

There are no licensed groundwater abstractions within 1km radius of the site. There are no Source Protection Zones within the vicinity of the site.

Discussions with the owner of the farm house confirmed that north of the site there is an old well. In the well groundwater is located approximately 30m below ground level.

2.4 Hydrology

The nearest surface water feature is a spring located 24m to the south which discharges into a pond located further to the south.

There are no licensed surface water abstraction points within 500m radius of the site.

The database indicates that the site does not lie in a fluvial or tidal floodplain.

2.5 Industrial Setting

The Desk Study identified a horticultural nursery located 26 m to the south-west that would present a risk to the subject site.

3 PREVIOUS CONTAMINATION ASSESSMENT

As part of the site investigation undertaken by ASL a contamination assessment was undertaken. The investigation consisted for the drilling of a series of boreholes and the excavation of trial pits. The sample locations were across all of the subject site. Gas monitoring wells were installed and three gas monitoring rounds were undertaken. Samples of the soil were subjected to laboratory analysis for bulk chemistry and leachate testing.

The gas monitoring recorded levels of methane, carbon monoxide and hydrogen sulphide below the instrument detection limits. Carbon dioxide was recorded at concentrations between 0.9% by volume (v/v) and 9.5% v/v. Oxygen was recorded at concentrations between 10.5% and 20.7% v/v. Average flow rates were generally recorded as zero during the monitoring programme with the exception of WS109 during the first monitoring event where an average flow rate of 0.5l/hr was recorded. A review of the results was undertaken in accordance with Annex F of BS 8485 – Code of Practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings. The review has identified that at the time of monitoring the well (WS109) was flooded with the response zone below groundwater level. It is likely that this flow is the result of a vacuum being created during the monitoring programme or pressure building up within the well, as groundwater rises. The ground gas risk assessment prepared by ASL concluded that due to a carbon dioxide level exceeding 5%v/v, the site should be classified as CS2 and gas protection measures are required in the southern part of the site. During the risk assessment no consideration of site-specific condition or the conceptual model have been given.

The human health risk assessment based on the soil samples did not identify any concentrations of determinants that were above the generic risk assessment criteria (residential with plant up take) that were adopted. As part of the laboratory analysis a single fragment of cement sheeting that was identified close to one of the boreholes that was located within the poultry sheds was analysed for asbestos. The laboratory analysis confirmed the fragment did contain asbestos. No loose asbestos fibres were identified within the soil samples. The report concluded that the presence of asbestos at the surface in the poultry shed portion of the site may pose a risk to human health at the proposed development and during the development works. Removal of the fragments was required.

The leachate samples recorded exceedances of the UK Drinking water standards in concentrations of phenol and TPH. ASL concluded that based on the environmental sensitivity of the site and the nature of the identified contamination, the potential risk to controlled waters is considered to be very low if not negligible. No further assessment of the potential risk to controlled waters is considered necessary. No remediation of soils to be protective of controlled waters is considered necessary. From the remove of the information by Brown 2 Green Associates, Brown 2 Green Associates agree with this conclusion.

Within the geological log for WS111 hydrocarbons odours were noted between 0.3 and 1.45m. The laboratory analysis of the soil sample from this zone did not record any significantly elevated concentrations of hydrocarbons.

4 CONTAMINATED LAND INITIAL CONCEPTUAL MODEL

Brown 2 Green Associates Ltd has revised the Conceptual Model based on the findings of the previous works to identify potential sources, migration pathways and receptors within the study area. Assuming there is an active pollution pathway linkage between the source and receptor an assessment has been made of the level of risk. The level of risk is a consideration of both:

the likelihood of an event (probability) [takes into account both the presence of the hazard and receptor and the integrity of the pathway]; and

the severity of the potential consequence [takes into account both the potential severity of the hazard and the sensitivity of the receptor].

The classifications of the likelihood of an event occurring based on C552 CIRIA, 2001² are presented below:

Likelihood		Definition
High Likelihood	> 90% of hazard receptor linkage	There is a pollution linkage and an event that either appears very likely in the short term and almost inevitable over the long term, or there is evidence at the receptor that there is harm or contamination
Likely	45-90% of hazard receptor linkage	There is a pollution linkage and all the elements are present and in the right place which means that it is probable that an event will occur. Circumstances are such that an event is not inevitable, but possible in the short term and likely over the long term
Low likelihood	10-50% of hazard receptor linkage	There is a pollution linkage and circumstances are possible under which an event could occur. However, it is by no means certain that even over a longer period such event would take place, and is less likely in the shorter term.
Unlikely	10% of hazard receptor linkage	There is a pollution linkage but circumstances are such that it is improbable that an event would occur even in the very long term.

The classifications of the severity of an event are presented below:

Severity	Category	Definition	Examples
Severe: It is likely that the hazard source could cause harm to a	Humans	Short term (acute) risk to human health likely to result in "significant harm" as defined by the Environment Protection Act 1990, Part IIA.	High concentrations of cyanide on the surface of an informal recreation area.
designated receptor and harm would be	Controlled Water	Short term risk of pollution of sensitive water resource.	Major spillage of contaminants from site into controlled water.
significant.	Property	Catastrophic damage to building or property	Explosion causing building to collapse.
	Ecological systems	A short term risk to a particular ecosystem, or organism forming part of such an ecosystem.	Loss of ecosystem.
Medium: It is possible that the hazard source could	Humans	Chronic damage to human health ("significant harm" as defined in the DETR, 2000).	Concentrations of a contaminant from site exceeds the generic, or site specific assessment criteria
cause harm to a designated receptor,	Controlled Water	Pollution of sensitive water resources.	Leaching of contaminants from a site to a Principal Aquifer.
but it is unlikely that the harm would be significant	Ecological systems	A significant change in a particular ecosystem, or organism forming part of such an ecosystem.	Death of a species within a designated nature reserve.

² Contaminated land risk assessment. A guide to good practice (C552), D J Rudland, R M Lancefield and P N Mayell.

Severity	Category	Definition	Examples
Mild: It is possible that the	Controlled Waters	Pollution of non-sensitive water resource.	Pollution of non-classified groundwater
hazard source could cause significant harm to a designated receptor, however it is likely to be mild	Property	Significant damage to buildings/structures and crops ("significant harm" as defined in the DETR, 2000). Damage to sensitive buildings/structures or the environment.	
Minor: The potential hazard source cannot cause	Financial or project	Harm, although not necessarily significant harm, which may result in a financial loss, or an expenditure to resolve.	
significant harm to the receptor.	Humans	Non-permanent health effects to human health (easily prevented by means such as Personal Protective Clothing, etc).	The presence of contaminants at such concentrations that protective equipment is required during site works.
	Property	Easily repairable effects of damage to buildings/structures	The loss of plants in landscaping scheme. Discolouration of concrete.

The comparisons of Likelihood against Severity are presented below:

		Severity			
		Severe	Medium	Mild	Minor
Likelihood	High Likelihood	Very High Risk	High Risk	Moderate Risk	Moderate / Low Risk
	Likely	High Risk	Moderate Risk	Moderate / Low Risk	Low Risk
	Low Likelihood	Moderate Risk	Moderate / Low Risk	Low Risk	Very Low Risk
	Unlikely	Moderate / Low Risk	Low Risk	Very Low Risk	Very Low Risk

The potential consequences of risk classifications are presented below:

Very High Risks	There is a high probability that severe harm could arise to a designated receptor from an identified hazard, OR, there is evidence that severe harm to a designated receptor is currently happening. This risk, if realised, is likely to result in a substantial liability. Urgent investigation (if not undertaken already) and remediation are likely to be required.
High Risks	Harm is likely to arise to a designated receptor from an identified hazard. Realisation of the risk is likely to present a substantial liability. Urgent investigation (if not undertaken already) is required and remedial works may be necessary in the short term and are likely over the longer term.
Moderate Risks	It is possible that harm could arise to a designated receptor from an identified hazard. However, it is either relatively unlikely that such harm would be severe, or if any harm were to occur it is more likely that the harm would be relatively mild. Investigation (if not already undertaken) is normally required to clarify the risk and to determine the potential liability. Some remedial works may be required in the longer term.
Moderate / Low Risks	It is possible that harm could arise to a designated receptor from an identified hazard, but it is likely that this harm, if realised, would at worst normally be medium to mild and professional judgement is required. Some remediation works may be required in the long term where high sensitivity receptors are involved.
Low Risks	It is possible that harm could arise to a designated receptor from an identified hazard, but it is likely that this harm, if realised, would at worst normally be mild.
Very Low Risks	There is a low possibility that harm could arise to a receptor. In the event of such harm being realised it is not likely to be severe.

4.1 Potential Sources of Contamination

On-site Potential Sources

Based on the findings of the site walk-over and the desk study information review the following potential on-site sources of contaminants that may plausibly impact the site were identified:

Ground gas beneath southern end of the site.

Fragments of cement sheeting that contain asbestos identified between the poultry sheds. Fragments were only identified across the ground surface and no loose fibres were identified. Fragments of tile within burning area suspected to contain asbestos.

Off-site Potential Sources

Based on the findings of the site walk-over and the information review no potentially significant offsite sources of ground contamination have been identified within a 250m radius of the subject site that may plausibly result in impact to the site.

4.2 Potential Pathways

Plausible pathways identified for each contaminant at are presented in the initial conceptual model detailed overleaf.

4.3 Potential Receptors

Brown 2 Green Associates Ltd has identified the following possible receptors:

Human health - future users of the site (residential with private gardens).

Human health - construction workers

Controlled water (groundwater and surface water).

Buildings and construction materials (concrete).

Water supply pipework.

4.4 Discussion of Potential Pollutant Linkages

Potential pollution linkages identified are presented in the initial conceptual model detailed overleaf.

Initial Conceptual Model and Risk Assessment

Potential Contaminant	Potential migration pathway	Potential Receptors	Probability of Risk	Severity	Risk Class- ification	Comments Active/Inactive
On-site Source	es					
Asbestos containing fragments of cement sheeting	Inhalation of fibres.	Future site users and construction workers	Likely	Severe	High	Potentially active with the part of the site currently used as a poultry farm. All fibres are sealed within cement-based matrix and thus the level of risk is low. Should damage occur during the development of the site the level will be increased. Remediation required to mitigate the level of risk.
Ground gas (carbon dioxide)	Through soil.	Future users and buildings	Low	Medium	Moderate to Low	Additional gas monitoring and revised risk assessment required.

5 SITE INVESTIGATION

5.1 Exploratory Fieldwork

Exploratory fieldwork was completed on 22nd November and 25th November 2021. The work consisted of the drilling of 11 (no) window sample boreholes (WS201 to WS211), the excavation of 10 (no.) trial pits (TP201 to TP210) and the collection of bulk samples (CBR1 to CBR20) of the soil for laboratory recompacted CBR testing.

The sample locations were determined to provide a general assessment of the ground quality beneath the site and the rational listed in the table below. The sampling locations are illustrated in Figure 2.

Sample Location	Rational/Potential Source Area			
WS201, WS202, WS203	Assessment of soft spot located in BH104. WS201 installed as a gas			
14/2004	monitoring well.			
WS204	Installed as a gas monitoring well			
WS205, WS206, WS208	Assessment of soft spot located in BH102. WS205 installed as a gas			
	monitoring well.			
WS207, WS209, WS211	Installed as a monitoring well			
TP204	Potential asbestos and burning area			
TP202	Assess potential hydrocarbons noted in geological log prepared by			
	ASL for WS111.			

Soil samples destined for chemical testing were collected in laboratory prepared jars. Samples for organic analysis were placed in amber glass jars, samples for volatile analysis in vials with septums and samples for inorganic analysis in plastic tubs. During the site works recovered soils were geologically logged by an experienced Geo-environmental Engineer. The geological logs are presented in Appendix IV.

On completion of the drilling the boreholes (WS201, WS204, WS205, WS207, WS209 and WS211) each borehole was converted to monitoring wells using 63 mm HDPE solid and slotted casing and well screening. Each well was sealed and equipped with a gas valve. The installation details are presented with the geological logs in Appendix IV.

To provide additional information on soil gas levels (methane, carbon dioxide and oxygen) each monitoring well was sealed and equipped with the gas valve. Four additional gas monitoring visits were completed using a calibrated Gas Data GFM435 landfill gas analyser. Atmospheric pressure and temperature, differential pressure and flow rates were also recorded. The wells were also screened for hydrocarbon vapours using a PID.

In-Situ Standard Penetration Testing (SPT)

In-situ geotechnical testing was carried out in all exploratory hole locations to provide information on the geotechnical properties of the soils.

California Bearing Ration (CBR)

Bulk samples were obtained for laboratory CBR tests. Samples were obtained at 0.7m, typical formation level.

Laboratory Testing

Selected samples were submitted to Soil Property Testing where the following geotechnical tests were undertaken:

Atterburg Limits Determinations; Natural moisture content; and Re-compacted Soaked California Bearing Ratio (CBR) determinations.

5.2 Chemical Analysis

Additional soil samples were obtained and submitted to Eurofins/Chemtest Ltd of Newmarket, Suffolk. The chemical analysis was carried out under UKAS/MCERTS accreditation protocols. Sample analysis was undertaken to provide information for waste disposal. In addition, a sample from TP202 was analysed for Total Petroleum Hydrocarbons to again assess the hydrocarbon that were noted by ASL. Two additional samples were also analysed for asbestos quantification. Within the burning area, fragments of tiles were noted. A sample of the tile was also submitted to asbestos determination.

6 RESULTS

6.1 Summary of Site Investigation Observations

Ground Conditions

During the site investigation similar geological strata were identified. The geological logs are presented in Appendix IV.

Top Soil

The site is underlain by between 0.3m and 0.5m of top soil consisting of dark brown and grey, slightly gravelly, slightly silty clay. The gravel being fine to coarse or subround chalk and occasional flint.

Superficial Deposits

The top soil is underlain by yellow brown and mottled grey, slightly sandy, slightly silty, gravelly clay. The gravel being fine to coarse angular to subangular and round chalk and occasional flint. Beneath the southern portion of the site, occasional thin sand horizons were identified. From approximately 1.5m, the gravelly clay becomes firm to stiff and blueish grey in colour.

Solid Geology

The solid geology was not encountered during the site investigation.

Groundwater Conditions

During the drilling and trail pitting groundwater was identified within the boreholes and trial pits excavated within the south part of the site (the land current developed with the poultry sheds. Groundwater was recorded at approximately 0.2m below ground level. It is suspected that the groundwater is perched in the weathered zone, above the firm to stiff gravelly clay. All other boreholes and trial pits were dry.

6.2 Geotechnical Laboratory Results

The geotechnical testing of the samples was undertaken by Soil Property Testing Ltd under UKAS accreditation. The test certificates are included in Appendix V.

6.3 Chemical Laboratory Results

The chemical analysis of the soil samples was undertaken by Eurofins/Chemtest Ltd of Newmarket under MCERT and UKAS accreditation. The test certificates are included in Appendix VI.

6.4 Gas Monitoring

Four ground gas monitoring visits have been completed. The results of the ground gas monitoring are presented in Appendix VII and summarised below.

	Methane %v/v	Carbon Dioxide % v/v	Oxygen % v/v	Flow (I/hr)
WS201	0.0	0.0 - 0.7	18.5	0.0
WS204	0.0	0.0 - 0.9	17.6	0.0

	Methane %v/v	Carbon Dioxide % v/v	Oxygen % v/v	Flow (I/hr)
WS205	0.0	0.0	19.7	0.0
WS207	0.0	0.0 - 1.0	18.0	0.0
WS209	0.0	0.0 - 0.4	19.9	0.0
WS211	0.0	0.0 - 5.2	17.8	0.0

During the first monitoring round, carbon dioxides level greater than the instrument detection limit were identified. During all subsequent visits the concentrations of carbon dioxide were all 0.0% v/v.

7 GEOTECHNICAL ASSESSMENT

7.1 Proposed Development

The proposed development comprises residential development with conventional domestic houses and associated infrastructure. Details of the proposed loadings are not known and therefore a line loading of 50kN/m has been assumed for preliminary assessment purposes based on experience with similar schemes.

Given the nature of the proposed development it is considered that the structure meets the criteria of Geotechnical Category 1 of Euro Code 7.

Given the nature of the development it is considered that acceptable risk from settlement is a total settlement value of 25mm for a masonry structure.

7.1 Ground Conditions

The ground conditions consist of topsoil over firm becoming stiff with depth gravelly clay.

7.2 Site Preparation

The site should be cleared and any vegetation below areas of proposed development stripped in accordance with Series 200 of the Specification for Highway Works. This should include:

Roots present below the footprint of proposed structures and infrastructure should be grubbed out and the resulting void infilled with suitable compacted engineered fill;

Redundant services should be sealed off and grubbed out and replaced with suitable compacted engineered fill; and

Any redundant foundations should be grubbed out.

7.3 Foundations

During the additional investigation, the localised soft clay that were previously identified were not encountered.

Consideration has been given to the use of conventional strip foundations at the site. Based on the ground conditions encountered it is recommended that foundations found within the firm clay at a minimum depth of 1.0m bgl. At this depth an allowable bearing capacity of 100kN/m² may be used with settlements estimated to be less than 25mm.

No evidence of significant desiccation was noted.

Final foundation depths should be determined based on distance of foundations from trees in accordance with Chapter 4.2 of NHBC Standards based on soils of moderate shrinkage potential.

Foundations should also be locally deepened where soft clays be encountered.

7.4 Ground Floor Slabs

Suspended floor slabs are recommended.

7.5 Pavement Construction

An assessment of the likely California Bearing Ratio (CBR) have been assessed from the following sources:

Laboratory CBR tests;

Correlations with plasticity index from HD25/94; and

Description of the materials encountered in the exploratory holes.

Based on this it is considered that a CBR of 3% may be used.

Based on the plasticity data the soils are not considered frost susceptible in accordance with Road Note 29.

Following excavation, the sub formation should be proof rolled and any soft material inspected and removed.

7.6 Excavations

Site observations indicated that excavations should be feasible in the near surface with normal plant.

All excavations where access is required should be supported or battered back in accordance with guidance contained in CIRIA RR97.

7.7 Buried Concrete

Results of the sulphate analysis from the chemical tests undertaken as part of the previous investigation indicates that soils have soluble sulphate concentrations of less than 0.5 g/l consistent with DS1 Conditions. Taking account of groundwater conditions and pH it is considered that buried concrete maybe designed to meet the requirements of AC-1s.

8 CONTAMINATED LAND RISK ASSESSMENT

8.1 Human Health

8.1.1 Approach

Brown 2 Green Associates Ltd has undertaken a Tier 1 Human Health Risk Assessment to determine if any potential contaminants within the underlying soil pose an unacceptable level of risk to the identified human health receptors.

At a Tier 1 stage the long term (chronic) human health toxicity of the soil has been assessed with reference to Generic Assessment Criteria (GAC) detailed in Nathanail, C. P., McCaffrey, C., Gillett, A. G., Ogden, R. C. and Nathanail, J. F. 2015. The LQM/CIEH S4ULs for Human Health Risk Assessment. Land Quality Press, Nottingham (Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3086). If no generic GAC (CIEH/LQM) is available, reference has been made to Category 4 Screening Values or GAC have been determined by Brown 2 Green Associates Ltd using CLEA 1.06 with adjustments based on input data used in the calculation of Category 4 Screening Values.

For the assessment of risk to human health from groundwater a qualitative risk assessment has been undertaken. Within this section we have only considered the risk to users of the site. An assessment of risk to human health beyond the boundaries of the site is considered as part of the risk to controlled waters.

8.1.2 Risk from Soil

Risk to Future Site Users

For the purposes of the Tier 1 assessment Brown 2 Green Associates Ltd have initially compared the additional laboratory test results for bulk chemistry directly to the relevant Brown 2 Green Associates Ltd Tier 1 human health screening criteria for residential with plant uptake end use with a soil organic matter content of 1%. None of the results exceed the GAC. As all of the results are below their respective GAC, it is considered that soils at the site will not pose an unacceptable level of risk to human health of the future residents.

Asbestos was not identified in any of the soil samples submitted for screening analysis.

Risk to Construction Workers

In respect to the risk to construction workers, this report and the generic assessment criteria (GAC) consider long term and chronic risk to humans based on defined exposure scenarios set out in the CLEA model. In some cases, contaminants may also pose acute hazards to workers at a site, or a worker's exposure scenario may differ from the scenarios considered when deriving the GAC. As exposure times for construction workers are generally short term, risks from site contamination are generally addressed through the use of appropriate working procedures and the use of personal protective equipment (PPE) in line with the Management of Health and Safety at Work Regulations (1999), Construction (Design) Management Regulations (2007) for some sites and the Control of Substances Hazardous to Health Regulations (2002).

8.1.3 Risk from Asbestos Containing Materials

Fragments of cement based asbestos containing materials were observed across the ground surface

within the land that contains the poultry sheds. It is suspected that the source of these fragments is damage to the sheds. No loose fibres or fragments of ACM were identified within the soil or buried at depth.

For the assessment of risk to future site users from the fragments of cement sheeting to future site users reference has been made to The Decision Support Tool for the Qualitative Risk Ranking of Work Activities and Receptors Involved in or Exposed to Asbestos in Soil and Construction & Demolition Materials (CL:AIRE Version 2.1, March 2017). For the assessment it has been assumed that minor damage to the fragments of ACM will occur resulting in the release of fibres. The tool indicates the following:

Hazard ranking: Very Low (3); Exposure ranking: Low (5); Receptor ranking: High (7); Combined hazard, exposure and receptor ranking: Low; Pathway ranking: Medium (4D); Overall ranking: Low.

A copy of the assessment is presented in Appendix VIII.

From the results of the site investigation and assessment of risk using the CL:AIRE Model Qualitative Risk Ranking, it is considered that the risk to future site users from the asbestos present within the fragments identified across the ground surface is Low. The ranking of the receptor has been identified as high.

In respect to the risk to construction workers excavation activities will need to be undertaken. The results from the CL:AIRE Decision Support Tool for the Categorisation of Work Activities Involving Asbestos in Soil and Construction and Demolition Materials in accordance with the Control of Asbestos Regulations 2012 (Version 2.1, March 2017) (Joint Industry Working Group (JIWG)) are as follows:

```
Hazard ranking: Very low (5);
Exposure ranking: Low (8);
Combined hazard and exposure ranking: Low (13).
```

A copy of the assessment is presented in Appendix VIII.

During the construction activities, the fragments of asbestos containing materials may be damages and loose fibres may be created. The assessment completed by Brown 2 Green Associates is based on typical construction site activities such as the excavation of the soil and the movement of plant and machinery. It does not consider the screening and crushing activities. Therefore, during the construction phase, as required by the Management of Health and Safety at Work Regulations (1999), Construction (Design) Management Regulations (2007) and the Control of Asbestos at Works Regulations (2012) risk assessments should be completed to determine the level of risk from all project specific construction activities.

8.1.4 Risk from Groundwater

As no pollution linkages have been identified, it is considered contamination in the groundwater beneath the site will not pose an unacceptable level of risk to human health.

8.2 Ground Gas

Based on the results of the additional gas monitoring undertaken and the review of the results of the gas monitoring undertaken by ASL, a revised ground gas risk assessment has been prepared. The potential impact on the development (human health and buildings) from biogenic ground gases has been assessed with reference to standards and guidelines published in CIRIA Report 665 (Assessing risks posed by hazardous ground gases to buildings, 2007).

In accordance with the methodology outlined within the CIRIA publication C665, Brown 2 Green Associates Ltd have utilised the results of the ground gas monitoring surveys to calculate a Gas Screening Value (GSV) for the proposed development. The GSV has been compared to the criteria outlined within CIRIA C665 to determine the level of risk to the proposed development and to ensure the appropriate remedial options are incorporated into the building design. The results are presented in Appendix VII.

Based on the classification scheme proposed by CIRIA Report 665, the Gas Screening Values (GSV) for methane and carbon dioxide detected across the site would be classified as Characterisation Situation (CS) 1, which for any new developments current guidance suggests that no special gas protection precautions are required. Again, carbon dioxide levels were identified at concentrations slightly above the typical values for site classified as CS1. As required by the guidance consideration has been given to up-grading the site to CS2. However, it is considered that the site should remain as CS1 for the following reasons.

The desk study did not identify any sources that would result in the generation of significant volumes of ground gas. The source of the carbon dioxide that has been detected is considered to be the weathering of the chalk gravel that is contained within the gravel clay identified beneath the site. The drilling of the boreholes and installation of the monitoring wells will penetrate trapped pockets of carbon dioxide, there were identified during the first visit. The first monitoring round purged these concentrations of carbon dioxide from the wells; hence no carbon dioxide was recorded during subsequent visits. It is therefore considered that the weathering of the chalk gravel will not act a major source for the generation of significant volumes of carbon dioxide that would pose an unacceptable level of risk.

No flows were recorded during the monitoring completed by Brown 2 Green Associates. The flows that were recorded by ASL were artificial and were either the result of the monitoring undertaken or the rise in groundwater levels within the monitoring well that recorded flow. This well was also flooded when monitoring. As no flows are present there is a lack of flux to result in migration of ground gas.

Based on the findings of the revised ground gas risk assessment it is considered that the site should be classified as CS1 and no gas protection measures are required.

8.3 Risk to Controlled Water

To assess risk to controlled waters from the leaching of determinants from soil, a Qualitative Risk Assessment has been made based on the concentrations identified within the soil samples and site conditions. From the results it is considered that concentrations will not be mobilised at concentrations that would pose an unacceptable level of risk to controlled waters.

8.4 Risk to Planting

An assessment of risk to from potentially phytotoxic metal compounds has been completed. In the absence of published assessment criteria specifically for contaminated land, GAC have been obtained from legislation (UK and European) and guidance related to the use of sewage sludge on agricultural fields.

For the assessment values defined in The Sludge (use in Agriculture) Regulations 1989 (Public Health England, Wales and Scotland), as amended in 1990 and The Sludge (use in Agriculture) Regulations (Northern Ireland) SR No, 245, 1990 have been adopted. In addition the Department of Environment (DoE) produced a Code of Practice (CoP) (Updated 2nd Edition) in 2006 which provided guidance on the application of sewage sludge on agricultural land. The specified limits of concentrations of selected elements in soil are presented in the 2nd Edition of the DoE Code of Practice and are designed to protect plant growth.

As all concentrations are below their respective assessment criteria, it is considered that the concentrations of phytotoxic metals are not at levels that would pose an unacceptable level of risk to planting.

8.5 Risk to Construction Materials

The assessment of the risk to concrete from the concentrations of sulphate and the pH in the soil has been made using BRE guidance Special Digest 1:2005 Concrete in Aggressive Ground.

Following the guidance set out in the Digest, the Design Sulphate class for the site is DS-1 and the Aggressive Environment for Concrete Class is AC-1. Based on the results of the assessment it is considered that the made ground beneath the site will not pose an unacceptable level of risk to concrete through acid attack.

8.6 Risk to Water Supply Pipe

The assessment of risk to pipe work used in the potable water supply has been made using UK Water Industry Research (UKWIR) "Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites" (Ref 10/WM/03/21)" January 2011 and supplement "Contaminated Land Assessment Guidance" dated January 2014. The results from samples of made ground (through which any new water supply pipes are likely to pass) have been compared with the threshold values listed in the UKWIR guidance. It should be noted that the threshold values are for use by designers in the selection of appropriate pipe materials. Exceedance of a threshold value indicates only that there could be a 'water quality issue'. Threshold values are generally protective of taste and odour quality of water in plastic water pipes and only threshold values for benzene and MTBE are protective of human health.

Beneath the site the results indicate that concentrations are at levels that enable PE/PVC pipe work to be adopted. It is recommended that the relevant water supply company be contacted at an early stage to confirm its requirements for assessment, which may not necessarily be the same as those recommended by UKWIR.

8.7 Risk to Sensitive Ecological Receptors

As no receptors were identified, it is considered that contamination will not pose an unacceptable risk to ecological receptors.

8.8 Risk to Historical Structures and Monuments

As no receptors were identified, it is considered that contamination will not pose an unacceptable risk to historical structures and monuments or sites of historical interest.

9 REVISED CONCEPTUAL MODEL

In light of the results of the site investigation, results of the chemical analysis and the risk screening assessment presented in the previous sections the conceptual model developed has been updated. The conceptual model is presented below.

Source	Potential migration pathway	Potential Receptors	Discussion, Remedial or Precautionary Measures and Mitigating Factors
Fragments of cement sheeting that contain asbestos	Inhalation of fibres	Residents and construction workers	Future residents are low risk, but receptor sensitivity considered to be high. Remediation should consist of the removal of the fragments of asbestos containing cement based product identified across the ground surface within the land containing the poultry houses.

10 RE-USE OF SOILS AND WASTE CLASSIFICATION

10.1 Reuse of Suitable Soils

In accordance with the definition of waste detailed in the Waste Framework Directive, waste materials are considered to be 'materials that are discarded, intended to be discarded or required to be discarded, by the holder'. Thus, soils that are not of clean and natural origin, i.e. made ground (whether contaminated or not) and other materials such as recycled aggregate, do not become waste until the aforementioned criteria are met. Naturally occurring soils are not considered waste if reused on the site of origin for the purposes of development.

The Definition of Waste: Development Industry Code of Practice (CL:AIRE, 2011) (CoP) was developed in consultation with the Environment Agency to enable the re-use of soils that would be classified as waste. To enable the soils to be re-used certain re-use scenarios must be present. These being:

Re-use on the site of origin (with or without treatment);

Direct transfer of clean and natural soils between sites; and

Use in the development of land other than the site of origin following treatment at an authorised Hub site (including a fixed Soil Treatment Facility).

The importation of made ground soils (irrespective of contamination status) or crushed demolition materials is not currently permitted under the CoP.

For waste soils to be used on development site, four factors are considered to be of particular relevance in determining if the soil is a waste or when it ceases to be waste:

When the soil is reused it will not create an unacceptable risk of pollution of the environment or harm to human health. If so, it is still waste;

There is certainty that the soil will be used;

The soil is suitable for use both chemically and geotechnically; and

Only the required quantity of soil will be used.

The CoP requires the preparation of a materials management plan (MMP) that confirms the above factors will be met. This plan needs to be reviewed by a 'Qualified Person' (QP) who will then issue a declaration form to the EA. As the project progresses, data must be collated and on completion a verification report produced that shows the MMP was followed and describes any changes. The MMP establishes whether specific materials are classified as waste and how excavated materials will be treated and/or re-used in line with the CoP. The MMP is likely to form part of the site waste management plan.

As the site has not been previously developed all excavation works are expected to generate only clean and naturally occurring soils. Under the Waste Framework Directive naturally occurring soils are not considered waste if re-used on the site of origin. However, if it is proposed to import clean and naturally occurring soils direct from another site, an MMP would need to be in place at the receiving site.

10.2 Waste Classification

The classification of waste soil is a two-stage process, the first being an assessment of whether the soil is considered hazardous or not following the guidance within EA Technical Guidance WM2 – Guidance on the Classification and Assessment of Waste. The assessment is based on the bulk

chemistry of the soils and contamination levels that are present. If the soil is deemed to be hazardous then the measurement of the organic contaminants and the leachable inorganic contaminants is necessary for comparison with values listed (Table 5.1) in the EA publication *Guidance on sampling and testing of wastes to meet landfill acceptance procedures*. The results of Waste Acceptance Criteria (WAC) testing must then be reviewed to establish if the soil is acceptable at the relevant class of landfill or requires pre-treatment to reduce specific hazardous properties. Similarly, should the soil be deemed as non-hazardous then such testing may be undertaken to determine is soil can be classified as inert waste.

The WM2 guidance also provides details of the European Waste Catalogue (EWC) code that should be applied. Group 17 of the EWC codes comprises of 'Construction and Demolition Wastes (including excavated soils from contaminated sites)'. Soils will generally be classed as either 17 05 04 which is defined as 'soil and stone (other than those mentioned in 17 05 03); or 17 05 03 which is defined as soil or stone containing dangerous substances.

As the contamination data shows the soils to be below the GAC for residential use the site can be considered 'uncontaminated land.' Surplus soils should be considered non-hazardous or inert under WMP2 as it does not contain 'hazardous material' and have an EWC code of 17.05.04.

The results of the WAC analysis indicate the soil should be classified as inert waste.

All materials that contain asbestos will be classified as Hazardous Waste.

Some landfill sites have licences that place restrictions on the concentrations of contaminants within soil that can be acceptance. Landfill sites are under no obligation to accept waste if they choose not to and waste operator may also require additional testing. Landfill sites are also required to undertake further testing of wastes that they receive to ensure they comply with the requirements of their licences.

11 GEO-ENVIRONMENTAL CONCLUSIONS AND RECOMMENDATIONS

11.1 Conclusions

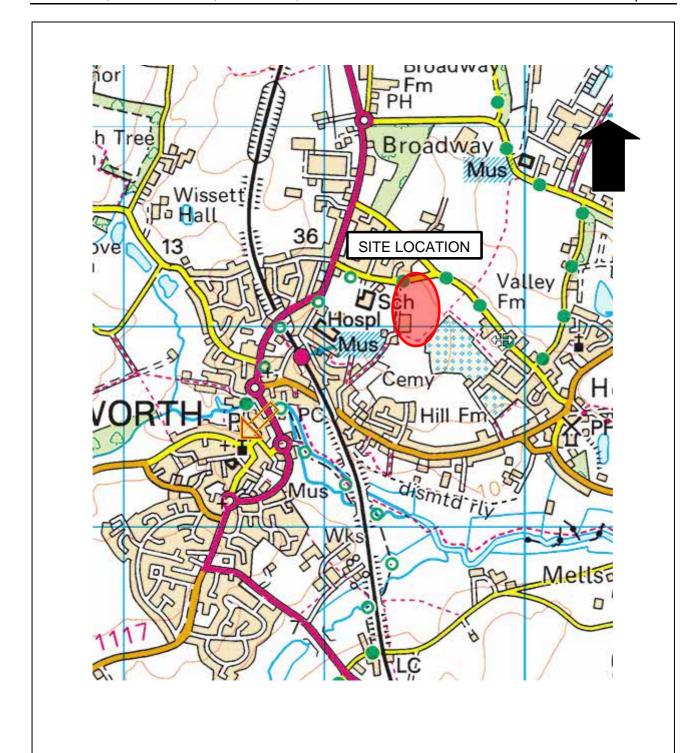
The Tier I Human Health Risk Assessment has determined that there are no concentrations of potential contaminants within the underlying made ground and natural soils that would pose an unacceptable risk to human health of future site occupants and users. Fragments of cement-based product that contain asbestos were identified across the ground surface within the part of the site that contains a series of poultry sheds located within the southern part of the site. In their current form it is considered that the level of risk is very low. However, should made to the fragments occur and fibres are released the level of risk would be increased to low. The receptor sensitivity is considered to be high; it is therefore considered that the level of risk to human health is unacceptable and remediation is required.

The Tier I Controlled Water Risk Assessment has determined that there are no concentrations of potential contaminants within the underlying soils that would pose an unacceptable risk to controlled waters.

The monitoring and risk assessment for bio-genic ground gas concluded that there are no concentrations at levels that would pose an unacceptable risk to human health and the proposed development.

The risk assessment in respect to the future planting and towards sensitive ecological receptors identified that the determinants at the site are at levels that would not pose an unacceptable level of risk to future planting and sensitive ecological receptors.

The risk assessment in respect to water supply infrastructure identified that the determinants at the site would not pose an unacceptable level of risk to the integrity of PE or PVC pipework.


11.2 Recommendations

Based on the results of the site investigation the following recommendations are made:

To mitigate the future risk from the presence of asbestos within the fragments of cement-based asbestos containing materials it is considered that remediation is required. As the fragments are only present across the ground surface within the land currently occupied by the poultry sheds, it is recommended that there should be collect and removed from site. The most suitable methodology would be to hand pick the surface. This should be undertaken either immediately prior to or during the demolition of the former poultry sheds. Following the removal of the fragments verification of the area should be undertaken to provide confirmation that the fragments have been removed.

A Remediation Method Statement that details the proposed remediation strategy and the verification plan is contained in Appendix IX.

FIGURES

Based on an Ordinance Survey map with permission of HMSO. Crown copy right reserved. Licence number 100053399

Project Number: 2954	Project: Harrisons Lane, Halesworth	Scale: NTS
Figure 1	Site Location Plan	Brown Green

APPENDIX I LIMITATIONS AND CONSTRAINTS

Brown 2 Green Associates Limited has prepared this report in accordance with our standard Terms and Conditions solely for the use of the Client and those parties with whom a warranty agreement has been executed, or with whom an assignment has been agreed and outlined in the body of the report.

Brown 2 Green Associates Ltd cannot be held responsible for any use of the report or its contents for any purpose other than that for which it was prepared. The client cannot place reliance on the report until full payment has been made. The copyright in this report and other plans and documents prepared by Brown 2 Green Associates Ltd is owned by them and no such plans or documents may be reproduced, published or adapted without written consent. Complete copies of the report may, however, be made and distributed by the client as is expected in dealing with matters related to its commission. Should the client pass copies of the report to other parties for information, the whole report should be copied, but no professional liability or warranties shall be extended to other parties by Brown 2 Green Associates Ltd in this connection without their explicit written agreement thereto by Brown 2 Green Associates Ltd.

For the work, reliance has been placed on publicly available data obtained from the sources identified and data supplied by other parties. The information is not necessarily exhaustive and further information relevant to the site may be available from other sources. When using the information it has been assumed it is correct. No attempt has been made to verify the information. Brown 2 Green Associates Ltd does not warrant work / data undertaken / provided by others.

Due to the short timescales associated with these projects responses may not have been received from all parties. Brown 2 Green Associates Limited cannot be held responsible for any disclosures that are provided post production of our report and will not automatically update our report.

This report has been produced in accordance with UK policy and legislative requirements for land and groundwater contamination at the time the report was commissioned. Should changes in legislation or policy occur the report findings may need revisiting once the development layout is confirmed.

During the site walkover reasonable effort has been made to obtain an overview of the site conditions. However, during the site walk-over no attempt has been made to enter areas of the site that are unsafe or present a risk to health and safety, are locked, barricaded, overgrown or the location of the area has not been made known, or where access has not been permitted.

Access considerations, the presence of services and the activities being carried out on the site limited the positions where sampling locations could be installed and the techniques that could be used.

This report presents an interpretation of the geo-environmental information established by excavation, observation and testing. It should be noted that when investigating, or developing land it is important to recognise that sub-surface conditions may vary spatially and also with time. Groundwater conditions are dependent on seasonal and other factors. Consequently there may be conditions present not revealed by this investigation. The absence of certain ground, ground gas, and contamination or groundwater conditions at the positions tested is not a guarantee that such conditions do not exist anywhere across the site. Due to the presence of existing buildings and structures access could not be obtained to all areas. Additional contamination may be identified following the removal of the buildings or hard standing.

The scope of any investigation is based on the specific development and land use scenario proposed by the Client and may be inappropriate to another form of development or scheme. If the development layout was not known at the time of the investigation the report findings may need revisiting once the development layout is confirmed.

Rather, this investigation has been undertaken to provide a characterisation of the existing subsurface geo-environmental characteristics and make up and the findings of this study are our best interpretation of the data collected, within the scope of work and agreed budget. New information, revised practices or changes in legislation may necessitate the re-interpretation of the report, in whole or in part.

During any development programme Brown 2 Green Associates Limited should be consulted if alternative ground conditions are encountered. It assumes during any site works that the contractor will use their best endeavours to manage and control groundwater and other unforeseen ground conditions. Brown 2 Green Associates Limited will not be liable for actions taken prior to consultation.

Where mention has been made to the identification of Japanese Knotweed and other invasive plant species and asbestos or asbestos-containing materials, this is for indicative purposes only and does not constitute or replace full and proper surveys.

APPENDIX II PROPOSED DEVELOPMENT LAYOUT

APPENDIX III

PREVIOUS SITE INVESTIGATION REPORT PREPARED BY ASL

GROUND INVESTIGATION LAND OFF HARRISONS LANE HALESWORTH

Prepared for: Richborough Estates Limited

ASL Report No. 450-18-087-10

August 2019

ASL Holly Farm Business Park Honiley Warwickshire CV8 1NP

T: +44(0)1926485508 F: +44(0)1926485507

E: info@aslenvironmental.co.uk W: www.aslenvironmental.co.uk

GROUND INVESTIGATION LAND OFF HARRISONS LANE HALESWORTH

CONTENTS

1	INTRODUCTION	4
2	THE SITE	5
3	ENVIRONMENTAL SETTING	7
4 4.1 4.2 4.3 4.4 4.5	GROUND INVESTIGATION AND TESTING Ground Investigation Soakaway Testing Gas and Groundwater Monitoring Chemical Laboratory Testing Geotechnical Laboratory Testing	9
5 5.1 5.2 5.3 5.4 5.5 5.6	GROUND, GROUNDWATER AND GAS CONDITIONS Materials Encountered Visual and Olfactory Evidence of Contamination Dynamic Cone Penetration Testing Soakaway Testing Groundwater Gas	. 11 . 12 . 13 . 13
6 6.1 6.2 6.4 6.5 6.6 6.7 6.8 6.10	GEOTECHNI CAL ASSESSMENT General Earthworks Foundation Assessment Floor Slabs Road Pavements Excavations Dewatering Buried Concrete Classification Gas Protection Measures Drainage Design and Surface Water Management	. 14 . 14 . 16 . 16 . 16 . 17
7 7.1 7.2 7.3	CONTAMINATION ASSESSMENT - HUMAN HEALTH. Introduction	. 18 . 18
8 8.1 8.2 8.3	CONTAMINATION ASSESSMENT - CONTROLLED WATERS. Introduction	. 21 . 21
9	WASTE DISPOSAL	23
10	DI SCOVERY STRATEGY	24
11	CONCLUSIONS AND RECOMMENDATIONS	25
REF	ERENCES	27

GENERAL NOTES......28

TABLES

- 1 Summary of Strata Encountered
- 2 Summary of Data with Respect to Human Health (Tier 1)
- 3 Summary of Soils Data with Respect to Controlled Waters (Tier 1)

FIGURES

- 1 Site Location Plan
- 2 Site Layout Plan
- 3 Conceptual Model
- 4 SPT 'N' Value Versus Depth
- 5 Foundation Zoning Plan
- 6 Extent of Recommended Gas Protection Measures

APPENDICES

- I Proposed Development Layout
- II Field Records
- Chemical Laboratory Test ResultsGeotechnical Laboratory Test Data
- V Qualitative Risk Assessment

GROUND INVESTIGATION LAND OFF HARRISONS LANE HALESWORTH

1 INTRODUCTION

In January 2019, ASL were instructed by Richborough Estates Limited to undertake the necessary ground investigation and consultancy services associated with the proposed development of the site known as Land off Harrisons Lane, Halesworth.

A ground investigation is required in order to determine the contaminative and geotechnical properties of the ground conditions at the site ahead of its proposed development. It is understood that the proposed development comprises the construction of residential dwellings with associated areas of hardstanding for access and parking and soft landscaping for gardens and public open space including sustainable urban drainage features. A proposed illustrative masterplan is presented as Appendix I.

ASL has previously undertaken a Desk Study report of the site (report reference 450-18-087-11, dated February 2019). This report assessed the potential for environmental and geotechnical risk issues and liabilities pertaining to the future development of the site. Based on the findings of the desk study it was recommended that an intrusive ground investigation was completed ahead of any development works to determine the founding properties of the underlying ground conditions and to determine the actual contaminative status of the site. In particular the central southern portion of the site in the vicinity of existing poultry farm was identified as potentially of concern. It was recommended that the intrusive investigation included an assessment of hazardous ground gas.

The scope of works for this project was set out in ASL's proposal reference 450-18-087.elo.2786 dated 24^{th} January 2019 which was formally accepted by Richborough Estates Limited in their email dated 30^{th} January 2019.

This report presents the results from an intrusive investigation and subsequent laboratory analyses and interpretative comment in terms of contaminative status and the geotechnical properties of the ground conditions encountered at the site in relation to the proposed development. This report should be read in conjunction with ASL's Desk Study Report.

This report has been prepared for the sole benefit of the client, Richborough Estates Limited and their representatives and agents. The report has been written based on the results of data searches and ground conditions encountered at the time of the investigation and the results of subsequent analyses and monitoring. Future changes in legislation and advances in current best practises or provision of more detailed design proposals will result in this report requiring review and possible further assessment after the date of issue. The general notes section within this report should be noted in relation to the limitations of this investigation and assessment.

2 THE SITE

The site is located to the south of Harrison Lane and to the east of Halesworth town centre. The site can be located approximately by National Grid Reference TM 394 780 as shown on Figure 1.

The site comprises an irregularly shaped piece of land with maximum dimensions of approximately 450m by 325m with the long axis aligned east to west and covering an area of approximately 8.6 hectares.

The site is separated into five areas as shown on Figure 2.

The first area named 'BN 1' occupies the north-west of the site. This portion of the site generally comprises a roughly rectangular shaped agricultural field with maximum dimensions of approximately 120m by 115m with the long axis aligned east to west. This portion of the site is generally flat lying and is separated from the remainder of the site by mature hedgerows including mature trees. The northern boundary is marked by sporadic trees. Access to this portion of the site is from Harrison Lane in the north-east via gaps in the trees.

The second and third areas named 'BN 2' and 'BN 3' occupy the central northern and north-eastern portions of the site. These areas are not separated by a physical boundary. The boundary between these areas is marked by overhead electricity cables supported on wooden poles that transect the site from north-north-east to south-south-west centrally. From here on these areas will be described together. This portion of the site generally comprises an irregularly shaped agricultural field with maximum dimensions of approximately 340m by 230m with the long axis aligned east-north-east to west-southwest. This portion of the site generally slopes down to the north-east with a maximum change in elevation of approximately 12m across this area. A possible borehole installation is present in the north-east corner of the site comprising a 50mm internal diameter slotted plastic well screen that protrudes from the ground surface. A second set of overhead power lines transect this portion of this area from north to south. A small area of hardstanding is present in the south-west corner of this field. A pond is located in the vicinity of the site boundary in the south-east of this area. The northern, eastern and southern boundaries are marked by mature hedgerows including mature trees. The western boundary is marked by an access roadway running south from Harrison Lane to area 'BN 5'.

The fourth area named 'BN 5' occupies the central southern portion of the site. This portion of the site generally comprises a rectangular shaped piece of land developed with a poultry farm. This portion of the site has maximum dimensions of approximately 105m by 75m with the long axis aligned approximately north to south. This portion of the site is generally flat lying. The site is occupied by five single storey wooden poultry sheds with sloping corrugated cement bonded sheeting roofs. The sheds are generally surrounded by areas of concrete hardstanding that is locally in a poor state of repair and grassed soft landscaping. Numerous fragments and sheets of corrugated cemented bonding sheeting are present at the surface surrounding the sheds.

Two above ground fuel storage tanks (AST) are present in this portion of the site comprising a metal disused AST and a newer plastic self-bunded AST. Further to this, bunds are present associated with each shed that may indicate that these structures formerly had their own heating oil AST. The sheds heating system appears to now be gas. Significant visual or olfactory evidence of contamination was not identified associated with

these structures. However, a barrel of oil was noted to be present with significant staining present at the ground surface in this area.

A wheel wash and a small waste burning area are present in the north-west of this area. The east of this area comprises an area of open space. A number of small ponds are present in this portion of the site.

This portion of the site is separated from the remainder of the site and the surrounding areas by mature hedgerows including mature trees.

The fifth area named 'BN 4' occupies the south-east of the site. This portion of the site generally comprises an irregularly shaped agricultural field with maximum dimensions of approximately 105m by 95m with the long axis aligned approximately east to west. This portion of the site generally slopes down to the east with a maximum change in elevation of approximately 2m across the site. Overhead electricity cables transect this portion of the site from north to south in the east that continue to area 'BN 3' to the north. This portion of the site is separated from the remainder of the site and the surrounding areas by mature hedgerows including mature trees.

The site is bound to the north by Harrisons Lane with residential dwellings and undeveloped agricultural land beyond, to the east by undeveloped agricultural land and a farm, to the south-west by Loam Pit Lane with a cemetery beyond, to the south by agricultural land with residential dwellings beyond, to the west by undeveloped agricultural land and a former educational facility. Drainage ditches are present in the majority of the site boundaries and within field boundaries separating the site into the five areas.

It is understood that the proposed development comprises the construction of residential dwellings with associated areas of hardstanding for access and parking and soft landscaping for gardens and public open space including sustainable urban drainage features. A proposed illustrative masterplan is presented as Appendix I.

3 ENVIRONMENTAL SETTING

The British Geological Survey (BGS) Sheet No. 176 'Lowestoft' Solid and Drift and the Geology of Britain Viewer indicates the majority of the site to be underlain by drift geology comprising cohesive deposits of the Lowestoft Formation. The north-east of the site is indicated to be underlain by granular deposits of the Lowestoft Formation. The Lowestoft Formation is generally described as 'forms an extensive sheet of chalky till, together with outwash sands and gravels, silts and clays. The till is characterised by its chalk and flint content'. The thickness of the Lowestoft Formation is not defined at the site by the BGS however this stratum is indicated to be highly variable in thickness.

Drift geology comprising Head is indicated to be present at the surface and overlying the granular Lowestoft Formation strata in the north-east corner of the site. The Head is generally described as 'polymict deposit: comprises gravel, sand and clay depending on upslope source and distance from source. Poorly sorted and poorly stratified deposits formed mostly by solifluction and/or hillwash and soil creep. Essentially comprises sand and gravel, locally with lenses of silt, clay or peat and organic material'. The thickness of the Head is not defined by the BGS at the site.

The Lowestoft Formation is indicated to be underlain by solid geology comprising gravels of the Crag Group. The Lowestoft Formation in the north-east of the site is indicated to be underlain by the Crag Group. The Crag Group is generally described as 'sands, gravels, silts and clays. The sands are characteristically dark green from glauconite but weather bright orange with haematite iron pans' by the BGS. The thickness of the Crag Group is not defined by the BGS at the site. However, this stratum is indicted to be of significant thickness in the vicinity of the site.

Significant areas of Made Ground are located at the surface in the vicinity of the site with the nearest located approximately 20m to the west and south-west. The Made Ground is generally described as 'landscaped ground (undivided)' or 'worked ground undivided (void)' by the BGS. The thickness of the Made Ground is not defined by the BGS.

In addition to the published geology, it is expected that Topsoil and locally Made Ground will be present at the surface or beneath hardstandings given the current use of the site.

There are seven BGS recorded mineral sites located within 0.5km of the site. The first listing relates to the open cast extraction of sand and gravel from the Lowestoft Group located approximately 25m to the north-east. The remaining listings relate to the open cast extraction of sand and gravel and locally clay from the Lowestoft Group and locally the Crag Group at distances greater than approximately 170m from the site.

The cohesive Lowestoft Formation and the Head deposits are classified by the EA as Secondary Aquifers - Undifferentiated. The granular Lowestoft Formation is classified by the EA as a Secondary Aquifer - A. The Crag Group is classified by the EA as a Principal Aquifer.

The nearest identified surface water feature is an unnamed stream located directly to the east of the north-eastern corner of the site. This surface water feature is not classified chemically or biologically by the EA in the vicinity of the site.

There is one abstraction from surface water located within 1.0km of the site. This listing relates to the abstraction of surface water for spray irrigation located approximately 200m to the south-east. It is noted that the license associated with this abstraction is listed as revoked.

There are twenty-eight abstractions from groundwater located within 1.0km of the site. The first three listings relate to the abstraction of groundwater for industrial process water located at distances between approximately 265m and 385m to the west. The licenses associated with these abstractions are listed as revoked. The fourth listing relates to an active abstraction of groundwater for potable supply located approximately 475m to the east. Of the twenty-three remaining listings, sixteen are for the abstraction of groundwater for potable supply with the closest located approximately 545m to the east. The remaining seven listings relate to the abstraction of groundwater for washing process water, spray irrigation and general commercial or industrial use located at distances greater than approximately 675m from the site.

The south of the site is located in a Source Protection Zone (SPZ) II (outer protection zone). Boundaries with SPZ I (inner protection zones) are located approximately 190m to the north-east and 335m to the south.

The site located in an area with limited potential for groundwater flooding to occur.

The site is indicated to be in a lower probability radon area and that new homes, or extensions do not require radon protection measures.

4 GROUND INVESTIGATION AND TESTING

4.1 Ground Investigation

The scope of works was defined for the project by ASL and comprised four cable percussion boreholes, eleven windowless sample boreholes, twenty mechanically excavated trial pits with soakaway testing undertaken in selected pits and seven insitu dynamic cone penetrometer (DCP) CBR tests. The intrusive investigation was designed to target identified potential sources of contamination and hazardous ground gas, to target the location of the proposed development and to give general site coverage to obtain information relating to the contaminative status of the site and the geotechnical properties of the underlying ground conditions. The positions of exploratory holes have been surveyed and plotted approximately on Figure 2.

The ground investigation was carried out in general accordance with BS5930 (2015) 'Code of Practice for Site Investigations' and BS10175+A2:2017 'Code of Practice for the Investigation of Potentially Contaminated Sites' and in accordance with current best practice.

The scope of works for the ground investigation was as follows:

- 4 No. cable percussion boreholes (BH) to a maximum depth of approximately 15m bgl;
- 11 No. windowless sample boreholes (WS) to a maximum depth of approximately 5.45m bgl;
- Insitu standard penetration tests (SPT) at regular intervals within all BH and WS;
- 20 No. machine excavated trial pits (TP) to a maximum depth of approximately 3.2m bgl;
- Installation of combined gas and groundwater monitoring standpipes in selected WS:
- Insitu soakage testing at selected trial pit locations;
- 7 No. insitu CBR tests completed by Dynamic Cone Penetration (DCP);
- Chemical and geotechnical laboratory testing;
- Gas and groundwater monitoring programme.

The ground investigation was undertaken between the 3^{rd} and 25^{th} June 2019. The intrusive investigation was supervised by suitably experienced geo-environmental engineers from ASL. The exploratory holes were logged by the supervising engineers and the logs are presented in Appendix II.

4.2 Soakaway Testing

Soakaway permeability tests were completed within selected mechanically excavated trial pits on 13th June 2019 in general accordance with BRE Digest 365. The soakaway tests were completed by filling the trial pits with clean water and monitoring the rate at which the water fell. Due to the rate of infiltration and the time constraints on the project, the soakage tests did not run to completion. The results of the soakaway testing are presented in Appendix II.

4.3 Gas and Groundwater Monitoring

A gas and groundwater monitoring programme comprising three monitoring events was completed between 10th and 24th July 2019. The monitoring events comprise level measurements of methane, oxygen, carbon dioxide, carbon monoxide, hydrogen sulphide,

relative and atmospheric pressure, gas flow rate and groundwater level. The results of the gas and groundwater level monitoring are presented in Appendix II.

4.4 Chemical Laboratory Testing

Selected soil samples were scheduled for chemical testing for a range of contaminants in order to determine the general contaminative status of conditions on the site.

The samples were scheduled for chemical laboratory testing for the following determinants:

Arsenic, Boron (water soluble), Beryllium, Cadmium, Chromium (total and VI), Copper, Cyanide (free and total) Lead, Mercury, Nickel, Selenium, Vanadium, Zinc, Poly-cyclic Aromatic Hydrocarbons (PAH) (16 No. speciated), Total Petroleum Hydrocarbons (TPH), pH, Phenols, Sulphate (soluble), Total Sulphur, Total Sulphate, fraction of organic carbon, Asbestos (Made Ground only).

Further to this, selected samples were schedule for a suite of pesticides based on the findings of the Desk Study and for speciated TPH (CWG) based on visual and olfactory evidence of contamination. Further to this, a bulk fragment of cement bonded sheet collected from the ground surface in the vicinity of WS211 was scheduled for asbestos presence and identification.

Selected soil samples were scheduled for the following determinants in leachate:

Arsenic, Boron, Beryllium, Cadmium, Calcium, Chromium (total and hexavalent), Copper, Cyanide (free and total), Dissolved Organic Carbon, Lead, Mercury, Nickel, Selenium, Vanadium, Zinc, pH

The chemical testing is being undertaken by a UKAS accredited laboratory in accordance with the MCERTS accreditation where available.

The results of the chemical laboratory testing are presented in Appendix III.

4.5 Geotechnical Laboratory Testing

Geotechnical laboratory testing was completed on selected soil samples. The samples have been scheduled for Atterberg Limit testing to assess the volume change potential and material properties and sulphate testing to assess the concrete classification for the proposed development.

Additionally, selected samples were scheduled for particle size distribution (PSD) analysis.

The results of the geotechnical laboratory testing are presented in Appendix IV.

5 GROUND, GROUNDWATER AND GAS CONDITIONS

5.1 Materials Encountered

The published geology provided by the BGS indicates the majority of the site to be underlain by drift geology comprising cohesive deposits of the Lowestoft Formation with the north-east underlain by granular deposits of the Lowestoft Formation. Drift geology comprising Head is indicated to be present at the surface and overlying the granular Lowestoft Formation strata in the north-east corner of the site. The drift deposits are indicated to be underlain by solid geology comprising the Crag Group.

The intrusive investigation generally confirmed the published geology with generally cohesive and locally granular materials interpreted as the Lowestoft Formation encountered across the site. Drift deposits comprising Head and solid geology of the Crag Group were not encountered during the investigation. In addition to the published geology, a limited thickness of Made Ground, Made Ground Topsoil and Topsoil was encountered at the surface across the site. Table 1 presents a summary of the ground conditions encountered during the intrusive investigation. Full details are presented in Appendix II.

Table 1 Summary of Strata Encountered

Description	(m	f Unit bgl)	of Un	_ ` _	SPT 'N' Value
Topsoil Soft dark brown slightly sandy slightly gravelly to gravelly silty CLAY. Gravel is angular to rounded fine to coarse flint, quartzite, coal and chalk.	0.00	0.00	0.25	0.40	None Taken
Made Ground (Topsoil) Dark brown slightly gravelly slightly clayey SAND. Gravel is subangular to rounded fine to coarse brick, chalk, flint, quartzite and coal; Soft dark brown and brown slightly gravelly slightly sandy to sandy silty CLAY with rare subrounded cobbles of quartzite. Gravel is angular to rounded fine to coarse brick, chalk, coal, wood, plastic and flint.	0.00	0.00	0.20	0.60	None Taken
Made Ground Soft to very stiff brown green grey, orange brown and yellow brown slightly gravelly to gravelly sandy CLAY. Gravel is angular to subrounded fine to coarse flint, sandstone, plastic, chalk, coal, brick and quartzite.	0.25	0.40	0.20	0.55	None Taken
Lowestoft Formation Soft to very stiff orange brown, brown, green brown and grey sandy to very sandy gravelly silty CLAY with rare fragments of decomposing organic matter and rare to occasional decomposing roots and rootlets. Gravel is angular to rounded fine to coarse chalk, flint, siltstone, sandstone, shell fragments, charcoal and coal. Rare to occasional cobbles of sandstone, siltstone, chalk and flint and rare subangular boulders of siltstone. Localised hydrocarbon odour and staining; Medium dense to very dense light brown, green brown, yellow brown, orange brown and yellow slightly gravelly to gravelly clayey silty to very silty SAND with rare rootlets. Gravel is angular to rounded fine to coarse quartzite, chalk and flint; Dense light brown sandy slightly clayey angular to rounded fine to coarse GRAVEL of flint; Soft to firm cream, light brown and white slightly gravelly to gravelly slightly sandy to sandy SILT. Gravel is angular to subangular fine to medium chalk.	0.20	0.90	1.30*	14.70*	3 - >50

Notes: * = Base not proven

Ninety-five SPTs were completed within cohesive materials interpreted as the Lowestoft Formation that recorded SPT 'N' values of between 3 and >50 indicating typically medium to very high and locally low strength cohesive materials.

Ten SPTs were completed within granular materials interpreted as the Lowestoft Formation that recorded SPT 'N' values of between 21 and >50 indicating typically medium dense to very dense granular materials.

The SPT results are plotted versus depth on Figure 4.

Thirty-six hand shear vane tests were completed within the Lowestoft Formation at depths between 0.4m and 2.7m bgl that recorded results between 68kPa and >120kPa indicating medium to high strength cohesive materials.

Eleven samples of the cohesive materials interpreted as the Lowestoft Formation recovered from depths between 0.9m and 2.0m bgl were scheduled for Atterberg Limit determinations. The results of Atterberg limit testing indicate the materials tested to comprise clays of high plasticity with liquid limits of between 56% and 64%, plastic limits of between 20% and 24% and modified plasticity indices of between approximately 12% and 38% indicating the materials tested to be of medium to low volume change potential. Natural moisture contents of between 5.2% and 23% were recorded for the samples tested indicating that the materials tested to potentially be in a state of desiccation.

The results of the PSD analysis indicated the materials tested to comprise slightly gravelly slightly sandy silty clay.

The results of the geotechnical laboratory analysis are presented in full in Appendix IV.

5.2 Visual and Olfactory Evidence of Contamination

During the intrusive investigation, fragments of cement bonded sheeting, that may contain asbestos, were noted to be present at the surface in the vicinity of WS111. A sample of these fragments has been scheduled for laboratory analysis. It should be noted that further fragments of similar material have been noted to be present at the surface across the portion of the site developed with a poultry farm. Additionally, hydrocarbon odours were noted within the natural Lowestoft Formation materials at WS111 to a depth of 1.45m bgl. A slight hydrocarbon odour was noted between 0.3m and 0.65m bgl and a moderate hydrocarbon odour together with localised hydrocarbon staining was noted between 0.65m and 1.45m bgl.

The Made Ground and Made Ground (Topsoil) materials encountered across the site were noted to locally contain coal and charcoal fragments. Coal and charcoal are considered to be potential sources of longer chain polycyclic aromatic hydrocarbons (PAH) and longer chain aromatic total petroleum hydrocarbons (TPH).

Full details are presented on the exploratory hole logs in Appendix II.

5.3 Dynamic Cone Penetration Testing

Seven DCP tests were completed at the site. The results generally recorded CBR values between approximately 1.6% and 54.5% between ground level and approximately 0.9m bgl.

Full details are presented in Appendix II.

5.4 Soakaway Testing

Soakaway permeability tests were completed at TP107, TP111, TP113 and TP119 on the 13th June 2019. All four tests were completed within the natural materials interpreted as the Lowestoft Formation.

The soakaway permeability tests did not record significant infiltration at any of the test locations. The results of the permeability testing are presented in full in Appendix II.

5.5 Groundwater

During the intrusive investigation groundwater was encountered at WS101, WS108, WS110 and WS112 at depths between approximately 1.0m and 3.0m at WS112 and WS101 respectively.

During the subsequent monitoring programme groundwater was encountered within the monitoring installations at WS101, WS108, WS111 and WS112 during all three events and WS109 on the third event. Groundwater was recorded at depths between 0.43m and 2.17m bgl at WS111 and WS101 respectively.

Full details are presented in Appendix II.

5.6 Gas

As part of the monitoring programme below ground gas levels within monitoring standpipes were measured during three events completed between 10^{th} and 24^{th} July 2019. The results are presented in full in Appendix II.

Methane, carbon monoxide and hydrogen sulphide were not recorded in excess of the relevant analytical detection limits of the apparatus used during the monitoring programme.

Carbon dioxide was recorded in excess of the analytical detection limits of the apparatus used at all of the monitoring installations during the monitoring programme at concentrations between 0.9% by volume (v/v) and 9.5% v/v.

Oxygen was monitored above the analytical detection limits of the apparatus used at all monitoring installations during the monitoring programme at concentrations between 10.5% and 20.7% v/v.

Mean downhole pressures were generally recorded as zero during the monitoring programme with the exception of WS109 during the first monitoring event where an average downhole pressure of 1Pa was recorded.

Average flow rates were generally recorded as zero during the monitoring programme with the exception of WS109 during the first monitoring event where an average flow rate of 0.5I/hr was recorded.

The first monitoring event was completed during a period of standard atmospheric pressure between 1010mb and 1013mb. The second monitoring event was completed during a period of higher atmospheric pressure between 1016mb and 1019mb and the third monitoring event was completed during a period of lower atmospheric pressure between 1003mb and 1010mb.

6 GEOTECHNICAL ASSESSMENT

6.1 General

It is understood that the proposed development comprises the construction of residential dwellings with associated areas of hardstanding for access and parking and soft landscaping for gardens and public open space including sustainable urban drainage features. A proposed illustrative masterplan is presented as Appendix I.

The ground conditions at the site generally comprise variable cohesive and granular materials interpreted as the Lowestoft Formation. Additionally, a limited thickness of Made Ground, Made Ground Topsoil and Topsoil was encountered at the surface across the site.

The following geotechnical assessment is based on the current development proposals. Should the proposed development change, this assessment should be reviewed.

6.2 Earthworks

Small ponds are currently present in the east of the poultry farm area of the site. It is understood that these features do not form part of the proposed development and are to be infilled. It is recommended that any soft, loose, wet or otherwise unsuitable materials are removed from these features and that they are backfilled with geotechnically suitable materials in accordance with an engineering specification. If structures are proposed within the vicinity of these features foundations will need to be deepened through any fill materials and placed a minimum of 200mm into the underlying Lowestoft Formation materials.

Further to this, due to the topography of the site, it is anticipated that limited reprofiling works will be required to enable the proposed development. Earthworks may be required to provide suitable platforms for the construction of houses, roads and other infrastructure associated with the development. It is recommended that any significant reprofiling works are undertaken in accordance with an appropriate earthworks specification.

Based on the results of the geotechnical laboratory testing the Lowestoft Formation materials are likely to be suitable for use as general fill within earthworks and likely to be classified as class 2 - general cohesive fill. It is recommended that any materials to be reused are appropriately tested and classified prior to their use. The Topsoil and Made Ground (Topsoil) materials are not considered to be suitable for use within earthworks.

The materials used will need to be sorted and the oversized and unsuitable materials removed before placement.

Prior to the commencement of any earthworks, it is recommended that all standing water is removed from the working area and all soft, loose, wet or otherwise unsuitable materials are removed from the formation level. The formation level should be proof rolled and any 'soft spots removed and replaced with suitable fill.

6.3 Foundation Assessment

Due to their inconsistency and variability the Made Ground and Topsoil materials are not considered a suitable founding stratum in their current condition.

It is considered that conventional foundations could be adopted for the majority of the proposed development with foundations placed within the Lowestoft Formation materials at a minimum depth of 1.25m bgl (based on restricted new planting). Foundations should be designed to a net allowable bearing pressure of 100kN/m² to limit total settlements to 25mm and differential settlements to acceptable levels. Foundations may need to be deepened to approximately 2m bgl in the vicinity of BH101 due to the presence of less competent shallow Lowestoft Formation materials

Due to the presence of less competent Lowestoft Formation materials to depths of approximately 3m to 4m bgl in the vicinity of BH103 and BH104, it is considered that the use of conventional foundations may not be feasible within these portions of the site. It is therefore considered that an alternative foundation solution such as lightly loaded raft type foundations could be adopted within these portions of the site. Raft foundations may be adopted in conjunction with a suitable granular blanket following suitable preparation of the formation layer including the removal of all Topsoil or Made Ground materials. Raft foundations could be designed to an allowable bearing pressure of 30kN/m² to limit total settlements to 50mm and differential settlements to acceptable levels.

As an alternative to the use of raft foundations, ground improvement techniques such as vibro-replacement stone columns could be considered, in conjunction with reinforced conventional foundations placed within the improved ground. The stone columns will need to extend into the more competent Lowestoft Formation materials at depths of approximately 4m to 6m bgl. Depending on the size and spacing of the columns, allowable bearing pressures following treatment are likely to be approximately 125kN/m² to limit total settlements to 25mm and differential settlements to acceptable levels. It is recommended that the advice of a specialist ground improvement contractor is obtained to assist with the design and implementation of any ground improvement solution.

Following suitable delineation comprising further intrusive investigation, it may be possible to reduce the extent where alternative foundation solutions are required.

The approximate extent of the areas discussed above are detailed on the Foundation Zoning Plan presented as Figure 5.

Foundations should be locally deepened through any deeper Made Ground, fill, soft, loose or otherwise unsuitable materials particularly in the vicinity of BH101.

Plasticity index results indicate the cohesive Lowestoft Formation to be of medium to low volume change potential. Therefore, where foundations are within the influencing distance of existing or proposed trees, foundations may need to be locally deepened in accordance with NHBC guidelines for medium volume change potential soils.

The encountered cohesive Lowestoft Formation materials have been found to be in a potential state of desiccation. Therefore, consideration should be given to the inclusion of appropriate heave precautions into the foundation design.

Where foundations span across varying strata, i.e. granular and cohesive materials, such footings could be subject to differential settlement potentially leading to structural distress. Consideration should be given to the inclusion of appropriate mesh reinforcement within foundations that span across the interface between different strata to reduce the potential for differential settlement to occur.

6.4 Floor Slabs

Due to the presence of shallow cohesive materials it is recommended that suspended floor slabs, with suitable floor voids for medium volume change potential soils, are adopted for the proposed development.

6.5 Road Pavements

The results of insitu Dynamic Cone Penetrometer (DCP) CBR testing undertaken at the site recorded CBR values between approximately 1.6% and 54.5% and typically in excess of 2.5% within the shallow materials at depths between ground level and approximately 0.9m bgl.

Based on the results of the DCP testing it is considered that for the basis of design of any areas of hardstandings or road pavements a design CBR value of 2.5% could be adopted for the proposed development where the formation level lies within the natural Lowestoft Formation materials and 1% where the formation level lies within Made Ground following the removal of any Topsoil materials and suitable preparation of the formation layer.

It should be noted that the formation should be proof rolled and any 'soft' spots removed and replaced with suitable fill. The formation is likely to deteriorate if left uncovered and therefore the road should be constructed within a short time frame after stripping of superficial materials or a protective layer should be left in place. The materials at formation level may be frost susceptible and suitable precautions should be included.

6.6 Excavations

Excavation of the materials encountered on site is likely to be achieved using conventional plant however, where obstructions remain in the ground at shallow depths the use of pneumatic/hydraulic breakout equipment may be required particularly within confined excavations.

Excavations may be prone to collapse, particularly in association with inflows of water. Consequently, temporary support should be considered for all excavations where collapse is to be avoided. Heavier duty closed shoring should be provided for any excavation where man entry is necessary, in compliance with statutory requirements to ensure safe working conditions.

Due to the lower oxygen levels locally recorded as part of the monitoring undertaken at the site, it is advised that monitoring of atmospheric gas concentrations is undertaken for all works within excavations where man entry is required.

6.7 Dewatering

During the intrusive investigation groundwater was encountered at WS101, WS108, WS110 and WS112 at depths between approximately 1.0m and 3.0m. During the subsequent monitoring programme groundwater was encountered within WS101, WS108, WS111 and WS112 during all three events and WS109 on the third event. Groundwater was recorded at depths between 0.43m and 2.17m bgl.

It is therefore considered that groundwater issues may occur within shallow excavations associated with the proposed development. It should also be noted that groundwater levels may increase during winter months or periods of wet weather.

If groundwater inflows occur within excavations it is considered that these are likely to be sufficiently controlled by conventional sump pumping techniques. It is possible that instability of foundation excavations could occur in conjunction with any significant inflows particularly in associated with granular deposits.

6.8 Buried Concrete Classification

Based on the results of chemical laboratory testing undertaken on samples recovered from the Topsoil, Made Ground and Lowestoft Formation materials, it is considered that a Design Sulphate Class "DS-1" and an ACEC site classification "AC-1" should be adopted for all concrete placed within these materials in shallow excavations such as foundations and services.

A Design Sulphate Class "DS-2" and an ACEC site classification "AC-2" should be adopted for all concrete that is placed in contact with the Made Ground (Topsoil) materials.

6.9 Gas Protection Measures

The gas monitoring results indicate gas conditions corresponding to a Hazardous Gas Flow (HGF) of 0.048l/hr indicating Characteristic Situation 1 (CS1) characterised as very low potential hazard. However, concentrations of carbon dioxide exceeding 5% were recorded at WS109 and WS111, therefore a classification of CS2 (low potential hazard) is considered appropriate at WS109 and WS111 based on carbon dioxide concentrations. All other monitoring installations indicate CS1 (characterised as very low potential hazard).

Based on the results of the ground gas monitoring, it is recommended that gas protection measures to CS2 (characterised low potential hazard) are incorporated into the proposed development in the vicinity of WS109 and WS111. The extent of the recommended gas protection measures is presented on Figure 6.

The design and installation of the gas protection measures should be carried out in accordance with BS8485. It is recommended that the installation of the gas membrane should be carried out by specialist membrane installers and should be appropriately verified and validated in accordance with CIRIA C735 and current industry standards.

This conclusion should be agreed with the relevant regulatory authorities prior to the commencement of development works to confirm that the assessment completed meets with their requirements and further monitoring to verify these results is not required.

6.10 Drainage Design and Surface Water Management

As part of the intrusive investigation soakage tests were undertaken within the Lowestoft Formation at TP107, TP111, TP113 and TP119. Significant infiltration was not identified at any of the test locations.

Based on the results of the soakaway tests undertaken, it is not considered that the use of shallow soakaways or other infiltration drainage systems is feasible at the site.

It is recommended that the advice of a specialist drainage engineer is sought with regards to the design and installation of any drainage systems which may form part of the proposed development.

7 CONTAMINATION ASSESSMENT - HUMAN HEALTH

7.1 Introduction

The results of the chemical laboratory testing undertaken on selected soil samples (see Section 4.4), have been compared where possible to the relevant industry guidance as detailed in the following section.

Defra have published Development of Category 4 Screening Levels (C4SL) for Assessment of Land Affected by Contamination (document reference SP1010, dated 20th December 2013). This document includes proposed C4SL for six contaminants of concern. In March 2014, it was agreed that the C4SL could be used as part of the planning process. The chemical laboratory test results have therefore been compared where relevant to the C4SL. The C4SL have been derived based on the proposed end use of the site. In this instance an end use of 'residential with plant uptake' has been considered the most appropriate. Should the proposed development at the site change the potential risk posed by the identified contamination should be reviewed.

It is noted that the C4SL for benzo(a)pyrene has been derived as a surrogate marker for all genotoxic PAH species including this determinant assuming the assessed site investigation data conforms with the Culp et al 2010 assessment. The remaining genotoxic PAH species included in the priority 16 PAH suite of analysis are benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi)perylene, chrysene, dibenzo(ah)anthracene and indeno(123cd)pyrene. An assessment of the site investigation data has been completed and shown the site investigation data to conform with the upper and lower limits from Culp 2010 assessment and therefore assessment criteria are not considered necessary for these determinants and benzo(a)pyrene may be used as a surrogate marker.

C4SLs have not been provided for the full range of determinants assessed as part of this contamination assessment. Further Generic Assessment Criteria (GAC) in accordance with this guidance are currently in production. Contaminated Land Exposure Assessment (CLEA) guidance to assess the risk to human health (Document References SC050021/SR2, SC050021/SR3, SC050021/SR4 and SC050021/SR7) is available. GAC for the relevant contaminants of concern included in this report have been derived in accordance with this CLEA guidance and spreadsheet Version 1.06. These criteria are considered to remain appropriate as C4SL are proposed to be more pragmatic whilst still highly precautionary when compared to the previously published guidance and associated SGVs. The GAC in this report are therefore considered to be conservative and define a lower level of risk in consideration of the potential risk to human health when compared to the current guidance and C4SL. The derived GAC are presented in Appendix V.

Laboratory data at the site recorded a result of approximately 3.83% for soil organic matter calculated using fraction of organic carbon results. The GAC for the site are therefore calculated assuming 3.83% SOM.

7.2 Chemical Test Results - Soils

The results of the chemical laboratory testing undertaken on the selected soil samples undertaken as part of the current and previous investigations are summarised in Table 2.

Only those determinants recorded in excess of their relevant laboratory detection limits are assessed here. The chemical test results on soil are presented in full in Appendix III.

At Tier 1 total TPH is assessed using the GAC for the aromatic TPH fraction >C10-C12. This GAC is selected as it is the most stringent of the calculated GAC's for the identified TPH.

Table 2 Summary of Soils Data with Respect to Human Health (Tier 1)

Contaminants	Max Conc. (mg/kg)	Defra C4SL mg/kg (Residential with plant uptake)	CLEA Derived GAC mg/kg (Residential with plant uptake)	No. of Tests
Arsenic	12	37 (0)	-	13
Beryllium	1	-	87.8 (0)	13
Boron	1.2	-	117 (0)	13
Cadmium	0.3	22 (0)	-	13
Chromium	27	-	1110 (0)	13
Copper	27	-	2380 (0)	13
Lead	58	200 (0)	-	13
Mercury	0.15	-	169 (0)	13
Nickel	35	-	127 (0)	13
Selenium	0.6	-	350 (0)	13
Vanadium	44	-	282 (0)	13
Zinc	310	-	3250 (0)	13
Cyanide	0.5	-	26.5 (0)	13
Phenol	1.6	-	351 (0)	13
TPH (C10-C40)	67	-	152 (0)	13
TPH Ali >C10-C12	2.8	-	274^ (0)	2
TPH Ali >C12-C16	9.9	-	198^ (0)	2
TPH Ali >C16-C21	3.9	-	88400 (0)	2
TPH Ali >C21-C35	260	-	88400 (0)	2
TPH Aro >C16-C21	3.3	-	525 (0)	2
TPH Aro >C21-C35	130	-	1060 (0)	2
Phenanthrene	0.03	-	1960 (0)	13
Fluoranthene	0.1	-	569 (0)	13
Pyrene	0.09	-	1300 (0)	13
Benzo(a)pyrene	0.05	5 (0)	-	13

Note:

- 1. Number in brackets represents the number of results above guideline values.
- 2. ^ Denotes theoretical saturation limit taken as representative.

In addition to the determinants summarised in Table 2, asbestos was analysed for in six samples of Made Ground (Topsoil), two samples of Made Ground and three samples of Topsoil. Additionally, a fragment of cement bonded sheeting recovered from the surface in the vicinity of WS111 was scheduled for asbestos presence and identification. Asbestos was not identified in any of the soil samples tested. The fragment of cement bonded sheeting was found to contain asbestos characterised as crocidolite and chrysotile cement. Further assessment of the potential risk to human health from the presence of asbestos at the surface in the poultry farm portion of the site is considered necessary.

None of the contaminants of concern summarised in Table 2 are recorded in excess of their relevant screening criteria. No further assessment of the potential risk to human health from contamination present in soil is considered necessary. No remediation of soils to be protective of human health is considered necessary.

However, it is recommended that the chemical laboratory test results within this report should be forwarded to the mains water service provider to ensure that their requirements for service line construction are satisfied.

7.3 Discussion

The presence of asbestos at the surface in the poultry farm portion of the site (Area BN5) may pose a risk to human health at the proposed development and during the development works. It is noted that similar materials to those identified in the vicinity of

WS111 have been identified at the surface across this portion of the site. Further to this, similar materials appear to be present within the existing building fabric.

To mitigate the potential risk to human health, it is recommended that a hand-picking exercise is completed by a suitably licensed contractor to remove asbestos bearing materials from the ground surface for off-site disposal. Further to this, it is recommended that an asbestos survey is completed prior to the demolition of any existing structures. Should asbestos bearing materials be identified these should also be removed from site by a suitable licenced contractor.

The removal of asbestos bearing materials from this portion of the site will mitigate the potential risk to human health at the proposed development and during the development works. Assuming the completion of these works, no further assessment of the potential risk to human health is considered necessary.

8 CONTAMINATION ASSESSMENT - CONTROLLED WATERS

8.1 Introduction

To assess the potential risk to controlled waters from the recorded concentrations in soils the use of leachability is generally used to determine contaminant mobility within the ground with the results of these tests compared to the determinants respective environmental quality standards (EQS) or other applicable standards such as UK drinking water standards (DWS). As the aquifer as a resource has been identified as the critical receptor, the DWS is used where available. For organic compounds the use of leachability testing is not considered reliable therefore at Tier 1, phenol, PAH and TPH is assessed using half the relevant inert WAC criteria. An exceedance of these criteria is considered to require further assessment and/or chemical laboratory analysis.

8.2 Summary of Results - Soils

Table 3 presents a summary of the screening criteria compared with the recorded concentrations of determinants at the site. Only those determinants recorded in excess of their relevant laboratory detection limits are assessed here.

The chemical test results are presented in full in Appendix III.

Table 3 Summary of Soils Data with Respect to Controlled Waters (Tier 1)

Determinant	Max Conc. (mg/l)	Tier 1 Value (mg/l)	No. of Exceedances
Arsenic	0.0018	0.01	0 (4)
Boron	0.014	1	0 (4)
Chromium	0.00053	0.05	0 (4)
Copper	0.0027	2	0 (4)
Lead	0.00045	0.01	0 (4)
Nickel	0.0008	0.02	0 (4)
Vanadium	0.0014	0.06	0 (4)
Zinc	0.0075	5	0 (4)
Phenol	1.6	0.5	5 (13)
PAH	0.58	50	0 (13)
TPH	400	250	1 (15)

Notes

- 1. Numbers in brackets denote the number of tests undertaken.
- 2. Organic determinant concentrations in mg/kg.

Total TPH has been recorded in excess of its relevant tier 1 value within a single sample of the Lowestoft Formation recovered from WS111, located centrally in the south, at a depth of 0.7m bgl.

Further assessment of the potential risk to controlled waters from phenol is considered necessary.

8.3 Discussion

The intrusive investigation has confirmed the published geology beneath the site to be Lowestoft Formation (Secondary Aquifer – Undifferentiated and Secondary Aquifer - A). The intrusive investigation encountered predominantly cohesive materials of the Lowestoft Formation to the completed depth of the investigation at 15m bgl. The Crag Group (Principal Aquifer) were not encountered during the intrusive investigation.

The south of the site is located in a Source Protection Zone (SPZ) II (outer protection zone). Boundaries with SPZ I (inner protection zones) are located approximately 190m to the north-east and 335m to the south.

There are twenty-eight abstractions from groundwater located within 1.0km of the site. The closest three listings relate to the abstraction of groundwater for industrial process water located at distances between approximately 265m and 385m to the west. The licenses associated with these abstractions are listed as revoked. The fourth listing relates to an active abstraction of groundwater for potable supply located approximately 475m to the east. The remaining listings are located at distances greater than 545m from the site.

The nearest identified surface water feature is an unnamed stream located directly to the east of the north-eastern corner of the site.

The environmental sensitivity of the site is therefore considered to be low in consideration of the thickness of predominantly cohesive strata of the Lowestoft Formation that will limit significant groundwater flow.

Laboratory analysis indicates the elevated concentration of total TPH is characterised by longer chain aliphatic and aromatic fractions. Longer chain aliphatic and aromatic TPH fractions are not considered to be significantly leachable, soluble or mobile within the environmental setting.

The recorded concentrations of phenol are considered to be relatively minor in nature and isolated in occurrence.

Based on the environmental sensitivity of the site and the nature of the identified contamination, the potential risk to controlled waters is considered to be very low if not negligible. No further assessment of the potential risk to controlled waters is considered necessary. No remediation of soils to be protective of controlled waters is considered necessary.

9 WASTE DISPOSAL

Based on the results of the chemical laboratory analysis completed, it is considered that the Made Ground (Topsoil), Topsoil, Made Ground and underlying natural strata may be classified as non hazardous in terms of waste disposal. Subject to the completion of further chemical laboratory analysis including waste acceptance criteria (WAC) testing it may be possible classify the underlying natural strata as inert.

Asbestos bearing materials present at the surface in the poultry farm portion of the site is classified as hazardous waste.

Prior to disposal, the characteristics of any excavated soils will need final classification in consultation with the relevant waste disposal facility and further testing and analysis may be required on the actual materials requiring off-site disposal.

10 DISCOVERY STRATEGY

This investigation has not identified significant contamination that may pose a potential risk to the identified receptors. However, there is the potential for more significantly contaminated materials, differing ground conditions and buried structures to be present at the site between exploratory hole locations. Should any of these conditions be identified during the development works, ASL should be contacted immediately to allow further assessment to be completed to ensure the identified critical receptors are not at risk.

This assessment may take the form of additional intrusive investigation, sampling and laboratory analyses subject to the nature of the conditions encountered.

11 CONCLUSIONS AND RECOMMENDATIONS

A ground investigation has been completed at the site, to characterise the ground and groundwater conditions. A geotechnical and environmental assessment has been completed based on the results of these investigations. The conclusions of this assessment are summarised as follows:

It is recommended that any significant reprofiling works are undertaken in accordance with an appropriate earthworks specification. The Lowestoft Formation materials are likely to be suitable for use as general fill within earthworks and likely to be classified as class 2 - general cohesive fill.

It is considered that conventional foundations could be adopted across the majority of the site within the Lowestoft Formation materials at a minimum depth of 1.25m bgl (based on restricted new planting) and designed to a net allowable bearing pressure of 100kN/m² to limit total settlements to 25mm and differential settlements to acceptable levels. Foundations should be locally deepened through any deeper Made Ground, fill, soft, loose or otherwise unsuitable materials.

Due to the presence of less competent Lowestoft Formation materials in the vicinity of BH103 and BH104 it is considered that raft foundations could be adopted within these portions of the site in conjunction with a suitable granular blanket following suitable preparation of the formation layer. Raft foundations could be designed to an allowable bearing pressure of 30kN/m^2 to limit total settlements to 50mm and differential settlements to acceptable levels.

As an alternative to raft foundations, ground improvement such as vibro-replacement stone columns could be considered. It is recommended that the advice of a specialist ground improvement contractor is obtained to assist with the design and implementation of any ground improvement solution.

Following suitable delineation comprising further intrusive investigation, it may be possible to reduce the extent of the recommended alternative foundation solutions.

Where foundations are within the influencing distance of existing or proposed trees, foundations may need to be locally deepened in accordance with NHBC guidelines for medium volume change potential soils. Consideration should be given to the inclusion of appropriate heave precautions into the foundation design.

Consideration should be given to inclusion of appropriate mesh reinforcement in foundations to reduce the potential for differential settlement to occur.

It is recommended that suspended floor slabs with a suitable subfloor void are adopted for the proposed development.

For the basis of design of any areas of hardstandings or road pavements a design CBR value of 2.5% could be adopted across the site where formation level lies within the Lowestoft Formation materials. A design CBR value of 1% should be adopted where formation level lies within Made Ground materials. The materials at formation level may be frost susceptible and suitable precautions should be included.

Based on the results of chemical laboratory testing undertaken, it is considered that a Design Sulphate Class "DS-1" and an ACEC site classification "AC-1" should be adopted for all concrete placed within the Topsoil, Made Ground and Lowestoft Formation materials. A

Design Sulphate Class "DS-2" and an ACEC site classification "AC-2" should be adopted for all concrete that is placed in contact with the Made Ground (Topsoil) materials.

Based on the results of the ground gas monitoring, it is recommended that gas protection measures to CS2 are incorporated into the proposed development in the vicinity of WS109 and WS111. The design, installation and verification of the gas protection measures should be carried out in accordance with current industry standards.

Based on the results of the soakaway tests undertaken, it is not considered that the use of shallow soakaways or other infiltration drainage systems is feasible at the site.

The contamination assessment has not identified a potential risk to the identified human health receptors assuming the removal of asbestos bearing materials from the surface and within the existing building fabric in the poultry farm portion of the site. It is recommended that an asbestos survey and hand picking exercise are completed prior to the demolition of any existing structures by a suitably licenced contractor. No further assessment of the potential risk to the identified critical receptors is considered necessary.

It is recommended that the chemical laboratory test results within this report should be forwarded to the mains water service provider to ensure that their requirements for service line construction are satisfied.

The contamination assessment has not identified a potential risk to the identified controlled waters receptor. No further assessment of the potential risk to the identified critical receptor is considered necessary. No remediation of soils to be protective of the identified critical receptor is considered necessary.

Based on the results of the chemical laboratory analysis completed, it is considered that the Made Ground (Topsoil), Topsoil, Made Ground and underlying natural strata may be classified as non hazardous in terms of waste disposal. Subject to the completion of further chemical laboratory analysis it may be possible classify the underlying natural strata as inert.

REFERENCES

ASL 'Desk Study Report Land off Harrison Lane, Halesworth', report reference 450-18-087-11, dated February 2019

BGS Map Sheet No. 176 Lowestoft, Solid and Drift. 1:50 000 scale

BGS Geoindex

DEFRA R&D Publication CLR 11 "Model Procedures for the Management of Land Contamination" dated September 2004.

DEFRA R&D Publication CLR 12 "A Quality Approach for Contaminated Land Consultancy" dated 1997.

www.environment-agency.gov.uk

Department of the Environment Industry Profiles

BS5930: 2015 "Code of Practice for Site Investigation"

BS10175+A2: 2017 'Investigation of Potentially Contaminated Sites - Code of Practice'

BS1377 "Method of Tests for Soils for Civil Engineering Purposes": 1991

Environment Agency's Publication 'Methodology for the Derivation of Remedial Targets for Soil and Groundwater to Protect Water Resources' R&D Publication 20

Environment Agency's 'Remedial Targets Worksheet, Release 3.1' (October 2007)

Concrete – Complementary British Standards to BS EN 206-1 Part 1: Method of specifying and guidance for the specifer (BS 8500-1:2006)

Concrete - Complementary British Standard to BS EN 206-1 - Part 2: Specification for constituent materials and concrete (BS 8500-2:2006)

Total Petroleum Hydrocarbon Criteria Working Group Series Volume 3 and 4, 1997

Human health toxicological assessment of contaminants in soil (Report Reference SC050021/SR2, dated January 2009);

Updated technical background to the CLEA model (Report Reference SC050021/SR3, dated January 2009);

CLEA Software (Version 1.05) Handbook (Report Reference SC050021/SR4, dated January 2009);

Compilation of Data for Priority Organic Pollutants for Derivation of Soil Guideline Values (Report Reference SC050021/SR7, dated November 2008).

BS8485 'Code of practice for the characterisation and remediation from ground gas in affected developments', 2019

NHBC Standards 2019

GENERAL NOTES

The interpretation made in this report is based on the information obtained during the course of the desk study and ground investigation. It should be appreciated that any desk study information is not necessarily exhaustive and that further information relevant to the site and its proposed usage may be available. There may be conditions present on the site that have not been revealed by the ground investigation which as a result have not been addressed within this report.

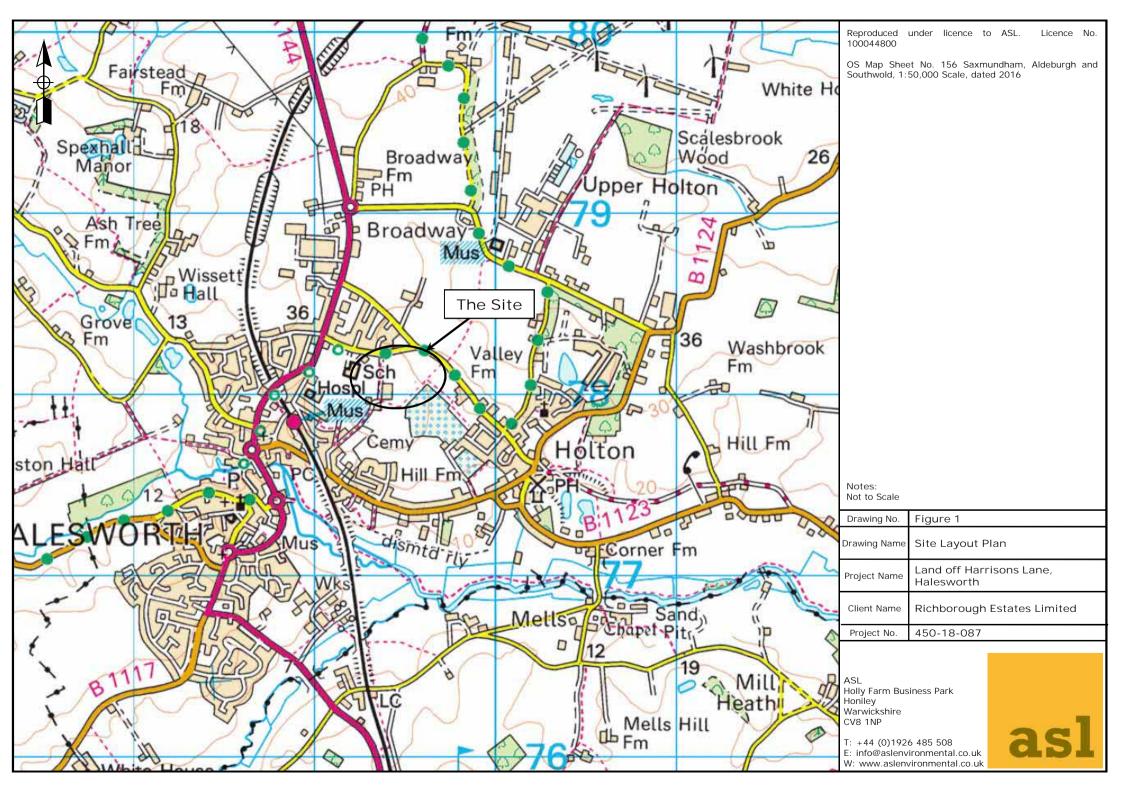
The accuracy of any map extracts cannot be guaranteed and it should be recognised that different conditions on site may have existed between and subsequent to the various map surveys.

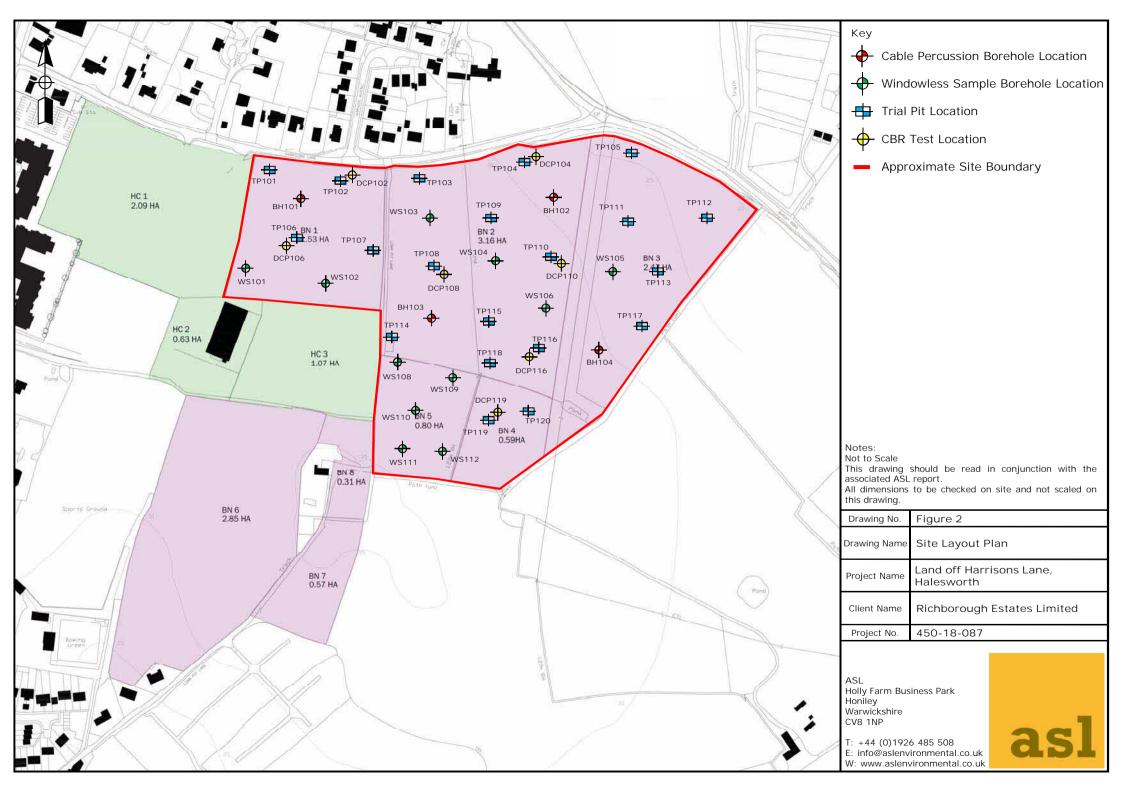
The qualitative assessment of risk presented in this report presents an assessment of potential pollutant linkages between sources, pathways and receptors. A level of risk is attributed to these linkages. However a low or insignificant risk does not imply that elevated concentrations of various determinants are not present on the site when compared to background or 'greenfield' conditions.

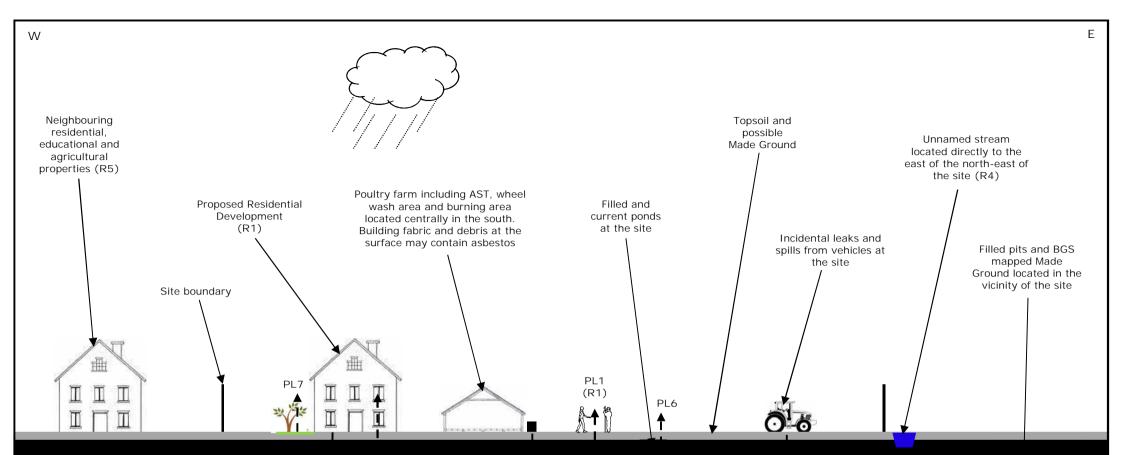
The level of risk attributed is based on a number of factors and the interpretation of this risk may be applied in a different manner for a different end use or environmental setting. The presence of contaminants may be assessed in alternative ways by institutional bodies regardless of whether an apparent risk is present based on the identified pollutant linkages in this assessment.

This report may express an opinion on possible configurations of strata underlying the site between or beyond the exploratory holes or on the possible presence of features based on either visual, verbal or published evidence, this is for guidance only and no liability can be accepted for its accuracy.

Comments made on ground conditions are based on the observations made at the time of the investigation works. It should be noted that groundwater levels may vary due to seasonal fluctuation or other factors. Observations made with respect to below ground gas concentrations may also vary due to seasonal factors and atmospheric conditions.


This report has been prepared in relation to the proposed development as detailed herein. Should the nature of the development change following the submission of this report a re-assessment of the conditions recorded on the site may be necessary.


This report may not be used in the assessment of the conditions at any site other than the site described herein


This report has been prepared for the sole use of the client and the client's agents and advisors in relation to the proposed development as detailed herein. The issue of this report to third parties not involved in the proposed development as described herein is not permitted without the prior permission being received in writing by ASL. Reproduction of this report to include all figures, drawings and appendices is prohibited without the prior written consent of ASL.

FIGURES

Drawing No.	Figure 3
Drawing Name	Conceptual Site Model
Project Name	Land off Harrisons Lane, Halesworth
Client Name	Richborough Estates Limited
Project No.	450-18-087

Summary of Pollutant Linkages (for full details see contamination associated report)

Receptors:

R1 - Construction and maintenance workers and current and future site users;

R2 - Service Lines:

R3 - Groundwater;

R4 - Surface watercourses;

R5 - Neighbouring properties and residents.

Pathways:

PL1 - Direct Physical Contact;

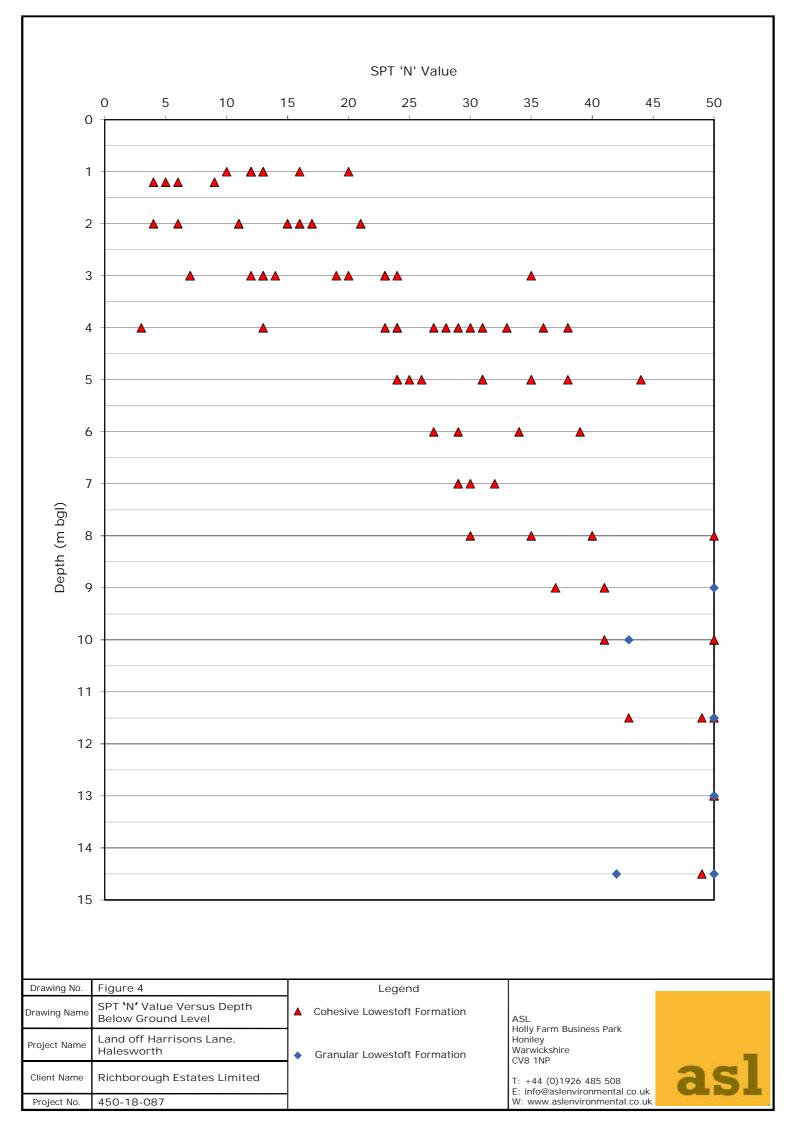
PL2 - Migration from soils to groundwater via leaching;

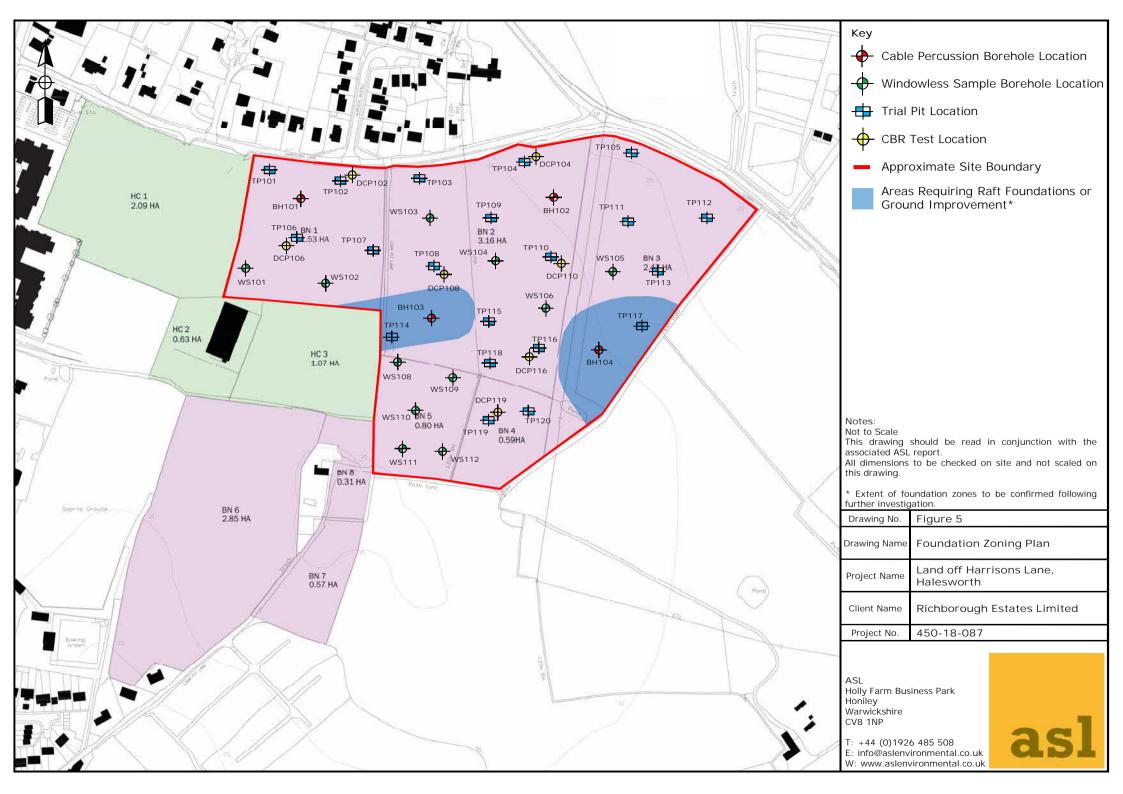
PL3 - Migration within groundwater;

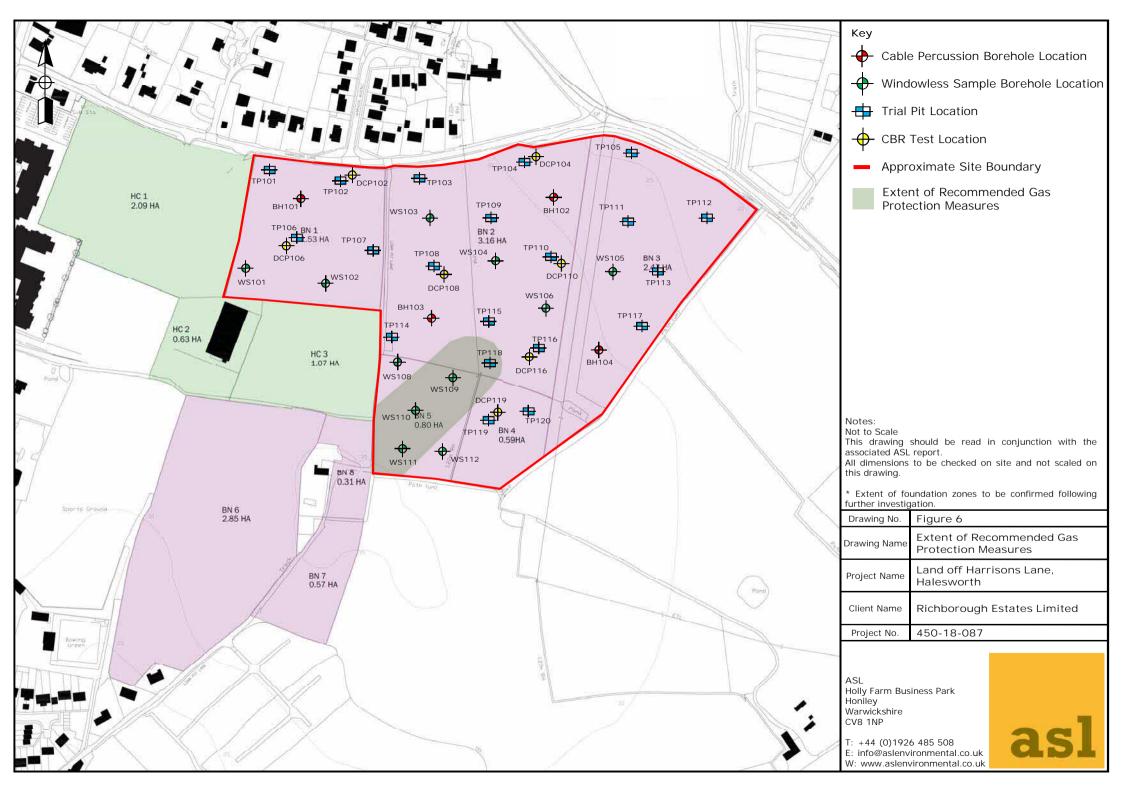
PL4 - Migration via service lines;

PL5 - Volatilisation of contaminants from soils and groundwater

PL6 - Migration of hazardous ground gases;


PL7 - Vegetable intake.


Holly Farm Business Park Honiley Warwickshire CV8 1NP


T: +44 (0)1926 485 508

E: info@aslenvironmental.co.uk W: www.aslenvironmental.co.uk

APPENDIX I ILLUSTRATIVE MASTERPLAN

APPENDIX II FIELD RECORDS

	www.a	slenvironmental.co.uk								Boreh	ole No.	
asl										ВН	101	
								1			1 of 2	
roject Name:		s Lane, Halesworth						Project No.: 450-18-087			Type P	
ocation:	113011	s Lane, Halesworth						Co-ords:	Level:		ale	
Harrisons La	ane, H	alesworth						639318.56 E 278212.09 N	33.51m AOD		50	
Client: Richboroug	h Esta	tes Limited						Start 03/06/2019	tes: Finish 03/06/2019		ed By VF	
		and In Situ Testing			Depth	Level	.					Τ
Depth (m)	Туре	SPT/U blow	HVP (KPa)	PID (ppm)	(m)	(m)	MADE GROUND: Dark bro			Legend	Well	+
0.50	ES1				0.50	33.01	clayey SAND. Gravel is sub coarse brick, chalk, flint and	d coal. (Topsoil)				
0.70	ES2				0.00	00.01	Stiff orange brown locally s angular to rounded fine gra (Lowestoft Formation)	andy CLAY with one of the control of chalk and of chalk and of the control of the	occasional coal.			
1.20 - 1.65 1.20	D3 SPT	N=6 (1,0/1,1,1,3)			1.10	32.41	Soft to firm grey gravelly sil subangular fine to coarse c					1
1.70	D4						Formation)					
2.00 - 2.45 2.00	D5 SPT	N=11 (1,1/2,2,3,4)										2
2.50	D6											
3.00 - 3.45	D7											3
3.00	SPT D8	N=13 (1,2/2,3,4,4)										
4.00 - 4.45 4.00	D9 SPT	N=24 (2,4/4,6,6,8)					Stiff	_				4
4.50	D10											
5.00 - 5.45 5.00	D11 SPT	N=24 (2,3/4,5,7,8)										5
5.50	D12											
6.00 - 6.45 6.00	D13 SPT	N=34 (6,5/6,6,10,12)										е
7.00 - 7.45 7.00	D14 SPT	N=29 (4,4/5,6,8,10)					Very stiff below 7.0m.					7
8.00 - 8.42 8.00	D15 SPT	N=50 (5,8/50 for 270mm)										8
8.50	D16	,										
9.00 - 9.45 9.00	D17 SPT	N=41 (4,5/8,10,10,13)										٩
10.00 - 10.41	D18						Continued	d on Next Sheet				10
		ing from ground level to oundwater monitoring s					not encountered. Key D - Distur ES- Envir B - Bulk & U - Undis	rbed Sample ronmental Sample Sample sturbed Sample face Sample	N/R - No Recovery HVP - Hand Vane W/S - Water Strike	Shear Test	AG	

	www.as	slenvironmental.co.uk								Borel	hole No.
asl										BH	1101
								b :			et 2 of 2
Project Name: Land off Har	risons	Lane, Halesworth						Project No.: 450-18-087		1	е Туре СР
Location:								Co-ords:	Level:	S	cale
Harrisons La	ane, Ha	alesworth						639318.56 E 278212.09 N	33.51m AOD		:50 ged By
Richborougi	h Estat	es Limited						Start 03/06/2019	Finish 03/06/2019	1	SWF
S	ample	and In Situ Testing	g HVP	PID	Depth	Level	Stratum	Description		Legend	Well
Depth (m) 10.00	Туре	SPT/U blow	(KPa)	(ppm)	(m)	(m)			ia angulasta	Legend	Well
11.00 11.50 - 11.95 11.50 13.00 - 13.43 13.00	D19 D20 SPT D21 SPT	N=50 (9,11/50 for 260mm) Soft to firm grey gravelly sitty CLAY. Gravel is angular to subangular in the to coarse chalk and flint. (Lowestoft Formation) Gravelly below 10.0m.									11
14.50 - 14.95 14.50 15.00	D22 SPT D23				15.00	18.51		ehole at 15.000m			14 ————————————————————————————————————
Remarks Cable percussi Combined gas	ion drillii and gro	ng from ground level to oundwater monitoring s	o compl standpip	eted de oe insta	pth. Grou lled on co	ndwater r mpletion.	B - Bulk	urbed Sample ironmental Sample Sample sturbed Sample face Sample dation Sample er Sample	N/R - No Recovery HVP - Hand Vane S W/S - Water Strike	Shear Test	AGS

	www.a	slenvironmental.co.uk							Boreh	ole No.	
asl									ВН	102	
								ln ·		1 of 2	
roject Name: and off Hai	risons	s Lane, Halesworth						Project No.: 450-18-087		Type P	
ocation:								Co-ords: Level:		ale	
arrisons L	ane, H	alesworth						639537.33 E 278202.17 N 27.77m AOD		50	
lient: ichboroua	h Esta	tes Limited						Start Dates: Finish 04/06/2019 04/06/2019		ed By VF	
		and In Situ Testing			Depth	Level					Γ
Depth (m)	Туре	SPT/U blow	HVP (KPa)	PID (ppm)	(m)	(m)	Stratum	Description	Legend	Well	
0.10	ES1						MADE GROUND: Dark bro CLAY. Gravel is subangular brick, chalk and flint. (Topso	to rounded fine to coarse			
0.70	ES2				0.60	27.17	Very stiff grey and orange b	prown slightly gravelly locally			l
1.00	ES3						sandy silty CLAY. Gravel is coarse chalk and flint. (Low	subrounded to rounded fine to restoft Formation)			١.
1.20 - 1.65	D4				1.20	26.57	Firm grey and brown grave	Ilv silty CLAV Gravel is			
1.20	SPT	N=9 (1,2/2,2,2,3)					subangular to rounded fine	to coarse chalk, flint and			l
1.70	D5						occasional siltstone. (Lowe	Sion Funnauun)			l
2.00 - 2.45	D6										2
2.00	SPT	N=11 (1,2/2,3,3,3)									l
2.50	D7										l
											l
3.00 - 3.45	D8	N_12 /2 2/2 2 2 2 3									3
3.00	SPT	N=12 (3,3/3,3,3,3)									l
3.50	D9										
					3.80	23.97	Soft cream slightly gravelly	sandy SILT. Gravel is angular			l
4.00 - 4.45 4.00	D10 SPT	N=3 (1,0/1,0,1,1)						m chalk. (Lowestoft Formation)			4
		(1,0,1,0,1,1,1)			4.40	23.37	F:	# OLAY O			l
4.50	D11						Firm to stiff grey slightly gra subrounded to rounded fine				l
E 00	D40						flint. (Lowestoft Formation)				ı
5.00 - 5.45 5.00	D12 SPT	N=31 (7,10/7,7,7,10)									5
											l
											l
6.00 - 6.45	D13										e
6.00	SPT	N=29 (6,9/7,8,6,8)									l
											l
											l
7.00 - 7.45	D14	N 20 (0.0/7.0.7.7)									7
7.00	SPT	N=29 (6,6/7,8,7,7)									l
7.50	D15										l
											l
8.00 - 8.45 8.00	D16 SPT	N=35 (6,8/8,9,8,10)									8
											l
											l
9.00 - 9.38	D17				8.80	18.97		yellow slightly gravelly slightly bangular to subrounded fine to			9
9.00 - 9.38	SPT	50 (5,7/50 for					coarse quartzite and flint. (I				ٔ
		225mm)			9.50	18.27					l
					3.50		Dense light brown sandy sl rounded fine to coarse GRA				
0.00 - 10.45	D18						Formation)	f on Next Sheet			10
emarks							Key	ADAL GILGO			L
able percuss		ing from ground level to oundwater monitoring s					not encountered. D - Distur ES- Envi B - Bulk & U - Undis SS - Surf	thed Sample N/R - No Recover HVP - Hand Vane turbed Sample ace Sample attition Sample with Sample view of the Sample sample sample sample sample sample view of the Sample sample sample sample view of the Sample s	Shear Test	AG	S

	www.as	slenvironmental.co.uk									ole No.
asl										ВН	102
Project Name:								Project No.:			t 2 of 2 Type
l '	risons	Lane, Halesworth						450-18-087			P Type
Location:								Co-ords: 639537 33 F	Level:	So	cale
Harrisons La	ane, Ha	alesworth						639537.33 E 278202.17 N	27.77m AOD		:50 jed By
Richborougl	h Estat	es Limited						Start 04/06/2019	04/06/2019	1	WF
		and In Situ Testin		DID	Depth	Level	Strotum	Description		Legend ⊗	Well
Depth (m) 10.00	Type SPT	SPT/U blow N=43	HVP (KPa)	PID (ppm)	(m)	(m)	Dense light brown sandy s	Description	ular to	Legend S	vveii
10.00	011	(5,8/9,10,11,13)					rounded fine to coarse GR. Formation)	AVEL of flint. (Lo	westoft		
10.50	D19										= =
					11.00	16.77	Very dense light brown gra	velly silty SAND.	Gravel is		11 —
											=
		270(11111)									12 —
											_
13.00 - 13.40 13.00	D21 SPT	N=50 (6,10/50 for									13
		290mm)									
13.50	D22				13.50	14.27	Very dense light brown ver Formation)	y silty SAND. (Lo	westoft		
							1 omation)				_ _ 14 —
14.50 - 14.95	D23										
14.50	SPT	N=50 (4,8/50 for 295mm)									
15.00 - 15.10	D24				15.00	12.77	End of Bore	ehole at 15.000m			15 —
											=
											=
]
											16 —
											=
											17 —
]
											=
											=
											18 —
											<u> </u>
]
											19 —
											=
											=
											=
											20 —
Remarks							Key	ırbed Sample	N/R - No Recovery		
		ng from ground level to oundwater monitoring :					ES- Env. B - Bulk U - Undi SS - Sur	iroed Sample Sample Sample sturbed Sample face Sample idation Sample er Sample	HVP - Hand Vane 3 W/S - Water Strike	Shear Test	AGS

	www.a	slenvironmental.co.uk								Boreh	ole No.	
asl										ВН	103	
								Drainet No.			1 of 2	
Project Name: .and off Har	risons	s Lane, Halesworth						Project No.: 450-18-087			Type P	
ocation:								Co-ords: 639428.51 E 278106.70 N	Level:		ale	
Harrisons La	ane, H	alesworth							33.18m AOD tes: Finish		50 ed By	
Richboroug		tes Limited			T	T		05/06/2019	05/06/2019	SV	VF	_
Depth (m)	Type	SPT/U blow	HVP	PID	Depth (m)	Level (m)	Stratum	Description		Legend ⊗	Well	
		Of 170 blow	(KPa)	(ppm)	(***)	()	MADE GROUND: Brown sl					\vdash
0.20	ES1				0.40	32.78	Gravel is angular to rounde chalk and coal. (Topsoil)			-		l
0.70	ES2						Very stiff grey mottled brow gravelly CLAY. Gravel is an	gular to rounded	fine to			
1.00	D3				1.00	32.18	medium chalk and flint. (Lo					1
1.20 - 1.65 1.20	D4 SPT	N=4 (1 1/1 1 1 1)					Firm grey slightly gravelly C rounded fine to medium cha	alk and rare flint.	iguiai to (Lowestoft			l
1.20	JFI	N=4 (1,1/1,1,1,1)					Formation)					
1.80	D5											
2.00 - 2.45 2.00	D6 SPT	N=6 (1,1/1,2,1,2)										2
2.50	D7											l
2.00	וט											
3.00 - 3.45	D8											3
3.00	SPT	N=7 (1,1/1,2,2,2)										l
3.50	D9											l
												l
4.00 - 4.45 4.00	D10 SPT	N=23 (4,4/5,5,6,7)					Stiff.	_ _				4
4.50	D11											l
												ĺ
5.00 - 5.45 5.00	D12 SPT	N=25 (3,4/5,6,7,7)										5
5.00	011	14-20 (0,7/0,0,1,1)										
												ĺ
6.00 - 6.45	D13											6
6.00	SPT	N=27 (5,5/5,6,8,8)										ľ
												ĺ
7.00 - 7.45 7.00	D14 SPT	N=30 (5,5/6,6,8,10)										7
7.50	D15											l
<i>1</i> .00	פוע											l
8.00 - 8.45	D16											8
8.00	SPT	N=30 (5,6/6,7,8,9)										l
												l
0.00 0 :=	D											l
9.00 - 9.45 9.00	D17 SPT	N=37 (5,8/8,9,9,11)					Very stiff.	_				9
												l
												l
10.00 - 10.45	D18						Continued	d on Next Sheet				10
Remarks		<u> </u>		<u> </u>	<u>I</u>	I .	Key					_
		ing from ground level to oundwater monitoring s					ES- Envi B - Bulk S U - Undis SS - Surf	rbed Sample ronmental Sample Sample sturbed Sample face Sample dation Sample er Sample	N/R - No Recovery HVP - Hand Vane : W/S - Water Strike	Shear Test	AG	3

	www.as	slenvironmental.co.uk								Bore	hole No.	
0.01										Bł	H103	
asl										She	et 2 of 2	
Project Name:	ricono	Lane, Halesworth						Project No.: 450-18-087			le Type CP	
Location:	1130113	Lane, Halesworth						Co-ords:	Level:		Scale	
Harrisons La	ane, Ha	alesworth						639428.51 E 278106.70 N	33.18m AOD		1:50	
Client: Richborough	n Estat	tes I imited						Start Da 05/06/2019	tes: Finish 05/06/2019	1	ged By SWF	
		and In Situ Testing			Depth	Level			00/00/2010			
Depth (m)	Туре	SPT/U blow	HVP (KPa)	PID (ppm)	(m)	(m)		Description		Legend	Well	
10.00	SPT	N=41 (5,8/9,10,11,11)					Firm grey slightly gravelly (rounded fine to medium ch	CLAY. Gravel is a alk and rare flint.	ngular to (Lowestoft			=
10.50	D19						Formation)					=
												=
												11 _
												=
11.50 SPT N=50 (6,10/50 for												-
]
												12 —
												-
												=
13.00 - 13.39	D21											13 —
13.00	SPT	N=50 (7,10/50 for 240mm)										
13.50	D22											=
												=
					14.00	19.18	Dense light brown clayey fi	ine to medium SA	AND with rare			14 —
							subrounded to rounded fine (Lowestoft Formation)	e to coarse grave	el of chalk.			=
14.50 - 14.95 14.50	D23 SPT	N=42										-
15.00	D24	(5,7/9,10,11,12)			15.00	18.18						_ _ 15 —
10.00	DZT				15.00	10.10	End of Bore	ehole at 15.000m				-
]
]
												16 —
												=
												_ =
												17 — - -
]
												18 —
												=
												=
												19 — - -
												=
												20 —
Remarks							Key					
Cable percussi	on drilli and gro	ng from ground level to oundwater monitoring s	o compl standpip	eted de be insta	pth. Grou lled on co	ndwater n	ot encountered. D - Distu ES- Envi B - Bulk II - Undi	orbed Sample ironmental Sample Sample sturbed Sample face Sample dation Sample er Sample	N/R - No Recovery HVP - Hand Vane S W/S - Water Strike	Shear Test	AGS	S

	www.a	slenvironmental.co.uk								Boreho	le No.	
asl										BH	104	
								Duning A No.		Sheet		
Project Name: and off Har	rison	s Lane, Halesworth						Project No.: 450-18-087		Hole C		
ocation: Harrisons La	ne H	alesworth						Co-ords: 639573.04 E 278071.15 N	Level: 29.95m AOD	Sc 1:		
Client:	ine, n	alesworth						Start Da		Logge	ed By	
		ites Limited e and In Situ Testing	1					04/06/2019	04/06/2019	SV	VF	г
Depth (m)	Туре		HVP	PID (ppm)	Depth (m)	Level (m)	Stratum	Description		Legend %	Well	
0.20	ES1		(ι ι α)	(ррии)	0.00	00.05	MADE GROUND: Brown sl Gravel is angular to rounde	lightly gravelly sand	ndy CLAY. flint, brick,			
0.50	ES2				0.30	29.65	chalk and coal. (Topsoil) Firm grey mottled brown sli	ghtly gravelly CL	AY. Gravel is			
0.80	D3				0.70	29.25	angular to rounded fine to r		,			
1.20 - 1.65	D4						Firm grey slightly gravelly C rounded fine to medium characteristics.	alk and rare flint.	(Lowestoft			1
1.20 - 1.65	SPT	N=5 (1,1/1,1,1,2)					. omaton)					İ
1.70	D5											
2.00 - 2.45	D6	N 4 (4 4 /4 4 4 4)										2
2.00	SPT	N=4 (1,1/1,1,1,1)										
2.50	D7											l
3.00 - 3.45	D8											3
3.00	SPT	N=7 (1,1/1,2,2,2)										
3.50	D9											
400 4 :-	.											
4.00 - 4.45 4.00	D10 SPT	N=13 (1,2/2,3,3,5)					Stiff.	_				4
4.50	D11											
												l
5.00 - 5.45 5.00	D12 SPT	N=24 (2,3/5,5,7,7)										5
												İ
6.00 - 6.45	D13	N 20 (F C/O 0 40 44)					Very stiff.	_				6
6.00	SPT	N=39 (5,6/9,9,10,11)										
												l
7.00 - 7.45	D14											7
7.00	SPT	N=32 (4,6/7,7,8,10)										l
7.50	D15											l
9.00 9.45	D10											_
8.00 - 8.45 8.00	D16 SPT	N=40 (5,7/8,10,10,12)										8
		(5,7,5,10,10,12)										
9.00 - 9.45 9.00	D17 SPT	N=41										9
		(5,7/8,10,11,12)										
10.00 - 10.43	D18						Continued	d on Next Sheet				10
Remarks				<u> </u>	<u> </u>	I	Key					<u>_</u> _
Cable percussi Combined gas	on drill and gr	ing from ground level to oundwater monitoring s	compl tandpi	leted de oe instal	pth. Grou led on co	indwater i mpletion.	ES- Envi B - Bulk S U - Undis SS - Surf VS - Vali	rbed Sample ronmental Sample Sample sturbed Sample face Sample dation Sample er Sample	N/R - No Recovery HVP - Hand Vane W/S - Water Strike	Shear Test	AG	S

	www.as	slenvironmental.co.uk									ole No.
asl											
Project Name:								Project No.:			t 2 of 2 Type
Land off Har	risons	Lane, Halesworth						450-18-087			CP
Location:	11	-lth						Co-ords: 639573.04 E 278071.15 N	Level: 29.95m AOD		cale
Harrisons La Client:	ane, Ha	aiesworth						Dr	atos:		:50 ged By
Richboroug	h Estat	tes Limited						Start 04/06/2019	Finish 04/06/2019		WF
Depth (m)	Type	and In Situ Testing	HVP	PID (ppm)	Depth (m)	Level (m)	Stratum	n Description		Legend %	Well
10.00	SPT	N=50 (8,9/50 for	(KFa)	(ррпі)			Firm grey slightly gravelly (CLAY. Gravel is a	ingular to		_
10.50	D19	280mm)					rounded fine to medium ch Formation)	aalk and rare flint.	(Lowestoft		11
11.50 - 11.95 11.50	D20 SPT	SAND.		12							
13.00 - 13.40 13.00 13.50	D21 SPT D22	N=50 (8,10/50 for 240mm)			13.30	16.65	Soft to firm grey mottled br rare subrounded to rounde chalk. (Lowestoft Formatio	ed fine to medium	y CLAY with gravel of	_	13 — — — — — —
14.50 - 14.93 14.50 15.00	D23 SPT D24	N=50 (5,7/50 for 280mm)			14.90	15.05 14.95	Yellow brown slightly claye (Lowestoft Formation) End of Bore	ey fine to medium ehole at 15.000m	SAND.		14 —
		ng from ground level to					BS- Env B - Bulk U - Undi SS - Sur	urbed Sample rironmental Sample Sample Sample face Sample idation Sample er Sample	N/R - No Recover) HVP - Hand Vane W/S - Water Strike	Shear Test	AGS

asl	www.as	slenvironmental.co.uk									w Sam	ple No.
Project Name:								Project No.:			eet 1 o	
•		Lane, Halesworth						450-18-087			WLS	ρ c
ocation:	ana III	alaaauth						Co-ords: 639269.98 E	Level: 34.18m AOD		Scale 1:25	
Harrisons L Client:	ane, n	alesworth						278141.53 N Start	ates: Finish	Lo	gged	Ву
Richboroug					T		Г	06/06/2019	06/06/2019		SWF	
Depth (m)	Type	le and In Situ Testi SPT	HPV	PID	Depth (m)	Level (m)	Stratum	Description		Legend	W/S	/ell
Doput (III)	Турс	0.1	(KPa)	(ppm)	(***)	()	MADE GROUND: Dark bro	own slightly grave	elly sandy			
0.20	ES1						CLAY. Gravel is angular to chalk and rare brick. (Tops		coarse flint,			
					0.30	33.88	Stiff orange brown slightly	gravelly locally sa	andy silty			
0.40	ES2						CLAY. Gravel is angular to chalk. (Lowestoft Formatio		coarse flint and			
					0.70	33.48	Stiff grey gravelly silty CLA fine to coarse chalk, flint ar	Y. Gravel is angu	lar to rounded			
0.90	D3						Formation)	ia sneii iragmeni	s. (Loweston			
1.00 1.00	D4 SPT	N=13 (4,3/4,3,3,3)										1 -
	(C)											
1.90	D5						Recovered as angular to suba siltstone. (Possible boulder)	ngular fine to coai	rse GRAVEL of			
2.00 2.00	D6 SPT	N=15 (2,3/3,4,4,4)										2
2.00	(C)	14-13 (2,3/3,4,4,4)										
2.60	D7											
3.00 3.00	D8 SPT	N=14 (1,2/3,4,4,3)			3.00	31.18	Soft becoming firm below 3	3.2m brown very	gravelly CLAY.		•	3 -
3.00	(C)	14-14 (1,2/0,4,4,0)					Gravel is angular to rounde (Lowestoft Formation)	ed fine to coarse	chalk and flint.			
							Poor recovery below 3.0m.	_				
3.70	D9											
4.00 4.00	D10 SPT	N=27 (4,4/4,9,8,6)					Stiff.	_				4 -
4.00	(C)	N=27 (4,4/4,9,0,0)										
4.90	D11				4.80	29.38	Stiff grey gravelly silty CLA fine to coarse chalk, flint ar					
					-			d on Next Sheet	,			5 -
Remarks	<u> </u>		<u> </u>		<u> </u>	I	Key					
		from ground level to coundwater monitoring					countered at 3.0111 bgi. IFS - Fnt	rbed Sample rironmental Sample Sample	N/R - No Recover HVP - Hand Vane W/S - Water Strike	Shear Test	Į,	Ţ
. 5	5						U - Undi SS - Sur	sturbed Sample face Sample dation Sample			A	Մ ծ
								er Sample				

	www.as	slenvironmental.co.uk								Windov	v Sample l	No.
asl											S101	
								Drois et No			eet 2 of 2	
Project Name:	rieono	l and Halocworth						Project No.: 450-18-087		Ho	ole Type WLS	
_and off Hai _ocation:	ıısuliS	Lane, Halesworth						450-18-087 Co-ords:	Level:		Scale	
-ocalion. Harrisons La	ane. Ha	alesworth						639269.98 E 278141.53 N	34.18m AOD		1:25	
Client:	, 116							Da	tes: Finish	Lo	gged By	
Richboroug	h Estat	es Limited						Start 06/06/2019	66/06/2019		SWF	
		le and In Situ Testi	ng		Depth	Level		•			m	
Depth (m)	Туре	SPT	HPV	PID	(m)	(m)	Stratu	um Description		Legend	Well	
5.00 Solution 5.00 Solution 5.00 Solution 5.00 Solution 5.00 Solution 6.00 S	(m) Type SPT (KPa) (pp					28.73 ·	Stiff grey gravelly silty C fine to coarse chalk, flint Formation)	LAY. Gravel is angu	ar to rounded s. (Lowestoft	Legend		6
												9 —
Remarks Windowless sa Combined gas	ampling and gro	N/R - No Recovery HVP - Hand Vane & W/S - Water Strike	Shear Test	AG	10 —							

	www.as	slenvironmental.co.uk								Window S	ample N
asl										ws	102
qpI										Sheet	1 of 1
Project Name:							F	Project No.:		Hole	Type
	rrisons	Lane, Halesworth					4	150-18-087	T		LS
ocation:								Co-ords: 639339.23 E 278127.63 N	Level:		ale
larrisons La Client:	ane, H	alesworth						Da	34.05m AOD		25
	h Fstat	tes Limited						Start 25/06/2019	Finish 25/06/2019		ed By IC
nonboroug		le and In Situ Testi	na		D 11			20/00/2010			
Depth (m)	Туре	SPT	HPV (KPa)	PID (ppm)	(m)	Level (m)		Description		Legend	Well
							MADE GROUND: Soft to firm CLAY with rare angular to su gravel of flint, chalk, brick an	brounded fine to	o coarse		
0.30	ES1			0.0	0.35	33.70					
0.50	ES2			0.0	0.33	33.70	Stiff green brown mottled ora with rare angular to subangu flint and chalk. Sand is fine. (lar fine to coars	e gravel of		
0.80	D3				0.00	20.45					
1.00 - 1.45 1.00	D4 SPT (S)	N=12 (2,3/3,3,3,3)			0.90	33.15	Stiff thinly laminated green b gravelly silty CLAY. Gravel is chalk and rare sandstone. (L	to medium			
	(0)										
1.40	D5				1.35	32.70	Medium dense pale orange be SAND. (Lowestoft Formation		e to medium		
					1.50	32.55	Stiff dark green brown mottle CLAY. Gravel is subangular f (Lowestoft Formation)	ed dark grey slig	htly gravelly nalk.		
2.00 - 2.45 2.00	D6 SPT (S)	N=16 (2,2/2,3,5,6)									
2.80	D7				2.75	31.30	Firm white gravelly SILT. Grachalk. (Lowestoft Formation)	avel is angular fi	ne to medium		
3.00 - 3.45 3.00	D8 SPT (S)	N=13 (2,2/3,4,3,3)									
					3.45	30.60	End of Boreh	nole at 3.450m			

Windowless sampling from ground level to completed depth. Groundwater not encountered. Backfilled with arisings on completion.

Key
D - Disturbed Sample
ES - Environmental Sample
B - Bulk Sample
U - Undisturbed Sample
SS - Surface Sample
VS - Validation Sample
W - Water Sample

N/R - No Recovery HVP - Hand Vane Shear Test W/S - Water Strike

	www.as	slenvironmental.co.uk							Window S	Sample No	Э.
0.71									WS	103	
asl									Shee	t 1 of 2	
Project Name: Land off Ha		Lane, Halesworth					Project No.: 450-18-087			Type 'LS	
Location:							Co-ords:	Level:		ale	
Harrisons L	ane, H	alesworth					639427.65 E 278179.45 N			:25	
Client: Richboroug	h Esta	tes Limited					Start 06/06/2019	Dates: Finish 06/06/2019		ed By WF	
		le and In Situ Testi	ng HPV	PID		Level	Stratum Description		Legend %	Well	
Depth (m)	Туре	SPT	(KPa)	(ppm)	(m)	(m)	MADE GROUND: Dark brown slightly gra	velly clavey	s s s s s s s s s s s s s s s s s s s	770	
0.10	ES1						SAND. Gravel is angular to rounded fine to quartzite, flint, chalk, coal and brick. (Tops	o coarse			-
					0.28	31.48	Very stiff orange brown locally sandy grav	elly CLAY.			-
0.50	F00						Gravel is angular to rounded fine to coars (Lowestoft Formation)	e chalk and flint.			-
0.50	ES2										_
											-
0.90	D3				0.80	30.96	Firm to stiff grey gravelly silty CLAY. Grav rounded fine to coarse chalk, flint and she				-
1.00	D4	N. 40 (0.0/0.0.0.4)					(Lowestoft Formation)			1	1 —
1.00	SPT (C)	N=13 (2,2/3,3,3,4)									-
											-
											=
											-
1.70	D5										-
											-
2.00	D6									2	2 —
2.00	SPT (C)	N=11 (1,2/2,3,3,3)									=
	(-,										=
											-
											-
											-
2.80	D7										-
3.00	D8										_ з —
3.00	SPT (C)	N=20 (1,3/3,5,6,6)									- -
	(0)										-
											-
3.50	D9										-
											-
											=
											=
4.00 4.00	D10 SPT	N=30 (3,4/5,7,9,9)					Very stiff.			4	4 —
	(C)										-
											-
											-
4.70	D11				4.70 4.80	27.06 26.96	Soft cream and light brown slightly sandy SILT. Gravel is subangular fine to coarse	slightly gravelly	(× ·× ·× ·>		-
4.90	D12				4.00	20.90	Formation) Stiff grey gravelly silty CLAY. Gravel is an	/			=
					-		Continued on Next Sheet	gurar to rounded		5	5 —
Remarks							Key	N/P No P	,		
		from ground level to co bundwater monitoring s					encountered. D - Disturbed Sample ES - Environmental Sample B - Bulk Sample U - Undisturbed Sample SS - Surface Sample VS - Validation Sample W - Water Sample	N/R - No Recovery HVP - Hand Vane : W/S - Water Strike	Shear Test	AGS	

ww	w.asle	environmental.co.uk								Windo	w Sa	ample N	No.
asl												103	
								1				2 of 2	
Project Name:								Project No.:		Н		Type	
	ons L	ane, Halesworth						450-18-087	T		WL		
ocation:								Co-ords: 639427.65 E 278179.45 N	Level:		Sca		
Harrisons Lane	e, Hai	esworth							31.76m AOD		1:2		
Client:	ctoto	a Limitad						Start 06/06/2019	tes: Finish 06/06/2019	LC	ogge SV	ed By	
Richborough E		and In Situ Testi	20					06/06/2019	06/06/2019			/F	
			HPV	PID	Depth		Stratur	n Description		Legend	S//	Well	
			(KPa)	(ppm)	(111)	(111)					>		
5.00 SI	PT C)	SPT N=26 (1,4/4,7,7,8)			(m) 5.45	(m) 26.31	Stiff grey gravelly silty CL/ fine to medium chalk and Formation)	AY. Gravel is angu	ar to rounded owestoft		Λ		6
													9 —
Remarks Windowless samp Combined gas and	bling fro d grou	om ground level to conduction of the conduction	ompleted tandpipe	depth. G installed	roundw on com	ater not pletion.	B - Bulk U - Unc SS - St VS - Va	urbed Sample vironmental Sample « Sample listurbed Sample urface Sample lidation Sample ter Sample	N/R - No Recovery HVP - Hand Vane : W/S - Water Strike	Shear Test		AG	S

	www.as	slenvironmental.co.uk								Window	Sample	
asl											et 1 of 2	
oject Name:								Project No.:		Hol	е Туре	
and off Ha	rrisons	Lane, Halesworth						450-18-087 Co-ords:	Level:		VLS cale	
arrisons L	ane, H	alesworth						639481.93 E 278142.53 N	31.40m AOD		1:25	
ient:	L -							Start	tes: Finish	1	ged By	
cnboroug		tes Limited le and In Situ Testi	ng		Depth	Lovel		06/06/2019	06/06/2019		SWF	Т
Depth (m)	Туре	SPT	HPV (KPa)	PID (ppm)	(m)	(m)	Stratum	Description		Legend	Well	
0.20	ES1				0.30	24.40	MADE GROUND: Dark bro SAND. Gravel is angular to quartzite, flint, chalk, coal a	rounded fine to and brick. (Topsoi	coarse I)			
					0.30	31.10	Very stiff brown mottled gre angular to rounded fine to o (Lowestoft Formation)	ey gravelly CLAY. coarse chalk and	Gravel is flint.			
0.60	ES2				0.70	30.70		1. OLAY O				
0.80	D3						Firm to stiff grey gravelly si rounded fine to coarse flint, (Lowestoft Formation)	ity CLAY. Gravel , chalk and shell t	is angular to fragments.			
1.00 1.00	D4 SPT (C)	N=20 (3,3/5,4,5,6)										1
1.50	D5											
2.00 2.00	D6 SPT (C)	N=17 (3,3/3,5,4,5)										2
2.60	D7											
3.00 3.00	D8 SPT (C)	N=24 (3,5/4,6,7,7)										3
3.90 4.00 4.00	D9 D10 SPT (C)	N=29 (5,5/6,7,8,8)										4
4.80	D11						Slightly gravelly below 4.5m.	Ξ				
							Continued	d on Next Sheet				5
		from ground level to co s on completion.	ompleted	depth. G	roundwa	ater not	ES - Env B - Bulk ! U - Undis SS - Surl VS - Vali	rbed Sample irronmental Sample Sample sturbed Sample face Sample dation Sample er Sample	N/R - No Recovery HVP - Hand Vane W/S - Water Strike	Shear Test	AG	S

	www.as	slenvironmental.co.uk								Windo	w Sa	mple N	۱o.
asl										W	/ S1	04	
										Sh	eet 2	of 2	
Project Name:								Project No.:		H		ype	
	risons	Lane, Halesworth						450-18-087			WL:		
ocation:								Co-ords: 639481.93 E 278142.53 N	Level:		Sca		
Harrisons La	ane, Ha	alesworth							31.40m AOD		1:2		
Client:	- -							Start	tes: Finish	Lo		d By	
Richborougl		tes Limited le and In Situ Testi						06/06/2019	06/06/2019		SW	-	
			HPV	PID	Depth		Stratur	m Description		Legend	S/	Well	
Depth (m)	Туре	SPT	(KPa)	(ppm)	(m)	(m)				Ů	>		
5.00	SPT (C)	SPI N=31 (5,6/6,8,9,8)			5.45	25.95	Firm to stiff grey gravelly rounded fine to coarse flir (Lowestoft Formation)	silty CLAY. Gravel	is angular to ragments.		Λ		6
													9 —
Remarks Vindowless sa Backfilled with	impling arisings	from ground level to co s on completion.	ompleted	depth. Gr	oundwa	ater not	VS - Va	turbed Sample nvironmental Sample k Sample disturbed Sample urface Sample alidation Sample ster Sample	N/R - No Recovery HVP - Hand Vane : W/S - Water Strike	Shear Test		AGS	S

	www.as	slenvironmental.co.uk								Window	Sample N	No.
asl										ws	105	
qpI										Shee	t 1 of 2	
Project Name:		s Lane, Halesworth						Project No.: 450-18-087		1	Type /LS	
Location:	risons	Lane, naiesworth						Co-ords:	Level:		cale	
Harrisons La	ane, H	alesworth						639584.81 E 278141.92 N	27.46m AOD		:25	
Client:	•								ntes: Finish	Logo	ged By	
Richboroug					1		I	06/06/2019	06/06/2019	S	WF	\blacksquare
		le and In Situ Testi	ng HPV	PID	Depth	Level	Stratum	Description		Legend	Well	
Depth (m)	Туре	SPT	(KPa)	(ppm)	(m)	(m)				° >		
							MADE GROUND: Dark bro CLAY. Gravel is angular to	rounded fine to	oarse flint,			=
0.25	ES1						chalk and rare brick. (Tops	oil)]
					0.30	27.16	Very stiff orange and grey	slightly gravelly s	ilty CLAY.			=
							Gravel is angular to rounde (Lowestoft Formation)	ed fine to coarse	chaik and fiint.			3
0.60	D2											_
					0.70	26.76	Stiff grey gravelly silty CLA	Y. Gravel is angu	lar to rounded			3
							fine to coarse flint, chalk ar Formation)	nd shell fragment	s. (Lowestoft			4
0.90 1.00	D3 D4						Very gravelly with rare subang	ular cobbles of flir	nt.			
1.00	SPT	N=12 (5,3/3,3,3,3)										=
	(C)											=
]
												-
1.70	ES5											_
												=
]
2.00 2.00	D6 SPT	N=16 (3,3/3,4,4,5)										2 —
2.00	(C)	(6,6,6, 1, 1,6)										=
												-
												=
												=
												=
2.90	D7											-
3.00	D8	N 00 (0 4/4 0 0 7)										з —
3.00	SPT (C)	N=23 (3,4/4,6,6,7)										-
												7
												3
												3
3.70	D9											
]
4.00	D10						Vone otiff	_				4 —
4.00	SPT (C)	N=33 (8,13/14,6,6,7)					Very stiff.	_				
	(0)											3
												-
]
												=
												-
4.90	D11											-
								d on Next Sheet				5 —
Remarks							Key	rbed Sample	N/R - No Recovery	, T	_	_ 7
Windowless sa Combined gas	ampling and gro	from ground level to co bundwater monitoring s	ompleted standpipe	depth. G installed	roundw on com	ater not pletion.	ES - Env B - Bulk U - Undi: SS - Sur	ironmental Sample	HVP - Hand Vane : W/S - Water Strike	Shear Test	AGS	S

	www.as	slenvironmental.co.uk								Windo	w Sa	ample N	No.
asl												105	
								I				2 of 2	
Project Name:	!	. 1						Project No.:		Н		Туре	
	risons	Lane, Halesworth						450-18-087	Lavali		Sca		
ocation: larrisons La	.na U	alocworth						Co-ords: 639584.81 E 278141.92 N	Level: 27.46m AOD		1:2		
Client:	ane, ne	alesworth						Da	toe:	1.0		ed By	
Richboroug	h Ectai	tas Limitad						Start 06/06/2019	Finish 06/06/2019	LC	SV		
		le and In Situ Testi	na					00/00/2010	00/00/2010				
Depth (m)	Туре	SPT	HPV	PID (ppm)	Depth (m)	Level (m)	Stratum	Description		Legend	S/M	Well	
Depth (m) 5.00	Type SPT (C)	SPT N=35 (6,6/8,9,9,9)	HPV (KPa)	(ppm)	(m) 5.45	22.01 -	Stiff grey gravelly silty CLA fine to coarse flint, chalk ar Formation)	Y. Gravel is angu	ar to rounded s. (Lowestoft		M M	vveii	6
) americ-							W.						10 —
Remarks Vindowless sa	amplina	from ground level to co	mpleted	depth. G	roundw	ater not	encountered.	irbed Sample	N/R - No Recovery				

Combined gas and groundwater monitoring standpipe installed on completion.

ES - Environmental Sample
B - Bulk Sample
U - Undisturbed Sample
SS - Surface Sample
VS - Validation Sample
W - Water Sample

HVP - Hand Vane Shear Test W/S - Water Strike

	www.as	slenvironmental.co.uk							Window S	•	VО
asl									WS	106	
ject Name:								Project No.:		1 of 2 Type	
-		Lane, Halesworth						450-18-087	1	LS	
ation:								Co-ords: Level: 639524.87 E		ale	
rrisons L ent:	ane, H	alesworth						639524.87 E 278107.44 N 30.90m AOD		ed By	
	h Esta	tes Limited						Start Finish 06/06/2019 06/06/2019		VF	
	Samp	le and In Situ Testi		DID	Depth	Level	Stratum	Description	Legend 🖔	Well	
epth (m)	Туре	SPT	HPV (KPa)	PID (ppm)	(m)	(m)	Stratum	•	Legend	weii	
0.10	ES1				0.40	30.50	Dark brown slightly gravelly angular to rounded fine to o (Topsoil) Stiff orange brown slightly 9	coarse flint, coal and chalk.			
0.60	ES2				0.70	20.20	CLAY. Gravel is angular to chalk. (Lowestoft Formation	rounded fine to coarse flint and n)			
					0.70	30.20		ocally sandy silty CLAY. Gravel o coarse flint, chalk and shell			
0.90	D3						fragments. (Lowestoft Form	nation)			
1.00 1.00	D4 SPT (C)	N=12 (3,5/3,3,3,3)									1
1.30	D5										
											l
2.00	D6										2
2.00	SPT	N=15 (3,3/3,3,4,5)									ľ
	(C)										
2.50	D7										
3.00 3.00	D8 SPT	N=23 (4,4/6,5,5,7)									3
3.00	(C)	N=23 (4,4/0,3,3,7)									
											ĺ
											l
3.80	D9										l
4.00	D10							_			l
4.00 4.00	SPT	N=36 (4,5/10,9,9,8)					Very stiff below 4.0m.	_			ľ
	(C)										ĺ
4.35	D11						Band of firm brown SILT.	_			ĺ
							Jana G. IIIII BIGIIII GILI.	_			
											l
											l
4.90	D12										l
- -							Continued	d on Next Sheet			5
marks	L	<u> </u>		<u> </u>		I	Key				L
ndowless sa		from ground level to co 4.35m and 4.45m. Bac					encountered. Damp D - Distu ES - Env B - Bulk : U - Undis SS - Surl	rrbed Sample rironmental Sample Sample sturbed Sample face Sample dation Sample	Shear Test	AG	3

,	www.as	lenvironmental.co.uk								Window	Sample I	No.
asl										W	S106	
											et 2 of 2	
Project Name:								Project No.:		1	le Type	
	risons	Lane, Halesworth						450-18-087	I		WLS	
Location:								Co-ords: 639524.87 E 278107.44 N	Level:		Scale	
Harrisons La	ne, Ha	alesworth						Da	30.90m AOD		1:25	
Client: Biobborough	E-#-	oo Limitad						Start	tes: Finish	1	gged By SWF	
Richborough								06/06/2019	06/06/2019		SWF	
	I	le and In Situ Testi	ng HPV	PID	Depth		Stratu	m Description		Legend	χ Well	
	Туре	SPT	(KPa)	(ppm)	(m)	(m)					>	
5.00	SPT (C)	N=31 (4,5/6,8,9,8)			5.45	25.45	Stiff grey slightly gravelly is angular to rounded fine fragments. (Lowestoft For End of Bo	to coarse flint, cha	alk and shell			6
												7
												9
Remarks Windowless sal strata noted be	mpling tween 4	from ground level to co 3.35m and 4.45m. Bac	ompleted kfilled witl	depth. Gr n arisings	oundwa on com	ater not	encountered. Damp ES - E B - Bul U - U SS - S VS - W W - W	sturbed Sample nvironmental Sample k Sample disturbed Sample urface Sample alidation Sample ater Sample	N/R - No Recovery HVP - Hand Vane : W/S - Water Strike	Shear Test	AG	S

	www.as	slenvironmental.co.uk							Window S	Sample 108	
asl											
oject Name:								Project No.:		t 1 of 2 Type	
	rrisons	Lane, Halesworth						450-18-087		LS ale	
cation: arrisons L	ane, H	alesworth						Co-ords: Level: 639388.56 E 278042.22 N 34.36m AOD		:25	
ient:	L F-4-							Start Dates: Finish		ed By	
cnboroug		tes Limited le and In Situ Testi	ng		Depth	Lovol		25/06/2019 25/06/2019		/IC	Т
Depth (m)	Туре	SPT	HPV (KPa)	PID (ppm)	(m)	(m)		n Description	Legend %	Well	
0.20	ES1			0.5			sandy silty CLAY with occa	k brown slightly gravelly slightly isional subrounded cobbles of r to subrounded fine to coarse iz. (Topsoil)			
0.50	ES2			1.2	0.40	33.96	brown slightly gravelly CLA	irm green grey mottled yellow NY. Gravel is angular to arse flint, sandstone, plastic and			
1.00 1.00	D3 SPT (S)	N=10 (1,1/1,3,3,3)			0.90	33.46		mottled orange brown slightly CLAY. Gravel is subangular fine t Formation)			
					1.20	33.16	Firm to stiff thinly laminated slightly gravelly locally sand subangular fine to coarse codour. (Lowestoft Formatio	chalk. Strong animal waste			
1.75	D4				1.75	32.61		tled dark grey slightly gravelly I is subangular fine to coarse restoft Formation)			
2.00 - 2.45 2.00	D5 SPT (S)	N=21 (3,3/4,4,6,7)			2.00	32.36	,	brown silty medium SAND.			:
2.50	D6				2.30	32.06		tled dark grey slightly gravelly I is subangular fine to coarse restoft Formation)			
2.80	D7										
3.00 - 3.45 3.00	D8 SPT (S)	N=25 (2,4/5,5,7,8)			3.00	31.36	Medium dense green brow (Lowestoft Formation) Poor recovery.	rn fine to medium SAND. 			3
					3.80	30.56					
4.00	SPT (S)	N=24 (3,3/3,6,7,8)						tled dark grey slightly gravelly l is subangular fine to coarse restoft Formation)			
5.00 - 5.45	D9						Continued	d on Next Sheet			į
emarks							Key				_
and dug insp ompleted dep	th. Gro	oit from ground level to undwater encountered nstalled on completion	at 2.0m l				rom 1.0m to	urbed Sample vironmental Sample Sample sturbed Sample face Sample dation Sample er Sample er Sample	e Shear Test	AG	3

Remarks		www.as	slenvironmental.co.uk								Windo	w Sa	mple N	No.
Project No. Apt Apr Apt A	ael													
A50-18-087									1					
Company Comp	-								1 -		H			
Agricon Lane, Halesworth L		risons	Lane, Halesworth							T				
Company Estates Limited Sample and in Situ Testing Sept Repair Sept Repair Sept Repair Sept Repair Repa									Co-ords: 639388.56 E					
Sample and In Situ Testing Depth (m) Type SPT (R/Pa) (ppm) (pm) (m) (m) Stratum Description Lagend SPT (R/Pa) (ppm) (pm)		ane, H	alesworth							toe:	l a			
Sample and in Situ Testing		h Ecto	tas Limitad						Start	FIIIISII	Lo			
Depth (m) Type	Vicibolougi			na					23/00/2019	23/00/2019			,	
Seri N=44 (7,79,9,13,13) Silf dark group forcem motitor dark groy slightly gravally locally along) CLAV (2014) is automotion for the commercial content of the commercia		Туре	SPT	HPV							Legend	M/S	Well	
Remarks Key	5.00		N=44 (7,7/9,9,13,13)			5.45	28.91	locally sandy CLAY. Grave chalk and sandstone. (Low	I is subangular fin restoft Formation)	e to coarse				
Remarks Key						5.45	28.91	End of Bor	ehole at 5.450m					
dang dug inchaction bit from ground lovel to 3 (Im hat Windowiese compline from 1 (Im to 1) Distribut Sallible 19/1/- 190 (Netovely		ootio	sit from ground level !-	1 0m hail	Window	loss se	noline f	Key D - Distr	ırbed Sample	N/R - No Recovery				10 —

completed depth. Groundwater encountered at 2.0m bgl. Combined gas and groundwater monitoring standpipe installed on completion.

ES - Environmental Sampl B - Bulk Sample U - Undisturbed Sample SS - Surface Sample VS - Validation Sample W - Water Sample

W/S - Water Strike

	www.as	slenvironmental.co.uk								Window	Sample N	No.
0.61										WS	109	
asl											t 1 of 2	
Project Name:		Lane, Halesworth						Project No.: 450-18-087		l	Type /LS	
Location:		, <u>Larro</u> , Francows, II.						Co-ords:	Level:		cale	
Harrisons La	ane, Ha	alesworth						639445.44 E 278040.04 N	33.89m AOD		:25	
Richboroug	h Esta	tes Limited						Start 25/06/2019	Finish 25/06/2019		jed By иС	
		le and In Situ Testi		Loip	Depth	Level	Ctrotum	Description	,	Legend &	Mall	
Depth (m)	Туре	SPT	HPV (KPa)	PID (ppm)	(m)	(m)		Description	- '0	Legend	Well	
0.15	ES1			0.1			Soft dark brown slightly sa	ndy silty CLAY. (iopsoii)			-
					0.25	33.64	Soft green brown mottled of	lark grey silty CL	AY with	-		_
0.35	ES2			0.4			occasional fragments of de and rare angular to subrou and charcoal. (Lowestoft F	composing vege nded gravel of fli	tation, rootlets			-
					0.60	33.29	Soft to firm orange brown r					_
							and locally gravelly silty CL decomposing roots and roots	otlets. Gravel is s	ubangular to			
0.90	D3						subrounded fine to coarse Formation)	chalk and flint. (I	_owestoft			=
1.00 - 1.45 1.00	D4 SPT	N=12 (2,3/3,3,3,3)					Firm below 1.0m.	_				1 —
	(S)											=
												_
1.50	D5							_				
1.00	50						Stiff below 1.5m.	_				_
												=
												=
2.00 - 2.45	D6				2.00	31.89	Stiff dark green brown mot	tled dark grev sli	ahtly gravelly			2 —
2.00	SPT (S)	N=21 (4,3/4,4,6,7)					CLAY. Gravel is angular to chalk and rare sandstone.	subrounded fine	to coarse			_
							onancana raro canacione.	(Lowoston Tomi	auony			=
2.45	D7											-
2.10												_
												-
												_
3.00 - 3.45	D8											3 —
3.00	SPT (S)	N=19 (2,3/3,5,5,6)										_
	(0)											_
												=
												_
												-
												=
												_
4.00 - 4.45 4.00	D9 SPT	N=28 (2,4/6,9,3,10)					Very stiff below 4.0m.					4 —
	(S)											-
												=
												-
												=
5.00 - 5.45	D10				-		Continue	d on Next Sheet				5 —
Remarks	<u> </u>	<u> </u>	<u> </u>	I .	I .	1	Key					
Windowless sa Combined gas	ampling and gro	from ground level to co oundwater monitoring :	ompleted standpipe	depth. G installed	roundw on com	ater not not not not not not not not not not	ES - Env B - Bulk U - Undi SS - Sur VS - Vali	rbed Sample rironmental Sample Sample sturbed Sample face Sample dation Sample er Sample	N/R - No Recover HVP - Hand Vane W/S - Water Strike	Shear Test	AGS	S

	www.as	slenvironmental.co.uk								Windov	v San	nple N	lo.
asl											' \$1		
								ln			eet 2		
Project Name:		Lane, Halesworth						Project No.: 450-18-087		Ho	ole Ty WLS		
_ocation:	HSOHS	Lane, Halesworth						Co-ords:	Level:		Scale		
Harrisons L	ane. H	alesworth						639445.44 E 278040.04 N	33.89m AOD		1:25		
Client:									tes: Finish	Lo	gged		
Richboroug	h Esta	tes Limited						25/06/2019	25/06/2019		МС		
	Samp	le and In Situ Testi			Depth	Level	2	5			σ,		
Depth (m)	Туре	SPT	HPV (KPa)	PID	(m)	(m)	Strati	um Description		Legend	<u>۱</u> [<	Vell	
Depth (m) 5.00	Type SPT (S)	SPT N=38 (5,6/11,10,8,9)	HPV (KPa)	(ppm)	(m) 5.45		Stiff dark green brown m CLAY. Gravel is angular chalk and rare sandston	nottled dark grey slig to subrounded fine	to coarse	Legend	W	veil	6 7 7 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
													9
Remarks Windowless sa Combined gas	ampling and gro	from ground level to co oundwater monitoring s	ompleted standpipe	depth. G installed	roundw on com	ater not pletion.	B - B U - U SS - VS -	isturbed Sample Environmental Sample ulk Sample odisturbed Sample Surface Sample Validation Sample Vater Sample	N/R - No Recovery HVP - Hand Vane S W/S - Water Strike	Shear Test	P	GS	

	www.as	slenvironmental.co.uk								Window	Sample	No.
0.01										W	S110	
asl											et 1 of 2	
Project Name: Land off Har	risons	Lane, Halesworth						roject No.: 50-18-087			le Type WLS	
Location:		· · · · · · · · · · · · · · · · · · ·						Co-ords:	Level:		Scale	
Harrisons La	ane, H	alesworth						639412.46 E 278010.14 N	34.27m AOD		1:25 ged By	
Richboroug	h Esta	tes Limited						Start 25/06/2019	Finish 25/06/2019	_	MC	
	Samp	le and In Situ Testi	ng HPV	PID	Depth	Level	Stratum	escription		Legend	ກ > Well	
Depth (m)	Туре	SPT	(KPa)	(ppm)	(m)	(m)	Soft dark brown silty CLAY. (1			Legend	> wen	
							Soil dark brown silly CLAY. (1	iopsoli)				
0.25	ES1			0.1	0.30	33.97						
0.45	F00			0.1	0.00	00.07	Soft green brown mottled dar occasional fragments of deco	mposing vege	tation,			-
0.45 0.55	ES2 D3			0.1			occasional rootlets and rare a (Lowestoft Formation)	angular coarse	gravel of flint.			
					0.65	33.62	Soft to firm orange brown mo	ttled grey sligh	itly gravelly			
							silty CLAY. Gravel is subround (Lowestoft Formation)	ded fine to coa	rse chalk.			
1.00 - 1.45	D4] =
1.00 - 1.45	SPT	N=12 (1,1/2,3,3,4)					Firm below 1.0m.					-
	(S)											_
1.45	D5				1.50	32.77	Stiff thinly laminated dark gre	en brown sliah	itly gravelly			
4.70	D.C.						CLAY. Gravel is angular to su chalk and rare flint. (Lowesto)	brounded fine				=
1.70	D6						(======	,				
2.00 - 2.45 2.00	D7 SPT	N=21 (4,4/4,6,5,6)										2 —
	(S)											-
												=
							No recovery.				Z	=
												-
3.00 - 3.45 3.00	D8 SPT	N=23 (3,4/4,6,6,7)										з —
	(S)	(,,,,,,										
							No recovery.					
							•					=
4.00 - 4.45 4.00	D9	N 24 (4 C/C 7 7 44)										4 —
4.00	SPT (S)	N=31 (4,6/6,7,7,11)										
												=
							No recovery.					
							No recovery.					=
5.00 - 5.45	D10						Continued or	n Next Sheet				5 —
Remarks				<u> </u>			Key					
Windowless sa Backfilled with	ampling arisings	from ground level to cos on completion.	ompleted	depth. G	iroundw	vater en	countered at 2.5m bgl. D - Disturbe ES - Enviror B - Bulk Sar	nmental Sample mple rbed Sample e Sample ion Sample	N/R - No Recover HVP - Hand Vane W/S - Water Strike	Shear Test	AG	S

	www.as	slenvironmental.co.uk								Windo	w Sa	ample N	No.		
asl										V	VS [*]	110			
								I=				2 of 2			
Project Name: Land off Har	risons	Lane, Halesworth						Project No.: 450-18-087		Н	lole WL	Type .S			
Location:								Co-ords: 639412.46 E 278010.14 N	Level:		Sca				
Harrisons La	ane, H	alesworth						Da	34.27m AOD tes: Einigh	1.4	1:2				
Richborough	ո Esta	tes Limited						Start 25/06/2019	Finish 25/06/2019	L	Logged By MC				
		le and In Situ Testi			Depth	Level	Charterin	December			ý	\A/-II			
Depth (m)	Туре	SPT	HPV (KPa)	PID (ppm)	(m)	(m)		Description		Legend	Ä	Well			
5.00	SPT (S)	N=35 (5,5/7,7,10,11)	(KFa)	<u>(фрин)</u>	5.45	28.82	Stiff thinly laminated dark g CLAY. Gravel is angular to chalk and rare flint. (Lowes End of Born	subrounded fine	tly gravelly to coarse				6		
													9 —		
Remarks Windowless sa Backfilled with	mpling	from ground level to cost on completion.	ompleted	depth. G	roundw	ater end	B - Bulk : U - Undis SS - Surl VS - Vali	rbed Sample irronmental Sample Sample sturbed Sample face Sample dation Sample er Sample	N/R - No Recovery HVP - Hand Vane S W/S - Water Strike	Shear Test		AG	S		

	www.as	slenvironmental.co.uk								Window S	Sample I	No
asl										Shee	t 1 of 1	
roject Name:		l ana Ilalaawanth						Project No.:			Туре	
and off Har	risons	Lane, Halesworth						450-18-087 Co-ords:	Level:		LS cale	
arrisons La	ane, Ha	alesworth						639383.23 E 277984.24 N	34.47m AOD		:25	
ient:								Start	ites: Finish		ed By	
chborougi		tes Limited le and In Situ Testi	na					25/06/2019	25/06/2019		/C	Т
Depth (m)	Туре	SPT	HPV	PID	Depth (m)	Level (m)	Stratum	Description		Legend 8	Well	
0.00	B1		(KPa)	(ppm)	` '	<u> </u>	Soft dark brown slightly sa					┢
0.10	ES1			0.3	0.30	34.17	subangular to subrounded quartzite. (Topsoil)					
0.40	ES2			0.4	0.30	54.17	Soft green brown mottled of pockets (<30mm) of black to rounded coarse gravel of hydrocarbon odour. (Lower	sandy clay and ra of flint and quartzi	are subangular			
0.60	D3				0.65	33.82	,	,				
0.70	ES4			40.0			Firm to stiff green brown m CLAY. Gravel is subangula	r to subrounded f	ine to coarse			
0.90	D5			33.0			chalk and sandstone. Mod- localised hydrocarbon stair					
.00 - 1.45	D6	N 40 (0.0/0.4.5.5)		2.7								1
1.00	SPT (S)	N=16 (2,2/2,4,5,5)										ı
												ı
						20.00						ĺ
1.55	D7			1.3	1.45	33.02	Stiff dark green brown mot CLAY. Gravel is subangula					ı
1.00				1.0			chalk and flint. (Lowestoft I		ine to coarse			ı
												ı
												ı
.00 - 2.45	D8	N 47 (0.0/0.4.5.5)		0.9								
2.00	SPT (S)	N=17 (2,3/3,4,5,5)										ı
												ı
												ı
							No recovery.	<u> </u>				ı
												ı
												ı
												ı
3.00 - 3.45	D9			0.3								3
3.00	SPT (S)	N=35 (6,7/7,9,8,11)										ı
												ı
												ı
												ı
												ı
												ı
												ı
1.00 - 4.45	D10			0.2								1
4.00	SPT (S)	N=38 (12,7/9,9,10,10)										ı
		•										ĺ
												ĺ
					4.45	30.02	End of Bor	ehole at 4.450m				1
					-							
marks							Key					1
ndowless sa		from ground level to co					oted at the surface in D - Distu	urbed Sample vironmental Sample	N/R - No Recovery HVP - Hand Vane	/ Shear Teet		J
e vicinity of the	ne borel	hole. Groundwater no nstalled on completion	t encounte				groundwater B - Bulk U - Undi SS - Sur VS - Vali	Sample Sample sturbed Sample face Sample idation Sample er Sample	W/S - Water Strike		AG	S

	www.as	slenvironmental.co.uk								Window	Sample I	No.
1										WS	§112	
asl										Shee	et 1 of 2	
Project Name:	ricono	Lane, Halesworth						Project No.: 450-18-087		ı	e Type VLS	
Location:	1150115	Lane, Halesworth					'	Co-ords:	Level:		cale	
Harrisons La	ane, Ha	alesworth						639435.49 E 277979.81 N	34.01m AOD		:25 ged By	
Client: Richboroug	h Estat	tes I imited						Start Dates: Finish L 25/06/2019 25/06/2019				
- tronsoroug		le and In Situ Testi			Denth	Level					MC	
Depth (m)	Туре	SPT	HPV (KPa)	PID (ppm)	(m)	(m)	Stratum	Description		Legend	Well	
							Soft dark brown slightly sand	dy silty CLAY. (7	opsoil)]
0.20	ES1			0.5	0.25	33.76]
0.40	F00			0.0	0.20	000	Soft green brown mottled da fragments of decomposing v	egetation, rare	rootlets and			4
0.40 0.50	ES2 D3			0.2			rare angular coarse gravel o	of flint. (Lowesto	ft Formation)			=
					0.60	33.41	Firm orange brown mottled	grev slightly gra	velly silty			_
0.70	ES3			0.6			CLAY. Gravel is subrounded sandstone. (Lowestoft Form	fine to coarse				_
							Sandstone. (Loweston 1 onn	ationy				_
1.00 - 1.45	D4											1 —
1.00	SPT (S)	N=12 (2,2/2,3,3,4)										_
												=
					1.40	32.61	Stiff dark green brown mottle	ed dark grev sli	ahtly gravelly			_
4.00	D.						CLAY. Gravel is subangular chalk and rare sandstone. (I	to subrounded	fine to coarse			_
1.60	D5						chair and rate dandelene. (I	LOWOOLOR F OITH	20011)			_
												_
												_
2.00 - 2.45 2.00	D6 SPT	N=22 (3,4/5,5,5,7)										2 —
	(S)											_
												=
												_
												_
2.70	D7											_
												_
3.00 - 3.45	D8						Dark grey.	_				з —
3.00	SPT (S)	N=26 (4,4/6,6,7,7)					Bunk groy.	_				=
												_
							-					_
												_
												-
												_
4.00 - 4.50 4.00	D9 SPT	N=29 (6,5/5,7,8,9)					Very stiff.	- -				4 —
	(S)											_
4.50	D10											
4.50	וטוט											_
												_
												_
5.00 - 5.45	D11						Continued	on Next Sheet				5 —
Remarks							Key	STATE OF SECTION				
Windowless sa	ampling and gro	from ground level to coundwater monitoring	ompleted standpipe	depth. G installed	roundw on com	ater end	ountered at 1.0m bgl. D - Disturb ES - Envir B - Bulk S: U - Undist SS - Surfa	urbed Sample ace Sample ation Sample	N/R - No Recover HVP - Hand Vane W/S - Water Strike	Shear Test	AG	S

www	aslenvironmental.co.uk										Window Sample No.			
asl										'S1 1				
							la			eet 2 c				
Project Name:							Project No.:		1	ole Ty	ре			
	ns Lane, Halesworth						450-18-087	Lavel		WLS Scale				
Location: Harrisons Lane,	Halesworth						Co-ords: 639435.49 E 277979.81 N	Level: 34.01m AOD		30aie 1:25				
Client:								ates: Finish	Lo	gged	By			
Richborough Es	tates Limited						25/06/2019	25/06/2019		MC	-,			
San	nple and In Situ Testi			Denth	l evel		·	1	Legend	S				
Depth (m) Typ	HPV PID (m) Stratum Description									§ ₩	/ell			
5.00 SP	SPT (KPa) (ppm) (III) SPT (S) N=33 (4,6/6,7,9,11) (KPa) (ppm) (III) Stiff dark green broch CLAY. Gravel is suit chalk and rare sand						mottled dark grey sligular to subrounded ne. (Lowestoft Form	fine to coarse		A		6 —		
												9		
Remarks Windowless sampli Combined gas and	narks dowless sampling from ground level to completed depth. Groundwater encountered at 1.0m bgl. hbined gas and groundwater monitoring standpipe installed on completion. Very D - Disturbed Sample ES - Environmental Sample E - Bulk Sample E - Bulk Sample E - Bulk Sample U - Undisturbed Sample SS - Surface Sample VS - Validation Sample VS - Validati										GS	3		

www	v.aslenvironmental.co.uk			Trial Pit No.
asl				TP101
CLOI				Sheet 1 of 1
Project Name:		Project No.:		Hole Type
Land off Harriso	ons Lane, Halesworth	450-18-087		TP
Location:		Co-ords:	Level:	Scale
Harrisons Lane, Halesworth		639284.74 E 278224.80 N 34.11m AOD		1:25
Client:		Start Date	es: Finish	Logged By
Richborough Est	states Limited	12/06/2019	12/06/2019	SWF

Sample and In Situ Testing Depth			I	T	Start Dates: Finis 12/06/2019 12/06/2		SWF				
Depth (m)	Type	HVP	PID	Depth (m)	Level (m)	Stratum De	scription		Legend	S/M	
· · · /		(KPa)	(ppm)			MADE GROUND: Dark brown slightly grav to subrounded flint, brick, coal and quartzit	elly sandy CLAY. Gravel is e. (Topsoil)	subangular			-
0.30	ES1			0.40	00.74						
				0.40	33.71	MADE GROUND: Very stiff orange brown s Gravel is angular to subangular fine to coa	slightly gravelly locally san rse flint and rare brick.	dy CLAY.			
0.60	D2			0.60	33.51	Stiff to very stiff grey gravelly CLAY. Grave coarse chalk and flint. (Lowestoft Formatio	is subangular to subround n)	ded fine to			
		>120 >120									
1.10	D3										
		>120 >120				Pocket of SAND in eastern face of pit.					
1.60	D4					Pocket of SAND in eastern face of pit.					
						J					
						Occasional decomposing rootlets.					
2.20	D5										l
2.80	D6			2.80	31.31	End of Trial Pit	at 2.800m				
omarks						Kov					

Mechanically excavated from ground level to completed depth. Groundwater not encountered. Backfilled with arisings on completion

Key
D - Disturbed Sample
ES- Environmental Sample
B - Bulk Sample
U - Undisturbed Sample
SS - Surface Sample
VS - Validation Sample

www.aslenvironmental.co.uk			Trial Pit No.
asl			TP102
			Sheet 1 of 1
Project Name:	Project No.:		Hole Type
Land off Harrisons Lane, Halesworth	450-18-087		TP
Location:	Co-ords:	Level:	Scale
Harrisons Lane, Halesworth	639351.93 E 278208.56 N	32.76m AOD	1:25
Client:	Start Da	tes: Finish	Logged By
Richborough Estates Limited	12/06/2019	12/06/2019	SWF

Sample a		tes Limi Situ Tes		Donth	pth Level 2					
Depth (m)	Туре	HVP (KPa)	PID (ppm)	Depth (m)	(m)	Stratum Des			Legend	S/M
0.10	ES1			0.20	32.56	MADE GROUND: Dark brown slightly grav to subrounded fine to coarse flint, brick and Very stiff locally sandy gravelly CLAY. Grav flint and quartzite. (Lowestoft Formation)	d rare coal. (Topsoil)		
0.50	D2	>120 >120		0.60	32.16	Stiff to very stiff grey gravelly CLAY with rai and flint. Gravel is subangular to rounded f	re subangular cobb ine to coarse flint, c	les of sandston	e t	
0.90	D3	>120 >120				Formation)				
1.50	D4									
1.90	D5					Occasional decomposing rootlets.				
2.40	D6									
2.90	D7			3.00	29.76	End of Trial Pit	at 3.000m			

Mechanically excavated from ground level to completed depth. Groundwater not encountered. Backfilled with arisings on completion

Key
D - Disturbed Sample
ES- Environmental Sample
B - Bulk Sample
U - Undisturbed Sample
SS - Surface Sample
VS - Validation Sample

w	ww.aslenvironmental.co.uk			Trial Pit No.
asl				TP103
CLOI				Sheet 1 of 1
Project Name:		Project No.:		Hole Type
Land off Harri	isons Lane, Halesworth	450-18-087		TP
Location:		Co-ords:	Level:	Scale
Harrisons Lan	ne, Halesworth	639414.55 E 278207.51 N	31.34m AOD	1:25
Client:		Start Dat	es: Finish	Logged By
Richborough	Estates Limited	12/06/2019	12/06/2019	SWF

Sample a		tes Limi Situ Tes				12/06/2019 12/06/2019	SWF	
Depth (m)	Туре	HVP (KPa)	PID (ppm)	Depth (m)	Level (m)	Stratum Description	Legend	S/M
0.20	ES1	(KFa)	(ррш)	0.25	31.10	MADE GROUND: Dark brown slightly gravelly sandy CLAY. Gravel is subangular to subrounded fine to coarse flint, brick and rare coal. (Topsoil) Stiff to very stiff grey gravelly CLAY. Gravel is angular to rounded fine to medium		
0.70	D2					quartzite and flint. (Lowestoft Formation)		
1.30	D3							
1.90	D4							
2.40	D5					Occasional decomposing rootlets.		
3.00	D6			3.00	28.34	End of Trial Pit at 3.000m		

Mechanically excavated from ground level to completed depth. Groundwater not encountered. Backfilled with arisings on completion

Key
D - Disturbed Sample
ES- Environmental Sample
B - Bulk Sample
U - Undisturbed Sample
SS - Surface Sample
VS - Validation Sample

www.as	slenvironmental.co.uk			Trial Pit No.
asl				TP104
ası				Sheet 1 of 1
Project Name:	F	Project No.:		Hole Type
Land off Harrisons	Lane, Halesworth	450-18-087		TP
Location:		Co-ords:	Level:	Scale
Harrisons Lane, Ha	alesworth	639506.77 E 278225.54 N	28.16m AOD	1:25
Client:		Start Date	es: Finish	Logged By
Richborough Estat	tes Limited	12/06/2019	12/06/2019	SWF

Client: Richboroug	h Fsta	tes I imi	ited				Start D 12/06/2019	Pates: Finish 12/06/2019	L	ogged E SWF	Зу	
Sample a							12/00/2019	12/00/2019			П	
Depth (m)	Туре	HVP (KPa)	PID (ppm)	Depth (m)	Level (m)	Stratum Des	scription		ı	Legend	M/S	
		(Ki a)	(ррш)			MADE GROUND: Dark brown slightly grav to subrounded fine to coarse flint, brick and	relly sandy CLA d rare coal. (To	Y. Gravel is suban psoil)	gular			-
0.40	ES1			0.40	27.76	MADE GROUND: Very stiff brown locally s to subangular flint, chalk and rare brick.	andy gravelly (CLAY. Gravel is an	gular			-
0.60	D2											-
				0.80	27.36	Stiff grey gravelly CLAY with rare subangul rounded fine to coarse flint and chalk. (Low	lar cobbles of fl vestoft Formation	int. Gravel is angu on)	lar to			-
1.10	D3											1 —
												-
1.90	D4	104 106										2 —
												-
2.40	D5											-
						Occasional decomposing rootlets below 2.7m						-
3.00	D6			3.00	25.16	Recovered as angular to subangular fine to coasboulder) End of Trial Pit		siltstone. (Possible				з —
												-
												-
												-
												4 —
												-
												-
												5 —
Domarks		<u> </u>				Kov					Ш	

Mechanically excavated from ground level to completed depth. Groundwater not encountered. Backfilled with arisings on completion

Key
D - Disturbed Sample
ES- Environmental Sample
B - Bulk Sample
U - Undisturbed Sample
SS - Surface Sample
VS - Validation Sample

www.aslenvironmental.co.uk		Trial Pit No.
asl		TP105
COL		Sheet 1 of 1
Project Name:	Project No.:	Hole Type
Land off Harrisons Lane, Halesworth	450-18-087	TP
Location:	Co-ords: Level:	Scale
Harrisons Lane, Halesworth	639596.94 E 278231.81 N 24.32m AOD	1:25
Client:	Start Dates: Finish	Logged By
Richborough Estates Limited	12/06/2019 12/06/2019	SWF

chborougl	h Esta	tes Limi	ited				Start Dates: Finish 12/06/2019 12/06/2019		Logge SW		
Sample a	and In	Situ Tes	ting	Depth	Level	Stratum Des	ceription		Lege	راد	\int
Depth (m)	Туре	HVP (KPa)	PID (ppm)	(m)	(m)					iu ≥	;
0.10	D1					MADE GROUND: Dark brown slightly grav to subrounded fine to coarse flint, brick and	elly sandy CLAY. (d rare coal. (Topso	Gravel is subang il)	gular		
0.50	ES2			0.30	24.02	MADE GROUND: Very stiff locally sandy g subangular flint, chalk and rare brick.	ravelly CLAY. Grav	vel is angular to			
0.50	LOZ	>120 >120		0.60	23.72	Stiff grey locally sandy gravelly CLAY. Gra coarse flint and chalk. (Lowestoft Formation	vel is subangular t n)	to rounded fine t	0		
1.00	D3										
1.40	D4										
1.90	D5										
2.50	D6										
2.90	D7			2.90 3.00	21.42 21.32	Yellow brown gravelly clayey SAND. Grave (Lowestoft Formation) End of Trial Pit		o rounded quartz	ite.	9.	

Mechanically excavated from ground level to completed depth. Groundwater not encountered. Backfilled with arisings on completion.

Key
D - Disturbed Sample
ES- Environmental Sample
B - Bulk Sample
U - Undisturbed Sample
SS - Surface Sample
VS - Validation Sample

www.aslenvironmental.co.uk			Trial Pit No.
asl			TP106
COL			Sheet 1 of 1
Project Name:	Project No.:		Hole Type
Land off Harrisons Lane, Halesworth	450-18-087		TP
Location:	Co-ords:	Level:	Scale
Harrisons Lane, Halesworth	639321.77 E 278162.04 N	33.97m AOD	1:25
Client:	Start Dat	es: Finish	Logged By
Richborough Estates Limited	12/06/2019	12/06/2019	SWF

Client: Richboroug	h Esta	tes Limi	ited				Start 12/06/2019	Lo	Logged By SWF			
Sample				Donth	Lovel							
Depth (m)	Туре	HVP (KPa)	PID (ppm)	Depth (m)	Level (m)	Stratum Des				.egend	S/M	
0.10	ES1					MADE GROUND: Dark brown slightly grav to subrounded flint, brick, coal and quartzit	velly sandy CLA te. (Topsoil)	AY. Gravel is suban	gular			-
0.50	D2	>120 >120		0.30	33.67	Very stiff orange brown slightly gravelly loc to rounded fine to coarse flint. (Lowestoft F	cally sandy CLA Formation)	AY. Gravel is suban	gular			
0.00	Da	>120 >120		0.60	33.37	Stiff grey gravelly CLAY with occasional su chalk, siltstone and flint. Gravel is angular and flint. (Lowestoft Formation) Pocket of SAND in western face.	ibangular to su to subrounded	brounded cobbles fine to coarse chal	of lk			
0.90	D3					Pocket of SAND in western face.						1 -
1.30	D4											- - - - - -
1.90	D5											2 —
2.40	D6					Occasional decomposing rootlets.						- - - -
2.80	D7			3.00	30.97							
				3.00	30.97	End of Trial Pit	at 3.000m					3 -
												- - - :
												4 —
												-
												- - - - -
												5 —

Mechanically excavated from ground level to completed depth. Groundwater not encountered. Backfilled with arisings on completion

Key
D - Disturbed Sample
ES- Environmental Sample
B - Bulk Sample
U - Undisturbed Sample
SS - Surface Sample
VS - Validation Sample

www.aslenviro	onmental.co.uk			Trial Pit No.
asl				TP107
CISI				Sheet 1 of 1
Project Name:		Project No.:		Hole Type
Land off Harrisons Lane	, Halesworth	450-18-087		TP
Location:		Co-ords:	Level:	Scale
Harrisons Lane, Halesw	orth	639369.64 E 278154.40 N	33.36m AOD	1:25
Client:		Start Dat	tes: Finish	Logged By
Richborough Estates Li	mited	13/06/2019	13/06/2019	SWF

Sample a		tes Limi					SWF	
Depth (m)	Туре	HVP	PID	Depth (m)	Level (m)	Stratum Description	Legend	M/S
0.10	D1	(KPa)	(ppm)			MADE GROUND: Dark brown slightly gravelly sandy CLAY. Gravel is subangular to subrounded fine to coarse flint, brick and rare coal. (Topsoil)		
0.40	ES2			0.35	33.01	MADE GROUND: Very stiff brown locally sandy gravelly CLAY. Gravel is angular to rounded fine to coarse flint and quartzite with rare brick and coal.		
0.90	D3			0.70	32.66	Stiff grey gravelly CLAY. Gravel is angular to rounded fine to coarse chalk, flint and rare coal. (Lowestoft Formation) Pocket of sand encountered in the northern face between 0.8m and 0.9m. Pocket of sand encountered in western face between 0.9m and 1.1m.		
1.50	D4					Pocket of sand encountered in the northern face.		
2.00	D5	68 72		2.00	31.36	Occasional decomposing rootlets below 1.9m. End of Trial Pit at 2.000m		

Mechanically excavated from ground level to completed depth. Groundwater not encountered. Backfilled with arisings on completion.

Key
D - Disturbed Sample
ES- Environmental Sample
B - Bulk Sample
U - Undisturbed Sample
SS - Surface Sample
VS - Validation Sample

www.aslenviron	mental.co.uk			Trial Pit No.
asl				TP108
CSI				Sheet 1 of 1
Project Name:		Project No.:		Hole Type
Land off Harrisons Lane,	Halesworth	450-18-087		TP
Location:		Co-ords:	Level:	Scale
Harrisons Lane, Haleswor	th	639429.92 E 278155.26 N	32.31m AOD	1:25
Client:		Start Da	tes: Finish	Logged By
Richborough Estates Lim	ited	13/06/2019	13/06/2019	SWF

Sample a		tes Limi Situ Tes					13/06/2019	13/06/2019	SWF	
Depth (m)	Туре	HVP (KPa)	PID (ppm)	Depth (m)	Level (m)	Stratum Des	scription		Legend	S/M
0.20	ES1	(Kra)	(ррпп)	0.25	32.06	MADE GROUND: Dark brown slightly grav- rounded fine to coarse flint, chalk, quartzite MADE GROUND: Very stiff orange brown s Gravel is angular to subangular fine to coar	e, brick and rare coa	al. (Topsoil)		
0.60	D2			0.65	31.66	Stiff grey mottled brown gravelly CLAY with flint. Gravel is angular to rounded fine to co Formation)	n occasional subrou	nded cobbles of		
1.00	D3	>120 >120				Tomaton				
1.40	D4									
1.90	D5					Occasional decomposing rootlets.				
2.20	D6									
2.80	D7	>120 >120								
				3.00	29.31	End of Trial Pit	at 3.000m			

Mechanically excavated from ground level to completed depth. Groundwater not encountered. Backfilled with arisings on completion.

Key
D - Disturbed Sample
ES- Environmental Sample
B - Bulk Sample
U - Undisturbed Sample
SS - Surface Sample
VS - Validation Sample

www.aslenvironmental.co.uk				Trial Pit No.
asl				TP109
asi				Sheet 1 of 1
Project Name:		Project No.:		Hole Type
Land off Harrisons Lane, Halesworth		450-18-087		TP
Location:		Co-ords:	Level:	Scale
Harrisons Lane, Halesworth	·	639480.73 E 278166.65 N	30.71m AOD	1:25
Client:		Start Da	tes: Finish	Logged By
Richborough Estates Limited	·	13/06/2019	13/06/2019	SWF

Client:							Start Dates: Finish	Logged By
Richborough							13/06/2019 13/06/2019	SWF
Sample a	nd In Type	HVP	PID	Depth (m)	Level (m)	Stratum De	scription	Legend ⊗
0.10	ES1	(KPa)	(ppm)	0.25	30.46	MADE GROUND: Dark brown slightly grav rounded fine to coarse flint, chalk, quartzite MADE GROUND: Very stiff orange brown gravel is angular to subangular fine to coa	e, brick and rare coal. (Topsoil) slightly gravelly locally sandy CL.	
0.90	D3			0.80	29.91	Stiff grey gravelly CLAY. Gravel is subangue flint and occasional quartzite. (Lowestoft F		alk,
1.40	D4							
1.70	D5					Occasional decomposing rootlets.		
2.40	D6							
3.00	D7			3.00	27.71	End of Trial Pit	e at 3.000m	
lemarks						Kev		

Mechanically excavated from ground level to completed depth. Groundwater not encountered. Backfilled with arisings on completion.

Key
D - Disturbed Sample
ES- Environmental Sample
B - Bulk Sample
U - Undisturbed Sample
SS - Surface Sample
VS - Validation Sample

www.aslenv	ironmental.co.uk			Trial Pit No.
asl				TP110
COL				Sheet 1 of 1
Project Name:		Project No.:		Hole Type
Land off Harrisons Lar	ne, Halesworth	450-18-087		TP
Location:		Co-ords:	Level:	Scale
Harrisons Lane, Hales	worth	639530.81 E 278154.42 N	29.55m AOD	1:25
Client:		Start Da	ites: Finish	Logged By
Richborough Estates I	_imited	13/06/2019	13/06/2019	SWF

Richboroug	h Esta	tes Limi	ited				Start Dates: Finish 13/06/2019 13/06/2019	Logged By SWF
Sample a	and In	Situ Tes	sting	Depth	Level	Stratum Doc	parinting	Legend ⊗
Depth (m)	Туре	HVP (KPa)	PID (ppm)	(m)	(m)	Stratum Des		
		(*** 5)	(PP)			MADE GROUND: Dark brown slightly grav rounded fine to coarse flint, chalk, quartzite	elly sandy CLAY. Gravel is angu e, brick and coal. (Topsoil)	ılar to
0.30	ES1			0.35	29.20	MADE GROUND: Very stiff orange brown s Gravel is angular to subangular fine to coal	slightly gravelly locally sandy CL rse flint, quartzite and brick.	-AY.
0.70	D3			0.65	28.90	Stiff grey gravelly CLAY. Gravel is subround flint and quartzite. (Lowestoft Formation)	ded to rounded fine to coarse ch	nalk,
						, ,		
1.20	D4							
						Mottled brown below 1.5m.		
1.80	D5							
2.30	D6	110 >120				Occasional decomposing rootlets.		
2.90	D7			3.00	26.55			
				3.00	20.33	End of Trial Pit	at 3.000m	
						Kov		

Mechanically excavated from ground level to completed depth. Groundwater not encountered. Backfilled with arisings on completion.

Key
D - Disturbed Sample
ES- Environmental Sample
B - Bulk Sample
U - Undisturbed Sample
SS - Surface Sample
VS - Validation Sample

ww	w.aslenvironmental.co.uk			Trial Pit No.		
asl				TP111		
CLOI				Sheet 1 of 1		
Project Name:		Project No.:		Hole Type		
Land off Harris	sons Lane, Halesworth	450-18-087		TP		
Location:		Co-ords:	Level:	Scale		
Harrisons Lane	e, Halesworth	639602.04 E 278186.38 N	25.50m AOD	1:25		
Client:		Start Dates: Finish				
Richborough E	Estates Limited	13/06/2019	13/06/2019	SWF		

ichborough Sample a		Situ Tes	tina						ſ
	Туре	HVP	PID	Depth (m)	Level (m)	Stratum Description	Legend	M/S	
. , ,		(KPa)	(ppm)			MADE GROUND: Dark brown slightly gravelly sandy CLAY. Gravel is angular to			$^{+}$
						rounded fine to coarse flint, quartzite, brick and coal. (Topsoil)			
0.30	ES1								
0.40	D2			0.35	25.15	Very stiff orange brown slightly gravelly locally sandy CLAY. Gravel is			
						subrounded to rounded fine to coarse quartzite and flint. (Lowestoft Formation)			
				0.70	24.80	Very stiff grey gravelly CLAY. Gravel is angular to subangular fine to coarse chalk			
						and occasional flint. (Lowestoft Formation)			
0.90	D3								
1.30	D4								
2.00	D5								
2.60	D6								
2.00	50								
3.10	D7			3.20	22.30				
				3.20	22.30	End of Trial Pit at 3.200m			
									- 1

Mechanically excavated from ground level to completed depth. Groundwater not encountered. Backfilled with arisings on completion.

Key
D - Disturbed Sample
ES- Environmental Sample
B - Bulk Sample
U - Undisturbed Sample
SS - Surface Sample
VS - Validation Sample

www.aslenvironmental.co.uk			Trial Pit No.
asl			TP112
CDI			Sheet 1 of 1
Project Name:	Project No.:		Hole Type
Land off Harrisons Lane, Halesworth	450-18-087		TP
Location:	Co-ords:	Level:	Scale
Harrisons Lane, Halesworth	639668.96 E 278170.19 N	22.15m AOD	1:25
Client:	Start Dat	es: Finish	Logged By
Richborough Estates Limited	12/06/2019	12/06/2019	OLS

ichboroug						12/06/2019 12/06/2019	OLS		_
Sample and Depth (m)	Type	HVP (KPa)	PID	Depth (m)	Level (m)	Stratum Description	Legend	S/M	
0.10	ES1	(NPa)	(ppm)			Dark brown slightly gravelly slightly sandy CLAY with occasional rootlets. Gravel is subangular to rounded fine to coarse quartzite. (Topsoil)			
0.40	D2			0.30	21.85	Light brown clayey and locally very clayey SAND and locally sandy clay. Rare rootlets. (Lowestoft Formation)			
1.00	D3			0.90	21.25	Light brown slightly clayey and locally very clayey SAND with occasional subangular fine to coarse gravel of flint. (Lowestoft Formation)			1
1.60	D4			1.50	20.65	Soft to firm orange brown, brown and light grey slightly gravelly slightly sandy and locally sandy CLAY. Gravel is subangular to rounded fine to coarse flint. (Lowestoft Formation)			
2.00	D5			1.90	20.25	Light brown slightly clayey and locally very clayey SAND with occasional subangular fine to coarse gravel of flint. (Lowestoft Formation)			2
2.60	D6			2.50	19.65	Soft to firm orange brown, brown and light grey slightly gravelly slightly sandy and locally sandy CLAY and locally clayey sand. Gravel is subangular to subrounded fine to coarse flint. (Lowestoft Formation)			
3.00	D7			3.00	19.15	End of Trial Pit at 3.000m			3
									4
				1					5

Mechanically excavated from ground level to completed depth. Groundwater not encountered. Backfilled with arisings on completion.

Key
D - Disturbed Sample
ES- Environmental Sample
B - Bulk Sample
U - Undisturbed Sample
SS - Surface Sample
VS - Validation Sample

www.aslenvironmenta	l.co.uk			Trial Pit No.
asl				TP113
COL				Sheet 1 of 1
Project Name:		Project No.:		Hole Type
Land off Harrisons Lane, Hales	sworth	450-18-087		TP
Location:		Co-ords:	Level:	Scale
Harrisons Lane, Halesworth		639622.73 E 278132.64 N	25.18m AOD	1:25
Client:		Start Da	tes: Finish	Logged By
Richborough Estates Limited		13/06/2019	13/06/2019	SWF

ichborougl	h Esta	tes Limi	ited				Start Dates: 13/06/2019 13	Finish 3/06/2019	Logged E SWF	ÞУ
Sample a		Situ Tes	sting	Depth	Level					S
Depth (m)	Туре	HVP (KPa)	PID (ppm)	(m)	(m)	Stratum Des	scription		Legend	≷
0.10	ES1	(* 5)	(FF)			MADE GROUND: Dark brown slightly grav rounded fine to coarse flint, quartzite, brick	elly sandy CLAY. Grav and coal. (Topsoil)	vel is angular to		
0.40	D2	>120 >120		0.30	24.88	Very stiff orange brown locally sandy grave subrounded fine to coarse flint, quartzite ar	elly CLAY. Gravel is an and coal. (Lowestoft Fo	gular to rmation)		
0.80	D3			0.70	24.48	Stiff grey gravelly CLAY with rare subrounc to rounded fine to coarse chalk and occasion	led cobbles of flint. Gr onal flint. (Lowestoft F	avel is angular ormation)		
1.30	D4									
2.00	D5			2.00	23.18	End of Trial Pit	at 2.000m			
		1								

Mechanically excavated from ground level to completed depth. Groundwater not encountered. Backfilled with arisings on completion.

Key
D - Disturbed Sample
ES- Environmental Sample
B - Bulk Sample
U - Undisturbed Sample
SS - Surface Sample
VS - Validation Sample

www.aslenvironmental.co.uk			Trial Pit No.
asl			TP114
ası			Sheet 1 of 1
Project Name:	Project No.:		Hole Type
Land off Harrisons Lane, Halesworth	450-18-087		TP
Location:	Co-ords:	Level:	Scale
Harrisons Lane, Halesworth	639392.68 E 278079.28 N	33.92m AOD	1:25
Client:	Start Da	ites: Finish	Logged By
Richborough Estates Limited	14/06/2019	14/06/2019	SWF

Sample a	nd In	es Limi Situ Tes						
Depth (m)	Туре	HVP	PID	Depth (m)	Level (m)	Stratum Description	Legend	M/S
, , ,	7.	(KPa)	(ppm)			MADE GROUND: Dark brown slightly gravelly sandy CLAY. Gravel is angular to subrounded fine to coarse quartzite, flint, brick, coal and rare chalk. (Topsoil)		
0.30	ES1							
0.50	D2			0.40	33.52	Very stiff brown slightly gravelly locally sandy CLAY. Gravel is angular to subrounded fine to coarse quartzite and flint. (Lowestoft Formation)		
				0.70	33.22	Firm to stiff grey mottled brown gravelly CLAY. Gravel is angular subrounded fine to coarse chalk, quartzite, flint and coal. (Lowestoft Formation)		
0.90	D3							
1.30	D4							
1.90	D5							
2.40	D6					Occasional decomposing rootlets.		
3.00	D7			3.00	30.92	End of Trial Pit at 3.000m		

Mechanically excavated from ground level to completed depth. Groundwater not encountered. Backfilled with arisings on completion.

Key
D - Disturbed Sample
ES- Environmental Sample
B - Bulk Sample
U - Undisturbed Sample
SS - Surface Sample
VS - Validation Sample

w	ww.aslenvironmental.co.uk			Trial Pit No.
asl				TP115
CLOI				Sheet 1 of 1
Project Name:		Project No.:		Hole Type
Land off Harri	isons Lane, Halesworth	450-18-087		TP
Location:		Co-ords:	Level:	Scale
Harrisons Lan	ne, Halesworth	639477.78 E 278094.53 N	32.47m AOD	1:25
Client:		Start Dat	es: Finish	Logged By
Richborough	Estates Limited	13/06/2019	13/06/2019	SWF

Richboroug Sample				Danth	امروا			
Depth (m)	Туре	HVP (KPa)	PID (ppm)	Depth (m)	Level (m)	Stratum Description	Legend	8
		(NFa)	(рріп)			MADE GROUND: Dark brown slightly gravelly sandy CLAY. Gravel is angular to rounded fine to coarse flint, chalk, quartzite, brick and coal. (Topsoil)		
0.30	ES1			0.40	32.07	MADE GROUND: Very stiff orange brown slightly gravelly locally sandy CLAY. Gravel is angular to subangular fine to coarse flint, quartzite and brick.		
0.70	ES2			0.80	31.67	Firm to stiff grey CLAY with occasional angular to rounded fine to medium gravel		
1.10	D3					of chalk and flint. (Lowestoft Formation)		
1.10	D3							
1.60	D4			1.70	30.77	Stiff grey gravelly CLAY with low boulder content. Gravel is angular to rounded		
1.80	D5	114				fine to coarse chalk and occasional flint. Boulders are subangular sandstone. (Lowestoft Formation) Pocket of slightly gravelly slightly sandy CLAY. Gravel includes angular fine to coarse shell fragments.		
2.10	D6	118						
						Occasional decomposing rootlets.		
2.70	D7			0.00	00.47			
				3.00	29.47	End of Trial Pit at 3.000m		
emarks						Kev		

Mechanically excavated from ground level to completed depth. Groundwater not encountered. Backfilled with arisings on completion.

Key
D - Disturbed Sample
ES- Environmental Sample
B - Bulk Sample
U - Undisturbed Sample
SS - Surface Sample
VS - Validation Sample

www.aslenvironmental.co.uk			Trial Pit No.
asl			TP116
CLSI			Sheet 1 of 1
Project Name:	Project No.:		Hole Type
Land off Harrisons Lane, Halesworth	450-18-087		TP
Location:	Co-ords:	Level:	Scale
Harrisons Lane, Halesworth	639520.85 E 278059.49 N	31.81m AOD	1:25
Client:	Start Da	tes: Finish	Logged By
Richborough Estates Limited	13/06/2019	13/06/2019	SWF

Sample	and In	Situ Tes	tina					
Depth (m)	Туре	HVP (KPa)	PID (ppm)	Depth (m)	Level (m)	Stratum Description	Legend	S/M
0.30	D1	(ru u)	(ррш)	0.35	31.46	MADE GROUND: Dark brown slightly gravelly sandy CLAY. Gravel is angular to subrounded fine to coarse flint, quartzite, chalk, brick and rare coal. (Topsoil) MADE GROUND: Very stiff orange brown slightly gravelly CLAY. Gravel is		
0.60	ES2					angular to subrounded fine to coarse quartzite, flint and brick.		
0.90	D3			0.80	31.01	Stiff grey gravelly CLAY. Gravel is angular to rounded fine to coarse chalk and flint. (Lowestoft Formation)		
1.30	D4							
1.70	D5					Mottled brown below 1.5m.		
2.20	D6							
2.80	D7			2.80	29.01	Occasional decomposing rootlets. End of Trial Pit at 2.800m		

Mechanically excavated from ground level to completed depth. Groundwater not encountered. Backfilled with arisings on completion.

Key
D - Disturbed Sample
ES- Environmental Sample
B - Bulk Sample
U - Undisturbed Sample
SS - Surface Sample
VS - Validation Sample

www.aslenvironmental.co.uk			Trial Pit No.
asl			TP117
CDI			Sheet 1 of 1
Project Name:	Project No.:		Hole Type
Land off Harrisons Lane, Halesworth	450-18-087		TP
Location:	Co-ords:	Level:	Scale
Harrisons Lane, Halesworth	639610.35 E 278087.32 N	27.60m AOD	1:25
Client:	Start Dat	es: Finish	Logged By
Richborough Estates Limited	12/06/2019	12/06/2019	SWF

Client: Richboroug							Start Dat 12/06/2019	es: Finish 12/06/2019	Logged By SWF
Sample and Depth (m)	Type	HVP	PID	Depth (m)	Level (m)	Stratum De	scription		Legend ⊗
0.10	ES1	(KPa)	(ppm)	0.30	27.30	MADE GROUND: Dark brown slightly grav to subrounded fine to coarse flint, brick and Very stiff orange brown slightly gravelly loc to rounded quartzite, flint and chalk. (Lowe	d rare coal. (Tops	oil)	
0.90	D3			0.80	26.80	Stiff grey locally sandy gravelly CLAY with flint and chalk. Gravel is subrounded to rou	rare angular to si inded chalk. (Low	ubangular cobble vestoft Formatior	es of 1)
1.50	D4								
2.00	D5								
2.40	D6								
2.90	D7			3.00	24.60	End of Trial Pit	at 3.000m		
Oomarks						Kov			

Mechanically excavated from ground level to completed depth. Groundwater not encountered. Backfilled with arisings on completion.

Key
D - Disturbed Sample
ES- Environmental Sample
B - Bulk Sample
U - Undisturbed Sample
SS - Surface Sample
VS - Validation Sample

www.aslenviro	nmental.co.uk			Trial Pit No.
asl				TP118
COL				Sheet 1 of 1
Project Name:		Project No.:		Hole Type
Land off Harrisons Lane	, Halesworth	450-18-087		TP
Location:		Co-ords:	Level:	Scale
Harrisons Lane, Haleswe	orth	639481.09 E 278068.90 N	32.76m AOD	1:25
Client:		Start Dat	es: Finish	Logged By
Richborough Estates Li	nited	13/06/2019	13/06/2019	SWF

Sample	and In	Situ Tes	sting	Depth	Level			'n
Depth (m)	Туре	HVP (KPa)	PID (ppm)	(m)	(m)	Stratum Description	Legend	×
0.20	ES1	(14 4)	(ррш)	0.30	32.46	MADE GROUND: Dark brown slightly gravelly sandy CLAY. Gravel is angular to subrounded fine to coarse flint, quartzite, chalk, brick and rare coal. (Topsoil) Very stiff orange brown slightly gravelly locally sandy CLAY. Gravel is angular to		
0.60	D2	>120 >120		0.70	32.06	subangular fine to coarse flint and quartzite. (Lowestoft Formation) Stiff grey gravelly CLAY. Gravel is angular to rounded fine to coarse chalk and flint. (Lowestoft Formation)		
1.00	D3							
1.50	D4	>120 >120						
1.90	D5					Mottled brown.		
2.60	D6							
3.00	D7			3.00	29.76	End of Trial Pit at 3.000m		
emarks						Key		_

Mechanically excavated from ground level to completed depth. Groundwater not encountered. Backfilled with arisings on completion.

Key
D - Disturbed Sample
ES- Environmental Sample
B - Bulk Sample
U - Undisturbed Sample
SS - Surface Sample
VS - Validation Sample

www.aslenvironmental.co.uk		Trial Pit No.
asl		TP119
CLSI		Sheet 1 of 1
Project Name:	Project No.:	Hole Type
Land off Harrisons Lane, Halesworth	450-18-087	TP
Location:	Co-ords: Level:	Scale
Harrisons Lane, Halesworth	639475.49 E 278006.42 N 33.39m AOD	1:25
Client:	Start Dates: Finish	Logged By
Richborough Estates Limited	13/06/2019 13/06/2019	SWF

Sample a	and In S	Situ Tes	tina						
Depth (m)	Туре	HVP (KPa)	PID (ppm)	Depth (m)	Level (m)	Stratum Des	cription	Legend	M/S
0.20	D1	(Nr a)	(ррш)	0.30	33.09	MADE GROUND: Dark brown slightly grave to rounded fine to coarse flint, brick and qua (Topsoil) Firm orange brown slightly gravelly locally s	artzite with rare chalk and coal.		
0.50	ES2	68				rounded fine to coarse flint, quartzite, coal a	and chalk. (Lowestoff Formation)		
		72		0.65	32.74	Firm to stiff grey mottled brown gravelly CL/ fine to coarse chalk, flint and rare coal. (Low	AY. Gravel is subrounded to rounded vestoft Formation)		
1.10	D3								
1.50	D4								
1.90	D5			2.00	31.39	End of Trial Pit a	at 2.000m		

Mechanically excavated from ground level to completed depth. Groundwater not encountered. Backfilled with arisings on completion.

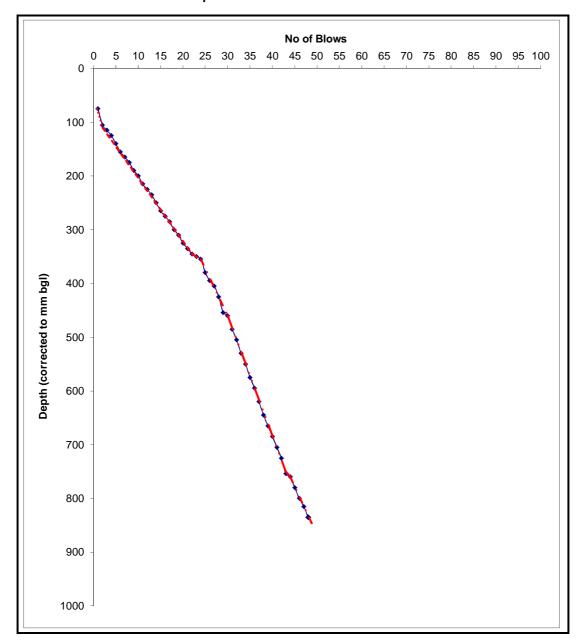
Key
D - Disturbed Sample
ES- Environmental Sample
B - Bulk Sample
U - Undisturbed Sample
SS - Surface Sample
VS - Validation Sample

www.a	aslenvironmental.co.uk			Trial Pit No.
asl				TP120
CLOI				Sheet 1 of 1
Project Name:	F	Project No.:		Hole Type
Land off Harrison	s Lane, Halesworth	450-18-087		TP
Location:		Co-ords:	Level:	Scale
Harrisons Lane, H	Halesworth	639511.16 E 278013.96 N	32.82m AOD	1:25
Client:		Start Date	es: Finish	Logged By
Richborough Esta	ates Limited	12/06/2019	12/06/2019	SWF

Richboroug Sample a							Start 12/06/2019	Finish 12/06/2019	SWF	_
Depth (m)	Type	HVP	PID	Depth (m)	Level (m)	Stratum Des	scription		Legend)
0.20	ES1	(KPa)	(ppm)			MADE GROUND: Dark brown slightly grav to rounded fine to coarse flint, brick, quartz	relly sandy CLAY. G ite with rare chalk a	ravel is subangu and coal. (Topsoi	ılar II)	+
				0.35	32.47	Stiff orange brown slightly gravelly locally s subangular fine to coarse flint and rare cha	sandy CLAY. Gravel alk. (Lowestoft Form	is angular to ation)		
0.60	D2									
0.80	D3	114 94		0.80	32.02	Stiff grey gravelly CLAY with occasional su Gravel is subangular to subrounded fine to Formation)				
1.30	D4									
1.80	D5					Pocket of subangular fine to coarse GRAVEL o	f chalk within norther	n face.		
2.20	D6									
3.00	D7			3.00	29.82	End of Trial Pit	at 3.000m			
omarks						Kov				_

Mechanically excavated from ground level to completed depth. Groundwater not encountered. Backfilled with arisings on completion.

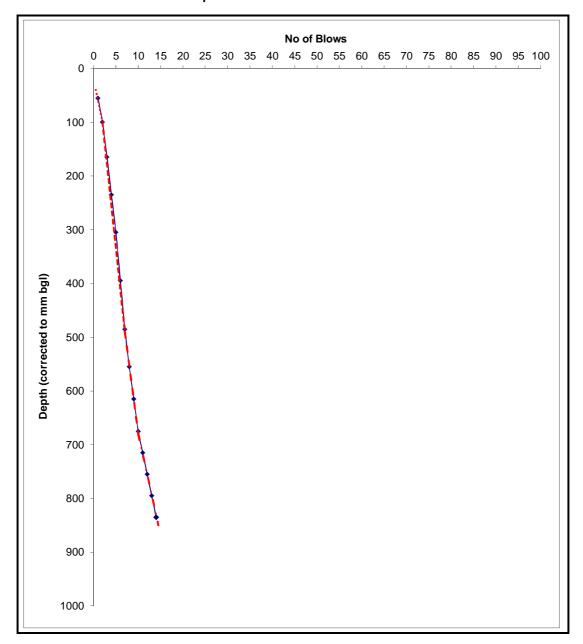
Key
D - Disturbed Sample
ES- Environmental Sample
B - Bulk Sample
U - Undisturbed Sample
SS - Surface Sample
VS - Validation Sample



DCP Test Number: DCP102 Project Number: 450-18-087

Project Name: Land off Harrisons Lane, Halesworth

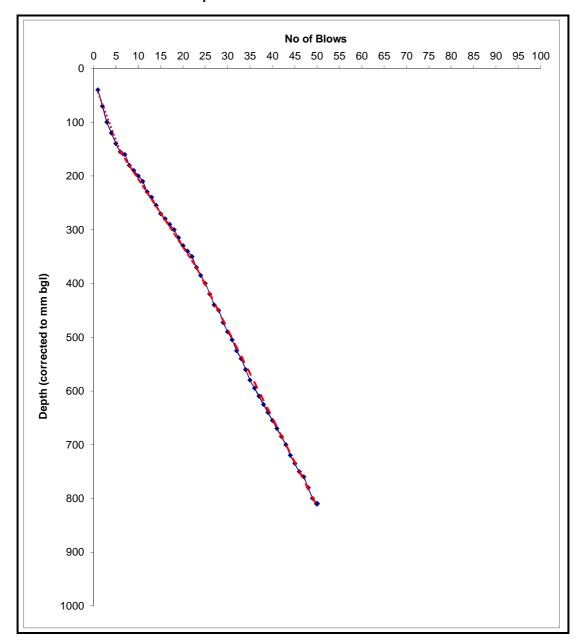
Plot 1 - No of Blows versus Depth Profile


		depth (m bgl)			
Assessment	mm/blow	from	to	Log10(CBR)	CBR (%)
1	29.17	0.08	0.11	0.756944898	5.71
2	11.75	0.11	0.35	1.262351531	18.30
3	5.00	0.35	0.36	1.737318394	54.62
4	17.50	0.36	0.46	1.040911298	10.99
5	22.31	0.46	0.75	0.905978054	8.05
6	10.00	0.75	0.76	1.352	22.49
7	18.00	0.76	0.85	1.025251193	10.60

DCP Test Number: DCP104
Project Number: 450-18-087

Project Name: Land off Harrisons Lane, Halesworth

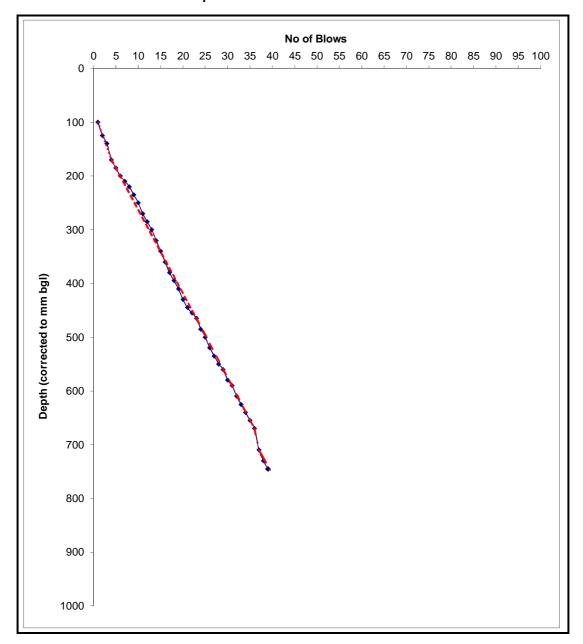
Plot 1 - No of Blows versus Depth Profile


		depth (m bgl)			
Assessment	mm/blow	from	to	Log10(CBR)	CBR (%)
1	40.00	0.04	0.10	0.581363211	3.81
2	78.00	0.10	0.49	0.210118909	1.62
3	63.33	0.49	0.68	0.325910597	2.12
4	37.78	0.68	0.85	0.613137398	4.10

DCP Test Number: DCP106
Project Number: 450-18-087

Project Name: Land off Harrisons Lane, Halesworth

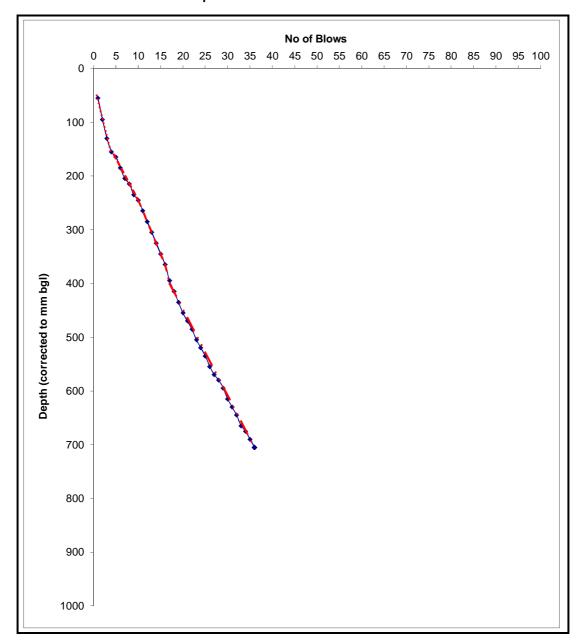
Plot 1 - No of Blows versus Depth Profile


		depth (m bgl)			
Assessment	mm/blow	from	to	Log10(CBR)	CBR (%)
1	22.00	0.05	0.16	0.913698969	8.20
2	12.65	0.16	0.37	1.221453391	16.65
3	16.48	0.37	0.82	1.074244804	11.86

DCP Test Number: DCP108
Project Number: 450-18-087

Project Name: Land off Harrisons Lane, Halesworth

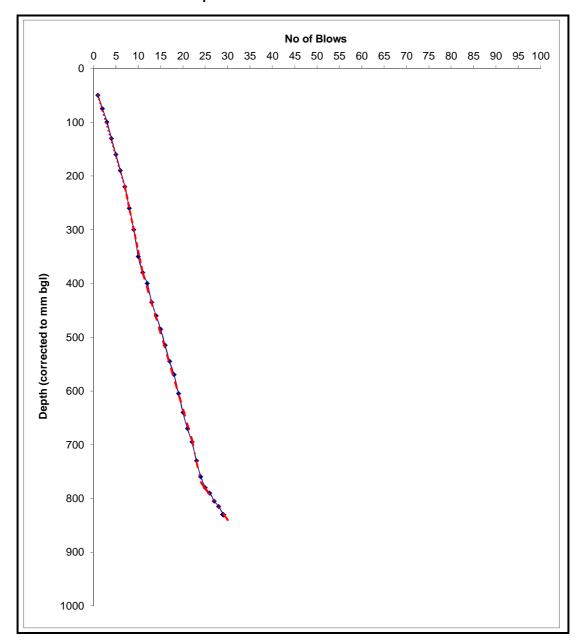
Plot 1 - No of Blows versus Depth Profile


		depth (m bgl)			
Assessment	mm/blow	from	to	Log10(CBR)	CBR (%)
1	23.33	0.10	0.17	0.880989715	7.60
2	15.53	0.17	0.47	1.107432429	12.81
3	15.77	0.47	0.67	1.098802549	12.55
4	40.00	0.67	0.71	0.581363211	3.81
5	15.00	0.71	0.76	1.126603188	13.38

DCP Test Number: DCP110
Project Number: 450-18-087

Project Name: Land off Harrisons Lane, Halesworth

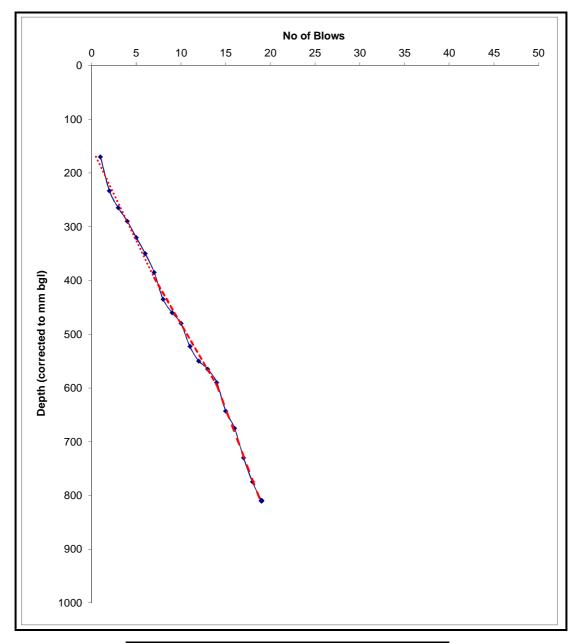
Plot 1 - No of Blows versus Depth Profile


		depth	(m bgl)		
Assessment	mm/blow	from	to	Log10(CBR)	CBR (%)
1	33.33	0.05	0.16	0.682715206	4.82
2	15.45	0.16	0.25	1.110008018	12.88
3	20.00	0.25	0.37	0.966681606	9.26
4	35.00	0.37	0.40	0.655592903	4.52
5	16.05	0.40	0.71	1.088900815	12.27

DCP Test Number: DCP116
Project Number: 450-18-087

Project Name: Land off Harrisons Lane, Halesworth

Plot 1 - No of Blows versus Depth Profile


		depth	(m bgl)		
Assessment	mm/blow	from	to	Log10(CBR)	CBR (%)
1	28.33	0.05	0.22	0.773058981	5.93
2	40.00	0.22	0.38	0.581363211	3.81
3	28.18	0.38	0.69	0.776039669	5.97
4	40.00	0.69	0.77	0.581363211	3.81
5	11.67	0.77	0.84	1.266308109	18.46

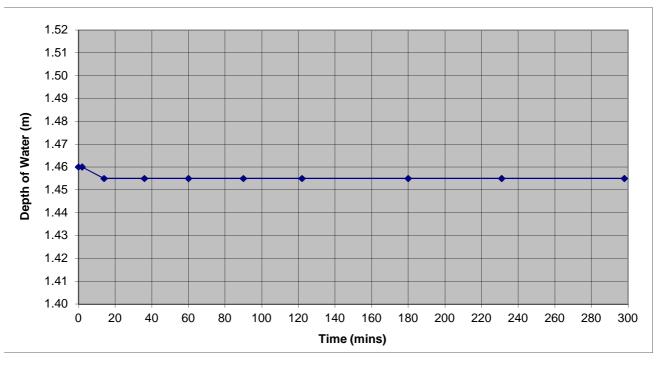
DCP Test Number: DCP119
Project Number: 450-18-087

Project Name: Land off Harrisons Lane, Halesworth

Plot 1 - No of Blows versus Depth Profile

		depth	(m bgl)		
Assessment	mm/blow	from	to	Log10(CBR)	CBR (%)
1	34.62	0.17	0.40	0.661735473	4.59
2	28.57	0.40	0.60	0.768407097	5.87
3	44.00	0.60	0.82	0.528380574	3.38

Project: Land at Harrisons Lane, Halesworth


 Project No. :
 450-18-087

 Date :
 13/06/19

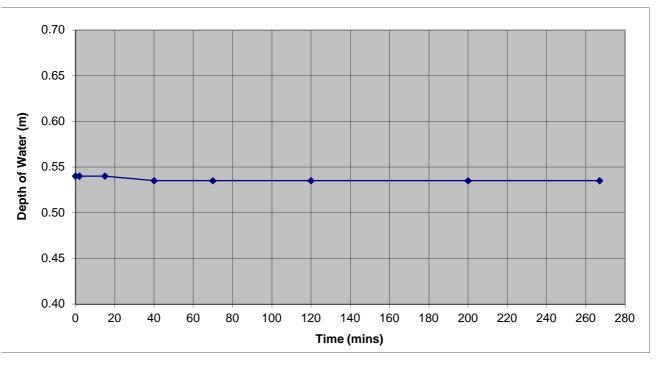
 Test Number :
 TP107

	Cumulative Elapse Time	Depth to	Depth of Water		
Time	(min)	Water (m)	(m)	Results	
	0	0.540	1.460	Trial Pit Dimensions	
	2	0.540	1.460		
	14	0.545	1.455	Length:	1.8
	36	0.545	1.455	Width:	0.6
	60	0.545	1.455	Depth before test:	2
	90	0.545	1.455		
	122	0.545	1.455	Effective Depth of Wa	ter (m)
	180	0.545	1.455	75% 1.4	59
	231	0.545	1.455	50% 1.4	58
	298	0.545	1.455	25% 1.4	56
				Summary	
				Vp(75-25) in m ³ :	-
				Ap50 in m ² :	-
				Tp(75) in seconds:	-
				Tp(25) in seconds:	-
				Tp(75-25) in seconds:	-
				Soil infiltration rate (f)	Negligible
				in m/s	Infiltration

Notes

Trial pit soakaway test completed in general accordance with BRE 365. Where full effective depth soakage is not achieved, infiltration rates are calculated based on 75% and 25% of effective depth achieved during test. Mechanically excavated trial pit from ground level to completed depth. Groundwater not encountered. All side stable. Backfilled with arisings on completion.

Project: Land at Harrisons Lane, Halesworth


 Project No. :
 450-18-087

 Date :
 13/06/19

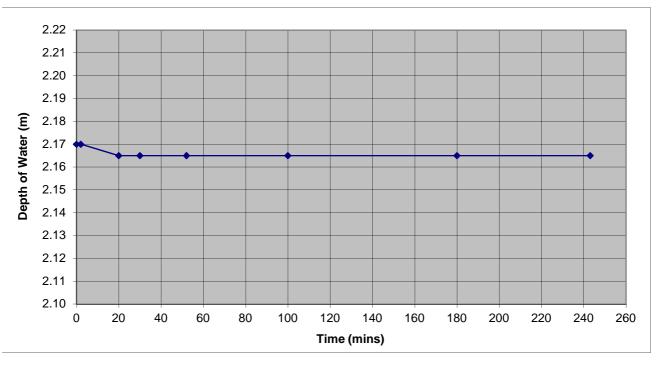
 Test Number :
 TP111

	Cumulative Elapse Time	Depth to	Depth of Water		
Time	(min)	Water (m)	(m)	Results	3
	0	1.460	0.540	Trial Pit Dimensions	
	2	1.460	0.540		
	15	1.460	0.540	Length:	2
	40	1.465	0.535	Width:	0.6
	70	1.465	0.535	Depth before test:	2
	120	1.465	0.535		
	200	1.465	0.535	Effective Depth of Wa	ater (m)
	267	1.465	0.535	75% 0.5	539
				50% 0.5	538
				25% 0.5	536
				Summary	
				Vp(75-25) in m³:	-
				Ap50 in m ² :	-
				Tp(75) in seconds:	-
				Tp(25) in seconds:	-
				Tp(75-25) in seconds:	-
				Soil infiltration rate (f)	Negligible
				in m/s	Infiltration

Notes

Trial pit soakaway test completed in general accordance with BRE 365. Where full effective depth soakage is not achieved, infiltration rates are calculated based on 75% and 25% of effective depth achieved during test. Mechanically excavated trial pit from ground level to completed depth. Groundwater not encountered. All side stable. Backfilled with arisings on completion.

Project: Land at Harrisons Lane, Halesworth


 Project No. :
 450-18-087

 Date :
 13/06/19

 Test Number :
 TP113

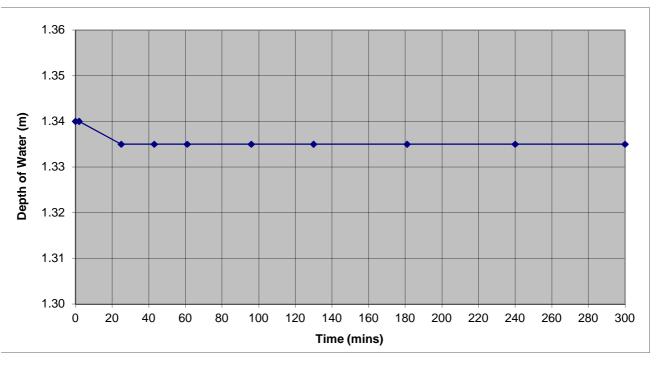
	Cumulative Elapse Time	Depth to	Depth of Water		
Time	(min)	Water (m)	(m)	Results	}
	0	1.030	2.170	Trial Pit Dimensions	
	2	1.030	2.170		
	20	1.035	2.165	Length:	1.7
	30	1.035	2.165	Width:	0.6
	52	1.035	2.165	Depth before test:	3.2
	100	1.035	2.165		
	180	1.035	2.165	Effective Depth of Wa	iter (m)
	243	1.035	2.165	75% 2.1	169
				50% 2.1	168
				25% 2.1	166
				Summary	
				Vp(75-25) in m³:	-
				Ap50 in m ² :	-
				Tp(75) in seconds:	-
				Tp(25) in seconds:	-
				Tp(75-25) in seconds:	-
				Soil infiltration rate (f)	Negligible
				in m/s	Infiltration

Notes

Trial pit soakaway test completed in general accordance with BRE 365. Where full effective depth soakage is not achieved, infiltration rates are calculated based on 75% and 25% of effective depth achieved during test.

Mechanically excavated trial pit from ground level to completed depth. Groundwater not encountered. All side stable. Backfilled with arisings on completion.

Project: Land at Harrisons Lane, Halesworth


 Project No. :
 450-18-087

 Date :
 13/06/19

 Test Number :
 TP119

	Cumulative Elapse Time	Depth to	Depth of Water		
Time	(min)	Water (m)	(m)	Results	
	0	0.660	1.340	Trial Pit Dimensions	
	2	0.660	1.340		
	25	0.665	1.335	Length:	1.7
	43	0.665	1.335	Width:	0.6
	61	0.665	1.335	Depth before test:	2
	96	0.665	1.335		
	130	0.665	1.335	Effective Depth of War	ter (m)
	181	0.665	1.335	75% 1.3	39
	240	0.665	1.335	50% 1.3	38
	300	0.665	1.335	25% 1.3	36
				Summary	
				Vp(75-25) in m ³ :	-
				Ap50 in m ² :	-
				Tp(75) in seconds:	-
				Tp(25) in seconds:	-
				Tp(75-25) in seconds:	-
				,	
				Soil infiltration rate (f)	Negligible
				in m/s	Infiltration

Notes

Trial pit soakaway test completed in general accordance with BRE 365. Where full effective depth soakage is not achieved, infiltration rates are calculated based on 75% and 25% of effective depth achieved during test.

Mechanically excavated trial pit from ground level to completed depth. Groundwater not encountered. All side stable. Backfilled with arisings on completion.

Hole I D	Event	GW Level	Borehole Depth	CH₄	CO ₂	O_2	СО	H₂S	Downhole P	ressure (Pa)	Average Flow	v Rate (I/hr)
Hole ID	Event	(m bgl)	(m bgl)	(% v/v)	(% v/v)	(% v/v)	(ppm)	(ppm)	Average	Peak	Average	Peak
Start	1	1	-	< 0.1	< 0.1	20.6	< 1	<1	0	-	0.0	-
Finish	1	-	-	< 0.1	< 0.1	20.9	< 1	<1	0	-	0.0	-
BH101	1	Dry	3.06	< 0.1	2.7	15.8	<1	<1	0	-	0.0	-
BH102	1	Dry	3.00	< 0.1	2.2	18.4	<1	<1	0	-	0.0	-
BH103	1	Dry	3.06	< 0.1	2.1	18.4	< 1	<1	0	-	0.0	-
BH104	1	Dry	3.06	< 0.1	2.0	18.7	< 1	<1	0	-	0.0	-
WS101	1	2.11	3.70	< 0.1	1.5	20.0	<1	<1	0	-	0.0	-
WS103	1	Dry	3.05	< 0.1	2.4	18.6	<1	<1	0	-	0.0	-
WS105	1	Dry	3.05	< 0.1	1.8	19.3	< 1	<1	0	-	0.0	-
WS108	1	0.60	2.66	< 0.1	3.0	18.1	<1	<1	0	33	0.0	3.0
WS109	1	Dry	3.03	< 0.1	5.1	16.8	<1	<1	1	-	0.5	-
WS111	1	0.83	3.02	< 0.1	9.5	11.2	<1	<1	0	>1500	0.0	>90
WS112	1	0.44	3.04	< 0.1	1.6	18.2	<1	<1	0	-60	0.0	-8.9

Notes: Date: 10/07/19

Atmospheric Pressure: 1010mb-1013mb

Weather Conditions: 22°C, light breeze, dry, cloudy, dry ground.

Hole I D	Event	GW Level	Borehole Depth	CH ₄	CO ₂	O ₂	СО	H ₂ S	Downhole Pi	ressure (Pa)	Average Flov	v Rate (I/hr)
Hole ID	Event	(m bgl)	(m bgl)	(% v/v)	(% v/v)	(% v/v)	(ppm)	(ppm)	Average	Peak	Average	Peak
Start	2	-	-	< 0.1	< 0.1	20.4	<1	<1	0	-	0.0	-
Finish	2	-	-	< 0.1	< 0.1	20.8	< 1	<1	0	-	0.0	-
BH101	2	Dry	3.06	< 0.1	2.7	16.4	<1	<1	0	1	0.0	-
BH102	2	Dry	3.00	< 0.1	2.2	18.4	<1	<1	0	1	0.0	-
BH103	2	Dry	3.06	< 0.1	1.9	18.9	<1	<1	0	i	0.0	-
BH104	2	Dry	3.04	< 0.1	1.9	19.0	< 1	<1	0	ı	0.0	-
WS101	2	2.15	3.70	< 0.1	1.5	19.9	<1	<1	0	1	0.0	-
WS103	2	Dry	3.05	< 0.1	2.4	18.6	<1	<1	0	1	0.0	-
WS105	2	Dry	3.05	< 0.1	1.7	19.4	< 1	<1	0	1	0.0	=
WS108	2	0.58	2.65	< 0.1	1.2	19.5	<1	<1	0	>600	0.0	>38
WS109	2	Dry	3.03	< 0.1	5.0	17.1	<1	<1	0	-	0.0	-
WS111	2	0.71	3.03	< 0.1	9.4	10.9	< 1	<1	0	1	0.0	=
WS112	2	0.46	3.04	< 0.1	0.9	19.7	<1	<1	0	>-300	0.0	>-30.0

Notes: Date: 15/07/19

Atmospheric Pressure: 1016mb-1019mb

Weather Conditions: 18°C, gentle breeze, dry, cloudy, dry ground.

Table IIa

Gas and Groundwater Monitoring Results Site Name: Harrisons Lane, Halesworth.

Project No. 450-18-087

Prepared for: Richborough Estates Limited

Hole I D	Event	GW Level	Borehole Depth	CH ₄	CO ₂	O ₂	СО	H ₂ S	Downhole Pi	ressure (Pa)	Average Flov	w Rate (I/hr)
noie i D	Event	(m bgl)	(m bgl)	(% v/v)	(% v/v)	(% v/v)	(ppm)	(ppm)	Average	Peak	Average	Peak
Start	3	-	-	< 0.1	< 0.1	20.9	< 1	<1	0	1	0.0	-
Finish	3	-	-	< 0.1	< 0.1	21.9	< 1	<1	0	-	0.0	-
BH101	3	Dry	3.06	< 0.1	2.3	17.2	<1	<1	0	1	0.0	-
BH102	3	Dry	3.01	< 0.1	1.8	19.4	<1	<1	0	1	0.0	-
BH103	3	Dry	3.06	< 0.1	1.7	19.4	< 1	<1	0	İ	0.0	-
BH104	3	Dry	3.04	< 0.1	1.5	19.8	<1	<1	0	-	0.0	-
WS101	3	2.17	3.69	< 0.1	1.1	20.7	<1	<1	0	-	0.0	-
WS103	3	Dry	3.05	< 0.1	2.0	19.5	< 1	<1	0	1	0.0	-
WS105	3	Dry	3.05	< 0.1	1.3	20.3	< 1	<1	0	-	0.0	-
WS108	3	0.58	2.63	< 0.1	1.6	19.6	<1	<1	0	-99	0.0	-10.0
WS109	3	0.86	3.03	< 0.1	4.6	18.1	<1	<1	0	>1500	0.0	>90
WS111	3	0.43	3.02	< 0.1	7.7	10.5	< 1	<1	0	1380	0.0	>85
WS112	3	0.47	3.04	<0.1	1.1	19.5	<1	<1	0	>268	0.0	>12

Notes: Date: 24/07/19

Atmospheric Pressure: 1003mb-1010mb

Weather Conditions: 34°C, gentle breeze, dry, some cloud, dry ground

Table II a

Gas and Groundwater Monitoring Results Site Name: Harrisons Lane, Halesworth.

Project No. 450-18-087

Prepared for: Richborough Estates Limited

APPENDIX III CHEMICAL LABORATORY TEST DATA

Certificate Number 19-11597

27-Jun-19

Client ASL

Holly Farm Business Park

Honiley

Warwickshire

CV8 1NP

Our Reference 19-11597

Client Reference 450-18-087

Order No 450-18-087

Contract Title Land off Harrisons Lane, Halesworth

Description 15 Soil samples, 3 Leachate samples.

Date Received 20-Jun-19

Date Started 20-Jun-19

Date Completed 27-Jun-19

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be

reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager

Our Ref 19-11597 Client Ref 450-18-087

_						
Lab No	1519605	1519606	1519607	1519608	1519609	1519610
Sample ID	BH102	BH102	WS106	TP107	TP106	TP106
Depth	0.10	1.70	0.60	0.40	1.30	0.10
Other ID	1	5	2	2	4	1
Sample Type	ES	D	ES	ES	D	ES
Sampling Date	04/06/19	04/06/19	06/06/19	10/06/19	10/06/19	10/06/19
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s

		Sampi	ing rime	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Metals									
Arsenic	DETSC 2301#	0.2	mg/kg	10		12	11		12
Beryllium	DETSC 2301#	0.2	mg/kg	0.6		0.8	1.0		0.7
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	1.2		0.5	0.6		0.8
Cadmium	DETSC 2301#	0.1	mg/kg	0.2		0.1	0.3		0.3
Chromium	DETSC 2301#	0.15	mg/kg	19		23	27		18
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0		< 1.0	< 1.0		< 1.0
Copper	DETSC 2301#	0.2	mg/kg	25		16	22		27
Lead	DETSC 2301#	0.3	mg/kg	45		12	21		58
Magnesium Aqueous Extract	DETSC 2076*	10	mg/l		13			< 10	
Mercury	DETSC 2325#	0.05	mg/kg	0.08		< 0.05	< 0.05		0.13
Nickel	DETSC 2301#	1	mg/kg	15		26	35		16
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5		< 0.5	< 0.5		< 0.5
Vanadium	DETSC 2301#	0.8	mg/kg	35		40	44		33
Zinc	DETSC 2301#	1	mg/kg	72		52	59		75
Inorganics				•	·	•	•	·	
рН	DETSC 2008#			7.4	7.8	8.2	8.2	8.3	7.8
Cyanide, Total	DETSC 2130#	0.1	mg/kg	0.3		< 0.1	< 0.1		0.2
Cyanide, Free	DETSC 2130#	0.1	mg/kg	0.2		< 0.1	< 0.1		< 0.1
FOC	DETSC 2084#	0.001		0.027		0.003	0.006		0.021
Ammonia Aqueous Extract as N	DETSC 2119	10	mg/l		< 10			< 10	
Chloride Aqueous Extract	DETSC 2055	1	mg/l		56			7.8	
Nitrate Aqueous Extract as NO3	DETSC 2055	1	mg/l		< 1.0			1.9	
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	1300	310	110	49	72	19
Sulphur as S, Total	DETSC 2320	0.01	%	0.24	0.06	0.02	0.02	0.02	0.03
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.64	0.11	0.05	0.05	0.04	0.05
Petroleum Hydrocarbons									
C5-C10 Gasoline Range Organics (GRO)	DETSC 3321*	0.1	mg/kg	< 0.1		< 0.1	< 0.1		< 0.1
EPH (C10-C40)	DETSC 3311#	10	mg/kg	< 10		< 10	< 10		< 10
PAHs									
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03		< 0.03	< 0.03		< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03		< 0.03	< 0.03		< 0.03
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03		< 0.03	< 0.03		< 0.03
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03		< 0.03	< 0.03		< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	< 0.03		< 0.03	< 0.03		0.03
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03		< 0.03	< 0.03		< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	0.07		< 0.03	0.09		0.10
Pyrene	DETSC 3303#	0.03	mg/kg	0.06		< 0.03	0.07		0.09
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	0.04		< 0.03	0.05		0.06
Chrysene	DETSC 3303	0.03	mg/kg	0.04		< 0.03	0.05		0.07
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	0.06		< 0.03	0.05		0.10
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03		< 0.03	< 0.03		< 0.03

Our Ref	19-11597									
Client Ref	450-18-087									
Contract Title	Land off Harrisons La	ane, Haleswort	th							
				Lab No	1519605	1519606	1519607	1519608	1519609	1519610
			Sa	mple ID	BH102	BH102	WS106	TP107	TP106	TP106
Depth Depth					0.10	1.70	0.60	0.40	1.30	0.10
			(Other ID	1	5	2	2	4	1
			Samp	ole Type	ES	D	ES	ES	D	ES
			Sampli	ing Date	04/06/19	04/06/19	06/06/19	10/06/19	10/06/19	10/06/19
			Sampli	ng Time	n/s	n/s	n/s	n/s	n/s	n/s
Test		Method	LOD	Units						
Benzo(a)pyrene		DETSC 3303#	0.03	mg/kg	< 0.03		< 0.03	< 0.03		0.05
Indeno(1,2,3-c,d)	pyrene	DETSC 3303#	0.03	mg/kg	< 0.03		< 0.03	< 0.03		0.03
Dibenzo(a,h)anth	racene	DETSC 3303#	0.03	mg/kg	< 0.03		< 0.03	< 0.03		< 0.03
Benzo(g,h,i)peryle	ene	DETSC 3303#	0.03	mg/kg	< 0.03		< 0.03	< 0.03		0.03
PAH - USEPA 16, 1	Total	DETSC 3303	0.1	mg/kg	0.27		< 0.10	0.31		0.58
Phenols					•		•			
Phenol - Monohy	dric	DETSC 2130#	0.3	mg/kg	0.7		< 0.3	0.6		< 0.3

Our Ref 19-11597 Client Ref 450-18-087

<u>-</u>						
Lab No	1519611	1519612	1519613	1519614	1519615	1519616
Sample ID	TP101	WS101	WS105	TP116	TP108	TP108
Depth	0.60	0.40	0.60	2.20	0.20	1.00
Other ID	2	2	2	6	1	3
Sample Type	D	ES	D	D	ES	D
Sampling Date	10/06/19	10/06/19	10/06/19	10/06/19	10/06/19	10/06/19
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s

Test	Method	LOD	Units	·	·				
Metals									
Arsenic	DETSC 2301#	0.2	mg/kg		9.7			11	
Beryllium	DETSC 2301#	0.2	mg/kg		0.7			0.7	
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg		0.6			0.8	
Cadmium	DETSC 2301#	0.1	mg/kg		0.1			0.2	
Chromium	DETSC 2301#	0.15	mg/kg		22			20	
Chromium, Hexavalent	DETSC 2204*	1	mg/kg		< 1.0			< 1.0	
Copper	DETSC 2301#	0.2	mg/kg		13			25	
Lead	DETSC 2301#	0.3	mg/kg		19			49	
Magnesium Aqueous Extract	DETSC 2076*	10	mg/l	< 10		< 10	< 10		< 10
Mercury	DETSC 2325#	0.05	mg/kg		< 0.05			0.12	
Nickel	DETSC 2301#	1	mg/kg		13			17	
Selenium	DETSC 2301#	0.5	mg/kg		< 0.5			< 0.5	
Vanadium	DETSC 2301#	8.0	mg/kg		40			40	
Zinc	DETSC 2301#	1	mg/kg		130			78	
Inorganics									
рН	DETSC 2008#			8.2	8.0	8.3	8.0	7.3	8.1
Cyanide, Total	DETSC 2130#	0.1	mg/kg		< 0.1			0.2	
Cyanide, Free	DETSC 2130#	0.1	mg/kg		< 0.1			0.2	
FOC	DETSC 2084#	0.001			0.005			0.027	
Ammonia Aqueous Extract as N	DETSC 2119	10	mg/l	< 10		< 10	< 10		< 10
Chloride Aqueous Extract	DETSC 2055	1	mg/l	4.2		2.8	7.8		4.2
Nitrate Aqueous Extract as NO3	DETSC 2055	1	mg/l	1.3		2.2	< 1.0		< 1.0
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	25	21	16	91	17	56
Sulphur as S, Total	DETSC 2320	0.01	%	0.01	0.01	0.02	0.04	0.04	0.03
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.04	0.03	0.04	0.05	0.07	0.05
Petroleum Hydrocarbons									
C5-C10 Gasoline Range Organics (GRO)	DETSC 3321*	0.1	mg/kg		< 0.1			< 0.1	
EPH (C10-C40)	DETSC 3311#	10	mg/kg		< 10			< 10	
PAHs									
Naphthalene	DETSC 3303#	0.03	mg/kg		< 0.03			< 0.03	
Acenaphthylene	DETSC 3303#	0.03	mg/kg		< 0.03			< 0.03	
Acenaphthene	DETSC 3303#	0.03	mg/kg		< 0.03			< 0.03	
Fluorene	DETSC 3303	0.03	mg/kg		< 0.03			< 0.03	
Phenanthrene	DETSC 3303#	0.03	mg/kg		< 0.03			< 0.03	
Anthracene	DETSC 3303	0.03	mg/kg		< 0.03			< 0.03	
Fluoranthene	DETSC 3303#	0.03	mg/kg		< 0.03			< 0.03	
Pyrene	DETSC 3303#	0.03	mg/kg		< 0.03			< 0.03	
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg		< 0.03			< 0.03	
Chrysene	DETSC 3303	0.03	mg/kg		< 0.03			< 0.03	
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg		< 0.03			< 0.03	
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg		< 0.03			< 0.03	

Our Ref 19-11597 Client Ref 450-18-087

Contract Title Land on	inaninoonio Earroj maroomoni		_						
			Lab No	1519611	1519612	1519613	1519614	1519615	1519616
		Sa	ample ID	TP101	WS101	WS105	TP116	TP108	TP108
			Depth	0.60	0.40	0.60	2.20	0.20	1.00
			Other ID	2	2	2	6	1	3
		Sam	ple Type	D	ES	D	D	ES	D
		Sampl	ing Date	10/06/19	10/06/19	10/06/19	10/06/19	10/06/19	10/06/19
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg		< 0.03			< 0.03	
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg		< 0.03			< 0.03	

lest	Method	LOD	Units		
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	< 0.10	< 0.10
Phenols					
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	0.8

Our Ref 19-11597 Client Ref 450-18-087

Lab No	1519617	1519618	1519619
Sample ID	TP113	TP120	TP105
Depth	0.10	0.20	0.50
Other ID	1	1	2
Sample Type	ES	ES	ES
Sampling Date	10/06/19	10/06/19	10/06/19
Sampling Time	n/s	n/s	n/s

Test	Method	LOD	Units	<u>'</u>		
Metals						
Arsenic	DETSC 2301#	0.2	mg/kg	11	9.9	9.1
Beryllium	DETSC 2301#	0.2	mg/kg	0.7	0.7	0.6
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	0.7	0.7	0.5
Cadmium	DETSC 2301#	0.1	mg/kg	0.3	0.2	< 0.1
Chromium	DETSC 2301#	0.15	mg/kg	20	20	18
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	23	22	10
Lead	DETSC 2301#	0.3	mg/kg	49	45	14
Magnesium Aqueous Extract	DETSC 2076*	10	mg/l			
Mercury	DETSC 2325#	0.05	mg/kg	0.11	0.15	< 0.05
Nickel	DETSC 2301#	1	mg/kg	19	15	11
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Vanadium	DETSC 2301#	8.0	mg/kg	37	38	32
Zinc	DETSC 2301#	1	mg/kg	88	94	48
Inorganics						
рН	DETSC 2008#			7.7	7.1	7.6
Cyanide, Total	DETSC 2130#	0.1	mg/kg	0.2	0.2	< 0.1
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1	0.2	< 0.1
FOC	DETSC 2084#	0.001		0.018	0.030	0.004
Ammonia Aqueous Extract as N	DETSC 2119	10	mg/l			
Chloride Aqueous Extract	DETSC 2055	1	mg/l			
Nitrate Aqueous Extract as NO3	DETSC 2055	1	mg/l			
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	15	14	35
Sulphur as S, Total	DETSC 2320	0.01	%	0.03	0.04	0.01
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.06	0.08	0.03
Petroleum Hydrocarbons			.		•	
C5-C10 Gasoline Range Organics (GRO)	DETSC 3321*	0.1	mg/kg	< 0.1	< 0.1	< 0.1
EPH (C10-C40)	DETSC 3311#	10	mg/kg	< 10	< 10	< 10
PAHs					•	
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	0.04	< 0.03
Pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	0.04	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Chrysene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03

Our Ref 19-11597 Client Ref 450-18-087

Lab No	1519617	1519618	1519619
Sample ID	TP113	TP120	TP105
Depth	0.10	0.20	0.50
Other ID	1	1	2
Sample Type	ES	ES	ES
Sampling Date	10/06/19	10/06/19	10/06/19
Sampling Time	n/s	n/s	n/s

Test	Method	LOD	Units			
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	< 0.10	< 0.10	< 0.10
Phenols						
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	0.4	< 0.3	< 0.3

Summary of Chemical Analysis Leachate Samples

Our Ref 19-11597 Client Ref 450-18-087

Lab No	1519620	1519621	1519622
Sample ID	BH102	TP107	TP106
Depth	0.10	0.40	0.10
Other ID	1	2	1
Sample Type	ES	ES	ES
Sampling Date	04/06/19	10/06/19	10/06/19
Sampling Time	n/s	n/s	n/s

Test	Method	LOD	Units			
Preparation						
NRA Leachate Preparation	DETSC 1009*			Υ	Υ	Υ
Metals						
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	0.99	0.80	1.8
Beryllium, Dissolved	DETSC 2306*	0.1	ug/l	< 0.1	< 0.1	< 0.1
Boron, Dissolved	DETSC 2306*	12	ug/l	< 12	< 12	< 12
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03	< 0.03	< 0.03
Chromium, Dissolved	DETSC 2306	0.25	ug/l	0.34	< 0.25	0.53
Chromium, Hexavalent	DETSC 2203	7	ug/l	< 7.0	< 7.0	< 7.0
Copper, Dissolved	DETSC 2306	0.4	ug/l	1.5	0.6	2.7
Lead, Dissolved	DETSC 2306	0.09	ug/l	0.11	< 0.09	0.45
Mercury, Dissolved	DETSC 2306	0.01	ug/l	< 0.01	< 0.01	< 0.01
Nickel, Dissolved	DETSC 2306	0.5	ug/l	< 0.5	< 0.5	< 0.5
Selenium, Dissolved	DETSC 2306	0.25	ug/l	< 0.25	< 0.25	< 0.25
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	< 0.6	< 0.6	< 0.6
Zinc, Dissolved	DETSC 2306	1.3	ug/l	2.0	< 1.3	4.3
Inorganics						
рН	DETSC 2008			6.6	6.7	7.8
Cyanide, Total Low Level	DETSC 2131	0.1	ug/l	0.3	< 0.1	< 0.1
Cyanide, Free Low Level	DETSC 2131	0.1	ug/l	< 0.1	< 0.1	< 0.1

Summary of Asbestos Analysis Soil Samples

Our Ref 19-11597 Client Ref 450-18-087

Contract Title Land off Harrisons Lane, Halesworth

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
1519605	BH102 1 0.10	SOIL	NAD	none	Jordan Eadington
1519608	TP107 2 0.40	SOIL	NAD	none	Jordan Eadington
1519610	TP106 1 0.10	SOIL	NAD	none	Jordan Eadington
1519615	TP108 1 0.20	SOIL	NAD	none	Jordan Eadington
1519617	TP113 1 0.10	SOIL	NAD	none	Jordan Eadington
1519618	TP120 1 0.20	SOIL	NAD	none	Jordan Eadington
1519619	TP105 2 0.50	SOIL	NAD	none	Jordan Eadington

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos.

Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos

Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: *
not included in laboratory scope of accreditation.

Certificate of Analysis

Certificate Number 19-12220

13-Aug-19

Client ASL

Holly Farm Business Park

Honiley

Warwickshire

CV8 1NP

Our Reference 19-12220

Client Reference 450-18-087

Order No 450-18-087

Contract Title Land off Harrisons Lane, Halesworth

Description 10 Soil samples, 1 Leachate sample, 1 Misc sample.

Date Received 28-Jun-19

Date Started 28-Jun-19

Date Completed 13-Aug-19

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be

reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick **Contracts Manager**

Our Ref 19-12220 Client Ref 450-18-087

Lab No	1523963	1523964	1523965	1523966	1523968	1523969
Sample ID	WS108	WS108	WS109	WS110	WS111	WS111
Depth	0.20	1.00	0.15	0.25	0.10	0.70
Other ID	1	3	1	1	1	4
Sample Type	ES	D	ES	ES	ES	ES
Sampling Date	25/06/19	25/06/19	25/06/19	25/06/19	25/06/19	25/06/19
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s

Toot	Mathad		ling Tillic	11/3	11/3	11/3	11/3	11/3	11/3
Test Metals	Method	LOD	Units						
Arsenic	DETCC 2201#	0.0	100 or /1, or	0.0		0.0	٥٦	10	
	DETSC 2301#	0.2	mg/kg	8.8		9.8	8.5	10	
Beryllium	DETSC 2301#	0.2	mg/kg	0.5		0.7	0.6	0.7	
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	0.7		0.5	0.5	0.8	
Cadmium	DETSC 2301#	0.1	mg/kg	0.3		0.2	0.3	0.3	
Chromium	DETSC 2301#	0.15	mg/kg	17		17	18	19	
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0		< 1.0	< 1.0	< 1.0	
Copper	DETSC 2301#	0.2	mg/kg	26		15	21	21	
Lead	DETSC 2301#	0.3	mg/kg	31		45	41	46	
Magnesium Aqueous Extract	DETSC 2076*	10	mg/l						
Mercury	DETSC 2325#	0.05	mg/kg	0.06		0.06	0.08	0.06	
Nickel	DETSC 2301#	1	mg/kg	19		13	13	17	
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5		< 0.5	0.6	< 0.5	
Vanadium	DETSC 2301#	0.8	mg/kg	30		33	32	35	
Zinc	DETSC 2301#	1	mg/kg	310		60	82	270	
Inorganics									
рН	DETSC 2008#		рН	8.5		6.8	7.6	7.5	
Cyanide, Total	DETSC 2130#	0.1	mg/kg	0.3		0.5	0.5	0.2	
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1		0.3	0.3	< 0.1	
FOC	DETSC 2084#	0.001		0.028		0.034	0.062	0.024	
Ammonia Aqueous Extract as N	DETSC 2119	10	mg/l						
Chloride Aqueous Extract	DETSC 2055	1	mg/l						
Nitrate Aqueous Extract as NO3	DETSC 2055	1	mg/l						
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	38		26	44	24	
Sulphur as S, Total	DETSC 2320	0.01	%	0.05		0.04	0.08	0.03	
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.09		0.08	0.06	0.06	
Petroleum Hydrocarbons	· ·	1		L					
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg						< 0.01
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg						< 0.01
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg						< 0.01
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg						2.8
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg						9.9
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg						3.9
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg						260
Aliphatic C5-C35	DETSC 3072*	10	mg/kg						270
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg						< 0.01
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg						< 0.01
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg						< 0.01
Aromatic C10-C12	DETSC 3072#	0.01	mg/kg						< 0.01
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg						< 0.5
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg						3.3
Aromatic C21-C35						+		+	3.3 130
ALOHIATIC CZ I-C30	DETSC 3072#	1.4	mg/kg						130

Our Ref 19-12220 Client Ref 450-18-087

Contract Title Land off Harrisons La	ane, Haleswort	th							
			Lab No	1523963	1523964	1523965	1523966	1523968	1523969
		Sa	mple ID	WS108	WS108	WS109	WS110	WS111	WS111
			Depth	0.20	1.00	0.15	0.25	0.10	0.70
		(Other ID	1	3	1	1	1	4
		Samp	ole Type	ES	D	ES	ES	ES	ES
			ing Date	25/06/19	25/06/19	25/06/19	25/06/19	25/06/19	25/06/19
			ng Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units			<u> </u>			
Aromatic C5-C35	DETSC 3072*	10	mg/kg						130
TPH Ali/Aro Total	DETSC 3072*	10	mg/kg						400
C5-C10 Gasoline Range Organics (GRO)	DETSC 3321*	0.1	mg/kg	< 0.1		< 0.1	< 0.1	< 0.1	
EPH (C10-C40)	DETSC 3311#	10	mg/kg	67		< 10	< 10	30	
PAHs	•	l	5 51			<u> </u>			
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03		< 0.03	< 0.03	< 0.03	
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03		< 0.03	< 0.03	< 0.03	
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03		< 0.03	< 0.03	< 0.03	
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03		< 0.03	< 0.03	< 0.03	
Phenanthrene	DETSC 3303#	0.03	mg/kg	< 0.03		< 0.03	< 0.03	< 0.03	
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03		< 0.03	< 0.03	< 0.03	
Fluoranthene	DETSC 3303#	0.03	mg/kg	0.06		< 0.03	< 0.03	< 0.03	
Pyrene	DETSC 3303#	0.03	mg/kg	0.05		< 0.03	< 0.03	< 0.03	
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03		< 0.03	< 0.03	0.03	
Chrysene	DETSC 3303#	0.03	mg/kg	< 0.03		< 0.03	< 0.03	< 0.03	
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03		< 0.03	< 0.03	< 0.03	
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03		< 0.03	< 0.03	< 0.03	
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03		< 0.03	< 0.03	< 0.03	
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03		< 0.03	< 0.03	< 0.03	
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03		< 0.03	< 0.03	< 0.03	
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	< 0.03		< 0.03	< 0.03	< 0.03	
PAH - USEPA 16, Total	DETSC 3303#	0.03	mg/kg	0.03		< 0.10	< 0.03	< 0.03	
Phenols	DE13C 3303	0.1	my/ky	0.11		< 0.10	< 0.10	< 0.10	
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3		< 0.3	1.6	0.6	
OCPs	DE13C 2130#	0.3	mg/kg	< 0.5		< 0.3	1.0	0.0	
alpha-BHC	DETSC 3441*	0.1	mg/kg		< 0.1				
gamma-BHC (Lindane)	DETSC 3441*	0.1	mg/kg		< 0.1				
beta-BHC	DETSC 3441*	0.1			< 0.1				
delta-BHC	DETSC 3441*	0.1	mg/kg		< 0.1				
Heptachlor		0.1	mg/kg		< 0.1				
Aldrin	DETSC 3441*		mg/kg		< 0.1				
Heptachlor epoxide	DETSC 3441* DETSC 3441*	0.1	mg/kg						
gamma-Chlordane		0.1	mg/kg		< 0.1				
0	DETSC 3441*	0.1	mg/kg		< 0.1				
Endosulphan I & Alpha-chlorodane	DETSC 3441*	0.1	mg/kg		< 0.1				
4,4-DDE	DETSC 3441*	0.1	mg/kg		< 0.1				
Dieldrin	DETSC 3441*	0.1	mg/kg		< 0.1				
Endrin	DETSC 3441*	0.1	mg/kg		< 0.1				
Endosulphan II & 4,4-DDD	DETSC 3441*	0.1	mg/kg		< 0.1				
Endrin aldehyde	DETSC 3441*	0.1	mg/kg		< 0.1				
4,4-DDT	DETSC 3441*	0.1	mg/kg		< 0.1				
Endosulphan sulphate	DETSC 3441*	0.1	mg/kg		< 0.1				
Methoxychlor	DETSC 3441*	0.1	mg/kg		< 0.1				

Our Ref 19-12220 Client Ref 450-18-087

Lab No	1523963	1523964	1523965	1523966	1523968	1523969
Sample ID	WS108	WS108	WS109	WS110	WS111	WS111
Depth	0.20	1.00	0.15	0.25	0.10	0.70
Other ID	1	3	1	1	1	4
Sample Type	ES	D	ES	ES	ES	ES
Sampling Date	25/06/19	25/06/19	25/06/19	25/06/19	25/06/19	25/06/19
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s

Test	Method	LOD	Units		
Endrin ketone	DETSC 3441*	0.1	mg/kg	< 0.1	
OPPs					
Dichlorvos	DETSC 3443*	0.1	mg/kg	< 0.1	
Mevinphos	DETSC 3443*	0.1	mg/kg	< 0.1	
Demeton-O	DETSC 3443*	0.1	mg/kg	< 0.1	
Ethoprop	DETSC 3443*	0.1	mg/kg	< 0.1	
Naled	DETSC 3443*	0.1	mg/kg	< 0.1	
Phorate	DETSC 3443*	0.1	mg/kg	< 0.1	
Demeton-S	DETSC 3443*	0.1	mg/kg	< 0.1	
Diazinon	DETSC 3443*	0.1	mg/kg	< 0.1	
Disulfoton	DETSC 3443*	0.1	mg/kg	< 0.1	
Methylparathion	DETSC 3443*	0.1	mg/kg	< 0.1	
Ronnel	DETSC 3443*	0.1	mg/kg	< 0.1	
Fenthion	DETSC 3443*	0.1	mg/kg	< 0.1	
Chlopyrifos	DETSC 3443*	0.1	mg/kg	< 0.1	
Trichlorinate	DETSC 3443*	0.1	mg/kg	< 0.1	
Merphos	DETSC 3443*	0.1	mg/kg	< 0.1	
Stirofos	DETSC 3443*	0.1	mg/kg	< 0.1	
Tokuthion	DETSC 3443*	0.1	mg/kg	< 0.1	
Fensulfothion	DETSC 3443*	0.1	mg/kg	< 0.1	
Bolstar	DETSC 3443*	0.1	mg/kg	< 0.1	
Azinphos methyl	DETSC 3443*	0.1	mg/kg	< 0.1	
Coumaphos	DETSC 3443*	0.1	mg/kg	< 0.1	

Our Ref 19-12220 Client Ref 450-18-087

Lab No	1523970	1523971	1523972	1523973
Sample ID	WS111	WS102	WS109	WS112
Depth	1.00-1.45	0.80	1.50	1.00-1.45
Other ID	6	3	5	4
Sample Type	D	D	D	D
Sampling Date	25/06/19	25/06/19	25/06/19	25/06/19
Sampling Time	n/s	n/s	n/s	n/s

Test	Method	LOD	Units				
Metals							
Arsenic	DETSC 2301#	0.2	mg/kg				
Beryllium	DETSC 2301#	0.2	mg/kg				
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg				
Cadmium	DETSC 2301#	0.1	mg/kg				
Chromium	DETSC 2301#	0.15	mg/kg				
Chromium, Hexavalent	DETSC 2204*	1	mg/kg				
Copper	DETSC 2301#	0.2	mg/kg				
Lead	DETSC 2301#	0.3	mg/kg				
Magnesium Aqueous Extract	DETSC 2076*	10	mg/l		< 10	< 10	< 10
Mercury	DETSC 2325#	0.05	mg/kg				
Nickel	DETSC 2301#	1	mg/kg				
Selenium	DETSC 2301#	0.5	mg/kg				
Vanadium	DETSC 2301#	0.8	mg/kg				
Zinc	DETSC 2301#	1	mg/kg				
Inorganics			<u> </u>	•	·	•	
рН	DETSC 2008#		рН		8.1	8.5	8.4
Cyanide, Total	DETSC 2130#	0.1	mg/kg				
Cyanide, Free	DETSC 2130#	0.1	mg/kg				
FOC	DETSC 2084#	0.001	0 0				
Ammonia Aqueous Extract as N	DETSC 2119	10	mg/l		< 10	< 10	< 10
Chloride Aqueous Extract	DETSC 2055	1	mg/l		4.4	8.2	13
Nitrate Aqueous Extract as NO3	DETSC 2055	1	mg/l		3.0	< 1.0	< 1.0
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l		16	17	37
Sulphur as S, Total	DETSC 2320	0.01	%		< 0.01	0.01	0.02
Sulphate as SO4, Total	DETSC 2321#	0.01	%		0.02	0.03	0.04
Petroleum Hydrocarbons			•	•	·	•	
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg	< 0.01			
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg	< 0.01			
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01			
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg	< 1.5			
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg	< 1.2			
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg	< 1.5			
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg	< 3.4			
Aliphatic C5-C35	DETSC 3072*	10	mg/kg	< 10			
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg	< 0.01			
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg	< 0.01			
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01			
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg	< 0.9			
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg	< 0.5			
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg	< 0.6			
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg	< 1.4			
	122.000072#		9, 1.91	, 111			

Our Ref 19-12220 Client Ref 450-18-087

Haleswor	th	_				
		Lab No	1523970	1523971	1523972	1523973
	Sa	mple ID	WS111	WS102	WS109	WS112
		Depth	1.00-1.45	0.80	1.50	1.00-1.45
	(Other ID	6	3	5	4
	Sample Type			D	D	D
	Sampling Date			25/06/19	25/06/19	25/06/19
	Sampli	ng Time	n/s	n/s	n/s	n/s
thod	LOD	Units				
SC 3072*	10	mg/kg	< 10			
SC 3072*	10	ma/ka	< 10			

		•	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Aromatic C5-C35	DETSC 3072*	10	mg/kg	< 10			
TPH Ali/Aro Total	DETSC 3072*	10	mg/kg	< 10			
C5-C10 Gasoline Range Organics (GRO)	DETSC 3321*	0.1	mg/kg				
EPH (C10-C40)	DETSC 3311#	10	mg/kg				
PAHs							
Naphthalene	DETSC 3303#	0.03	mg/kg				
Acenaphthylene	DETSC 3303#	0.03	mg/kg				
Acenaphthene	DETSC 3303#	0.03	mg/kg				
Fluorene	DETSC 3303	0.03	mg/kg				
Phenanthrene	DETSC 3303#	0.03	mg/kg				
Anthracene	DETSC 3303	0.03	mg/kg				
Fluoranthene	DETSC 3303#	0.03	mg/kg				
Pyrene	DETSC 3303#	0.03	mg/kg				
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg				
Chrysene	DETSC 3303	0.03	mg/kg				
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg				
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg				
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg				-
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg				
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg				
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg				-
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg				
Phenols	1	l l	<u> </u>	<u> </u>	'		
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg				
OCPs			<u> </u>	<u> </u>	· ·		-
alpha-BHC	DETSC 3441*	0.1	mg/kg				
gamma-BHC (Lindane)	DETSC 3441*	0.1	mg/kg				
beta-BHC	DETSC 3441*	0.1	mg/kg				
delta-BHC	DETSC 3441*	0.1	mg/kg				
Heptachlor	DETSC 3441*	0.1	mg/kg				
Aldrin	DETSC 3441*	0.1	mg/kg				
Heptachlor epoxide	DETSC 3441*	0.1	mg/kg				
gamma-Chlordane	DETSC 3441*	0.1	mg/kg				
Endosulphan I & Alpha-chlorodane	DETSC 3441*	0.1	mg/kg				
4,4-DDE	DETSC 3441*	0.1	mg/kg				
Dieldrin	DETSC 3441*	0.1	mg/kg				
Endrin	DETSC 3441*	0.1	mg/kg				
Endosulphan II & 4,4-DDD	DETSC 3441*	0.1	mg/kg				
Endrin aldehyde	DETSC 3441*	0.1	mg/kg				
4,4-DDT	DETSC 3441*	0.1	mg/kg				
Endosulphan sulphate	DETSC 3441*	0.1	mg/kg				
Methoxychlor	DETSC 3441*	0.1	mg/kg	-			
- : - · · · · · · · · · · · · · · · · ·		0.1	9, 1.9		<u> </u>		

Our Ref 19-12220 Client Ref 450-18-087

•				
Lab No	1523970	1523971	1523972	1523973
Sample ID	WS111	WS102	WS109	WS112
Depth	1.00-1.45	0.80	1.50	1.00-1.45
Other ID	6	3	5	4
Sample Type	D	D	D	D
Sampling Date	25/06/19	25/06/19	25/06/19	25/06/19
Sampling Time	n/s	n/s	n/s	n/s

Test	Method	LOD	Units		
Endrin ketone	DETSC 3441*	0.1	mg/kg		
OPPs					
Dichlorvos	DETSC 3443*	0.1	mg/kg		
Mevinphos	DETSC 3443*	0.1	mg/kg		
Demeton-O	DETSC 3443*	0.1	mg/kg		
Ethoprop	DETSC 3443*	0.1	mg/kg		
Naled	DETSC 3443*	0.1	mg/kg		
Phorate	DETSC 3443*	0.1	mg/kg		
Demeton-S	DETSC 3443*	0.1	mg/kg		
Diazinon	DETSC 3443*	0.1	mg/kg		
Disulfoton	DETSC 3443*	0.1	mg/kg		
Methylparathion	DETSC 3443*	0.1	mg/kg		
Ronnel	DETSC 3443*	0.1	mg/kg		
Fenthion	DETSC 3443*	0.1	mg/kg		
Chlopyrifos	DETSC 3443*	0.1	mg/kg		
Trichlorinate	DETSC 3443*	0.1	mg/kg		
Merphos	DETSC 3443*	0.1	mg/kg		
Stirofos	DETSC 3443*	0.1	mg/kg		
Tokuthion	DETSC 3443*	0.1	mg/kg		
Fensulfothion	DETSC 3443*	0.1	mg/kg		
Bolstar	DETSC 3443*	0.1	mg/kg		
Azinphos methyl	DETSC 3443*	0.1	mg/kg		
Coumaphos	DETSC 3443*	0.1	mg/kg		

Summary of Chemical Analysis Leachate Samples

Our Ref 19-12220 Client Ref 450-18-087

.1 1	
Lab No	1523974
Sample ID	WS108
Depth	0.20
Other ID	1
Sample Type	ES
Sampling Date	25/06/19
Sampling Time	n/s

Test	Method	LOD	Units	
Preparation				
NRA Leachate Preparation	DETSC 1009*			Υ
Metals				
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	1.2
Beryllium, Dissolved	DETSC 2306*	0.1	ug/l	< 0.1
Boron, Dissolved	DETSC 2306*	12	ug/l	14
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03
Chromium, Dissolved	DETSC 2306	0.25	ug/l	< 0.25
Chromium, Hexavalent	DETSC 2203	7	ug/l	< 7.0
Copper, Dissolved	DETSC 2306	0.4	ug/l	1.7
Lead, Dissolved	DETSC 2306	0.09	ug/l	0.09
Mercury, Dissolved	DETSC 2306	0.01	ug/l	< 0.01
Nickel, Dissolved	DETSC 2306	0.5	ug/l	0.8
Selenium, Dissolved	DETSC 2306	0.25	ug/l	< 0.25
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	1.4
Zinc, Dissolved	DETSC 2306	1.3	ug/l	7.5
Inorganics				
рН	DETSC 2008		рН	8.4
Cyanide, Total Low Level	DETSC 2131	0.1	ug/l	< 0.1
Cyanide, Free Low Level	DETSC 2131	0.1	ug/l	< 0.1

Summary of Asbestos Analysis Soil Samples

Our Ref 19-12220 Client Ref 450-18-087

Contract Title Land off Harrisons Lane, Halesworth

Lab No	Sample ID	Sample Location	Material Type*	Result	Comment*	Analyst
1523963	WS108 1 0.20		SOIL	NAD	none	Lee Kerridge
1523965	WS109 1 0.15		SOIL	NAD	none	Lee Kerridge
1523966	WS110 1 0.25		SOIL	NAD	none	Lee Kerridge
1523967	WS111 1 0.10		Cement	Crocidolite	none	Lee Kerridge
				Chrysotile		
1523968	WS111 1 0.10		SOIL	NAD	none	Lee Kerridge

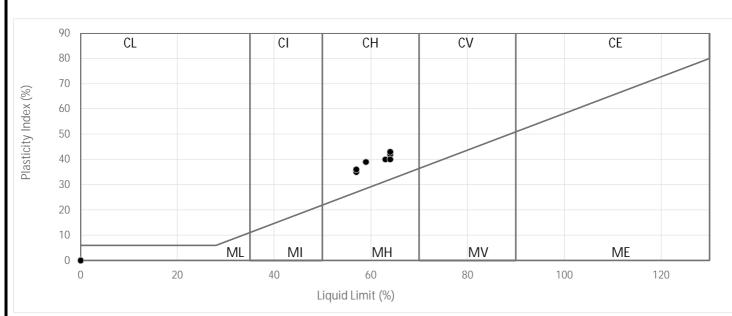
Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * -not included in laboratory scope of accreditation.

APPENDIX IV GEOTECHNICAL LABORATORY TEST DATA

GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5) DESCRIPTIONS	
Contract Number	44733	
Site Name	Harrisons Lane, Halesworth	
Date Tested	02/07/2019	

Sample/Hole Reference	Sample Number	Sample Type	D	Depth (m)		Descriptions
WS106	D4	D	1.00	-		White/ brown/ grey fine to medium gravelly chalky silty CLAY
TP107	D4	D	1.50	-	'	Brown/ grey slightly chalky fine to medium gravelly silty sandy CLAY
TP101	D3	D	1.10	-		White/ brown/ grey fine to medium gravelly chalky silty CLAY
WS101	D3	D	0.90	-		White/ brown/ grey fine to medium gravelly chalky silty CLAY
WS104	D6	D	2.00	-		White/ brown/ grey fine to medium gravelly chalky silty CLAY
TP117	D4	D	1.50	-		White/ brown/ grey slightly chalky fine to medium gravelly silty CLAY
TP114	D4	D	1.30	-		White/ brown/ grey fine gravelly chalky silty CLAY
TP103	D3	D	1.30	-		White/ brown/ grey fine to medium gravelly chalky silty CLAY
TP104	D4	D	1.90	-		Brown/ grey fine gravelly chalky silty CLAY
				-		
		<u> </u>		-		
				-		
				-		
		<u> </u>		-		
				-		
				-		
	1	<u> </u>		-	'	
	1	<u> </u>		-	'	
				-		
	1	<u> </u>		-	'	
				-		
		<u> </u>		-		
				-		
				-		

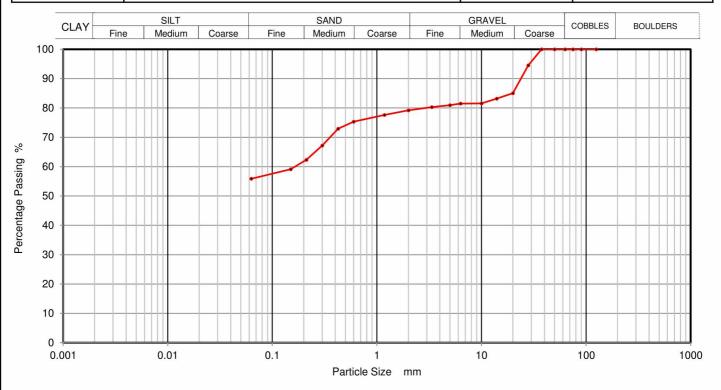
Operators	Checked	07/07/2019	Wayne Honey (Administrative/Quality Assistant)			
leuan Williams	Approved	07/07/2019	Paul Evans (Quality/Technical Manager)			



GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)	
Contract Number	44733	
Site Name	Harrisons Lane, Halesworth	
Date Tested	02/07/2019	

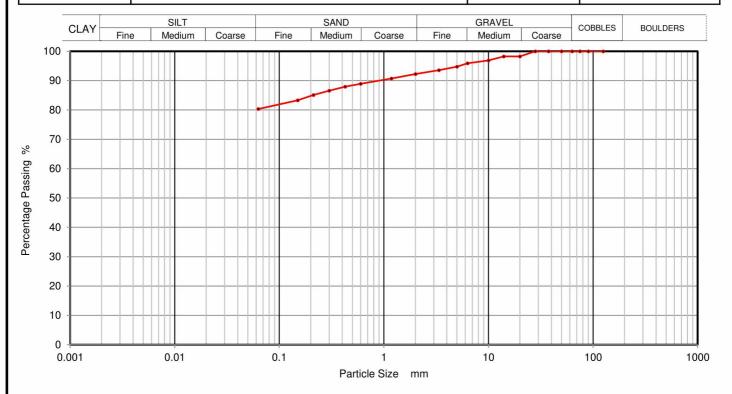
Sample/Hole Reference	Sample Number	Sample Type	D	epth (ı	m)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing 0.425mm %	Remarks
WS106	D4	D	1.00	-		15	59	20	39	84	CH High Plasticity
TP107	D4	D	1.50	-		20	59	20	39	81	CH High Plasticity
TP101	D3	D	1.10	-		18	64	22	42	86	CH High Plasticity
WS101	D3	D	0.90	-		15	64	22	42	79	CH High Plasticity
WS104	D6	D	2.00	-		5.2	57	22	35	81	CH High Plasticity
TP117	D4	D	1.50	-		20	64	21	43	82	CH High Plasticity
TP114	D4	D	1.30	-		17	63	23	40	94	CH High Plasticity
TP103	D3	D	1.30	-		18	57	21	36	78	CH High Plasticity
TP104	D4	D	1.90	-		23	64	24	40	90	CH High Plasticity
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							

Symbols: NP : Non Plastic #: Liquid Limit and Plastic Limit Wet Sieved


PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION BS 5930:1999+A2:2010

Operators	Checked	07/07/2019	Wayne Honey (Administrative/Quality Assistant)
leuan Williams	Approved	07/07/2019	Paul Evans (Quality/Technical Manager)

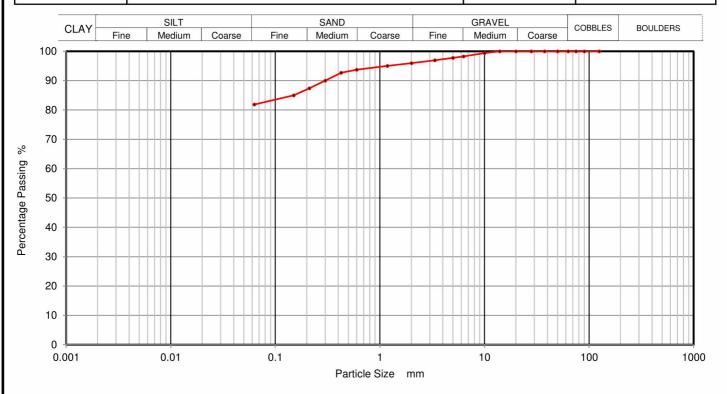
CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	44733
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	BH103
Site Name	Harrisons Lane, Halesworth	Sample No.	ES2
Soil Description	Decrease fine to a constant and the fine to a constant of the CHT/OLAV	Depth Top	0.70
	Brown fine to coarse gravelly fine to coarse sandy SILT/ CLAY	Depth Base	
		Sample Type	D


Siev	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	95		
20	85		
14	83		
10	82		
6.3	81		
5	81		
3.35	80		
2	79		
1.18	78		
0.6	75		
0.425	73		
0.3	67		
0.212	62		
0.15	59		
0.063	56		

Sample Proportions	% dry mass
Cobbles	0
Gravel	21
Sand	23
Silt and Clay	56

Operators	Checked	06/07/2019	Wayne Honey
RO/MH	Approved	07/07/2019	Paul Evans

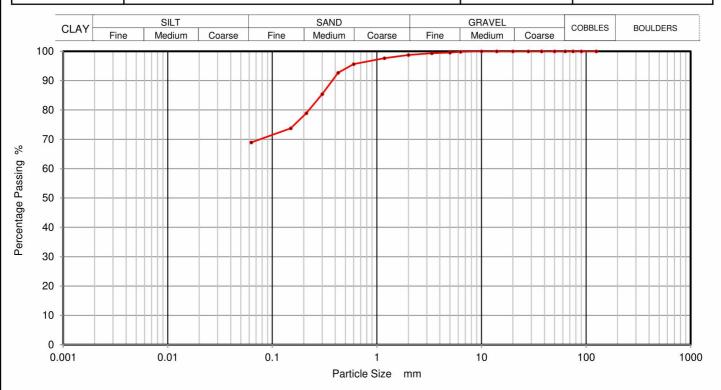
CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	44733
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	TP108
Site Name	Harrisons Lane, Halesworth	Sample No.	d4
Soil Description	Brown slightly fine to coarse gravelly fine to coarse sandy SILT/	Depth Top	1.40
	CLAY	Depth Base	
		Sample Type	D


Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	98		
14	98		
10	97		
6.3	96		
5	95		
3.35	94		
2	92		
1.18	91		
0.6	89		
0.425	88		
0.3	87		
0.212	85		
0.15	83		
0.063	80		

Sample Proportions	% dry mass
Cobbles	0
Gravel	8
Sand	12
Silt and Clay	80

Operators	Checked	06/07/2019	Wayne Honey
RO/MH	Approved	07/07/2019	Paul Evans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	44733
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	TP110
Site Name	Harrisons Lane, Halesworth	Sample No.	D3
Soil Description	Brown slightly fine to medium gravelly fine to coarse sandy SILT/	Depth Top	0.70
	CLAY	Depth Base	
		Sample Type	D


Siev	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	99		
6.3	98		
5	98		
3.35	97		
2	96		
1.18	95		
0.6	94		-
0.425	93		
0.3	90		
0.212	87		
0.15	85		
0.063	82		

Sample Proportions	% dry mass
Cobbles	0
Gravel	4
Sand	14
Silt and Clay	82

Operators	Checked	06/07/2019	Wayne Honey
RO/MH	Approved	07/07/2019	Paul Evans

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	44733
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	TP111
Site Name	Harrisons Lane, Halesworth	Sample No.	D2
Soil Description	Prown elightly fine grovelly fine to copres condy SILT/CLAV	Depth Top	0.40
	Brown slightly fine gravelly fine to coarse sandy SILT/ CLAY	Depth Base	
		Sample Type	D

Siev	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	99		
2	99		
1.18	98		
0.6	96		
0.425	93		
0.3	85		
0.212	79		
0.15	74		
0.063	69		

Sample Proportions	% dry mass
Cobbles	0
Gravel	1
Sand	30
Silt and Clay	69

Operators	Checked	06/07/2019	Wayne Honey
RO/MH	Approved	07/07/2019	Paul Evans

GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5) DESCRIPTIONS	
Contract Number	44825	
Site Name	Harrisons Lane, Halesworth	
Date Tested	06/07/2019	

Sample/Hole Reference	Sample Number	Sample Type	Depth (m)		m)	Descriptions
WS109	D3	D	0.90	-		Brown fine to medium gravelly chalky silty CLAY
WS111	D7	D	1.55	-		Brown fine to medium gravelly chalky silty CLAY
		7		-		
		7		-		
		<u> </u>		-		
				-		
				-		
				-		
				-		
				-		
		<u> </u>		-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
		<u> </u>		-		
				-		
	T	, T		-		

Operators	Checked	11/07/2019	Wayne Honey (Administrative/Quality Assistant)
leuan Williams	Approved	11/07/2019	Paul Evans (Quality/Technical Manager)


GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)	
Contract Number	44825	
Site Name	Harrisons Lane, Halesworth	
Date Tested	06/07/2019	

Sample/Hole Reference	Sample Number	Sample Type	D	Depth (m)		Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing 0.425mm %	Remarks
WS109	D3	D	0.90	-		19	61	22	39	90	CH High Plasticity
WS111	D7	D	1.55	-		20	56	21	35	89	CH High Plasticity
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
Complete ND No. 1		// - 1 : : 1 1		-							

Symbols: NP : Non Plastic

: Liquid Limit and Plastic Limit Wet Sieved

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION BS 5930:1999+A2:2010

Operators	Checked	11/07/2019	Wayne Honey (Administrative/Quality Assistant)
leuan Williams	Approved	11/07/2019	Paul Evans (Quality/Technical Manager)

APPENDIX V QUALITATIVE RISK ASSESSMENT

STEP 2: BASIC SI	ETTINGS	Apply Settings to Model	Back t	o Guide				
SELECT LAND USE	Residential with prod	duce			RAT	TIO MODE		
LAND USE C	PTIONS							
RECEPTOR	Female (res)		-					
BUILDING	Small terraced house	е	▼	START AC	1	END AC	6	
SOIL TYPE	Sandy clay loam		T	рН	7	SOM (%)	3.83	
EXPOSURE	PATHWAYS							
consum	ORAL ROUTES t soil and dust ingesti ption of homegrown p ched to homegrown p	oroduce 🔽	DERM indo outd		J	INHALATION indoor de outdoor va outdoor va outdoor va	ust dust apour	マママ

Find AC

Print Reports

		Ratio of ADE	to relevant Health	Criteria Value	Soil	Assessment Crite	eria	SAC Flag	Soil Saturation Limit
		oral HCV	inhal HCV	Combined	oral HCV	inhal HCV	Combined	Current SAC used for determining pathway contributions	
Number	Chemical	(dimensionless)	(dimensionless)	(dimensionless)	mg kg⁻¹	mg kg ⁻¹	mg kg ⁻¹	(unitless)	mg kg ⁻¹
1	Beryllium	0.63	0.37	1.00	1.31E+02	2.39E+02	8.78E+01	Combined	NR
2	Boron	1.00	0.00	1.00	1.17E+02	3.65E+06	1.17E+02	Combined	NR
3	Chromium	0.06	0.94	1.00	1.97E+04	1.18E+03	1.11E+03	Combined	NR
4	Copper	0.80	0.20	1.00	2.69E+03	1.18E+04	2.38E+03	Combined	NR
5	Mercury, elemental	NR	1.00	NR	NR	1.20E+00	NR	Inhal	1.65E+01
6	Mercury, inorganic	0.93	0.07	1.00	1.81E+02	2.55E+03	1.69E+02	Combined	NR
7	Mercury, methyl	0.76	0.24	1.00	1.39E+01	NR	1.05E+01	Combined	2.07E+02
8	Nickel.	1.00	0.66	NR	1.27E+02	1.92E+02	NR	Oral	NR
9	Selenium	1.00	NR	NR	3.50E+02	NR	NR	Oral	NR
10	Vanadium	0.75	0.25	1.00	3.73E+02	1.15E+03	2.82E+02	Combined	NR
11	Zinc	1.00	0.00	1.00	3.25E+03	2.55E+07	3.25E+03	Combined	NR
12	Cyanide	1.00	0.00	1.00	2.65E+01	3.81E+04	2.65E+01	Combined	NR
13] 						
14									
15									
16									
17									
18									
19									
20									
21									
22									
23									
24									
25			1						
26			 						
27									
28									
28 29									
30									

Find AC

Print Reports

		Ratio of ADE	to relevant Health	Criteria Value	Soil	Assessment Crite	ria	SAC Flag	Soil Saturation Limit
		oral HCV	inhal HCV	Combined	oral HCV	inhal HCV	Combined	Current SAC used for determining pathway contributions	
Number	Chemical	(dimensionless)	(dimensionless)	(dimensionless)	mg kg⁻¹	mg kg ⁻¹	mg kg ⁻¹	(unitless)	mg kg ⁻¹
1	Aliphatic >C5-C6	0.01	0.99	1.00	1.22E+04	1.46E+02	1.46E+02	Combined	5.93E+02
2	Aliphatic >C6-C8	0.01	0.99	1.00	4.26E+04	6.53E+02	6.50E+02	Combined	4.45E+02
3	Aliphatic >C8-C10	0.05	0.95	1.00	3.18E+03	3.30E+02	3.21E+02	Combined	3.49E+02
4	Aliphatic >C10-C12	0.37	0.63	1.00	4.29E+03	3.02E+03	2.33E+03	Combined	2.74E+02
5	Aliphatic >C12-C16	0.93	0.07	1.00	4.42E+03	3.47E+04	4.26E+03	Combined	1.98E+02
6	Aliphatic >C16-C21	1.00	NR	NR	8.84E+04	NR	NR	Oral	1.21E+02
7	Aliphatic >C21-C35	1.00	NR	NR	8.84E+04	NR	NR	Oral	1.21E+02
8	Aromatic >C6-C7	0.83	0.17	1.00	2.55E+02	1.27E+03	2.13E+02	Combined	3.25E+03
9	Aromatic >C7-C8	0.88	0.12	1.00	5.01E+02	3.79E+03	4.43E+02	Combined	2.86E+03
10	Aromatic >C8-C10	0.65	0.35	1.00	8.65E+01	1.32E+02	6.82E+01	Combined	8.15E+02
11	Aromatic >C10-C12	0.94	0.06	1.00	1.57E+02	1.37E+03	1.52E+02	Combined	7.07E+02
12	Aromatic >C12-C16	0.99	0.01	1.00	3.23E+02	1.24E+04	3.21E+02	Combined	4.28E+02
13	Aromatic >C16-C21	1.00	NR	NR	5.25E+02	NR	NR	Oral	7.04E+01
14	Aromatic >C21-C35	1.00	NR	NR	1.06E+03	NR	NR	Oral	4.23E+00
15									
16									
17									
18									
19									
20									
21									
22									
23									
24 25									
25									
26									
27									
28									
29									
30									

Find AC

Print Reports

		Ratio of ADE	to relevant Health	Criteria Value	Soil	Assessment Crite	eria	SAC Flag	Soil Saturation Limit
		oral HCV	inhal HCV	Combined	oral HCV	inhal HCV	Combined	Current SAC used for determining pathway contributions	
Number	Chemical	(dimensionless)	(dimensionless)	(dimensionless)	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	(unitless)	mg kg⁻¹
1	Phenanthrene	0.99	0.01	1.00	1.99E+03	1.55E+05	1.96E+03	Combined	3.44E+02
2	Fluoranthene	0.99	0.01	1.00	5.73E+02	8.20E+04	5.69E+02	Combined	7.24E+01
3	Pyrene	0.99	0.01	1.00	1.30E+03	1.90E+05	1.30E+03	Combined	8.41E+00
4) 						
5						!]		
6			!						
7									
8			i i			İ	İ		
9			+			İ	i		
10									
11			 						
12			 						
13			i			<u> </u>	!		
14			! !			!	!		
15									
16			<u> </u>			<u> </u>	<u> </u>		
			i !			<u> </u>	<u> </u>		
17			i						
18			! 	 		<u> </u>	<u> </u>		
19									
20			<u> </u>				i		
21			i 						
22			 				<u> </u>		
23			! !						
24			<u> </u>						
25			i 						
26			i 						
27									
28			! ! L	L					
29			 						
30									

Find AC

Print Reports

		Ratio of ADE	to relevant Health	Criteria Value	Soil	Assessment Crite	eria	SAC Flag	Soil Saturation Limit
		oral HCV	inhal HCV	Combined	oral HCV	inhal HCV	Combined	Current SAC used for determining pathway contributions	
Number	Chemical	(dimensionless)	(dimensionless)	(dimensionless)	mg kg⁻¹	mg kg ⁻¹	mg kg ⁻¹	(unitless)	mg kg⁻¹
1	Phenol	0.26	0.74	1.00	1.38E+03	4.72E+02	3.51E+02	Combined	1.19E+05
2									
3				 					
4				}					
5									
6									
7				i i					
8									
9							 		
10									
11									
12									
13									
14									
15									
16									
17									
18									
19									
20									
21									
22 23									
23									
24									
25									
26 27									
28									
29									
30]								

APPENDIX IV GEOLOGICAL LOGS

Project: Land South of Harrisons Lane

Location: Harrisons Lane

Halesworth, Suffolk

IP19 8PZ Project No: 2954

Client Badger Building (E Anglia) Ltd

Logged By: RMI

Trial Pit Number: TP201

Date of Excavation: 24-Nov-21

Type of Machine Tracked excavator

Co-ordinates N/A Ground Level (m AOD): N/A

mple /	Sample/Tes	Sample				Thick nee-	Grann
mpie / Fest	Result	range	Description	Log	Depth (m)	Thick- ness (m)	Ground Water (1
	rtooun		Dark greyish brown slightly sandy CLAY with occasional rootlets.	X	Dopan ()	()	
			(TOPSOIL)				
Γ,J,V		0.0-0.3			0.3	0.3	
			Firm yellowish brown mottled dark grey slightly sandy, silty CLAY with occasional fine to coarse,	0			1
			angular to subangular flint gravel.				
				x.			
				X0	0.7	>0.4	
			End of pit.				
					1.0		
					-		
					2.0		
					F		
					L		
l				İ			
					3.0		
					_		
					4.0		
					-		
				İ	5.0		
					Ī		
l							
l					L		
l							
l							
l					_6.0		
l							
					F		
l							
					7.0		
					7.0		
				İ			
narks:			Dry on completion.		1	l	1
			,				
					Bi	rown ireen	
ension ility:	s and Orienta	ion:	L=2.2m;w=0.5m; E-W.		added on a		
			Stable.		1		

Project: Land South of Harrisons Lane

Location:

Harrisons Lane Halesworth, Suffolk

IP19 8PZ Project No: 2954

Client Badger Building (E Anglia) Ltd Logged By: RMI

Trial Pit Number:

Ground Level (m AOD):

TP202

Page 1 of 1

24-Nov-21 Tracked excavator

N/A

Date of Excavation: Type of Machine Co-ordinates

Sample/Test Sample Sample Test Thick- ness Ground Description Log Depth (m) (m) Water (m) Dark greyish brown slightly sandy CLAY with occasional rootlets х __. (TOPSOIL) T,J,V 0.0-0.3 0.3 0.3 Firm yellowish brown mottled dark grey slightly sandy, silty CLAY with occasional fine to coarse, ._0_. angular to subangular flint gravel. x ___.o >0.7 End of pit. 2.0 3.0 4.0 5.0 6.0 7.0 Dry on completion. Dimensions and Orientation: L=2.2m;w=0.5m; E-W. Stable Stability:

J - 250 or 500ml Jar, T - Tub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample, HSV - hand shear vane

Project: Location:

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ

Project No: 2954 Client Badge Client Badger Building (E Anglia) Ltd Logged By: RMI Trial Pit Number:

TP203

24-Nov-21 Tracked excavator

Date of Excavation: Type of Machine Co-ordinates Ground Level (m AOD):

N/A N/A

	Sample/Test	t					
Sample / Test	Result	Sample range	Description	Log	Depth (m)	Thick- ness (m)	Ground Water (m)
			Dark greyish brown slightly sandy CLAY with occasional rootlets and brick fragments across the surface. (TOPSOIL)				
			Firm yellowish brown mottled dark grey slightly sandy, silty CLAY with occasional fine to coarse,	 0	0.3	0.3	
D1 HSV	88/86/64	0.5 0.5	angular to subangular flint gravel.	x.	_		
	33,33,01	0.0		xo			
				··			
D2 HSV	118/130/102	1 1	Firm to stiff dark grey mottled dark brown slightly sandy, slightly gravelly CLAY with occasional	x o.	1.0	0.7	
			pockets of fine to medium brown sand. Gravel of fine to medium, rounded chalk.	x_			
			Graver of fine to friedrath, rounded chaik.	o.			
D3 HSV	68/60/64	1.5 1.5		o x	_		
			no sand pockets observed below 1.7m.	o. x			
D4	LITE	2	harries and the law Con	0.			
HSV	UTP		becoming very stiff below 2.0m. End of pit.		2.0	>1.0	
					-		
					3.0		
					_ 5.0		
					_		
					4.0		
					5.0		
					6.0		
					L		
					7.0		
Remarks:			Dry on completion.		D	owr .	
Dimonsis	ne and Orient-1	ion:	L=2.3m;u=0.5m; E.W		Br	own in the second	WL.
Stability:	ns and Orientati		L=2.3m;w=0.5m; E-W. Stable.				
Keys	J - 250 or 500r	nl Jar, T - Τι	ub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample, HSV - hand shear vane			Page 1 of 1	

Project: Location:

TP204 Trial Pit Number:

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ

24-Nov-21 Tracked excavator

Project No: 2954 Client Badg Client Badger Building (E Anglia) Ltd Logged By: RMI Date of Excavation: Type of Machine Co-ordinates Ground Level (m AOD): N/A N/A

	Sample/Tes	t					
Sample / Test	Result	Sample range	Description	Log	Depth (m)	Thick- ness (m)	Ground Water (m)
			Dark greyish brown slightly sandy CLAY with occasional rootlets, brick fragments and plastic. (DISTURBED GROUND)	х			
			(DISTORBED GROUND)	··			
T,J,V D1		0.0-0.5 0.5		0	0.5	0.5	
HSV	102/110/120	0.5	Stiff yellowish brown mottled dark grey slightly sandy, silty CLAY with occasional fine to coarse,	x.	0.5	0.5	
			angular to subangular flint gravel and pockets of fine sand.	xo			
			Stiff dark grey mottled dark brown slightly gravelly, slightly sandy CLAY with rare decayed rootlets.		0.8	0.3	
D2	130/134/138	1	Gravel of fine to coarse, angular to rounded chalk and flints.	x	1.0		
HSV	130/134/138	1		o. x			
				0.			
D3		1.5	becoming very stiff below 1.5m.	o			
HSV	UTP	1.5		x	_		
				0.			
D4		2		x o.			
HSV	UTP	2	End of pit.		2.0	>1.2	
			End of pit.				
					_		
					3.0		
					_		
					4.0		
					-		
					5.0		
					F		
					6.0		
					<u> </u>		
					7.0		
Remarks:	<u> </u>	l .	Dry on completion.	1			
					Br	own reen	
Dimensior	ns and Orientat	tion:	L=2.2m;w=0.5m; NE-SW.		salet e eque:	and can be your on the confidence of	
Stability:			Stable.				
Keys	J - 250 or 500	ml Jar, T - Ti	ub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample, HSV - hand shear vane			Page 1 of 1	

Project: Location:

TP205 Trial Pit Number:

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ

Date of Excavation: Type of Machine Co-ordinates Ground Level (m AOD): 24-Nov-21 Tracked excavator

Project No: 2954 Client Badge

N/A N/A

Client Badger Building (E Anglia) Ltd Logged By: RMI

	Sample/Tes	ı					
Sample / Test	Result	Sample range	Description	Log	Depth (m)	Thick- ness (m)	Ground Water (m
			Dark greyish brown slightly sandy CLAY with occasional rootlets and fine to coarse, angular to rounded chert, chalk and jasper. (TOPSOIL)	x			
			Stiff yellowish brown mottled dark grey slightly sandy, silty CLAY with occasional fine to coarse,	 0	0.3	0.3	
D1 HSV	110/108/130	0.5 0.5	angular to subangular flint gravel.		_		
	110,100,100	0.0		xo			
T,J,V		0.8-1.0	Very stiff dark grey mottled dark brown slightly sandy, slightly gravelly CLAY	··	0.8	0.5	
D2 HSV	UTP	1 1	Gravel of fine to medium, subrounded to rounded chalk.	x o.	1.0		
				x			
				o.			
D3 HSV	UTP	1.5 1.5		0 X	_		
				o. x			
D4	LITE	2 2		0.			
HSV	UTP	2	End of pit.		2.0	>1.2	
					-		
					3.0		
					3.0		
					_		
					4.0		
					_ 4.0		
					-		
					5.0		
					_		
					6.0		
					_		
					7.0		
emarks:			Dry on completion.	1			1
					Br	own reen	
mensior ability:	s and Orientat	ion:	L=2.2m;w=0.5m; E-W. Stable.		salitati e ngadi		
	J - 250 or 500i	ml Jar, T - Tu	ы, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample, HSV - hand shear vane			Page 1 of 1	

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ

Project: Location:

Project No: 2954 Client Badge Client Badger Building (E Anglia) Ltd Logged By: RMI Trial Pit Number:

TP206

24-Nov-21 Tracked excavator

Date of Excavation: Type of Machine Co-ordinates Ground Level (m AOD): N/A N/A

	Sample/Test	t					
Sample /	Result	Sample range	Description	Log	Depth (m)	Thick- ness (m)	Ground Water (m)
		_	Dark greyish brown slightly sandy CLAY with occasional rootlets and fine to coarse, angular to rounded chert, chalk and jasper. (TOPSOIL)	х	,	` ,	. ()
				··	0.3	0.3	
D1		0.5	Firm yellowish brown mottled orange slightly sandy CLAY with occasional pockets of orangish brown fine to medium sand.	0			
HSV	98/92/80	0.5		x.	<u> </u>		
				xo	0.8	0.5	
D2		1	Stiff grey mottled dark brown slightly gravelly, slightly sandy CLAY with rare cobbles of flint.	·			
HSV	132/140/	1	becoming very stiff below 1.0m.	x o.	_1.0		
	>140			x o.			
D3		4.5					
HSV	UTP	1.5 1.5		0 X	_		
				o. x			
D4		2		0.			
HSV	UTP	2	End of pit.	·	2.0	>1.2	
					<u> </u>		
					_3.0		
					_		
					4.0		
					<u> </u>		
					5.0		
					6.0		
					-		
					7.0		
emarks:			Dry on completion.				
					Br	own reen	
	s and Orientat	ion:	L=2.3m;w=0.5m; N-S.		unitary report	ted can be a series and designife	
ability: ys .	J - 250 or 500:	ml Jar, T - Tı	Stable. ub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample, HSV - hand shear vane			Page 1 of 1	
,- `		σωι, τ			1	ayeluli	

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ

Project: Location:

Project No: 2954 Client Badge Client Badger Building (E Anglia) Ltd Logged By: RMI Trial Pit Number:

TP207

24-Nov-21 Tracked excavator

Date of Excavation: Type of Machine Co-ordinates Ground Level (m AOD):

N/A N/A

nple / est	Result	Sample range	Description	Log	Depth (m)	Thick- ness (m)	Grou Water
	resuit		Dark greyish brown slightly sandy CLAY with occasional rootlets and fine to coarse, angular to	X	Deptii (iii)	(111)	Water
			rounded chert, chalk and jasper. (TOPSOIL)				
			Cinconsolish have a stilled associated associated associated AV		0.3	0.3	
D1		0.5	Firm orangish brown mottled grey slightly gravelly, sandy CLAY. Gravel of fine to coarse, angular to rounded chert and quartzite.	0			
ISV	50/48/50	0.5	Graver of fine to course, angular to rounded offert and quartere.	x.	_		
				xo	0.7	0.4	
			Brownish grey silty sandy GRAVEL.				
D2		4	Gravel of fine to coarse, subrounded to rounded chert and quartzite. Firm gight grey silty CLAY with occasional orangish brown mottling and rare fine to medium,		0.9	0.2	
ISV	108/102/90	1 1	rounded chert. With a yellowish brown fine to medium sand pocket at 1.1m.	x	1.0		
J,V		1.0-1.2		x			
				0.			
03		1.5	with a light brown fine cond packet between 1 Fm and 1 7m	0	_		
			with a light brown fine sand pocket between 1.5m and 1.7m.				
				x			
)4		2		0.			
SV	UTP	2			2.0	>1.1	
			End of pit.				
					_		
					3.0		
					_		
					4.0		
					_		
					5.0		
					6.0		
					_6.0		
					L		
					7.0		
					Ī		
					<u> </u>		
arks:			Dry on completion.				
					Br	owy reen	
	ns and Orientat	ion:	L=2.3m;w=0.5m; E-W.		, and the region of	ed (20 to 11 out) of Socialis	
nsıor							

Project: Location:

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ

Project No: 2954 Client Badge Client Badger Building (E Anglia) Ltd Logged By: RMI Trial Pit Number:

TP208

24-Nov-21 Tracked excavator

Date of Excavation: Type of Machine Co-ordinates Ground Level (m AOD): N/A N/A

	Sample/Test	t					
Sample /		Sample				Thick- ness	Ground
Test	Result	range	Description Dark greyish brown slightly sandy CLAY with occasional rootlets and fine to coarse, angular to	Log X	Depth (m)	(m)	Water (m)
			rounded chert, flint and jasper. (TOPSOIL)		0.05	0.05	
			Firm brown mottled grey slightly sandy CLAY with occasional pockets of fine to medium grey sand	o	0.35	0.35	
D1 HSV	98/72/80	0.5 0.5	and rare rootlets.	x.	0.6	0.25	
			Stiff grey mottled dark brown slightly gravelly, slightly sandy CLAY. Gravel of fine to coarse, angular to rounded chalk and flints and occasional cobbles of flint.	X0	0.0	0.20	
			Graver or time to coarse, angular to rounded chain and timis and occasional coopies or timit.)			
D2 HSV	134/>140/	1 1	becoming very stiff below 1.0m.	x o.	_ 1.0		
	>140			x			
				o.			
D3 HSV	>140/>140/	1.5 1.5		o x	_		
	>140			0.			
D4		2		x o.			
HSV	UTP	2	End of pit.		2.0	>1.4	
					_		
					_3.0		
					_		
					4.0		
					_		
					5.0		
					_		
					_6.0		
					L		
					7.0		
Der '			Day of completing				
Remarks:			Dry on completion.		Br	own	
Dimension	s and Orientat	ion:	L=2.3m;w=0.5m; N-S.		continue requer o	end can be a control of the deliber	or.
Stability:			Stable.				
Keys	J - 250 or 500r	mi Jar, T - Tu	ub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample, HSV - hand shear vane			Page 1 of 1	

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ

Project: Location:

Project No: 2954 Client Badge Client Badger Building (E Anglia) Ltd Logged By: RMI Trial Pit Number:

TP209

24-Nov-21 Tracked excavator

1	mple /		Sample				Thick- ness	Groun
Control of Chem. Calls are paper. (TOPSOR)	Test	Result	range	Description Dark grevish brown slightly sandy CLAY with occasional rootlets and fine to coarse, angular to	Log	Depth (m)	(m)	Water
1								
1 1 1 1 1 1 1 1 1 1				Firm to stiff vellowish brown mottled grange and grey slightly sandy silty CLAY		0.3	0.3	
1	D1			. The court years to the mountain statings and groy original stating, only one the				
10	HSV	108/78/82	0.5		x.			
2					·	0.8	0.5	
80	T,J,V D2					1.0		
0 V UTP 1.5	HSV					_ 1.0		
S UTP 1.5 NV UTP 1.5 Lat an an an an an an an an an an an an an		>140						
3V UTP 1.5								
A	D3 HSV	UTP				L		
N					0.			
20 U1/2 Z End of pit. 20 3.12	D4		2		x			
	HSV	UTP				2.0	>1.2	
arks: Dry on completion.				End of pit.				
arks: Dry on completion.								
arks: Dry on completion.								
arks: Dry on completion.						_		
arks: Dry on completion.								
arks: Dry on completion.								
arks: Dry on completion. 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2						_3.0		
arks: Dry on completion. 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2								
arks: Dry on completion. 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2								
arks: Dry on completion. 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2								
arks: Dry on completion. 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2								
arks: Dry on completion. 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2								
arks: Dry on completion. 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2						4.0		
arks: Dry on completion.						_ 4.0		
arks: Dry on completion.								
arks: Dry on completion.								
arks: Dry on completion.						_		
arks: Dry on completion.								
arks: Dry on completion.								
arks: Dry on completion. Brown case and Orientation: L=2.2m,w=0.5m; N-S.						5.0		
arks: Dry on completion. Brown case and Orientation: L=2.2m,w=0.5m; N-S.								
arks: Dry on completion. Brown case and Orientation: L=2.2m,w=0.5m; N-S.								
arks: Dry on completion. Brown case and Orientation: L=2.2m,w=0.5m; N-S.								
arks: Dry on completion. Brown case and Orientation: L=2.2m,w=0.5m; N-S.						 		
arks: Dry on completion. Brown case and Orientation: L=2.2m,w=0.5m; N-S.								
arks: Dry on completion. Brown case and Orientation: L=2.2m,w=0.5m; N-S.								
arks: Dry on completion. Brownian						6.0		
arks: Dry on completion. Brownian								
arks: Dry on completion. Brownian								
arks: Dry on completion. Brownian								
arks: Dry on completion. Brownian								
arks: Dry on completion. Brownian								
arks: Dry on completion. Brownian								
ensions and Orientation: L=2.2m;w=0.5m; N-S.						L ^{7.0}		
ensions and Orientation: L=2.2m;w=0.5m; N-S.								
ensions and Orientation: L=2.2m;w=0.5m; N-S.	narks:			טרy on completion.		D.	0000	
						BY untersees	reen on the second	
	ension oility:	s and Orientat	ion:	L=2.2m;w=0.5m; N-S. Stable.				

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ

Project: Location:

Project No: 2954 Client Badge Client Badger Building (E Anglia) Ltd Logged By: RMI Trial Pit Number:

TP210

24-Nov-21 Tracked excavator

ample /		Sample				Thick- ness	Ground
Test	Result	range	Description Dark greyish brown slightly sandy CLAY with occasional rootlets and fine to coarse, angular to	Log	Depth (m)	(m)	Water (
			rounded chert, chalk and jasper. (TOPSOIL)	х			
				0	0.4	0.4	
D1 HSV	132/118/120	0.5 0.5	Firm brown mottled grey slightly sandy CLAY with occasional pockets of fine to medium grey sand and rare rootlets.		_		
	102 110 120	0.0		x. xo			
					0.8	0.4	
D2		1	Stiff grey mottled dark brown slightly gravelly, slightly sandy CLAY with rare cobbles of flint. Gravel of fine to medium, angular to rounded chalk and flints.	_··-	1.0		
HSV	130/126/128	1	Graver of fine to inequality, angular to founded origin and finite.	x o.	_ 1.0		
				x			
				0.			
D3		1.5		o			
HSV	130/134/132	1.5		x	_		
				0.			
		_		x			
D4 HSV	>140/>140/	2	becoming very stiff below 2.0m.	0.	2.0	>1.2	
1101	>140/>140/	-	End of pit.		2.0	>1.2	
			· ·				
					_		
					3.0		
					_		
					4.0		
					5.0		
					L		
					6.0		
					<u> </u>		
					7.0		
					L'		
marks:		-	Dry on completion.				
					Br	owr ireen	
					i	-	
nension	ns and Orientat	ion:	L=2.3m;w=0.5m; N-S.		- Allen Agents		

Project: Land South of Harrisons Lane

Location: Harrisons Lane

Halesworth, Suffolk

IP19 8PZ

Project No: 2954
Client Badger Building (E Anglia) Ltd

Logged By: PDM

Borehole Number: WS201

Start of Drilling: Completion of Drilling: 22-Nov-21 22-Nov-21

Completion of Drilling: Drilling Method: Coordinates

Window sampling TM 39562 78042

ple /	Sample/Tes	Sample			Depth	Thick-	
ipie / est	Result	range	Description	Log	(m)	ness (m)	S/pi
			Dark brown-grey slightly gravelly, slightly silty CLAY.	0	,	, ,	
			Gravel of fine to coarse, subrounded chalk and occasional flint.	x			
I,V		0.0-0.3	(TOPSOIL)	0	0.3	0.3	
1		0.5	Soft yellow brown mottled slightly silty, slightly gravelly CLAY.	x			
l		0.5	Gravel of fine to coarse, rounded chert and rare subangular flints.	0.	_		
				·_			
				x			
			becoming firm below 0.9m.	0.			
2		1		_x_	1.0	0.7	
			Firm dark grey brown slightly sandy, slightly silty, gravelly CLAY.	0.			
			Gravel of fine to coarse, subrounded to rounded chalk and rare flint.	·_			
Т	2,2,3,3,4	1.0-1.45		0			
	N=12			x			
3		1.5		0.	_		
				x			
				o.			
				·_			
1		2		x	2.0		
				0.			
				x			
Т	2,3,3,3,3	2.0-2.45		0.			
	N=12						
i		2.5		0	_		
				x			
				0.			
				x			
ì		3		0.	3.0		
		Ü		· o	_ 3.0		
				x			
				0.			
Т	4,4,5,6,7	3.0-3.45		x			
	N=22			0.			
				·_			
				0			
				x			
7		4	becoming stiff to very stiff.	o. x	4.0		
		-		^_ o.	_ 4.0		
				0			
Т	6,6,6,9,10	4.0-4.45		x			
	N=31			0.			
3		4.5-4.6		x			
т	6,6,25,19	4.6-4.90		0.			
	N>50	4.6-4.90			4.0	0.0	
	14200		No further advance achieved due to density of the strata. End of hole.	0	4.9 5.0	>3.9	
					_ 0.0		
					6.0		
					6.0		
					_		
					7.0		
ırks:	L				1	<u> </u>	
						Brown	
dwa	ater: Dry or	completion				French, Brid - 40-50	reen one comm
					,200		

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk Project:

Location:

IP19 8PZ 2954

Project No: Client Client Badger Building (E Anglia) Ltd Logged By: PDM Borehole Number:

WS202

Start of Drilling: Completion of Drilling: Drilling Method: Coordinates

22-Nov-21 22-Nov-21

Window sampling TM 39568 78065

imple / Test	Result	Sample range	Description	Log	Depth (m)	Thick- ness (m)	S/pip
			Dark brown-grey slightly gravelly, slightly silty CLAY.	_0	. ,	, ,	
			Gravel of fine to coarse, subrounded chalk and occasional flint. (TOPSOIL)	_x_			
			(TOPSOIL)	o _x_	0.4	0.4	
			Soft brown slightly silty, slightly gravelly CLAY.	0.		0.1	
			Gravel of fine to medium, rounded chert and rare subangular flints.	·_			
				o x			
			becoming firm below 0.9m with live rootlets.	0.			
D1		1		x	1.0		
				0.	4.0	0.0	
SPT	3,4,2,3,3	1.0-1.45	Firm grey brown slightly sandy, slightly silty, gravelly CLAY.	0	1.2	0.8	
	N=12		Gravel of fine to coarse, subrounded to rounded chalk and rare flint.	x			
D2		1.5	becoming stiff below 1.5m	0.	L		
				x o.			
		_		0			
D3		2		_x_	2.0		
				o. x			
SPT	2,2,4,4,5	2.0-2.45		0.			
D4	N=15	2.5					
D4		2.5		o x	-		
				0.			
				x			
D5		3		0.	3.0		
50			becoming grey with dark brown laminations and rare fine rounded mudstone clasts below 3.0m.	· o	_ 3.0		
				x			
SPT	7,5,5,7,9	3.0-3.45		0.			
31 1	N=26	3.0-3.43		x o.			
					_		
				0			
				x o.			
D6		4	becoming very stiff at 4.0m.	x	4.0		
				0.			
				· o			
SPT	5,5,6,7,7	4.0-4.45		_x_			
	N=25			0.	L		
D7		4.6-4.7		x o.			
SPT	7,6,7,10,10	4.7-5.15		·o.			
	N=33.			0			
				x o.	_ 5.0 5.15	>3.95	
			No further advance achieved due to density of the strata. End of hole.	0.	5.15	>3.93	
					-		
					6.0		
					_ 0.0		
					Ī		
					7.0		
marks:							
arA5.					1	Brown	reen
oundwa	ter: Dry on	completion			-actor	Processing the state of the sta	on Constitute

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk Project:

Location:

IP19 8PZ 2954

Project No: Client Badger Building (E Anglia) Ltd PDM Logged By:

Borehole Number:

WS203

Start of Drilling: Completion of Drilling: Drilling Method: Coordinates 22-Nov-21 22-Nov-21 Window sampling TM39566 78104

	Sample/Tes						
imple / Test	Result	Sample range	Description	Log	Depth (m)	Thick- ness (m)	S/pip
	Nesuit	·uiigo	Dark brown slightly gravelly, slightly silty CLAY.	0	(111)	ness (III)	5/рір
			Gravel of fine to coarse, subrounded chalk.	_x_			
T,J,V		0.0-0.3	(TOPSOIL)	0	0.3	0.3	
			Soft yellow brown mottled very sandy, gravelly CLAY. Gravel of fine to coarse, rounded chert and rare subangular flints.	x	0.4	0.1	
			Soft to firm yellow-brown mottled grey slightly gravelly, slightly silty CLAY with occasional roots.	o.	-		
			Gravel of fine to medium, subrounded to rounded chalk.	0			
				x			
D1		4	no roots observed below 1.0m.	0.			
וט		1	no roots observed below 1.um.	x o.	1.0		
				o.			
SPT	2,3,3,4,3	1.0-1.45		0			
	N=13			x			
D2		1.5	Stiff dark grey mottled orange brown slightly gravelly, slightly silty CLAY.	0.	1.5	1.1	
			Stirr dark grey mottled orange brown slightly gravelly, slightly Slity CLAY.	_x_			
				o.			
				0			
D3		2		x	2.0		
			becoming grey below 2.0m.	0.			
CDT	22224	20245		_x_			
SPT	3,2,2,3,4 N=11	2.0-2.45		0.			
D4		2.5		0			
				x	<u> </u>		
				0.			
				x			
D5		3		0.			
DS		3		o	3.0		
				x			
				0.			
SPT	4,3,4,5,6	3.0-3.45		x_			
	N=18			0.	 -		
				0			
				x o.			
D6		4		x	4.0		
				o.	_		
				·_			
ODT	00070	40445		0			
SPT	6,6,6,7,8 N=27	4.0-4.45		_x_			
	14-27		becoming very stiff below 4.6m.	o. x	-		
			,	0.			
				0			
				x	5.0		
				0.			
				x o.			
SPT	7,7,7,10,11	5.0-5.45		:_			
	N=35			0	5.45	>3.95	
Ī	Ţ		End of hole.	[
				1	6.0		
				1			
				1			
					F		
				1			
					7.0		
							1
emarks:					<u> </u> 		
marks:						Brown	reen
marks:	ter: Dry on	completion				Brow.	reen.

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ Project: Location:

2954

Project No: Client Client Badger Building (E Anglia) Ltd Logged By: PDM Borehole Number:

WS204

Start of Drilling: Completion of Drilling: Drilling Method: Coordinates

22-Nov-21 22-Nov-21 Window sampling TM 39482 78196

	le/Test						
nple / est Res		Sample range	Description	Log	Depth (m)	Thick- ness (m)	S/pip
	-		Dark brown slightly gravelly, slightly sandy silty CLAY with occasional roots.	0	()		6, p.p.
			Gravel of fine to medium, subrounded to rounded chalk.	x			
,J,V			(TOPSOIL) Soft to firm yellow brown and grey mottled slightly sandy, slightly silty CLAY.	O	0.3	0.3	
D1		0.5	Control limit yellow blown and grey motice slightly sairey, slightly slightly object.	x o.			
					0.6	0.3	
			Soft yellow brown and grey slightly silty, slightly gravelly CLAY.	0			
			Gravel of fine to medium, subrounded to rounded chalk and rare flint.	x o.			
D2		1		x	1.0	0.4	
			Firm dark grey mottled orange brown slightly sandy, slightly silty, gravelly CLAY.	0.			
SPT 2,2,2	2 3	1.0-1.45	Gravel of fine to coarse, subrounded to rounded chalk and rare flint.	<u> </u>			
N=		1.0-1.43		o x			
D3		1.5		0.			
				x			
				0.			
				·_			
D4		2		x	2.0		
				0.			
PT 3,3,3	3.3.4	2.0-2.45		x o.			
N=		070		0.			
05		2.5		0	L		
				x			
				0.			
				x o.			
D6		3			3.0		
				0			
				x			
SPT 4,2,4	,4,5	3.0-3.45		o. x			
N=	15		End of hole.	0.	3.45	>2.45	
					5.0		
narks:					_7.0	Brown	cen

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ Project: Location:

Project No: Client 2954 Client Badger Building (E Anglia) Ltd Logged By: PDM Borehole Number:

WS205

Start of Drilling: Completion of Drilling: Drilling Method: Coordinates

22-Nov-21 22-Nov-21 Window sampling TM 39444 78112

- 99	ъу э		Joodianates				
	Sample/Tes	st					
Sample /	Result	Sample range	Description	Log	Depth (m)	Thick- ness (m)	S/pipe
			Soft brown slightly silty CLAY with occasional fine to medium chalk.	0	()		
			(TOPSOIL)	x			
T,J,V		0.0-0.3	Soft yellow brown, slightly silty, slightly gravelly CLAY with occasional roots.	X	0.3	0.3	
D1		0.5	Gravel of fine to coarse, rounded chert and rare subangular flints.	o.			
				0			
				x o.	0.9	0.6	
D2		1	Firm dark brown and grey mottled gravelly CLAY.	x	1.0		
			Gravel of fine to medium, subrounded to rounded chalk and occasional flint and flint cobbles.	o.	1.2	0.3	
SPT	3,6,8,6,4	1.0-1.45	Firm to stiff dark brownish grey very gravelly CLAY.	0	1.2	0.3	
	N=24		Gravel of fine to coarse rounded chalk and rare flint.	x			
D3		1.5		0.	_		
				x o.			
				·			
D4		2		0	2.0		
٥.		-		x o.	_2.0		
				x			
SPT	3,2,3,3,3 N=11	2.0-2.45		0.			
D5	14=11	2.5		0			
				x			
				0.			
				x o.			
D6		3			3.0		
				0	_		
				x o.			
SPT	3,4,3,5,5	3.0-3.45		x			
	N=17			o.	L		
				0			
				x			
				0.			
D7		4	becomes stiff to very stiff.	x o.	4.0		
				0			
SPT	5,5,6,6,10 N=27	4.0-4.3		x o.			
SPT	5,5,6,7,8	4.3-4.75		x	-		
	N=26			o.			
			No further advance achieved due to density of strata. End of hole.	·	4.75	>3.55	
			The familiar database database as a density of status. Elia a finale.		5.0		
					_		
					6.0		
					_		
					7.0		
					⊢ ′⊍		
Remarks:					1	Brown	
Groundwa	ater: Dry or	completion			us ter		CEN.
Ceys	J - 250 or 50	0ml Jar, T -	Tub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample.			Page 1 of	1

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ

Project: Location:

2954

Project No: Client Client Badger Building (E Anglia) Ltd Logged By: PDM Borehole Number:

WS206

Start of Drilling: Completion of Drilling: Drilling Method: Coordinates

22-Nov-21 22-Nov-21 Window sampling TP39424 78100

ample /		Sample			Depth	Thick-	
Test	Result	range	Description	Log	(m)	ness (m)	S/pip
			Dark brown, slightly sandy, slightly silty CLAY with occasional fine to medium,	o			
			subrounded to rounded chalk. (TOPSOIL)	x	0.3	0.3	
			Soft yellow brown mottled brown sandy, slightly silty CLAY.	x	0.0	0.0	
D1		0.5	Gravel of fine to coarse, rounded chert and rare subangular flints.	0.	L		
				<u> </u>			
				o x	0.8	0.5	
			Firm brown mottled grey gravelly, slightly silty CLAY.	0.			
D2		1	Gravel of fine to medium, subrounded to rounded chalk.	x	1.0		
				o.			
SPT	2,2,2,3,3	1.0-1.45		0			
D0	N=10	4.5		x			
D3		1.5		0.	_		
				x_ o.			
					1.8	1.0	
D.4			Firm to stiff brownish grey gravelly, slightly silty CLAY.	o			
D4		2		x_ o.	2.0		
				x			
SPT	2,2,3,4,4	2.0-2.45		0.			
D5	N=13	2.5		_·-			
סט		2.5		o x	L		
				0.			
				X			
De		2		0.			
D6		3		0	3.0		
				x			
				0.			
SPT	4,4,5,5,6	3.0-3.45		x			
	N=20		End of hole.	0.	3.45	>1.65	
					4.0		
					_4.0		
					_		
					5.0		
					_ 5.0		
					-		
					6.0		
					6.0		
					-		
					7.0		
emarks:							
						Browy	een
oundwa	iter: Dry or	completion.			age 60%		
					1		

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ Project: Location:

2954

Project No: Client Client Badger Building (E Anglia) Ltd Logged By: PDM Borehole Number:

WS207

Start of Drilling: Completion of Drilling: Drilling Method: Coordinates

23-Nov-21 23-Nov-21 Window sampling TM 39332 78155

	Sample/Tes						
mple / Test	Result	Sample range	Description	Log	Depth (m)	Thick- ness (m)	S/pipe
			Dark brown slightly silty CLAYwith occasional fine to medium subrounded flint and roots.	0	(,	,	.,,,,
			(TOPSOIL)	_x_	0.0	0.0	
			Soft yellow brown mottled slightly silty, slightly gravelly CLAY.	X	0.3	0.3	
D1		0.5	Gravel of fine to coarse, rounded chert and rare subangular flints.	0.			
				o x	0.8	0.5	
			Soft yellowish brown mottled grey gravelly, slightly silty CLAY.	0.	0.0	0.0	
D2			Gravel of fine to coarse, subrounded to rounded chalk and rare flint. Firm to stiff dark brown and grey mottled gravelly, slightly silty CLAY.	x	1.0	0.2	
			Gravel of fine to coarse, subrounded to rounded chalk and rare flint.	. <u></u> 0.			
SPT 2	2,2,2,2,3	1.0-1.45		o			
D3	N=9	1.5		_x_			
DS		1.5		o. x	_		
				0.			
D4		2		o x	2.0		
		-		^_ o.	_2.0		
				x			
SPT 2	2,2,2,4,4 N=12	2.0-2.45		0.			
D5	14-12	2.5		·_			
				x	_		
				0.			
				x o.			
D6		3			3.0		
				0			
				x o.			
SPT 4	4,5,6,5,6	3.0-3.45		x			
	N=22		End of hole.	0.	3.45	>1.45	
marks:	r: Dry on	completion.			_7.0	Brow. 2	cen

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ

Project: Location:

Project No: Client 2954 Client Badger Building (E Anglia) Ltd Logged By: PDM

WS208 Borehole Number:

23-Nov-21 23-Nov-21 Window sampling Start of Drilling: Completion of Drilling: Drilling Method: Coordinates

	Sample/Tes	st					
Sample /		Sample			Depth	Thick-	
Test	Result	range	Description Dark brown slightly silty CLAYwith occasional fine to medium subrounded flint and roots.	Log O	(m)	ness (m)	S/pipe
			(TOPSOIL)	x	0.0	0.0	
			Soft yellow brown mottled slightly sandy, silty CLAY with rare fine to medium, chalk and flint and roots.	x	0.3	0.3	
D1		0.5		0.	_		
				0			
				x o.	0.95	0.65	
D2			Soft to firm dark brown mottlede grey slightly silty, gravelly CLAY. Gravel of fine to coarse, occasionally coarse, subrounded to rounded chalk and rare flint.	x o.	_1.0		
0.5.7			, , , , , , , , , , , , , , , , , , , ,	—·—			
SPT	2,3,3,2,3 N=11	1.0-1.45		o x			
D3		1.5		o. x	_		
				^_	1.7	0.75	
			Firm dark grey-brown slightly gravelly CLAY. Gravel of fine to coarse rounded chalk and rare flint.	_ ·_			
D4		2	with a cobble of flint at 2.0m. occasionally becoming slightly sandy.	x_	_2.0		
			occasionally becoming slightly sandy.	o. x			
SPT	3,2,3,3,4 N=12	2.0-2.45		0.			
D5		2.5		o	L		
				x o.			
				x o.			
D6		3			3.0	1.3	
			Stiff dark grey slightly gravelly CLAY.	o x			
SPT	4,3,5,6,6	3.0-3.45		0.			
571	4,3,5,6,6 N=20	3.0-3.45		x o.			
				·_			
				x			
D7		4		o. x	4.0		
				0.			
				o			
SPT	5,5,5,8,8 N=26	4.0-4.45		x o.			
				x			
				0. :			
D8		5		o x	5.0		
				0.	L 55		
				·_			
SPT	5,5,6,7,9 N=27	5.0-5.45		x_	5.45	>2.45	
	.1-21		End of hole.	0.	5.45	>2.45	
					_ 6.0		
					_		
					7.0		
Remarks:						Brown	reen
Groundwa	ater: Dry or	completion			satte:	**************************************	on Countries
Keys	J - 250 or 50	0ml Jar, T -	Tub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample.			Page 1 of	1
•			7.7		_i	. 490 1 01	

Project: Land South of Harrisons Lane WS209 Borehole Number: Location: Harrisons Lane Halesworth, Suffolk Start of Drilling: Completion of Drilling: Drilling Method: IP19 8PZ 23-Nov-21 23-Nov-21 2954 Project No: Window sampling Badger Building (E Anglia) Ltd Client Logged By: PDM TM 39394 78037 Coordinates Sample/Test Sample Sample Thick-Test range S/pipe Result Description Log ness (m) Dark brown-grey slightly sandy, silty CLAY. x ___. (TOPSOIL) T,J,V 0.0-0.3 Soft yellow brown mottled grey slightly silty, gravelly CLAY. Gravel of fine to medium, rounded chalk. .__o. D1 __x_ 1.0 .__0. 2,1,2,2,3 SPT 1.0-1.45 0__. N=8 0.7 D2 1.5 Firm grey slightly gravelly CLAY .__0. Gravel of fine to medium, rounded chalk. .__0. o__. D3 2 2.0 .__0. __x_ SPT 2,1,2,4,3 2.0-2.45 .__0. N=10 2.5 0__. __x_ .__o. __x_ .__0. D5 3 ecoming stiff below 3.0m. 3.0 o__. __x_ .__0. SPT 5,5,5,6,8 3.0-3.45 N=24 3.45 _0. >2.05 End of hole. 4.0 5.0 6.0 7.0 Remarks:

Page 1 of 1

Groundwater: Noted at 1.2m. SPT core between 1.0m and 1.45m was dry.

J - 250 or 500ml Jar, T - Tub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample.

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk Project:

Location:

IP19 8PZ 2954

Project No: Client Badger Building (E Anglia) Ltd PDM Logged By:

Borehole Number:

WS210

Start of Drilling: Completion of Drilling: Drilling Method: Coordinates 23-Nov-21 23-Nov-21

Window sampling TM 39444 78034

	Sample/Tes						
ample / Test	Result	Sample range	Description		Depth	Thick-	S/pipe
1631	Result	range	Description Dark brown-grey slightly sandy, silty CLAY with occasional roots.	Log X	(m)	ness (m)	5/ріре
			(TOPSOIL)	·			
				·—·	0.45	0.45	
			Soft orange brown mottled slightly silty CLAY with occasional fine to medium angular flint and roots.	X 0.	0.45	0.45	
			Gravel of fine to coarse, rounded chert and rare subangular flints.		_		
				0			
				x o.			
D1		1	no roots observed below 1.0m	x	1.0		
				0.			
SPT	2,0,1,1,1	1.0-1.45	becoming grey mottled below 1.3m.	·_			
01 1	N=3	1.0-1.43	becoming grey moded below 1.5m.	x			
D2		1.5		0.			
				x_			
				0.	1.8	1.35	
			Stiff fine to medium, brownish grey slightly silty CLAY	0	1.0	1.00	
D3		2		x	2.0		
				o. x			
SPT	2,3,3,4,5	2.0-2.45		0.			
	N=15			·_			
D4		2.5		o	H		
				x o.			
				x			
D5		3		0.			
סט		3		·_	_3.0		
				x			
		00045		0.			
SPT	5,3,5,6,6 N=20	3.0-3.45		x o.	3.45	>1.65	
			End of hole.		0.40	>1.00	
					4.0		
					5.0		
					F		
					_6.0		
					F		
					7.0		
					۲ <u> </u>		
					<u> </u>		
marks:						Brown	
oundwa	iter: Water	seepage at	0.45m. Water standing at 1.9m after 2h.		-united		reen
			·				
'S	1 250 or 50	0ml lar T⊣	Tub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample.		-	Page 1 of	1

Project:

Location:

PDM

WS211 Borehole Number:

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ

23-Nov-21 23-Nov-21

Project No: Client 2954 Badger Building (E Anglia) Ltd

Logged By:

Start of Drilling: Completion of Drilling: Drilling Method: Coordinates Window sampling

		t					
mple /		Sample			Depth	Thick-	
Test	Result	range	Description Dark brown-grey slightly sandy, silty CLAY with occasional roots.	Log	(m)	ness (m)	S/pip
			(TOPSOIL)	x			
,J,V		0.0-0.3		·			
				x	0.45	0.45	
D1		0.5	Soft yellow brown mottled grey sandy, silty CLAY with occasional fine to medium gravel of rounded chalk and angular flint.	0.	_		
			chaik and angular film.	0			
				x			
				0.	0.9	0.45	
D2		1	Medium dense very clayey, very gravelly fine to medium SAND.	x	1.0		
			Gravel of fine to medium angular to subangular lfint.	0.	1.2	0.3	
PT	2,2,2,4,3	1.0-1.45	Firm yellow brown mottled grey slightly sandy, slightly silty, gravelly CLAY.	0	1.2	0.3	-
	N=11		Gravel of fine to coarse, rounded chalk. With occasional sand lenses of up to 10mm thick.	x_			
03		1.5		0.	_		-
			Firm to stiff bluish grey gravelly CLAY.	x	1.6	0.4	-
			Gravel of fine to coarse, subrounded to rounded chalk and occasional flints.	0.			
				0			
)4		2		x	2.0		
				0.			
PT	2,2,2,3,3	2.0-2.45		x			
.	2,2,2,3,3 N=10	2.0-2.40		0.			
5		2.5		0			
				x_	_		
				0.			
				x			
6		3		. <u></u> 0.	3.0		
				0	_ 0.0		
				x			
	4.45.07	0 0 0 45		0.			
PT	4,4,5,6,7 N=22	3.0-3.45		x o.	3.45	>1.85	
	14-22		End of hole.	0.	3.43	>1.00	
					4.0		
					_4.0		
					_		
					5.0		
					_		
					6.0		
					_		
					_		
ļ					7.0		
arks:							
					1	Brown)	reen
							CCPP
ndwa	iter: Water	seepage at	0.95m. Standing at 1.3m on completion.		-actes	ward, darp college of the college	- CCNA

Project: Land South of Harrisons Lane

Location: Harrisons Lane

Halesworth, Suffolk

IP19 8PZ

Project No: 2954
Client Badger Building (E Anglia) Ltd

Logged By: RMI

Trial Pit Number: CBR1

Date of Excavation: 24-Nov-21

Type of Machine Tracked excavator

Co-ordinates N/A Ground Level (m AOD): N/A

mple /	Sample/Test	Sample				Thick- ness	Groun
est	Result	range	Description	Log	Depth (m)	(m)	Water (ı
			Dark greyish brown slightly sandy CLAY with occasional rootlets.	х			
			(TOPSOIL)				
			Yellowish brown mottled dark grey slightly sandy, silty CLAY with occasional fine to coarse, angular	x.	0.3	0.3	
В			to subangular gravel of chalk and flint.	x			
					0.7	>0.4	
			End of pit.				
					1.0		
					- 1.0		
					L		
					2.0		
				1			
					-		
				1			
					3.0		
					4.0		
					E 0		
				1	5.0		
				1			
					L		
					6.0		
				1	–		
				1			
				1			
				1			
				1	L		
					7.0		
arks:			Dry on completion.				
					Bi	rown ireen	
ensior	s and Orientat	ion:	L=2.1m;W=0.5m; N-S.		subject to a sign	And the second of the stage to	
			Stable				

Project: Location:

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ

Project No: 2954 Client Badg Client Badger Building (E Anglia) Ltd Logged By: RMI Trial Pit Number:

CBR2

24-Nov-21 Tracked excavator

	Sample/Test	ı					
Sample / Test	Result	Sample range	December		Don'th (m)	Thick- ness	Ground
rest	Result		Description Dark greyish brown slightly sandy CLAY with occasional rootlets.	Log X	Depth (m)	(m)	Water (m)
			(TOPSOIL)		0.3	0.3	
В			Yellowish brown mottled dark grey slightly sandy, silty CLAY with occasional fine to coarse, angular to subangular gravel of chalk and flint.	x.			
5		0.0	to subdinguisting of ordinal state time.		_		
			End of pit.	··	0.7	>0.4	
					1.0		
					_ 1.0		
					_		
					2.0		
					_ 2.0		
					<u> </u>		
					3.0		
					=		
					4.0		
					_ 4.0		
					_		
					5.0		
					_ 5.5		
					-		
					6.0		
					<u> </u>		
					7.0		
Remarks:			Dry on completion.				
					Br	reen .	
	s and Orientat	ion:	L=2.1m;W=0.5m; E-W.		- 100 M (100 m m m m m m m m m m m m m m m m m m	and protection contests. Conduction	MIT THE THE THE THE THE THE THE THE THE TH
Stability: Keys	J - 250 or 500i	ml Jar, T - Tı	Stable ub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample, HSV - hand shear vane			Page 1 of 1	
,·	32 2. 0001	, 1			1	. 490 1011	

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ

Project: Location:

Project No: 2954 Client Badge Client Badger Building (E Anglia) Ltd Logged By: RMI Trial Pit Number:

CBR3

24-Nov-21 Tracked excavator

	Sample/Tes		1				
ample / Test	D It	Sample range	Providetten		D(1- ()	Thick- ness	Ground Water (m
rest	Result	range	Description Dark greyish brown slightly sandy CLAY with occasional rootlets.	Log X	Depth (m)	(m)	water (n
			(TOPSOIL)				
			Yellowish brown mottled dark grey slightly sandy, silty CLAY with occasional fine to coarse, angular	··	0.3	0.3	
В		0.5	to subangular gravel of chalk and flint.	x. x	0.5	>0.2	
			End of pit.				
					1.0		
					_		
					2.0		
					_2.0		
					3.0		
					_		
					4.0		
					_4.0		
					5.0		
					L		
					6.0		
					_6.0		
					_		
					7.0		
emarks:		l	Dry on completion.	I			<u> </u>
					Br	own reen	
					-0140 x x (3)	and condense constitute Conduction	
imension: tability:	s and Orientat	tion:	L=2.1m;W=0.5m; E-W. Stable				
	J - 250 or 500	ml Jar. T - Ti	ub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample, HSV - hand shear vane			Page 1 of 1	

Project: Location:

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ

Project No: 2954 Client Badge Client Badger Building (E Anglia) Ltd Logged By: RMI Trial Pit Number:

CBR4

24-Nov-21 Tracked excavator

	Sample/Test	t					
Sample /	Result	Sample range	Description	Log	Depth (m)	Thick- ness (m)	Ground Water (m
	riodan		Dark greyish brown slightly sandy CLAY with occasional rootlets.	X	2 op ()	()	Traco. (
			(TOPSOIL)	·	0.3	0.3	
В		0.5	Yellowish brown mottled dark grey slightly sandy, silty CLAY with occasional fine to coarse, angular to subangular gravel of chalk and flint.	x.			
6		0.5	io subangular graver of Chaix and film.	 x	_		
			Dark grey mottled brown slightly gravelly, slightly sandy CLAY.		0.7	0.4	
			Gravel of fine to coarse, angular to rounded chalk and flints.	o.			
			End of pit.	0.	1.0	>0.3	
					_		
					2.0		
					<u> </u>		
					_ 3.0		
					4.0		
					4.0		
					_		
					5.0		
					0.0		
					6.0		
					F		
					7.0		
emarks:			Dry on completion.	1			1
					Br	own ireen	
	s and Orientati	ion:	L=2.1m;W=0.5m; E-W.		JAMES PARIS	and process over the Conjulys	
ability:	1 250 25 500	ml le- 7 T	Stable		-	D 1 1 1	
	J - 250 or 500r	ml Jar, T - Tu	ub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample, HSV - hand shear vane			Page 1 of 1	

Project: Location:

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ

Project No: 2954 Client Badg Client Badger Building (E Anglia) Ltd Logged By: RMI Trial Pit Number:

CBR5

24-Nov-21 Tracked excavator

Date of Excavation: Type of Machine Co-ordinates Ground Level (m AOD):

N/A N/A

mple /		Sample				Thick- ness	Groun
est	Result	range	Description	Log	Depth (m)	(m)	Water (
			Dark greyish brown slightly sandy CLAY with occasional rootlets.	х			
			(TOPSOIL)	·	0.0		
			Yellowish brown mottled dark grey slightly sandy, silty CLAY with occasional fine to coarse, angular	x.	0.3	0.3	
В			to subangular gravel of chalk and flint.	·^·	0.5		
				x.			
			End of pit.	x	0.85	>0.55	
			End of pit.		1.0		
					- 1.0		
					-		
					2.0		
					 		
					3.0		
					_		
					4.0		
					_		
					5.0		
					-		
					F		
					6.0		
					H		
					7.0		
arks:			Dry on completion.	i	1	<u> </u>	1
ıdı KS:			DIS OIL COMPENOIT.		_		
					Br	own ireen	
			L=2.0m;W=0.5m; NW-SE.		-20M(+11)A	and property out of the Confulty	
nsior	ns and Orientat	ion:	L=2.011,VV=0.311, IVV-3E.				

Project: Land South of Harrisons Lane

Location:

Harrisons Lane Halesworth, Suffolk

IP19 8PZ

Logged By: RMI

Project No: 2954 Client Badger Building (E Anglia) Ltd Trial Pit Number:

CBR6

Date of Excavation: Type of Machine Co-ordinates 24-Nov-21 Tracked excavator

Ground Level (m AOD): N/A

Sample/Test Sample . Test Sample Thick- ness Ground range Description Log Depth (m) (m) Water (m) Dark greyish brown slightly sandy CLAY with occasional rootlets х __. (TOPSOIL) 0.3 0.3 Yellowish brown mottled dark grey slightly sandy, silty CLAY with occasional fine to coarse, angular 0.4 0.1 to subangular gravel of chalk and flint. 0.5 Grey mottled brown slightly gravelly, slightly sandy CLAY. >0.25 0.65 Gravel of fine to coarse, angular to rounded chalk and flints 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Remarks: Dry on completion. Dimensions and Orientation: L=2.0m;W=0.5m; N-S. Stable Stability: J - 250 or 500ml Jar, T - Tub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample, HSV - hand shear vane Page 1 of 1

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ

Project: Location:

Project No: 2954 Client Badge Client Badger Building (E Anglia) Ltd Logged By: RMI Trial Pit Number:

CBR7

24-Nov-21 Tracked excavator

Result Person P	mple /		Sample				Thick- ness	Groun
(CICPOSIL) Willouish Trumom misted gaps year op, ally CIAY with consolided this to course, anyglar 2.0.3 0.3 One monitor start algority gamely, slightly carely CLAY. Cleave of the to coasse, anyglar to resented drively and files. 2.0.4 0.1 2.0.5 1.0 2.0.6 1.0 2.0.6 1.0 2.0.7 0.0 2.0.7 0.0 2.0.7 0.0 2.0.8 0.0 2.0.9 0.0 2.0.9 0.0 2.0.9 0.0 2.0.9 0.0 2.0.9 0.0 2.0.9 0.0 2.0.9 0.0 2.0.9 0.0 2.0.9 0.0 2.0.9 0.0 2.0.9 0.0 2.0.0 0	Test	Result	range			Depth (m)		Water (
Valous brown meltind gay sandy, sity CLAY with occasional fine is coarse, angular valous of the common program of the coarse, angular valous of the coarse, angular valous of the coarse, angular valous of the coarse, angular valous of the coars					х			
Visitional brown motivitied grow supply, size (LAY with socialised files to coarse, engalary				(TOT GOIL)	··	0.3	0.3	
0.5 Grave of time corresponds for the correspond of state and filtres. End of pit. 1.0 2.0 2.0 5.5 2.0 5.0 5					x.	0.4		
See and Chromotoms: Lexi Array-sidents.	В				··	0.5		
End of pit. 20 30 40 -10 -10 -10 -10 -10 -10 -10	Ь					0.85	>0.45	
2.0				End of pit.		0.00	7 0.10	
2.0								
2.0						_ 1.0		
2.0								
2.0								
2.0								
2.0						_		
2.0								
2.0								
2.0						0.0		
A.0						_ 2.0		
A.0								
A.0								
A.0								
A.0						-		
A.0								
A.0								
A.0						2.0		
ks: Dry on completion.						_ 3.0		
ks: Dry on completion.								
ks: Dry on completion.								
ks: Dry on completion.								
ks: Dry on completion.						_		
ks: Dry on completion.								
ks: Dry on completion.								
ks: Dry on completion.						4.0		
ks: Dry on completion. Signs and Orientation: L=2.1m;W=0.5m; N-S.						4.0		
ks: Dry on completion. Signs and Orientation: L=2.1m;W=0.5m; N-S.								
ks: Dry on completion. Signs and Orientation: L=2.1m;W=0.5m; N-S.								
ks: Dry on completion. Signs and Orientation: L=2.1m;W=0.5m; N-S.								
ks: Dry on completion. Signs and Orientation: L=2.1m;W=0.5m; N-S.						_		
ks: Dry on completion. Signs and Orientation: L=2.1m;W=0.5m; N-S.								
ks: Dry on completion. Signs and Orientation: L=2.1m;W=0.5m; N-S.								
ks: Dry on completion. Signs and Orientation: L=2.1m;W=0.5m; N-S.						= 0		
ks: Dry on completion. Brown completion. L=2.1m;W=0.5m; N-S.						_ 5.0		
ks: Dry on completion. Brown completion. L=2.1m;W=0.5m; N-S.								
ks: Dry on completion. Brown completion. L=2.1m;W=0.5m; N-S.								
ks: Dry on completion. Brown completion. L=2.1m;W=0.5m; N-S.								
ks: Dry on completion. Brown completion. L=2.1m;W=0.5m; N-S.						-		
ks: Dry on completion. Brown completion. L=2.1m;W=0.5m; N-S.								
ks: Dry on completion. Brown completion. L=2.1m;W=0.5m; N-S.								
ks: Dry on completion. Brown completion. L=2.1m;W=0.5m; N-S.						6.0		
ks: Dry on completion. Brow July sions and Orientation: L=2.1m;W=0.5m; N-S.						6.0		
ks: Dry on completion. Brow July sions and Orientation: L=2.1m;W=0.5m; N-S.								
ks: Dry on completion. Brow July sions and Orientation: L=2.1m;W=0.5m; N-S.								
ks: Dry on completion. Brow July sions and Orientation: L=2.1m;W=0.5m; N-S.								
ks: Dry on completion. Brow July sions and Orientation: L=2.1m;W=0.5m; N-S.						-		
ks: Dry on completion. Brow July sions and Orientation: L=2.1m;W=0.5m; N-S.								
ks: Dry on completion. Brow July sions and Orientation: L=2.1m;W=0.5m; N-S.								
ks: Dry on completion. Brow July sions and Orientation: L=2.1m;W=0.5m; N-S.						7.0		
sions and Orientation: L=2.1m;W=0.5m; N-S.						L 1.0		
sions and Orientation: L=2.1m;W=0.5m; N-S.								
sions and Orientation: L=2.1m;W=0.5m; N-S.	arks:			Dry on completion.	<u> </u>			
sions and Orientation: L=2.1m;W=0.5m; N-S.						Br	OWY.	
	neio-	e and Oriente	ion:	L=2.1m;W=0.5m; NLS		united to exact the	and protection control Conduction	
	nsion lity:	is and Oriental	IUII.	L=2.1m;W=0.5m; N-S. Stable				

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ

Project: Location:

Project No: 2954 Client Badge Client Badger Building (E Anglia) Ltd Logged By: RMI Trial Pit Number:

CBR8

24-Nov-21 Tracked excavator

	Sample/Test	t					
Sample / Test	Result	Sample range	Description	Log	Depth (m)	Thick- ness (m)	Ground Water (m)
			Dark greyish brown slightly sandy CLAY with occasional rootlets. (TOPSOIL)	x	(,	()	
					0.3	0.3	
			Yellowish brown mottled grey sandy, silty CLAY with occasional fine to coarse, angular to subangular gravel of chalk and flint.	X.	0.45 0.5	0.15	
В		0.5	Grey mottled brown slightly gravelly, slightly sandy CLAY.	·	0.6	>0.15	
			Gravel of fine to coarse, angular to rounded chalk and flints. End of pit.	·			
					1.0		
					_		
					2.0		
					_		
					3.0		
					4.0		
					_		
					5.0		
					-5.0		
					<u> </u>		
					_6.0		
					F		
					7.0		
Remarks:			Dry on completion.		P	nw/y	
· ·			L Odan W OFF F W		Br	OWV (1884 and Green control of Southelles	
imension: tability:	s and Orientat	ion:	L=2.1m;W=0.5m; E-W. Stable				
	J - 250 or 500r	ml Jar, T - Tu	ub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample, HSV - hand shear vane			Page 1 of 1	

Project: Location:

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ

Project No: 2954 Client Badg Client Badger Building (E Anglia) Ltd Logged By: RMI Trial Pit Number:

CBR9

24-Nov-21 Tracked excavator

	Sample/Test	ı					
Sample /		Sample				Thick- ness	Ground
Test	Result	range	Description Dark greyish brown slightly sandy CLAY with occasional rootlets.	Log X	Depth (m)	(m)	Water (m)
			(TOPSOIL)	·	0.3	0.3	
			Yellowish brown mottled grey sandy, silty CLAY with occasional fine to coarse, angular	x.		0.3	
В		0.5	to subangular gravel of chalk and flint. End of pit.	··	0.5	>0.2	
					1.0		
					2.0		
					_		
					3.0		
					L		
					4.0		
					_		
					_5.0		
					<u> </u> -		
					6.0		
					7.0		
					_7.0		
Remarks:			Dry on completion.				
					Br	own arten	
imension	s and Orientat	ion:	L=2.1m;W=0.5m; N-S.		Lighter Ages	and persons are the Contactor	
tability:			Stable				
Ceys .	J - 250 or 500r	ml Jar, T - Tu	ub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample, HSV - hand shear vane			Page 1 of 1	

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ

Project: Location:

Project No: 2954 Client Badger Building (E Anglia) Ltd Logged By: RMI Trial Pit Number:

CBR10

24-Nov-21 Tracked excavator

	Sample/Test	t					
ample / Test	D t	Sample range	Possibility .		Double (m)	Thick- ness	Ground Water (m
rest	Result		Description Dark greyish brown slightly sandy CLAY with occasional rootlets.	Log X	Depth (m)	(m)	Water (n
			(TOPSOIL)				
					0.3	0.3	
			Yellowish brown mottled grey sandy, silty CLAY with occasional fine to coarse, angular	x.			
В		0.5	to subangular gravel of chalk and flint.		0.5	>0.2	
			End of pit.				
					1.0		
					- 1.0		
					2.0		
					-		
					3.0		
					_ 3.0		
					_		
					4.0		
					_		
					5.0		
					_		
					6.0		
					L		
					7.0		
marks:			L Dry on completion.	<u> </u>	1		<u> </u>
					Br	own ireen	
nencion	s and Orienter	ion:	L = 2.1m;W=0.5m; N=S			and protection controls. Conducted	
nension: bility:	s and Orientat	ion:	L=2.1m;W=0.5m; N-S. Stable		1		
	J - 250 or 500r	ml Jar. T - Tı	ub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample, HSV - hand shear vane		1	Page 1 of 1	

Project: Location:

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ

Project No: 2954

Client Badger Building (E Anglia) Ltd Logged By: RMI

Trial Pit Number:

CBR11

25-Dec-21 Tracked excavator

	Sample/Test						
Sample /		Sample				Thick- ness	Ground
Test	Result	range	Description Dark greyish brown slightly sandy CLAY with occasional rootlets and fine to coarse, angular to	Log X	Depth (m)	(m)	Water (m)
			rounded jasper and flints.				
			(TOPSOIL) Yellowish brown mottled grey sandy, silty CLAY with occasional fine to coarse, angular	 x.	0.3	0.3	
В		0.5	to subangular gravel of chalk and flint.		0.5		
			End of pit.		0.6	>0.3	
					1.0		
					2.0		
					_2.0		
					-		
					3.0		
					4.0		
					_		
					5.0		
					<u> </u>		
					6.0		
					<u> </u>		
					7.0		
) a ma = -!			Process completion				
Remarks:			Dry on completion.		P.v	owv.	
Nan av -!-	a and O-1 '	ian.	L CAMAN OF THE C			and condense controls the delication	
imension tability:	s and Orientati	IUN:	L=2.1m;W=0.5m; N-S. Stable				
	J - 250 or 500r	ml Jar, T - Tu	ub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample, HSV - hand shear vane			Page 1 of 1	

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ

Project: Location:

Project No: 2954

Client Badger Building (E Anglia) Ltd Logged By: RMI

Trial Pit Number:

CBR12

25-Dec-21 Tracked excavator

ample /		Sample	<u>.</u>			Thick- ness	
Test	Result	range	Description Dark greyish brown slightly sandy CLAY with occasional rootlets and fine to coarse, angular to	Log X	Depth (m)	(m)	Water (n
			rounded jasper and flints.	^ _·			
			(TOPSOIL)		0.3	0.3	
В		0.5	Yellowish brown mottled orange, slightly gravelly, slightly sandy, silty CLAY with rare cobbles of flint. Gravel of fine to coarse, angular to rounded chalk and flint.	x.	0.5	0.0	
ь		0.5	End of pit.		0.5	>0.2	
					1.0		
					-		
					_		
					_2.0		
					-		
					3.0		
					5.0		
					4.0		
					_		
					5.0		
					H		
					6.0		
					<u> </u>		
					7.0		
emarks:			Dry on completion.		<u> </u>	<u> </u>	
					Bi	rown ireen	
					John Committee of the C	AND CONTRACTOR CONTRACTOR	
mensions ar	nd Orientati		L=2.1m;W=0.5m; N-S.				
ability: ys J-2			Stable ub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample, HSV - hand shear vane			Page 1 of 1	

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ

Project: Location:

Project No: 2954 Client Badger Building (E Anglia) Ltd Logged By: RMI Trial Pit Number:

CBR13

25-Dec-21 Tracked excavator

Text Regult range Desprise Description Log Desprise (a) (a) Desprise (b) (a) (b) Service (care) and files (c		Sample/Test				1		
December December		Decell	Sample	December		D(1- ()	Thick- ness	
Part Part		Kesuit	range			Depth (m)	(m)	Water (
10 10 10 10 10 10 10 10								
No. Substangular grower of chask and fire.						0.3	0.3	
					x.			
			0.5			0.5	>0.2	
				End of pit.				
						1.0		
						L		
40						-2.0		
40								
40								
						1		
						Γ		
						_ 3.0		
						-		
						4.0		
						_		
						L		
						5.0		
						1		
						1		
						1		
						Γ		
						1		
						1		
						1		
						6.0		
						1		
						1		
						F		
						1		
						7.0		
Dry on completion						F'.0		
arks: Dry on completion								
Dry on completion.	rks:			Dry on completion.	1	1	1	
						p.	ODW V	
Brown at the second of the second of the second of the second of the second of the second of the second of the						6	reen	
ensions and Orientation: L=2.1m;W=0.5m; N-S.		and Orientat	ion:	L=2.1m;W=0.5m; N-S.				
ility: Stable								

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ

Project: Location:

Project No: 2954 Client Badge Client Badger Building (E Anglia) Ltd Logged By: RMI Trial Pit Number:

25-Dec-21 Tracked excavator

CBR14

nnla /		Commis				T1-1-1	
nple / est	Result	Sample range	Description	Log	Depth (m)	Thick- ness (m)	Groun Water (
	Result		Dark greyish brown slightly sandy CLAY with occasional rootlets and fine to coarse, angular to	X	Deptii (iii)	()	water
			rounded jasper and flints.				
			(TOPSOIL)		0.3	0.3	
В		0.5	Yellowish brown mottled grey sandy, silty CLAY with occasional fine to coarse, angular to subangular gravel of chalk and flint.	x.	0.5	>0.2	
		0.0	End of pit.	<u></u> ·	0.5	>0.2	_
					1.0		
					_		
					2.0		
					_		
					F		
					3.0		
					4.0		
					4.0		
					_		
					5.0		
					-		
					6.0		
					Ī		
					7.0		
					7.0		
arks:		I	Dry on completion.	I		I	<u> </u>
					Br	own ireen	
						and specimen market in the form	
	s and Orienta	tion:	L=2.1m;W=0.5m; N-S.		- Department of the		
nsion lity:	o ana onoma		Stable				

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ

Project: Location:

Project No: 2954
Client Badger Building (E Anglia) Ltd
Logged By: RMI

Trial Pit Number:

CBR15

25-Dec-21 Tracked excavator N/A

Date of Excavation:	25-D
Type of Machine	Tracl
Co-ordinates	N/A
Ground Level (m AOD):	N/A

	Sample/Tes				1	L	1
mple / Test	Result	Sample range	Description	Log	Depth (m)	Thick- ness (m)	Ground Water (1
esi	Kesuit		Dark greyish brown slightly sandy CLAY with occasional rootlets and fine to coarse, angular to	X	Depth (m)	(m)	water (i
			rounded jasper and flints.				
			(TOPSOIL)	··	0.3	0.3	
			Yellowish brown mottled grey sandy, silty CLAY with occasional fine to coarse, angular	x.			
В		0.5	to subangular gravel of chalk and flint.		0.5	>0.2	
			End of pit.				
					1.0		
					- "."		
					L		
					2.0		
					_2.0		
					L		
					_3.0		
					4.0		
					-		
					5.0		
					1	1	ĺ
					1	1	
					1	1	
l					1	1	
l					F		
l							
					6.0	1	
					Γ	1	
					1	1	
					1	1	
					1	1	
					 	1	
l							
l					7.0		
					-1.0		
l							
narks:		1	Dry on completion.		1	1	1
					p.	TOWN .	
					6	reen ireen	
ension	s and Orienta	tion:	L=2.1m;W=0.5m; E-W.				
ility:			Stable				
	1 250 or 500		ub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample, HSV - hand shear vane			Page 1 of 1	

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ

Project: Location:

Project No: 2954 Client Badger Building (E Anglia) Ltd Logged By: RMI Trial Pit Number:

CBR16

25-Dec-21 Tracked excavator

1	Sample/Tes						
ample / Test	Result	Sample range	Description		Depth (m)	Thick- ness	Ground Water (n
1631	Result	range	Dark greyish brown slightly sandy CLAY with occasional rootlets and fine to coarse, angular to	Log X	Depth (m)	(m)	water (i
			rounded jasper and flints.	·_			
			(TOPSOIL) Brown slightly gravelly sandy CLAY.	x.	0.35	0.35	
В		0.5	Gravel of fine to coarse, angular to rounded chalk, flint and quartzite.	··	0.5		
					0.6	>0.3	
			End of pit.				
					1.0		
					-		
					2.0		
					_2.0		
					-		
					3.0		
					_		
					_4.0		
					-		
					5.0		
					_		
					6.0		
ļ					6.0		
ļ							
ļ							
1				1			
				1	7.0		
marks:			Dry on completion.		1		<u> </u>
					Br	own ireen	
						and condense constitute Conduction	
nensions bility:	s and Orientat	ion:	L=2.1m;W=0.5m; E-W. Stable		1		
	L = 250 or 500	mller T T	ub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample, HSV - hand shear vane		-	Page 1 of 1	

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ

Project: Location:

Project No: 2954 Client Badge Client Badger Building (E Anglia) Ltd Logged By: RMI Trial Pit Number:

CBR17

25-Dec-21 Tracked excavator

	Sample/Tes						
mple / Fest	Result	Sample range	Description	Log	Depth (m)	Thick- ness (m)	Groun Water (
	Result		Dark greyish brown slightly sandy CLAY with occasional rootlets and fine to coarse, angular to	X	Deptii (iii)	(111)	water (
			rounded jasper and flints.				
			(TOPSOIL)		0.35	0.35	
			Brown slightly gravelly, slightly sandy CLAY.	x.			
В		0.5	Gravel of fine to coarse, angular to rounded chalk, flint and quartzite. End of pit.		0.5	>0.2	4
			End of pit.				
					1.0		
					0.0		
					_2.0		
					_		
					3.0		
					-		
					4.0		
					= 0		
					5.0		
						1	Ī
					L		
						1	
					6.0	1	Ī
						1	
						1	
						1	
					H		
						1	
						1	
						1	Ī
					7.0		
						1	
orke			Dry on completion		<u> </u>	<u> </u>	<u> </u>
arks:			Dry on completion.				
					Bi	rown ireen	
ension	s and Orienta	ion:	L=2.0m;W=0.5m; E-W.		. with the management of the	and property controls. Contact	
ility:			Stable				
			ub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample, HSV - hand shear vane				

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ

Project: Location:

Project No: 2954 Client Badge Client Badger Building (E Anglia) Ltd Logged By: RMI Trial Pit Number:

CBR18

25-Dec-21 Tracked excavator

mple /	_	Sample				Thick	Groun
mple / Fest	Result	range	Description	Log	Depth (m)	Thick- ness (m)	Groun Water (
			Dark greyish brown slightly sandy CLAY with occasional rootlets and fine to coarse, angular to	X	F ()	()	
			rounded jasper and flints.	·			
			(TOPSOIL)		0.3	0.3	-
			Brown slightly gravelly, slightly sandy CLAY. Gravel of fine to coarse, angular to rounded chalk, flint and quartzite.	x.	0.4 0.5	0.1 >0.1	
В			Grey mottled brown slightly gravelly, slightly sandy CLAY.		0.5	>0.1	1
			Gravel of fine to medium, angular to rounded chalk and flint.				
			End of pit.				
					1.0		
					<u> </u>		
					2.0		
						1	ĺ
						1	ĺ
						1	
						1	
					_ 3.0		
					_		
					4.0		
					5.0		
						1	Ī
					L	1	Ī
						1	Ī
					6.0	1	
					6.0	1	
						1	
						1	Ī
						1	Ī
					L		
						1	Ī
						1	Ī
						1	Ī
					7.0	1	
						1	
arks:			Dry on completion.	l	L	L	<u> </u>
anto.			on completion.		-		
					Br	rowr ireen	
ension	s and Orientat	ion:	L=2.1m;W=0.5m; N-S.		- Application of the	and property over 600 Chalada	
lity:			Stable		1		
			ub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample, HSV - hand shear vane			Page 1 of 1	

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ

Project: Location:

Project No: 2954 Client Badge Client Badger Building (E Anglia) Ltd Logged By: RMI Trial Pit Number:

CBR19

25-Dec-21 Tracked excavator

Date of Excavation: Type of Machine Co-ordinates Ground Level (m AOD):

N/A N/A

mla /	C ·					_
nple / est Result	Sample range	Description	Log	Depth (m)	Thick- ness (m)	Groun Water (
result		Dark greyish brown slightly sandy CLAY with occasional rootlets and fine to coarse, angular to	X	20pm (m)	\·'' <i>j</i>	
		rounded jasper and flints.	·_			
		(TOPSOIL) Brown mottled grey slightly gravelly, slightly sandy CLAY.	x.	0.3	0.3	1
	0.5	Gravel of fine to coarse, angular to rounded chalk, flint and quartzite.	^.	0.5	>0.2	
		End of pit.				
				1.0		
				_1.0		
				_2.0		
				-		
				3.0		
				-		
				4.0		
				-		
				<u> </u>		
				5.0		
				_ 3.0		
				_		
				6.0		
				_		
				7.0		
rks:		Dry on completion.	I			1
				Br	own reen	
sions and Orier	tation:	L=2.0m;W=0.5m; E-W.		-40M/40 x x x 20 x 4	ed protection to the Conduction	

Project: Location:

Land South of Harrisons Lane Harrisons Lane Halesworth, Suffolk IP19 8PZ

Project No: 2954

Client Badger Building (E Anglia) Ltd Logged By: RMI

Trial Pit Number:

CBR20

25-Dec-21 Tracked excavator

	Sample/Test	t					
Sample /	Result	Sample range	Description	Log	Depth (m)	Thick- ness (m)	Ground Water (m)
	resuit		Dark greyish brown slightly sandy CLAY with occasional rootlets and fine to coarse, angular to	Х	Deptii (iii)	()	water (iii)
			rounded jasper and flints.	·			
			(TOPSOIL) Brown mottled grey slightly gravelly, slightly sandy CLAY.	··	0.3	0.3	
В			Gravel of fine to coarse, angular to rounded chalk, flint and quartzite.	x. ·	0.5		
				x	_		
				·	0.0	0.5	
			End of pit.		0.8	>0.5	
					1.0		
					_		
					2.0		
					 		
					3.0		
					_		
					4.0		
					-		
					5.0		
					-0.0		
					6.0		
					 		
					7.0		
					- 1.0		
a ma!			Dr. on completion		<u> </u>		
emarks:			Dry on completion.		_		
					Br	own reen	
	s and Orientati		L=2.2m;W=0.5m; N-S.		Japan Lija		
ability:	1 250 500		Stable				
eys .	J - ∠ƏU OF 5UUİ	ın Jar, I - İl	ub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample, HSV - hand shear vane		<u> </u>	Page 1 of 1	

APPENDIX V GEOTECHNICAL RESULTS

TEST REPORT

ISSUED BY SOIL PROPERTY TESTING LTD **DATE ISSUED: 21/12/2021**

Contract Harrisons Lane, Halesworth, Suffolk Serial No. 39812_2 Client: Soil Property Testing Ltd **Brown 2 Green Associates**

Suite 1, Wenden Court Station Road

Brown 2 Green Associates

Wendends Ambo Nr. Saffron Walden

CB11 4LB

Samples Labelled:

15, 16, 18 Halcyon Court, St Margaret's Way, Stukeley Meadows, Huntingdon, Cambridgeshire, PE29 6DG

Tel: 01480 455579

Email: enquiries@soilpropertytesting.com Website: www.soilpropertytesting.com

Samples Submitted By: **Approved Signatories:**

✓ J.C. Garner B.Eng (Hons) FGS

Technical Director & Quality Manager

Harrisons Lane, Halesworth, Suffolk ☐ W. Johnstone

Materials Lab Manager

30/11/2021 and 21/12/2021 **Date Received:** 30/11/2021 **Samples Tested Between:**

Remarks:

For the attention of Radu Mihaiilie

Your Reference No: 2954

Notes: 1 All remaining samples or remnants from this contract will be disposed of after 21 days from today, unless we are notified to the contrary. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. 2 3 Tests marked "NOT UKAS ACCREDITED" in this test report are not included in the UKAS Accreditation Schedule for this testing laboratory. This test report may not be reproduced other than in full except with the prior written approval of the issuing laboratory. The results within this report only relate to the items tested or sampled.

TEST REPORT

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 21/12/2021

Contract Harrisons Lane, Halesworth, Suffolk 39812_2 Serial No. **Target Date** 21/12/2021 Scheduled By **Brown 2 Green Associates** Schedule Remarks Wild Children ... hing gar diagraph. Bore ge gelet gerrere Sample Top Туре Hole Ref. Depth No. Sample Remarks 1 1 TP206 D 1.00 1 TP207 D 1.00 1 TP207 D 2.00 1 1 1 TP208 D 1.00 TP208 D 2.00 1 1 1 TP209 D 1.50 1 1 TP210 D _ 0.50 TP210 D 1.00 1 1 1 WS201 D 0.50 1 WS201 D 1 1.00 WS201 D 1.50 1 1 1 WS201 D 2.00 1 1 1 WS203 D 0.50 1 1 WS203 D 1.00 1 1 WS203 D 1.50 1 WS203 D 2.00 1 1 1 WS203 D 4.00 1 WS204 D 1.00 1 1 1 D 1.50 1 WS204 WS205 D 1.00 1 1 1 WS205 D 1.50 1 WS207 -1.00 1 1 1 WS207 D 1.50 1 WS207 D 2.00 1 1 1 WS207 D 3.00 1 1 1 D 1 WS209 1.00 1 1 D 1 WS209 2.00 1 1 WS211 D 0.50 1 WS211 D 1.50 1 1 1 WS211 2.00 D 1 1 1 30 17 | 16 End of Schedule Totals

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 21/12/2021

<u> 1998</u>

Contract	Harrisons Lane, Halesworth, Suffolk
Serial No.	39812_2

SUMMARY OF WATER CONTENT

Borehole /Pit No.	Depth (m)	Туре	Ref.	Water Content (%)	Description	Remarks
TP206	1.00	D	-	20.1	Firm mottled bluish grey and olive slightly gravelly slightly sandy silty CLAY with rare recently active roots. Gravel is fine and medium angular to subrounded chalk and chert	
TP207	1.00	D	-	21.8	Stiff mottled bluish grey, orange and olive yellow slightly sandy silty CLAY	
TP207	2.00	D	-	19.4	Soft pale olive sandy silty CLAY	
TP208	1.00	D	-	20.7	Stiff mottled bluish grey and olive slightly gravelly slightly sandy silty CLAY with rare recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	
TP208	2.00	D	-	21.7	Stiff mottled dark bluish grey and olive slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	
TP209	1.50	D	-	21.5	Stiff mottled olive and dark grey slightly gravelly slightly sandy silty CLAY with rare recently active roots. Gravel is fine and medium angular to subrounded chalk and chert	
TP210	0.50	D	-	23.7	Firm olive slightly gravelly slightly sandy silty CLAY with rare light grey mottling and recently active roots. Gravel is fine and medium angular to subrounded chalk and chert	
TP210	1.00	D	-	21.7	Stiff mottled bluish grey and olive slightly gravelly slightly sandy CLAY with occasional recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	
WS201	0.50	D	-	21.3	Stiff light olive brown slightly gravelly slightly sandy silty CLAY with occasional recently active and decayed roots. Gravel is fine to coarse angular to subrounded chalk and chert	
WS201	1.00	D	-	20.7	Very stiff mottled grey and olive slightly gravelly slightly sandy silty CLAY with occasional recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	
WS201	1.50	D	-	20.3	Stiff mottled bluish grey and olive slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine to coarse angular to subrounded chalk and chert	
WS201	2.00	D	-	20.1	Very stiff mottled bluish grey and olive slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine to coarse angular to subrounded chalk and chert	
WS203	0.50	D	-	21.6	Stiff mottled grey and olive slightly gravelly slightly sandy silty CLAY with occasional recently active and decayed roots. Gravel is fine to coarse angular to subrounded chalk and chert	
WS203	1.00	D	-	20.6	Stiff mottled bluish grey and olive slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	
Method Of I	Preparation		BS FN ISO:	17802.1.2	014	

Method Of Preparation: Method of Test: BS EN ISO: 17892-1: 2014 BS EN ISO: 17892-1: 2014

Type of Sample Key:

U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments:

Remarks to Include: Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample, oven drying temperature if not 105-110C

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 21/12/2021

0998

Contract H	Harrisons Lane, Halesworth, Suffolk
Serial No. 30	39812_2

SUMMARY OF WATER CONTENT

					SOLVILLY OF WATER COUNTERN	
Borehole /Pit No.	Depth (m)	Туре	Ref.	Water Content (%)	Description	Remarks
WS203	1.50	D	-	20.1	Very stiff mottled dark grey and dark olive slightly gravelly slightly sandy silty CLAY. Gravel is fine and medium angular to subrounded chalk and chert	
WS203	2.00	D	-	21.1	Very stiff mottled dark bluish grey and olive slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	
WS203	4.00	D	-	21.2	Very stiff dark olive slightly gravelly slightly sandy silty CLAY with rare dark bluish grey mottling and selenite crystals. Gravel is fine and medium angular to subrounded chalk and chert	Dried at 80°C due to the presence of selenite.
WS204	1.00	D	-	20.9	Stiff mottled grey and olive slightly gravelly slightly sandy CLAY with rare decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	
WS204	1.50	D	-	20.2	Very stiff mottled grey and olive slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine to coarse angular to subrounded chalk and chert	
WS205	1.00	D	-	19.0	Stiff mottled bluish grey and olive slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine to coarse angular to subrounded chalk and chert	
WS205	1.50	D	-	18.6	White structureless CHALK with occasional orange staining and harder intact chalk fragments of fine and medium gravel size	
WS207	1.00	D	-	21.1	Stiff olive slightly gravelly slightly sandy CLAY with occasional grey mottling and recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	
WS207	1.50	D	-	21.9	Very stiff mottled dark grey and olive slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	
WS207	2.00	D	-	22.0	Stiff mottled bluish grey and olive slightly gravelly slightly sandy silty CLAY with occasional decayed roots. Gravel is fine to coarse angular to subrounded chalk and chert	
WS207	3.00	D	-	21.9	Very stiff mottled bluish grey and olive slightly gravelly slightly sandy CLAY with rare decayed roots and selenite crystals. Gravel is fine and medium angular to subrounded chalk and chert	Dried at 80°C due to the presence of selenite.
WS209	1.00	D	-	25.4	Soft mottled bluish grey and olive slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	
WS209	2.00	D	-	21.8	Stiff mottled bluish grey and olive slightly gravelly slightly sandy silty CLAY with occasional decayed roots. Gravel is fine to coarse angular to rounded chalk and chert	
WS211	0.50	D	-	26.2	Soft mottled bluish grey and olive slightly gravelly slightly sandy silty CLAY with occasional recently active roots. Gravel is fine to coarse angular to subrounded chalk and chert	
Method Of	Preparation	:	BS EN ISO:	1789 2-1: 2	014	

Method Of Preparation: Method of Test: BS EN ISO: 17892-1: 2014 BS EN ISO: 17892-1: 2014

Type of Sample Key:

U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments:

Remarks to Include: Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample, oven drying temperature if not 105-110C

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 21/12/2021

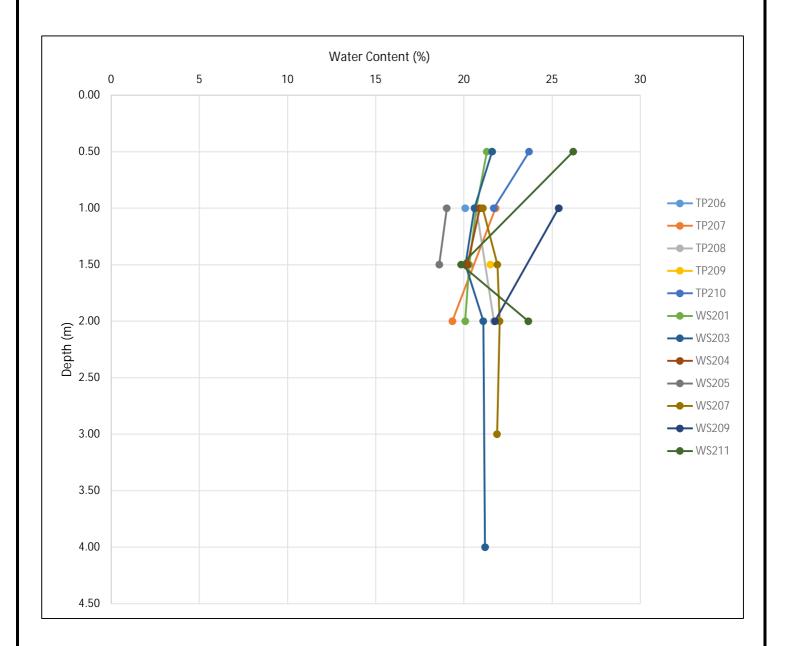
വ

Contrac	t	Harr	isons La	пе, нав	esworth, Suffolk			
Serial N	0.	3981	2_2					
					SUMMARY OF WATER CONTENT			
Borehole				Water Content	Description	Remarks		
/Pit No.	(m)			(%)	·			
WS211	1.50	D	-	19.9	Firm mottled bluish grey and olive slightly gravelly slightly sandy silty CLAY. Gravel is fine and medium angular to rounded chalk			
WS211	2.00	D	-	23.7	Firm mottled bluish grey and olive slightly gravelly slightly sandy CLAY with rare decayed roots. Gravel is fine and medium angular to subrounded chalk and chert			
Лethod Of Лethod of ype of San			BS EN ISO: BS EN ISO:					

Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample, oven drying

temperature if not 105-110C

Remarks to Include:



ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 21/12/2021

Contract Harrisons Lane, Halesworth, Suffolk
Serial No. 39812_2

WATER CONTENT VS DEPTH BELOW GROUND LEVEL

Method of Preparation: BSEN ISO 17892-1: 2014
Method of Test: BSEN ISO 17892-1: 2014

Type of Sample Key: U - Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments:

Remarks to Include: Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within

original sample, oven drying temperature if not 105-110°C

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 21/12/2021

Contract	Harrisons Lane, Halesworth, Suffolk
Serial No.	39812_2

SUMMARY OF WATER CONTENT, LIQUID LIMIT, PLASTIC LIMIT, PLASTICITY INDEX AND LIQUIDITY INDEX

					11 1.1	DI- "	Plasti-	Liquid-	S	Sample Pr	eparation			
Borehole	Depth	Туре	Ref.	Water Content	Liquid Limit	Plastic Limit	city	ity	Method	Ret'd	Corr'd	Curing	Description	Class
/Pit No.	()						Index	Index	ivietriou	0.425mm	W/C	Time	Description	Oluss
TP206	(m) 1.00	D	-	20.1	47	18	29	0.07	Wet Sieved	9 (M)	<0.425mm	(hrs) 24	Firm mottled bluish grey and olive slightly gravelly slightly sandy silty CLAY with rare recently active roots. Gravel is fine and medium angular to subrounded chalk and chert	CI
TP207	2.00	D	-	19.4	30	14	16	0.33	From Natural	0 (A)		69	Soft pale olive sandy silty CLAY	CL
TP208	2.00	D	-	21.7	49	20	29	0.06	Wet Sieved	7 (M)	23.3*	24	Stiff mottled dark bluish grey and olive slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	CI
TP210	1.00	D	-	21.7	54	19	35	0.08	Wet Sieved	10 (M)	24.1*	76	Stiff mottled bluish grey and olive slightly gravelly slightly sandy CLAY with occasional recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	СН
WS201	1.50	D	-	20.3	48	18	30	0.08	Wet Sieved	14 (M)	23.6*	74	Stiff mottled bluish grey and olive slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine to coarse angular to subrounded chalk and chert	CI
WS201	2.00	D	-	20.1	46	19	27	0.04	Wet Sieved	10 (M)	22.3*	24	Very stiff mottled bluish grey and olive slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine to coarse angular to subrounded chalk and chert	CI
WS203	1.00	D	-	20.6	50	18	32	0.08	Wet Sieved	6 (M)	21.9*	69	Stiff mottled bluish grey and olive slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	CI/CH
WS203	2.00	D	-	21.1	50	21	29	0.00	Wet Sieved	13 (M)	24.3*	24	Very stiff mottled dark bluish grey and olive slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	CI/CH

Method Of Preparation: Method of Test:

BS EN ISO: 17892-1: 2014 & BS 1377: Part 2:1990:4.2

BS EN ISO: 17892-1: 2014 & BS 1377: Part 2:1990:3.2, 4.4, 5.3, 5.4

Type of Sample Key: Comments:

 $U = Undisturbed, B = Bulk, D = Disturbed, \\ J = Jar, \\ W = Water, \\ SPT = Split \\ Spoon \\ Sample, \\ C = Core \\ Cutter \\ SPT = Split \\ Spoon \\ Sample, \\ C = Core \\ Substitution \\ SPT = Split \\ Spoon \\ Sample, \\ SPT = Split \\ Spoon \\ Sample, \\ SPT = Split \\ Spoon \\ Sample, \\ SPT = Split \\ Spoon \\ Sample, \\ SPT = Split \\ Spoon \\ Sample, \\ SPT = Split \\ Spoon \\ Sample, \\ SPT = Split \\ Spoon \\ Sample, \\ SPT = Split \\ Spoon \\ SPT = Split \\ SPT = Spli$

*Corrected water content assume material greater than 0.425mm is non-porous. See BS1377: Part 2: 1990 Clause 3 Note 1.

Table Notation:

Ret'd 0.425mm: (A) = Assumed, (M) = Measured

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 21/12/2021

าดดูด

Serial No. 39812-2	Contract	Harrisons Lane, Halesworth, Suffolk
67012_2	Serial No.	139812 2

SUMMARY OF WATER CONTENT, LIQUID LIMIT, PLASTIC LIMIT, PLASTICITY INDEX AND LIQUIDITY INDEX

I							Plasti-	Liquid-	C	ample Pro	enaration	1		
Borehole	Depth	Туре	Ref.	Water Content	Liquid Limit	Plastic Limit	city	ity		Ret'd	Corr'd	Curing	Description	Class
/Pit No.							Index	Index	Method	0.425mm	W/C	Time	Description	Class
	(m)			(%)	(%)	(%)	(%)	<u> </u>		(%)	<0.425mm	(hrs)		
WS204	1.00	D	-	20.9	52	18	34	0.09	Wet Sieved	0 (M)	20.9*	74	Stiff mottled grey and olive slightly gravelly slightly sandy CLAY with rare decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	СН
WS205	1.00	D	-	19.0	47	17	30	0.07	Wet Sieved	10 (M)	21.1*	73	Stiff mottled bluish grey and olive slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine to coarse angular to subrounded chalk and chert	CI
WS207	1.00	D	-	21.1	51	19	32	0.06	Wet Sieved	9 (M)	23.2*	67	Stiff olive slightly gravelly slightly sandy CLAY with occasional grey mottling and recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	СН
WS207	2.00	D	-	22.0	50	20	30	0.07	Wet Sieved	8 (M)	23.9*	72	Stiff mottled bluish grey and olive slightly gravelly slightly sandy silty CLAY with occasional decayed roots. Gravel is fine to coarse angular to subrounded chalk and chert	CI/CH
WS207	3.00	D	·	21.9	51	22	29	0.00	Wet Sieved	6 (M)	23.3*	69	Very stiff mottled bluish grey and olive slightly gravelly slightly sandy CLAY with rare decayed roots and selenite crystals. Gravel is fine and medium angular to subrounded chalk and chert	СН
WS209	1.00	D	-	25.4	47	18	29	0.25	Wet Sieved	12 (M)	28.8*	68	Soft mottled bluish grey and olive slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	CI
WS209	2.00	D	-	21.8	48	20	28	0.06	Wet Sieved	11 (M)	24.4*	68	Stiff mottled bluish grey and olive slightly gravelly slightly sandy silty CLAY with occasional decayed roots. Gravel is fine to coarse angular to rounded chalk and chert	CI
WS211	1.50	D	-	19.9	35	18	17	0.11	Wet Sieved	11 (M)	22.3*	68	Firm mottled bluish grey and olive slightly gravelly slightly sandy silty CLAY. Gravel is fine and medium angular to rounded chalk	CL/CI

Method Of Preparation:

BS EN ISO: 17892-1: 2014 & BS 1377: Part 2:1990:4.2

Method of Test:

BS EN ISO: 17892-1: 2014 & BS 1377: Part 2:1990:3.2, 4.4, 5.3, 5.4

Type of Sample Key:

U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments:

*Corrected water content assume material greater than 0.425mm is non-porous. See BS1377: Part 2: 1990 Clause 3 Note 1.

Table Notation:

Ret'd 0.425mm: (A) = Assumed, (M) = Measured

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 21/12/2021

0998

Contract	Harrisons Lane, Halesworth, Suffolk
Serial No.	39812_2

SUMMARY OF WATER CONTENT, LIQUID LIMIT, PLASTIC LIMIT, PLASTICITY INDEX AND LIQUIDITY INDEX

					Linuxial	Diestie	Plasti-	Liquid-	S	ample Pr	eparation	1		
Borehole /Pit No.	Depth (m)	Туре	Ref.	Water Content (%)	Liquid Limit (%)	Plastic Limit (%)	city Index (%)	ity Index	Method	Ret'd 0.425mm (%)	Corr'd W/C <0.425mm	Curing Time	Description	Class
WS211	2.00	D	-	23.7	51	20	31	0.12	Wet Sieved	9 (M)	26.0*	72	Firm mottled bluish grey and olive slightly gravelly slightly sandy CLAY with rare decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	СН

Method Of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2:1990:4.2

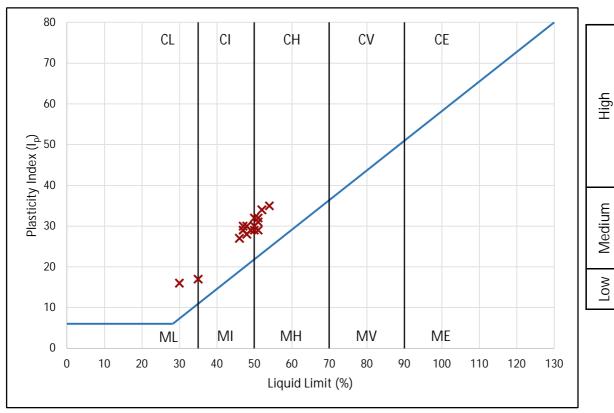
Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2:1990:3.2, 4.4, 5.3, 5.4

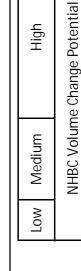
Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

*Corrected water content assume material greater than 0.425mm is non-porous. See BS1377: Part 2: 1990 Clause 3 Note 1.

Table Notation: Ret'd 0.425mm: (A) = Assumed, (M) = Measured

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 21/12/2021




Contract Harrisons Lane, Halesworth, Suffolk

39812_2 Serial No.

PLOT OF PLASTICITY INDEX AGAINST LIQUID LIMIT USING CASAGRANDE CLASSIFICATION CHART

	Plasticity										
Low	Medium	High	Very High	Extremely High							

Plasticity Chart BS5930: 2015: Figure 8

Method of Preparation: BS 1377: Part 2: 1990: 4.2

Method of Test: BS1377: Part 2: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments: Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 21/12/2021

											0998
Contract		Harris	sons Lane,	Haleswor	th, Suffol	k					
Serial No.		39812	2_2								
		DET						AND PLASTIC LIMIT JIDITY INDEX	AND		
Borehole / Pit No.	Depth m		Sample Reference	Water Content (W) %			Description		Ro	emark	S
TP206	1.00	D	-	20.1	CLAY with rai		ve roots. Gravel is fi	elly slightly sandy silty ne and medium angular			
			PI	REPARATI	ON			Liquid Limit			47 %
Method of p	prepa	aration	1		Wet sie	eved over ().425mm sieve	Plastic Limit			18 %
Sample reta	ained	0.425	mm sieve	(Meası	ured)		9 %	Plasticity Index			29 %
Corrected w	vater	conte	nt for mate	rial passin	g 0.425mm	1	22.1 %	Liquidity Index			0.07
Sample reta	ained	2mm	sieve	(Meası	ured)		7 %	NHBC Modified (I'p)			26 %
Curing time	:		24	hrs	Clay Co	ntent N	ot analysed	Derived Activity		Not an	alysed
C=CLAY		70 60 50		CL	CI	СН	CV	CE		High	Change Potential
Plasticity In %	ndex	40									
(lp)		30			×					Medium	NHBC Volume
		20 –								Low	Ż
M=SILT		0 0	10 2	ML 0 30	MI 40 5	MH 0 60	MV 70 80	ME 90 100 110 1	 ₁₂₀ Li	quid L	imit %

BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2 Method of Preparation:

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter Type of Sample Key:

Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1 Comments:

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

Note: Modified Plasticity Index I'p = Ip x (% less than 425microns/100)

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 21/12/2021

Contract Harrisons Lane, Halesworth, Suffolk 39812_2 Serial No. DETERMINATION OF WATER CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX Water Borehole Depth Sample / Pit No. Content Description Remarks Type Reference (W) % m TP207 2.00 D 19.4 Soft pale olive sandy silty CLAY **PREPARATION** Liquid Limit 30 % Method of preparation From natural Plastic Limit 14 % Sample retained 0.425mm sieve (Assumed) 0 % Plasticity Index 16 % Corrected water content for material passing 0.425mm Liquidity Index 0.33 Sample retained 2mm sieve (Assumed) 0 % NHBC Modified (I'p) n/a Clay Content Curing time 69 hrs Not analysed **Derived Activity** Not analysed 70 C=CLAY CL CI CH CV CE 60 NHBC Volume Change Potential High 50 Plasticity Index 40 % Medium 30 (lp) 20 WO_ X 10 M=SILT MV ME ML MI MΗ 0 Liquid Limit % 10 30 40 60 70 80 90 100 120 0 20 50 110

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments:

Plasticity Chart BS5930: 2015: Figure 8

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 21/12/2021

											0998
Contract		Harris	ons Lane,	Haleswor	th, Suffo	lk					
Serial No.		39812	2_2								
		DET					QUID LIMIT A DEX AND LIQU	ND PLASTIC LIMIT	AND		
Borehole / Pit No.	Depth m		Sample Reference	Water Content (W) %		-	Description		Re	mark	S
TP208 2	2.00	D	-	21.7	silty CLAY w		roots. Gravel is fine	ravelly slightly sandy and medium angular			
-			P	REPARATIO	ON			Liquid Limit			49 %
Method of p	orepa	aration	1		Wet si	eved over ().425mm sieve	Plastic Limit			20 %
Sample reta	ined	0.425	mm sieve	(Measu	ıred)		7 %	Plasticity Index			29 %
Corrected w	/ater	conte	nt for mate	rial passino	g 0.425mr	n	23.3 %	Liquidity Index			0.06
Sample reta	ined	2mm	sieve	(Measu	ıred)		5 %	NHBC Modified (I'p)			27 %
Curing time			24	hrs	Clay C	ontent N	ot analysed	Derived Activity		Not an	alysed
C=CLAY Plasticity Inc	dex	70 60 50 40		CL	CI	CH	CV	CE		Medium High	olume Change Potential
(lp)		20			>						NHBC Volume
M=SILT		10	10 2	ML 0 30	MI 40 !	MH 50 60	MV 70 80	ME 90 100 110 1	20 Lic	No.	imit %

BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2 Method of Preparation:

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter Type of Sample Key:

Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1 Comments:

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 21/12/2021

	$\overline{}$	11	1		TI- C (C-						0998
Contract			ons Lane,	Haleswor	th, Suffo	lk					
Serial No.		39812	2_2								
		DET						ND PLASTIC LIMIT A	AND		
/ PIT NO.	epth m		Sample Reference	Water Content (W) %	OFFERS		Description	JIDITT INDEX	Re	emark	S
TP210 1.00 D - 21.7 Stiff mottled bluish grey with occasional recently medium angular to subr						nal recently acti	ve and decayed roo				
		<u> </u>	P	REPARATI	ON			Liquid Limit			54 %
Method of p	repa	aration	1		Wet si	eved over 0	.425mm sieve	Plastic Limit			19 %
Sample retai	ined	0.425	mm sieve	(Meası	ured)		10 %	Plasticity Index			35 %
Corrected wa	ater	conte	nt for mate	rial passin	g 0.425mi	n	24.1 %	Liquidity Index			0.08
Sample retai	ined	2mm	sieve	(Meası	ured)		8 %	NHBC Modified (I'p)			32 %
Curing time			76	hrs	Clay C	ontent No	ot analysed	Derived Activity		Not ar	alysed
C=CLAY Plasticity Inc	dex	70 60 50		CL	CI	СН	CV	CE		High	Change Potential
% (Ip)		30 20				×				Low Medium	NHBC Volume Ch
M=SILT		10	10 2	ML 20 30	MI 40	MH 50 60	MV 70 80	ME 90 100 110 12	₂₀ Li	quid L	imit %

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 21/12/2021

Contract		Harris	ons Lane,	Haleswor	th, Suffol	k					0998
Serial No.		39812			,						
		DET						AND PLASTIC LIMIT AI UIDITY INDEX	ND		
/ PIL NO.	epth m		Sample Reference	Water Content (W) %			Description	OIDITTINGEN	Re	mark	.s
	.50	D	-	20.3	CLAY with rar		ts. Gravel is fine to	elly slightly sandy silty coarse angular to			
			P	REPARATI	ON			Liquid Limit			48 %
Method of pr	thod of preparation Wet sieved over 0.425mm sieve Plastic Limit										18 %
Sample retair	mple retained 0.425mm sieve (Measured) 14 % Plasticity Index										30 %
Corrected wa	ater	conte	nt for mate	rial passing	g 0.425mm	1	23.6 %	Liquidity Index			0.08
Sample retair	ned	2mm	sieve	(Meası	ured)		12 %	NHBC Modified (I'p)			26 %
Curing time			74	hrs	Clay Co	ontent N	ot analysed	Derived Activity		Not ar	nalysed
C=CLAY Plasticity Ind	lex	70 60 50		CL	CI	СН	CV	CE		High	Change Potential
% (Ip)		30			×				-	Medium	NHBC Volume CI
M=SILT		10								Low	Z
IVI=2IL1		0 0	10 2	ML 0 30	MI 40 50	MH 0 60	70 80	90 100 110 120	Lic	quid L	imit %

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 21/12/2021

Contract Harrisons Lane, Halesworth, Suffolk 39812 2 Serial No. DETERMINATION OF WATER CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX Borehole Water Depth Sample / Pit No. Content Description Remarks (W) % Type Reference m Very stiff mottled bluish grey and olive slightly gravelly slightly sandy WS201 2.00 D 20.1 silty CLAY with rare decayed roots. Gravel is fine to coarse angular to subrounded chalk and chert **PREPARATION** Liquid Limit 46 % Method of preparation Wet sieved over 0.425mm sieve Plastic Limit 19 % Sample retained 0.425mm sieve (Measured) 10 % Plasticity Index 27 % 22.3 % Corrected water content for material passing 0.425mm Liquidity Index 0.04 Sample retained 2mm sieve (Measured) 8 % NHBC Modified (I'p) 24 % Curing time 24 hrs Clay Content Not analysed **Derived Activity** Not analysed 70 C=CLAY CL CI CH CV CE 60 NHBC Volume Change Potential High 50 Plasticity Index 40 % Medium 30 (lp) × 20 WO_ 10 M=SILT MV ME ML MI MΗ 0 Liquid Limit % 30 70 80 90 100 120 0 10 20 40 50 60 110

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 21/12/2021

Contract Harrisons Lane, Halesworth, Suffolk 39812 2 Serial No. DETERMINATION OF WATER CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX Borehole Water Depth Sample / Pit No. Content Description Remarks (W) % Type Reference m Stiff mottled bluish grey and olive slightly gravelly slightly sandy silty WS203 1.00 D 20.6 CLAY with rare decayed roots. Gravel is fine and medium angular to subrounded chalk and chert **PREPARATION** Liquid Limit 50 % Method of preparation Wet sieved over 0.425mm sieve Plastic Limit 18 % Sample retained 0.425mm sieve (Measured) 6 % Plasticity Index 32 % Corrected water content for material passing 0.425mm 21.9 % Liquidity Index 0.08 Sample retained 2mm sieve (Measured) 4 % NHBC Modified (I'p) 30 % Curing time 69 hrs Clay Content Not analysed **Derived Activity** Not analysed 70 C=CLAY CI CL CH CV CE 60 NHBC Volume Change Potential High 50 Plasticity Index 40 % Medium 30 (lp) 20 WO_ 10 M=SILT MV ME ML MI MΗ 0 Liquid Limit % 30 70 80 90 100 120 0 10 20 40 50 60 110

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 21/12/2021

					0							0998
Contract	-		sons Lane,	Haleswor	th, Suffo	ılk						
Serial No.		39812	2_2									
		DET							ND PLASTIC LIMIT A	ND		
Borehole / Pit No. D	Depth		Sample	Water Content				cription		Rer	nark	S
WS203 2	m 2.00	D D	Reference -	(W) % 21.1	sandy silty 0		e decaye	d roots. Grave	ntly gravelly slightly is fine and medium			
		•	P	REPARATI	ON				Liquid Limit			50 %
Method of p	orepa	aration	1		Wet si	eved ove	r 0.425	5mm sieve	Plastic Limit			21 %
Sample reta	imple retained 0.425mm sieve (Measured) 13 % Plasticity Index											29 %
Corrected w	vater	conte	nt for mate	rial passin	g 0.425mı	n		24.3 %	Liquidity Index			0.00
Sample retai	ined	2mm	sieve	(Meası	ured)			11 %	NHBC Modified (I'p)			25 %
Curing time			24	hrs	Clay C	ontent	Not and	alysed	Derived Activity	Ν	lot an	alysed
C=CLAY		70 60 50		CL	CI	СН		CV	CE		High	Change Potential
Plasticity Ind %	dex	40									шr	മ
(lp)		30				*/					Medium	NHBC Volum
		10									Low	Z
M=SILT		0 0	10 2	ML 20 30	MI 40	MH 50 60	70	MV 80	ME 90 100 110 12	o Ligi	uid L	imit %

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 21/12/2021

	—											0998
Contract		Harris	sons Lane,	Haleswor	th, Suff	olk						
Serial No.		39812	2_2							_		_
	_	DET	ERMINATI	ON OF W	ATER CO	ONTENT	, LIQL	 JID LIMIT A	AND PLASTIC LIMIT	AND		
									JIDITY INDEX			
/ PIL NO.	epth m		Sample Reference	Water Content (W) %			De	escription		R	emark	S
	1.00		-	20.9		ed roots. Gra			ntly sandy CLAY with angular to subrounded			
			Pi	REPARATIO	NC				Liquid Limit			52 %
Method of pr	repa	aration	1		Wets	sieved ov	er 0.42	25mm sieve	Plastic Limit			18 %
Sample retaii	ined	0.425	mm sieve	(Measu	ured)			0 %	Plasticity Index			34 %
Corrected wa	ater	conte	nt for mate	rial passino	g 0.425m	ım		20.9 %	Liquidity Index			0.09
ample retaiı	ined	2mm	sieve	(Measu	ured)			135 %	NHBC Modified (I'p))		34 %
Curing time			74	hrs	Clay	Content	Not a	analysed	Derived Activity		Not an	alysed
C=CLAY		70 60 50		CL	CI	CH	ł	CV	CE		High	Change Potential
Plasticity Ind %	xek	40 -				×					Medium	O O
(Ip)		20									Low Med	NHBC Volum
M=SILT		10 0	10 2	ML 20 30	MI 40	MI 50 60		MV 0 80	ME 90 100 110	120 Li	quid L	imit %

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 21/12/2021

Contract Harrisons Lane, Halesworth, Suffolk 39812 2 Serial No. DETERMINATION OF WATER CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX Borehole Water Depth Sample / Pit No. Content Description Remarks (W) % Type Reference m Stiff mottled bluish grey and olive slightly gravelly slightly sandy silty WS205 1.00 D 19.0 CLAY with rare decayed roots. Gravel is fine to coarse angular to subrounded chalk and chert **PREPARATION** Liquid Limit 47 % Method of preparation Wet sieved over 0.425mm sieve Plastic Limit 17 % Sample retained 0.425mm sieve (Measured) 10 % Plasticity Index 30 % Corrected water content for material passing 0.425mm 21.1 % Liquidity Index 0.07 7 % Sample retained 2mm sieve (Measured) NHBC Modified (I'p) 27 % Curing time 73 hrs Clay Content Not analysed **Derived Activity** Not analysed 70 C=CLAY CI CL CH CV CE 60 NHBC Volume Change Potential High 50 Plasticity Index 40 % Medium 30 X (lp) 20 WO_ 10 M=SILT MV ME ML MI MΗ 0 Liquid Limit % 30 70 80 90 100 120 0 10 20 40 50 60 110

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 21/12/2021

	-										0998
Contract			ons Lane,	Haleswor	th, Suffol	k					
Serial No.		39812	2_2								
		DET						ND PLASTIC LIMIT A	ND		
Borehole / Pit No.	epth m		Sample Reference	Water Content (W) %			Description		R	emark	S
WS207 1	1.00	D	-	21.1	mottling and	recently active	ightly sandy CLAY w and decayed roots aded chalk and chert	Gravel is fine and			
-			PI	REPARATION	NC			Liquid Limit			51 %
Method of p	orepa	aration	l		Wet sie	eved over ().425mm sieve	Plastic Limit			19 %
Sample retai	ined	0.425	mm sieve	(Measu	ıred)		9 %	Plasticity Index			32 %
Corrected w	ater	conte	nt for mate	rial passino	g 0.425mm	1	23.2 %	Liquidity Index			0.06
Sample retai	ined	2mm	sieve	(Meası	ured)		7 %	NHBC Modified (I'p)			29 %
Curing time			67	hrs	Clay Co	ntent N	ot analysed	Derived Activity		Not ar	alysed
C=CLAY Plasticity Ind %	dex	70 60 50 40		CL	CI	СН	CV	CE		High	e Change Potential
(lp)		30 –				×				Low Medium	NHBC Volume
M=SILT		0 0	10 2	ML 0 30	MI 40 5	MH 0 60	MV 70 80	ME 90 100 110 120	₀ Li	quid L	imit %

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 21/12/2021

									09	98
Contract	Harris	ons Lane,	Haleswor	th, Suffo	lk					
Serial No.	39812	_2								
	DET						AND PLASTIC LIMIT	AND		
Borehole _B			RIVATION Water	OF PLAS	HCHY IN	DEX AND LIQ	JIDITY INDEX			
/ Pit No. Dep		Sample Reference	Content (W) %			Description		Rem	arks	
WS207 2.00		-	22.0	CLAY with oc		yed roots. Gravel is f	Ily slightly sandy silty ne to coarse angular to			
•	<u>'</u>	PI	REPARATIO	NC			Liquid Limit		50	%
Method of prep	oaration			Wet si	eved over	0.425mm sieve	Plastic Limit		20	%
Sample retaine	d 0.425r	mm sieve	(Measu	ıred)		8 %	Plasticity Index		30	%
Corrected wate	er conter	nt for mate	rial passing	g 0.425mn	n	23.9 %	Liquidity Index		0.07	
Sample retaine	d 2mm s	sieve	(Measu	ıred)		5 %	NHBC Modified (I'p))	28	%
Curing time		72	hrs	Clay Co	ontent	Not analysed	Derived Activity	No	ot analysed	
C=CLAY	70		CL	CI	СН	CV	CE		tial	Ī
Plasticity Index	50								Hign Change Potential	
% (Ip)	30			,					NHBC Volume Ch	
	20								NHBC	
M=SILT	10		ML	MI	МН	MV	ME		id Limit 9	

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 21/12/2021

													0998
Contract		Harris	sons Lane,	Haleswor	th, Suffol	k							
Serial No.		39812	2_2										
		DET							AND PLASTIC LIM	IIT AND)		
Borehole / Pit No.	Depth m		Sample Reference	Water Content (W) %				iption			Ren	nark	S
WS207	3.00		-	21.9		e decayed ro	ots and se	elenite crys	gravelly slightly sandy als. Gravel is fine and	Specimen presence c			due to the
		•	P	REPARATIO	ON				Liquid Limit				51 %
Method of p	orepa	aratior	า		Wet sie	eved over	0.425r	nm sieve	Plastic Limit				22 %
Sample reta	ined	0.425	mm sieve	(Measu	ured)			6 %	Plasticity Index				29 %
Corrected w	vater	conte	nt for mate	rial passino	g 0.425mm	າ	2	3.3 %	Liquidity Index				0.00
Sample reta	ined	l 2mm	sieve	(Meası	ured)			3 %	NHBC Modified (l'p)			27 %
Curing time	Sample retained 2mm sie Curing time			hrs	Clay Co	ontent	Not analy	ysed	Derived Activity	•••	N	lot an	alysed
C=CLAY Plasticity In % (Ip)	dex	70 60 50 40 30		CL	CI	CH		CV	CE		 - -	Low Medium High	NHBC Volume Change Potential
M=SILT		10	10 2	ML 20 30	MI 40 5	MH 0 60	70	MV 80	ME 90 100 110	120	_		imit %

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 21/12/2021

											0998
Contract			ons Lane,	Haleswor	th, Suffol	k .					
Serial No.		39812	2_2								
		DET						AND PLASTIC LIMIT A JIDITY INDEX	ND		
Borehole / Pit No.	epth m		Sample Reference	Water Content (W) %		С	escription		R	emark	S
WS209 1	1.00	D	-	25.4	CLAY with rar			lly slightly sandy silty I medium angular to			
-			PI	REPARATION	NC			Liquid Limit			47 %
Method of p	repa	aration	1		Wet sie	ved over 0.	425mm sieve	Plastic Limit			18 %
Sample retai	ined	0.425	mm sieve	(Measu	ured)		12 %	Plasticity Index			29 %
Corrected w	ater	conte	nt for mate	rial passino	g 0.425mm	1	28.8 %	Liquidity Index			0.25
Sample retai	ined	2mm	sieve	(Meası	ured)		10 %	NHBC Modified (I'p)			26 %
Curing time			68	hrs	Clay Co	ntent No	t analysed	Derived Activity		Not ar	alysed
C=CLAY Plasticity Inc	dex	70 60 50		CL	CI	СН	CV	CE		High	Change Potential
% (Ip)		30 20 10			×					Low Medium	NHBC Volume Ch
M=SILT		0 0	10 2	ML 0 30	MI 40 50	MH) 60	MV 70 80	ME 90 100 110 120	₀ Li	quid L	imit %

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 21/12/2021

Contract	一	Harris	sons Lane,	Haleswor	th Suffoll	(0998
Serial No.		39812		Hulosyvoi	tii, Juiion						
			ERMINATI					AND PLASTIC LIMIT A UIDITY INDEX	ND		
Borehole / Pit No.	Depth m		Sample Reference	Water Content (W) %			Description	OIDITT IIVDEA	R€	emark	S
WS209 2	2.00	D	-	21.8		asional decaye		elly slightly sandy silty ine to coarse angular to			
			Pl	REPARATIO	ON			Liquid Limit			48 %
Method of p	orepa	aration	1		Wet sie	ved over 0	.425mm siev	e Plastic Limit			20 %
Sample retai	lethod of preparation Wet sieved over 0.425mm sieve Plastic Limit ample retained 0.425mm sieve (Measured) 11 % Plasticity Index										28 %
Corrected w	<i>r</i> ater	conte	nt for mate	rial passing	j 0.425mm		24.4 %	Liquidity Index			0.06
Sample retai	ined	2mm	sieve	(Measu	ıred)		9 %	NHBC Modified (I'p)			25 %
Curing time	Sample retained Curing time		68	hrs	Clay Co	ntent N	ot analysed	Derived Activity		Not an	alysed
C=CLAY Plasticity Inc	ıdex	70 60 50		CL	CI	СН	CV	CE		High	Change Potential
% (Ip)		30 20 10			×					Low Medium	NHBC Volume Ch
M=SILT		0 0	10 2	ML 0 30	MI 40 50	MH) 60	MV 70 80	ME 90 100 110 120	₀ Lic	quid L	imit %

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 21/12/2021

Contract Harrisons Lane, Halesworth, Suffolk 39812 2 Serial No. DETERMINATION OF WATER CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX Borehole Water Depth Sample / Pit No. Content Description Remarks (W) % Type Reference m Firm mottled bluish grey and olive slightly gravelly slightly sandy silty WS211 1.50 D 19.9 CLAY. Gravel is fine and medium angular to rounded chalk **PREPARATION** Liquid Limit 35 % Method of preparation Wet sieved over 0.425mm sieve Plastic Limit 18 % Sample retained 0.425mm sieve (Measured) 11 % Plasticity Index 17 % 22.3 % Corrected water content for material passing 0.425mm Liquidity Index 0.11 Sample retained 2mm sieve (Measured) 9 % NHBC Modified (I'p) 15 % Curing time 68 hrs Clay Content Not analysed **Derived Activity** Not analysed 70 C=CLAY CL CI CH CV CE 60 NHBC Volume Change Potential High 50 Plasticity Index 40 % Medium (lp) 30 20 **№** 10 M=SILT MV ME ML MI MΗ 0 Liquid Limit % 30 70 80 90 100 120 0 10 20 40 50 60 110

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 21/12/2021

											0998
Contract	-		ons Lane,	Haleswor	th, Suffo	lk					
Serial No.		39812	2_2								
		DET						ND PLASTIC LIMIT A	AND		
Borehole / Pit No.	Depth m		Sample Reference	Water Content (W) %		[escription		R	emark	(S
WS211 2	subrounded chalk and chert										
			Р	REPARATIO	ON			Liquid Limit			51 %
/lethod of p	prepa	aration	1		Wet sie	eved over 0.	425mm sieve	Plastic Limit		_	20 %
ample retai	ined	0.425	mm sieve	(Measu	ured)		9 %	Plasticity Index			31 %
orrected w	vater	conte	nt for mate	rial passino	g 0.425mn	n	26.0 %	Liquidity Index			0.12
ample retai	ined	2mm	sieve	(Measu	ured)		7 %	NHBC Modified (I'p)			28 %
uring time			72	hrs	Clay Co	ontent No	t analysed	Derived Activity		Not ar	nalysed
C=CLAY Plasticity Inc	ıdex	70 60 50		CL	CI	СН	CV	CE		High	Change Potential
% (Ip)		30				×				Medium	NHBC Volume Cl
M=SILT		10	10 2	ML 20 30	MI 40 5	MH 0 60	MV 70 80	ME 90 100 110 12	₂₀ Li	Low	imit %

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

Contract Harrisons Lane, Halesworth, Suffolk Serial No. 39812_1 Client: Soil Property Testing Ltd **Brown 2 Green Associates** Suite 1, Wenden Court 15, 16, 18 Halcyon Court, St Margaret's Way, Station Road Stukeley Meadows, Huntingdon, Wendends Ambo Cambridgeshire, PE29 6DG Nr. Saffron Walden **CB11 4LB** Tel: 01480 455579 Email: enquiries@soilpropertytesting.com Website: www.soilpropertytesting.com Samples Submitted By: **Approved Signatories: Brown 2 Green Associates** ✓ J.C. Garner B.Eng (Hons) FGS **Technical Director & Quality Manager** Samples Labelled: Harrisons Lane, Halesworth, Suffolk ☐ W. Johnstone Materials Lab Manager 30/11/2021 and 23/12/2021 **Date Received:** 30/11/2021 **Samples Tested Between:** Remarks: For the attention of Radu Mihaiilie Your Reference No: 2954 Notes: 1 All remaining samples or remnants from this contract will be disposed of after 21 days from today, unless we are notified to the contrary. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. 2 3 Tests marked "NOT UKAS ACCREDITED" in this test report are not included in the UKAS Accreditation Schedule for this testing laboratory. This test report may not be reproduced other than in full except with the prior written approval of the

The results within this report only relate to the items tested or sampled.

issuing laboratory.

CBR9

_

Totals

TEST REPORT

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

Contract Harrisons Lane, Halesworth, Suffolk Target Date Serial No. 39812_1 14/12/2021 Scheduled By **Brown 2 Green Associates** Schedule Remarks ed Cartes to State to Table Beating Residence of the Cartes at Life To Cartes Beating Residence of the Cartes at Life To Bore Sample Top Hole Type Ref. Depth No. Sample Remarks CBR1 1 1 CBR10 CBR11 1 1 1 1 CBR12 1 1 1 1 CBR13 1 1 1 1 CBR14 1 1 CBR15 _ CBR16 1 1 1 1 --1 CBR17 CBR18 1 -1 1 1 CBR19 1 1 1 1 CBR2 1 CBR20 1 1 1 1 CBR3 1 1 1 1 CBR4 1 1 1 1 1 CBR5 1 1 1 CBR6 1 1 1 1 CBR7 1 1 1 1 -_ 1 CBR8

1

15 | 15 | 20

1 | 1 | 1

15

End of Schedule

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

Contract	Harrisons Lane, Halesworth, Suffolk
Serial No.	39812_1

SUMMARY OF WATER CONTENT, LIQUID LIMIT, PLASTIC LIMIT, PLASTICITY INDEX AND LIQUIDITY INDEX

				Water	Liquid	Plastic	Plasti-	Liquid-	S	ample Pr				
Borehole /Pit No.	Depth	Туре	Ref.	Content	Limit	Limit	city Index	ity Index	Method	Ret'd 0.425mm	Corr'd W/C	Curing Time	Description	Class
71 It NO.	(m)			(%)	(%)	(%)	(%)	index		(%)	<0.425mm	(hrs)		
CBR1		-	-	29.3	58	19	39	0.26	Wet Sieved	9 (M)	32.1*	25	Dark olive brown slightly gravelly slightly sandy silty CLAY with rare light brownish grey mottling. Gravel is fine to coarse chalk and chert	СН
CBR10		-	-	17.3	38	14	24	0.14	Wet Sieved	17 (M)	20.8*	24	Light olive brown slightly gravelly slightly sandy silty CLAY with rare recently active roots. Gravel is fine to coarse angular and subangular chert	CI
CBR11		-	-	21.0	50	18	32	0.09	Wet Sieved	9 (M)	23.0*	46	Light olive brown slightly gravelly slightly sandy silty CLAY with occasional light grey mottling and rare recently active roots. Gravel is fine to coarse angular to subrounded chalk and chert	CI/CH
CBR12		-	-	25.0	53	21	32	0.13	Wet Sieved	6 (M)	26.6*	28	Light olive brown slightly gravelly slightly sandy silty CLAY with rare bluish grey mottling and recently active roots. Gravel is fine to coarse angular to subrounded chalk and chert	СН
CBR13		-	-	22.0	50	16	34	0.18	Wet Sieved	12 (M)	25.0*	24	Olive slightly gravelly slightly sandy silty CLAY with rare recently active roots. Gravel is fine to coarse angular to subrounded chalk and chert	CI/CH
CBR16		-	-	20.0	43	18	25	0.08	Wet Sieved	14 (M)	23.3*	27	Light olive brown slightly gravelly slightly sandy silty CLAY with occasional light grey mottling and rare recently active roots. Gravel is fine to coarse angular to subrounded chalk and chert	CI
CBR18		-	-	23.0	53	21	32	0.06	Wet Sieved	10 (M)	25.5*	25	Light olive brown slightly gravelly slightly sandy silty CLAY with occasional light bluish grey mottling and rare recently active roots. Gravel is fine to coarse angular to subrounded chalk and chert	СН
CBR19		-	-	21.9	52	20	32	0.06				25	Light olive brown slightly gravelly slightly sandy silty CLAY with occasional light grey mottling and rare recently active roots. Gravel is fine to coarse angular to subrounded chalk and chert	СН

Method Of Preparation: Method of Test:

BS EN ISO: 17892-1: 2014 & BS 1377: Part 2:1990:4.2

Type of Sample Key:

BS EN ISO: 17892-1: 2014 & BS 1377: Part 2:1990:3.2, 4.4, 5.3, 5.4

 $U = Undisturbed, B = Bulk, D = Disturbed, \\ J = Jar, \\ W = Water, \\ SPT = Split \\ Spoon \\ Sample, \\ C = Core \\ Cutter \\ SPT = Split \\ Spoon \\ Sample, \\ C = Core \\ Substitution \\ SPT = Split \\ Spoon \\ Sample, \\ SPT = Split \\ Spoon \\ Sample, \\ SPT = Split \\ Spoon \\ Sample, \\ SPT = Split \\ Spoon \\ Sample, \\ SPT = Split \\ Spoon \\ Sample, \\ SPT = Split \\ Spoon \\ Sample, \\ SPT = Split \\ Spoon \\ Sample, \\ SPT = Split \\ Spoon \\ SPT = Split \\ SPT = Spli$

Comments:

*Corrected water content assume material greater than 0.425mm is non-porous. See BS1377: Part 2: 1990 Clause 3 Note 1.

Table Notation:

Ret'd 0.425mm: (A) = Assumed, (M) = Measured

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

าดดูด

Contract	Harrisons Lane, Halesworth, Suffolk
Serial No.	39812_1

SUMMARY OF WATER CONTENT, LIQUID LIMIT, PLASTIC LIMIT, PLASTICITY INDEX AND LIQUIDITY INDEX

				Water	Liquid	Plastic	Plasti-	Liquid-	S	ample Pre	eparation	ı		
Borehole	Depth	Туре	Ref.	Water Content	Liquid	Limit	city	ity	Method	Ret'd 0.425mm	Corr'd W/C	Curing Time	Description	Class
/Pit No.	(m)			(%)	(%)	(%)	Index (%)	Index		(%)	<0.425mm	(hrs)	·	
CBR20	,	-	-	22.4	44	18	26	0.17	Wet Sieved	16 (M)	26.7*		Olive brown slightly gravelly slightly sandy silty CLAY with occasional orangish brown mottling and rare recently active roots. Gravel is fine to coarse angular to subrounded chalk and chert	CI
CBR3		-	-	22.4	47	17	30	0.18	Wet Sieved	14 (M)	26.1*	24	Light olive brown slightly gravelly slightly sandy silty CLAY with occasional light grey mottling with rare recently active roots. Gravel is fine to coarse chalk and chert	CI
CBR4		-	-	17.6	38	14	24	0.15	Wet Sieved	17 (M)	21.2*	24	Light olive brown slightly gravelly slightly sandy silty CLAY with rare recently active roots. Gravel is fine to coarse chert	CI
CBR5		-	-	21.8	50	18	32	0.12	Wet Sieved	2 (M)	22.2*	26	Dark greyish brown slightly gravelly slightly sandy silty CLAY. Gravel is fine to coarse chalk and chert	CI/CH
CBR6		-	-	21.3	50	19	31	0.07	Wet Sieved	13 (M)	24.5*	24	Dark greyish brown slightly gravelly slightly sandy silty CLAY with occasional light olive brown mottling. Gravel is fine to coarse chalk and chert	CI/CH
CBR7		-	-	22.1	51	19	32	0.10	Wet Sieved	10 (M)	24.5*		Mottled bluish grey and olive slightly gravelly slightly sandy silty CLAY with rare recently active and decayed roots. Gravel is fine to coarse chalk and chert	СН
CBR9		-	-	21.6	51	17	34	0.13	Wet Sieved	14 (M)	25.1*		Olive slightly gravelly slightly sandy silty CLAY with occasional light grey mottling and recently active and decayed roots. Gravel is fine to coarse angular to subrounded chalk and chert	СН

Method Of Preparation: Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2:1990:4.2

Type of Sample Key:

BS EN ISO: 17892-1: 2014 & BS 1377: Part 2:1990:3.2, 4.4, 5.3, 5.4

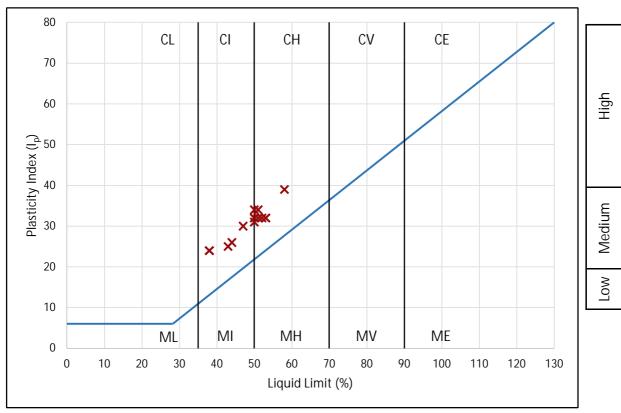
Comments:

U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter *Corrected water content assume material greater than 0.425mm is non-porous. See BS1377: Part 2: 1990 Clause 3 Note 1.

Table Notation:

Ret'd 0.425mm: (A) = Assumed, (M) = Measured

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021


NHBC Volume Change Potential

Contract Harrisons Lane, Halesworth, Suffolk

Serial No. 39812_1

PLOT OF PLASTICITY INDEX AGAINST LIQUID LIMIT USING CASAGRANDE CLASSIFICATION CHART

		Plasticit	у	
Low	Medium	High	Very High	Extremely High

Method of Preparation: BS 1377: Part 2: 1990: 4.2

Method of Test: BS1377: Part 2: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments: Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

										0998
Contract		Harris	sons Lane,	Haleswor	th, Suffc	olk				
Serial No.		39812	2_1							
		DET					IQUID LIMIT A DEX AND LIQU	ND PLASTIC LIMIT A	AND	
/ PIT NO.	epth		Sample	Water Content		7110111111	Description	7D11.1 1102.X	Remar	ks
CBR1	m	Type -	Reference -							
			F	PREPARATIO	ON			Liquid Limit		58 %
Method of pr	repa	aratior	۱ 		Wet si	ieved over	0.425mm sieve	Plastic Limit		19 %
Sample retair	ned	0.425	mm sieve	(Measu	ured)		9 %	Plasticity Index		39 %
Corrected wa	ater	conte	ent for mate	erial passinç	ງ 0.425mr	m	32.1 %	Liquidity Index		0.26
Sample retair	ned	2mm	sieve	(Measu	ured)		6 %	NHBC Modified (I'p)		35 %
Curing time			25	hrs	Clay C	Content	Not analysed	Derived Activity	Not a	nalysed
C=CLAY		70 60 50		CL	CI	СН	CV	CE	High	Change Potential
Plasticity Ind %	lex	40				×				(1)
(lp)		30							Medium	NHBC Volum
		10							Low	-
M=SILT		0 0	10	ML 20 30	MI 40 !	MH 50 60	70 80	ME 90 100 110 12	20 Liquid	Limit %

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

												0998	
Contract		Harris	sons Lane,	Haleswor	rth, Suffo	olk							
Serial No.		39812	2_1										
		DE1							ND PLASTIC LIMIT A	ND			
/ PIT NO.	epth		Sample	Water Content (W) %			Des	cription		Remarks			
CBR10	m		Reference -										
		•	P	REPARATI	ON				Liquid Limit			38 %	
Method of p	repa	aration	1		Wet s	ieved ove	r 0.42	5mm sieve	Plastic Limit			14 %	
Sample retai	ined	0.425	mm sieve	(Meas	ured)			18 %	Plasticity Index			24 %	
Corrected wa	ater	conte	nt for mate	rial passin	g 0.425mi	m		21.1 %	Liquidity Index			0.14	
Sample retai	ined	2mm	sieve	(Meas	ured)			12 %	NHBC Modified (I'p)			20 %	
Curing time			24	hrs	Clay C	ontent	Not an	alysed	Derived Activity	N	ot ana	llysed	
C=CLAY		70 60 50		CL	CI	СН		CV	CE		High	Change Potential	
Plasticity Inc %	aex	40									E _n	ume Cha	
(Ip)		30			×						Medium	NHBC Volume	
		10									Low	Z	
M=SILT		0 0	10 2	ML 20 30	MI 40	MH 50 60	70	MV 80	ME 90 100 110 120	ı Liau	ıid Li	mit %	

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

											0998	
Contract	-		sons Lane,	Haleswor	th, Suffo	lk						
Serial No.		39812	2_1									
		DET						ND PLASTIC LIMIT A	AND			
Borehole / Pit No.	Depth m		Sample Reference	Water Content (W) %		Description						
CBR11		-	-									
1			P	REPARATI	ON			Liquid Limit			50 %	
Method of p	prepa	aratior	1		Wet sie	eved over 0	.425mm sieve	Plastic Limit			18 %	
Sample retai	ined	0.425	mm sieve	(Meası	ured)		9 %	Plasticity Index			32 %	
Corrected w	vater	conte	nt for mate	rial passin	g 0.425mn	n	23.0 %	Liquidity Index			0.09	
Sample retai	ined	2mm	sieve	(Meası	ured)		6 %	NHBC Modified (I'p)			29 %	
Curing time	:		46	hrs	Clay Co	ontent No	ot analysed	Derived Activity		Not ar	alysed	
C=CLAY Plasticity Inc	ndex	70 60 50		CL	CI	СН	CV	CE		High	Change Potential	
% (Ip)		30 20			,					v Medium	NHBC Volume Ch	
M=SILT		10	10 2	ML 20 30	MI 40 5	MH 0 60	MV 70 80	ME 90 100 110 1	₂₀ Li	quid L	imit %	

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

											0998
Contract			sons Lane, I	Haleswor	th, Suffo	olk					
Serial No.		39812	2_1								
		DET						ND PLASTIC LIMIT	AND		
/ PIT NO.	Depth m		Sample Reference	Water Content (W) %		С	R	Remarks			
CBR12	111		Light olive brown slightly gravelly slightly sandy silty CLAY with rare bluish grey mottling and recently active roots. Gravel is fine to coarse angular to subrounded chalk and chert								
<u>, </u>			PI	REPARATI	ON			Liquid Limit			53 %
Method of p	repa	aratior	1		Wet s	ieved over 0.	425mm sieve	Plastic Limit			21 %
Sample retai	ined	0.425	mm sieve	(Measu	ured)		6 %	Plasticity Index			32 %
Corrected wa	<i>i</i> ater	conte	nt for mater	rial passing	g 0.425m	m	26.6 %	Liquidity Index			0.13
Sample retai	ined	2mm	sieve	(Measu	ured)		3 %	NHBC Modified (I'p)			30 %
Curing time			28	hrs	Clay C	Content No	t analysed	Derived Activity		Not an	alysed
C=CLAY Plasticity Inc	dex	70 60 50		CL	CI	СН	CV	CE		High	Change Potential
% (Ip)		30 20				×				Low Medium	NHBC Volume Ch
M=SILT		10	10 2	ML 0 30	MI 40	MH 50 60	MV 70 80	ME 90 100 110 1	120 Li	iquid L	imit %

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

											0998
Contract	Harr	risons Lane,	Haleswor	th, Suffol	k						
Serial No.	398	12_1									
	DI							ND PLASTIC LIMIT AN	1D		
Borehole / Pit No. m		Sample be Reference	Water Content (W) %		-	Re					
CBR13	-	-									
	•	P	REPARATIO	ON				Liquid Limit			50 %
Method of pre	oaratio	on		Wet sie	eved over	0.425mm	ı sieve	Plastic Limit			16 %
Sample retaine	d 0.42	25mm sieve	(Measu	ıred)		12	2 %	Plasticity Index			34 %
Corrected water	er con	tent for mate	rial passing	0.425mm	1	25.0) %	Liquidity Index		(0.18
Sample retaine	d 2mr	n sieve	(Measu	ıred)		Ç	9 %	NHBC Modified (I'p)			30 %
Curing time			hrs	Clay Co	ntent	Not analysed	d	Derived Activity		Not ana	lysed
C=CLAY Plasticity Index % (Ip)	70 60 50 40 30 20		CL	CI	СН		CV	CE		Low Medium High	NHBC Volume Change Potential
M=SILT	0	0 10 :	ML 20 30	MI 40 5	MH 0 60	_	/IV 80	ME 90 100 110 120	Li	quid Lir	mit %

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

Contract Harrisons Lane, Halesworth, Suffolk 39812_1 Serial No. DETERMINATION OF WATER CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX Borehole Water Depth Sample / Pit No. Content Description Remarks (W) % Type Reference m Light olive brown slightly gravelly slightly sandy silty CLAY with CBR16 20.0 occasional light grey mottling and rare recently active roots. Gravel is fine to coarse angular to subrounded chalk and chert **PREPARATION** Liquid Limit 43 % Method of preparation Wet sieved over 0.425mm sieve Plastic Limit 18 % Sample retained 0.425mm sieve (Measured) 14 % Plasticity Index 25 % Corrected water content for material passing 0.425mm 23.3 % Liquidity Index 0.08 Sample retained 2mm sieve (Measured) 9 % NHBC Modified (I'p) 22 % Curing time 27 hrs Clay Content Not analysed **Derived Activity** Not analysed 70 C=CLAY CL CI CH CV CE 60 NHBC Volume Change Potential High 50 Plasticity Index 40 % Medium (lp) 30 X 20 WO_ 10 M=SILT MV ME ML MI MΗ 0 Liquid Limit % 30 70 80 90 100 120 0 10 20 40 50 60 110 Plasticity Chart BS5930: 2015: Figure 8

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

Contract Harrisons Lane, Halesworth, Suffolk 39812_1 Serial No. DETERMINATION OF WATER CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX Borehole Water Depth Sample / Pit No. Content Description Remarks (W) % Type Reference m Light olive brown slightly gravelly slightly sandy silty CLAY with CBR18 23.0 occasional light bluish grey mottling and rare recently active roots. Gravel is fine to coarse angular to subrounded chalk and chert **PREPARATION** Liquid Limit 53 % Method of preparation Wet sieved over 0.425mm sieve Plastic Limit 21 % Sample retained 0.425mm sieve (Measured) 10 % Plasticity Index 32 % Corrected water content for material passing 0.425mm 25.5 % Liquidity Index 0.06 Sample retained 2mm sieve (Measured) 8 % NHBC Modified (I'p) 29 % 25 hrs Curing time Clay Content Not analysed **Derived Activity** Not analysed 70 C=CLAY CL CI CH CV CE 60 NHBC Volume Change Potential High 50 Plasticity Index 40 % Medium X (lp) 30 20 WO_ 10 M=SILT MV ME ML MI MΗ 0 Liquid Limit % 30 70 80 90 100 120 0 10 20 40 50 60 110

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

Contract	$\overline{\Box}$	Harris	sons Lan	ne, Haleswor	th, Suffc	olk					099	
Serial No.	-	39812										
		DET							AND PLASTIC LIMIT	「 AND)	
/ PIL NO.	epth m		Sample Reference	Water Content		110		escription	70111 1122.		Remarks	
CBR19	••	-	-	21.9	occasional li	ight grey mo	ottling an	ly slightly sandy nd rare recently unded chalk and	active roots. Gravel is			
				PREPARATIO	ON				Liquid Limit		52	%
Method of pr	repa	aratior	1					FALSE	Plastic Limit		20	%
Sample retai	ned	0.425	mm sieve	e (Assum	ned)			12 %	Plasticity Index		32	%
Corrected wa	ater	conte	nt for ma	aterial passing	្វ 0.425mr	n			Liquidity Index		0.06	
Sample retaiı	ned	2mm	sieve	(Assum	ned)			10 %	NHBC Modified (I'p))	n/a	
Curing time				25 hrs	Clay C	ontent	Not a	analysed	Derived Activity		Not analysed	
C=CLAY Plasticity Ind % (Ip)	dex	70 60 50 40 30		CL	CI	CH ×		CV	CE		w Medium High NHBC Volume Change Potential	
M=SILT		10 0	10	ML 20 30	MI 40 5	MH 50 60			ME 90 100 110 ity Chart BS5930: 2015: Figu	120 ure 8	Liquid Limit 9	 %

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments:

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

Contract Harrisons Lane, Halesworth, Suffolk 39812_1 Serial No. DETERMINATION OF WATER CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX Borehole Water Depth Sample / Pit No. Content Description Remarks (W) % Type Reference m Olive brown slightly gravelly slightly sandy silty CLAY with occasional CBR20 22.4 orangish brown mottling and rare recently active roots. Gravel is fine to coarse angular to subrounded chalk and chert **PREPARATION** Liquid Limit 44 % Method of preparation Wet sieved over 0.425mm sieve Plastic Limit 18 % Sample retained 0.425mm sieve (Measured) 16 % Plasticity Index 26 % 26.7 % Corrected water content for material passing 0.425mm Liquidity Index 0.17 Sample retained 2mm sieve (Measured) 10 % NHBC Modified (I'p) 22 % Curing time 27 hrs Clay Content Not analysed **Derived Activity** Not analysed 70 C=CLAY CL CI CH CV CE 60 NHBC Volume Change Potential High 50 Plasticity Index 40 % Medium (lp) 30 X 20 WO_ 10 M=SILT MV ME ML MI MΗ 0 Liquid Limit % 30 70 80 90 100 120 0 10 20 40 50 60 110

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

Contract Harrisons Lane, Halesworth, Suffolk 39812_1 Serial No. DETERMINATION OF WATER CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX Borehole Water Depth Sample / Pit No. Content Description Remarks (W) % Type Reference m Light olive brown slightly gravelly slightly sandy silty CLAY with CBR3 22.4 occasional light grey mottling with rare recently active roots. Gravel is fine to coarse chalk and chert **PREPARATION** Liquid Limit 47 % Method of preparation Wet sieved over 0.425mm sieve Plastic Limit 17 % Sample retained 0.425mm sieve (Measured) 14 % Plasticity Index 30 % Corrected water content for material passing 0.425mm 26.1 % Liquidity Index 0.18 Sample retained 2mm sieve (Measured) 10 % NHBC Modified (I'p) 26 % Curing time 24 hrs Clay Content Not analysed **Derived Activity** Not analysed 70 C=CLAY CL CI CH CV CE 60 NHBC Volume Change Potential High 50 Plasticity Index 40 % Medium X (lp) 30 20 WO_ 10 M=SILT MV ME ML MI MΗ 0 Liquid Limit % 30 70 80 90 100 120 0 10 20 40 50 60 110

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

										(0998
Contract		Harris	sons Lane, l	Haleswor	th, Suffo	ılk					
Serial No.		39812	<u>2_1</u>								
	_	DET	ERMINAT	ION OF W	ATER CC	NTENT, L	IQUID LIMIT A	AND PLASTIC LIMIT A	AND		
				RIVATION				UIDITY INDEX			
/ PIL NO.	epth m		Sample	Water Content			Description		Rem	arks	_
CBR4	m	- Type	Reference -	(W) % 17.6			gravelly slightly sandy rel is fine to coarse ch	y silty CLAY with rare nert			
		——	P	<u> </u> REPARATIO	L ON			Liquid Limit			38 %
Method of pre	repa	aratior	1		Wet si	eved over	0.425mm sieve	e Plastic Limit			14 %
Sample retain	ned	0.425	mm sieve	(Measu	ıred)		18 %	Plasticity Index			24 %
Corrected wa	ıter	conte	nt for mate	rial passinç	0.425mr و	n	21.5 %	Liquidity Index		0.	15
Sample retain	ned	2mm	sieve	(Measu	ıred)		13 %	NHBC Modified (I'p)			20 %
Curing time			24	hrs	Clay C	ontent	Not analysed	Derived Activity	No	ot analys	sed
C=CLAY		70 60		CL	CI	СН	CV	CE		High Fential	ditiai
Plasticity Inde	lex	50 -								Change Po	บ
(lp)		30			×					Medium	
		10								MOJ	2
M=SILT		0 0	10 2	ML 20 30	MI 40 !	MH 50 60	MV 70 80	ME 90 100 110 1	₂₀ Liqu	id Limi	it %

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

										0998
Contract	Harri	isons Lane,	Haleswor	th, Suffol	k					
Serial No.	3981	2_1								
	DE							AND PLASTIC LIMIT A	ND	
Borehole / Pit No. m		Sample e Reference	Water Content (W) %		-		iption		R	emarks
CBR5	-	-	21.8	Dark greyish I fine to coarse			slightly san	dy silty CLAY. Gravel is		
		Р	REPARATIO	ON				Liquid Limit		50 %
Method of pre	oaratio	n		Wet sie	eved over	0.425n	nm sieve	Plastic Limit		18 %
Sample retaine	d 0.42	5mm sieve	(Measu	ıred)			2 %	Plasticity Index		32 %
Corrected wate	er cont	ent for mate	rial passing	0.425mm	 1	2	2.2 %	Liquidity Index		0.12
Sample retaine	d 2mm	n sieve	(Measu	ıred)			2 %	NHBC Modified (I'p)		31 %
 Curing time			hrs	Clay Cc	ntent	Not analy	ysed	Derived Activity		Not analysed
C=CLAY Plasticity Index % (Ip)	30 -		CL	CI	СН		CV	CE		Low Medium High NHBC Volume Change Potential
M=SILT	0 0	10 2	ML 20 30	MI 40 50	MH 0 60	70	MV 80	ME 90 100 110 12	0 L	iquid Limit %

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

	-										0998
Contract	+		ons Lane,	Haleswor	th, Suffol	k					
Serial No.		39812	_1								
		DET						AND PLASTIC LIMIT A	4ND		
Borehole / Pit No.	pth n		Sample Reference	Water Content (W) %			Description		R	emark	:S
CBR6		-	-	21.3			gravelly slightly san mottling. Gravel is	dy silty CLAY with fine to coarse chalk and			
·			Pl	REPARATI	ON			Liquid Limit			50 %
Method of pro	ера	aration			Wet sie	eved over 0).425mm sieve	Plastic Limit			19 %
Sample retain	ed	0.425	mm sieve	(Meası	ured)		13 %	Plasticity Index			31 %
Corrected wa	ter	conte	nt for mate	rial passin	g 0.425mm	າ	24.5 %	Liquidity Index			0.07
Sample retain	ed	2mm	sieve	(Meası	ured)		10 %	NHBC Modified (I'p)			27 %
Curing time			24	hrs	Clay Co	ontent N	ot analysed	Derived Activity		Not ar	nalysed
C=CLAY Plasticity Inde % (Ip)	ex	70 60 50 40		CL	CI	СН	CV	CE		Medium High	NHBC Volume Change Potential
M=SILT		20 10 0	10 2	ML 20 30	MI 40 5	MH 0 60	MV 70 80	ME 90 100 110 12	20 L	Low	.imit %

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

Contract Harrisons Lane, Halesworth, Suffolk 39812_1 Serial No. DETERMINATION OF WATER CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX Borehole Water Depth Sample / Pit No. Content Description Remarks (W) % Type Reference m Mottled bluish grey and olive slightly gravelly slightly sandy silty CLAY CBR7 22.1 with rare recently active and decayed roots. Gravel is fine to coarse chalk and chert **PREPARATION** Liquid Limit 51 % Method of preparation Wet sieved over 0.425mm sieve Plastic Limit 19 % Sample retained 0.425mm sieve (Measured) 11 % Plasticity Index 32 % Corrected water content for material passing 0.425mm 24.8 % Liquidity Index 0.10 Sample retained 2mm sieve (Measured) 8 % NHBC Modified (I'p) 28 % Curing time 26 hrs Clay Content Not analysed **Derived Activity** Not analysed 70 C=CLAY CL CI CH CV CE 60 NHBC Volume Change Potential High 50 Plasticity Index 40 % Medium 30 (lp) 20 WO_ 10 M=SILT MV ME ML MI MΗ 0 Liquid Limit % 30 70 80 90 100 120 0 10 20 40 50 60 110

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

											0998
Contract		Harris	ons Lane	e, Haleswor	th, Suffo	k					
Serial No.		39812	_1								
		DET							AND PLASTIC LIMIT	ΓAND	
Borehole / Pit No.	epth m		ample Reference	Water Content	0			scription			Remarks
CBR9		-	-	21.6		recently ac	tive and	decayed root	with occasional light grey s. Gravel is fine to coarse		
				PREPARATI	NC				Liquid Limit		51 %
Method of p	repa	aration			Wet sie	eved ove	r 0.42	25mm siev	e Plastic Limit		17 %
Sample retai	ined	0.425r	nm sieve	(Meası	ıred)			15 %	Plasticity Index		34 %
Corrected w	ater	conter	nt for ma	terial passin	g 0.425mn	า		25.4 %	Liquidity Index		0.13
orrected wate ample retained		2mm s	sieve	(Meası	ured)			12 %	NHBC Modified (I'p	 o)	29 %
Curing time			2	24 hrs	Clay Co	ontent	Not a	nalysed	Derived Activity		Not analysed
C=CLAY Plasticity Inc % (Ip)	dex	70 60 50 40		CL	CI	CH		CV	CE		Medium High C Volume Change Potential
M=SILT		20 10 0	10	ML 20 30	MI 40 5	MH 0 60	70	MV 0 80	ME 90 100 110	120	Low Medium NHBC Volum %

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

Contract Harrisons Lane, Halesworth, Suffolk Serial No. 39812 1 CALIFORNIA BEARING RATIO TEST Borehole Depth Sample Description Remarks /Pit No. (m) Reference Type Dark olive brown slightly gravelly slightly sandy silty CLAY with rare CBR1 light brownish grey mottling. Gravel is fine to coarse chalk and chert Specimen Preparation Soaking Details Soaked Period of Soaking Condition Remoulded days Recompacted with specified standard effort using Time to Surface days Details 2.5kg rammer Amount of Swell Recorded mm **Initial Water Content** 29.5 % Material Retained on 20mm Sieve Removed 8.0 1.92 **Bulk Density** Mg/m³ Initial Specimen Details: Surcharge Applied 15 kg Dry Density 1.48 Mg/m³ **Test Results** CBR Values (%) Curve Water Correction Highest Content (%) 2.5mm 5.0mm Mean* No 1.4 30.6 TOP 1.5 1.5 **BASE** No 3.1 2.5 3.1 29.3 **Force v Penetration Plots** 0.60 0.50 Top data 0.40 Ζ Top values Force Applied -- Top correction 0.30 Base data Base values 0.20 - Base Correction 0.10 0.00 4 Penetration mm 6 7 8 Method of Preparation: BS1377: Part1: 2016 & BS1377: Part 4: 1990: 7.2.4.4, 7.3 Method of Test: BS 1377: Part 4: 1990: 7

U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT= Split Spoon Sample, C = Core Cutter *Only reported if the results from each end of the sample are within ±10% of the mean value.

Note:- CBR Results are water content dependent - an increase in water content will result in a decrease of CBR value.

Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample, oven

drving temperature if not 105-110°C

Type of Sample Key

Remarks to Include:

Comments:

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

Contract			ons Lane, F	Jaicsvvoi	III, Juine	JIK					
Serial No		39812_	.1								
					CALIFO	RNIA BEAF	RING RAT	IO TEST			
Borehole		epth		mple			Descrip	otion		Rema	ıarks
/Pit No.	1) (1	(m)	Туре	Reference			·	•	The same	<u> </u>	
CBR10			-	-				ghtly sandy silty CL/ o coarse angular an			-
Specimen	Prepara	ation						Soaking Deta	tails		Soaked
Condition		R€	emoulded					Period of So		4	days
Details		R€	e compact e	ed with spe	ecified sta	andard effort	using	Time to Surf	face		days
Jetalis 			.5kg ramme	•					Swell Recorde		mm
								Initial Water	r Content	18.1	%
√aterial R	etained	on 20mm	n Sieve Rer			1.6 %					
nitial Spec		etails:		Density Density		.04 Mg/m .73 Mg/m		Surcharge A	opplied	15	kg
Test Resul	ts			-		CRR Vs	alues (%)				
				irve	- F		T	N 4 - n = *		ater	
					2.5mm	5.0mm	Highest	Mean*		ent (%)	
		TOP		No	1.5	1.5	1.5			1.4	
		BASE	. 11	No	4.9	3.9	4.9		17	9.9	
	1.00 —				Force v	Penetration P	olots				
	0.90	——		+	+	+	+	-	•		
	0.80								1		
	0.70		<u> </u>							— × — Top dat	ta
	6 -			1000						—∗— Top dat —∗— Top vali	
	0.60		200	1			_			•	
Force Applied	0.50			+	+-		+		+	Top cor	
se Ap	0.40			\bot						Base da	
		/							 	—o— Base va	
	0.30	7		+						Base Co	orrection
	0.20	 		 					+		
	0.10		X X	+							
	V.						<u> </u>				
	0.00	-	1	2	3	4 enetration mm	5	6 7	7 8		
					1 0	illoudio					

Note:- CBR Results are water content dependent - an increase in water content will result in a decrease of CBR value.

Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample, oven

drving temperature if not 105-110°C

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

Contract		Harri	sons L	.ane, F	Haleswo	orth,	, Suffolk							
Serial No.		3981	2_1											
						CF	ALIFORNI	A BEAF	RING RAT	IO TEST				
Borehole		pth		Sam	-				Descrip				Remar	·ks
/Pit No.	(r	m)	Ту	/pe	Refere		<u>.</u>		·					
CBR11				-	-		occasional lig	ght grey mo	ily gravelly sligl ottling and ran o subrounded	re recently act	tive roots. Gravel is			
Specimen Pr	epara	tion								Soaking	Details		So	aked
Condition			Remo	ulded							of Soaking		4	days
Details			Recor	npacte	d with s	pecif	fied standaı	rd effort	using	Time to :				days
Jetalis			2.5kg	ramme	er						t of Swell Record	ded		mm
										Initial W	/ater Content		21.4	%
Material Reta	ained	on 20r					2.0	%						
nitial Specin	nen D	etails:		Bulk D Dry De		_	2.00 1.65	Mg/m Mg/m		Surcharç	ge Applied		15	kg
Test Results														
			ļ	Cur				CBR Va	lues (%)			Vater		
			l	Corre	ction	2.5r	mm 5	.0mm	Highest	Mean	ı* Con	tent (%)		
		T(OP	N	0	1.	.6	1.6	1.6	<u> </u>		24.2		
		BA	ASE	N	0	4.	.6	4.0	4.6			22.5		
						F	orce v Pene	etration [Plote					
1.	.00		$\overline{}$		$\overline{}$	$\overline{}$	010011			$\overline{}$		1		
0.	.90 📙		\bot		 	\dashv		<u> </u>	\bot					
U.	.80 👇							-0-0-				1		
0.	.70 📙		+		+	 		-	+	_		│ 	- Top data	
₹ 0.	.60 ⊨		+		-	-		<u> </u>	\longrightarrow			ļ ×	- Top value	35
													· Top corre	ection
Appl	.50 📙			18/									- Base data	a
Force Applied	.40 📙		\		+	\dashv		\vdash	+		* * * * * ·	_	- Base valu	
ப் 0.	.30 🗱 -		<u> </u>		 								· Base Corr	
	.20 🖊												Da30 00	Cotton.
	.10	$\overline{\mathcal{L}}$												
0	.00 📙	X-X-X-					·		<u> </u>					
U.	0		1		2	3	Penetra	4 tion mm	5	6	7 8	8		
Method of Prep	orotion		DC1077	/. Dowld.	2014 0 00	1277.	Dort 4, 1000	: 7.2.4.4, 7	2					

*Only reported if the results from each end of the sample are within ±10% of the mean value.

Note:- CBR Results are water content dependent - an increase in water content will result in a decrease of CBR value.

Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample, oven

drving temperature if not 105-110°C.

Comments:

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

Contract Harrisons Lane, Halesworth, Suffolk Serial No. 39812 1 CALIFORNIA BEARING RATIO TEST Borehole Depth Sample Description Remarks /Pit No. (m) Reference Type Light olive brown slightly gravelly slightly sandy silty CLAY with rare CBR12 bluish grey mottling and recently active roots. Gravel is fine to coarse angular to subrounded chalk and chert Specimen Preparation Soaking Details Soaked Period of Soaking Condition Remoulded days Recompacted with specified standard effort using Time to Surface days Details 2.5kg rammer Amount of Swell Recorded mm **Initial Water Content** 25.2 % Material Retained on 20mm Sieve Removed 8.0 1.95 **Bulk Density** Mg/m³ Initial Specimen Details: Surcharge Applied 15 kg Dry Density 1.56 Mg/m³ **Test Results** CBR Values (%) Curve Water Correction Content (%) 2.5mm 5.0mm Highest Mean* No 27.9 TOP 1.5 1.4 1.5 **BASE** No 4.4 3.5 4.4 26.2 **Force v Penetration Plots** 0.90 0.80 0.70 Top data 0.60 Top values Force Applied kN 0.50 ---- Top correction 0.40 Base data Base values 0.30 --- Base Correction 0.20 0.10 0.00 4 Penetration mm 6 7 8 Method of Preparation:

Method of Test:

BS1377: Part1: 2016 & BS1377: Part 4: 1990: 7.2.4.4, 7.3

BS 1377: Part 4: 1990: 7 Type of Sample Key

U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT= Split Spoon Sample, C = Core Cutter

*Only reported if the results from each end of the sample are within ±10% of the mean value. Comments:

Note:- CBR Results are water content dependent - an increase in water content will result in a decrease of CBR value.

Remarks to Include:

Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample, oven drving temperature if not 105-110°C

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

Contract Harrisons Lane, Halesworth, Suffolk Serial No. 39812 1 CALIFORNIA BEARING RATIO TEST Borehole Depth Sample Description Remarks /Pit No. (m) Reference Type Olive slightly gravelly slightly sandy silty CLAY with rare recently active CBR13 roots. Gravel is fine to coarse angular to subrounded chalk and chert Specimen Preparation Soaking Details Soaked Period of Soaking Condition Remoulded days Recompacted with specified standard effort using Time to Surface days Details 2.5kg rammer Amount of Swell Recorded mm **Initial Water Content** 22.3 % Material Retained on 20mm Sieve Removed 1.3 **Bulk Density** 2.00 Mg/m³ Initial Specimen Details: Surcharge Applied 15 kg Dry Density 1.64 Mg/m³ Test Results CBR Values (%) Curve Water Correction 5.0mm Content (%) 2.5mm Highest Mean* No 1.7 24.9 TOP 1.6 1.7 **BASE** No 4.5 3.7 4.5 22.5 **Force v Penetration Plots** 0.90 0.80 0.70 Top data 0.60 Top values Force Applied kN 0.50 --- Top correction 0.40 Base data Base values 0.30 --- Base Correction 0.20 0.10 0.00 4 Penetration mm 6 7 8 Method of Preparation: BS1377: Part1: 2016 & BS1377: Part 4: 1990: 7.2.4.4, 7.3 Method of Test: BS 1377: Part 4: 1990: 7

U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT= Split Spoon Sample, C = Core Cutter

Note:- CBR Results are water content dependent - an increase in water content will result in a decrease of CBR value.

Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample, oven

*Only reported if the results from each end of the sample are within ±10% of the mean value.

drving temperature if not 105-110°C

Type of Sample Key

Remarks to Include:

Comments:

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

Contract Harrisons Lane, Halesworth, Suffolk Serial No. 39812 1 CALIFORNIA BEARING RATIO TEST Borehole Depth Sample Description Remarks /Pit No. (m) Reference Type Olive slightly gravelly slightly sandy silty CLAY with occasional light CBR14 grey mottling and rare recently active roots. Gravel is fine to coarse angular to subrounded chalk and chert Specimen Preparation Soaking Details Soaked Period of Soaking Condition Remoulded days Recompacted with specified standard effort using Time to Surface days Details 2.5kg rammer Amount of Swell Recorded mm **Initial Water Content** 21.2 % Material Retained on 20mm Sieve Removed 1.0 **Bulk Density** 2.00 Mg/m³ Initial Specimen Details: Surcharge Applied 15 kg Dry Density 1.65 Mg/m³ **Test Results** CBR Values (%) Curve Water Correction Content (%) 2.5mm 5.0mm Highest Mean* No 1.2 25.2 TOP 1.1 1.2 **BASE** No 5.4 4.5 5.4 21.7 **Force v Penetration Plots** 1.20 1.00 Top data 0.80 Ζ Top values Force Applied --- Top correction 0.60 Base data Base values 0.40 -- Base Correction 0.20 0.00 4 Penetration mm 6 7 8 Method of Preparation: BS1377: Part1: 2016 & BS1377: Part 4: 1990: 7.2.4.4, 7.3 Method of Test: BS 1377: Part 4: 1990: 7

Type of Sample Key

Comments:

U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT= Split Spoon Sample, C = Core Cutter

*Only reported if the results from each end of the sample are within ±10% of the mean value.

Note:- CBR Results are water content dependent - an increase in water content will result in a decrease of CBR value.

Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample, oven

drving temperature if not 105-110°C

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

Contract		Harris	sons L	ane, I	Halesw	orth	, Suffolk							
Serial No.		39812	2_1											
						C/	ALIFORN	IA BEA	RING RATI	IO TEST				
Borehole /Pit No.		epth m)			nple				Descrip	otion			Remarl	ks
/PIL INO.	- ''	11)	ТУ	pe	Refere	nce	Light olive t	-rown sligh	the gravelly slin	htly sandy silty CL	Mwith	-		
CBR15				.			occasional li	light grey m	nottling and rare	re recently active in the chalk and chert				
Specimen F	repara	ation								Soaking Det	tails		So	aked
Condition		$\overline{}$	Remou	ulded						Period of So			4	days
			Recon	npacte	d with s	specif	fied standa	ard effor	t using	Time to Sur				days
Details			2.5kg r	ramm _e	er					Amount of	Swell Recorde	ed		mm
										Initial Wate	r Content		22.1	%
Material Re	tained	on 20m					0.6	%						
Initial Speci		etails:	L	Bulk D Dry De	Density ensity		1.99 1.63	Mg/n Mg/n		Surcharge A	4pplied		15	kg
Test Result	S		,					ODD W	1 (0/)		- —			
]		rve _	<u> </u>			alues (%)	<u> </u>		ater		
				Corre	ection			5.0mm	Highest	Mean*		ent (%)		
		TC			10		.9	1.8	1.9			4.9		
		BA	ιSE	N	10	4	1.5	3.8	4.5		23	3.0		
						F	Force v Pen	netration	Plots					
•	1.00				T			T			\Box			
(0.90		+		+	\dashv		+-	+					
(0.80		 	~				 			1			
	0.70		1					100				× ⊤	op data	
_	0.60						-						op data op value	76
	I												op valde op corre	
pplie	0.50		+_	POPE	+++	\dashv		+-	+	+	+		Base data	
Force Applied	0.40		/		+	\dashv		+-		***	***		sase uata Base valu	
	0.30		/		+				***		1		ase valu Base Corr	
1	0.20		丰				<u> </u>	 			1			
ı	0.10	 	#		+				_		1			
	0.00		1		2					6				
	0					3	•	4 ation mm	5	6	7 8			

*Only reported if the results from each end of the sample are within ±10% of the mean value.

Note:- CBR Results are water content dependent - an increase in water content will result in a decrease of CBR value.

Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample, oven

drving temperature if not 105-110°C.

Comments:

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

Contract		Harris	sons La	ane, H	laleswo	orth,	, Suffolk								
Serial No.		39812	2_1												
						C.F	ALIFORN	IA BEAF	RING RAT	IO TES	- <u>-</u> 3T				
Borehole /Pit No.		epth		Sam	-				Descrip	ption				Remarl	·ks
/PIT NO.	(1	(m)	Тур	эe	Referer	nce	Line alivo k	- aligh			· - '' 'CI A\				
CBR16			-		-		occasional li	light grey mo	tly gravelly slig nottling and rar to subrounded	are recently	ly active roo				
Specimen P	repara	ation				_				Soak	ing Detail	ile	$\overline{}$	So	aked
Condition		$\overline{}$	Remou	ulded						-	od of Soak			4	days
Details				•	•	pecif	fied standa	ard effort	using	Time	to Surfac	се			days
Jetans]	2.5kg r	ramme	r <u> </u>		=					vell Recorde	ed		mm
								<u> </u>	<u></u>	Initia	al Water C	Content		20.4	%
√aterial Ret	tained	on 20n					1.9	%							_
nitial Specir		etails:	<u> </u>	Bulk De Dry De			1.99 1.65	Mg/m Mg/m		Surch	harge App	plied		15	kg
Test Results	š	_			-			222.1/-	(01)						_
				Cur					lues (%)				ater		
				Correc	ction	2.5	imm 5	5.0mm	Highest	Me	ean*	Conte	ent (%)		
		TC)P	No			.5	1.5	1.5				2.5		
		BA	ιSE	No	0	5	5.7	4.7	5.7			21	1.0		
						F	Force v Pen	netration f	Plots						
1	1.20		\top			\Box	i	Т	$\overline{}$		$\overline{}$				
							ı								
1	1.00 -		+-			\longrightarrow		+			-				
	• -				1		 اسم	100	-						
С	0.80				<u> </u>		-	 		\perp				Top data	
Ž			\top				ı						x	Top value	2S
	0.60			A			l	<u> </u>						· Top corre	ction
Appl	.60		1			_							-	Base data	à.
Force Applied		•	1				ı							Base value	
표 0	0.40		+		+++	\dashv	i	+			**	***		Base Corr	
	*				+			·	***	*				Dasc co	CUIOI.
C	0.20 📥		+		-			-		+	-+				
		1					ı								
ſ	0.00		\perp				1			\perp					
	0.00	_	1		2	3	 }	4 ation mm	5	6	7	8			
							Fellone	Allon mm.							

*Only reported if the results from each end of the sample are within $\pm 10\%$ of the mean value.

Note:- CBR Results are water content dependent - an increase in water content will result in a decrease of CBR value.

Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample, oven

drving temperature if not 105-110°C

Comments:

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

Contract		Harris	ons Lane	e, Halesw	orth,	, Suffolk							
Serial No.		39812	_1										
					C.F	ALIFORNI.	A BEAF	RING RATI	O TEST				
Borehole	T De	epth		ample		TEN OTTE	102						
/Pit No.		m) -	Type	Refere	ence	ł		Descrip	tion	1	F	Remar	ks
CBR17				_		occasional lig	ht grey mo	ottling and rare	htly sandy silty CL e recently active r ular chalk and che	roots. Gravel is			
Specimen P	'repara	ation							Cooking Dot				akad
Condition			Remoulde	\d					Soaking Det Period of So			4	aked days
					snecif	fied standar	rd effort	usina	Time to Surf			4	days
Details			2.5kg rami		speem	icu stariaa.	u choi.	using		Swell Recorde	ed		mm
									Initial Water			22.9	%
Material Re	tained	on 20m	m Sieve R	Removed		0.0	%						
nitial Speci	men D	etails:		k Density Density		1.96 1.59	Mg/m Mg/m		Surcharge A	pplied		15	kg
Test Results	S												
			(Curve _			CBR Val	ues (%)		■ Wa	ater		
			Cor	rrection	2.5r	mm 5.	.0mm	Highest	Mean*	Conte	ent (%)		
		TOI	P	No	1.	.5	1.4	1.5	†	27	7.8		
		BAS	SE	No	3.	.9	3.2	3.9	1	25	5.7		
		-								•			
(0.80				<u></u>	Force v Pene	tration -	lots		 			
							ĺ						
C	0.70		+	+	\rightarrow			+	-				
	0.60						سمسو	,-	<u> </u>				
`).00		\top			-					 Тор	o data	
Ž (0.50 누		+-							 	— ∗ — Top		
							İ				Top		
pplie (0.40			+++	$\overline{}$			+	+	 	Bas		
Force Applied	200		₫				İ			*** <u>*</u>			
For	0.30]			-		—o— Bas		
(0.20		+	***************************************	_	_ 			+		Bas	e Corr	rection
(0.10			+	\dashv				+				
,	0.00 🖊									7 8			
,	0		1	2	3	3 4 Penetrat	ι	5	6	, ,			

*Only reported if the results from each end of the sample are within ±10% of the mean value.

Note:- CBR Results are water content dependent - an increase in water content will result in a decrease of CBR value.

Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample, oven

drving temperature if not 105-110°C.

Comments:

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

Contract Harrisons Lane, Halesworth, Suffolk Serial No. 39812 1 CALIFORNIA BEARING RATIO TEST Borehole Depth Sample Description Remarks /Pit No. (m) Reference Type Light olive brown slightly gravelly slightly sandy silty CLAY with **CBR18** occasional light bluish grey mottling and rare recently active roots. Gravel is fine to coarse angular to subrounded chalk and chert Specimen Preparation Soaking Details Soaked Condition Remoulded Period of Soaking days Recompacted with specified standard effort using Time to Surface days Details 2.5kg rammer Amount of Swell Recorded mm **Initial Water Content** 23.9 % Material Retained on 20mm Sieve Removed 3.9 **Bulk Density** 1.97 Mg/m³ Initial Specimen Details: Surcharge Applied 15 kg Dry Density 1.59 Mg/m³ **Test Results** CBR Values (%) Curve Water Correction Content (%) 2.5mm 5.0mm Highest Mean* 2.2 2.1 2.2 24.9 TOP No **BASE** No 4.5 3.8 4.5 24.8 **Force v Penetration Plots** 0.90 0.80 0.70 Top data 0.60 Z Z Top values 0.50 Force Applied --- Top correction 0.40 Base data Base values 0.30 --- Base Correction 0.20 0.10 0.00 4 Penetration mm 6 7 8 Method of Preparation: BS1377: Part1: 2016 & BS1377: Part 4: 1990: 7.2.4.4, 7.3

U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT= Split Spoon Sample, C = Core Cutter *Only reported if the results from each end of the sample are within ±10% of the mean value.

Note:- CBR Results are water content dependent - an increase in water content will result in a decrease of CBR value.

Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample, oven

BS 1377: Part 4: 1990: 7

drving temperature if not 105-110°C

Method of Test:

Comments:

Type of Sample Key

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

Contract Harrisons Lane, Halesworth, Suffolk Serial No. 39812 1 CALIFORNIA BEARING RATIO TEST Borehole Depth Sample Description Remarks /Pit No. (m) Reference Type Light olive brown slightly gravelly slightly sandy silty CLAY with CBR19 occasional light grey mottling and rare recently active roots. Gravel is fine to coarse angular to subrounded chalk and chert Specimen Preparation Soaking Details Soaked Condition Remoulded Period of Soaking days Recompacted with specified standard effort using Time to Surface days Details 2.5kg rammer Amount of Swell Recorded mm **Initial Water Content** 22.1 % Material Retained on 20mm Sieve Removed 8.0 1.99 **Bulk Density** Mg/m³ Initial Specimen Details: Surcharge Applied 15 kg Dry Density 1.63 Mg/m³ **Test Results** CBR Values (%) Curve Water Correction Content (%) 2.5mm 5.0mm Highest Mean* No 4.0 3.3 24.1 TOP 4.0 5.3 **BASE** No 4.4 5.3 23.5 **Force v Penetration Plots** 1.20 1.00 Top data 0.80 Ζ Top values Force Applied --- Top correction 0.60 Base data Base values 0.40 --- Base Correction 0.20 0.00 4 Penetration mm 6 7 8 Method of Preparation: BS1377: Part1: 2016 & BS1377: Part 4: 1990: 7.2.4.4, 7.3

Method of Test:

BS 1377: Part 4: 1990: 7

Type of Sample Key

U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT= Split Spoon Sample, C = Core Cutter

*Only reported if the results from each end of the sample are within ±10% of the mean value. Comments:

Note:- CBR Results are water content dependent - an increase in water content will result in a decrease of CBR value.

Remarks to Include:

Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample, oven drving temperature if not 105-110°C

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

Contract Harrisons Lane, Halesworth, Suffolk Serial No. 39812 1 CALIFORNIA BEARING RATIO TEST Borehole Depth Sample Description Remarks /Pit No. (m) Reference Type Light olive brown slightly gravelly slightly sandy silty CLAY with CBR2 occasional light brownish grey mottling. Gravel is fine to coarse chalk and chert Specimen Preparation Soaking Details Soaked Period of Soaking Condition Remoulded days Recompacted with specified standard effort using Time to Surface days Details 2.5kg rammer Amount of Swell Recorded mm **Initial Water Content** 22.5 % Material Retained on 20mm Sieve Removed 0.7 **Bulk Density** 2.03 Mg/m³ Initial Specimen Details: Surcharge Applied 15 kg Dry Density 1.66 Mg/m³ Test Results CBR Values (%) Curve Water Correction Highest Content (%) 2.5mm 5.0mm Mean* 1.3 1.3 24.0 TOP No 1.3 3.9 **BASE** No 4.4 4.4 21.8 **Force v Penetration Plots** 1.00 0.90 0.80 0.70 Top data Top values Ζ 0.60 Force Applied --- Top correction 0.50 Base data 0.40 Base values 0.30 **Base Correction** 0.20 0.10 0.00 4 Penetration mm 6 7 8 Method of Preparation: BS1377: Part1: 2016 & BS1377: Part 4: 1990: 7.2.4.4, 7.3 Method of Test: BS 1377: Part 4: 1990: 7

U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT= Split Spoon Sample, C = Core Cutter

Note:- CBR Results are water content dependent - an increase in water content will result in a decrease of CBR value.

Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample, oven

*Only reported if the results from each end of the sample are within ±10% of the mean value.

drving temperature if not 105-110°C

Type of Sample Key

Remarks to Include:

Comments:

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

Contract Harrisons Lane, Halesworth, Suffolk Serial No. 39812 1 CALIFORNIA BEARING RATIO TEST Borehole Depth Sample Description Remarks /Pit No. (m) Reference Type Olive brown slightly gravelly slightly sandy silty CLAY with occasional CBR20 orangish brown mottling and rare recently active roots. Gravel is fine to coarse angular to subrounded chalk and chert Specimen Preparation Soaking Details Soaked Period of Soaking Condition Remoulded days Recompacted with specified standard effort using Time to Surface days Details 2.5kg rammer Amount of Swell Recorded mm **Initial Water Content** 23.5 % Material Retained on 20mm Sieve Removed 2.7 **Bulk Density** 2.01 Mg/m³ Initial Specimen Details: Surcharge Applied 15 kg Dry Density 1.63 Mg/m³ **Test Results** CBR Values (%) Curve Water Correction Content (%) 2.5mm 5.0mm Highest Mean* No 2.2 1.8 2.2 23.2 TOP 2.4 **BASE** No 2.5 2.1 2.5 22.5 **Force v Penetration Plots** 0.60 0.50 Top data 0.40 Ζ Top values Force Applied --- Top correction 0.30 Base data Base values 0.20 --- Base Correction 0.10 0.00 4 Penetration mm 6 7 8 Method of Preparation: BS1377: Part1: 2016 & BS1377: Part 4: 1990: 7.2.4.4, 7.3

Remarks to Include:

Method of Test:

Comments:

Type of Sample Key

U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT= Split Spoon Sample, C = Core Cutter

*Only reported if the results from each end of the sample are within $\pm 10\%$ of the mean value.

Note:- CBR Results are water content dependent - an increase in water content will result in a decrease of CBR value.

Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample, oven

drving temperature if not 105-110°C

BS 1377: Part 4: 1990: 7

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

Contract Harrisons Lane, Halesworth, Suffolk Serial No. 39812 1 CALIFORNIA BEARING RATIO TEST Borehole Depth Sample Description Remarks /Pit No. (m) Reference Type Light olive brown slightly gravelly slightly sandy silty CLAY with CBR3 occasional light grey mottling with rare recently active roots. Gravel is fine to coarse chalk and chert Specimen Preparation Soaking Details Soaked Period of Soaking Condition Remoulded days Recompacted with specified standard effort using Time to Surface days Details 2.5kg rammer Amount of Swell Recorded mm **Initial Water Content** 24.1 % Material Retained on 20mm Sieve Removed 7.2 **Bulk Density** 1.98 Mg/m³ Initial Specimen Details: Surcharge Applied 15 kg Dry Density 1.60 Mg/m³ Test Results CBR Values (%) Curve Water Correction 5.0mm Content (%) 2.5mm Highest Mean* No 1.7 24.6 TOP 1.6 1.7 2.9 **BASE** No 3.5 3.5 24.0 Force v Penetration Plots 0.70 0.60 0.50 Top data Top values Force Applied kN 0.40 --- Top correction Base data 0.30 Base values --- Base Correction 0.20 0.10

Method of Preparation: Method of Test:

0.00

BS1377: Part1: 2016 & BS1377: Part 4: 1990: 7.2.4.4, 7.3

BS 1377: Part 4: 1990: 7

Type of Sample Key

U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments:

*Only reported if the results from each end of the sample are within ±10% of the mean value.

4 Penetration mm

Note:- CBR Results are water content dependent - an increase in water content will result in a decrease of CBR value.

Remarks to Include:

Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample, oven drying temperature if not 105-110°C.

6

7

8

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

Contract				.ane, r	1aiesw	Of tri,	ı, Suffolk	<u> </u>							
erial No.		39812	2_1												
						CA	ALIFORN	NIA BE	ARING	RATI	O TEST				
Borehole /Pit No.		epth m)		Sam ype	nple Refere	once			[Descript	tion			Remark	ks
CBR4		17	<u> </u>	<u>ре</u> -	-	Hice					htly sandy silty CL coarse chert	.AY with rare			
pecimen Pr	epara	tion		<u> </u>							Soaking Deta	+oile		So	aked
ondition			Remo	ulded						٦	Period of So		$\overline{}$	4	days
etails		ı	Recon	npacte		specif	fied stand	dard effo	ort usin	g	Time to Surf	face			days
etans				ramme								Swell Recorde	ed		mm
			- 0:				-	- I _{2/}			Initial Water	r Content		18.6	%
Naterial Ret	ained	on 20m				'	5.7		13	4					
nitial Specin		etails:		Bulk D	Density ensity		2.04 1.72		J/m³ J/m³	_	Surcharge A	pplied		15	kg
est Results	_	_	_							(2/)		_ 			_
			1	Cur					Values (T		ater		
			!	Corre			imm	5.0mm		ighest	Mean*		ent (%)		
		TO	-		10		.7	1.7		1.7	Ţ	<u> </u>	1.3		
		BAS	SE	IN	10	4	1.3	3.6	Щ	4.3			9.9		
0	∽ _					F	Force v Pe	enetratio	n Plots						
	.90														
0.	.80 -	-	+		†		1	+	\top		-				
0.	.70 🟪		-+		+							-			
0.	.60 -		\bot				مسمسم	1				<u> </u>		Top data	
Ž	ф		+				1						*	- Top value	:S
Deiled O.	.50 📙		+	Park	1	\neg	i	1						· Top corre	ction
.о.	.40		-		+-+	\longrightarrow		+-	\rightarrow			****	-	- Base data	1
Force Applied 0. 0.	.30 *-	<u></u> /	<u> </u>		 	}	·		,===	****				- Base value	
	.20		\pm	_										- Base Corr	ection
	.10				\prod										
	.00														
	0		1		2	3	} Pene	4 tration m	5 nm		6	7 8			

*Only reported if the results from each end of the sample are within ±10% of the mean value.

Note:- CBR Results are water content dependent - an increase in water content will result in a decrease of CBR value.

Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample, oven

drving temperature if not 105-110°C.

Comments:

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

Contract		Harris	ons L	ane, H	lalesw	orth, Suff	olk						
Serial No.		39812	_1										
						CALIFO	ORNIA BEA	RING RAT	IO TEST				
Borehole /Pit No.		epth m)	Tv	Sam pe	iple Refere	ence		Descrip	otion		Re	mark	i.S
CBR5				-	-		greyish brown sli o coarse chalk an		lightly sandy silty	CLAY. Gravel is			
Specimen Pi	epara	ation							Soaking Det	tails		Soa	ked
Condition		- I	Remo	ulded					Period of So		4		days
Dataile			Recon	npacted	d with	specified s	tandard effor	t using	Time to Sur				days
Details			2.5kg	ramme	er					Swell Recorde	ed		mm
									Initial Wate	er Content	22	.1	%
Material Ret	ained	on 20m	ım Sie				1.4 %						<u> </u>
Initial Specir		etails:		Bulk Do Dry De			2.03 Mg/r 1.66 Mg/r		Surcharge <i>F</i>	√pplied	15	5	kg
Test Results			ſ	Cur	710		CBR V	alues (%)		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ater		
				Correc		2.5mm	5.0mm	Highest	Mean*		ent (%)		
		TO	P	No	0	1.2	1.2	1.2		24	1.5		
		BAS	SE	No	0	4.6	4.0	4.6	<u> </u>	22	2.0		
						Force	v Penetration	Plots					
	.00 _		\top										
	.90 📙		+										
	.80 🛵									 			
	.70 📙		+		<u> </u>	-				+	— × — Top d		
	.60 👇		+					\rightarrow		+	─* ─ Top v		
plied 0	.50 -		+	<u> </u>	[-					Top c		tion
Force Applied	.40		1		$\downarrow \downarrow \downarrow$	\bot					Base		
	.30				\bigsqcup					****	Base		es ection
	.20	<u>/</u>			<u> </u>			* * *			Duoc	0011	,00001
0	*		<u> </u>				<u> </u>						
	.10 🕂		1										
0	.00	, , , , , , , , , , , , , , , , , , , 			1					-			
0			1		2	3 P	4 enetration mm	5	6	7 8			

Note:- CBR Results are water content dependent - an increase in water content will result in a decrease of CBR value.

Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample, oven

drving temperature if not 105-110°C

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

Contract Harrisons Lane, Halesworth, Suffolk Serial No. 39812 1 CALIFORNIA BEARING RATIO TEST Borehole Depth Sample Description Remarks /Pit No. (m) Reference Type Dark greyish brown slightly gravelly slightly sandy silty CLAY with CBR6 occasional light olive brown mottling. Gravel is fine to coarse chalk and chert Specimen Preparation Soaking Details Soaked Condition Period of Soaking Remoulded days Recompacted with specified standard effort using Time to Surface days Details 2.5kg rammer Amount of Swell Recorded mm **Initial Water Content** 21.9 % Material Retained on 20mm Sieve Removed 3.0 **Bulk Density** 2.03 Mg/m³ Initial Specimen Details: Surcharge Applied 15 kg Dry Density 1.67 Mg/m³ Test Results CBR Values (%) Curve Water Correction 5.0mm Highest Content (%) 2.5mm Mean* No 3.7 3.5 3.7 22.3 TOP **BASE** No 6.2 5.4 6.2 21.3 Force v Penetration Plots 1.40 1.20 1.00 Top data Top values Force Applied kN 0.80 - Top correction Base data 0.60 Base values **Base Correction** 0.40 0.20 0.00 4 Penetration mm 6 7 8 Method of Preparation: BS1377: Part1: 2016 & BS1377: Part 4: 1990: 7.2.4.4, 7.3 Method of Test: BS 1377: Part 4: 1990: 7

U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT= Split Spoon Sample, C = Core Cutter

Note:- CBR Results are water content dependent - an increase in water content will result in a decrease of CBR value.

Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample, oven

*Only reported if the results from each end of the sample are within ±10% of the mean value.

drving temperature if not 105-110°C

Type of Sample Key

Remarks to Include:

Comments:

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

Contract Harrisons Lane, Halesworth, Suffolk Serial No. 39812 1 CALIFORNIA BEARING RATIO TEST Borehole Depth Sample Description Remarks /Pit No. (m) Reference Type Mottled bluish grey and olive slightly gravelly slightly sandy silty CLAY CBR7 with rare recently active and decayed roots. Gravel is fine to coarse chalk and chert Specimen Preparation Soaking Details Soaked Condition Period of Soaking Remoulded days Recompacted with specified standard effort using Time to Surface days Details 2.5kg rammer Amount of Swell Recorded mm **Initial Water Content** 22.2 % Material Retained on 20mm Sieve Removed 0.7 1.99 **Bulk Density** Mg/m³ Initial Specimen Details: Surcharge Applied 15 kg Dry Density 1.63 Mg/m³ Test Results CBR Values (%) Curve Water Correction 5.0mm Highest Content (%) 2.5mm Mean* No 24.8 TOP 1.5 1.6 1.6 **BASE** No 4.8 4.3 4.8 23.0 Force v Penetration Plots 1.20 1.00 Top data 0.80 Ζ Top values Force Applied -- Top correction 0.60 Base data Base values 0.40 **Base Correction** 0.20 0.00 4 Penetration mm 6 7 8 Method of Preparation: BS1377: Part1: 2016 & BS1377: Part 4: 1990: 7.2.4.4, 7.3 Method of Test: BS 1377: Part 4: 1990: 7 U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT= Split Spoon Sample, C = Core Cutter Type of Sample Key

*Only reported if the results from each end of the sample are within ±10% of the mean value.

Note:- CBR Results are water content dependent - an increase in water content will result in a decrease of CBR value.

Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample, oven

drving temperature if not 105-110°C

Comments:

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

Contract Harrisons Lane, Halesworth, Suffolk Serial No. 39812 1 CALIFORNIA BEARING RATIO TEST Borehole Depth Sample Description Remarks /Pit No. (m) Reference Type Mottled bluish grey and olive slightly gravelly slightly sandy silty CLAY CBR8 with rare recently active and decayed roots. Gravel is fine to coarse chalk and chert Specimen Preparation Soaking Details Soaked Period of Soaking Condition Remoulded days Recompacted with specified standard effort using Time to Surface days Details 2.5kg rammer Amount of Swell Recorded mm **Initial Water Content** 21.7 % Material Retained on 20mm Sieve Removed 1.8 **Bulk Density** 2.01 Mg/m³ Initial Specimen Details: Surcharge Applied 15 kg Dry Density 1.65 Mg/m³ Test Results CBR Values (%) Curve Water Correction Content (%) 2.5mm 5.0mm Highest Mean* No 1.0 24.4 TOP 1.1 1.1 **BASE** No 4.8 4.2 4.8 22.6 **Force v Penetration Plots** 1.20 1.00 Top data 0.80 Ζ Top values Force Applied --- Top correction 0.60 Base data Base values 0.40 --- Base Correction 0.20 0.00 4 Penetration mm 6 7 8 Method of Preparation: BS1377: Part1: 2016 & BS1377: Part 4: 1990: 7.2.4.4, 7.3 Method of Test: BS 1377: Part 4: 1990: 7 Type of Sample Key U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT= Split Spoon Sample, C = Core Cutter

*Only reported if the results from each end of the sample are within ±10% of the mean value.

Note:- CBR Results are water content dependent - an increase in water content will result in a decrease of CBR value.

Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample, oven

drving temperature if not 105-110°C

Comments:

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 23/12/2021

Contract		Harrisons Lane, Halesworth, Suffolk															
Serial No. 39812_1																	
			_			C/	ALIFOF	SNIA	BFAF	RING RAT	TIC) TEST					
Borehole	De	nth		San			T										
(D) ()			Tv	Sample Reference			Description									Remark	ks
		· / 'y		, p		01102	Olive slightly gravelly slightly sandy silty CLAY with occasional light							ight			
CBR9 - grey motif					or mottling and recently active and decayed roots. Gravel is fine to rese angular to subrounded chalk and chert												
pecimen Pr	epara	tion															
				<u> </u>								Soaking Deta					aked
Condition				ulded			~					Period of Soaking			\longrightarrow	4	days
Details				•		specif	ied star	ied standard effort using				Time to Surface			- al		days
			.5Ky i	ramme	ગ						, l	Amount of Swell Recorde Initial Water Content			<u>}a</u>	23.0	mm %
Material Ret	ained	on 20m	m Sia	WA RAT	moved		6.5	5	%	—	ļ	Ifilliai vvalei	COLLE	3111		23.0	70
					Density		1.99 Mg/m ³				ſ					$\overline{1}$	
nitial Specin	nen De	etails:		Dry De			1.6		Mg/m			Surcharge Applied				15	kg
Test Results					<u>J</u>		<u> </u>		<u> </u>		L	1					
			ſ	Cui	rve			(CBR Val	ues (%)]	W	ater	I	
					ection	2.5	imm	5.0	Omm	Highest	t	Mean*]		ent (%)	ı	
TOP)	N	lo l	1	.4	1	1.3	1.4	\dashv		1	2!	5.5	ı		
	!	BASI			lo l		1.5		3.7	4.5	\neg	1			3.7	1	
													1				
0	.90 —					F	Force v P	Penet	ration P	iots							
٥.	90																
0.	.80 📙		+-		+	\longrightarrow		+		+	_	-					
0	.70 👇		 		· 					-	_		<u> </u>				
٠.							سمسمسا								•	Ton data	
	.60 –		+			-		+		+	_	+	\vdash	\dashv		Top data	
₹ 7 0.	.50		<u> </u>	8	1			\perp					<u> </u>			- Top value	
<u>pl</u>							ĺ									· Top corre	
e Ap	.40 📙	-	+		+			+		+	—	+	 	$\overline{}$		- Base data	
Forc	.30		\perp				<u> </u>	\perp				×_	<u> </u>	:	-0-	- Base valu	es
	*	-/	-+				i									· Base Corr	ection
0.	.20	/	#					$\overline{}$		+	—	+	\vdash	\dashv			
0	.10						<u> </u>						<u> </u>				
		XX.					ĺ										
0.	.00 🚣		1		2	3		1		5	—	6 7	7	8			
	U		1		2		Pen	etratic	on mm	ວ		0 ,	′	U			

*Only reported if the results from each end of the sample are within ±10% of the mean value.

Note:- CBR Results are water content dependent - an increase in water content will result in a decrease of CBR value.

Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample, oven

drving temperature if not 105-110°C.

Comments:

APPENDIX VI CHEMICAL ANALYSIS REPORTS

eurofins Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 21-41801-1

Initial Date of Issue: 03-Dec-2021

Client Brown 2 Green Associates

Client Address: Suite 1, Wenden Court

Station Road Wendens Ambo Nr. Saffron Walden

Essex CB11 4LB

Contact(s): Philip Miles

Radu Mihai Ilie

Project 2954 Harrisons Lane, Holsworth

Quotation No.: Date Received: 26-Nov-2021

Order No.: Date Instructed: 29-Nov-2021

No. of Samples: 4

Turnaround (Wkdays): 5 Results Due: 03-Dec-2021

Date Approved: 03-Dec-2021

Approved By:

Details: Glynn Harvey, Technical Manager

Bulk Identification Certificate

Client: Brown 2 Green Associates Your Ref.:

Site Address: Project: 2954 Harrisons Lane, Holsworth

Date Sampled: 23-Nov-2021 **Job Number**: 21-41801

Date Received: 26-Nov-2021 No Samples:

Date Reported: 03-Dec-2021

Sample No.	Sample ID	Sample Ref.	Description	Top (m) Bottom (m)	SOP	Accred.	Laboratory	Material	Result
1329085			ASD1		2185	Ш	NEW-ASB	Cement	No Asbestos
1329065			ASB1		2100	U	NEW-ASD	Tile	Detected

The in-house procedure SOP2185 is in accordance with the requirements of Appendix 2 of the Analyst Guide (HSG 248).

The results relate only to items tested as supplied by the client.

Comments and interpretations are beyond the scope of UKAS accreditation.

Samples associated with asbestos in building surveys are retained for six months (HSG 264 refers)

Results - Soil

Project: 2954 Harrisons Lane, Holsworth

Client: Brown 2 Green Associates		Che	mtest Jo	ob No.:	21-41801	21-41801	21-41801
Quotation No.:			st Sam		1329082	1329083	1329084
		Sa	ample Lo	ocation:	WS209	TP202	TP204
			Sampl	е Туре:	SOIL	SOIL	SOIL
			Top Dep	oth (m):	0.0	0.0	0.0
		Bot	tom De	oth (m):	0.3	0.3	0.5
			Date Sa	ampled:	24-Nov-2021	24-Nov-2021	24-Nov-2021
			Asbest	os Lab:	NEW-ASB		NEW-ASB
Determinand	Accred.	SOP	Units	LOD			
ACM Type	U	2192		N/A	-		-
Asbestos Identification	U	2192		N/A	No Asbestos Detected		No Asbestos Detected
Moisture	N	2030	%	0.020		10	
Soil Colour	N	2040		N/A		Brown	
Other Material	N	2040		N/A		Stones	
Soil Texture	N	2040		N/A		Sand	
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0		< 1.0	
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0		< 1.0	
Aliphatic TPH >C8-C10	M	2680	mg/kg	1.0		< 1.0	
Aliphatic TPH >C10-C12	M	2680	mg/kg	1.0		< 1.0	
Aliphatic TPH >C12-C16	M	2680	mg/kg	1.0		< 1.0	
Aliphatic TPH >C16-C21	M	2680	mg/kg	1.0		< 1.0	
Aliphatic TPH >C21-C35	M	2680	mg/kg	1.0		< 1.0	
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0		< 1.0	
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0		< 5.0	
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0		< 1.0	
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0		< 1.0	
Aromatic TPH >C8-C10	M	2680	mg/kg	1.0		< 1.0	
Aromatic TPH >C10-C12	М	2680	mg/kg	1.0		< 1.0	
Aromatic TPH >C12-C16	M	2680	mg/kg	1.0		< 1.0	
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0		< 1.0	
Aromatic TPH >C21-C35	M	2680	mg/kg	1.0		< 1.0	
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0		< 1.0	
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0		< 5.0	
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0		< 10	

Test Methods

SOP	Title	Parameters included	Method summary
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2185	Asbestos	Asbestos	Polarised light microscopy
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Ν Unaccredited This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

eurofins Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 21-41799-1

Initial Date of Issue: 04-Dec-2021

Client Brown 2 Green Associates

Client Address: Suite 1, Wenden Court

Station Road Wendens Ambo Nr. Saffron Walden

Essex CB11 4LB

Contact(s): Philip Miles

Radu Mihai Ilie

Project 2954 Harrisons Lane, Halesworth

Quotation No.: Date Received: 26-Nov-2021

Order No.: Date Instructed: 29-Nov-2021

No. of Samples: 5

Turnaround (Wkdays): 5 Results Due: 03-Dec-2021

Date Approved: 04-Dec-2021

Approved By:

Details: Glynn Harvey, Technical Manager

Results - Soil

Project: 2954 Harrisons Lane, Halesworth

Client: Brown 2 Green Associates			ntest Jo		21-41799	21-41799	21-41799	21-41799	21-41799
Quotation No.:	(st Sam		1329072	1329073	1329074	1329075	1329076
		Sample Location:			TP204	TP205	TP206	TP207	TP209
			Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL
			Top Dep	oth (m):	0.8	1.0	0.75	1.0	0.8
		Bot	tom Dep	oth (m):	1.0	1.0	0.75	1.2	1.0
			Date Sa	ampled:	24-Nov-2021	24-Nov-2021	25-Nov-2021	25-Nov-2021	25-Nov-202
Determinand	Accred.	SOP	Units	LOD					
Moisture	N	2030	%	0.020	10	11	9.4	8.6	7.9
Soil Colour	N	2040		N/A	Brown	Brown	Brown	Brown	Brown
Other Material	N	2040		N/A	Stones	Stones	Stones	Stones	Stones
Soil Texture	N	2040		N/A	Sand	Sand	Sand	Sand	Sand
Arsenic	М	2450	mg/kg	1.0	8.5	11	7.2	2.2	12
Cadmium	М	2450	mg/kg	0.10	0.14	0.17	< 0.10	< 0.10	0.17
Chromium	М	2450	mg/kg	1.0	16	20	25	30	26
Copper	М	2450	mg/kg	0.50	33	17	18	23	36
Mercury	М	2450	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	М	2450	mg/kg	0.50	19	25	26	19	31
Lead	М	2450	mg/kg	0.50	11	12	12	19	14
Selenium	М	2450	mg/kg	0.20	< 0.20	< 0.20	0.24	0.26	0.21
Vanadium	U	2450	mg/kg	5.0	23	29	35	39	35
Zinc	М	2450	mg/kg	0.50	25	29	36	38	41
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	М	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	М	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	М	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	М	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	М	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	М	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	М	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	М	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	М	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	< 10	< 10	< 10
Naphthalene	М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Results - Soil

Project: 2954 Harrisons Lane, Halesworth

Client: Brown 2 Green Associates		Chemtest Job No.:		21-41799	21-41799	21-41799	21-41799	21-41799	
Quotation No.:	(Chemtest Sample ID.:		1329072	1329073	1329074	1329075	1329076	
		Sa	ample Lo	cation:	TP204	TP205	TP206	TP207	TP209
			Sample	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL
			Top Dep	oth (m):	0.8	1.0	0.75	1.0	0.8
		Bot	tom Dep	oth (m):	1.0	1.0	0.75	1.2	1.0
			Date Sa	mpled:	24-Nov-2021	24-Nov-2021	25-Nov-2021	25-Nov-2021	25-Nov-2021
Determinand	Accred.	SOP	Units	LOD					
Fluoranthene	М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	M	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	N	2800	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0

Test Methods

SOP	Title	Parameters included	Method summary
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Ν Unaccredited This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

eurofins Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 21-41800-1

Initial Date of Issue: 07-Dec-2021

Client Brown 2 Green Associates

Client Address: Suite 1, Wenden Court

Station Road Wendens Ambo Nr. Saffron Walden

Essex CB11 4LB

Contact(s): Philip Miles

Radu Mihai Ilie

Project 2954 Harrisons Lane, Halesworth

Quotation No.: Date Received: 26-Nov-2021

Order No.: Date Instructed: 29-Nov-2021

No. of Samples: 5

Turnaround (Wkdays): 7 Results Due: 07-Dec-2021

Date Approved: 07-Dec-2021

Approved By:

Details: Glynn Harvey, Technical Manager

Project: 2954 Harrisons Lan	e, Halesworth
Chemtest Job No:	21-

Project: 2954 Harrisons Lane, Ha	<u>liesworth</u>								
Chemtest Job No:	21-41800						Landfill V	Vaste Acceptano	e Criteria
Chemtest Sample ID:	1329077							Limits	
Sample Ref: Sample ID:								Stable, Non- reactive	
Sample Location:	TP204							hazardous	Hazardous
Top Depth(m):	0.8						Inert Waste	waste in non-	Waste
Bottom Depth(m):	1.0						Landfill	hazardous	Landfill
Sampling Date:	24-Nov-2021							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	M	%			0.40	3	5	6
Loss On Ignition	2610	M	%			3.5			10
Total BTEX	2760	M	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	M	mg/kg			< 0.10	1		
TPH Total WAC	2670	M	mg/kg			< 10	500		
Total (Of 17) PAH's	2700	N	mg/kg			< 2.0	100		
рН	2010	M				8.7		>6	
Acid Neutralisation Capacity	2015	N	mol/kg			0.013		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative	Limit values	for compliance	leaching test
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L/	S 10 l/kg
Arsenic	1455	U	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	0.007	< 0.005	0.013	0.0043	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0012	< 0.0005	0.0024	0.0008	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0019	0.0015	0.0038	0.016	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	< 0.003	< 0.003	4	50	200
Chloride	1220	U	6.6	< 1.0	13	< 10	800	15000	25000
Fluoride	1220	U	1.2	1.8	2.4	18	10	150	500
Sulphate	1220	U	31	< 1.0	62	20	1000	20000	50000
Total Dissolved Solids	1020	N	160	39	310	470	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	6.8	4.0	< 50	< 50	500	800	1000

Solid Information				
Dry mass of test portion/kg	0.175			
Moisture (%)	2.8			

Leachate Test Information					
Leachant volume 1st extract/l	0.345				
Leachant volume 2nd extract/l	1.400				
Eluant recovered from 1st extract/l	0.112				

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Project:	2954 Harrisons	Lane,	Ha	leswor	th

Project: 2954 Harrisons Lane, Hales	WOIGH								
Chemtest Job No:	21-41800						Landfill W	Vaste Acceptano	e Criteria
Chemtest Sample ID:	1329078							Limits	
Sample Ref:								Stable, Non-	
Sample ID:								reactive	
Sample Location:	TP205							hazardous	Hazardous
Top Depth(m):	1.0						Inert Waste	waste in non-	Waste
Bottom Depth(m):	1.0						Landfill	hazardous	Landfill
Sampling Date:	24-Nov-2021							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	M	%			0.50	3	5	6
Loss On Ignition	2610	M	%			4.4			10
Total BTEX	2760	M	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	M	mg/kg			< 0.10	1		
TPH Total WAC	2670	M	mg/kg			< 10	500		
Total (Of 17) PAH's	2700	N	mg/kg			< 2.0	100		
pH	2010	M				8.5		>6	
Acid Neutralisation Capacity	2015	N	mol/kg			0.020	-	To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative	Limit values	for compliance	leaching test
			mg/l	mg/l	mg/kg	mg/kg 10:1	using BS	S EN 12457 at L/	S 10 l/kg
Arsenic	1455	U	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	0.006	< 0.005	0.011	0.0036	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0006	< 0.0005	0.0012	< 0.0005	0.5	10	70
Copper	1455	U	0.0014	< 0.0005	0.0027	0.0009	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0026	0.0014	0.0051	0.014	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	0.0006	< 0.0005	0.0012	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	< 0.003	< 0.003	4	50	200
Chloride	1220	U	1.9	< 1.0	< 10	< 10	800	15000	25000
Fluoride	1220	U	1.1	0.18	2.2	2.4	10	150	500
Sulphate	1220	U	20	< 1.0	40	13	1000	20000	50000
Total Dissolved Solids	1020	N	140	40	290	460	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	5.8	3.9	< 50	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.175
Moisture (%)	8.4

Leachate Test Information					
Leachant volume 1st extract/l	0.334				
Leachant volume 2nd extract/l	1.400				
Eluant recovered from 1st extract/l	0.112				

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Project:	2954 Harrisons La	ane, Halesworth
Chemte	st Job No:	21-

Project. 2934 narrisons Lane, nai	COWOIGH								
Chemtest Job No:	21-41800						Landfill V	Vaste Acceptano	e Criteria
Chemtest Sample ID:	1329079							Limits	
Sample Ref:								Stable, Non-	
Sample ID:								reactive	
Sample Location:	TP206							hazardous	Hazardous
Top Depth(m):	0.75						Inert Waste	waste in non-	Waste
Bottom Depth(m):	0.75						Landfill	hazardous	Landfill
Sampling Date:	24-Nov-2021							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	M	%			0.60	3	5	6
Loss On Ignition	2610	M	%			5.0			10
Total BTEX	2760	M	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	M	mg/kg			< 0.10	1		
TPH Total WAC	2670	M	mg/kg			< 10	500		
Total (Of 17) PAH's	2700	N	mg/kg			< 2.0	100		
рН	2010	M				8.5		>6	
Acid Neutralisation Capacity	2015	N	mol/kg			0.020		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative		for compliance	_
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L/	S 10 l/kg
Arsenic	1455	U	0.0005	0.0010	0.0009	0.0095	0.5	2	25
Barium	1455	U	0.006	< 0.005	0.011	0.0036	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0038	0.0015	0.0076	0.0024	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0042	0.0009	0.0083	0.011	0.5	10	30
Nickel	1455	U	0.0008	0.0006	0.0017	0.0065	0.4	10	40
Lead	1455	U	< 0.0005	0.0007	< 0.0005	0.0069	0.5	10	50
Antimony	1455	U	0.0007	< 0.0005	0.0014	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	< 0.003	< 0.003	4	50	200
Chloride	1220	U	2.1	< 1.0	< 10	< 10	800	15000	25000
Fluoride	1220	U	0.34	0.12	< 1.0	1.3	10	150	500
Sulphate	1220	U	11	< 1.0	22	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	130	38	260	440	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	11	7.8	< 50	80	500	800	1000

Solid Information				
Dry mass of test portion/kg	0.175			
Moisture (%)	9.3			

Leachate Test Information				
Leachant volume 1st extract/l	0.332			
Leachant volume 2nd extract/l	1.400			
Eluant recovered from 1st extract/l	0.112			

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Project	t:	29	95	4	Harrisons	Lane,	Halesworth	l

Project: 2954 Harrisons Lane, Haies	WOIGH								
Chemtest Job No:	21-41800						Landfill V	Vaste Acceptano	e Criteria
Chemtest Sample ID:	1329080							Limits	
Sample Ref:								Stable, Non-	
Sample ID:								reactive	
Sample Location:	TP207							hazardous	Hazardous
Top Depth(m):	1.0						Inert Waste	waste in non-	Waste
Bottom Depth(m):	1.2						Landfill	hazardous	Landfill
Sampling Date:	24-Nov-2021							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	M	%			< 0.20	3	5	6
Loss On Ignition	2610	M	%			1.2			10
Total BTEX	2760	M	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	M	mg/kg			< 0.10	1		
TPH Total WAC	2670	M	mg/kg			< 10	500		
Total (Of 17) PAH's	2700	N	mg/kg			< 2.0	100		
pH	2010	M				8.4		>6	
Acid Neutralisation Capacity	2015	N	mol/kg			0.029		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative	Limit values	for compliance	leaching test
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L/	S 10 l/kg
Arsenic	1455	U	0.0004	0.0003	0.0008	0.0028	0.5	2	25
Barium	1455	U	< 0.005	< 0.005	< 0.0005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0020	0.0006	0.0039	0.0012	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0006	< 0.0002	0.0011	0.0004	0.5	10	30
Nickel	1455	U	0.0006	< 0.0005	0.0012	< 0.0005	0.4	10	40
Lead	1455	U	0.0018	0.0012	0.0037	0.012	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 1.0	< 10	< 10	800	15000	25000
Fluoride	1220	U	0.42	0.14	< 1.0	1.6	10	150	500
Sulphate	1220	U	< 1.0	< 1.0	< 10	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	53	12	110	140	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	6.3	3.4	< 50	< 50	500	800	1000

Solid Information				
Dry mass of test portion/kg	0.175			
Moisture (%)	9.0			

Leachate Test Information				
Leachant volume 1st extract/l	0.333			
Leachant volume 2nd extract/l	1.400			
Eluant recovered from 1st extract/l	0.112			

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Project: 2954 Harrisons Lane, Ha	<u>lieswortn</u>								
Chemtest Job No:	21-41800						Landfill V	Vaste Acceptano	e Criteria
Chemtest Sample ID:	1329081							Limits	
Sample Ref:								Stable, Non-	
Sample ID:								reactive	
Sample Location:	TP209							hazardous	Hazardous
Top Depth(m):	0.8						Inert Waste	waste in non-	Waste
Bottom Depth(m):	1.0						Landfill	hazardous	Landfill
Sampling Date:	24-Nov-2021							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	М	%			0.50	3	5	6
Loss On Ignition	2610	M	%			2.3			10
Total BTEX	2760	М	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	М	mg/kg			< 0.10	1		
TPH Total WAC	2670	М	mg/kg			< 10	500		
Total (Of 17) PAH's	2700	N	mg/kg			< 2.0	100		-
рН	2010	М				8.3		>6	1
Acid Neutralisation Capacity	2015	N	mol/kg			0.021		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative	Limit values	for compliance	leaching test
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L/	S 10 l/kg
Arsenic	1455	U	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	0.008	< 0.005	0.016	0.0053	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0011	< 0.0005	0.0021	0.0007	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0031	0.0012	0.0061	0.013	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	0.0018	< 0.0005	0.0035	0.0011	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	< 0.003	< 0.003	4	50	200
Chloride	1220	U	13	< 1.0	26	< 10	800	15000	25000
Fluoride	1220	U	1.2	0.15	2.4	2.2	10	150	500
Sulphate	1220	U	70	1.4	140	58	1000	20000	50000
Total Dissolved Solids	1020	N	210	42	410	520	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	5.9	3.8	< 50	< 50	500	800	1000

Solid Information				
Dry mass of test portion/kg	0.175			
Moisture (%)	12			

Leachate Test Information					
Leachant volume 1st extract/l	0.326				
Leachant volume 2nd extract/l	1.400				
Eluant recovered from 1st extract/l	0.112				

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Test Methods

SOP	Title	Parameters included	Method summary
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge
650	Characterisation of Waste (Leaching WAC)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Ν Unaccredited This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

APPENDIX VII GAS MONITORING RESULTS

Date: 30th November 2021

Weather Conditions: Overcast	Temperature (°C): 11
Ground Conditions: Damp	Atmospheric Pressure: Static

Monitoring Well – WS201

Time (Mins: Sec)	Methane %v/v	Methane GSV (I/hr)	Carbon Dioxide %v/v	Carbon Dioxide GSV (I/hr)	Oxygen % v/v
0:30	0.0	0.0	0.6	0.0006	18.9
1:00	0.0	0.0	0.6	0.0006	18.8
1:30	0.0	0.0	0.6	0.0006	18.7
2:00	0.0	0.0	0.6	0.0006	18.6
3:00	0.0	0.0	0.6	0.0006	18.5
4:00	0.0	0.0	0.7	0.0007	18.5
5:00	0.0	0.0	0.7	0.0007	18.5

H ₂ S (ppm): 0	CO (ppm): 0	VOC by PID (ppm): 0.0
Flow (I/hr): <0.1		Atmospheric Pressure (mbar): 1002
Depth to Ground-water (mbgl): 4.32	Differential Pressure (Pa): 0

Monitoring Well - WS204

Time (Mins: Sec)	Methane %v/v	Methane GSV (I/hr)	Carbon Dioxide %v/v	Carbon Dioxide GSV (I/hr)	Oxygen % v/v
0:30	0.0	0.0	0.9	0.0009	17.9
1:00	0.0	0.0	0.9	0.0009	17.8
1:30	0.0	0.0	0.9	0.0009	17.7
2:00	0.0	0.0	0.9	0.0009	17.7
3:00	0.0	0.0	0.9	0.0009	17.7
4:00	0.0	0.0	0.9	0.0009	17.7
5:00	0.0	0.0	0.9	0.0009	17.6

H ₂ S (ppm): 0	CO (ppm): 0	VOC by PID (ppm): 0.0
Flow (I/hr): <0.1		Atmospheric Pressure (mbar): 1002
Depth to Ground-water (mbgl)): Dry	Differential Pressure (Pa): 0

Monitoring Well – WS205

Time (Mins: Sec)	Methane %v/v	Methane GSV (I/hr)	Carbon Dioxide %v/v	Carbon Dioxide GSV (I/hr)	Oxygen % v/v
0:30	0.0	0.0	0.0	0.0	19.7
1:00	0.0	0.0	0.0	0.0	19.8
1:30	0.0	0.0	0.0	0.0	19.9
2:00	0.0	0.0	0.0	0.0	19.9
3:00	0.0	0.0	0.0	0.0	20.0
4:00	0.0	0.0	0.0	0.0	20.0
5:00	0.0	0.0	0.0	0.0	20.0

H ₂ S (ppm): 0	CO (ppm): 0	VOC by PID (ppm): 0.0
Flow (I/hr): <0.1		Atmospheric Pressure (mbar): 1002
Depth to Ground-water (mbgl): 2.72	Differential Pressure (Pa): 0

Monitoring Well – WS207

Time (Mins: Sec)	Methane %v/v	Methane GSV (I/hr)	Carbon Dioxide %v/v	Carbon Dioxide GSV (I/hr)	Oxygen % v/v
0:30	0.0	0.0	0.9	0.0009	18.3
1:00	0.0	0.0	0.9	0.0009	18.2
1:30	0.0	0.0	0.9	0.0009	18.1
2:00	0.0	0.0	0.9	0.0009	18.1
3:00	0.0	0.0	0.9	0.0009	18.1
4:00	0.0	0.0	1.0	0.0010	18.0
5:00	0.0	0.0	1.0	0.0010	18.0

H ₂ S (ppm): 0	CO (ppm): 0	VOC by PID (ppm): 0.0
Flow (I/hr): <0.1		Atmospheric Pressure (mbar): 1002
Depth to Ground-water (mbgl)): Dry	Differential Pressure (Pa): 0

Monitoring Well - WS209

	,	-00			
Time (Mins: Sec)	Methane %v/v	Methane GSV (I/hr)	Carbon Dioxide %v/v	Carbon Dioxide GSV (I/hr)	Oxygen % v/v
0:30	0.0	0.0	0.4	0.0004	19.9
1:00	0.0	0.0	0.1	0.0001	19.9
1:30	0.0	0.0	0.0	0.0	20.0
2:00	0.0	0.0	0.0	0.0	20.0
3:00	0.0	0.0	0.0	0.0	20.0
4:00	0.0	0.0	0.0	0.0	20.0
5:00	0.0	0.0	0.0	0.0	20.0

H ₂ S (ppm): 0	CO (ppm): 0	VOC by PID (ppm): 0.0
Flow (I/hr): <0.1		Atmospheric Pressure (mbar): 1002
Depth to Ground-water (mbgl): 2.59		Differential Pressure (Pa): 0

Monitoring Well – WS211

Time	Methane	Methane	Carbon Dioxide	Carbon Dioxide	Oxygen
(Mins: Sec)	%v/v	GSV (I/hr)	%v/v	GSV (I/hr)	% v/v
0:30	0.0	0.0	1.9	0.0019	19.4
1:00	0.0	0.0	4.4	0.0044	18.5
1:30	0.0	0.0	5.1	0.0051	17.9
2:00	0.0	0.0	5.2	0.0052	17.8
3:00	0.0	0.0	5.3	0.0053	17.8
4:00	0.0	0.0	5.3	0.0053	17.8
5:00	0.0	0.0	5.2	0.0052	17.8

H ₂ S (ppm): 0	CO (ppm): 0		VOC by PID (ppm): 0.0
Flow (I/hr): <0.1		Atmosph	eric Pressure (mbar): 1002
Depth to Ground-water (mbgl): 1.58		Differenti	al Pressure (Pa): 0

Date: 9th December 2021

Weather Conditions: Overcast	Temperature (°C): 6
Ground Conditions: Damp	Atmospheric Pressure: Rising

Monitoring Well – WS201

Time (Mins: Sec)	Methane %v/v	Methane GSV (I/hr)	Carbon Dioxide %v/v	Carbon Dioxide GSV (I/hr)	Oxygen % v/v
0:30	0.0	0.0	0.0	0.0	19.6
1:00	0.0	0.0	0.0	0.0	19.6
1:30	0.0	0.0	0.0	0.0	19.5
2:00	0.0	0.0	0.0	0.0	19.5
3:00	0.0	0.0	0.0	0.0	19.5
4:00	0.0	0.0	0.0	0.0	19.5
5:00	0.0	0.0	0.0	0.0	19.5

H ₂ S (ppm): 0	CO (ppm): 0	VOC by PID (ppm): 0.0	
Flow (I/hr): <0.1		Atmospheric Pressure (mbar): 993	
Depth to Ground-water (mbgl):	: 4.31	Differential Pressure (Pa): 0	

Monitoring Well - WS204

Time (Mins: Sec)	Methane %v/v	Methane GSV (I/hr)	Carbon Dioxide %v/v	Carbon Dioxide GSV (I/hr)	Oxygen % v/v
0:30	0.0	0.0	0.0	0.0	19.5
1:00	0.0	0.0	0.0	0.0	19.5
1:30	0.0	0.0	0.0	0.0	19.4
2:00	0.0	0.0	0.0	0.0	19.4
3:00	0.0	0.0	0.0	0.0	19.4
4:00	0.0	0.0	0.0	0.0	19.4
5:00	0.0	0.0	0.0	0.0	19.4

H ₂ S (ppm): 0	CO (ppm): 0	VOC by PID (ppm): 0.0	
Flow (I/hr): <0.1		Atmospheric Pressure (mbar): 993	
Depth to Ground-water (mbgl): 2.73		Differential Pressure (Pa): 0	

Monitoring Well - WS205

Time (Mins: Sec)	Methane %v/v	Methane GSV (I/hr)	Carbon Dioxide %v/v	Carbon Dioxide GSV (I/hr)	Oxygen % v/v
0:30	0.0	0.0	0.0	0.0	19.6
1:00	0.0	0.0	0.0	0.0	19.6
1:30	0.0	0.0	0.0	0.0	19.6
2:00	0.0	0.0	0.0	0.0	19.6
3:00	0.0	0.0	0.0	0.0	19.6
4:00	0.0	0.0	0.0	0.0	19.5
5:00	0.0	0.0	0.0	0.0	19.5

H ₂ S (ppm): 0	CO (ppm): 0	VOC by PID (ppm): 0.0	
Flow (I/hr): <0.1		Atmospheric Pressure (mbar): 993	
Depth to Ground-water (mbgl): 3.36		Differential Pressure (Pa): 0	

Monitoring Well – WS207

Time (Mins: Sec)	Methane %v/v	Methane GSV (I/hr)	Carbon Dioxide %v/v	Carbon Dioxide GSV (I/hr)	Oxygen % v/v
0:30	0.0	0.0	0.0	0.0	19.3
1:00	0.0	0.0	0.0	0.0	19.3
1:30	0.0	0.0	0.0	0.0	19.3
2:00	0.0	0.0	0.0	0.0	19.3
3:00	0.0	0.0	0.0	0.0	19.2
4:00	0.0	0.0	0.0	0.0	19.2
5:00	0.0	0.0	0.0	0.0	19.2

H ₂ S (ppm): 0	CO (ppm): 0	VOC by PID (ppm): 0.0
Flow (I/hr): <0.1		Atmospheric Pressure (mbar): 993
Depth to Ground-water (mbgl): Dry		Differential Pressure (Pa): 0

Monitoring Well - WS209

monitoring tron trozoo					
Time (Mins: Sec)	Methane %v/v	Methane GSV (I/hr)	Carbon Dioxide %v/v	Carbon Dioxide GSV (I/hr)	Oxygen % v/v
0:30	0.0	0.0	0.0	0.0	19.2
1:00	0.0	0.0	0.0	0.0	19.2
1:30	0.0	0.0	0.0	0.0	19.2
2:00	0.0	0.0	0.0	0.0	19.2
3:00	0.0	0.0	0.0	0.0	19.2
4:00	0.0	0.0	0.0	0.0	19.2
5:00	0.0	0.0	0.0	0.0	19.2

H ₂ S (ppm): 0	CO (ppm): 0		VOC by PID (ppm): 0.0
Flow (I/hr): <0.1		Atmosph	eric Pressure (mbar): 993
Depth to Ground-water (mbgl): 2.37		Differenti	al Pressure (Pa): 0

Monitoring Well – WS211

Time (Mins: Sec)	Methane %v/v	Methane GSV (I/hr)	Carbon Dioxide %v/v	Carbon Dioxide GSV (I/hr)	Oxygen % v/v
0:30	0.0	0.0	0.0	0.0	19.0
1:00	0.0	0.0	0.0	0.0	19.0
1:30	0.0	0.0	0.0	0.0	19.0
2:00	0.0	0.0	0.0	0.0	19.0
3:00	0.0	0.0	0.0	0.0	19.0
4:00	0.0	0.0	0.0	0.0	19.0
5:00	0.0	0.0	0.0	0.0	19.0

H ₂ S (ppm): 0	CO (ppm): 0	VOC by PID (ppm): 0.0	
Flow (I/hr): <0.1		Atmospheric Pressure (mbar): 993	
Depth to Ground-water (mbgl): 0.2		Differential Pressure (Pa): 0	

Date: 15th December 2021

Weather Conditions: Sunny	Temperature (°C): 5
Ground Conditions: Damp	Atmospheric Pressure: Rising

Monitoring Well - WS201

Time (Mins: Sec)	Methane %v/v	Methane GSV (I/hr)	Carbon Dioxide %v/v	Carbon Dioxide GSV (I/hr)	Oxygen % v/v
0:30	0.0	0.0	0.0	0.0	19.8
1:00	0.0	0.0	0.0	0.0	19.8
1:30	0.0	0.0	0.0	0.0	19.8
2:00	0.0	0.0	0.0	0.0	19.8
3:00	0.0	0.0	0.0	0.0	19.7
4:00	0.0	0.0	0.0	0.0	19.7
5:00	0.0	0.0	0.0	0.0	19.7

H ₂ S (ppm): 0	CO (ppm): 0	VOC by PID (ppm): 0.0
Flow (I/hr): <0.1		Atmospheric Pressure (mbar): 1022
Depth to Ground-water (mbgl): 4.30	Differential Pressure (Pa): 0

Monitoring Well - WS204

Time (Mins: Sec)	Methane %v/v	Methane GSV (I/hr)	Carbon Dioxide %v/v	Carbon Dioxide GSV (I/hr)	Oxygen % v/v
0:30	0.0	0.0	0.0	0.0	19.9
1:00	0.0	0.0	0.0	0.0	19.9
1:30	0.0	0.0	0.0	0.0	19.8
2:00	0.0	0.0	0.0	0.0	19.8
3:00	0.0	0.0	0.0	0.0	19.8
4:00	0.0	0.0	0.0	0.0	19.8
5:00	0.0	0.0	0.0	0.0	19.8

H ₂ S (ppm): 0	CO (ppm): 0	VOC by PID (ppm): 0.0	
Flow (l/hr): <0.1		Atmospheric Pressure (mbar): 1022	
Depth to Ground-water (mbgl): 2.69		Differential Pressure (Pa): 0	

Monitoring Well - WS205

Time (Mins: Sec)	Methane %v/v	Methane GSV (I/hr)	Carbon Dioxide %v/v	Carbon Dioxide GSV (I/hr)	Oxygen % v/v
0:30	0.0	0.0	0.0	0.0	19.7
1:00	0.0	0.0	0.0	0.0	19.7
1:30	0.0	0.0	0.0	0.0	19.7
2:00	0.0	0.0	0.0	0.0	19.7
3:00	0.0	0.0	0.0	0.0	19.7
4:00	0.0	0.0	0.0	0.0	19.7
5:00	0.0	0.0	0.0	0.0	19.7

H ₂ S (ppm): 0	CO (ppm): 0	VOC by PID (ppm): 0.0	
Flow (I/hr): <0.1		Atmospheric Pressure (mbar): 1022	
Depth to Ground-water (mbgl): 2.54		Differential Pressure (Pa): 0	

Monitoring Well – WS207

Time (Mins: Sec)	Methane %v/v	Methane GSV (I/hr)	Carbon Dioxide %v/v	Carbon Dioxide GSV (I/hr)	Oxygen % v/v
0:30	0.0	0.0	0.0	0.0	19.9
1:00	0.0	0.0	0.0	0.0	20.0
1:30	0.0	0.0	0.0	0.0	19.9
2:00	0.0	0.0	0.0	0.0	19.9
3:00	0.0	0.0	0.0	0.0	19.8
4:00	0.0	0.0	0.0	0.0	19.8
5:00	0.0	0.0	0.0	0.0	19.8

H ₂ S (ppm): 0	CO (ppm): 0	VOC by PID (ppm): 0.0	
Flow (I/hr): <0.1		Atmospheric Pressure (mbar): 1020	
Depth to Ground-water (mbgl): Dry		Differential Pressure (Pa): 0	

Monitoring Well - WS209

	,	-00			
Time (Mins: Sec)	Methane %v/v	Methane GSV (I/hr)	Carbon Dioxide %v/v	Carbon Dioxide GSV (I/hr)	Oxygen % v/v
0:30	0.0	0.0	0.0	0.0	19.7
1:00	0.0	0.0	0.0	0.0	19.6
1:30	0.0	0.0	0.0	0.0	19.6
2:00	0.0	0.0	0.0	0.0	19.6
3:00	0.0	0.0	0.0	0.0	19.6
4:00	0.0	0.0	0.0	0.0	19.6
5:00	0.0	0.0	0.0	0.0	19.6

H ₂ S (ppm): 0	CO (ppm): 0		VOC by PID (ppm): 0.0
Flow (l/hr): <0.1		Atmospheric Pressure (mbar): 1021	
Depth to Ground-water (mbgl): 2.25		Differentia	al Pressure (Pa): 0

Monitoring Well – WS211

Time (Mins: Sec)	Methane %v/v	Methane GSV (I/hr)	Carbon Dioxide %v/v	Carbon Dioxide GSV (I/hr)	Oxygen % v/v
0:30	0.0	0.0	0.0	0.0	19.5
1:00	0.0	0.0	0.0	0.0	18.5
1:30	0.0	0.0	0.0	0.0	17.9
2:00	0.0	0.0	0.0	0.0	17.8
3:00	0.0	0.0	0.0	0.0	17.8
4:00	0.0	0.0	0.0	0.0	17.8
5:00	0.0	0.0	0.0	0.0	17.8

H ₂ S (ppm): 0	CO (ppm): 0		VOC by PID (ppm): 0.0
Flow (I/hr): <0.1		Atmosph	eric Pressure (mbar): 1022
Depth to Ground-water (mbgl)): 0.1	Differenti	al Pressure (Pa): 0

Date: 23rd December 2021

Weather Conditions: Overcast	Temperature (°C): 8
Ground Conditions: Damp	Atmospheric Pressure: Falling

Monitoring Well – WS201

Time (Mins: Sec)	Methane %v/v	Methane GSV (I/hr)	Carbon Dioxide %v/v	Carbon Dioxide GSV (I/hr)	Oxygen % v/v
0:30	0.0	0.0	0.0	0.0	19.5
1:00	0.0	0.0	0.0	0.0	19.5
1:30	0.0	0.0	0.0	0.0	19.4
2:00	0.0	0.0	0.0	0.0	19.4
3:00	0.0	0.0	0.0	0.0	19.4
4:00	0.0	0.0	0.0	0.0	19.4
5:00	0.0	0.0	0.0	0.0	19.4

H ₂ S (ppm): 0	CO (ppm): 0	VOC by PID (ppm): 0.0	
Flow (I/hr): <0.1		Atmospheric Pressure (mbar): 1001	
Depth to Ground-water (mbgl): 4.13		Differential Pressure (Pa): 0	

Monitoring Well - WS204

Time (Mins: Sec)	Methane %v/v	Methane GSV (I/hr)	Carbon Dioxide %v/v	Carbon Dioxide GSV (I/hr)	Oxygen % v/v
0:30	0.0	0.0	0.0	0.0	19.7
1:00	0.0	0.0	0.0	0.0	19.6
1:30	0.0	0.0	0.0	0.0	19.6
2:00	0.0	0.0	0.0	0.0	19.6
3:00	0.0	0.0	0.0	0.0	19.6
4:00	0.0	0.0	0.0	0.0	19.6
5:00	0.0	0.0	0.0	0.0	19.6

H ₂ S (ppm): 0	CO (ppm): 0	VOC by PID (ppm): 0.0	
Flow (I/hr): <0.1		Atmospheric Pressure (mbar): 1000	
Depth to Ground-water (mbgl): 2.61		Differential Pressure (Pa): 0	

Monitoring Well - WS205

	,				
Time (Mins: Sec)	Methane %v/v	Methane GSV (I/hr)	Carbon Dioxide %v/v	Carbon Dioxide GSV (I/hr)	Oxygen % v/v
0:30	0.0	0.0	0.0	0.0	19.6
1:00	0.0	0.0	0.0	0.0	19.6
1:30	0.0	0.0	0.0	0.0	19.6
2:00	0.0	0.0	0.0	0.0	19.6
3:00	0.0	0.0	0.0	0.0	19.6
4:00	0.0	0.0	0.0	0.0	19.6
5:00	0.0	0.0	0.0	0.0	19.6

H ₂ S (ppm): 0	CO (ppm): 0	VOC by PID (ppm): 0.0	
Flow (I/hr): <0.1		Atmospheric Pressure (mbar): 1000	
Depth to Ground-water (mbgl): 1.83		Differential Pressure (Pa): 0	

Monitoring Well - WS207

Time (Mins: Sec)	Methane %v/v	Methane GSV (I/hr)	Carbon Dioxide %v/v	Carbon Dioxide GSV (I/hr)	Oxygen % v/v
0:30	0.0	0.0	0.0	0.0	19.6
1:00	0.0	0.0	0.0	0.0	19.6
1:30	0.0	0.0	0.0	0.0	19.6
2:00	0.0	0.0	0.0	0.0	19.6
3:00	0.0	0.0	0.0	0.0	19.5
4:00	0.0	0.0	0.0	0.0	19.5
5:00	0.0	0.0	0.0	0.0	19.5

H ₂ S (ppm): 0	CO (ppm): 0	VOC by PID (ppm): 0.0
Flow (I/hr): <0.1		Atmospheric Pressure (mbar): 1000
Depth to Ground-water (mbgl): Dry		Differential Pressure (Pa): 0

Monitoring Well - WS209

Time (Mins: Sec)	Methane %v/v	Methane GSV (I/hr)	Carbon Dioxide %v/v	Carbon Dioxide GSV (I/hr)	Oxygen % v/v
0:30	0.0	0.0	0.0	0.0	19.6
1:00	0.0	0.0	0.0	0.0	19.6
1:30	0.0	0.0	0.0	0.0	19.6
2:00	0.0	0.0	0.0	0.0	19.6
3:00	0.0	0.0	0.0	0.0	19.5
4:00	0.0	0.0	0.0	0.0	19.5
5:00	0.0	0.0	0.0	0.0	19.5

H ₂ S (ppm): 0	CO (ppm): 0	VOC by PID (ppm): 0.0
Flow (I/hr): <0.1		Atmospheric Pressure (mba	r): 1000
Depth to Ground-water (mbgl): 2.03		Differential Pressure (Pa): 0	

Monitoring Well – WS211

Time	Methane	Methane	Carbon Dioxide	Carbon Dioxide	Oxygen
(Mins: Sec)	%v/v	GSV (I/hr)	%v/v	GSV (I/hr)	% v/v
0:30	0.0	0.0	0.0	0.0	19.6
1:00	0.0	0.0	0.0	0.0	19.6
1:30	0.0	0.0	0.0	0.0	19.6
2:00	0.0	0.0	0.0	0.0	19.6
3:00	0.0	0.0	0.0	0.0	19.5
4:00	0.0	0.0	0.0	0.0	19.5
5:00	0.0	0.0	0.0	0.0	19.5

H ₂ S (ppm): 0	CO (ppm): 0		VOC by PID (ppm): 0.0
Flow (I/hr): <0.1		Atmosphe	ric Pressure (mbar): 1000
Depth to Ground-water (mbgl): 0.21		Differentia	al Pressure (Pa	a): 0

APPENDIX VIII ASBESTOS RISK ASSESSMENT

Decision Support Tool for Receptor Risk Ranking

Stage 1 Hazard Identification		Score
Select ACM type (run model for each type to generate 'Worst Case' output)	Bonded ACMs: cement, vinyl, composites, textured decorative coatings, bitumen products	0
Extent of degradation of ACMs	Intact (Very good condition ACM/ACM fragments	1
Friability and degree of bonding by matrix (ACM matrix, not ground materials)	Non-friable ACM or ACM with fibres firmly linked in a matrix	0
Distribution of Visible Asbestos Across Affected Area	Occasional/random occurrences of visible contamination by ACMs	1
Asbestos fibre type	Mainly chrysotile and trace amphibole (no crocidolite)	1
Sub-total		3
Hazard ranking		Very Low

No warranty, expressed or implied, or reliance, is provided in relation to the use of this tool.

It is contingent on users to satisfy themselves that the output from the tool is relevant and appropriate to the assessment being made.

Stage 2 Emission Factors		Score	
Amount of asbestos fibre in selected ACM/fibre type as % of host material	Trace quantities - <0.0001 to <0.001 %wt/wt	0	
Respirable fibre index for ACM - RIVM report 711701034 (2003)	Very low	1	
Activity type and effect on deterioration of ACMs	Moderate disturbance, slight deterioration expected	3	
Best description of primary host material matrix	Fine Silt and/or Clay	1	
Sub-total		5	
Exposure ranking			Low

© Joint Industry Working Group, ©CL:AIRE

Page 2 of 4

Version 2, February 2017

eceptor category	Residential	No score required	
ge of Receptor	Infant (under 5)	4	
uration of exposure/site occupancy	> 1hr <10 hr daily exposure (e.g. part-time to full time occupational exposure or extended daily recreational exposure)	3	
eceptor ranking		7	High
ombined hazard, exposure and receptor ranking			Low
athway: Distance of Receptor from Source athway: Depth to impacted material	In or within 10m of area of disturbance Material present near the surface, potential to be disturbed during non-construction/routine use of land	4 D	
athway ranking		4D	

Project Reference	Proect Number 2954
Site Name	Harrisons Lane, Halesworth
Client	
Run by	PDM
Date	05-Jan-22
Reviewed by	PMI
Characterisation of scenario being evaluated	damage during construction work. Minor release of fibres
Interpretation of scenario ranking by DST	

© Joint Industry Working Group, ©CL:AIRE

Version 2, February 2017

Page 4 of 4

Asbestos in Soil and Construction & Demolition Materials

Decision Support Tool for CAR2012 Work Categories

<u>Stage 1</u> Hazard Factors		Score
Select ACM type (run model for each type to generate 'Worst Case' output)	Bonded ACMs: cement, vinyl, composites, textured decorative coatings, bitumen products	1
Extent of degradation of ACMs at outset of work	Intact (Very good condition ACM/ACM fragments	1
Friability and degree of bonding by matrix (ACM matrix, not ground materials)	Non-friable ACM or ACM with fibres firmly linked in a matrix	0
Distribution of Visible Asbestos Across Affected Area	Sporadic/random occurrences of visible contamination by ACMs	2
Amount of asbestos fibre in selected ACM/fibre type as % of host material	Very Low quantities - <0.001 to 0.01 %wt/wt	1
Sub-total		5
	Note: the asbestos licensing regime is unaffected by the type of asbestos fibre present in ACMs	
Hazard ranking		Very low

No warranty, expressed or implied, or reliance, is provided in relation to the use of this tool.

It is contingent on users to satisfy themselves that the output from the tool is relevant and appropriate to the assessment being made.

Stage 2 Exposure Factors			Score
Anticipated airborne fibre concentration - Control Limit or SALI?	<0.001 fibres/ml		0
Anticipated duration of exposure to asbestos	> 2 hours in a 7 day period and Up to 10 hours in a day (e.g. full time occupational exp	osure)	4
Activity type and effect on deterioration of ACMs during work	Sampling, manual or mechanical (significant deterioration expected)		2
Best description of primary host material matrix (soil/made ground)	Fine Silt and/or Clay		1
Respirable fibre index for ACM - RIVM report 711701034 (2003)	Very low		1
Sub-total			8
Exposure ranking			Low
Combined hazard and exposure ranking		13	Low

© Joint Industry Working Group, ©CL:AIRE Version 2, July 2016

Stage 3

Risk Assessment Outputs

Probable Licensing Status RPE*

Non-Licensed Work
EN149 type FFP3 disposable
Manual/localised dust suppression

Dust Suppression**
Hygiene/Decontamination***

Localised and basic personal decontamination facilities

^{*}Where RPE has to be worn continuously for long periods (e.g. more than 1-hour), then powered RPE may be necessary.

^{**}Reduction in control measures possible if natural mitigation factors are present (e.g. raining, wet ground)

^{***}Guide only; suitability of selected personal hygiene measures may be reviewed on a site/contamination-specific basis

APPENDIX IX REMEDIATION METHOD STATEMENT

REMEDIATION METHOD STATEMENT (VERSION 2)

HARRISON'S LANE, HALESWORTH

Background

Brown 2 Green Associates Ltd has prepare a Remediation Method Statement for the development of land south of Harrison's Lane. Halesworth to residential.

A contamination assessment and risk assessment has been prepared for the site. The findings are presented in the following reports:

Land Off Harrisons Lane, Halesworth – Phase 1 Contaminated Land Assessment, report prepared by Create Consulting Engineers Ltd; dated September 2017; Ref: CB/CS/P17-1228/02; and

Ground Investigation Land Off Harrisons Lane, Halesworth, prepared by ASL; dated August 2019; Ref 450-18-087-10.

Geo-environmental and Geotechnical Site Investigation Report: Town Farm, Harrisons Lane, Halesworth, Suffolk; dated January 2022; Report Reference: 2954 Rpt 1 v1.

The investigation identified fragments of cement based product that contained asbestos across the ground surface of land at the southern end of the site that contains some derelict poultry houses. A requirement for remediation was identified to mitigate the risk from the asbestos. This report presents the remediation strategy to be adopted at the site.

Pre-remediation Conceptual Model

Source	Potential migration pathway	Potential Receptors
Fragments of cement sheeting that contain asbestos	Inhalation of fibres	Residents and construction workers

Remediation Objectives

The objectives of the remediation are to:

Break the pollutant linkages that were identified as being active during the site investigation works.

Render the site suitable for the intended end use as a residential development with private gardens.

Render the site incapable of determination as contaminated land under Part 2A

Remediation Actions

To achieve the objectives the remediation strategy will consist of:

Removal of the cement-based asbestos containing product.

As part of the demolition of the poultry sheds, the fragments of cement-based product that contain asbestos (ACM) will be removed. Due to the limited extent and as the materials are cross the ground surface, the most suitable methodology will be hand picking to collect up the ACM. It is recommended that this should be undertaken, as part of the demolition of the poultry buildings.

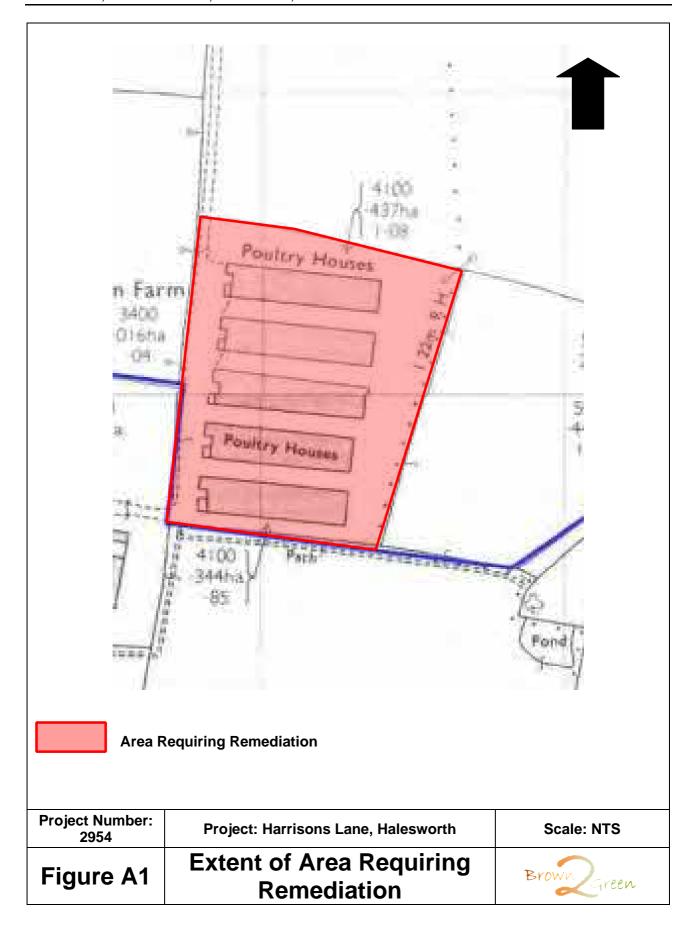
Verification

The following verification should be undertaken:

Following the completion of the demolition, a detailed inspection of the area will be undertaken to provide confirmation that all materials that contain asbestos have been removed. Should any fragments of ACM be identified further had picking will be undertaken.

The following verification criteria will be adopted.

No fragments of ACM identified.


Reporting

On completion of the remediation a validation report will be prepared. The validation report will present the following information:

Site observations and photographs.

Unforeseen Contamination

During the construction works, should any evidence of unforeseen contamination be identified, contact should be made with a suitable qualified Geo-environmental Consultant. If required, additional investigation should be completed and contact made with the Contaminated Land Officer at the local council.

